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Resumen

En esta memoria de tesis se expone el trabajo llevado a cabo por el doctorando durante los últimos
cuatro años, el cual versa principalmente sobre diversos aspectos de soluciones cosmológicas obtenidas
a partir de teoŕıas de gravedad modificada. Para entender el origen y la importancia de las teoŕıas de
gravedad modificada es necesario comentar antes algunos hechos acontecidos durante el siglo XX en el
marco de la cosmoloǵıa.

La cosmoloǵıa como ciencia nació gracias a la Teoŕıa de la Relatividad General de Albert Einstein.
Antes de ésta, el espacio no era más que el lugar en el que las estrellas y los planetas resid́ıan y el tiempo no
era más que algo que iba pasando, siendo espacio y tiempo dos cosas completamente desconectadas y que
no se véıan afectadas por lo acontecido en el Universo. Sin embargo, la teoŕıa de Einstein derrumbó estas
ideas, proponiendo que espacio y tiempo están ligados entre śı y que, además, no son meros espectadores
de lo que sucede en el Universo, sino que se ven afectados por su contenido. Fue de esta manera como
surgió el concepto de espacio–tiempo, el cual, según Einstein, se curva debido a la presencia de materia
y/o enerǵıa (ya unificadas en su teoŕıa de la relatividad especial). Las ecuaciones de campo de Einstein
son las ecuaciones que permiten a la cosmoloǵıa ser considerada como una ciencia, y establecen un diálogo
entre la forma del Universo y el contenido de materia y enerǵıa que en él hay. Las primeras soluciones
cosmológicas que se dieron para el Universo eran estáticas, sin embargo éstas se desecharon cuando se
verificó que la ley de expansión propuesta por Hubble era cierta. La teoŕıa más aceptada hoy en d́ıa para
describir el Universo es la Teoŕıa del Big Bang, que predice un universo en expansión que habŕıa empezado
tras una gran explosión. Entre los logros de esta teoŕıa se encuentran el estar de acuerdo con la ley de
Hubble, haber podido predecir el fondo de radiación cósmica de microondas o el ser capaz de explicar
la abundancia relativa de elementos primordiales. Sin embargo, este modelo no se encuentra exento de
problemas, ya que hay ciertos aspectos que la teoŕıa no es capaz de explicar, entre ellos se encuentran el
problema de la bariogénesis (explicar el proceso que produce la asimetŕıa encontrada entre bariones y an-
tibariones) o los problemas de la planitud y del horizonte. Si bien es cierto que alguno de estos problemas
pueden ser subsanados completando la teoŕıa del Big Bang con otras como el modelo inflacionario, se ha
demostrado que estos parches también presentan sus propios problemas. Aún aśı, la teoŕıa del Big Bang
está considerada como la mejor descripción que tenemos del Universo.

A pesar de los pequeños o grandes problemas que aún quedaban por resolver, parećıa que la cosmoloǵıa
estaba destinada a vivir de manera más o menos plácida. Pero esta aparente calma se vio truncada cuando,
a finales del siglo XX, dos grupos liderados por Saul Perlmutter y por Adam Riess y Brian Schmidt, respec-
tivamente, descubrieron, a partir de observaciones de supernovas de tipo Ia, que el Universo se encuentra
en una fase de expansión acelerada. Esto contrasta con la visión que aporta la teoŕıa del Big Bang, ya que
según este modelo el Universo habŕıa surgido de una gran explosión, fruto de la cual se estaŕıa expandi-
endo; sin embargo, debido a la atracción gravitatoria de la masa contenida en el Universo, dicha expansión
debeŕıa ir frenándose. Además, el grupo de Perlmutter determinó que, para poder explicar este hecho en
el seno de la teoŕıa del Big Bang, asumiendo un Universo espacialmente plano, la materia ordinaria y la
materia oscura aportaŕıan un 28% del total del contenido del Universo, mientras que el 72% restante de-
beŕıa atribuirse a un tipo de enerǵıa exótica denominada enerǵıa oscura y que ejerceŕıa una fuerza repulsiva.

El descubrimiento de la expansión acelerada del Universo fue el origen del surgimiento de un gran
número de teoŕıas cuyo objetivo era darle una explicación. La más aceptada actualmente es la teoŕıa
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Λ-Cold-Dark-Matter ( ΛCDM ) la cual propone que la enerǵıa oscura no es más que una constante cos-
mológica que daŕıa cuenta de la enerǵıa de vaćıo del Universo. Otras teoŕıas muy populares entre los
cosmólogos para dar una explicación a la enerǵıa oscura son las teoŕıas escalar–tensor, en las cuales la
aceleración se consigue mediante la introducción de un campo escalar en el lagrangiano de la teoŕıa, de
manera similar a como el inflatón consigue la aceleración en el periodo de inflación. Básicamente, las
teoŕıas comentadas hasta ahora se basan en la introducción de algún tipo de materia o enerǵıa exótica en
las ecuaciones de campo de Einstein para conseguir la aceleración deseada en el Universo. Sin embargo,
ésta no es la única forma de conseguir el resultado deseado. Otra manera es suponer que las ecuaciones
de Einstein son válidas hasta un cierto ĺımite, pero han de ser modificadas más allá de este. De esta
forma la aceleración en la expansión no estaŕıa causada por un tipo de materia/enerǵıa exótica, sino que
seŕıa consecuencia de las nuevas ecuaciones. A este tipo de teoŕıas es a las que se conoce como teoŕıas de
gravedad modificada.

Entre los modelos que proponen modificar las ecuaciones de Einstein, para intentar dar una explicación
a la actual aceleración en la expansión del Universo, se encuentran las teoŕıas de gravedad modificada
f(R) . Estas teoŕıas se basan en la sustitución de la curvatura escalar, R , en la acción de Einstein–Hilbert
por una función genérica de la misma, f(R) . Esta modificación, que a priori puede no parecer especial-
mente traumática, se traduce finalmente en que las ecuaciones de campo derivadas de la nueva acción sean
ecuaciones diferenciales no lineales de cuarto orden, en lugar de ser de segundo orden como es el caso de
las ecuaciones de campo de Einstein. Una parte muy importante, si bien no es la única, de los esfuerzos
realizados para llevar a cabo este trabajo de tesis se basa en el estudio de diversos aspectos de diferentes
teoŕıas de gravedad modificada f(R) .

Uno de los bloques fundamentales de la memoria de la tesis es aquél dedicado a la reconstrucción de
soluciones cosmológicas a partir de diferentes teoŕıas gravitatorias. El objetivo es determinar si es posible
encontrar una acción que sea capaz de reproducir una cosmoloǵıa, dada por su factor de escala o su función
de Hubble, y, en caso afirmativo, determinar la forma de dicha acción. Esta labor se ha llevado a cabo para
teoŕıas de gravedad modificada f(R) mediante el uso de dos esquemas de reconstrucción distintos, uno
basado en el uso de un campo escalar y otro en el uso de las ecuaciones de campo obtenidas a partir de la
acción de la teoŕıa f(R) . En el caṕıtulo 2 se presentarán estos esquemas de reconstrucción y se analizarán
los resultados obtenidos mediante el uso de ambos para una misma cosmoloǵıa dada. Posteriormente, en el
caṕıtulo 3, se extenderá el uso de estos programas de reconstrucción a modelos cosmológicos acoplados de
manera mı́nima a campos de Yang–Mills, estudiando de nuevo lo que ocurre con las soluciones obtenidas
a partir de ambos métodos para una misma cosmoloǵıa. Además, se llevará a cabo el desarrollo de un
programa de reconstrucción para teoŕıas de Yang–Mills acopladas de manera no–mı́nima a gravedad. Para
terminar con el bloque dedicado a la reconstrucción de soluciones cosmológicas, se estudiará el caso de
universos ćıclicos en el seno de teoŕıas de gravedad de Hořava–Lifshitz modificada. La gravedad de Hořava–
Lifshitz es una teoŕıa renormalizable, propuesta por Hořava, basada en la introducción de una anisotroṕıa
entre las cordenadas espaciales y la temporal, con la cual se rompe la invariancia bajo difeomorfismos de
la Relatividad General. En el caṕıtulo 4, se hará uso de los métodos de reconstrucción estudiados anterior-
mente para reconstruir un universo ćıclico en el seno de teoŕıas de gravedad de Hořava–Lifshitz modificada,
dichas teoŕıas se obtienen mediante una generalización del modelo de Hořava–Lifshitz, de manera similar
a como se obtienen las teoŕıas f(R) a partir de la acción de Einstein–Hilbert.

El estudio de la historia cósmica, y del crecimiento de las perturbaciones de densidad de materia,
para diversos modelos f(R) viables constituye otra de las partes fundamentales de esta memoria de tesis.
Debido a la arbitrariedad de la función f(R) , existen infinitas teoŕıas de este tipo, tantas como funciones
que se puedan proponer; sin embargo, no todas ellas son viables, para ello han de cumplir con una serie
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de condiciones, como pueden ser pasar los tests de Sistema Solar y tener un acoplo gravitacional efectivo
positivo. En el caṕıtulo 5 se hará un estudio de la historia cósmica para dos modelos viables. Se analizarán
numéricamente las oscilaciones de alta frecuencia de enerǵıa oscura producidas durante la época de dom-
inación de materia, las cuales pueden producir algunas divergencias. Es por ello que se propondrán unos
términos correctivos para los modelos que ayudarán a estabilizar estas oscilaciones sin hacer perder la
viabilidad a los modelos. Para estas nuevas teoŕıas se hará un estudio de la evolución que tendŕıan en el
futuro y, además, se analizará de manera exhaustiva la historia de crecimiento de las perturbaciones de
densidad de materia. Para llevar a cabo esta última tarea se determinará el ı́ndice de crecimiento para
ambos modelos según tres parametrizaciones distintas. En la segunda parte del caṕıtulo 5 se realizará un
análisis de la época inflacionaria para dos modelos exponenciales. Para terminar con este bloque, en el
caṕıtulo 6, se estudiará el crecimiento de las perturbaciones de densidad de materia, de manera similar a
como se hizo en el caṕıtulo 5, para dos nuevos modelos f(R) viables.

Un tercer bloque, que consta de dos caṕıtulos, se dedica al estudio de otros aspectos importantes para
las teoŕıas gravitatorias, como es el caso del problema de la aparición de singularidades y el estudio del
ĺımite de campo débil en teoŕıas f(R,G) , siendo G el invariante de curvatura de Gauss–Bonnet. El caso
de la existencia de singularidades futuras en el seno de teoŕıas de gravedad modificada y de enerǵıa oscura
es tratado en el caṕıtulo 7, en el cual también se dará una clasificación de las mismas dependiendo de la
magnitud causante de la divergencia. Si bien es cierto que, para tratar de manera rigurosa el tema de las
singularidades, es necesaria una teoŕıa cuántica de la gravedad, de la que aún hoy carecemos, también es
importante intentar encontrar escenarios naturales a nivel clásico o semiclásico que sean capaces de curar
la aparición de estas singularidades. En el caṕıtulo 7 se propondrá una posible cura para este problema,
la cual está basada en la adición de un término R2 en el Lagrangiano de la teoŕıa. Tras este análisis del
problema de la aparición de singularidades en el seno de distintas teoŕıas gravitatorias, en el caṕıtulo 8
se afronta el estudio del ĺımite de campo débil para las teoŕıas de gravedad modificada f(R,G) . Hasta
finales del siglo XX, la Relatividad General de Einstein se hab́ıa mostrado como la teoŕıa gravitatoria más
fiable, debido a la excelente concordancia entre sus predicciones y los datos observacionales que se teńıan
en ese momento. Sin embargo, el descubrimiento del actual estado de aceleración, en el que se ve inmersa
la expansión del Universo, abrió una grieta en la teoŕıa gravitatoria de Einstein, poniendo en duda su
validez a grandes escalas y en reǵımenes de altas enerǵıas. Aún aśı, los excelentes resultados a cortas
escalas, como a nivel de sistema solar, de la Relatividad General hacen que el análisis del ĺımite de campo
débil de cualquier teoŕıa gravitatoria sea muy relevante, ya que éstas debeŕıan ser capaces de reproducir
los resultados obtenidos por la Relatividad General para pequeñas escalas. De esta manera, el estudio del
ĺımite de campo débil puede ser usado para desechar o seguir teniendo en consideranción una teoŕıa gravi-
tatoria. En el caṕıtulo 8, se calcularán los ĺımites Newtoniano, post–Newtoniano y post–post–Newtoniano
de las teoŕıas f(R,G) ; además, el ĺımite Newtoniano se resolverá a partir de funciones de Green. Para
finalizar con el caṕıtulo se presentarán los ĺımites Newtoniano, post–Newtoniano y post–post–Newtoniano
para dos casos especiales, las teoŕıas f(R) y f(G) .

La memoria de la tesis finaliza con un bloque dedicado a las conclusiones obtenidas y a las cuestiones
que quedan abiertas para un trabajo futuro.
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Resum

En aquesta memòria de tesis s’exposa el treball dut a terme pel doctorant durant els últims quatre
anys, i que versa principalment sobre diversos aspectes de solucions cosmològiques obtingudes a partir de
teories de gravetat modificada. Per entendre l’oŕıgen i la importància de les teories de gravetat modificada
és necessari comentar abans alguns fets que ocorregueren durant el segle XX en el marc de la cosmologia.

La cosmologia com a ciència va néixer gràcies a la Teoria de la Relativitat General d’Albert Einstein.
Abans d’aquesta, l’espai no era més que el lloc on les estrelles i els planetes residien, i el temps no era més
que quelcom que anava passant, essent l’espai i el temps dues coses completament desconectades i que no
es veien afectades pel que passava a l’Univers. La teoria d’Einstein va enderrocar aquestes idees, proposant
que l’espai i el temps estan conectats i que, a més, no son purs espectadors del que passa a l’Univers, sinó
que es veuen afectats pel seu contingut. Va ser d’aquesta manera com va sorgir el concepte d’espai-temps,
el qual, segons Einstein, es corba degut a la presència de matèria i/o energia (ja unificades en la seva teoria
de la relativitat especial). Les equacions de camp d’Einstein són les equacions que permeten a la cosmolo-
gia ser considerada com una ciència, i estableixen un diàleg entre la forma de l’Univers i el seu contingut
de matèria i energia. Les primeres solucions cosmològiques que es trobaren per a l’Univers eren estàtiques,
malgrat que aquestes es rebutjaren quan es verificà que la llei de l’expansió proposada per Hubble era certa.

Malgrat els petits o grans problemes que encara quedaven per resoldre, semblava que la cosmologia
estava destinada a viure de manera més o menys plàcida. Però aquesta aparent calma es va veure truncada
quan, a finals del segle XX, dos grups liderats per Saul Perlmutter i per Adam Riess i Brian Schmidt,
respectivament, descobriren, a partir d’observacions de supernoves de tipus Ia, que l’Univers es troba en
una fase d’expansió accelerada. Això constrata amb la visiò que aporta la teoria del Big Bang, ja que
segons aquest model l’Univers hauria surgit d’una gran explosió, fruit de la qual s’estaria expandint; no
obstant, degut a l’atracció gravitatòria de la massa continguda en l’Univers, l’expansió hauria de frenar-se.
A més, el grup de Perlmutter va determinar que, per tal d’explicar aquest fet en el marc de la teoria del
Big Bang, assumint un univers espacialment pla, la matèria ordinària i la matèria fosca aportarien un 28%
del total del continug de l’Universe, mentres que el 72% restant s’hauria d’atribüır a un tipus d’energia
exòtica denominada energia fosca i que exerciria una força repulsiva.

El descobriment de l’expansió accelerada de l’Univers va ser seguit del naixement d’un gran número de
teories que pretenien explicar-ne l’origen. La més acceptada actualment és la teoria Λ-Cold-Dark-Matter
( ΛCDM ), que proposa que l’energia fosca no és més que una constant cosmològica relacionada amb
l’energia del buit de l’Univers. Altres teories molt populars entre els cosmòlegs per a donar una explicació
a l’energia fosca són les teories escalar-tensor, en les que l’acceleració s’aconsegueix mitjançant la intro-
ducció d’un camp escalar en el Lagrangià de la teoria, de manera equivalent a com l’inflató aconsegueix
l’acceleració en el periode d’inflació. Bàsicament, les teories comentades fins ara es basen en la intro-
ducció d’algun tipus de matèria o energia exòtica en les equacions de camp d’Einstein per tal d’aconseguir
l’acceleració. Ara bé, aquesta no és l’única forma d’aconseguir el resultat desitjat. Una altra manera es
suposar que les equacions d’Einstein només són valides fins a un cert ĺımit, però que han de ser modificades
un cop propassat aquest. D’aquesta manera l’acceleració en l’expansió no estaria causada per un tipus de
matèria/energia exòtica, sinó que seria conseqüència de les noves equacions. A aquest tipus de teories és
a les que es coneixen com a teories de gravetat modificada.
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Entre els models que proposen modificar les equacions d’Einstein, per intentar donar una explicació a
l’actual acceleració en l’expansió de l’Univers, es troben les teories de gravetat modificada f(R) . Aquestes
teories es basen en la substitució de la curvatura escalar, R , en l’acció d’Einstein-Hilbert per una funció
genèrica de la mateixa, f(R) . Aquesta modificació, que a priori pot no semblar especialment traumàtica,
es tradueix finalment en que les equacions de camp derivades de la nova acció siguin equacions diferencials
no lineals de quart ordre, en lloc de ser de segon order com en el cas de les equacions d’Einstein. Una part
molt important, si bé no l’única, dels esforços realitzats per portar a terme aquest treball de tesis es basa
en l’estudi de diversos aspectes de diferents teories de gravetat modificada f(R) .

Un dels blocs fonamentals de la memòria de la tesis és dedicat a la reconstrucció de solucions cos-
mològiques a partir de diferents teories gravitatòries. L’objectiu és determinar si és possible trobar una
acció que sigui capaç de reprodüır una cosmologia, donada pel seu factor d’escala o la seva funció de
Hubble, i, en cas afirmatiu, determinar la forma d’aquesta acció. Aquesta feina s’ha dut a terme per
teories de gravetat modificada f(R) mitjançant l’us de dos esquemes de reconstrucció diferents: un basat
en l’ús d’un camp escalar i un altre en l’ús d’equacions de camp obtingudes a partir de l’acció de la teo-
ria f(R) . En el caṕıtol 2 es presentaran aquests esquemes de reconstrucció i s’analitzaran els resultats
obtinguts mitjançant l’ús d’ambdós esquemes per a una cosmologia donada. Posteriorment, en el caṕıtol
3, s’extendrà l’ús d’aquests programes de reconstrucció a models cosmològics acoplats de manera mı́nima
a camps de Yang-Mills, estudiant de nou el que succeeix amb les solucions obtingudes a partir d’ambdós
mètodes per a una mateixa cosmologia. També es durà a terme el desenvolupament d’un programa de
reconstrucció per a teories de Yang-Mills acoplades de manera no-mı́nima a la gravetat. Per acabar amb
el bloc dedicat a la reconstrucció de solucions cosmològiques, on s’estudiarà el cas d’universos ćıclics en el
marc de les teories de gravetat d’Hořava-Lifshitz modificada. La gravetat d’Hořava-Lifshitz és una teoria
renormalitzable, proposada per Hořava, basada en la introducció d’una anisotropia entre les coordenades
espacials i la temporal, amb la que es trenca la invariança sota difeomorfismes de la Relativitat General.
En el caṕıtol 4, es farà ús dels mètodes de reconstrucció estudiats anteriorment per tal de reconstrüır
un univers ćıclic en el marc de les teories de gravetat d’Hořava-Lifshitz modificada, teories obtingudes
mitjançant una generalització del model d’Hořava-Lifshitz, de manera similar a com s’obtenen les teories
f(R) a partir de l’acció d’Einstein-Hilbert.

L’estudi de la història còsmica, i del creixement de les perturbacions de densitat de matèria, per di-
versos models f(R) viables constitueix una altra de les parts fonamentals d’aquesta memòria de tesis.
Degut a l’arbitrarietat de la funció f(R) , existeixen un infinit de teories d’aquest t́ıpus, tantes com fun-
cions es puguin proposar; ara bé, no totes elles són viables, ja que per això han de satisfer una sèrie de
condicions, com ara els tests de Sistema Solar i tenir un acoblament gravitacional efectiu positiu. En el
caṕıtol 5 es farà un estudi de la història còsmica per a dos models viables. S’analitzaran numèricament
les oscil·lacions d’alta freqüència d’energia fosca prodüıdes durant l’època de domini de la matèria, les
quals podrien prodüır alguna divergència. És per això que es proposaran uns termes correctius per als
models que ajudaran a establir aquestes oscil · lacions sense fer perdre la viabilitat dels models. Per a
aquestes noves teories es farà un estudi de l’evolució que tindran en el futur i, a més, s’analitzarà de manera
exhaustiva la història de creixement de les pertorbacions de densitat de matèria. Per tal de dur a terme
aquesta darrera tasca es determinarà l’́ındex de creixement per ambdós models segons tres parametritza-
cions diferents. En la segona part del caṕıtol 5 es realitzarà un anàlisis de l’època inflacionària per a dos
models exponencials. Per acabar aquest bloc, en el caṕıtol 6, s’estudiarà el creixement de les perturbacions
de densitat de matèria, de manera similar a com es fa en el caṕıtol 5, per a dos nous models f(R) viables.

Un tercer bloc, que consta de dos caṕıtols, es dedica a l’estudi d’altres aspectes importants per a les
teories gravitatòries, com és el cas del problema de l’aparició de singularitats i l’estudi del ĺımit de camp
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dèbil en teories f(R,G) , essent G l’invariant de curvatura de Gauss-Bonnet. El cas de l’existència de
singularitats futures en el marc de teories de gravetat modificada i d’energia fosca és tractat al caṕıtol 7, en
el que també es farà una classificació de les mateixes, en funció de la magnitud causant de la divergència.
Si bé és cert que, per tal de tractar de manera rigorosa el tema de les singularitats, és necessària una teoria
quàntica de la gravetat, teoria que encara ens manca avui en dia, també és important intentar trobar
escenaris naturals a nivell clàssic o bé semi–clàssic que siguin capaços de capturar l’aparició d’aquestes
singularitats. En el caṕıtol 7 es proposarà una possible cura per a aquest problema, que estarà basada
en afegir un terme R2 en el Lagrangià de la teoria. Després de fer aquesta anàlisi del problema de les
singularitats en el context de les diferents teories de gravetat, el caṕıtol 8 es dedicarà a l’estudi del ĺımit de
camp feble per les teories de gravetat modificada de tipus f(R,G). Fins a finals del segle XX, la Teoria de
la Relativitat General d’Einstein era tinguda com la teoria gravitatòria més fiable, degut a la concordància
excel.lent entre les seves prediccions i les dades observacionals que s’havien obtés fins aleshores. Però el
descobriment que va tenir lloc a finals de segle sobre l’estat present d’acceleració que afecta l’expansió de
l’Univers obŕı una escletxa en la teoria gravitatòria d’Einstein, posant en dubte de sobte la seva validea
a escales molt grans i en règims de molt alta energia. Aix́ı i tot, els seus excel.lents resultats a escales
petites, com ara a nivell del nostre sistema solar, no s’han vist en absolut afectats. Això fa que l’anàlisi
de camp feble de qualsevol teoria gravitatòria segueixi sent extraordinariament relevant, ja que tota teoria
ha de ser capa de reprodüır els molt bons resultats obtinguts per la Relativitat General a escales petites.
D’aquesta manera, l’estudi del ĺımit de camp feble pot ser usat per tal de rebutjar o, contràriament, de
seguir tenint en consideració una teoria gravitatòria. Dins del caṕıtol 8 es calcularan els ĺımits Newtonià,
post–Newtonià i post–post–Newtonià de les teories f(R,G) ; a més. el ĺımit Newtonià serà resolt mit-
janant funcions de Green. Per acabar aquest caṕıtol es presentaran expĺıcitament els ĺımits Newtonià,
post–Newtonià i post–post–Newtonià de dos cassos especials importants, les teories f(R) i f(G) .

La memòria de la tesis finalitza amb un bloc dedicat a les conclusions obtingudes i a qüestions que
queden obertes per a un treball futur.
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Chapter 1

Introducción

The work that will be presented in this Thesis was carried out by Antonio Jesús López Revelles in the

period between June 2009th and July 2013th . It is focussed in the study of different aspects related
with several theories of modified gravity.

1.1 The origins of Modern Cosmology in the 20th Century

Let us start reviewing the most important events in cosmology throughout the twentieth Century, which
gave rise to what is now known as modern cosmology. This epoch may be considered as the most exciting
time for this branch of physics, starting with the birth of the theory of General Relativity of Albert Einstein
in 1915, and ending with the discovery in 1998 of the current acceleration in the expansion of the Universe.
Such state of acceleration gave rise to a large number of theories attempting to give it an explanation.
One class of these theories, the so-called modified gravity theories, are based on the modification of the
theory of General Relativity.

General Relativity and Cosmology

This historical review begins in the year 1907, when Einstein realized that his theory of Special Relativity
was not compatible with the theory of gravitation of Isaac Newton. At this time Einstein began to think
about how to introduce gravity in his new theory. This task is non–trivial because Special Relativity only
applies to inertial observers, i.e. observers who do not suffer any acceleration, while the observers within
a gravitational field are non–inertial.

The theory of General Relativity, i.e. the relativistic theory incorporating gravity, appeared in Novem-
ber 1915, when Einstein submitted the field equations to the Prussian Academy of Sciences.

The theory of General Relativity is based on two fundamental principles [7]:

• The principle of equivalence: Free–falling observers within a gravitational field are locally equiv-
alent to inertial observers. These situations cannot be discriminated using local experiments.
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In order to formulate this principle, Einstein realized that the equality between the gravitational
mass (the measure of how the one body interacts gravitationally with other bodies) and the inertial
mass (the proportionality constant, which appears in the second Newton law, between the force
applied to a body and its acceleration) means that a free–falling body does not feel its weight and,
therefore, can consider itself as an inertial observer, at least locally.

The equivalence principle implies that, for each point of the spacetime, there exists a general change
of coordinates that makes the spacetime to look, locally, as flat. Mathematically, this principle
results in that the spacetime is a four dimensional Lorentzian manifold, in which the free particles
move along its geodesics. Then, gravity becomes a manifestation of the spacetime curvature.

• The principle of general covariance: The laws of physics must have the same form in all frames
of reference. Therefore, they must change in a covariant way under general changes of coordinates.

This principle implies that a physical law is valid if it is in the frame of the Special Relativity and
it is written in a covariant way, i.e., as a function of objects that transform properly under general
changes of coordinates ( yμ = yμ(xν) ). Mathematically, this principle means that the equations of
the physical laws are tensorial equations.

Summarizing, gravity can be considered as a manifestation of the spacetime curvature. Moreover, as
the source of the Newtonian gravitational potential is the mass, and in General Relativity matter and
energy are equivalent, this suggests that the source of the spacetime curvature is related directly with the
stress–energy tensor, Tμν , which is the one that contains all information about the matter and energy of a
system. Therefore, the interaction between spacetime and matter should be given by a tensorial equation
of the following type

Gμν = κTμν , (1.1)

where Gμν is a purely geometric tensor, Tμν is the stress–energy tensor and κ is a proportionality
constant.

There exist several constraints to be satisfied by the tensor Gμν , which are

• It must be symmetric in the two indexes.

• It must depend on the metric and its derivatives, only.

• It must cancel for flat spacetime.

• ∇μG
μν = 0 .

• It must contain second derivatives of the metric in order to be a dynamical theory and to reproduce
the Poisson equation.

• It must be linear in the curvature to provide second–order differential equations.

It can be demonstrated that the only tensor that satisfies every condition is the so–called Einstein
tensor, given by

Gμν = Rμν − 1

2
gμνR. (1.2)

Finally, the Einstein field equations that govern the interaction between the spacetime geometry and
the content of matter and energy in the Universe are

Rμν − 1

2
gμνR = 8πGNTμν , (1.3)
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being GN the Newtonian gravitational constant.

The Einstein field equations (1.3) can be obtained by varying with respect to the metric the action
given by the following expression

S =

∫
d4x
√−g

(
1

16πGN
R+ Lm

)
. (1.4)

This action has two different parts. The first one is the Einstein–Hilbert action, given by

SEH =
1

16πGN

∫
d4x
√−gR, (1.5)

whose variation with respect to the metric provides the Einstein equations for vacuum spacetime. While
the second part of the action (1.4), given by

Sm =

∫
d4x
√−gLm, (1.6)

accounts for the different energy–matter fields.

From the cosmological point of view, General Relativity is very important, since it allows us to conceive
the Universe as a dynamical system, with a closed relationship between its structure and its content of
energy and matter. Then, it can be said that cosmology, as a science, was born thanks to General
Relativity.

Relativistic cosmology is based on two basic principles:

• The cosmological principle: At any time, the Universe is homogeneous and isotropic on large
scales.

This principle implies that the Universe is maximally symmetric, i.e., it has the maximum number
of symmetries. Mathematically, maximally symmetric manifolds are spaces with constant curvature.

Observations coming from radiowaves, cosmic X rays and, specially, the cosmic microwave back-
ground radiation point out towards the fact that the Universe is very homogeneous.

• Weyl’s postulate: On cosmological scale, matter behaves as a perfect fluid, whose components
move along temporal geodesics. These geodesics do not intersect, except (possibly) at one point in
the past.

The peculiar velocities produced by the gravitational interactions are, usually, negligible with respect
to the velocities generated by the evolution of the Universe.

This postulate allows to define a special kind of observers, the so–called comoving observers, whose
motion is determined by the evolution of the Universe. It is also possible to define a comoving time,
as the one that a comoving observer will measure.

These two principles determine largely the form of the spacetime metric. On the one hand, Weyl’s
postulate implies that the spacetime can be foliated in spatial hypersurfaces (the ones with a constant
cosmological time). On the other hand, the cosmological principle implies that such spatial hypersurfaces
are maximally symmetric. Considering these two premises, the metric takes the following form

ds2 = −dt2 + a(t)2
[

1

1− kr2
dr2 + r2

(
dθ2 + sin2(θ)dφ2

)]
. (1.7)
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The parameter k can only take three values that represent the three hypersurfaces of constant curvature:
the sphere S

3 (positive curvature, k = 1 ), the plane R
3 (null curvature, k = 0 ) and the hyperboloid

H
3 (negative curvature, k = −1 ).
The metric given by Eq.(1.7) is the so–called Friedmann-Lemâitre-Robertson-Walker (FLRW) metric.

Alexander Friedmann was the first person proposing this ansatz in 1922; Georges Lemâitre developed,
independently, the same work done by Friedmann; while Howard Robertson y Arthur Walker showed
independently, in 1935 and 1936, that this metric is the most general one describing an homogeneous and
isotropic universe.

In 1922, Friedmann introduced the FLRW metric into the Einstein equations and deduced the so–called
Friedmann equations, which reproduced a non–statical universe, against the prevailing prejudices in the
scientific community at that time, although he did not realize this fact explicitly (he died very young) and
his work went unnoticed for some years until Edwin Hubble showed that the Universe was expanding.

Friedmann was not the first scientist proposing a cosmological model based in the use of Einstein’s
equations. In 1917, Einstein realized that his equations, as he wrote them in 1916, resulted in a non–statical
universe when it was supposed a normal content of matter for the Universe. The idea of a non–statical
universe seemed senseless to Einstein and irritated him, according to a letter addressed to the astronomer
Willem de Sitter when de Sitter deduced the equations of an empty universe which could be expanding.
This fact persuaded Einstein to modify his field equations by introducing a new term proportional to
a constant Λ , the so–called cosmological constant, which was interpreted as the energy density of the
vacuum. The new field equations took the following form

Rμν − 1

2
gμνR+ Λgμν = 8πGNTμν . (1.8)

When Λ is positive the new term generates a repulsive cosmic force, while if it is negative the new force
is attractive. Several years after, when Hubble demonstrated that the Universe was expanding, Einstein
declared that the introduction of the cosmological constant had been the worst error of his scientific career.
Nevertheless, with the discovery at the end of the twentieth century of the accelerated expansion of the
Universe, the cosmological constant appeared again in the scientific community.

Expanding Universe and the Big Bang Theory

In the first part of the last Century, the scientific prejudices established that the Universe should be static.
Many observational evidences were necessary to overthrow this idea.

The astronomer Vesto Slipher was the first to provide some of these evidences. In 1914, Slipher showed
the results obtained from his measures of the radial velocity of twelve galaxies. Only one of these galaxies
(Andromeda) was not moving away from us. Moreover, these velocities were higher than the expected
ones, a fact that suggested that these objects were outside our galaxy. In order to measure these velocities,
Slipher made use of the shift in the spectral lines of the light coming from the different galaxies

In 1929, the astronomers Edwin Hubble y Milton Humason measured the velocities and the distances
of forty six galaxies, finding a linear relation between both quantities, the higher the distance to the galaxy
the higher the recession velocity measured. This linear relation, experimentally obtained, finally overthrew
the idea of a static universe. As, practically, all the galaxies move away from us and from themselves,
the conclusion was that the Universe was expanding. This discovery is considered nowadays as one of the
most important scientific discoveries of all times.

At the end of the 40’s, once discarded the idea of a static universe, two theories seemed to compete for
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giving an explanation to the current Universe.

The first of them, promoted by the physicist Georges Gamow, could be considered as a continuation of
the universe proposed by Lemâitre in 1931. According to him, our universe may be “the ashes and smoke of
bright but very rapid fireworks”. Specifically, Gamow proposed that the Universe could be the expansion
and cooling of a state, the Ylem, in which the matter was a mixture of protons, neutrons and electrons with
a density and a temperature close to infinity. Moreover, he explained the relative abundances of hydrogen
and helium within the Universe in the framework of his theory. Nevertheless, it failed in explaining the
relative abundances of heavier elements. Later, the astrophysicists (Fred Hoyle among them) proposed
that these heavier elements were produced in nuclear reactions which occurred within the stars from the
hydrogen and the helium. Then, the theory proposed by Gamow was not wrong, only incomplete, in this
aspect.

The other theory that had large number of followers was the one promoted by Fred Hoyle, Thomas
Gold and Hermann Bondi since 1948, the steady–state theory. This theory was based on the assumption
of the perfect cosmological principle, which states that the universe is homogeneous and isotropic in the
space, but also in the time. As the Universe is expanding, this means that it is necessary a continuous
creation of matter in order to keep constant the matter density.

Throughout the 50’s and in the first part of the 60’s, both theories consolidated their positions with
some successes, although the theory of Gamow seemed to take the advantage. The final blow against the
steady–state theory was the discovery of the cosmic microwave background radiation in 1965.

In a paper of 1948, Gamow described how the Universe in its first moments would have been dominated
by radiation. As the Universe was expanding and cooling, this radiation would have been turning into
matter. Ralph Alpher and Robert Herman, Gamow’s colleagues, predicted the existence of a remainder
of this radiation, whose temperature would be around 5 Kelvin due to the expansion and cooling of the
Universe.

In 1964, Arno Penzias and Robert Wilson worked in the construction of an antenna for Bell Labs
when they found a source of an isotropic noise in the atmosphere. After several attempts to remove this
noise, and discarding the possibility of an interference, they published their results in a paper. Robert
Dicke, a physicist of the Princeton University, interpreted this noise as a microwave background radiation,
whose temperature would be 3 Kelvin, which would be the result of the expansion and cooling of the
Ylem proposed by Gamow. For the physicist Stephen Hawking, the discovery of the cosmic microwave
background radiation was ’the final nail in the coffin of the steady-state theory’. From this moment on,
the theory of Gamow was considered as the best theory which attempted to explain the Universe.

The theory of Gamow is the so–called Big Bang theory. Its name is due to the astrophysicist Fred
Hoyle, one of its most important detractors, who told in an interview for the BBC in 1949, in an attempt
to taunt the theory of Gamow, that it was only a big bang.

Summarizing, the Big Bang theory agrees with the expansion law of Hubble, being able to predict the
cosmic microwave background radiation and the relative abundances of the primordial elements. Neverthe-
less, this theory is not without problems. One of the most important is the problem of the baryogenesis,
i.e., to explain the process to produce the asymmetry found between baryons and antibaryons in the
Universe. Other important problems are:

• The horizon problem: The observational data coming from the cosmic microwave background radi-
ation show that the Universe is quite isotropic, which indicates that in the moment of the recombi-
nation the Universe would have been in a thermal equilibrium, and that is not possible, because sky
regions separated by a few degrees were causally disconected from the others at that time.
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• The flatness problem: The observational data we have nowadays point out that the spatial geometry
of the Universe is flat. This fact means that the density of the Universe takes a very specific value,
known as critical density. In the framework of the Big Bang theory there seems to be no mechanism
to set this value so precisely.

• Magnetic monopoles: Grand Unification Theories predicted the existence of magnetic monopoles,
which would be produced in the early Universe, but they are not observed.

Inflation

In 1981, the particle physicist Alan Guth proposed a theory of an inflationary universe, which was able to
explain several unresolved problems by the Big Bang theory. According to the model of Guth, an initial
phase, that lasted a very small fraction of a second, would have happened before the Big Bang. In this
period, the Universe would have suffered an exponential expansion, which would have produced a growth
of the scale factor of about thirty orders of magnitude. After this huge expansion, a reheating of the
Universe would have resulted in the initial state of the Big Bang.

This exponential expansion may fix the flatness problem. The reason is that, for any initial value, an
expansion of this type flats everything. Moreover, the distances in the initial period of an inflationary
universe would have been very small, allowing the universe to be in a thermal equilibrium before inflation
began, which would give an explanation to the horizon problem. This initial thermal equilibrium may be
an inconvenience when trying to explain the existence of structures in the Universe, nevertheless, quantum
fluctuations due to the uncertainty principle exist in this equilibrium. These perturbations, which would
have been extremely small in their origin, would have grown enormously during the inflationary period,
giving as a result the irregularities which would later become the galaxies in the Universe nowadays.

Summarizing, an exponential expansion may fix several problems left by the Big Bang theory. Never-
theless, the first model proposed by Alan Guth (see [141]) was not completely satisfactory. In this model
a scalar field, the so–called inflaton, is located in the global minimum of a potential. As the universe
cools, this potential evolves in a way that the global minimum (true vacuum) becomes a local one (false
vacuum). At the end of the inflationary period, due to the fast expansion, the universe is in a very cold
state which makes impossible the creation of radiation and elementary particles. Within the theory of
Guth, the reheating needed to begin the Big Bang is achieved by means of collisions between bubbles of
true vacuum, which are created in the false vacuum via quantum tunneling. This model is problematic
because it does not reheat properly. The reason is that the exponential expansion suffered during inflation
pulls apart the bubbles of true vacuum, and the collisions between bubbles becomes very rare. Nowadays
the model of Guth is known as old inflation.

This problem was solved by Andrei Linde in 1982 (and, independently, by Andreas Albrecht and Paul
Steinhardt) with the so–called Slow–Roll inflation (or new inflation). In this theory, the inflaton rolls down
a potential energy hill with a soft slope, in this phase the scalar field rolls very slowly compared with the
expansion of the universe and inflation occurs. After this initial phase, the inflaton falls in a minimum of
the potential where the field begins to oscillate. By means of these oscillations, heavy particles are created
from the vacuum energy. Finally, these particles decay in lighter ones, reheating the universe.

In addition to the use of scalar fields, there exist other mechanisms to produce inflationary models.
In this sense, at the same time that Guth was developing his model, the physicist Alexei Starobinsky
proposed in 1980 his inflationary theory. Starobinsky suggested that the quantum corrections to General
Relativity would be very important in the early universe. These corrections are usually quadratic terms of
the curvature which are added to the Einstein–Hilbert action. These new terms in the action may produce
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an effective cosmological constant which would result in an inflationary phase. In this model, the initial
singularity of the Universe would be replaced by the inflationary epoch.

Nowadays, an inflationary period before the Big Bang is widely accepted in the scientific community,
but it is very important to point out some of the cons of these theories. One of the most important
problems, pointed out by the physicist Roger Penrose, are the very specific initial conditions needed to
begin the inflationary period. In this sense, Penrose says the initial condition problem is not solved. Other
important criticism against the inflationary universe is that it is not completely clear how reheating works.

Accelerated Expansion

As it has been shown up to now, the twentieth century was the most exciting period for cosmology because
of the very significant advances in this field of the physics. Nevertheless, the last years of the century
provided one of the greatest challenge for the cosmology in the new century: the current accelerated
expansion of the Universe.

In 1998, two groups leaded by Saul Perlmutter and by Brian Schmidt and Adam Riess, respectively,
showed that observational data coming from type Ia supernovae suggests that the Universe is undergoing
an accelerated expansion. Type Ia supernovae appears when a white dwarf exceeds the Chandrasekhar
mass and it explodes. This kind of supernovae is very important for astrophysicists because they are
objects that can be used as standard candles, i.e. as objects with precisely known luminosity. As standard
candles, type Ia supernovae can be used to determine distances of very far galaxies. Using the luminosity
distance for several type Ia supernovae, the groups of Perlmutter and Riess determined that the luminosity
of these objects were less than the one they should have in a decelerating universe; then, they proposed that
the expansin of the Universe is accelerating. Specifically, the group of Perlmutter found that, assuming
a spatially flat universe, the matter should account for just the 28% of the total content of the Universe,
including ordinary matter and dark matter; while the rest of the content of the Universe, the other 72%,
should be a exotic kind of energy named as dark energy.

The discovery of the current accelerated expansion resulted in a very large number of new theories,
which nowadays still attempt to explain this new behavior of the Universe. The most accepted theory is
the so–called Λ -Cold-Dark-Matter ( ΛCDM ), which proposes that the cosmological constant is the cause
of the current accelerated expansion of the Universe.

In addition to the observational data coming from type Ia supernovae, there exist other evidences for
the acceleration in the expansion. Among these proofs we find the data coming from the observation of the
cosmic microwave background radiation ([145, 169, 170, 272]), large scale structure ([264, 278]), baryonic
acoustic oscillations ([102]) and weak lensing ([151]). Finally, other evidence comes from the comparison
between the age of the Universe and the age of the oldest stars. In [156] the authors determined the age of
a globular cluster in the Milky Way as ±13.5 Gyr, then the age of the universe given by a consistent theory
should be bigger than 13.5 Gyr. It has been demonstrated that this is impossible in a universe without
dark energy, which is another evidence for the acceleration in the expansion. In Fig. (1.1) two graphics are
depicted with the data from observations of type Ia supernovae, cosmic microwave background radiation,
galaxy clustering and the age of the universe. It can be easily seen that a universe without dark energy is
not possible.
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(a) The Ω
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satellite for a flat universe with Ω
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Ref. [10].
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and a open model. We also show the border t0 = 11 Gyr
coming from the bound of the oldest stellar ages. The
region above this border is allowed for consistency. From
Ref. [90].

Figure 1.1: Evidences for a dark energy universe.

1.2 Trying to explain the accelerated expansion of our Universe

After the great discovery in 1998 of the acceleration state in the expansion of the Universe, a lot of theories
appeared (and continue appearing) trying to explain the last observational data (see [26]).

In principle, there seem to be three ways to solve this new problem. The first option may be to consider
that the evidences, that lead us to think that the Universe is undergoing an acceleration expansion, are
erroneous. This first way seems to be ruled out because of the great number of evidences coming from
different kind of independent observations. Other option to face the problem is to accept that even if
General Relativity is still the gravitational theory that rules the Universe, it may become necessary to
introduce a new kind of fluid (dark energy) which accounts for around the 70% of the content of the
Universe. Moreover, in order to reproduce the acceleration required, this dark energy should have an
equation of state, p = ωρ , with ω < −1/3 . It is in this framework where we find the ΛCDM theory.
Finally, maybe the most traumatic way, we could think that General Relativity is not the gravitational
theory that rules the Universe, but simply the limit at low scales of a more general theory. One example
of this kind of theories that choose this last option are the so–called modified gravities.

It is very important to point out that every relativistic theory of gravity should fulfill the following
requirements, from a phenomenological point of view:

1. In the weak field limit and weak velocities, the theory must reproduce the Newtonian dynamics;
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while in the post–Newtonian limit, the theory must pass the Solar system tests.

2. The theory must reproduce the observed galactic dynamics, accounting for the known baryonic
matter and radiation, and being able to reproduce the Newtonian potential.

3. The theory must explain the creation of large–scale structure.

4. Finally, the relativistic theory must be able to reproduce the cosmological dynamics, i.e. to predict
the Hubble parameter, the deceleration parameter, the density parameters, etc.

In the following subsections, some of the most accepted theories nowadays are review, trying to explain
their pros and cons. Naturally, I will focus in modified gravity theories, as they are the main theme of the
thesis.

ΛCDM model

The most popular model nowadays is the one known as Λ-Cold-Dark-Matter ( ΛCDM ), which is based
on the introduction of a cosmological constant in the Einstein equations. This cosmological constant may
cause the accelerated expansion of the Universe. Then, the equations that rule the Universe according to
the ΛCDM theory are

Rμν − 1

2
gμνR+ Λgμν = 8πGNTμν . (1.9)

As it was explained in the previous section, Einstein already introduced a cosmological constant term
to reproduce a static cosmological model, nevertheless, after the discovery of the expansion of the Universe,
Einstein himself said that the introduction of the cosmological constant had been the worst error he made
in his life. After the discovery of the groups of Perlmutter and Riess, the cosmological constant came back
to the modern cosmology. It is very interesting to realize that Einstein used the cosmological constant in
the first years of the last century to achieve a static universe, while in the last years of the same century,
the same cosmological constant term was used to achieve an accelerated expansion for the universe.

Even being the most popular theory, the ΛCDM model is not free of problems. One of the most
important is known as the cosmological constant problem [288]. The problem lies in the following fact: a
known result in particle physics is that the energy density of the vacuum produces naturally a cosmological
constant term; this energy density of the vacuum is given by

ρv ≈ k4max

16π2
, (1.10)

being kmax the cut–off scale up to where the quantum field theory is expected to be valid. In the case of
General Relativity, the limit may be the Planck mass, obtaining ρv ≈ 1074 GeV4 . Nevertheless, in order
to reproduce the observational data, the cosmological constant should be of the order of the recent Hubble
parameter, which should imply that the energy density produced by the cosmological constant should be

ρΛ =
Λm2

PL

8π
≈ 10−47 GeV4. (1.11)

Comparing the value of the energy density obtained from the quantum field theory (1.10) with that
obtained observationally (1.11), a difference of around 121 orders of magnitude is found. Even if we
take the cut–off scale, kmax , of quantum chromodynamics, the difference between the theoretical and
observational value would be around 44 orders of magnitude. A great number of attempts have been done
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to solve this problem, a sample of them are the following: anthropic considerations, quantum gravity,
string theory, vacuum fluctuations of the energy density, supersymmetry...

Finally, it is important to remark that the equation of state for the cosmological constant is constant,
being ω = −1 , which seems to agree with the latest observational data.

Scalar-tensor theories

Other popular theories among the cosmologists are the so–called scalar–tensor theories. In this case, the
acceleration is achieved by the use of a scalar field, in a similar way as the inflationary phase was obtained
with the inflaton. One of the main differences, of this kind of theories with respect to the cosmological
constant, is that the equation of state is not constant.

There are a variety of scalar–tensor theories, some of them are based in a minimal coupling between
the scalar field and gravity, while for other models the coupling is non–minimal. Among the last kind we
have the Brans-Dicke theory, which is given by the following action

S =

∫
d4x
√−g

(
φR− ω

∂μφ∂
μφ

φ

16πGN
+ Lm

)
, (1.12)

where in this case ω is not the equation of state, but the Dicke non–dimensional coupling constant. This
theory was born as an attempt to build a gravitational theory which incorporated the Mach principle,
because General Relativity only contains some of the Mach’s ideas, but it admits explicitly non–Machian
solutions, as the Gödel universe.

Within the framework of the scalar–tensor theories minimally coupled to gravity, the most popular is
the one known as quintessence, developed by Caldwell et al. in [56]. This theory is based on the use of a
scalar field with potentials that give rise to an accelerated expansion. The action for quintessence is given
by

S =

∫
d4x
√−g

(
1

16πGN
R− 1

2
(∇φ)

2 − V (φ)

)
, (1.13)

being (∇φ)
2
= gμν∂μφ∂νφ and V (φ) the potential of the scalar field. The equation of state for this

theory is given by ω = φ̇2−2V (φ)

φ̇2+2V (φ)
, then it is easy to check that −1 ≤ ω ≤ 1 .

Other important scalar-tensor model is the phantom theory. The reason why it has this name is that
the equation of state may be ω < −1 and this region is often named as phantom dark energy. The action
that describes the theory is similar to the one of quintessence, it only changes the sign of the kinetic term
of the scalar field, i.e.

S =

∫
d4x
√−g

(
1

16πGN
R+

1

2
(∇φ)

2 − V (φ)

)
, (1.14)

obtaining that ω = φ̇2+2V (φ)

φ̇2−2V (φ)
, then when φ2 < 2V (φ) it is ω < −1 .

There exist many more types of scalar-tensor theories in the literature, as they can be K–essence
theories, tachyon field theories, dilatonic dark energy, etc. In Chapter 7 of the thesis I will study the
behavior of scalar–tensor models of the following form:

S =

∫
d4x

√−g
[

1

2κ2
R − 1

2
ω(φ)∂μφ∂

μφ − V (φ) + Lmatter

]
. (1.15)
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Modified gravity theories

In the previous subsections, several theories based on the use of some kind of exotic matter or energy have
been discussed. This kind of theories basically modify the right hand side of Einstein equations (1.3); in
this sense, these theories propose that the Universe is ruled by General Relativity and it is composed,
approximately, of 95% of dark matter and dark energy. Nevertheless, the Einstein–Hilbert action, which
is given by (1.5), is not the only possible valid choice according to the basic assumptions considered by
Einstein and Hilbert, although it is the only way to build a linear invariant on the second derivatives of
the metric.

The idea of a classical gravitational theory ruled by a Lagrangian with a linear dependence with respect
to the curvature, as the Einstein–Hilbert theory, may not be as strong as it was since the suspicion that
gravity may be considered as the low energy limit of a string theory, or other quantum theory, has grown.
In this sense, in semiclassical expansions of quantum Lagrangians and low energy limits for stringy actions,
there appear other curvature invariants or non linear functions on the curvature which may be considered
as corrections of the theory of General Relativity. Then, by means of inserting non linear term on the
curvature in the Einstein–Hilbert action (see, for example, [235]), the geometric part of Einstein’s equations
can be modified, i.e. the left hand side of (1.3).

This way of thinking has a great advantage, since the great number of different actions, which may
be considered, and the freedom in the choice of their parameters allow many of them to reproduce the
observational data we have nowadays. But this advantage may be also considered as a great handicap,
since the great freedom we have in the choice of the parameters becomes a predictive power loss for these
theories. In this sense, it may be of great interest to establish some theoretical requirements which allow
us to discriminate between valid and non–valid theories.

As it has been shown, from the theoretical point of view it is possible and it is motivated the develop-
ment of gravitational theories based on Lagrangians which are non linear on the curvature. These correc-
tions may be very different, some examples of them are the following terms: R2 , RμνR

μν , RαβρτR
αβρτ ,

etc. The main theme of this thesis was the development of some aspects of the so–called f(R) mod-
ified gravity theories. These theories are based on the replacement of the scalar curvature, R , in the
Einstein–Hilbert action by a generic function f of R , i.e. the actions studied are given by

S =

∫
d4x
√−g

(
1

16πGN
f(R) + Lm

)
. (1.16)

1The main difference with respect to the Einstein’s field equations given by (1.3) is that Einstein ones are
second order differential equations, while the new ones, obtained by varying the new action with respect
to the metric, are non linear fourth order differential equations; specifically, these new equations, obtained
from the action given by (1.16), are the following:

f ′(R)

(
Rμν − 1

2
Rgμν

)
= 8πGNT (matter)

μν +

[
1

2
gμν (f(R)−Rf ′(R)) + (∇μ∇ν − gμν�) f ′(R)

]
. (1.17)

It is easy to check that one can recover Einstein’s equations from the new ones by taking f(R) = R .

In addition to f(R) modified gravity theories, other kind of modified gravities are studied in this thesis.
These theories are: non–local gravity theories, inspired by quantum loop corrections, which introduce in
the action the inverse of the D’Alembertian operator; or the f(R,G) modified gravity theories based on

1From now on, unless otherwise indicated, the function f(R) will be used for an arbitrary function of the scalar curvature,
while F (R) will be considered as F (R) = R+ f(R) .
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the change of the scalar curvature in the action for a generic function of the same scalar curvature and
the Gauss–Bonnet curvature invariant, which is given by G = R2 − 4RαβR

αβ +RαβρσR
αβρσ .

From a purely mathematical point of view, one remark must be done. In the framework of differential
geometry, it is known that, for a given metric, there exists a connection which is completely determined
by this metric, this is the so–called Levi–Civita connection. There are two possibilities in deriving the
equations of motion for a gravitational theory. One way is to establish that the connection of the theory
is the Levi–Civita one, then the metric is the only independent magnitude. This is the so–called metric
formalism. The other way to derive the equations of motion is considering that the metric and the
connection are independent. This is the so–called Palatini formalism and it requires to derive the equations
of motion for the metric and the respective ones for the connection. In the case of General Relativity these
two approaches are equivalents. The reason of this equivalence lies in the fact that, when using the Palatini
approach, the equations of motion derived for the connection only establish that the connection must be
the Levi–Civita one, which is the assumption done when using the metric formalism. Nevertheless, this
equivalence between the two approaches does not hold anymore for the case of modified gravity theories
based on the use of functions of curvature invariants, as f(R) or f(R,G) theories. Hence, even considering
the same action, the physical equations obtained using one or the other formalism are not the same. This
is the reason why it is very important to explain that throughout this thesis the metric formalism has
been used.

It is also important to remark several aspects from the quantum point of view. Up to now, all the
attempts done in order to achieve a renormalizable and unitary consistent gravitational theory have failed.
It is known that General Relativity is a non–renormalizable theory, but it can be renormalized to one loop
level in low energy regimes (with respect to the Planck energy) at large scales. In order to achieve this
purpose it is necessary the introduction in the Einstein–Hilbert action of higher order curvature invariants
and non–minimal couplings between gravity and matter. In this sense, modified gravity theories may
achieve this objective.

A gravitational theory that is renormalizable is the so–called Hořava-Lifshitz gravity. This theory is
based on the use of an anisotropy between the spatial and the temporal coordinates, breaking in this way
the invariance under diffeomorphisms of General Relativity. As a result of this restriction in the symmetry
of the system, it is possible to achieve a renormalizable theory of gravity, but at the cost of introducing
a new degree of freedom that generates instabilities in the spectrum of the theory. Some cosmological
models have been studied in the framework of this theory and some generalizations of the model have
been proposed, as the case of f(R) theories. One of this modifications has been developed in this thesis.

1.3 Discriminating among theories

In the previous section, several aspects were discussed of some of the theories that, nowadays, are trying
to give a convincing explanation of the current accelerated expansion of the Universe. In addition to the
theories discussed, there exist a large number of models created with the same purpose. Even within the
framework of each theory, there are plenty of possibilities which finally result in different models, as is the
case of f(R) modified gravity theories, which may be very different depending on the specific choice made
for the function f . At this point, because of this large population of theories, it becomes quite clear that
it is necessary to have as many observational data as possible in order to discriminate between valid and
non–valid theories.

In this sense, the scale factor, a(t) , is one of the most important magnitudes in cosmology, because it
describes the expansion of the universe throughout time; hence, the measure of the scale factor or some



1.4 The singularity problem of cosmological models: past and future singularities of different types 13

related magnitude is a priority for cosmologists. In this case, the magnitude measure is the so–called
Hubble function, as a function of the redshift, H(z) ; this function is related to the scale function through
the following expression: H(z) ≡ d

dt ln a con 1 + z ≡ a(tnow)/a(t) . Then, a necessary condition for a
theory to be consider as valid is to be able to reproduce the cosmic history obtained from the observational
data; this means that the valid theories should begin with an inflation phase, then go through a radiation
dominated epoch followed by a matter dominated period and, finally, reproduce the current phase of
accelerated expansion of the Universe.

A big deal of gravitational theories may be discarded by comparing the cosmic history derived from
the theories with the one obtained from the observational data; nevertheless, other theories are able to
reproduce the observed cosmic history. Nowadays, the theory that best reproduces the expansion history
is the ΛCDM model. Even so, a large number of models are able to obtain similar results for the cosmic
history, fact that makes almost impossible to discriminate, using the expansion history, among a big deal of
theories. Hence, physically different theories may reproduce the same global properties of expansion, which
finally means that it is impossible to distinguish between these models, only using the cosmic expansion
history.

At this point, an other important property of the gravitational theories becomes relevant: the growth
history. Fortunately, the global characteristics of the Universe are not the only observable magnitudes.
In this sense, it is very important the way in which the original state of the Universe evolved, such that
the different structures that, nowadays, we can see in the Universe, as the galaxies, were created. Instead
of focusing on the global properties of the expansion, as it is the case of the cosmic history, the most
important aspect of the growth history is the study of the tiny perturbations and inhomogeneities which
gave rise to the creation of structure in the Universe.

Thereby, by means of the knowledge of the expansion and the growth history it may be easier to
discriminate among the different theories that populate the world of cosmology.

In the second part of the thesis, several aspects related to the cosmic and growth history are studied
for some f(R) modified gravity models.

1.4 The singularity problem of cosmological models: past and
future singularities of different types

Another topic covered in this thesis is an important problem that face a large number of gravitational
theories in their way to explain accelerated expansion. This problem is the appearance of finite-time future
singularities. Among the theories that suffer this problem are the phantom models, some quintessence
models, other models of modified gravity, etc. The importance of the singularity topic lies in the fact
that it can produce instabilities in black holes and in stellar physics. Nevertheless, this problem can be
understood and/or solved only from the perspective given by a quantum theory of gravity that, up to now,
we do not have yet.

The singularities that may appear in these dark energy models can be classified into several types,
depending on the divergent magnitude. In [240], the authors propose the following classification for the
different types of singularities that may appear in cosmological models:

• Type I (“Big Rip”) : For t → ts , a → ∞ , ρ → ∞ and |p| → ∞ . This type of singularity is
discussed in [20, 21, 23, 37, 53, 57, 84, 85, 88, 93, 94, 96, 108, 112, 119, 134, 136, 137, 140, 143, 181,
188, 195, 196, 210, 214, 216, 258, 265, 266, 284, 291, 297].
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• Type II (“sudden”) : For t→ ts , a→ as , ρ→ ρs and |p| → ∞ .

• Type III : For t→ ts , a→ as , ρ→∞ and |p| → ∞ .

• Type IV : For t→ ts , a→ as , ρ→ ρs , |p| → ps and higher derivatives of H diverge.

Here ts , as , ρs y ps are constants, with as 	= 0 . While a , ρ y p are, respectively, the scale factor,
the energy density and the pressure.

An important aspect to remark is that, even if we do not have a quantum theory of gravity that
allows us to better understand the singularity problem, it is possible to try to solve the problem using
a semiclassical approach. In this sense, terms of the type �R have been shown to work against the
appearance of future singularities; hence, the addition of a term proportional to R2 in the action may
prevent the existence of these singularities. In Chapter 7, the singularity problem for several dark energy
models is discussed and a cure is proposed.

1.5 Organization of the thesis

Several aspects of modified gravities and other gravitational theories were studied during the last four
years in order to give rise to this Thesis. As the last and most accurate observations seem to point that
the Universe is homogeneous and isotropic, throughout this work I use the FLRW metric; when this is not
the case, it will be specified. The Thesis is composed of three main blocks.

The first block, consisting of Chapters 2–4, is devoted to the reconstruction of the cosmic evolution for
different modified gravities. As it will be demonstrated throughout the Thesis, one of the most important
magnitudes for cosmologists is the scale factor, which relates the proper distance between a pair of objects,
moving with the Hubble flow in a FLRW universe, at an arbitrary time, to their distance at some reference
time. The knowledge of the scale factor is of great importance because it provides the cosmic history of
the Universe. This is the reason why it is mandatory for a realistic gravitational theory to provide a
scale factor that matches the observational data and, in this sense, the reconstruction schemes developed
for modified gravities play an important role. It will be shown that any given cosmology can be realized
through some corresponding modified gravity by means of the use of a convenient reconstruction model.
In Chapter 2, two different reconstruction schemes are used in order to reproduce some cosmology in the
framework of f(R) –modified gravities and some examples are given. It is also shown that these examples
support the idea that the Einsteinian and Jordanian frame descriptions actually lead to two physically
different theories. In Chapter 3, reconstruction schemes are used in order to reproduce a specific cosmology
in the framework of some gravitational theories based on different couplings with the Yang–Mills field. The
interesting cases of non–minimal and minimal coupling with the Yang–Mills field are developed and some
examples are given. Finally, in Chapter 4, the case of cyclic universes is considered and the reconstruction
schemes are used in order to reproduce cyclic universes in the framework of F(R) Hořava–Lifshitz gravity.

The second block, consisting of Chapters 5–6, is devoted to the study of the cosmic history and the
growth of matter density perturbation for some F (R) –modified gravity models. As it was commented
before, mimicking the known cosmic history (i. e. to reproduce the sequence of inflationary epoch,
radiation domination epoch, matter domination epoch and late–time acceleration) is mandatory for any
realistic gravitational theory. Thus, the study of the cosmic history is of great importance for every
gravitational theory, but in the first block of the Thesis we realize that every cosmology can be reproduced
through some modified gravity by means of the use of some convenient reconstruction scheme. Then it may
be possible that the same cosmic history is reproduced from very different gravitational models, making
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extremely difficult to discriminate between different physical theories. It is in this framework where the
study of the growth of the matter density perturbations can be very helpful. In order to understand the
nature of these perturbations it is important to remark that the Universe was in thermal equilibrium
before inflation started, as it is accepted nowadays by most cosmologists, but in this equilibrium there
were quantum fluctuations, due to the uncertainty principle. These fluctuations, so–called matter density
perturbations, would have been the origin of the galaxies in the Universe nowadays. This is why it is also
very important to match the growth history given by some gravitational theory to the current observational
data. In the first part of Chapter 5, the generic features occurring in the matter dominated era are shown
for two well–known viable F (R) gravity models and, by introducing an additive modification to these
models, the large frequency oscillations of dark energy are stabilized. For these models, a study of the future
evolution and the growth of matter density perturbations is carried out. In the second part of Chapter
5, a study of F (R) modified gravities is done for the unification of the early–time cosmic acceleration
(inflation) and the late–time one. Finally, in Chapter 6, a detailed analysis of the growth of the matter
density perturbations is performed for two other realistic F (R) modified–gravity models.

The third block is devoted to two very important aspects of the gravitational theories: the singularity
problem and the weak field limit. The great importance of the appearance of future singularities at finite
time lies in the fact that they may cause various problems of physical nature, as instabilities in current
black hole and stellar astrophysics. Even if this problem can be only understood properly with a full
theory of quantum gravity (which does not exist up to now), it is very important to try to fix the problem
already at the classical and semiclassical levels. In this way, it is known that the addition of a term
proportional to R2 in the action may cure these singularities. In Chapter 7, the singularity problem is
studied for different gravitational theories, as f(R) modified gravity, non–local gravity or scalar–tensor
gravity. After this analysis of the singularity problem, the weak field limit of gravitational theories is
treated. This analysis is of extreme importance, because any theory must reproduce the results obtained
by General Relativity at short scales and low energy regimes, for example at the solar system level. In
this sense, the analysis of the weak field limit of a gravitational theory can be used in order to retain it
or, on the contrary, to ruled it out. In Chapter 8, the weak field limit of f(R,G) is studied, in particular,
the Newtonian, post–Newtonian and post–post–Newtonian cases.

The Thesis ends with general conclusions corresponding to the most important results obtained in the
present work.
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Part I

Reconstruction schemes





Chapter 2

Cosmological reconstruction of
realistic modified f (R) gravities

One of the most important problems of modern cosmology (and theoretical physics too) is the explanation
of the current universe speed-up, first discovered in [249, 254]. A convenient way to express this situation
is to introduce a new form of energy, called Dark Energy (DE). Indeed, it is not easy to generate the
necessary amount of repulsive force (not less the very fact that it is repulsive) through quantum vacuum
fluctuation contributions of ordinary fields, at cosmological scale [103]. To start with, one needs to find an
acceptable solution to the cosmological constant problem. During the last few years several theories, which
are extensions of or alternatives to Einstenian Gravity, have been developed in order to formulate and
try to explain the dark energy universe. The most accurate observational data we now have indicate that
the equation of state (EoS) parameter, ω , for DE is very close to −1 (for a review of observational data
from the theoretical point of view, see e.g. [153, 211], and for a description of the observable cosmological
parameters, see e.g. [190]).

As gravitational alternatives for DE, modified gravity theories have been formulated, calling for plausi-
ble late-time modification of General Relativity (GR). Many modified gravity models have been proposed
in the literature (for a review, see [67, 182, 221, 232, 269]), starting from the very simple 1/R theory
[59, 63, 77, 215] (that soon was declared as problematic) to more elaborated ones which, being still not
fundamental, are already quite often inspired by string and M-theory considerations [217, 238].

For any such theory to be valid it is always strictly required that it accurately describes the known
sequence of cosmological epochs, specifically it must fit very well an increasing number of more and more
precise observational data [14, 15, 47, 51, 60, 61, 62, 71, 168, 177, 197, 198, 253, 268]. The aim of this
chapter is to show that it is possible to reconstruct a cosmology given by its scale factor (or Hubble
parameter) from a f(R) modified gravity. Specifically, by making one further step in the direction of
trying to build a truly realistic theory, a non-trivial variant of the accelerating cosmology reconstruction
program is developed for f(R) gravity (see [24] for related work).

The chapter is organized as follows. In Sect. I and Sect. II, two seemingly different reconstruction
schemes, (I) in terms of e-foldings (for a general review, see [236]), and (II) by using an auxiliary scalar
field (see, e.g. [27, 30, 34, 49, 69, 91, 97, 106, 114, 139, 222, 223, 224, 292]) are reviewed and then explicitly
compared, what is done here for the first time. To illustrate the results, the example of a model with a
transient phantom behavior without real matter is discussed in both schemes. In Sect. III, a summary of
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the results obtained and, in particular, of the detailed comparison with pros and cons of the two schemes
of reconstruction is presented.

This Chapter is based on the publications: [104, 185].

2.1 General formulation in terms of e-foldings

We will show in this section how one can construct an f(R) model realizing a given cosmology, by using
the techniques of [236]. For the benefit of the reader (and self-consistency of the paper), in a simpler
situation, and with the help of an explicit example, we shall review the method that will be later applied
to the Yang-Mills case. The starting action for f(R) gravity (see e.g. [67, 182, 221, 232, 269], for a general
review) is

S =

∫
d4x
√−g

(
f(R)

2κ2
+ Lmatter

)
. (2.1)

The first FRW equation turns into the following field equation

0 = −f(R)

2
+ 3

(
H2 + Ḣ

)
f ′(R)− 18

(
4H2Ḣ +HḦ

)
f ′′(R) + κ2ρ, (2.2)

with R = 6Ḣ + 12H2 . Using the e-folding variable, N = ln a
a0

, instead of the cosmological time t , one
gets

0 = −f(R)

2
+ 3

(
H2 +HH ′) f ′(R)− 18

(
4H3H ′ +H2(H ′)2 +H3H ′′) f ′′(R) + κ2ρ, (2.3)

where H ′ ≡ dH
dN . Assuming the matter density ρ is given in terms of a sum of fluid densities with constant

EoS parameters, ωi , we have

ρ =
∑
i

ρi0a
−3(1+ωi) =

∑
i

ρi0a
−3(1+ωi)
0 e−3(1+ωi)N . (2.4)

Using the Hubble rate H = g(N) = g(− ln (1 + z)) , with z = e−N − 1 the redshift, the scalar curvature
takes the form: R = 6g′(N)g(N) + 12g(N)2 , which can be solved with respect to N as N = N(R) .
Defining G(N) ≡ g(N)2 = H2 and using (2.4), Eq. (2.3) yields

0 = −9G(N(R)) [4G′(N(R)) +G′′(N(R))]
d2f(R)

dR2
+

[
3G(N(R)) +

3

2
G′(N(R))

]
df(R)

dR
− f(R)

2
+

+
∑
i

ρi0a
−3(1+ωi)
0 e−3(1+ωi)N(R). (2.5)

This is a differential equation for f(R) , where the scalar curvature is here R = 3G′(N) + 12G(N) .

Example: asymptotically transient phantom behavior

Let us consider an evolution given by the following Hubble parameter:

H2(N) = H0 ln

(
a

a0

)
+H1 = H0N +H1 = G(N), (2.6)
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where H0 and H1 are positive constants. We can, in this case, achieve a phantom behavior with the
possibility to be asymptotically transient, without the presence of real matter. The present is actually
a simplified example, but can be of use as a component part of a more elaborated model where, with a
modified functionality, the transition can be reached at finite time (this is work in progress, the results of
which will be presented in a future publication.) Indeed, from R = 3G′(N) + 12G(N) , we find

N =
R− 3H0

12H0
− H1

H0
. (2.7)

Eq. (2.5) takes the form (with r being the curvature measured in terms of H0 , r ≡ R/H0 )

0 = −3(r − 3)
d2f(r)

dr2
+

(
r + 3

4

)
df(r)

dr
− f(r)

2
, (2.8)

and changing now the variable from r to x , as x = r−3
12 , Eq. (2.8) reduces to

0 = x
d2F (x)

dx2
−
(
x+

1

2

)
dF (x)

dx
+ 2F (x), (2.9)

which is easily recognized as a degenerate hypergeometric equation, whose solutions are given by the
Kummer’s series Φ(a, b; z) , the simplest one being

f(r) = C Φ

(
−2,−1

2
;
r − 3

12

)
= C1

(
−1

2
+ r − r2

18

)
, (2.10)

where C is a constant. As a consequence, with this f(R) theory, the solution given by Eq. (2.10), we
can reproduce the phantom behavior without real matter given by Eq. (2.6).

Taking this into account, for (2.6), we have

H(t) =
H0

2
(t− t0), (2.11)

and it turns out that, with this model, we have a contribution of an effective cosmological constant and
another term which will produce an accelerating phase but, remarkably, without developing a future
singularity, in spite of its phantom nature. Hence, the f(R) gravity given by Eq. (2.10) gives rise to
a cosmological solution, with an asymptotically transient phantom behavior, which does not evolve into
a future singularity. This property relies on the fact that the phantom behavior gets more and more
mild with time (asymptotically disappears), at a rate that overcomes the one for the formation of the
singularity.

Actually, there is another independent solution of Kummer’s equation (2.9), the complete solution
being:

f(r) = C1

(
−1

2
+ r − r2

18

)
+ C2

(
r − 3

12

)3/2

L
(3/2)
1/2

(
r − 3

12

)
, (2.12)

where the second basic solution is a Laguerre L function, which is well behaved but cannot be represented
as a simple rational one. It is interesting to note that this second function asymptotically behaves exactly
in the same way as the first, for large negative curvature (e.g., as R2 , when R→ −∞ ). For large positive
one it explodes exponentially, as R−3/2 eR/12 (again, R in units of H0 ).

2.2 General formulation using a scalar field

In this section it will be shown how to construct an f(R) model realizing a given cosmology, but using this
time a different technique, which involves a scalar field [222]. The final aim will be to apply this procedure
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to the novel case with a Yang-Mills term, what will be performed in Sect. III. Here we summarize the
basic tools necessary in order to understand the procedure and to make the present paper self-contained.
We start from the action for modified gravity

S =

∫
d4x
√−g(f(R) + Lmatter), (2.13)

which is equivalent to

S =

∫
d4x
√−g(P (φ)R+Q(φ) + Lmatter). (2.14)

Here, Lmatter is the matter Lagrangian density and P and Q are proper functions of the scalar field,
φ , which can be regarded as an auxiliary field, because there is no kinetic term depending on φ in the
Lagrangian. By varying the action with respect to φ , 0 = P ′(φ)R+Q′(φ) , which can be solved in terms
of φ , as φ = φ(R) . Substituting it into (2.14) and comparing with (2.13), one obtains

S =

∫
d4x
√−g(f(R) + Lmatter), f(R) ≡ P (φ(R))R+Q(φ(R)), (2.15)

and varying the action with respect to the metric gμν ,

0 = −1

2
gμν(P (φ)R+Q(φ)) +RμνP (φ) + gμν∇2P (φ)−∇μ∇νP (φ)− 1

2
Tμν . (2.16)

The equations corresponding to the standard, spatially-flat FRW universe are

0 = −Q(φ)− 6H2P (φ)− 6H
dP (φ)

dt
+ ρ, (2.17)

0 = Q(φ) +
(
4Ḣ + 6H2

)
P (φ) + 4H

dP (φ)

dt
+ 2

d2P (φ)

dt2
+ p, (2.18)

and, by combining them, we find

0 = 2
d2P (φ(t))

dt2
− 2H

dP (φ(t))

dt
+ 4ḢP (φ(t)) + p+ ρ. (2.19)

As we are allowed to redefine the scalar field φ properly, we choose the most simple, non-constant, smooth
possibility (what is commonly done in this kind of approaches), namely φ = t .

Now, given a cosmology, specified through the scale factor a , given by a proper function g(t) as

a = a0e
g(t), (2.20)

with a constant a0 , and if it is assumed that p and ρ consist of the sum of different matter contributions,
each one with constant EoS parameter, ωi , then Eq. (2.19) reduces to the following second order differential
equation

0 = 2
d2P (φ)

dφ2
− 2g′(φ)

dP (φ)

dφ
+ 4g′′(φ)P (φ) +

∑
i

(1 + ωi)ρi0a
−3(1+ωi)
0 e−3(1+ωi)g(φ), (2.21)

from where one can obtain P (φ) and, using Eq. (2.17),

Q(φ) = −6(g′(φ))2P (φ)− 6g′(φ)
dP (φ)

dφ
+
∑
i

ρi0a
−3(1+ωi)
0 e−3(1+ωi)g(φ). (2.22)

As a result, and as anticipated, any given cosmology (2.20) can indeed be realized through some corre-
sponding f(R) -gravity. Let us make things even more clear by means of the example considered before.
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Example: asymptotically transient phantom behavior

In order to compare the two different methods developed for the reconstruction of f(R) gravities—
to reproduce any given cosmology—we consider again the asymptotically transient phantom behavior,
without real matter, given by (2.6). The Hubble parameter can be written as

H =
√
H0g(t) +H1 =

dg(t)

dt
, (2.23)

and thus

g(t) =
H0

4
(t− c)2 − H1

H0
, (2.24)

with c an integration constant. Introducing (2.24) into (2.21),

0 =
d2P (φ)

dφ2
− H0

2
(φ− c)

dP (φ)

dφ
+H0P (φ), (2.25)

and using a new variable, x = φ− c , we get

0 =
d2P (x)

dx2
− H0

2
x
dP (x)

dx
+H0P (x), (2.26)

whose solution is

P (x) =
1

2
(2−H0x

2)C1 +
1

2
(2−H0x

2)C2

⎛
⎜⎜⎝ e

H0
4 x2

x

4(2−H0x2)
− i

4
√
H0

i

√
H0x2

4∫
0

e−y2

dy

⎞
⎟⎟⎠ . (2.27)

Now, using (2.17), we obtain

Q(x) =
3

32
H0x

⎡
⎢⎢⎣8H0x

(
2 +H0x

2
)
C1 −

⎛
⎜⎜⎝(8 + 2H0x

2
)
e

H0x2

4 + i 2
√

H0x
(
2 +H0x

2
) i

√
H0x2

4∫
0

e−y2

dy

⎞
⎟⎟⎠C2

⎤
⎥⎥⎦ .

(2.28)

Taking into account that R = 6Ḣ + 12H2 = 6g′′(x) + 12 (g′(x))2 , it follows that

x =

√
R− 3H0

3H2
0

. (2.29)

Introducing at this step (2.27) and (2.28) into (2.15), and considering (2.29), one finally gets the explicit
expression

f(R) = −R2 − 18H0R+ 9H2
0

12H0
C1−

⎡
⎢⎢⎣eR−3H0

12H0
R− 9H0

16
− i

24H0

(
R2 − 18H0R+ 9H2

0

) i
√

R−3H0
12H0∫

0

e−y2

dy

⎤
⎥⎥⎦ C2.

(2.30)
We thus have proven that, within this scheme, we are able to obtain the f(R) model (2.30) which
reproduces the desired transient phantom behavior without real matter, as given by (2.6).
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2.3 Summary and discussion

In this chapter, two different schemes of reconstructing cosmologies for modified gravity are reviewed
and compared (for the first time), and also with the help of corresponding examples. The first scheme
does not need an auxiliary scalar field, while the second one is thoroughly based on its use. With these
reconstruction methods, any explicitly given cosmology can be realized as a corresponding modified gravity.
As it is indicated in the chapter, things are far from straightforward, and a very careful analysis of the
solutions here obtained (also in relation with the comparison of the two different methods), and of other
additional solutions of the differential equations, with potential physical interest, is still necessary. First
results indicate that the solutions obtained do pass the solar system tests and the other known physical
constraints.

In order to compare both schemes of reconstruction, an example has been explicitly worked out in the
two cases. The result obtained in the first scheme (in terms of e-foldings) is

f(R) = C Φ

(
−2,−1

2
;
R− 3H0

12H0

)
= C

(
−1

4
+

1

2H0
R− 1

36H2
0

R2

)
, (2.31)

while for the second scheme (using an auxiliary scalar field), the f(R) obtained has the form

f(R) = −R2 − 18H0R+ 9H2
0

12H0
C1−

⎡
⎢⎢⎣eR−3H0

12H0
R− 9H0

16
− i

24H0

(
R2 − 18H0R+ 9H2

0

) i
√

R−3H0
12H0∫

0

e−y2

dy

⎤
⎥⎥⎦ C2.

(2.32)
As one can easily see, the results obtained for both methods are in fact different. The reason behind this
is the fact that action (2.14) corresponds to a wider class of theories than action (2.13) (for a related
and quite detailed discussion, see [239, 252]). Nevertheless, if in Eq. (2.32) we set C2 = 0 , then the
results coming from both schemes are similar, at least in the sense that, for low curvatures, they behave
as constant, while for large curvatures the behavior is in both cases proportional to R2 .

This finding here further supports the point of view that the Einsteinian and the Jordanian frame de-
scriptions actually lead to two physically different theories, making thus clear the physical non-equivalence
of the two frames as discussed in [114, 222]. In view of the strong and still on going discussion about this
issue in the specialized literature, this additional piece of evidence is very valuable.

Also important is to remark that, sometimes, it is actually more convenient to use one scheme instead
of the other, because the final result may be definitely easier to obtain and to interpret in one of the
two schemes. To repeat, although these conclusions may not seem really new, since they were already
derived in more simplified situations, it will be shown in the next chapter that they continue to be valid
in much more realistic situations, from the point of view of physics, as corresponding to the actions there
considered, involving Yang-Mills fields.



Chapter 3

Reconstruction of the Yang–Mills
theory

Non-Abelian gauge fields are widely used in particle physics and are being actively studied in cosmology [33,
36, 38, 40, 78, 95, 104, 126, 127, 191, 192]. Note that string compactifications may naturally lead to an
effective-scalar–Yang–Mills–Einstein theory (plus higher-order corrections). Inflationary cosmology and
the late-time accelerated expansion of the Universe in a non-minimal, non-Abelian gauge theory (the
Yang–Mills theory), in which a non-Abelian gauge (Yang–Mills) field plays a significant role, has been
considered in [33], where the authors show that the appearance of such non-minimal terms in the early
Universe can be compatible with current formulations of the Yang–Mills theory coming from a specific
choice for the non-minimal function. Also in [33] the cosmological reconstruction of the Yang–Mills theory
has been discussed and a corresponding algorithm has been proposed.

A remarkable fact is that the SU(2) Yang–Mills field admits an isotropic and homogeneous parametriza-
tion by a single scalar function. This parametrization, which is useful for the reconstruction program [33],
has been employed to get an inflationary scenario [191, 192]. As noted in [191, 192], the standard Yang–
Mills term, minimally coupling with gravity, does not lead to inflation, and thus one should add new
terms in order to get a convenient inflationary scenario. In [191, 192] an inflationary scenario, in which
slow-roll inflation is driven by a non-Abelian gauge field minimally coupled to gravity has been proposed.
To achieve this, the authors add a fourth-degree term to the Yang–Mills Lagrangian.

In the previous chapter, the importance of the reconstruction schemes for f(R) modified gravities
has been revealed and a cosmology given by its scale factor has been reproduced from f(R) gravity by
means of two different reconstruction schemes. In this chapter, the reconstruction program is successfully
extended to several cosmological models with Yang–Mills fields. It will be demonstrated that the case
of a Yang–Mills Lagrangian with a fourth-degree term minimally coupled with gravitation has no de
Sitter solution. As is well known, de Sitter solutions play a very important role in cosmological models,
because both inflation and the late-time universe acceleration can be described as a de Sitter solution
with perturbations. In order to obtain these solutions, a gravitational model with non-minimally coupled
Yang–Mills fields will be considered.

The chapter is organized as follows. In Sect. I, reconstruction schemes for the case of a Yang–Mills
theory (in a extended, non-minimal version) are developed, one of them by means of an auxiliary scalar field
and the other one without it. The specific example of power-law expansion is carefully considered in both
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schemes. In Sect. II, the reconstruction program is generalized for the case of a Yang–Mills Lagrangian
with a fourth-degree term. In Sect. III, a gravitational model with nonminimally coupled Yang–Mills fields
is considered. Finally, in Sect. IV the most important results are summarized and discussed.

This Chapter is based on the publications: [104, 105].

3.1 Minimal gravitational coupling with the Yang–Mills field

3.1.1 General formulation

In this section we develop a reconstruction scheme of the Yang–Mills theory without any auxiliary scalar
field. Consider the following action

S =

∫
dx4√−g

[
R

2κ2
+ F (F a

μνF
aμν

)]
, (3.1)

where F a
μν = ∂μA

a
ν−∂νA

a
μ+fabcAb

μA
c
ν , and F may be assumed to be a smooth function (however, strictly

speaking it may suffice if it is continuously differentiable). The presence of this function is necessary in
order to allow for more freedom in the choice of the theory [27, 30, 34] (since difficulties inherent to the
problem may prevent obtaining the standard Yang–Mills case). Anyway, this function will not constitute
a problem for the development of our methods, which are thus proven to be even more powerful. For
simplicity of the derivation (and in order not to break the line of argument of this paper) we concentrate
here on the SU(2) case where fabc = εabc but, with some more effort, exactly the same procedure can be
extended to other gauge groups (more general cases will be treated in a subsequent publication). Taking
into account that

δ
(
F a
μνF

aμν
)

δAh
β

= −4εhbcAb
γF

c γβ , (3.2)

δ
(
F a
μνF

aμν
)

δ
(
∂αAh

β

) = 4Fhαβ , (3.3)

the equation of motion for the field potential Aa
μ turns into

∂ν

[
δS

δ
(
∂νAa

μ

)
]
− δS

δAa
μ

= 0 (3.4)

and, from here,

∂ν
[√−gF ′ (F a

αβF
aαβ

)
F a νμ

]
+
√−gF ′ (F a

αβF
aαβ

)
εabcAb

νF
c νμ = 0. (3.5)

Variation of (3.1) with respect to gμν yields the following equation of motion

1

2κ2

(
Rμν − 1

2
gμνR

)
− 1

2
gμνF

(
F a
αβF

aαβ
)
+ 2F ′ (F a

αβF
aαβ

)
F a
μρF

a ρ
ν = 0, (3.6)

where we have used
δ(Fa

ρσF
a ρσ)

δgμν = 2F ′
(
F a
αβF

aαβ
)
F a
μγF

a γ
ν . Considering now a FRW universe, and the

following Ansatz for the gauge field 1,

Aa
μ =

{
ᾱeλ(t)δaμ, μ = i,
0, μ = 0,

(3.7)

1Note that our aim here is to demonstrate that the procedure works, and not to find the most general solution which
exhausts all possibilities. This issue, which is certainly interesting and more difficult, will be left to further consideration.
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the μ = 0 component of (3.4) becomes an identity, the μ = i component yields

∂t

[
a(t)F ′ (F a

αβF
aαβ

)
λ̇(t) eλ(t)

]
+

2ᾱ2

a(t)
F ′ (F a

αβF
aαβ

)
e3λ(t) = 0, (3.8)

while the (t, t) component of (3.6) is

3H2(t)

2κ2
+

1

2
F (F a

αβF
aαβ

)
+ 6ᾱ2 F ′ (F a

αβF
aαβ

) λ̇2(t)e2λ(t)

a2(t)
= 0, (3.9)

and the (i, i) component of (3.6) reduces to

− 1

2κ2

[
2Ḣ(t) + 3H2(t)

]
− 1

2
F (F a

αβF
aαβ

)− 2ᾱ2 e
2λ(t)

a2(t)
F ′ (F a

αβF
aαβ

) [
λ̇2(t)− 2ᾱ2 e

2λ(t)

a2(t)

]
= 0. (3.10)

Adding (3.9) to (3.10), one arrives at

a2(t)Ḣ(t)− 4κ2ᾱ2 F ′ (F a
αβF

aαβ
)
e2λ(t)

[
λ̇2(t) + ᾱ2 e

2λ(t)

a2(t)

]
= 0, (3.11)

and then

F ′ (F a
αβF

aαβ
)
=

a2(t) Ḣ(t)

4κ2ᾱ2
e−2λ(t)

[
λ̇2(t) + ᾱ2 e

2λ(t)

a2(t)

]−1

. (3.12)

Using (3.12), Eq. (3.8) reduces to:

∂t

[
a3(t) Ḣ(t) λ̇(t) e−λ(t)

(
λ̇2(t) + ᾱ2 e

2λ(t)

a2(t)

)−1
]
+ 2ᾱ2 a(t) Ḣ(t) eλ(t)

(
λ̇2(t) + ᾱ2 e

2λ(t)

a2(t)

)−1

= 0, (3.13)

which constitutes a differential equation for λ(t) . Hence, by using Eq. (3.7), once we have the function
λ(t) , given by (3.13), we can obtain the corresponding Yang–Mills theory which reproduces the selected
cosmology. The Ansatz considered above actually leads to a mathematical solution of the problem.

Example: power law expansion

Considering the case of power law expansion: a(t) =
(

t
t1

)h1

, where t1 and h1 are constant, and assuming

λ(t) = (h1 − 1) ln
(

t
t1

)
+ λ1 , where λ1 is again a constant, Eq. (3.13) reduces to the following algebraic

equation

h1(h1 − 1) + ᾱ2t21 e
2λ1 = 0, (3.14)

hence

λ1 =
1

2
ln

(
h1(1− h1)

ᾱ2t21

)
(3.15)

and

λ(t) = (h1 − 1) ln

(
t

t1

)
+

1

2
ln

(
h1(1− h1)

ᾱ2t21

)
. (3.16)

With the help of this reconstruction scheme, we have obtained the function λ(t) given by (3.16). Then,

using (3.7), we are able to reproduce the cosmology given by the power law expansion: a(t) =
(

t
t1

)h1

.
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3.1.2 General formulation using a scalar field

In this section, the reconstruction of a Yang–Mills theory is performed using the technique of [33]. By way
of introducing an auxiliary scalar field, φ , we can rewrite action (3.1) as

S =

∫
d4x
√−g

(
R

2κ2
+

1

4
P (φ)F a

μνF
aμν +

1

4
Q(φ)

)
. (3.17)

Variation of (3.17) with respect to φ yields the corresponding equation of motion

0 = F a
μνF

aμν dP (φ)

dφ
+

dQ(φ)

dφ
, (3.18)

which can be solved with respect to φ as φ = φ(F a
μνF

aμν) . Then, action (3.17) is rewritten as

S =

∫
dx4√−g

[
R

2κ2
+ F (F a

μνF
aμν

)]
, (3.19)

where

F (F a
μνF

aμν
)
=

1

4
P (φ(F a

μνF
aμν))F a

μνF
aμν +

1

4
Q(φ(F a

μνF
aμν)). (3.20)

Taking the variations of this action (3.17) with respect to gμν , we obtain the Einstein equation

1

2κ2

(
Rμν − 1

2
gμνR

)
= −1

2
P (φ)F a

μρF
a ρ
ν +

1

8
gμν

(
P (φ)F a

αβF
aαβ +Q(φ)

)
. (3.21)

Finally, taking the variations of (3.17) with respect to Aa
μ , it follows that

0 = ∂ν
(√−gP (φ)F a νμ

)
+
√−gP (φ)fabcAb

νF
c νμ. (3.22)

We restrict our analysis to the case where the gauge algebra is SU(2) and the gauge fields are given by

Aa
μ =

{
ᾱeλ(t)δaμ, μ = i,
0, μ = 0.

(3.23)

With these assumptions, Eq. (3.18) reduces to

0 = 6
(
−ᾱ2λ̇(t)2e2λ(t)a(t)−2 + ᾱ4e4λ(t)a(t)−4

) dP (φ)

dφ
+

dQ(φ)

dφ
. (3.24)

The (t, t) component of (3.21) is

0 =
3H(t)2

κ2
+

3

2

(
ᾱ2λ̇(t)2e2λ(t)a(t)−2 + ᾱ4e4λ(t)a(t)−4

)
P (φ) +

1

4
Q(φ), (3.25)

the (t, i) component of (3.21) becomes an identity, while the component (i, j) is[
− 1

2κ2

(
2Ḣ(t) + 3H(t)2

)]
δij =

[
−1

4
P (φ)

(
ᾱ2λ̇(t)2e2λ(t)a(t)−2 + ᾱ4e4λ(t)a(t)−4

)
+

1

8
Q(φ)

]
δij . (3.26)

The μ = 0 component of (3.22) becomes an identity, and the μ = i component yields

0 = ∂t

(
a(t)P (φ)λ̇(t)eλ(t)

)
+ 2ᾱ2a(t)−1P (φ)e3λ(t). (3.27)
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Here, we can identify φ = t , because we are always allowed to take the scalar field φ properly in order

to satisfy this. By differentiating (3.25) with respect to t and eliminating Q̇ = dQ(φ)
dφ , it follows that

0 =
2

κ2
H(t)Ḣ(t) + ᾱ2λ̇(t)2e2λ(t)a(t)−2Ṗ (t)+

+
[
ᾱ2
(
λ̇(t)λ̈(t) + λ̇(t)3 − λ̇(t)2H(t)

)
e2λ(t)a(t)−2 + 2ᾱ4

(
λ̇(t)−H(t)

)
e4λ(t)a(t)−4

]
P (t). (3.28)

Using (3.27), we can solve for Ṗ in (3.28), and obtain

P =
a(t)2Ḣ(t)

κ2ᾱ2e2λ(t)
[
λ̇(t)2 + ᾱ2e2λ(t)a(t)−2

] . (3.29)

Taking into account (3.29), Eq. (3.27) reduces to

0 = 2Ḣ(t)
(
ᾱ2e2λ(t)a(t)−2

)2
+ ᾱ2e2λ(t)a(t)−2

[
λ̇(t)

(
5H(t)Ḣ(t) + Ḧ(t)

)
− λ̇(t)2Ḣ(t) + λ̈(t)Ḣ(t)

]
+

+λ̇(t)2
[
λ̇(t)

(
3H(t)Ḣ(t) + Ḧ(t)

)
− λ̇(t)2Ḣ(t)− λ̈(t)Ḣ(t)

]
, (3.30)

which constitutes a differential equation for λ(t) . As was the case for the other reconstruction scheme,
developed in Sect. (3.1.1), once we have the function λ(t)—given here by (3.30)—we can readily obtain
the modified Yang–Mills theory that reproduces the desired cosmology, through the use of Eq. (3.23),
which was our starting Ansatz. Note that in (3.28) we have positively corrected some missprints of a
previous calculation (recognized by the authors). Using Eq. (3.25) and (3.29), it is easy to check that
Eq. (3.26) becomes an identity, thus being always fulfilled.

Example: power law expansion

Consider now the case of power law expansion: a(t) =
(

t
t1

)h1

, where t1 and h1 are constants and

assume λ(t) = (h1 − 1) ln
(

t
t1

)
+ λ1 , where λ1 is a constant. Eq. (3.30) turns into the algebraic one

0 = ᾱ4t41e
4λ1 + ᾱ2t21e

2λ1(h1 − 1)(2h1 − 1) + h1(h1 − 1)3, (3.31)

hence

λ1 =

⎧⎪⎪⎨
⎪⎪⎩

1
2 ln

(
(h1−1)(1−h1)

ᾱ2t21

)
,

1
2 ln

(
h1(1−h1)

ᾱ2t21

)
,

(3.32)

and then

λ(t) = (h1 − 1) ln

(
t

t1

)
+

⎧⎪⎪⎨
⎪⎪⎩

1
2 ln

(
(h1−1)(1−h1)

ᾱ2t21

)
,

1
2 ln

(
h1(1−h1)

ᾱ2t21

)
.

(3.33)

With the function λ(t) given by (3.33) and using (3.23), we can now reproduce the cosmology given by

the power law expansion: a(t) =
(

t
t1

)h1

.
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3.2 Gravitational models with Yang–Mills fields

Let us consider a minimal gravitational coupling of the SU(2) Yang–Mills field in the general theory of
relativity, which is described by the following action:

S =

∫
d4x

√−g
[
M2

P

2
R+ F(Z) +

κ̃

384
(εαβλσF a

αβF
a
λσ)

2 − Λ

]
, (3.34)

where g is the determinant of the metric tensor gμν , R is the scalar curvature, MP = MPl/
√
8π , the

Planck mass MPl = 1.2 × 1019 GeV, and κ̃ is a constant. The SU(2) Yang–Mills field Ab
μ has the

internal symmetry index a , the field strength tensor being

F a
αβ = ∂αA

a
β − ∂βA

a
α + fabcAb

αA
c
β . (3.35)

The function F(Z) is an arbitrary function of Z = F a
μνF

aμν (summation in terms of the index a is

understood), while the numbers fabc are structure constants and thus completely antisymmetric. For the
SU(2) group,

fabc = − g̃[abc], (3.36)

where g̃ is a constant and [abc] the Levi–Civita antisymmetric symbol (we use this notation instead of
εabc because we reserve the last one for the Levi–Civita antisymmetric tensor). Roman indices, a , b , c ,
will run over 1, 2, 3 , and the Levi–Civita tensor is given by

εαβλσ =
√−ggρ1αgρ2βgρ3λgρ4σ[ρ1ρ2ρ3ρ4], [0123] = 1. (3.37)

Models of this kind, in the case κ̃ = 0 , have been considered in [104]. The case F(Z) = Z has been
analysed in [191, 192] where an inflationary scenario, in which slow-roll inflation is driven by a non-Abelian
gauge field minimally coupled to gravity, has been proposed.

The equation of motion for the field Aa
μ is

∂ν

{√−g [F ′ (Z) F a νμ +
κ̃

192
JενμαβF a

αβ

]}
−

− g̃
√−g [abc]Ab

ν

{
F ′ (Z) F c νμ − κ̃

192
JεμναβF c

αβ

}
= 0,

(3.38)

where J ≡ εαβλσF b
αβF

b
λσ . Variation of (3.34) with respect to gμν yields the field equations:

M2
P

2

(
Rμν − 1

2
gμνR

)
− 1

2
gμνF (Z) + 2F ′ (Z) F a

μρF
a ρ
ν −

− κ̃

384

{
3

2
J2gμν − 8J

√−ggρ2βgρ3λgρ4σ[μρ2ρ3ρ4]F
b
νβF

b
λσ

}
+

1

2
gμνΛ = 0. (3.39)

In the spatially flat Friedmann–Lemâıtre–Robertson–Walker (FLRW) universe

ds2 = − dt2 + a2(t)
(
dx2

1 + dx2
2 + dx2

3

)
, (3.40)

the following ansatz for the SU(2) field:

Ab
μ =

(
0, φ(t)δbi

)
. (3.41)
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is very useful [33, 104, 191, 192]. The ansatz identifies the combination of the Yang–Mills fields for
which the rotation symmetry violation is compensated by the gauge transformations. Thus, we get the
rotationally invariant energy–momentum tensor of the Yang–Mills fields, namely

F b
0j = − F b

j0 = φ̇δbj , F b
ij = − g̃φ2[bij], F b0j = − F bj0 = − φ̇

a2
δbj , F bij = − g̃φ2

a4
[bij] (3.42)

and

Z ≡ F b
μνF

bμν = 6

(
g̃2φ4

a4
− φ̇2

a2

)
, (3.43)

where differentiation with respect to time t is denoted by a dot.

Use of the ansatz (3.41) allows to obtain the Yang–Mills energy–momentum tensor, having the same

form as an ideal isotropic fluid with the energy density ρ and the pressure P , in other words: T
(YM)μ

ν =
diag(−ρ, P, P, P ) .

Taking into account (3.37) and (3.40), the equation of motion (3.38) can be written as follows:

∂ν

{√−gF ′ (Z) F a νμ − κ̃

192
J [νμαβ]F a

αβ

}
−

−g̃ [abc]Ab
ν

{√−gF ′ (Z) F c νμ +
κ̃

192
J [μναβ]F c

αβ

}
= 0. (3.44)

It is convenient to write the Friedmann equations in terms of ψ ≡ φ/a . Using

φ̇ = a
(
ψ̇ +Hψ

)
, φ̈ = a

(
ψ̈ + 2Hψ̇ + ψ

(
Ḣ +H2

))
, (3.45)

where H = ȧ/a is the Hubble parameter, we get the equations which follow.

The (0, 0) component of (3.39) reduces to:

3M2
P

2
H2 +

1

2
F (Z) + 6F ′ (Z)

(
ψ̇ +Hψ

)2
− 3

4
κ̃g̃2ψ4(ψ̇ +Hψ)2 − 1

2
Λ = 0, (3.46)

where ψ ≡ φ/a . Note that

Z = 6
(
g̃2ψ4 − (ψ̇ +Hψ)2

)
, Ż = 12

(
2g̃2ψ3ψ̇ − (ψ̇ +Hψ)(ψ̈ +Hφ̇+ Ḣψ)

)
,

J = 24g̃ψ2
(
ψ̇ +Hψ

)
. (3.47)

The (i, i) components of (3.39) yield:

1

2
M2

P

[
2Ḣ + 3H2

]
+

1

2
F (Z) + 2F ′ (Z)

[(
ψ̇ +Hψ

)2
− 2g̃2ψ4

]
− 3

4
κ̃g̃2ψ4(ψ̇ +Hψ)2 − 1

2
Λ = 0. (3.48)

By subtracting Eq. (3.46) from Eq. (3.48), we get

M2
P

2
Ḣ = 2F ′ (Z)

((
ψ̇ +Hψ

)2
+ g̃2ψ4

)
. (3.49)

From this equation, it follows that the model considered does not have nontrivial de Sitter solutions (H
is a constant). Such solutions can exist only if either F(Z) is a constant, or the function ψ(t) = 0 . In
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the next section we show that nontrivial de Sitter solutions do exist in a model which has a non-minimal
coupling.

Rewriting the last equation in the following form

F ′ (Z) =
M2

P

4
Ḣ

((
ψ̇ +Hψ

)2
+ g̃2ψ4

)−1

, (3.50)

introducing (3.50) into Eq. (3.46) and differentiating, we get:

HḢ +
Ḣ

2

((
ψ̇ +Hψ

)2
+ g̃2ψ4

) (2g̃2ψ3ψ̇ −
(
ψ̇ +Hψ

)(
ψ̈ +Hψ̇ + Ḣψ

))
+

+
1

2

(
ψ̇ +Hψ

)2 d

dt

⎡
⎢⎣ Ḣ(

ψ̇ +Hψ
)2

+ g̃2ψ4

⎤
⎥⎦+

Ḣ
(
ψ̇ +Hψ

)(
ψ̈ +Hψ̇ + Ḣψ

)
(
ψ̇ +Hψ

)2
+ g̃2ψ4

−

− κ̃

M2
P

g̃2
(
ψ3
(
ψ̇ +Hψ

)2
ψ̇ +

1

2
ψ4
(
ψ̇ +Hψ

)(
ψ̈ +Hψ̇ + Ḣψ

))
= 0.

(3.51)

If we assume, or rather know, the specific form of the Hubble function H(t) , then Eq. (3.51) constitutes
a differential equation for ψ(t) and, once we determine this function, the corresponding Yang–Mills theory
can be found (i.e., the function F (Z) ) which reproduces the cosmology given by H(t) in the frame of
the spatially flat FLRW universe. From (3.50) we can find F (Z) up to an integration constant. This
constant can be determined from (3.48) and corresponds to the cosmological constant.

3.3 Non-minimal gravitational coupling with the Yang–Mills
field

3.3.1 Action and equations

In this section we will consider a non-minimal gravitational coupling of the SU(2) Yang–Mills field in
general relativity, which is described by the action:

SGR =

∫
d4x
√−g

[
M2

P

2
R+ LYM − Λ

]
, (3.52)

LYM = − 1

4
(1 + f(R))Z, (3.53)

where f(R) is an arbitrary, thrice differentiable function of R .

The field equations can be derived by taking variations of the action in Eq. (3.52) with respect to the
metric gμν and the SU(2) Yang–Mills field Aa

μ , as follows:

Rμν − 1

2
gμνR =

1

M2
P

(
T (YM)
μν − Λgμν

)
, (3.54)
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with

T (YM)
μν = (1 + f(R))

(
gαβF b

μβF
b
να −

1

4
gμνF

)
+

+
1

2
{f ′(R)FRμν + gμν� [f ′(R)F ]−∇μ∂ν [f

′(R)F ]} , (3.55)

where the prime denotes derivative with respect to R , ∇μ is the covariant derivative operator associated
with gμν , and � ≡ gμν∇μ∂ν is the covariant d’Alembertian for the scalar field.

It is convenient to write down the trace equation

R = − 1

M2
P

gμν
(
T (YM)
μν − gμνΛ

)
= − 1

2M2
P

{f ′(R)FR+ 3� [f ′(R)F ]− 8Λ} . (3.56)

We will show that the trace equation is useful in order to find the de Sitter solutions.

3.3.2 Friedmann–Lemâıtre–Robertson–Walker metric and equations of mo-
tion

Using the ansatz (3.41), we get the following equations in the FLRW metric (see Appendix A, for details):

3H2 =
1

M2
P

(Λ + ρ) =
Λ

M2
P

+
3

2M2
P

[
(1 + f(R))

(
g̃2ψ4 + (ψ̇ +Hψ)2

)
−

− 6
(
Ḣ +H2

)
f ′(R)

(
g̃2ψ4 − (ψ̇ +Hψ)2

)
+ 6H∂0

[
f ′(R)

(
g̃2ψ4 −

(
ψ̇ +Hψ

)2)]]
,

(3.57)

2Ḣ + 3H2 =
Λ− P

M2
P

=
Λ

M2
P

− 1

2M2
P

[
(1 + f(R))

(
g̃2ψ4 +

(
ψ̇ +Hψ

)2)
+

+6
(
Ḣ + 3H2

)
f ′(R)

(
g̃2ψ4 −

(
ψ̇ +Hψ

)2)
−

− 6[∂0∂0 + 2H∂0]f
′(R)

(
g̃2ψ4 −

(
ψ̇ +Hψ

)2)]
,

(3.58)

It is suitable to get, from system (3.57)–(3.58), the following equivalent one:

R =
1

M2
P

(
4Λ− 3Rϑ+ 9ϑ̈+ 27Hϑ̇

)
, (3.59)

Ḣ = − 1

2M2
P

[
2(1 + f(R))

(
g̃2ψ4 + (ψ̇ +Hψ)2

)
− 6Ḣϑ− 3ϑ̈+ 3Hϑ̇

]
, (3.60)

where
ϑ ≡ f ′(R)

(
g̃2ψ4 − (ψ̇ +Hψ)2

)
. (3.61)

We can see that the term (1 + f(R))
(
g̃2ψ4 + (ψ̇ +Hψ)2

)
corresponds to radiation since, if we neglect

other terms, we get ρ = 3P . This result is a trivial generalization of the corresponding one in the model

with minimal coupling ( f(R) = 0 ), considered in [191, 192]. In the f(R) modified model, T
(YM)
μν has

also terms proportional to f ′(R) . In this paper, we will show that these terms can actually play the role
of the cosmological constant.
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3.3.3 Solutions with constant Hubble parameter

We now investigate the de Sitter solutions for the model (3.52). Our goal is to see how the Yang–Mills
field, which is described by LYM , can change the value of the cosmological constant. In particular, we
will demonstrate in this section, that there do exist de Sitter solutions in the case when Λ = 0 .

We seek solutions with H = H0 = const, in other words, de Sitter and Minkowski solutions. If
H = H0 , then R = R0 = 12H2

0 , and (3.59) is a linear differential equation in ϑ :

ϑ̈+ 3H0ϑ̇− 4H2
0ϑ = B, (3.62)

where the constant B = (M2
PR0 − 4Λ)/3 . Eq. (3.62) has the following general solution

ϑ = C1e
Ht + C2e

−4Ht − B

4H2
(3.63)

and, from (3.60), we get

2(1 + f(R0))
(
g̃2ψ4 + (ψ̇ +Hψ)2

)
− 3ϑ̈+ 3Hϑ̇ = 0. (3.64)

If f(12H2
0 ) = − 1 , then we have the equation

ϑ̈−H0ϑ̇ = 0, (3.65)

which has the general solution:
ϑ = C3 + C4e

H0t. (3.66)

Thus, from (3.63) and (3.66), we get that the de Sitter solution corresponds to

ϑdS = C1e
H0t − B

4H2
0

, (3.67)

where C1 is an arbitrary constant. At Λ = 0 ,

ϑdS0 = C1e
H0t −M2

P . (3.68)

It is easy to see that the Minkowski solutions (at f(12H2
0 ) = − 1 ) correspond to

ϑM = C(t− t0), (3.69)

where C and t0 are arbitrary constants.

At ϑ = 0 , Eqs. (3.57) and (3.58) have the following nontrivial ( ψ is not a constant) de Sitter and
Minkowski solutions:

• H = 0 , Λ = 0 , ψ(t) = 1
g̃(t−t0)

, f(0) = − 1 , f ′1(0) is an arbitrary number.

• H = H0 	= 0 , Λ = 3M2
PH

2
0 , ψ(t) = H0

±g̃+H0 exp(H0(t−t0))
, f(0) = − 1 , f ′(0) is an arbitrary

number.

These solutions do not change the value of the cosmological constant. Solutions, which corresponds to
ϑ(t) 	≡ 0 are more interesting. The following equation for ψ arises

f ′(R0)
(
ψ̇2 − g̃2ψ4 + 2Hψ̇ψ +H2ψ2

)
=

B

4H2
− C1e

Ht, (3.70)
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which, for C1 = 0 , yields the following first order differential equation for ψ :

ψ̇2 + 2H0ψ̇ψ = g̃2ψ4 −H2
0ψ

2 − B

4H2
0f
′(12H2

0 )
. (3.71)

The trivial cases c = 0 and H0 = 0 have been considered above. In the general case, Eq. (3.71) does not
satisfy the Fuchs conditions and, therefore, its solutions are multivalued functions (see, for example [135]).
For C1 = 0 the solution ψ(t) can been found by quadratures, namely

−
ψ∫

0

1

H0ψ̃ ±
√

g̃2ψ̃4 − c
dψ̃ = t− t0, c ≡ B

4H2
0f
′(12H2

0 )
. (3.72)

For nonzero values of C1 the solution ψ(t) can be found numerically.

3.4 Summary and discussion

In the first part of this chapter, after carefully reviewing and comparing (for the first time), and also
with the help of corresponding examples, the reconstruction schemes developed in the previous chapter
for f(R) modified gravities have been successfully extended to the case of Yang–Mills theories. The
first scheme does not need an auxiliary scalar field, while the second one is thoroughly based on its use.
With these reconstruction methods, any explicitly given cosmology can be realized as a corresponding
Yang–Mills theory. Although this fact had been already anticipated in the specialized literature—for
modified gravities and concerning some basic models—it is comforting to see here how it can be also
explicitly extended to more realistic physical theories, as the modified Yang–Mills one, with reasonable
effort. As we have indicated in Sect. I, things are far from straightforward, and a very careful analysis
of the solutions here obtained (also in relation with the comparison of the two different methods), and of
other additional solutions of the differential equations, with potential physical interest, is still necessary.
First results indicate that the solutions obtained do pass the solar system tests and the other known
physical constraints.

For the novel case of the reconstruction of a Yang–Mills theory, the same example for both reconstruc-
tion schemes has been considered. The first one yields the result

λ1 =
1

2
ln

(
h1(1− h1)

ᾱ2t21

)
, (3.73)

while the second scheme gave the following results

λ1 =

⎧⎪⎪⎨
⎪⎪⎩

1
2 ln

(
(h1−1)(1−h1)

ᾱ2t21

)
,

1
2 ln

(
h1(1−h1)

ᾱ2t21

)
.

(3.74)

As in the case of modified gravities, in the new situation considered in this chapter of reconstructing a
Yang–Mills theory, it also happens that action (3.17) expresses a more extensive class of theories than the
action given by (3.1), and it is again for this reason that more solutions are obtained for the scheme based
on an auxiliary scalar field. Moreover, with the help of this example we could see explicitly that there is,
in fact, a very interesting coincidence between the result obtained in (3.73) and one of the results of (3.74).
This finding here further supports, once more, the point of view that the Einsteinian and the Jordanian
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frame descriptions actually lead to two physically different theories, making thus clear the physical non-
equivalence of the two frames as discussed in [114, 222]. This additional piece of evidence is very valuable.
Even much more than the one in the previous chapter because it comes from a theory that it is way closer
to physics than the ones considered previously.

As in the case of f(R) modified gravity, here is also important to remark that, sometimes, it is actually
more convenient to use one scheme instead of the other, because the final result may be definitely easier
to obtain and to interpret in one of the two schemes. Even if these conclusions were already derived in
more simplified situations, it is actually comforting (and rather non-trivial) to see that they continue to be
valid in much more realistic situations, from the point of view of physics, as corresponding to the actions
here considered, involving Yang–Mills fields.

In Sect. II, we have studied a model with a minimally coupled SU(2) Yang–Mills field, described by
the action (3.34), which includes second- and fourth-order terms of the Yang–Mills field strength tensor.
The second-order term can play the role of radiation, whereas the fourth-order one plays the role of the
cosmological constant. It has been shown that the function F(Z) can be reconstructed provided the
Hubble parameter is given. In particular, it has been demonstrated that de Sitter solutions exist only in
the trivial case, namely when F(Z) is a constant.

In order to obtain genuine de Sitter solutions, in Sect. III a model in which the Yang–Mills field has
a nonminimal coupling with gravity was considered. We have explicitly shown that this model, described
by the action in (3.52), has de Sitter solutions even in the absence of a cosmological constant term. The
de Sitter solutions correspond to the Yang–Mills fields which satisfy Eq. (3.71). This equation includes an
arbitrary parameter. Depending on the value of this parameter, it has been shown that it can be easily
solved in quadratures or, in the most general case, numerically.



Chapter 4

Reconstructing cyclic universes:
Ekpyrotic universes in f(R)
Hořava–Lifshitz gravity

As an alternative for the inflationary universe, the so-called ekpyrotic scenario may avoid the need to
provide initial conditions (inherent in every inflationary model), since the universe evolution acquires a
periodic behavior, such that in every cycle a new universe is born (see Ref. [159, 160, 275]). In addition,
it is argued that the problem of flatness does not appear in this model because the universe initially was
in a nearly BPS (Bogolmonyi-Prasad-Sommerfield) state, which is homogeneous (see Ref. [159, 160, 275]).
In the last years, very promising models capable to unify the entire cosmic evolution under the same
mechanism have been proposed, where the inflationary epoch and the late-time acceleration era are unified
under the same mechanism (or alternatively the ekpyrotic scenario), providing a simpler picture of the
universe evolution. Most such models are described by scalar fields due to its simple form (see Ref. [110]
and references therein), or other kind of fields (see Ref. [104, 296]), but also a large effort has been done in
the reconstruction of modified gravity theories (for a general report, see Ref. [86]) available to reproduce
the cosmic evolution (for a review, see Ref. [64, 67, 207, 221, 234, 269], and Refs. [222, 256]), which may
seem more natural as they are expressed in terms purely of the metric tensor without additional fields.

On the other hand, a new theory of gravity that is power–counting renormalizable has been proposed
recently in Ref. [146]. Such theory, already known as Hořava–Lifshitz gravity, breaks the invariance under
full diffeomorphisms of General Relativity by introducing an anisotropy between the spatial and time
coordinates through a critical exponent z . This restriction of the symmetries allows the theory to be
power-counting renormalizable, but an additional scalar degree of freedom is found, which introduces
instabilities in the spectrum of the theory (see Refs. [42, 80]). However, some extensions of the theory
seem to address the problem of the scalar mode [43, 147], as well as to generalize the action to more
complex ones (see Ref. [164]). Moreover, cosmological models have been widely studied in the context of
Hořava–Lifshitz gravity (see Ref. [11, 25, 44, 45, 48, 54, 55, 76, 131, 152, 163, 199, 205, 208, 229, 246, 247,
260, 267, 270, 276, 286, 287]), and also generalizations of the original action (similarly to standard f(R)
gravity) have been proposed, where the entire cosmological history can be well reproduced, and it has also
a good UV behavior (see Refs.[75, 79, 109, 165, 166, 255]).

The aim of this chapter is to study the ekpyrotic scenario in the frame of some extensions of Hořava–
Lifshitz gravity, where a universe described in terms purely of gravity is able to pass along the different
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stages of an ekpyrotic model. This class of cosmological solutions can be realized in standard f(R) gravity
as shown in Ref. [237]. Here, some periodic solutions for the Hubble parameter, which may be able to
describe the entire evolution of the universe, are reconstructed. In addition, we also analyze the shape
of the action for each phase of the ekpyrotic scenario, where the possibility of the occurrence of a Little
Rip is explored. The so-called Little Rip is a postulated phase of the universe evolution, when a very
strong accelerating expansion would lead to break some bounded systems, as the Solar System or even the
molecules and atoms (see Ref. [121, 122, 123]). Such breaking is shown to be fully compatible with the
ekpyrotic scenario in comparison with future singularities as the Big Rip that are not, unless some cure
for the future singularity is considered [186]. Moreover, the presence of a Big Bang/Crunch singularity,
usual in ekpyrotic cosmologies, is still an open issue for this kind of cyclic scenario, where quantum effects
may resolve it (see [89, 92, 175, 213, 282]) or an effective theory that generates a non singular bounce (see
[52]). Nevertheless, here we are interested to explore the classical effects of the theory, where some non
singular solutions are proposed, while the study of possible UV effects in the presence of the singularity is
beyond the purpose of this paper.

The chapter is organized as follows. In Sect. I, f(R) Hořava–Lifshitz gravity is briefly reviewed. In
Sect. II, the actions for some cyclic solutions are reconstructed. Finally, Sect. IV is devoted to the analysis
of ekpyrotic scenario, where each phase of the cycle is analyzed.

This Chapter is based on the publications: [187].

4.1 Modified f(R) Hořava–Lifshitz gravity

In this section, modified Hořava–Lifshitz f(R) gravity is briefly reviewed [75, 79, 109, 164, 165, 166, 255].
We start by writing a general metric in the so-called Arnowitt-Deser-Misner (ADM) decomposition in a
3 + 1 spacetime (for more details see [22, 130]),

ds2 = −N2dt2 + g
(3)
ij (dxi +N idt)(dxj +N jdt) , (4.1)

where i, j = 1, 2, 3 , N is the so-called lapse variable, and N i is the shift 3 -vector. In standard general
relativity (GR), the Ricci scalar can be written in terms of this metric, and yields

R = KijK
ij −K2 +R(3) + 2∇μ(n

μ∇νn
ν − nν∇νn

μ) , (4.2)

here K = gijKij , Kij is the extrinsic curvature, R(3) is the spatial scalar curvature, and nμ a unit
vector perpendicular to a hypersurface of constant time. The extrinsic curvature Kij is defined as

Kij =
1

2N

(
ġ
(3)
ij −∇(3)

i Nj −∇(3)
j Ni

)
. (4.3)

In the original model [146], the lapse variable N is taken to be just time-dependent, so that the
projectability condition holds and by using the foliation-preserving diffeomorphisms (4.6), it can be fixed
to be N = 1 . As pointed out in [43], imposing the projectability condition may cause problems with
Newton’s law in the Hořava gravity. For the non-projectable case, the Newton law could be restored (while
keeping stability) by the “healthy” extension of the original Hořava gravity of Ref. [43].

The action for standard f(R) gravity can be written as

S =

∫
d4x

√
g(3)Nf(R) . (4.4)
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Gravity of Ref. [146] is assumed to have different scaling properties of the space and time coordinates

xi = bxi , t = bzt , (4.5)

where z is a dynamical critical exponent that renders the theory renormalizable for z = 3 in 3 + 1
spacetime dimensions [146]. GR is recovered when z = 1 . The scaling properties (4.5) render the theory
invariant only under the so-called foliation-preserving diffeomorphisms:

δxi = ζ(xi, t) , δt = f(t) . (4.6)

It has been pointed that, in the IR limit, the additional scalar degree of freedom can be removed by means
of an additional U(1) symmetry [147]. Here, we are interested on actions as follow,

S =
1

2κ2

∫
dtd3x

√
g(3)Nf(R̃) , R̃ = KijK

ij−λK2+R(3)+2μ∇μ(n
μ∇νn

ν−nν∇νn
μ)−L(3)(g

(3)
ij ) , (4.7)

where κ is the dimensionless gravitational coupling, and where, two new constants λ and μ appear,
which account for the violation of the full diffeomorphism transformations. Note that in the original
Hořava gravity theory [146], the fourth term in the expression for R̃ can be omitted, as it becomes a
total derivative. This generalization of the Hořava–Lifshitz action, similar to standard f(R) gravity, may
provide the way to describe the entire cosmological evolution with no need to introduce any additional
field but where an additional scalar mode is assumed. The possibility of violations of Newtonian law, due
to the extra scalar mode coming from f(R̃) , can be avoided by the appropriate expression for the action,
as it was pointed out in Ref. [109]. In addition, standard f(R) gravity (4.4) can be recovered by setting

λ = μ = 1 . The term L(3)(g
(3)
ij ) in the action (4.7) is chosen to be [146]

L(3)(g
(3)
ij ) = EijGijklE

kl , (4.8)

where the generalized De Witt metric is given by,

Gijkl =
1

2

(
g(3)ikg(3)jl + g(3)ilg(3)jk

)
− λg(3)ijg(3)kl . (4.9)

In Ref. [146], the expression for Eij is constructed to satisfy the “detailed balance principle” in order to
restrict the number of free parameters of the theory, and it is defined through the variation of an action

√
g(3)Eij =

δW [gkl]

δgij
, (4.10)

The action W [gkl] is assumed to be defined by the metric and the covariant derivatives on the three-

dimensional hypersurface
∑

t . In [146], W [g
(3)
kl ] is explicitly given for the case z = 2 ,

W =
1

κ2
W

∫
d3x

√
g(3)(R− 2ΛW ) , (4.11)

and for the case z = 3 ,

W =
1

w2

∫
Σt

ω3(Γ) . (4.12)

Here κW in (4.11) is a coupling constant of dimension −1/2 and w2 in (4.12) is the dimensionless
coupling constant. ω3(Γ) in (4.12) is given by

ω3(Γ) = Tr

(
Γ ∧ dΓ +

2

3
Γ ∧ Γ ∧ Γ

)
≡ εijk

(
Γm
il ∂jΓ

l
km +

2

3
Γn
ilΓ

l
jmΓm

kn

)
d3x . (4.13)
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Here we are interested in the study of cosmological solutions for the theory described by action (4.7).
Spatially-flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric is assumed

ds2 = −N2dt2 + a2(t)

3∑
i=1

(
dxi
)2

, (4.14)

where N is taken to be just time-dependent (projectability condition) and, by using the foliation-
preserving diffeomorphisms (4.6), it can be set to unity, N = 1 . Then, just as an assumption of the
solution, N is taken to be unity.

For a flat FLRW metric (4.14), and a vanishing cosmological constant, the scalar R̃ is given by

R̃ =
3(1− 3λ+ 6μ)H2

N2
+

6μ

N

d

dt

(
H

N

)
. (4.15)

For the action (4.7), and assuming the FLRW metric (4.15), the second FLRW equation can be obtained

by varying the action with respect to the spatial metric g
(3)
ij , what yields

0 = f(R̃)− 2(1− 3λ+ 3μ)
(
Ḣ + 3H2

)
f ′(R̃)− 2(1− 3λ)H ˙̃Rf ′′(R̃) + 2μ

(
˙̃R2f ′′′(R̃) + ¨̃Rf ′′(R̃)

)
+ κ2pm ,

(4.16)
here κ2 = 16πG , pm is the pressure of a perfect fluid that fills the universe, and N = 1 . Note that this
equation turns out the usual second FLRW equation for standard f(R) gravity (4.4) when λ = μ = 1 .
If we assume the projectability condition, variation over N of the action (4.7) yields the following global
constraint

0 =

∫
d3x

[
f(R̃)− 6f ′(R̃)

{
(1− 3λ+ 3μ)H2 + μḢ

}
+ 6μH ˙̃Rf ′′(R̃)− κ2ρm

]
. (4.17)

Now, by using the ordinary conservation equation for the matter fluid ρ̇m + 3H(ρm + pm) = 0 , and
integrating Eq. (4.16), it yields

0 = f(R̃)− 6
[
(1− 3λ+ 3μ)H2 + μḢ

]
f ′(R̃) + 6μH ˙̃Rf ′′(R̃)− κ2ρm − C

a3
, (4.18)

where C is an integration constant, taken to be zero, according to the constraint equation (4.17). In
[204], however, it has been claimed that C needs not always vanish in a local region, since (4.17) needs
to be satisfied in the whole universe. In the region C > 0 , the Ca−3 term in (4.18) may be regarded as
dark matter.

If we do not assume the projectability condition, we can directly obtain (4.18), which corresponds to
the first FLRW equation, by varying the action (4.7) over N . Hence, starting from a given f(R̃) function,
and solving Eqs. (4.16) and (4.17), a cosmological solution can be obtained.

4.2 Reconstructing cyclic universes

The aim of this section is to show that any cosmology may be realized in f(R̃) Hořava–Lifshitz gravity.
For this purpose, we present two different methods of reconstruction, the first one is based on the use of
the number of e-foldings, while, the second one uses an auxiliary scalar field.
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4.2.1 Reconstructing a cyclic universe using e-folding

We will assume the flat FLRW metric defined in (4.14) with N = 1 , in such a case the first FLRW
equation is given by (4.18) with C = 0 , which can be rewritten as a function of the number of e-foldings
η = ln a

a0
instead of the time t . This technique has been developed in [236] for classical f(R) gravity,

and for Hořava–Lifshitz f(R)-gravity [109]. Since d
dt = H d

dη and d2

dη2 = H2 d2

dη2 +H dH
dη

d
dη , the first FLRW

equation (22) is rewritten as

0 = f(R̃)− 6

[
A

3
H2 + μHH ′

]
df(R̃)

dR̃
+ 6μH2

[
2AHH ′ + 6μH ′2 + 6μH ′′H ′] d2f(R̃)

d2R̃
− ρ , (4.19)

where A = 3− 9λ+ 18μ and the primes denote derivatives respect η . By using the energy conservation
equation ρ̇+ 3H(1 + w)ρ = 0 , the energy density yields,

ρ = ρ0a
−3(1+w) = ρ0a

−3(1+w)
0 e−3(1+w)η . (4.20)

As the Hubble parameter can be written as a function of the number of e-foldings, H = H(η) , the scalar
curvature in (4.15) takes the form

R̃ = AH2 + 6μHH ′ , (4.21)

which can be solved respect to η as η = η(R̃) . Then, the equation (4.19) for f(R̃) with the variable R̃
is obtained. This can be a little simplified by writing G(η) = H2 instead of the Hubble parameter. In
such a case, the differential equation (4.19) gives

0 = f(R̃)− 6

[
A

3
G+

μ

2
G′
]
df(R̃)

dR̃
+ 6μ [AGG′ + 3μGG′′]

d2f(R̃)

d2R̃
− ρ0a

−3(1+w)
0 e−3(1+w)η , (4.22)

and the scalar curvature is now written as R̃ = AG + 3μG′ . Hence, for a given cosmological solution
H2 = G(η) , one can solve the equation (4.22), and the corresponding f(R̃) is obtained.

In order to illustrate that cyclic solutions can be reproduced by this kind of theories, let us consider
the following example:

H(t) = −2π

T
H1 sin

(
2π

T
t

)
(4.23)

where H1 and T are constants. The number of e-foldings is:

H(t) =
1

a

da

dt
= −2π

T
H1 sin

(
2π

T
t

)
=⇒ da

a
= −2π

T
H1 sin

(
2π

T
t

)
dt =⇒

=⇒ η(t) = ln

(
a(t)

a0

)
= H1

[
cos

(
2π

T
t

)
− 1

]
(4.24)

Using (4.24), the function G(η) and its derivatives are given by:

G(η) = H2 = −
(
2π

T

)2

(2H1 + η) η, G′(η) = −2
(
2π

T

)2

(H1 + η) , G′′(η) = −2
(
2π

T

)2

. (4.25)

Then, we have:

R̃ = −3
(
2π

T

)2 [
2μH1 + 2η (μ+ (1− 3λ+ 6μ)H1) + (1− 3λ+ 6μ) η2

]⇒
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⇒ η = −
(

μ

1− 3λ+ 6μ
+H1

)
±
√√√√ μ2

(1− 3λ+ 6μ)2
+H2

1 −
R̃

3(1− 3λ+ 6μ)
(
2π
T

)2 . (4.26)

Now, if we call x = ±
√

μ2

(1−3λ+6μ)2 +H2
1 − R̃

3(1−3λ+6μ)( 2π
T )

2 , we can write:

η = −
(

μ

1− 3λ+ 6μ
+H1

)
+ x. (4.27)

We also have that:
df(R̃)

dR̃
= − 1

6(1− 3λ+ 6μ)
(
2π
T

)2
x

dF1(x)

dx
,

d2f(R̃)

dR̃2
=

1[
6(1− 3λ+ 6μ)

(
2π
T

)2
x
]2
(
d2F1(x)

dx2
− 1

x

dF1(x)

dx

)
, (4.28)

where F1(x) = F (R̃(x)) .

We can now rewrite (4.25) in terms of the new variable x by using (4.27), leading to:

G(η(x)) = −
(
2π

T

)2(
μ2

(1− 3λ+ 6μ)2
−H2

1 −
2μ

1− 3λ+ 6μ
x+ x2

)
,

G′(η(x)) = −2
(
2π

T

)2(
− μ

1− 3λ+ 6μ
+ x

)
,

G′′(η(x)) = −2
(
2π

T

)2

. (4.29)

Finally, by introducing (4.28-4.29) into the equation (4.22) and considering the case of vacuum, we arrive
to the following differential equation for F1(x) :

0 = x2F1(x) +

[
μ

1− 3λ+ 6μ

(
H2

1 −
μ2

(1− 3λ+ 6μ)2

)
+

(
2μ2

(1− 3λ+ 6μ)2
+H1

)
x− x3

]
dF1(x)

dx
+

+
μ

1− 3λ+ 6μ
x

[
−
(
H2

1 −
μ2

(1− 3λ+ 6μ)2

)
− 2μ

1− 3λ+ 6μ
x+ x2

]
d2F1(x)

dx2
. (4.30)

Here, we have obtained an equation for the gravitational action, that in principle can not provide an exact
expression, but which can be integrated numerically. Hence, this solution reproduces a periodic behavior
for the Hubble parameter leading to a cyclic universe.

4.2.2 Reconstructing a cyclic universe using a scalar field

In this subsection it will be shown how to construct an f(R̃) Hořava–Lifshitz gravity model realizing
any given cosmology, this time using instead the technique of [222]. We start from the action for f(R̃)
Hořava–Lifshitz gravity

S =

∫
dtd3x

√
g(3)N(f(R̃) + Lmatter), (4.31)
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which is equivalent to

S =

∫
dtd3x

√
g(3)N(P (φ)R̃+Q(φ) + Lmatter). (4.32)

Here, Lmatter is the matter Lagrangian density and P and Q are proper functions of the scalar field,
φ , which can be regarded as an auxiliary field, because there is no kinetic term depending on φ in the
Lagrangian. By varying the action with respect to φ , it follows that

0 = P ′(φ)R̃+Q′(φ), (4.33)

which can be solved in terms of φ , as
φ = φ(R̃). (4.34)

By substituting (4.34) into (4.32) and comparing with (4.31), one obtains

S =

∫
dtd3x

√
g(3)N(F (R̃) + Lmatter),

f(R̃) ≡ P (φ(R̃))R̃+Q(φ(R̃)). (4.35)

We proceed now in the same way that we did in Section II, assuming the FLRWL metric, the second

FLRWL equation can be obtained by varying the action (4.32) with respect to the spatial metric g
(3)
ij .

This equation can be written as:

P (φ)
{
R̃− 2 (1− 3λ+ 3μ)

(
3H2 + Ḣ

)}
− 2 (1− 3λ)H

dP (φ)

dt
+ 2μ

d2P (φ)

dt2
+Q(φ) + p = 0 (4.36)

If we assume now the projectability condition, we can obtain a global constraint doing the variation of the
action (4.7) over N , it yields:

P (φ)
{
R̃− 6

[
(1− 3λ+ 3μ)H2 + μḢ

]}
+ 6μH

dP (φ)

dt
+Q(φ)− ρ = 0 (4.37)

We can combine (4.36) and (4.37) in order to eliminate the function Q(φ) , we finally obtain:

2μ
d2P (φ(t))

dt2
− 2 (1− 3λ+ 3μ)H

dP (φ(t))

dt
− 2 (1− 3λ) ḢP (φ(t)) + p+ ρ = 0 (4.38)

As we may redefine the scalar field φ properly, we can choose

φ = t. (4.39)

Provided the scale factor a is given by a proper function g(t) as

a = a0e
g(t), (4.40)

with a constant a0 , and if it is moreover assumed that p and ρ are the sum of the different matter con-
tributions, with constant equation of state (EoS) parameters ωi , Eq. (4.38) then reduces to the following
second order differential equation

2μ
d2P (φ)

dφ2
− 2 (1− 3λ+ 3μ) g′(φ)

dP (φ)

dφ
− 2 (1− 3λ) g′′(φ)P (φ)+

∑
i

(1+ωi)ρi0a
−3(1+ωi)
0 e−3(1+ωi)g(φ) = 0

(4.41)
From this equation we can obtain P (φ) and using Eq. (4.37) we find that

Q(φ) = −P (φ)
{
R̃− 6

[
(1− 3λ+ 3μ)H2 + μḢ

]}
− 6μH

dP (φ)

dt
+
∑
i

ρi0a
−3(1+ωi)
0 e−3(1+ωi)g(φ) (4.42)



44 Chapter 4: Reconstructing cyclic universes: Ekpyrotic universes in f(R) Hořava–Lifshitz gravity

As a result, any given cosmology, expressed as (4.40), can indeed be realized (as anticipated) by some
specific f(R) -gravity. Note that Eq.(4.41) is a second order differential equation on P (φ) when g′(φ)
is known, but it can also be considered as a first order differential equation on g′(φ) (i.e. on H(φ) ) in
the case that the function P (φ) is given. In the following we will use this last point of view to find out a
function f(R̃) that reproduces a cyclic universe.

When matter can be neglected Eq.(4.41) can be rewritten as:

d

dφ

(
g′(φ)P (φ)

1−3λ+3μ
1−3λ

)
=

μ

1− 3λ
P (φ)

3μ
1−3λ

d2P (φ)

dφ2
(4.43)

which can be solved as [256]:

g′(φ) =
μ

1− 3λ
P (φ)−

1−3λ+3μ
1−3λ

∫
dφP (φ)

3μ
1−3λ

d2P (φ)

dφ2
=

=
μ

1− 3λ

1

P (φ)

dP (φ)

dφ
− 3μ2

(1− 3λ)2
P (φ)−

1−3λ+3μ
1−3λ

∫
dφP (φ)

3μ
1−3λ−1

(
dP (φ)

dφ

)2

(4.44)

In the second equality, we have used the partial integration. Furthermore by writing P (φ) as:

P (φ) = U(φ)
2(1−3λ)
1−3λ+3μ (4.45)

(4.44) is rewritten as follows:

g′(φ) =
2μ

1− 3λ+ 3μ

1

U(φ)

dU(φ)

dφ
− 12μ2

(1− 3λ+ 3μ)2
1

U(φ)2

∫
dφ

(
dU(φ)

dφ

)2

. (4.46)

We now consider the case given by:

P (φ) = U(φ)
2(1−3λ)
1−3λ+3μ = P0 [cos(ωφ)]

− 2(1−3λ)
1−3λ+3μ (4.47)

where P0 and ω are constants. Then, using Eq.(4.43), the solution is given by:

g′(φ) = g0 [cos(ωφ)]
2
+

2ωμ

1− 3λ+ 3μ
tan(ωφ)

(
1− 2μ

1− 3λ+ 3μ
[sin(ωφ)]

2

)
(4.48)

where g0 is an integration constant. Note that the tangent term in (4.48) makes the solutions to contain
some divergences that correspond to points where the scale factor becomes null, i.e. a(t0) = 0 . These
divergences can be identified with a Big Bang/Crunch singularity and they are very common in cyclic
universes, where the ekpyrotic scenario is reproduced. In order to have a smooth transition through the
Big Bang/Crunch singularity, one expects that the quantum effects of the theory will avoid the occurrence
of the singularity. However, this is a large task, even more in a background solution as (4.48), and should
be explored separately in the future. In addition, other mechanisms for a smooth transition have been
suggested as the introduction of an additional term in the action or a different coupling with the matter
lagrangian (see Ref. [158]).

4.3 Ekpyrotic scenario in Hořava–Lifshitz gravity

We have shown above that periodic solutions can be easily reconstructed in the frame of extended Hořava–
Lifshitz gravity. Here we are more interested to analyze ekpyrotic models in such kind of theories. The
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so-called Ekpyrotic/cyclic universe is an alternative explanation to the inflationary paradigm proposed
one decade ago in Ref. [159, 160, 275], that can provide a realistic picture of the universe evolution (for
a confrontation between both models, see [178]). In the same way as the inflationary scenario, ekpyrotic
cosmological models can also predict the origin of primordial inhomogeineties that leads to the formation
of large structures and the anisotropies observed in the CMB. In addition, this model does not require
initial conditions in comparison with the standard inflationary scenario due to its cyclic nature. In general,
the cosmological evolution presented by an ekpyrotic universe consist of infinite cycles, where each cycle
contains four stages: a first initial hot state similar to the standard Big Bang model, then a phase of
accelerated expansion, after which the universe starts to contract and finally the cycle ends in a Big
Bang/Crunch transition, when the cycle starts again. The cosmological problems enumerated above are
solved during the contracting phase. In the usual ekpyrotic models, brane scenarios or scalar fields are
considered (see [159, 160, 275]). However, it is clear that modified gravity, and precisely f(R̃) gravity,
can perfectly reproduce the ekpyrotic scenario [237]. Here we are interested to see how the cosmological
problems can be solved during the contracting phase in the context of Horřava-Lifshitz gravity, and to
reconstruct the corresponding behavior of the action during each phase of an ekpyrotic universe. The first
FLRW equation is given by,

3

κ2
H2 =

1

(1− 3λ+ 3μ)f ′(R̃)

(
ρm0

a3
+

ρr0
a4

+
ρσ0
a6

− k

a2

)
+ ρf(R̃) , (4.49)

where the subscripts refers to matter (m), radiation (r), anisotropies ( σ ), and k is the spatial curvature,
while ρf(R) is defined as,

ρf(R̃) =
1

κ2(1− 3λ+ 3μ)f ′(R̃)

(
1

2
f(R̃)− 3μḢf ′(R̃) + 3μH ˙̃Rf ′′(R̃)

)
. (4.50)

In order to solve the initial cosmological problems, the last term in (4.49) should dominate over the rest
when the scale factor tends to zero, i.e. when the universe approaches the Big Bang (Crunch) singularity.
Hence, the effective energy density defined in (4.50) should behave as ρf(R̃) ∝ 1/am with m > 6 when

the scale factor tends to zero, such that close to the initial singularity, the FLRW equation (4.49) can be
approximated as,

3

κ2
H2 ∼ ρf(R̃) ∼

C

am
, (4.51)

where C is a constant. Then, we can reconstruct the form of the action f(R) close to the Big Bang
(Crunch) singularity by solving the FLRW equation. Hence, for the Hubble parameter (4.51), the scalar
curvature is given by,

R̃ = [(1− 3λ+ 6μ)− μm]κ2 C

am
. (4.52)

And the FLRW equation (4.51) yields an expression where f(R) is the unknown quantity,

R̃2f ′′(R̃) +
2κ2(1− 3λ+ 3μ)− μm

2μm
R̃f ′(R̃)− (1− 3λ+ 6μ)− μm

2μm
f(R̃) = 0 . (4.53)

This is an Euler equation that can be easily solved, and gives the function for f(R) ,

f(R̃) = κ1R̃
β+ + κ2R̃

β− . (4.54)

where,

β± =
3mμ− 2κ2(1− 3λ+ 3μ)±√4κ2(1− 3λ+ 3μ)(κ2(1− 3λ+ 3μ)− 3mμ) +mμ(8− 24λ+ (48 +m)μ)

4mμ
.

(4.55)
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Note that the scalar curvature tends to infinity when a → 0 , and in such strong gravity regime, the
parameters λ and μ should be different than one, the limit of General Relativity, as the breaking of
Lorentz invariance will be present in such kind of regimes, while it is recovered for the weak field systems.
Moreover, in order to get a smooth transition along the singularity, the first derivative of f(R̃) should
tend to infinity to ensure that the matter energy densities remain finite in (4.49), which can be easily
achieved when (β± − 1) < 0 in (4.53).
After this contracting phase, the ekpyrotic model suggests that a hot initial state, similar to the Big Bang
model, is created (in the original ekpyrotic model by the collision between branes), and which may be
created by the decaying of the extra scalar modes coming from f(R) in this class of theories. Nevertheless,
this is beyond the purpose of this paper, where our aim is to show the approximated form that the action
should look like for each phase of the cycle. Then, during the matter/radiation dominated epochs, the
action may seem as the standard Hilbert-Einstein action with f(R̃) ∼ R̃ and R̃ = R , i. e. the parameters
responsible of the breaking of full diffeomorphisms should recover the values of GR, λ = μ ∼ 1 . The last
phase for each cycle refers to an accelerating era, which may be described by the usual Λ CDM model,
whose Hubble parameter can be written in terms of the number of e-foldings as,

H2 = H2
0 +

κ2

3
ρ0a

−3 = H2
0 +

κ2

3
ρ0a

−3
0 e−3η . (4.56)

where H0 and ρ0 are constants. In the frame of General Relativity, the terms in the r.h.s of equation (4.56)
correspond to an effective cosmological constant Λ = 3H2

0 and to a pressureless fluid. The corresponding
f(R̃) can be reconstructed by following the steps described above. For this case the function G(η) is
given by

G(η) = H2
0 +

κ2

3
ρ0a

−3
0 e−3η . (4.57)

And by using the expression for the scalar curvature R̃ = AG+ 3μG′ , the relation between R̃ and η is
obtained,

e−3η =
R̃−AH2

0

k(3 + 9(μ− λ))
, (4.58)

where k = κ2

3 ρ0a
−3
0 . Then, by substituting (4.57) and (4.58) in the equation (4.22), one gets the following

differential expression,

1 + 3(μ− λ)

6μ(1− 3λ)
f(R̃)−

[
1 + 3(μ− λ)

3μ(1− 3λ)
R̃− 3H2

0μ(1− 3λ+ 6μ)

2μ(1− 3λ)

]
f ′(R̃)−(R̃−9μH2

0 )(R̃−3H2
0 (1−3λ+6μ))f ′′(R̃) = 0 ,

(4.59)
here we have neglected the contribution of matter for simplicity. By performing a change of variable

x =
R−9μH2

0

3H2
0 (1+3(μ−λ))

and denoting F (x) = f(R̃(x)) , the equation (4.59) can be easily identified as an

hypergeometric differential equation,

0 = x(1− x)
d2F

dx2
+ (γ − (α+ β + 1)x)

dF

dx
− αβF , (4.60)

with the set of parameters (α, β, γ) given by

γ = − 1

2(1 + 3(μ− λ))
, α+ β =

1 + λ(9μ− 1)

3μ(1− 3λ)
, αβ = −1 + 3(μ− λ)

6μ(1− 3λ)
. (4.61)

The solution of the equation (4.60) is a Gauss’ hypergeometric function [109],

F (x) = C1F (α, β, γ;x) + C2x
1−γF (α− γ + 1, β − γ + 1, 2− γ;x) . (4.62)
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where C1 and C2 are constants. Then, this action reproduces the Λ CDM model described by the Hubble
parameter (4.56) without including a cosmological constants. Note that this is the same result obtained
in [236] for classical f(R) gravity, although in this case the solution depends on the parameters of the
theory (μ, λ) whose values differ from the classical theory.
Other kind of accelerating expansions can be also reconstructed in the context of this class of theories
as showed in Ref. [109]. However, due to the periodic behavior of ekpyrotic universes, models containing
future singularities (usually phantom models) are not allowed in this kind of models unless a mechanism
for avoiding the singularity is introduced. Nevertheless, a new class of phantom models that do not contain
Big Rip singularities but only affects to bound systems without reaching a singular point, the so-called
Little Rip, has been proposed in Ref. [121, 123, 122], and extended to modified gravities in Ref. [237].
Basically, these cosmological models consist on a phantom-like evolution, free of future singularities but
whose strong expansion breaks the bond of some coupling systems (as galaxies, solar systems, or even
atoms, nuclei...), what has been called as a Little Rip. A simple example of this kind of evolution can be
described by the Hubble parameter,

H(t) ∼ H0t , (4.63)

where H0 is a constant. In this case, we can also reconstruct the corresponding f(R̃) action by solving
the FLRW equation (4.18). The scalar curvature is given by,

R̃ = 3(1− 3λ+ 6μ)H2
0 t

2 + 6μH0 . (4.64)

Then, the FLRW (4.18) yields,

1

2
f(R̃)−

(
3H0μ+

(1− 3λ+ 3μ)(R− 6H0μ)

1− 3λ+ 6μ

)
f ′(R̃) + 6H0μ(R− 6H0μ)f

′′(R̃) = 0 . (4.65)

This is also an hypergeometric equation, whose solution is given by,

f(R̃) =
[
C1U(γ, β;x(R̃)) + C2L

(α)
γ (x(R̃))

]
(R̃− 6H0μ)

3/2 , (4.66)

where U(γ, β;x) is the confluent hypergeometric function and L
(α)
γ (x) is the Laguerre polynomial. The

variable x(R̃) and the set of parameters (γ, β, α) are defined as,

x(R̃) =
(1− 3λ+ 3μ)(R− 6H0μ)

6H0μ(1− 3λ+ 6μ)
, γ = − (2− 6λ+ 3μ)

2(1− 3λ+ 3μ)
, β =

5

2
, α =

3

2
. (4.67)

Hence, the f(R̃) action (4.66) corresponds to a series of powers in R̃ that are capable to reproduce a
kind of behavior given by the Hubble parameter (4.63). In such case, we have that the effective energy
density can be approximated as,

ρf(R̃) ∝ t2 . (4.68)

Note that for a cyclic universe, as the ones studied in section above, the phase when the universe expansion
is accelerated can be approximated by (4.63), such that a Little Rip may occur in the ekpyrotic scenario. In
order to show in a qualitative way how this Little Rip occurs, i.e. how some bounded systems are broken,
let us compare the effective energy density (4.68) with the energy density of some known systems as the
Solar-Earth system, and calculate the time remaining before the Little Rip occurs. By assuming that
ρf(R)(t0) =

3
κ2H

2
0 ∼ 10−47 GeV4 , where the age of the universe is taken to be t0 ∼ 13.73Gyrs , according

to Ref. [271], and a mean density of the Sun-Earth system given by ρ�−⊕ = 0.594 × 10−3 kg/m
3 ∼

10−21 GeV4 , according to the evolution (4.68), the time for the little rip is,

tLR ∼ 1013Gyrs , (4.69)
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which is a large period compared with the current age of the universe. For other kind of expansions, as the
an exponential Hubble parameter (studied in [237]), this time can be much shorter (∼ 300Gyrs ). How-
ever, in an ekpyrotic scenario the occurrence of a Little Rip will depend on the duration of the accelerating
phase before this ends, and a new contracting phase starts again. Note also that close to the dissolution
of the bound structure, gravity will be very strong, and the breaking of Lorentz invariance will be present,
such that the values of (λ, μ) will determine the expansion rate, and for instance the occurrence of the
Little Rip.

Let us now consider a model that may reproduce a entire cycle of an ekpyrotic universe,

H = H0 −H1e
−βt. (4.70)

For H1 > H0 , the Hubble parameter (4.70) represents a universe that crosses through out a contracting
phase, and then ends in an accelerating expansion for large times. Obviously, one would need to provide
the way to start a cycle again, however for a qualitative description, we assume here that the cycle starts
again after the accelerating phase somehow. For the solution (4.70), we have

R̃ = AH2 + 6μḢ = A(H2
0 − 2H0H1e

−βt +H2
1e
−2βt)− 6μβH1e

−βt (4.71)

where we recall that A = 3(1− 3λ+ 6μ) . From (4.71) we get

e−βt =
(AH0 + 3μβ)±

√
(AH0 + 3μβ)2 − (AH2

0 − R̃)

H1
(4.72)

For simplicity we consider the case when AH0 + 3μβ = 0 . Then Eq. (4.72) gives

e−βt = ±
√
R̃−AH2

0

H1
. (4.73)

And the Hubble parameter (4.70) can be rewritten in terms of the scalar curvature R̃ ,

H = H0 −H1e
−βt = H0 ∓

√
R̃−AH2

0 . (4.74)

In this case the first Friedmann equation (4.18) yields,

12μβ(AH2
0 − R̃)

(
H0 ∓

√
R̃−AH2

0

)
f ′′(R̃)−Bf ′(R̃) + f(R̃)− κ2ρm = 0 , (4.75)

where B = 6[(1− 3λ+ 3μ)H2 + μḢ] . Then, by setting β = 2H0(1−3λ+3μ)
μ , we obtain,

B = 6(1− 3λ+ 3μ)(1−A)H2
0 + 6(1− 3λ+ 3μ)R̃ . (4.76)

Eq. (4.75) is still a very difficult expression, so that the search of exact solutions for f(R̃) is a difficult
task. Nevertheless, we can reconstruct some particular exact actions by considering special matter fluids.
Let us consider the matter energy density,

ρm = κ−2

[
12μβ(AH2

0 − R̃)

(
H0 ∓

√
R̃−AH2

0

)
f ′′(R̃)− Ca−3

]
. (4.77)

Then the FLRW equation (4.75) admits the following particular solution

f(R̃) = C1[6(1− 3λ+ 3μ)R̃+ 6(1− 3λ+ 3μ)(1−A)H2
0 ]

1
6(1−3λ+3μ) . (4.78)

In a similar way, other particular solutions of the Friedmann equations can be reconstructed. Hence, we
have shown here that ekpyrotic universes can be well described in the frame of Hořava–Lifshitz gravity.
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4.4 Discussions

In the present chapter, we have analyzed some particular cosmological solutions in the context of Hořava–
Lifshitz gravity, where basically some generalizations of the original action [146], similar to standard f(R)
gravity, have been studied. It is well known that for a particular Hubble parameter, the corresponding
action can be reconstructed in the framework of f(R̃) Hořava–Lifshitz gravity (see Ref [109]), where the
presence of the set of parameters {λ, μ} , consequence of the restriction of the symmetries of the theory,
can vary along the cosmological evolution, since their value depends on the energy scale of a particular
system. Hence, the presence of this set of parameters will fluctuate along the universe evolution, affect-
ing the corresponding cosmic solution. By assuming that General Relativity should be recovered when
R̃ ∼ H2

0 << m4
pl ∼ 1074GeV 4 , the parameters λ = μ ∼ 1 during the radiation/matter dominated epoch

and the current accelerating era, while it becomes large when R̃ ∝ m4
pl , where the quantum effects should

become important. In this sense, the effects of Hořava–Lifshitz gravity, and specifically the extra scalar
mode, may become important when the universe reaches stages as the Little Rip, or other phases from a
typical ekpyrotic universe.

Hence, in the particular solutions studied here, the ekpyrotic scenario becomes an important focus
for analyzing Hořava–Lifshitz gravity, as the universe owns a periodic behavior, crossing different stages,
where the quantum nature of the theory may be relevant. Moreover, we have shown that particular actions
which lead to a cyclic nature of the Hubble parameter can be reconstructed. Several techniques have been
used for the reconstruction procedure. By using an auxiliary scalar field, coming from the f(R̃) sector,
we have shown that cosmological solutions can be easily obtained. In addition, we have studied the shape
of the action along each phase of a typical ekpyrotic universe, where the corresponding actions have been
obtained. It is straightforward to show that such actions lead to standard f(R) gravity when λ = μ = 1 ,
and can be identified with some particular viable theories [236]. Then, we can conclude that this class of
actions can perfectly describe the entire universe evolution by means of an ekpyrotic model. Moreover, we
have suggested the compatibility between an ekpyrotic universe and the presence of a Little Rip, a non
singular point that may lead to the break of some bounded systems, where the effects of Hořava–Lifshitz
gravity turn out important, and λ 	= 1, μ 	= 1 . Future singularities can not be compatible with a cyclic
universe unless a cure for the singularity is considered [186]. A next step should be to probe the possibil-
ity to reproduce cyclic cosmologies within the frame of so-called viable f(R̃) gravities (see for instance,
Ref. [148]). While the violation of Newtonian law can be avoided in f(R̃) Hořava-Lifshitz gravity (see
[109]), the presence of instabilities and other features should be studied in more detail.

On the other hand, in order to have a complete picture of the universe evolution, one should specify
how reheating occurs. Nevertheless, this is beyond of the scope of this work, but an interesting proposal
for a reheating mechanism in the frame of UV complete theory is pointed out in [132].

Therefore, in an ekpyrotic universe, the main implications of f(R̃) Hořava–Lifshitz gravity would
come during those phases when the full diffeomorphisms are broken, basically during the early and ending
phases, that may affect other classical eras, specially by the perturbations, which should be an important
point to be studied in the future, where the effects may be distinguishable from other models.
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Part II

Perturbation growth and the whole
cosmic history





Chapter 5

Cosmic history of viable exponential
gravity

In this chapter, we study a generic feature of viable F (R) gravity models, in particular, exponential
gravity and a power form model. The conditions for the viability are summarized as follows: (i) Positive
definiteness of the effective gravitational coupling. (ii) Matter stability condition [101, 118, 215, 268].
(iii) In the large curvature regime, the model is close to the Λ –Cold–Dark–Matter ( ΛCDM ) model
asymptotically. (iv) Stability of the late–time de Sitter point [16, 117, 206]. (v) The equivalence principle.
(vi) Solar–system tests [81, 83, 215, 243]. We find that the behavior of higher derivatives of the Hubble
parameter may be influenced by large frequency oscillations of effective dark energy, which makes solutions
singular and unphysical at a high redshift. Therefore, in order to stabilize such oscillations, we examine
an additional correction term to the model and remove such an instability with keeping the viability
properties. We also demonstrate the cosmological evolutions of the universe and growth index of the
matter density perturbations in detail. Furthermore, by applying two viable models of exponential gravity
to inflationary cosmology and executing the numerical analysis of the inflation process, we illustrate that
the exit from inflation can be realized. Concretely, we demonstrate that different numbers of e –folds
during inflation can be obtained by taking different model parameters in the presence of ultrarelativistic
matter, the existence of which makes inflation end and leads to the exit from inflation. Indeed, we observe
that at the end of the inflation, the effective energy density as well as the curvature of the universe decrease.
Accordingly, a unified description between inflation and the late time cosmic acceleration is presented. We
use units of kB = c = � = 1 and denote the gravitational constant 8πG by κ2 ≡ 8π/MPl

2 with the
Planck mass of MPl = G−1/2 = 1.2× 1019 GeV.

The chapter is organized as follows. In Sec. I, the formulations of F (R) gravity is briefly review.
We use the fluid representation of F (R) gravity [68, 69]. Here, in the Friedmann–Lemâıtre–Robertson–
Walker (FLRW) background, the equations of motion with the addition of an effective gravitational fluid
are presented. In Sec. II, we explain two well–known viable F (R) gravity models and show those generic
features occurring in the matter dominated era, when large frequency oscillation of dark energy appears
and influences on the behavior of higher derivatives of the Hubble parameter in terms of time with the risk
to produce some divergence and to render the solution unphysical. Thus, we suggest a way to stabilize
such oscillations by introducing an additive modification to the models. We also perform a numerical
analysis of the matter dominated era. In Sec. III, we demonstrate that the term added to stabilize the
dark energy oscillations in the matter dominated epoch does not cause any problem on the viability of the
models, which satisfy the cosmological and local gravity constraints. We investigate their future evolution
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and show that the effective crossing of the phantom divide, which characterizes the de Sitter epoch, takes
place in the very far future. We also analyze the growth index using three different ansatz choices. The
second part of the chapter is devoted to the study of F (R) models for the unification of the early–time
cosmic acceleration, i.e., inflation, and the late–time one. In Sec. IV, we explore two applications of
exponential gravity for inflation. In particular, we show how it is possible to obtain different numbers of
e –folds during inflation by making different choices of model parameters in the presence of ultrarelativistic
matter in the early universe. In Sec. V, we execute the numerical analysis of inflation and illustrate that
at the end of it the effective energy density and the curvature decrease and eventually the cosmology in
the ΛCDM model can follow. Finally, the summary and outlook for this chapter are given in Sec. VI. For
reference, we also explain the procedure of conformal transformation in Appendix B and asymptotically
phantom or quintessence modified gravity in Appendix C.

This Chapter is based on the publications: [31].

5.1 F (R) gravity and its dynamics in the FLRW universe: Gen-
eral overview

In this section, we briefly review formulations in F (R) gravity and derive the gravitational field equations
in the FLRW space–time. The action describing F (R) gravity is given by

I =

∫
M

d4x
√−g

[
F (R)

2κ2
+ L(matter)

]
, (5.1)

where F (R) is a generic function of the Ricci scalar R only, g is the determinant of the metric tensor
gμν , L(matter) is the matter Lagrangian and M denotes the space–time manifold. In a large class of
modified gravity models reproducing the standard cosmology in General Relativity (GR), i.e., F (R) = R ,
with a suitable correction to realize current acceleration and/or inflation, one represents

F (R) = R+ f(R) . (5.2)

Thus, the modification of gravity is encoded in the function f(R) , which is added to the classical term R
of the Einstein–Hilbert action in GR. In what follows, we discuss modified gravity in this form by explicitly
separating the contribution of its modification from GR. The field equation simply reads

F ′(R)

(
Rμν − 1

2
Rgμν

)
= κ2T (matter)

μν +

[
1

2
gμν (F (R)−RF ′(R)) + (∇μ∇ν − gμν�)F ′(R)

]
. (5.3)

Here, ∇μ is the covariant derivative operator associated with gμν , �φ ≡ gμν∇μ∇νφ is the covariant

d’Alembertian for a scalar field φ , and T
μ(matter)
ν = diag (−ρm, Pm, Pm, Pm) is the contribution to the

stress energy–momentum tensor from all ordinary matters, with ρm and Pm being the energy density and
pressure of matter, respectively. Moreover, the prime denotes the derivative with respect to the curvature
R .

The flat FLRW space–time is described by the metric ds2 = −dt2 + a(t)2dx2 , where a(t) is the scale
factor of the universe. The Ricci scalar reads

R = 12H2 + 6Ḣ , (5.4)

where H = ȧ(t)/a(t) is the Hubble parameter and the dot denotes the time derivative of ∂t(≡ ∂/∂t) .
In the flat FLRW background, from the (μ, ν) = (0, 0) component and the trace part of (μ, ν) = (i, j)
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(with i, j = 1, · · · , 3 ) components in Eq. (5.3), we obtain the gravitational field equations [221, 234]

ρeff =
3

κ2
H2 , (5.5)

Peff = − 1

κ2

(
2Ḣ + 3H2

)
. (5.6)

Here, ρeff and Peff are the effective energy density and pressure of the universe, respectively, defined as

ρeff ≡ ρm +
1

2κ2

[
(F ′R− F )− 6H2(F ′ − 1)− 6HḞ ′

]
, (5.7)

Peff ≡ Pm +
1

2κ2

[
− (F ′R− F ) + (4Ḣ + 6H2)(F ′ − 1) + 4HḞ ′ + 2F̈ ′

]
. (5.8)

In this way, we have a fluid representation of the so–called geometrical dark energy in F (R) gravity with
the energy density ρDE = ρeff − ρ and pressure PDE = Peff − P . However, it is important for us to
remember that gravitational terms enter in both left and right sides of Eqs. (5.5) and (5.6). For general
relativity in which F (R) = R , ρeff = ρm and Peff = Pm and therefore Eqs. (5.5) and (5.6) lead to
Friedman equations.

We also explain basic equations that we use to carry out our analysis. In order to study the dynamics
of F (R) gravity models in the flat FLRW universe, we may introduce the variable [28, 148]

yH(z) ≡ ρDE

ρm(0)
=

H2

m̃2
− (z + 1)3 − χ(z + 1)4 . (5.9)

Here, ρm(0) is the energy density of matter at the present time, m̃2 is the mass scale, given by

m̃2 ≡ κ2ρm(0)

3
� 1.5× 10−67eV2 ,

and χ is defined as [169]

χ ≡ ρr(0)

ρm(0)
� 3.1× 10−4 ,

where ρr(0) is the current energy density of radiation and z = 1/a(t) − 1 is the redshift. Here, we have
taken the current value of the scale factor as unity. By using Eqs. (5.5) and (5.9), we find

d2yH(z)

dz2
+ J1

dyH(z)

dz
+ J2 (yH(z)) + J3 = 0 , (5.10)

where

J1 =
1

(z + 1)

[
−3− 1

yH + (z + 1)3 + χ(z + 1)4
1− F ′(R)

6m̃2F ′′(R)

]
, (5.11)

J2 =
1

(z + 1)2

[
1

yH + (z + 1)3 + χ(z + 1)4
2− F ′(R)

3m̃2F ′′(R)

]
, (5.12)

J3 = −3(z + 1)

− (1− F ′(R))((z + 1)3 + 2χ(z + 1)4) + (R− F (R))/(3m̃2)

(z + 1)2(yH + (z + 1)3 + χ(z + 1)4)

1

6m̃2F ′′(R)
. (5.13)

Furthermore, the Ricci scalar is expressed as

R = 3m̃2

[
4yH(z)− (z + 1)

dyH(z)

dz
+ (z + 1)3

]
. (5.14)

In deriving this equation, we have used the fact that −(z+1)H(z)d/dz = H(t)d/d(ln a(t)) = d/dt , where
H could be an explicit function of the red shift as H = H(z) , or an explicit function of the time as
H = H(t) . In general, Eq. (5.10) can be solved in a numerical way, once we write the explicit form of an
F (R) gravity model.



56 Chapter 5: Cosmic history of viable exponential gravity

5.2 Generic feature of realistic F (R) gravity models in the mat-
ter dominated era

In this section, we consider viable F (R) gravity models representing a realistic scenario to account for
dark energy, in particular, two well–known ones proposed in Refs. [18, 87, 148, 180, 274, 281] (for more
examples and detailed explanations on viable models, see, e.g., [28, 29] and references therein). Here, we
mention that in Ref. [294], the gravitational waves in viable F (R) models have been studied, and that
the observational constraints on exponential gravity have also been examined in Ref. [295]. We show that
for these models, large frequency oscillation of dark energy in the matter dominated era appears, and
that it may influence on the behavior of higher derivatives of the Hubble parameter with respect to time.
Such a oscillation has the risk to produce some divergence, and therefore we suggest a way to stabilize the
frequency oscillation by performing the subsequent numerical analysis. In these models, a correction term
to the Hilbert–Einstein action is added as F (R) = R + f(R) in (5.2), so that the current acceleration
of the universe can be reproduced in a simple way. Namely, a vanishing (or fast decreasing) cosmological
constant in the flat limit of R→ 0 is incorporated, and a suitable, constant asymptotic behavior for large
values of R is exhibited.

5.2.1 Realistic F (R) gravity models

First, we explore the Hu–Sawicki model [148] (for the related study of such a model, see Ref. [12, 19, 99,
114, 116, 129, 144, 150, 173, 227, 241, 285]),

F (R) = R− m̃2c1(R/m̃2)n

c2(R/m̃2)n + 1
= R− m̃2c1

c2
+

m̃2c1/c2
c2(R/m̃2)n + 1

, (5.15)

where m̃2 is the mass scale, c1 and c2 are positive parameters, and n is a natural positive number.
The model is very carefully constructed such that in the high curvature regime, m̃2c1/c2 = 2Λ can play
a role of the cosmological constant Λ and thus the ΛCDM model can be reproduced.

Moreover, in Refs. [87, 180] another simple model which may easily be generalized to reproduce also
inflation has been constructed

F (R) = R− 2Λ
[
1− e−R/(bΛ)

]
, (5.16)

where b > 0 is a free parameter. Also in this model, in the flat space the solution of the Minkowski space–
time is recovered, while at large curvatures the ΛCDM model is realized. This kind of models can satisfy
the cosmological and local gravity constraints. Both of these models asymptotically approach the ΛCDM
model in the high curvature regime. Indeed, however, the mechanisms work in two different manners, i.e.,
via a power function of R (the first one) and via an exponential function of it (the second one). For our
treatment, we reparameterize the model (5.15) by describing c1m̃

2/c2 = 2Λ and (c2)
1/n m̃2 = bΛ with

b > 0 , so that we can obtain

F (R) = R− 2Λ

{
1− 1

[R/ (bΛ)]
n
+ 1

}
, n = 4 . (5.17)

Through this procedure, in both of these models the term bΛ corresponds to the curvature for which the
cosmological constant is “switched on”. This means b� 4 , so that bΛ� 4Λ and hence R = 4Λ can be
the curvature of de Sitter universe describing the current cosmic acceleration. In the model in Eq. (5.17),
since n has to be sufficiently large in order to reproduce the ΛCDM model, we have assumed n = 4 and
we keep only the parameter b free.



5.2 Generic feature of realistic F (R) gravity models in the matter dominated era 57

5.2.2 Dark energy oscillations in the matter dominated era

Despite the fact that the models in Eqs. (5.16) and (5.17) precisely resemble the ΛCDM model, there is
a problem that in the matter dominated era the higher derivatives of the Hubble parameter diverge and
thus this can make the solutions unphysical. This problem originates from the stability conditions to be
satisfied by these models [113] and from dark energy oscillations during the matter phase [274] in Ref. [16].
Since in matter dominated era R = 3m̃2(z + 1)3 and yH(z) � (1 + z)3 and χ(1 + z)4 � (z + 1)3 in
order for dark energy and radiation to vanish during this phase, one may locally solve Eq. (5.10) around
z = z0 + (z − z0) , where |z − z0| � z . The solution reads to the first order in terms of (z − z0) ,

y′′H(z) +
α

(z − z0)
y′H(z) +

β

(z − z0)2
yH(z) = ζ0 + ζ1(z − z0) , (5.18)

where

α = −7

2
− (1− F ′(R0))F

′′′(R0)

2F ′′(R0)2
,

β = 2 +
1

R0F ′′(R0)
+

2(1− F ′(R0))F
′′′(R0)

F ′′(R0)2
, (5.19)

with ζ0 and ζ1 being constants and R0 = 3m̃2(z0 + 1)3 . Thus, the solution of Eq. (5.18) is derived as

yH(z) = a+ b · (z − z0) + C0 · exp 1

2(z0 + 1)

(
−α±

√
α2 − 4β

)
(z − z0) , (5.20)

where a , b and C0 are constants. Now, for the two models in Eqs. (5.16) and (5.17), when R � bΛ ,
we find

F ′(R) � 1 ,

F ′′(R) � 0+ . (5.21)

These behaviors guarantee the occurrence of the realistic matter dominated era. Furthermore, since in
the expanding universe (z− z0) < 0 , it turns out that the dark energy perturbations in Eq. (5.20) remain
small around R0 , and that we acquire

(1− F ′(R0))F
′′′(R0)

2F ′′(R0)2
> −7

2
,

1

R0F ′′(R0)
> 12 , (5.22)

for both these models. Owing to the fact that F ′′(R) is very close to 0+ , the discriminant in the square
root of Eq. (5.20) is negative and dark energy oscillates as

yH(z) =
Λ

3m̃2
+ e

−α1,2(z−z0)

2(z0+1)

[
A sin

( √
β1,2

(z0 + 1)
(z − z0)

)
+B cos

( √
β1,2

(z0 + 1)
(z − z0)

)]
. (5.23)

Here, A and B are constants and α1,2 and β1,2 are given by Eq. (5.19), so they correspond to two
models under investigation. In particular, α1 = −3 for the model in Eq. (5.16) and α2 � −29/10 for
the model in Eq. (5.17), while β1,2 � 1/(R0F

′′(R0)) , i.e.,

β1 �
(
b2Λe

R0
R̃

2R0

)
, (5.24)
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in case of exponential model in Eq. (5.16) and

β2 �
R0

[
1 +

(
R0

bΛ

)n]3 ( bΛ
R0

)n
2Λn

{
1 + n

[(
R0

bΛ

)n − 1
]
+
(
R0

bΛ

)n} � R0

2Λn(n+ 1)

(
R0

bΛ

)n

, (5.25)

in case of model in Eq. (5.17). This means that the frequency of dark energy oscillations increases as
the curvature (and redshift) becomes large. Moreover, the effects of such oscillations are amplified in the
derivatives of the dark energy density, namely,∣∣∣∣ dndtn yH(t0)

∣∣∣∣ ∝ (F(z0))n , (5.26)

where F(z) � (R ∗ F ′′(R))
−1/2

/(z+1) is the oscillation frequency and t0 is the cosmic time corresponding
to the redshift z0 . This is for example the case of the EoS parameter for dark energy defined as1

ωDE(z) ≡ PDE

ρDE
= −1 + 1

3
(z + 1)

1

yH(z)

dyH(z)

d(z)
. (5.27)

For large values of the redshift, the dark energy density oscillates with a high frequency and also its
derivatives become large, showing a different feature of the dark energy EoS parameter in the models in
Eqs. (5.16) and (5.17) compared with the case of the cosmological constant in GR. During the matter
dominated era, the Hubble parameter behaves as

H(z) �
√
m̃2

[
(z + 1)3/2 +

yH(z)

2(z + 1)3/2

]
. (5.28)

If the frequency F(z0) in Eq. (5.26) is extremely large, the derivatives of dark energy density could
become dominant in some higher derivatives of the Hubble parameter which may approach an effective
singularity and therefore make the solution unphysical. We see it for specific cases. In Refs. [28, 111,
174], the cosmological evolutions in exponential gravity and the Hu–Sawicki model have carefully been
explored. It has explicitly been demonstrated that the late–time cosmic acceleration which follows the
matter dominated era can occur, according with astrophysical data. A reasonable choice is to take b = 1
for both these models. We also put Λ = 7.93m̃2 [169]. We can solve Eq. (5.10) numerically2 by taking
the initial conditions at z = zi , where zi � 0 is the redshift at the initial time to execute the numerical
calculation, as follows:

dyH(z)

d(z)

∣∣∣
zi

= 0 ,

yH(z)
∣∣∣
zi

=
Λ

3m̃2
.

Here, we have used the fact that at a high redshift the universe should be very close to the ΛCDM model.
We have set zi = 2.80 for the model in Eq. (5.16) and zi = 4.5 for the model in Eq. (5.17), such that
RF ′′(R) ∼ 10−8 at R = 3m̃2(zi + 1)3 . We note that it is hard to extrapolate the numerical results to
the higher redshifts because of the large frequency of dark energy oscillations.

Using Eq. (5.27) with yH , we derive ωDE . In addition, by using Eq. (5.14) we obtain R as a function
of the redshift. We can also execute the extrapolation in terms of the behavior of ΩDE , given by

ΩDE(z) ≡ ρDE

ρeff
=

yH

yH + (z + 1)
3
+ χ (z + 1)

4 . (5.29)

1Throughout this paper, we describe the EoS parameter by “ ω ” and not “ w ”.
2We have used Mathematica 7 c©.
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The numerical extrapolation to the present universe leads to the following results: For the model (5.16),
yH(0) = 2.736 , ωDE(0) = −0.950 , ΩDE(0) = 0.732 and R(z = 0) = 4.365 , whereas for the model (5.17),
yH(0) = 2.652 , ωDE(0) = −0.989 , ΩDE(0) = 0.726 and R(z = 0) = 4.358 . These resultant data are in
accordance with the last and very accurate observations of our current universe [169], which are

ωDE = −0.972+0.061
−0.060 ,

ΩDE = 0.721± 0.015 . (5.30)

Next, we introduce the deceleration q , jerk j and snap s parameters [82, 257]

q(t) ≡ − 1

a(t)

d2a(t)

dt2
1

H(t)2
= − Ḣ

H2
−H2

j(t) ≡ 1

a(t)

d3a(t)

dt3
1

H(t)3
=

Ḧ

H3
− 3q − 2

s(t) ≡ 1

a(t)

d4a(t)

dt4
1

H(t)4
=

...
H

H4
+ 4j + 3q(q + 4) + 6 . (5.31)

In what follows, we show the values of these cosmological parameters at the present time ( z = 0 ) as the
result of numerical extrapolation in our two models, which we called Model I in Eq. (5.16) and Model II
in Eq. (5.17), and the calculation in the ΛCDM model:

q(z = 0) = −0.650 (ΛCDM) , −0.544 (Model I) , −0.577 (Model II)

j(z = 0) = 1.000 (ΛCDM) , 0.792(Model I) , 0.972 (Model II)

s(z = 0) = −0.050 (ΛCDM) , −0.171(Model I) ,−0.152 (Model II) .

The deviations of the parameters in Models I and II from those in the ΛCDM model are small at the
present. However, since these parameters depend on the time derivatives of the Hubble parameter, it is
interesting to analyze those behaviors at high curvature. Therefore, in Fig. 5.1 we plot the cosmological
evolutions of q , j and s as functions of the redshift z . From this figure, we see that there exist
overlapped regions for Models I and II with those in the ΛCDM model.

The deceleration parameter in Models I and II remains very close to the value in the ΛCDM model,
because in the first time derivative of the Hubble parameter the contribution of dark energy is still negli-
gible. Hence, it guarantees the correct cosmological evolution of these models. However, it is clearly seen
that in the jerk and snap parameters the derivatives of the dark energy density become relevant and the
parameters grow up with an oscillatory behavior. Since the frequency of such oscillations strongly increases
in the redshift, it is reasonable to expect that some divergence occurs in the past. We also remark that if
from one side at high redshifts the exponential Model I is more similar to the ΛCDM model because of
the faster decreasing of exponential function in comparison with the power function of Model II, from the
other side it involves stronger oscillations in the matter dominated era.

It may be stated that the closer the model is to the ΛCDM model (i.e., as much F ′′(R) is close to
zero), the bigger the oscillation frequency of dark energy becomes. As a consequence, despite the fact that
the dynamics of the universe depends on the matter and the dark energy density remains very small, some
divergences in the derivatives of the Hubble parameter can occur. In the models in Eqs. (5.16) and (5.17),
although the approaching manners to a model with the cosmological constant are different from each
other, it may be interpreted that these models show a generic feature of realistic F (R) gravity models,
in which the cosmological evolutions are similar to those in a model with the cosmological constant. The
corrections to the Einstein’s equations in the small curvature regime lead to undesired effects in the high
curvature regime. Thus, we need to investigate additional modifications.
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Figure 5.1: Cosmological evolutions of q(z) [(a) and (b)], j(z) [(c) and (d)] and s(z) [(e) and (f)]
parameters as functions of the redshift z for Model I [(a),(c),(e)] and Model II [(b),(d),(f)] in the region
of z > 0 .

5.2.3 Proposal of a correction term

In order to remove the divergences in the derivatives of the Hubble parameter, we introduce a function
g(R) for which the oscillation frequency of the dark energy density in Eq. (5.23) acquires a constant value
1/
√
δ , where δ > 0 , for a generic curvature R � bΛ , and we stabilize the oscillations of dark energy

during the matter dominated era with the use of a correction term. Since in the matter dominated era,
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i.e., z + 1 =
[
R/(3m̃2)

]1/3
, we have to require

(3m̃2)2/3

R5/3 g′′(R)
=

1

δ

g(R) = −γ̃ Λ
(

R

3m̃2

)1/3

, γ̃ > 0 , (5.32)

where γ̃ ≡ (9/2)δ(3m̃2/Λ) = 1.702 δ . We explore the models in Eqs. (5.16) and (5.17) with adding these
correction as

F1(R) = R− 2Λ(1− e−
R
bΛ )− γ̃ Λ

(
R

3m̃2

)1/3

, (5.33)

F2(R) = R− 2Λ

[
1− 1

(R/bΛ)4 + 1

]
− γ̃ Λ

(
R

3m̃2

)1/3

. (5.34)

We note that in both cases F1,2(0) = 0 and therefore we still have the solution of the flat space in the
Minkowski space–time. The effects of the last term vanish in the de Sitter epoch, when R = 4Λ and these
models resemble to a model with an effective cosmological constant, provided that γ̃ � (m̃2/Λ)1/3 . We
may also evaluate the dark energy density at high redshifts by deriving ρDE = ρeff − ρm from Eq. (5.7)
and by putting R = 3m̃2(z + 1)3 such that

yH(z) � Λ

3m̃2
[1 + γ̃(1 + z)] . (5.35)

According to the observational data of our universe, the current value of dark energy amount is estimated
as yH ≡ Λ/(3m̃) = 2.643 . With the reasonable choice γ̃ ∼ 1/1000 , the effects of modification of
gravity on the dark energy density begin to appear at a very high redshift (for example, at z = 9 ,
yH(9) = 1.01 × yH(0) ), and hence the universe seems to be very close to the ΛCDM model. However,
while the pure models in Eqs. (5.16) and (5.17) mimic an effective cosmological constant, the models in
Eqs. (5.33) and (5.34) mimic (for the matter solution) a quintessence fluid. Equation (5.27) leads to

ωDE(z) � −1 + (1 + z)γ̃

3(1 + (1 + z)γ̃)
, (5.36)

so that when z � γ̃−1 , ωDE(z) � −2/3 .
Thus, it is simple to verify that all the cosmological constraints [66] are still satisfied. Since |F ′1,2(R�

bΛ)− 1| � 1 , the effective gravitational coupling Geff = G/F
′
1,2(R) is positive, and hence the models are

protected against the anti–gravity during the cosmological evolution until the de Sitter solution (RdS =
4Λ ) of the current universe is realized. Thus, thanks to the fact that |F ′′1,2(R� bΛ) > 0| , we do not have
any problem in terms of the existence of a stable matter. In Sec. 5.3, we also analyze the local constraints
in detail, and we see that our modifications do not destroy the feasibility of the models in the solar system.
It should be stressed that the energy density preserves its oscillation behavior in the matter dominated
era, but that owing to the correction term reconstructed here, such oscillations keep a constant frequency
F =

√
1.702/γ̃ and do not diverge. Despite the small value of γ̃ , in this way the high redshift divergences

and possible effective singularities are removed.

From the point of view of the end of inflation, there is another resolution of this problem. It is well
known that the scalar begins to oscillate once the mass m becomes larger than the Hubble parameter,
H < m . Indeed, for a canonical scalar, the energy density sloshes between the potential energy (w = −1 ,
where w is the equation of state of the canonical scalar) and the kinetic energy (w = +1 ). What is done
usually is that the oscillations enough rapidly (i.e., those with m � H ) can be averaged over giving an
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effective energy–momentum tensor with w = 0 , i.e., dust. The same procedure should be performed here,
once the oscillations are rapid enough. In this interpretation, there would be no problem with any strange
rapidly oscillating contributions to the energy momentum tensor. A solution is to choose the potential
effectively so that the mass can not increase as the matter energy density increases.

Furthermore, it is significant to remark that in a number of models of F (R) gravity for dark energy,
there exists a well–known problem that positions in the field space are a finite distance away from the
minimum of the effective potential, so that a curvature singularity in the Jordan frame could appear. This
means that large excursions of the scalar could result in a singularity forming in a solution. It is known
that the solution for this problem is also adding the higher powers of R so that the behavior at large
curvatures can be soften. The oscillations are extremely large at small curvatures too, and the higher
power of R or R itself do not change in this range of detection. We also note that this argument is
applicable to the so–called type I, II and III finite–time future singularities (where R diverges), which
has been classified in Ref. [240], while for a kind of singularities in our work, R does not become singular,
and hence the argument would become different from the above.

5.2.4 Analysis of exponential and power–form models with correction terms
in the matter dominated era

In this subsection, we carry out the numerical analysis of the models in Eqs. (5.33) and (5.34). In both
cases, we assume b = 1 and γ̃ = 1/1000 and solve Eq. (5.10) in a numerical way, by taking accurate
initial conditions at z = zi so that zi � 2 . By using Eq. (5.35), we acquire

dyH(z)

d(z)

∣∣∣
zi

=
Λ

3m̃2
γ ,

yH(z)
∣∣∣
zi

=
Λ

3m̃2
(1 + γ (zi + 1)) ,

where we have set zi = 9 . The feature of the models in Eqs. (5.33) and (5.34) at the present time is
very similar to those of the models in Eqs. (5.16) and (5.17). With the numerical extrapolation to the
current universe, for the model in Eq. (5.33) we have yH(0) = 2.739 , ωDE(0) = −0.950 , ΩDE(0) = 0.732
and R(z = 0) = 4.369 , while for the model in Eq. (5.34), we find yH(0) = 2.654 , ωDE(0) = −0.989 ,
ΩDE(0) = 0.726 and R(z = 0) = 4.361 . We analyze those behaviors in the matter dominated era. It
follows from the initial conditions yH(9) = 2.670 and ωDE(9) = −0.997 that the universe is extremely
close to the ΛCDM model also at high redshifts. We see how the dynamical correction of the Einstein’s
equation, which corresponds to, roughly speaking, the fact of having “a dynamical cosmological constant”,
introduces an oscillatory behavior of dark energy density. Thanks to the contribution of the correction
term, we obtain a constant frequency of such oscillations without changing the cosmological evolution
described by the theory. In Fig. 5.2, we show the cosmological evolutions of the deceleration, jerk and
snap parameters as functions of the redshift z in these models. There is overlapped region of the evolutions
with those in the ΛCDM model. We may compare the graphics in Fig. 5.2 with the corresponding ones
in Fig. 5.1 of the models in Eqs. (5.16) and (5.17) without the correction term analyzed in Sec. 5.2.2.
At high redshifts, the deceleration parameter is not influenced by dark energy and hence the behavior in
both these models in Eqs. (5.33) and (5.34) are the same as that in the ΛCDM model. On the other
hand, in terms of the jerk and snap parameters, the derivatives of dark energy density become relevant
and accordingly these parameters oscillate with the same frequency as that of dark energy, showing a
different behavior in comparison with the case of GR with the cosmological constant. However, here such
oscillations have a constant frequency and do not diverge. The predicted value of the oscillation frequency
is F ≡ √1.702/γ̃ = 41.255 . The oscillation period is T = 2π/F � 0.152 . Thus, the numerical data are
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in good accordance with the predicted ones. (We can also appreciate the result by taking into account the
fact that the number of crests per units of the redshift has to be 1/T � 7 ).

Consequently, we have shown in both analytical and numerical ways that increasing oscillations of dark
energy in the past approach to effective singularities. It is not “a rapid oscillating system” but a system
which becomes singular. The effects of such oscillations are evident especially in the higher derivative of
the Hubble parameter. It is not a case that if all the numerical simulations presented in the literature
start from small redshifts, at higher redshifts this singular problem appears. Eventually, the oscillations
may influence also on the behavior of the Ricci scalar (which depends on the first derivative of the Hubble
parameter, see Eq. (5.28) and |dnH(t)|t0/dtn| ∝ (F(z0))n with n � 1 , following from Eq. (5.26)). Of
course, the average value of the dark energy density remains negligible, but the oscillations around this
value become huge. Thus, the Ricci scalar may have an oscillatory behavior. We have also evaluated the
frequency of the oscillations, so that the result can match with the numerical simulations, and therefore
all the analyses in this work are consistent. This behavior of realistic F (R) gravity models has recently
been studied also in Ref. [173].

We remark that if the mass of the additional scalar degree of freedom, the so–called scalaron, is
too large, the predictability could be lost [283]. Clearly, the mass of the scalaron in the two models in
Eqs. (5.33) and (5.34) is not bounded, and thus it would diverge in very dense environment. We have
confirmed that in the large curvature regime compared with the current curvature the correction term
g(R) in (5.32) in these two models do not strongly affect the scalaron potential in the Einstein frame,
namely, the correction term would not be the leading term in the form of the scalaron potential, and thus
the scalaron mass is not changed very much. The model parameter of the correction term g(R) mainly
related to the scalaron mass as well as its potential is γ̃ . In the limit that the energy density of the
environment becomes infinity, since the contribution of the correction term to the scalaron mass, it would
be impossible to constrain the values of γ̃ , for which the divergence of the scalaron mass can be avoided.

5.3 Cosmological constraints and future evolution

In this section, first we show that the models in Eqs. (5.33) and (5.34) satisfy the cosmological and local
gravity constraints [83, 243], and that the term added to stabilize the dark energy oscillations in the matter
dominated epoch does not cause any problem to these proprieties. The confrontation of F (R) models
with SNIa, BAO, CMB radiation and gravitational lensing has been executed in the past several works [41,
46, 58, 98, 120, 124, 133, 171, 183, 193, 209, 242, 244, 245, 250, 261, 262, 263, 277, 279, 293, 298, 299]. We
have just seen that the models with the choice of b = 1 can be consistent with the observational data of
the universe. Here, we examine the range of b in which the models are compatible with the observations
and analyze the behavior of the models near to local (matter) sources in order to check possible Newton
law corrections or matter instabilities. Then, we concentrate on the future evolution of the universe in
the models and demonstrate that the effective crossing of the phantom divide which characterizes the de
Sitter epoch takes place in the very far future.

In the way of trying to explain the several aspects that characterize our universe, there exists the prob-
lem of distinguishing different theories. It has been revealed that sometimes the study of the expansion
history of the universe is not enough because different theories can achieve the same expansion history.
Fortunately, theories with the same expansion history can have a different cosmic growth history. This
fact makes the growth of the large scale structure in the universe an important tool in order to discrim-
inate among the different theories proposed. Thus, the characterization of growth of the matter density
perturbations become very significant. In order to execute it, the so–called growth index γ [179] is useful.
Therefore, in the second part of this section we study the evolution of the matter density perturbation for
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Figure 5.2: Cosmological evolutions of q(z) [(a) and (b)], j(z) [(c) and (d)] and s(z) [(e) and (f)] param-
eters as functions of the redshift z for the model F1(R) [(a),(c),(e)] and the model F2(R) [(b),(d),(f)]
in the region of z > 0 .

our F (R) gravity model.

Again, we clearly state the main purpose of this section. Since the original models, i.e., the Hu–
Sawicki model [148] in Eq. (5.17) and exponential gravity [87, 180] in Eq. (5.16), have been studied
well, we concentrate on the question whether the corrected models in Eqs. (5.34) and (5.33) lead to any
difference in the observables. These modified models have been constructed in order not to alter the
background evolution significantly except the oscillatory effect. In Refs. [148, 180] and many follow–up



5.3 Cosmological constraints and future evolution 65

studies of these pioneering works, the cosmological background evolutions and the growth of structures in
the two unmodified models in Eqs. (5.17) and (5.16) have been investigated. In order make this work self
consistent study of modified gravity, we explicitly demonstrate the cosmological background evolutions
and the growth of the matter density perturbations in the modified models in Eqs. (5.34) and (5.33). It
is meaningful to investigate these behaviors in the modified models even though the modifications on the
observable quantities are small.

5.3.1 Cosmological and local constraints

We take γ̃ = 1/1000 in the models in Eqs. (5.33) and (5.34), keeping the parameter b free. Now, the
dark energy density is a function of z and b , i.e., yH(z, b) . We can again solve Eq. (5.10) numerically,
taking the initial conditions at zi = 9 as

dyH(z, b)

d(z)

∣∣∣
zi

=
Λ

3m̃2
γ̃ ,

yH(z, b)
∣∣∣
zi

=
Λ

3m̃2
(1 + γ̃ (zi + 1)) ,

as we did in the previous section. We take 0.1 < b < 2 . In Figs. 5.3 and 5.4, we display the resultant
values of dark energy EoS parameter ωDE(z = 0, b) and ΩDE(z = 0, b) at the present time as functions
of b for the two models. We also show the bounds of cosmological data in Eq. (5.30), namely, the lines in
rose denote the upper bounds, while the lines in yellow do the lower ones. By matching the comparison
between the two graphics of every model, we find that in order to correctly reproduce the universe where
we live with exponential gravity in Eq. (5.33), 0.1 < b < 1.174 , with power–law model in Eq. (5.34),
0.1 < b < 1.699 . The results are consistent with the choices in Sec. 5.2.4.
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Figure 5.3: Behaviors of ωDE(z = 0, b) and of ΩDE(z = 0, b) as functions of b for exponential model.
The observational data bounds (horizontal lines) are also shown.

Newton law corrections and stability on a planet surface

In Ref. [225], it has been shown that some realistic models of F (R) gravity may lead to significant
Newton law corrections at large cosmological scales. We briefly review this result. From the trace of the
field equation (5.3), we consider the constant background of R = R0 , such that 2F (R0)−R0F

′(R0) = 0 ,
by performing a variation with respect to R = R(0) + δR and supposing the presence of a matter point
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Figure 5.4: Behaviors of ωDE(z = 0, b) and of ΩDE(z = 0, b) as functions of b for power–law model.
Legend is the same as Fig. 5.3.

source (like a planet), that is, T (matter) = T0 δ(x) , where δ(x) is the Dirac’s distribution, we find, to first
order in δR , (

�−m2
)
δR =

κ2

3F ′′(R0)
T0δ(x) , (5.37)

with

m2 =
1

3

(
F ′(R0)

F ′′(R0)
−R0

)
. (5.38)

The solution is given by

δR =
κ2

3F ′′(R0)
T0 G(m2, |x|) , (5.39)

where G(m2, |x|) is the correlation function which satisfies(
�−m2

)
G(m2, |x|) = δ(x) . (5.40)

Hence, if m2 < 0 , there appears a tachyon and thus there could be some instability. Even if m2 > 0 ,
when m2 is small compared with R0 , δR 	= 0 at long ranges, which generates the large correction to
the Newton law. For the pure exponential model in Eq. (5.16) without correction terms, when R0 � bΛ ,
m2 reads

m2 � (b2Λ)

6
e

R0
bΛ . (5.41)

Therefore, in general m2/R0 is very large effectively. The same thing happens in the model in Eq. (5.17).
Next, for the models in Eqs. (5.33) and (5.34) with correction terms, we have

m2 � 34/3m̃2R

2Λγ̃

(
R

m̃2

)2/3

. (5.42)

Despite the fact that in this case m2 is smaller than in Eq. (5.41), it still remains sufficiently large and
the correction to the Newton law is very small. For example, the typical value of the curvature in the
solar system is R0 � 10−61eV2 (it corresponds to one hydrogen atom per cubic centimeter). In this case,
from Eq. (5.42) we obtain m2/R0 � 2× 106 .

Concerning the matter instability [101, 118], this might also occur when the curvature is rather large,
as on a planet (R � 10−38eV2 ), as compared with the average curvature of the universe today (R �
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10−66eV2 ). In order to arrive at a stability condition, we can perturb again the trace of Eq. (5.3) around
R = Rb , where Rb is the curvature of the planet surface and the perturbation δR is given by the
curvature difference between the internal and the external solution. The curvature Rb = −κ2T (matter)

depends on the radial coordinate r . By assuming δR depending on time only, we acquire

−∂2
t (δR) ∼ U(Rb)δR , (5.43)

where

U(Rb) =

[(
F ′′′(Rb)

F ′′(Rb)

)2

− F ′′′(Rb)

F ′′(Rb)

]
grr∇rRb∇rRb − Rb

3
+

F ′(Rb)

3F ′′(Rb)

F ′′′(Rb)

3(F ′′(Rb))2
(2F (Rb)−RbF

′(Rb)−Rb) . (5.44)

Here, gμν is the diagonal metric describing the planet. If U(Rb) is negative, then the perturbation δR
becomes exponentially large and the whole system becomes unstable. Thus, the planet stability condition
is

U(Rb) > 0 . (5.45)

For our models in Eqs. (5.33) and (5.34), U(Rb) � m2 , where m2 is given by Eq. (5.42) again. Also
in this case, we do not have any particular problem. For example, by putting Rb � 10−38eV2 , we find
U(Rb)/Rb � 4× 1021 . Thus, the models under consideration easily pass these local tests.

We mention that in the past, the non–linear effects on the scalar are much more important, owing to
the mechanism of the chameleon effect [161, 162, 200], and that only at late times the linear evolution is
a good approximation. For example, if a high–curvature solution is achieved, the Solar–System test is the
examination whether the solution is stable against the Dolgov–Kawasaki instability [101]. This is not the
same as whether the high–curvature solution can at all be achieved, which is a much more subtle issue
and discussed at length by Hu and Sawicki in Ref. [148].

5.3.2 Future universe evolution

In de Sitter universe, we have R = RdS , where RdS is the constant curvature given by the constant
dark energy density yH = y0 , such that y0 = RdS/12m̃

2 . Starting from Eq. (5.10), we are able to study
perturbations around the de Sitter solution in the models (5.33) and (5.34) which provide this solution
for RdS = 4Λ and well satisfied the de Sitter condition 2F (RdS) = RdSF

′(RdS) as a consequence of the
trace of the field equation in vacuum. Performing the variation with respect to yH(z) = y0 + y1(z) with
|y1(z)| � 1 and assuming the contributions of radiation and matter to be much smaller than y0 , at the
first order in y1(z) Eq. (5.10) reads

d2y1(z)

dz2
+

α

(z + 1)

dy1(z)

dz
+

β

(z + 1)2
y1(z) = 4ζ(z + 1) , (5.46)

where

α = −2 , β = −4 + 4F ′(RdS)

RF ′′(RdS)
, ζ = 1 +

1− F ′(RdS)

RdSF ′′(RdS)
. (5.47)

The solution of Eq. (5.46) is given by

yH(z) = y0 + y1(z) , (5.48)

y1(z) = C0(z + 1)
1
2

(
1−α±

√
(1−α)2−4β

)
+

4ζ

β
(z + 1)3 , (5.49)
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where C0 is a constant. The well–known stability condition for the de Sitter space–time,
F ′(RdS)/((RdS)F

′′(RdS)) > 1 , is also valid. It has also been demonstrated that since in realistic F (R)
gravity models for the de Sitter universe F ′′(R) → 0+ , F ′(RdS)/(RdSF

′′(RdS)) > 25/16 [202] giving
negative the discriminant of Eq. (5.49) and an oscillatory behavior to the dark energy density during this
phase. Thus, in this case the dark energy EoS parameter ωDE (5.27) becomes

ωDE(R = RdS) � −1 + 4m̃2 (z + 1)
3
2

RdS
× (5.50)[

A0 cos

(√(
4

RdSF ′′(RdS)

)
log(z + 1)

)
+B0 sin

(√(
4

RdSF ′′(RdS)

)
log(z + 1)

)]
,

and oscillates infinitely often around the line of the phantom divide ωDE = −1 [202]. According to various
recent observational data, the crossing of the phantom divide occurred in the near past [9, 154, 212, 290].
These models possess one crossing in the recent past [28], after the end of the matter dominated era, and
infinite crossings in the future (for detailed investigations on the future crossing of the phantom divide,
see [29]), but the amplitude of such crossings decreases as (z + 1)3/2 and it does not cause any serious
problem to the accuracy of the cosmological evolution during the de Sitter epoch which is in general the
final attractor of the system [28, 111]. However, the existence of a phantom phase can give some undesirable
effects such as the possibility to have the Big Rip [57] as an alternative scenario of the universe (in such
a case, the model may suddenly exit from ΛCDM description) or the disintegration of bound structures
which does not necessarily require to having the final (Big Rip) singularity [121, 122]. In this subsection,
we show that in the models in Eqs. (5.33) and (5.34) the effective EoS parameter of the universe (for an
alternative study, see [149]) defined as

ωeff ≡ ρeff
Peff

= −1 + 2(z + 1)

3H(z)

dH(z)

dz
(5.51)

never crosses the phantom divide line in the past, and that only when z is very close to −1 (this means
in the very far future), it coincides with ωDE and the crossings occur. We remark that ρeff and Peff

correspond to the total energy density and pressure of the universe, and hence that if dark energy strongly
dominates over ordinary matter, we can consider ωeff ≈ ωDE . In both of the models under investigation,
we take again γ̃ = 1/1000 and keep the parameter b free, such that 0.1 < b < 1.174 (model in Eq. (5.33))
and 0.1 < b < 1.699 (model in Eq. (5.34)), according to the realistic representation of current universe.
The numerical evaluation of Eq. (5.10) leads to H(z) , given by

H(z) =
√

m̃2 [yH(z) + (z + 1)3 + χ(z + 1)4] , (5.52)

and therefore ωeff(z) . We depict the cosmological evolution of ωeff as a function of the red shift z and
the b parameter in Fig. 5.5 for the model in Eq. (5.33) and in Fig. 5.6 for the model in Eq. (5.34). On the
left panels, we plot the effective EoS parameter for −1 < z < 2 . We can see that for both of the models,
independently on the choice of b , ωDE starts from zero in the matter dominated era and asymptotically
approaches -1 without any appreciable deviation. Only when z is very close to −1 and the matter
contribution to ωeff is effectively zero, we have the crossing of the phantom divide due to the oscillation
behavior of dark energy. On the right panels, we display the behavior of the effective EoS parameter
around z = −1 . Here, we focused on the phantom divide line and we excluded the graphic area out of the
range −1.0001 < ωeff < −0.9999 . The blue region indicates that ωeff is still in the quintessence phase.
We note that especially in the model in Eq. (5.34), the first crossing of phantom divide is very far in the
future. For example, with the scale factor a(t) = exp (H0t) , where H0 � 6.3× 10−34eV−1 is the Hubble
parameter of the de Sitter universe, z = −0.90 (when the crossing of the phantom divide may begin to
appear in the exponential models) corresponds to 1026 years.
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Figure 5.5: Cosmological evolution of ωeff as a function of the red shift z and the b parameter for the
model in Eq. (5.33). The left panel plots it for −1 < z < 2 and the right one displays around z = −1 .
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Figure 5.6: Cosmological evolution of ωeff as a function of the red shift z and the b parameter for the
model in Eq. (5.34). Legend is the same as Fig. 5.5.

Avoidance of the phantom crossing with (inhomogeneous) fluid

It may be of some interest to check if it is possible to avoid the crossing of the phantom divide by adding
a suitable (compensating) fluid in the future cosmological scenario described by the models (5.33) and
(5.34). Here, we indicate a possible realization of it. We examine an inhomogeneous fluid with its energy
density ρ , pressure P and the Eos parameter ω as a function of ρ , i.e., ω = ω(ρ) . The EoS is expressed
as

d

dz
log ρ =

3

(z + 1)
(ω(ρ) + 1) . (5.53)

We explore the simple case

ω(ρ) = A0σ(z)ρ
α−1 − 1 , (5.54)

where α is a constant and A0 is a positive parameter. Moreover, σ(z) = −1 when z ≥ 0 and σ(z) = 1
when z < 0 , such that the fluid is in the phantom region for z ≥ 0 and in the quintessence region for
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z < 0 . The fluid energy density reads

ρ = ρ0 (B0 − σ(z) log(z + 1))
1

(1−α) , (5.55)

where ρ0 = [3(α− 1)A0]
1/(1−α)

and B0 are positive parameters depending on the initial conditions.

We note that one can choose B0 = 1 without the loss of generality and in this way the energy density
is defined as a positive quantity. If we take α > 1 , when z → +∞ or z → −1+ , the energy density
asymptotically tends to zero. For z = 0 , we have a maximum, ρ(z = 0) = ρ0 , so that we should require
ρ0 � Λ/κ2 , namely, the fluid energy density is always small with respect to the dark energy density given
by our models for the cosmological constant. A fluid in the form of Eq. (5.55) may asymptotically produce
a (Big Rip) singularity H(t) ∼ (t0 − t)β , where t < t0 and β > 1 (for general study of singularities in
modified gravity, see [34, 35, 226, 231]), only for β = 1/(2α − 1) [138], but in our case α > 1 , so that
this kind of divergence can never appear. If we add this fluid in the scenario described by F (R) gravity
models in Eqs. (5.33) and (5.34), when z → −1 we find

ωeff =
PDE + P

ρDE + ρ
� −1 + A0ρ

α

Λ/κ2
. (5.56)

This means that owing to the presence of fluid, the oscillations of the effective EoS parameter realize not
around the phantom divide but around ωeff given by the last equation, namely in the quintessence region.
With an accurate fitting of the parameters, in this way we may avoid the crossing of the phantom divide.

We can also add a fluid to the cosmological scenario in order to have an asymptotical phantom phase
without the Big Rip singularity. To this purpose, we investigate the EoS parameter of the fluid as in
Eq. (5.54) with A0 > 0 and σ(z) = −1 , which describes a phantom fluid. The fluid energy density is
given by Eq. (5.55). We put B0 = 0 and α < 1 such that 1/(1 − α) can be an even number and one
can have the energy density defined as a positive quantity. In this way, the fluid energy density decreases
until z = 0 and then it starts to grow up. We can take ρ0 sufficiently small so that the fluid contribution
can become dominant only in the asymptotical limit, when z is close to −1 , avoiding the quintessence
region in the final cosmological evolution of our F (R) gravity models. From the equation of motion
3H2/κ2 = ρ , we obtain

t = −
∫ z(t)

0

√
3

κ2ρ(z′)
dz′

(z′ + 1)
. (5.57)

In our case, it is easy to verify that t ∼ | log(z + 1)(2α−1)/(2α−2)| and if α ≤ 1/2 , when z(t) → −1 the
integral diverges and t → +∞ , avoiding the Big Rip at a finite time. In this kind of models, the fluid
energy density increases with time, but ω → −1 asymptotically, so that there can be no future singularity.
However, in Ref. [122] a careful investigation on the conditions necessary to produce this evolution has
been done, and it has been demonstrated that this fluid can rapidly expand in the future, leading to the
disintegration of all bound structures (this is the so–called “Little Rip”). For example, a planet in an orbit
of radius R̄ around a star of mass M will become unbound when −(4π/3)(ρ+3P )R̄3 �M . In our case,
−(ρ+ 3P ) = A0ρ

α and in the future every gravitationally bound system will be disintegrated [57].

5.3.3 Growth of the matter density perturbations: growth index

In this subsection, we study the matter density perturbations. The equation that governs the evolution of
the matter density perturbations for F (R) gravity has been derived in the literature (see, for example, [280]
and references therein). Under the subhorizon approximation (for the case without such an approximation,
see [32, 194]), the matter density perturbation δ = δρm

ρm
satisfies the following equation:

δ̈ + 2Hδ̇ − 4πGeff(a, k)ρmδ = 0 (5.58)
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with k being the comoving wavenumber and Geff(a, k) being the effective gravitational “constant” given
by

Geff(a, k) =
G

F ′(R)

[
1 +

(
k2/a2

)
(F ′′(R)/F ′(R))

1 + 3 (k2/a2) (F ′′(R)/F ′(R))

]
. (5.59)

It is worth noting that the appearance of the comoving wavenumber k in the effective gravitational
constant makes the evolution of the matter density perturbations dependent on the comoving wavenumber
k . It can be checked easily, by taking F (R) = R in Eq. (5.59), that the evolution of the matter density
perturbation does not have this kind of dependence in the case of GR. In Fig. 5.7, we show the cosmological
evolution as a function of the redshift z and the scale dependence on the comoving wavenumber k of
this effective gravitational constant for the case of model F1(R) in Eq. (5.33), while in Fig. 5.8 we depict
those for the case of model F2(R) in Eq. (5.34). In both these cases, we have fixed b = 1 and used
γ = 1/1000 .
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Figure 5.7: (a) Cosmological evolution as a function of z and the scale dependence on k of the effective
gravitational constant Geff for the model F1(R) with b = 1 and γ̃ = 1/1000 . (b) Cosmological evolution
of Geff as a function of z in the model F1(R) with b = 1 and γ̃ = 1/1000 for k = 1Mpc−1 (blue),
k = 0.1Mpc−1 (green), k = 0.01Mpc−1 (red) and k = 0.001Mpc−1 (fuchsia).

Another important remark is to state that in deriving Eq. (5.58), we have assumed the subhorizon
approximation (see [115]). Namely, comoving wavelengths λ ≡ a/k are considered to be much shorter
than the Hubble radius H−1 as

k2

a2
� H2 . (5.60)

This means that we examine the scales of log k ≥ −3 . On the other hand, as it was pointed out in
Ref. [74], for large k we have to take into account deviations from the linear regime. Hence, we do not
consider the scales of log k > −1 and take the results obtained for log k close to −1 .

From Figs. 7 and 8, we see that Geff measured today can significantly be different from the Newton’s
constant in the past. The Newton’s constant should be normalized to the current one as (Geff/G) . This
implies that the Newton’s constant at the decoupling epoch must be much lower than what is implicitly
assumed in CMB codes such as CAMB [1, 176]. This could significantly change the CMB power spectrum
because it changes, for example, the relation between the gravitational interaction and the Thomson
scattering rate. Since we use the CMB data when we examine whether the theoretical results are consistent
with the observational ones analyzed in the framework of GR, it should be important for us to take into
account this point. Therefore, strictly speaking, if we compare our results with the observations, we has
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Figure 5.8: (a) Cosmological evolution as a function of z and the scale dependence on k of the effective
gravitational constant Geff for the model F2(R) with b = 1 and γ̃ = 1/1000 . (b) Cosmological evolution
of Geff as a function of z for the model F2(R) with b = 1 and γ̃ = 1/1000 . Legend is the same as
Fig. 5.7.

to use the observational results obtained by analyzing the CMB data with using the present value of Geff

in our F (R) gravity models instead of the Newton’s constant G in GR.

Instead of solving Eq. (5.58) for the matter density perturbation δ , we now introduce the growth
rate fg ≡ d ln δ/d ln a and solve the equivalent equation to Eq. (5.58) for the growth rate in terms of the
redshift z , given by

dfg(z)

dz
+

(
1 + z

H(z)

dH(z)

dz
− 2− fg(z)

)
fg(z)

1 + z
+

3

2

m̃2(1 + z)2

H2(z)

Geff(a(z), k)

G
= 0 . (5.61)

Unfortunately, Eq. (5.61) cannot be solved analytically for the models F1(R) and F2(R) , but it can
be solved numerically by imposing the initial conditions. Therefore, we execute the numerical calculations
for both the model F1(R) and the model F2(R) with the condition that at a very high redshift the
growth rate becomes that in the ΛCDM model. In Fig. 5.9, we illustrate the cosmological evolution as a
function of the redshift z and the scale dependence on the comoving wavenumber k of the growth rate
for the model F1(R) , while we depict those of the growth rate for the model F2(R) in Fig. 5.10.

One way of characterizing the growth of the matter density perturbations could be to use the so–called
growth index γ , which is defined as the quantity satisfying the following equation:

fg(z) = Ωm(z)
γ(z) , (5.62)

with Ωm(z) =
8πGρm

3H2 being the matter density parameter.

It is known that the growth index γ in Eq. (5.62) cannot be observed directly, but it can be determined
from the observational data of both the growth factor fg(z) and the matter density parameter Ωm(z)
at the same redshift z . Even if the growth index is not directly observable quantity, it could have a
fundamental importance in discriminating among the different cosmological models. One of the reasons
is that in general, the growth factor fg(z) , which can be estimated from redshift space distortions in the
galaxy power spectra at different z [142, 157], may not be expressed in terms of elementary functions
and this fact makes the comparison among the different models difficult. If Eq. (5.62) is satisfied with any
ansatz for the growth index γ , then its determination could provide an easy and fast way to distinguish
between cosmological models.
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Figure 5.9: (a) Cosmological evolution as a function of the redshift z and the scale dependence on the
comoving wavenumber k of the growth rate fg for the model F1(R) . (b) Cosmological evolution of the
growth rate fg as a function of z in the model F1(R) for k = 0.1Mpc−1 (green), k = 0.01Mpc−1 (red)
and k = 0.001Mpc−1 (blue).
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Figure 5.10: (a) Cosmological evolution as a function of the redshift z and the scale dependence on the
comoving wavenumber k of the growth rate fg for the model F2(R) . (b) Cosmological evolution of the
growth rate fg as a function of z for the model F2(R) . Legend is the same as Fig. 5.9.

Various parameterizations for the growth index γ have been proposed in the literature. In the first
stage works on this topic, γ was taken constant (see [172, 248]). In the case of dark fluids with the
constant EoS ω0 in GR, it is γ = 3 (ω0 − 1) / (6ω0 − 5) (for the ΛCDM model, the growth index is
γ ≈ 0.545 ). Although taking γ constant is very appropriated for a wide class of dark energy models
in the framework of GR (for which |γ′(0)| < 0.02 ), for modified gravity theories γ is not constant in
general (the cases of some viable F (R) gravity models have been investigated in Refs. [74, 128]) and the
measurement of |γ′(0)| could be very important in order to discriminate between different theories. For
this reason, another parameterizations has been proposed. The case of a linear dependence γ(z) = γ0+γ′0z
was treated in Ref. [251]. Recently, an ansatz of the type γ(z) = γ0 + γ1z/(1 + z) with γ0 and γ1 being
constants was explored in Ref. [39] and a generalization given by γ(z) = γ0 + γ1z/(1 + z)α with α being
a constant in Ref. [74]. In the following, we study some of these parameterizations of the growth index for
the case of the models F1(R) and F2(R) .
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Figure 5.11: Constant growth index as a function of log k for the model F1(R) (a) and for the model
F2(R) (b). The bars express the 68% CL.

γ = γ0

We consider the ansatz for the growth index given by

γ = γ0 ,

where γ0 is a constant.

In Fig. 5.11, we display the results obtained by fitting Eq. (5.62) to the solution of Eq. (5.61) for
different values of the comoving wavenumber k for the two models F1(R) and F2(R) . We note that
in these and following plots, the bars express the 68% confidence level (CL) and the point denotes the
median value. The first important result for both models is that the value of the growth index has a strong
dependence with log k . This scale dependence seems to be quite similar in both models.

In order to check the goodness of our fits, in Fig. 5.12 we show cosmological evolutions of the growth rate
fg(z) and Ωm(z)

γ0 as functions of the redshift z together for several values of the comoving wavenumber
k for the models F1(R) and F2(R) . To clarify these results, in Fig. 5.13 we also illustrate the cosmological
evolution of the relative difference between fg(z) and Ωm(z)

γ0 as a function of z for the same values
of k in these models. The first remarkable thing is that for both models the function Ωm(z)

γ0 fits the
growth rate for large scales (i.e., lower k ) very well, but this is not anymore the case for larger values of
k . In fact, if we do not consider lower values for z (i.e., z < 0.2 ), for log k = −2 the relative difference
is smaller than 3% for both models, while for log k = −1 can arrive up to almost 13% . For log k = −3 ,
we see that the relative difference is always smaller than 1.5% for the model F1(R) and smaller than 1%
for the model F2(R) .

γ = γ0 + γ1z

With the same procedure used in the previous subsection, we explore a linear dependence for the growth
index

γ = γ0 + γ1z , (5.63)

where γ1 is a constant.

In Fig. 5.14, we depict the parameters γ0 and γ1 for several values of log k in both the models. As
is the same as the case γ = γ0 , it can easily be seen that the scale dependence of the parameters γ0 and
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Figure 5.12: Cosmological evolutions of the growth rate fg (red) and Ωγ
m (blue) with γ = γ0 as functions

of the redshift z in the model F1(R) for k = 0.1Mpc−1 (a), k = 0.01Mpc−1 (b) and k = 0.001Mpc−1

(c), and those in the model F2(R) for k = 0.1Mpc−1 (d), k = 0.01Mpc−1 (e) and k = 0.001Mpc−1 (f).
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Figure 5.13: Cosmological evolution of the relative difference
|fg−Ωγ

m|
fg

with γ = γ0 for k = 0.1Mpc−1

(red), k = 0.01Mpc−1 (blue) and k = 0.001Mpc−1 (green) in the model F1(R) (a) and the model F2(R)
(b).

γ1 is similar in these models. We can also find that γ0 ∼ 0.46 for the model F1(R) when log k ≤ −2 ,
whereas γ0 ∼ 0.51 for the model F2(R) when log k ≤ −2.5 . For both these models, the value of γ1
has a strong dependence on k in the range of log k > −2.25 , but in the range of log k < −2.25 this
dependence becomes weaker.

In Fig. 5.15, we illustrate cosmological evolutions of the growth rate fg(z) and Ωm(z)
γ(z) as functions

of the redshift z together for the models F1(R) and F2(R) . We can see that the fits for log k = 0.1
have been improved in comparison with the same fits as the case with a constant growth index. Also,
for log k < 0.1 the fits continue to be quite good. In order to demonstrate these facts quantitatively, in
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Figure 5.14: Growth index fitting parameters in the case γ = γ0 + γ1z as a function of log k for the
model F1(R) [(a) and (b)] and the model F2(R) [(c) and (d)]. Legend is the same as Fig. 5.11.

Fig. 5.16 we plot the cosmological evolution of the relative difference between fg(z) and Ωm(z)
γ(z) as

a function of z for several values of k in the models F1(R) and F2(R) . In this case, for log k = −1
the relative difference is smaller than 7.5% in both the models if we do not consider lower values for
z (i.e., z < 0.2 ). We also see that the linear growth index improves the fits in both the models for
log k = −2 in comparison with those for a constant growth index. In this case, the relative difference for
the model F1(R) is always smaller than 1% , whereas that for model F2(R) is smaller than 2% . Finally,
for log k = −3 the results obtained for a constant growth index are quite similar to those for a linear
dependence on z .

γ = γ0 + γ1
z

1+z

Next, we examine the following ansatz for the growth index:

γ = γ0 + γ1
z

1 + z
. (5.64)

In Fig. 5.17, we depict the parameters γ0 and γ1 for several values of log k for both the models. The
scale dependence of these parameters on k is shown. The behavior of the parameter γ1 seems to be quite
similar to that for the previous case γ = γ0 + γ1z , but it is worth cautioning that the scale of the figures
are different from each other, and that for the present ansatz the scale dependence of γ1 is stronger than
that for the previous case. It can also be seen that γ0 ∼ 0.465 for the model F1(R) and γ0 ∼ 0.513 for
the model F2(R) in the scale log k < −2.5 .

In Fig. 5.18, we plot cosmological evolutions of the growth rate fg(z) and Ωm(z)
γ(z) in the models
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Figure 5.15: Cosmological evolutions of the growth rate fg (red) and Ωγ
m (blue) with γ = γ0 + γ1z

as functions of the redshift z in the model F1(R) for k = 0.1Mpc−1 (a), k = 0.01Mpc−1 (b) and
k = 0.001Mpc−1 (c), and those in the model F2(R) for k = 0.1Mpc−1 (d), k = 0.01Mpc−1 (e) and
k = 0.001Mpc−1 (f).
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Figure 5.16: Cosmological evolution of the relative difference
|fg−Ωγ

m|
fg

with γ = γ0+γ1z for k = 0.1Mpc−1

(red), k = 0.01Mpc−1 (blue) and k = 0.001Mpc−1 (green) in the model F1(R) (a) and the model F2(R)
(b).

F1(R) and F2(R) for several values of k , as demonstrated in the previous subsections. We can see the
fits for log k ≤ −2 are quite good, as those in the previous ansatz for the growth index. In the case of
higher values of log k , it seems that the fits are similar to those for a constant growth rate and these fits
do not reach the goodness of those for the case of γ = γ0 + γ1z .

In order to analyze the fits quantitatively, in Fig. 5.19 we display the cosmological evolution of the
relative difference between fg(z) and Ωm(z)

γ(z) for several values of k in the models F1(R) and F2(R) .
We see that the relative difference for log k = −1 is smaller than 12% (if we do not consider z < 0.2 )
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Figure 5.17: Growth index fitting parameters in the case γ = γ0 + γ1
z

1+z as a function of log k for the
model F1(R) [(a) and (b)] and the model F2(R) [(c) and (d)]. Legend is the same as Fig. 5.11.
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Figure 5.18: Cosmological evolutions of the growth rate fg (red) and Ωγ
m (blue) with γ = γ0 + γ1

z
1+z

as functions of the redshift z in the model F1(R) for k = 0.1Mpc−1 (a), k = 0.01Mpc−1 (b) and
k = 0.001Mpc−1 (c), and those in the model F2(R) for k = 0.1Mpc−1 (d), k = 0.01Mpc−1 (e) and
k = 0.001Mpc−1 (f).
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for both the models. Thus, it is confirmed that these fits are better than those for the constant growth
rate, but these are worse than those for γ = γ0 + γ1z . For lower values of log k , the relative difference is
smaller than 2% in z > 0.2 .
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Figure 5.19: Cosmological evolution of the relative difference
|fg−Ωγ

m|
fg

with γ = γ0 + γ1
z

1+z for k =

0.1Mpc−1 (red), k = 0.01Mpc−1 (blue) and k = 0.001Mpc−1 (green) in the model F1(R) (a) and the
model F2(R) (b).

As a consequence, through the investigations of these different ansatz for the growth index, it is
concluded that γ = γ0 + γ1z is the parameterization that can fit Eq. (5.62) to the solution of Eq. (5.61)
better in a wide range of values for k . Even though the behavior of the parameters γ0 and γ1 in the
models F1(R) and F2(R) is quite similar to each other, in order to distinguish between these models
in Fig. 5.14 we can see that the more differences between these models come from the values of γ0 for
log k ≤ −2 . In fact, as remarked before, for log k ≤ −2.5 we have γ0 ∼ 0.46 for the model F1(R) and
γ0 ∼ 0.51 for the model F2(R) .

5.4 Unified models for early– and late–time cosmic acceleration

The reason why we also study inflation in F (R) gravity is that one of the most important goals on the study
of modified gravity theories is to describe the consistent evolution history of the universe from inflation
in the early universe to the dark energy dominated stage at the present time. Namely, the universe starts
with an inflationary epoch, followed by the radiation dominated era and the matter dominated universe,
and finally the late cosmic acceleration epoch is actually achieved without invoking the presence of dark
components in the universe [221, 234] (for a first F (R) theory unifying inflation with dark energy, see
Ref. [215]). In Secs. 5.2 and 5.3, it has been demonstrated that the exponential gravity with the correction
terms can be a realistic F (R) gravity model. Therefore, in this section we investigate the possibility
that in such exponential gravity with additional correction terms, inflation as well as the late–time cosmic
acceleration can be realized. Since we examine exponential gravity among various models of F (R) gravity,
we consider the unification model between inflation and the late–time cosmic acceleration in this work.

Models of the type (5.16) may be combined in a natural way to obtain the phenomenological description
of the inflationary epoch. For example, a ‘two–steps’ model may be the smooth version, given by

F (R) = R− 2Λ
[
1− e−R/(bR)

]
− Λi θ(R−Ri) . (5.65)
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Here, θ(R−R0) is the Heaviside’s step distribution, Ri is the transition scalar curvature at inflationary
scale and Λi is a suitable cosmological constant producing inflation, when R � Ri . The main problem
associated with this sharp model is the appearance of a possible antigravity regime in a region around the
transition point between inflation and the universe described by the ΛCDM model. The antigravity in a
past epoch is not phenomenologically acceptable. Furthermore, adding some terms would be necessary in
order for inflation to end.

In this section, we study two applications of exponential gravity to achieve an unified description of
the early–time inflation and the late–time cosmic acceleration. In particular, we show how it is possible to
obtain inflationary universes with different numbers of e –folds by choosing different models parameters
in the presence of ultrarelativistic matter in the early universe.

Following the first proposal of Ref. [111], we start with the form of F (R) with a natural possibility of
a unified description of our universe

F (R) = R− 2Λ
(
1− e−

R
bR

)
− Λi

[
1− e

−
(

R
Ri

)n
]
+ γ̄

(
1

R̃α−1
i

)
Rα , (5.66)

where Ri and Λi are the typical values of transition curvature and expected cosmological constant
during inflation, respectively, and n is a natural number larger than unity (here, we do not write the
correction term for the stability of oscillations in the matter dominated era). In Eq. (5.66), the last term
γ̄(1/R̃α−1

i )Rα , where γ̄ is a positive dimensional constant and α is a real number, works at the inflation

scale R̃i and is actually necessary in order to realize an exit from inflation.

We also propose another nice inflation model based on the good behavior of exponential function
described as

F (R) = R− 2Λ
(
1− e−

R
bR

)
− Λi

sin

(
π e
−
(

R
Ri

)n
)

π e
−
(

R
Ri

)n + γ̄

(
1

R̃α−1
i

)
Rα . (5.67)

Here, the parameters have the same roles of the corresponding ones in the model in Eq. (5.66). We
note that the second term of the model vanishes when R � Ri and tends to Λi when R � Ri . We
analyze these models, i.e., Model I in Eq. (5.66) and Model II in Eq. (5.67), and explore the possibilities
to reproduce the phenomenologically acceptable inflation.

5.4.1 Inflation in an exponential model (Model I)

First, we investigate the model in Eq. (5.66). For simplicity, we describe a part of it as

fi(R) ≡ −Λi

(
1− e

−
(

R
Ri

)n
)
+ γ̄

(
1

R̃α−1
i

)
Rα . (5.68)

We note that if n > 1 and α > 1 , when R� Ri(∼ R̃i) , we obtain

R� |fi(R)| �
∣∣∣∣∣− Rn

Rn−1
i

+ γ̄
Rα

R̃α−1
i

∣∣∣∣∣ , (5.69)
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and the absence of the effects of inflation during the matter dominated era. We also find

f ′i (R) = −ΛinR
n−1

Rn
i

e
−
(

R
Ri

)n

+ γ̄α

(
R

R̃i

)α−1

, (5.70)

f ′′i (R) = −Λin(n− 1)Rn−2

Rn
i

e
−
(

R
Ri

)n

+ Λi

(
nRn−1

Rn
i

)2

e
−
(

R
Ri

)n

+ γ̄α(α− 1)
Rα−2

R̃α−1
i

. (5.71)

Since when R = Ri [(n− 1)/n]
1/n

the negative term of f ′i (R) has a minimum, in order to avoid the
anti–gravity effects (this means, |f ′i (R)| < 1 ), it is sufficient to require

Ri > Λin

(
n− 1

n

)n−1
n

e−
n−1
n . (5.72)

It is necessary for the modification of gravity describing inflation not to have any influence on the stability
of the matter dominated era in the small curvature limit. When R� Ri , the second derivative of f ′′i (R) ,
given by

f ′′i (R) � 1

R

[
−n(n− 1)

(
R

Ri

)n−1

+ γ̄α(α− 1)

(
R

R̃i

)α−1
]
, (5.73)

must be positive, that is,
n > α . (5.74)

We require the existence of the de Sitter critical point RdS which describes inflation in the high–curvature
regime of fi(R) , so that fi(RdS � Ri) � −Λi+ γ̄(1/Rα−1

i )Rα . In this case, if we put R̃i = RdS , we may
solve the trace of the field equation (5.3) in vacuum for a constant curvature, namely 2F (R)−RF ′(0) = 0 ,
and therefore we obtain (in vacuum, namely, if the effective modified gravity energy density is dominant
over matter),

RdS =
2Λi

γ̄(2− α) + 1
,

(
RdS

Ri

)n

� 1 . (5.75)

The last two conditions have to be satisfied simultaneously. By using Eq. (5.72), we also acquire

2

γ̄(2− α) + 1
> n

(
n− 1

n

)n−1
n

e−
n−1
n . (5.76)

Instability and number of e –folds during inflation

The well–known condition to have an instable de Sitter solution (see Sec. 5.3.2) is given by

F ′(RdS)

RdS F ′′(RdS)
< 1 , (5.77)

which leads to
α γ̄(α− 2) > 1 , (5.78)

for our model. Here, we have considered fi(RdS) � −Λi + γ̄(1/Rα−1
i )Rα . From Eqs. (5.76)–(5.78), we

have to require
2 + 1/γ̄ > α > 2 . (5.79)

Thus, we may evaluate the characteristic number of e –folds during inflation

N = log
zi + 1

ze + 1
, (5.80)
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where zi and ze are the redshifts at the beginning and at the end of early time cosmic acceleration.
Given a small cosmological perturbation y1(zi) at the redshift zi , we have from Eq. (5.49) avoiding the
matter contribution

y1(zi) = C0(zi + 1)x , (5.81)

with

x =
1

2

(
3−

√
25− 16F ′(RdS)

RdSF ′′(RdS)

)
, (5.82)

where x < 0 if the de Sitter point is unstable. Thus, the perturbation y1(z) in Eq. (5.49) grows up in
expanding universe as

y1(z) = y1(zi)

[
(z + 1)

(zi + 1)

]x
. (5.83)

Here, we have considered C0 = y1(zi)/(zi+1)x . When y1(z) is on the same order of the effective modified
gravity energy density y0 of the de Sitter solution describing inflation (we remind, y0 = RdS/(12m̃

2) ),
the model exits from inflation. We can estimate the number of e –folds during inflation as

N � 1

x
log

(
y1(zi)

y0

)
. (5.84)

A value demanded in most inflationary scenarios is at least N = 50 – 60 .

A classical perturbation on the (vacuum) de Sitter solution may be given by the presence of ultrarel-
ativistic matter in the early universe. The system gives rise to the de Sitter solution where the universe
expands in an accelerating way but, suddenly, it exits from inflation and tends towards the minimal at-
tractor at R = 0 (the trivial de Sitter point). In this way, the small curvature regime arises and the
physics of the ΛCDM model is reproduced.

5.4.2 Inflation in a different model (Model II)

Next, we study the inflation model in Eq. (5.67). By performing a similar analysis to that in the previous
subsection, we find that also in this case, if α > 1 and n > 1 , we avoid the effects of inflation at small
curvatures and it does not influence the stability of the matter dominated era. The de Sitter point exists if
R̃i = RdS and it reads as in Eq. (5.75) under the condition (R/Ri)

n � 1 . Thus, the inflation is unstable
if the condition in Eq. (5.78) is satisfied. The bigger difference between the two models exists in those
behaviors in the transition phase between the small curvature region (where the physics of the ΛCDM
model emerges) and the high curvature region. This means that the no antigravity condition is different
in the two models and such a condition becomes more critical in the transition region. Therefore, in the
following we are able to make the different choices of parameters in the two models. We note that since
dark energy sector of the above models only originates from exponential gravity, all qualitative results in
terms of the behavior of the dark energy component in exponential gravity found in the previous sections
remain to be valid.

5.5 Analysis of inflation

In this section, we perform the numerical analysis of the early time acceleration for the unified models in
Eqs. (5.66) and (5.67), by choosing appropriate parameters according with the analysis in Sec. 5.4. For
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this aim, it is worth rewriting Eq. (5.10) by introducing a suitable scale factor M2 at the inflation. We
can choose M2 = Λi . The effective modified gravity energy density yH(z) is now defined as

yH(z) ≡ ρDE

M2/κ2
=

3H2

M2
− χ̃(z + 1)4 . (5.85)

Here, we have neglected the contribution of standard matter and supposed the presence of ultrarelativistic
matter/radiation in the hot universe scenario, whose energy density ρrad at the redshift equal to zero is
related with the scale as

χ̃ =
κ2ρrad
M2

. (5.86)

Since the results are independent of the redshift scale, we set z = 0 at some times around the end of
inflation. Equation (5.10) reads

y′′H(z)− y′(z)
z + 1

{
3 +

1− F ′(R)

2M2F ′′(R) [yH(z) + χ̃(z + 1)4]

}

+
yH(z)

(z + 1)2
2− F ′(R)

M2F ′′(R) [yH(z) + χ̃(z + 1)4]

+
(F ′(R)− 1)2χ̃(z + 1)4 + (F (R)−R)/M2

(z + 1)2 2M2F ′′(R) [yH(z) + χ̃(z + 1)4]
= 0 . (5.87)

Moreover, the Ricci scalar is expressed as

R = M2

[
4yH(z)− (z + 1)

dyH(z)

dz

]
. (5.88)

Thus, it is easy to verify that in the de Sitter universe with R = RdS the perturbation y1(z) on the
solution y0 = RdS/(4M

2) is effectively given by Eq. (5.81), i.e., y1 = C0(z + 1)x , according with
Eq. (5.49) if we neglect the contribution of standard matter. In this derivation, we have assumed the
contribute of ultrarelativistic matter to be much smaller than y0 . However, as stated above, this small
energy contribution may originate from the perturbation y1(zi) at the beginning of inflation, which, if
x < 0 , grows up in the expanding universe making inflation unstable.

Model I

First, we explore the model in Eq. (5.66). We have to choose the parameters as Λi � 10100−120Λ . The
dynamics of the system is independent of this choice. Here, we summarize the conditions for inflation
already stated in Sec. 5.4.1:

Ri > Λin

(
n− 1

n

)n−1
n

e−
n−1
n , (no antigravity effects)

R̃i = RdS , αγ̄(α− 2) > 1 ,

(
RdS

Ri

)n

� 1 , (existence of unstable dS solution)

with n > 1 , 2+1/γ̄ > α > 2 and RdS = 2Λi/ [γ̄(2− α) + 1] . Since γ̄ and α are combined in γ(α−2) ,
we can fix γ̄ = 1 , so that RdS = 2Λi/(3 − α) and 3 > α > 2 . The instability factor x in Eq. (5.82)
only depends on RdS . Hence, by studying the phenomenology of inflation, we examine the variation of α
parameter (and, as a consequence, that of R̃i ). We take n = 4 and Ri = 2Λi , which satisfy the condition
for no antigravity well. We analyze three different cases of α = 5/2 , 8/3 , and 11/4 . In these cases, we
have RdS = 4Λi , 6Λi , and 8Λi , respectively.
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(a) (b) (c)

Figure 5.20: Cosmological evolution of the quantity 2F (R/Λi) − (R/Λi)F
′(R/Λi) as a function of the

redshift z for exponential model with α = 5/2 (a), α = 8/3 (b) and α = 11/4 (c). The “zeros” of these
graphics indicate the de Sitter solutions of the model.

In Fig. 5.20, we plot the cosmological evolution of the quantity 2F (R/Λi) − (R/Λi)F
′(R/Λi) as a

function of the redshift z in the three cases. The value of “zero” of this quantity corresponds to the de
Sitter points of the model. We can recognize the unstable de Sitter solutions of inflation and the attractor
in zero (the de Sitter point of current acceleration is out of scale).

Despite the fact that the three considered values of α are very close each other, the values of RdS and
x significantly change and the reactions of the system to small perturbations are completely different. By
starting from Eq. (5.84), we may reconstruct the rate y1(zi)/y0 between the abundances of ultrarelativistic
matter/radiation and modified gravity energy at the beginning of inflation in order to obtain a determined
number of e –folds during inflation in the three different cases, by taking into account that x = −0.086 ,
−0.218 , and −0.270 for α = 5/2 , 8/3 , and 11/4 , respectively. For example, in order to have N = 70 ,
for α = 5/2 , a perturbation of y1(zi)/y0 ∼ 10−3 is necessary; for α = 8/3 , a perturbation of y1(zi)/y0 ∼
10−7 is sufficient; whereas for α = 11/4 , y1(zi)/y0 ∼ 10−9 . The system becomes more unstable, as
(3− α) is closer to zero.

In studying the behavior of the cosmic evolution in Model I for the three different cases, we set
χ̃ = 10−4 y0/(zi + 1)4 in Eq. (5.87) for the case α = 5/2 and χ̃ = 10−6 y0/(zi + 1)4 for the cases
α = 8/3, 11/4 . In these choices, the effective energy density originating from the modification of gravity
is 104 and 106 times larger than that of ultrarelativistic matter/radiation during inflation. By using
Eq. (5.84), we can predict the following numbers of e –folds:

N � 107 (for α = 5/2) ,

N � 64 (for α = 8/3) ,

N � 51 (for α = 11/4) . (5.89)

In order to solve Eq. (5.87) numerically, we use the initial conditions

dyH(z)

d(z)

∣∣∣
zi

= 0 ,

yH(z)
∣∣∣
zi

=
RdS

4Λi
, (5.90)

at the redshift zi � 0 when inflation starts. We put zi = 1046 , 1027 , and 1022 for α = 5/2 , 8/3 , and
11/4 , respectively (just for a more comfortable reading of the graphics). We also remark that the initial
conditions are subject to an artificial error that we can estimate to be in the order of exp [− (RdS/Ri)

n
] ∼

10−7 . This is the reason for which we only consider χ̃ > 10−7 .
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Figure 5.21: Plots of yH [a,c,e] and ωMG [b,d,f] as functions of the redshift z for Model I with α = 5/2
[a-b], α = 8/3 [c-d] and α = 11/4 [e-f].

In Fig. 5.21, we illustrate the cosmological evolutions of yH and the corresponding modified gravity
EoS parameter ωMG (defined as in Eq. (5.27)) as functions of the redshift z in the three cases. We can
see, during inflation ωMG is indistinguishable from the value of -1 and yH tends to decrease very slowly
with respect to yH = 1, 3/2, 2 for α = 5/2, 8/3, 11/4 , so that the curvature can be the expected de Sitter
one, RdS(= 4yH) = 4Λi, 6Λi, 8Λi . The expected values of ze at the end of inflation may be derived from
the number of e –folds in (5.89) during inflation and read ze � −0.47 for α = 5/2 ; ze � −0.74 for
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α = 8/3 ; ze � −0.39 for α = 11/4 . The numerical extrapolation yields

yH(ze) = 0.83yH(zi) , R(ze) = 0.825RdS , (for α = 5/2)

yH(ze) = 0.88yH(zi) , R(ze) = 0.853RdS , (for α = 8/3)

yH(ze) = 0.92yH(zi) , R(ze) = 0.911RdS . (for α = 11/4)

To confirm the exit from inflation, in Fig. 5.22 we plot the cosmological evolutions of yH and R/Λi as
functions of the redshift z in the region −1 < z < 1 , where ze is included. The effective modified gravity
energy density and the curvature decrease at the end of inflation and the physical processes described by
the ΛCDM model can appear.

Model II

Next, we investigate Model II in Eq. (5.67). Here, in order to satisfy the condition for no antigravity
we choose n = 3 and Ri = 2Λi , so that F ′(R > 0) > 0 . We take γ̄ = 1 again and we execute the
same numerical evaluation for α = 5/2, 13/5, 21/8 in this model as that in the previous case for Model
I. The corresponding de Sitter curvatures of inflation are RdS = 4Λi, 5Λi, 16Λi/3 . Now, we obtain the
factor in Eq. (5.82) for instability as x = −0.086 , −0.170 , and −0.188 for α = 5/2 , 13/5 , and 21/8 ,
respectively. Hence, we set χ̃ = 10−3 y0/(zi +1)4 for α = 5/2 , χ̃ = 10−4 y0/(zi +1)4 for α = 13/5 , and
χ̃ = 10−5 y0/(zi + 1)4 for α = 21/8 . As a consequence, the numbers of e –folds during inflation result
in N = 80 , 54 , and 61 . The initial conditions are the same as those in the previous case in (5.90).
Furthermore, we put zi = 1034 , 1022 , and 1026 for α = 5/2 , 13/5 , and 21/8 .

Through the numerical extrapolation, we acquire the expected values of ze at the end of inflation as
ze = −0.80 , −0.97 , and −0.71 , and the following values for the effective modified gravity energy density
and the Ricci scalar:

yH(ze) = 0.82yH(zi) , R(ze) = 0.813RdS , (for α = 5/2)

yH(ze) = 0.84yH(zi) , R(ze) = 0.884RdS , (for α = 13/5)

yH(ze) = 0.79yH(zi) , R(ze) = 0.780RdS . (for α = 21/8)

For this model, in Fig. 5.23 we depict the cosmological evolutions of yH and R/Λi as functions of the
redshift z in the region −1 < z < 1 at the end of inflation. Again in this case, the effective modified
gravity energy density and curvature decrease, and therefore inflation ends and then the physical processes
described by the ΛCDM model can be realized.

Here, we note that at the inflationary stage, radiation is negligible, as in the ordinary inflationary
scenario. It causes the perturbations at the origin of instability. This point has been shown in a numerical
way by using radiation, whose energy density is six order of magnitude smaller than that of dark energy.

It should be emphasized that in this work, as a first step, we have concentrated on only the possibility
of the realization of inflation, and hence those important issues in inflationary cosmology such as the
graceful exit problem of inflation, the following reheating process, and the generation of the curvature
perturbations, whose power spectrum has to be consistent with the anisotropies of the CMB radiation
obtained from the Wilkinson Microwave Anisotropy Probe (WMAP) Observations [169, 170, 271, 272],
are the crucial future works of our unified scenario between inflation and the late–time cosmic acceleration.

In the future works, if we analyze the power spectrum of the curvature perturbations in our models,
the next question becomes not what the total number of e –folds is, but how many e –folds one could
obtain from the point when the power–law index of the primordial power spectrum ns is close to its
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Figure 5.22: Cosmological evolution of yH [a,c,e] and R/Λi [b,d,f] as functions of the redshift z in the
region −1 < z < 1 for Model I with α = 5/2 [a-b], α = 8/3 [c-d] and α = 11/4 [e-f].

observed value. It is presumed that since the equation of state w at the inflationary stage is so close to
the model, e.g., with α = 11/4 , the number of e –folds from the point when ns � 0.96 [169, 170] until
the end of inflation is much smaller. Accordingly, we should examine whether it is enough for the galaxy
power spectrum to be reasonably close to the scale invariance of the power spectrum of the curvature
perturbations. Moreover, as a more relevant question which remains is the mechanism for reheating. The
problem is how the universe becomes the radiation dominated stage again after the inflationary period.
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In order to construct complete models of inflation, we need a discussion of the reheating mechanism and
that of exactly how the power spectrum of anisotropies is transferred to the matter. These are significant
future subjects in our studies.
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Figure 5.23: Cosmological evolution of yH [a,c,e] and R/Λi [b,d,f] as functions of the redshift z in the
region −1 < z < 1 for Model II with α = 5/2 [a-b], α = 13/5 [c-d] and α = 21/8 [e-f].
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5.6 Conclusions and general remarks

In this chapter, we have examined a generic feature of viable F (R) gravity models, in particular, expo-
nential gravity as well as a power form model. It has been shown that the behavior of higher derivatives of
the Hubble parameter may be affected by large frequency oscillations of effective dark energy, and conse-
quently solutions may become singular and unphysical at a high redshift. The analyzed models approach
to a model with the cosmological constant in a manner different from each other, and hence it is reason-
able to expect that the found results can be generalized to realistic F (R) gravity models, in which the
cosmological evolutions are similar to those in a model with the cosmological constant. To support this
claim, in Sect. I it has been explicitly demonstrated how the origin of the problem influences the stability
conditions satisfied by these models in order to reproduce the realistic matter dominated era. Since the
corrections to the Einstein equations at the small curvature regime may lead to undesired effects at the
high curvature regime, we have reconstructed a correcting (compensating) term added to the models in
order to stabilize the oscillations of the effective dark energy in the matter dominated era with retaining
the viability properties. It is emphasized that all the results we have found in an analytical way via
studying the perturbation theory are confirmed by the numerical analysis performed on the models under
consideration. Moreover, a detailed investigation on the cosmological evolutions of the universe described
by those models has been executed. In particular, it has been demonstrated that the correction term
does not cause any problem to the viability of the models, and that the obtained results are consistent
with recent very accurate observational data of our current universe and easily pass the local tests of the
solar system. Furthermore, it has been shown that the effective crossing of the phantom divide, which
characterizes the de Sitter epoch, occurs in the very far future. A way to avoid the crossing of phantom
divide by using inhomogeneous fluids has also been explored.

After the discovery of the accelerated expansion of our universe, a lot of theories are proposed in order
to explain it. The issue of discriminating among all of these theories has become very important. The
first step in order to distinguish between theories can be the study of their expansion history, but it has
been revealed that sometimes different models exhibit the same (or very similar) expansion history. For
this reason, the investigation of growth of the matter density perturbations by using the so–called growth
index can provide a significant tool in order to distinguish among the different gravitational theories. In
this context, the growth of the matter density perturbations has been examined for our models. Several
ansatz for the growth index have been considered, and consequently it has been concluded that the choice
of the growth index as γ = γ0 + γ1z is the most appropriate parameterization for these theories.

In addition, in the second part of this chapter we have discussed the inflationary cosmology in two
exponential gravity models. It has explicitly been shown that different numbers of e –folds during inflation
can be obtained by taking different model parameters in the presence of ultrarelativistic matter, the
existence of which makes inflation to end and realize the exit from it. We have performed the numerical
analysis of the inflationary stage in two viable exponential gravity models. It has been found that at the
end of the inflation, the effective energy density and therefore the curvature of the universe become small.
As a result, we have proved that it is possible to acquire a gravitational alternative scenario for a unified
description of inflation in the early universe with the late–time cosmic acceleration due to the ΛCDM –like
dark energy domination.

It should be cautioned that in this work, we have constructed a unified description of inflation with
the late–time cosmic acceleration in F (R) gravity by examining the cosmological evolutions of inflation
in Secs. IV and V and the late–time cosmic acceleration in Sec. II one by one, and therefore that the
evolution equation expressing all the processes from inflation to the current cosmic acceleration has not
been obtained yet. In order to obtain such a gravitational field equation, the detailed considerations on the
reheating process after inflation is also necessary (for a very recent analysis, see, e.g, [201]). Qualitatively,
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from our results it can presumably be considered that at the inflationary stage the EoS parameter weff

is approximately equal to −1 and after that it becomes close to 1/3 during the reheating stage because
of the appearance of radiation, and after the radiation–dominated stage with weff ≈ 1/3 following the
matter–dominated stage with weff ≈ 0 , the dark energy dominated stage with weff ≈ −1 can be realized.
If we successfully acquire the equation and solve it analytically or numerically, it would be possible to plot
the evolution of the Hubble expansion rate H or weff from the inflationary stage in the early universe
to the present time. This is very interesting and significant task in our aim, hence it would be one of the
important future works of our study.

We also mention that, as another important future work in terms of our present investigations, at the
next step we plan to study cosmological perturbations [167, 203] in such resultant F (R) gravity theories.
We calculate the power spectrum of the cosmological perturbations as well as the tensor–to–scalar ratio
in these models and compare those with the observational data from such as WMAP satellite [170], future
PLANCK satellite [5, 6], QUIET [3, 259], B–Pol [4] and LiteBIRD [2] in terms of the polarization of
the CMB radiation. Furthermore, it is meaningful to remark that the growth of the matter density
perturbations in modified gravity affects the spectrum of weak lensing (for a concrete way of comparing
the theoretical predictions with the observations, see [17]), and therefore more precise future observations
of weak lensing effects have a potential to present the chance to find out the signal of the modification of
gravity.

It is considered that the consequences obtained in this work can be a clue of explore the features of
dark energy as well as inflation. By developing this work further, it is strongly expected that we are able to
construct a more sophisticated and realistic inflation model, in which the power spectrum of the curvature
perturbations is consistent with the observations, the reheating mechanism is well understood, and the
structure formation can be explained more naturally.



Chapter 6

Growth of matter perturbations for
realistic F (R) models

As a consequence of the large number of different gravitational theories, which try to give an explanation
to the actual acceleration in the expansion of the Universe, a problem of distinction among some of them
has appeared. The fact that different models can achieve the same expansion history has revealed that
another tool, which may provide a way for discriminating among different gravitational theories, may be
required. The study of the growth of matter density perturbations may become the tool that we need, due
to the fact that theories with the same expansion history can have a different cosmic growth history. In
order to characterize the growth of matter density perturbations, the so-called growth index γ (see [179])
can be very useful.

In this previous chapter, the study of the growth history was done for two different F (R) modified
gravity models. In this chapter, the growth history for another two viable F (R) modified gravity models
is considered and the growth index has been determined for both models. The chapter is organized as
follows. In Sec. I, two different modified F (R) gravity models are considered, and the values of the
parameters are adjusted for both models to reach coherence with recent observations of the Universe.
In Sec. II, the study of the growth of matter density perturbations is done for these two F (R) gravity
models. In Sect. III, several parametrizations for the growth index are studied for both models. Finally,
a summary for this work is given in Sec. IV.

This Chapter is based on the publications: [184].

6.1 Realistic F (R) models

In this section, two different kinds of modified F (R) gravity models will be considered. The parameters
of these models will be set in order to reproduce recent observations of our current Universe.

In [170], Komatsu et al. determined important cosmological parameters by combining the seven-year
WMAP data with the latest distance measurements from the (BAO) in the distribution of galaxies, the
Hubble constant ( H0 ) measurement and the last observations coming from the luminosity distances out
to high-z type Ia supernovae (SN). The determined values for the dark energy equation of state parameter
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ωDE and for the dark energy density parameter ΩDE are given by

ωDE = −0.980± 0.053 from (WMAP+BAO+SN) ,

ΩDE = 0.725± 0.016 from (WMAP+BAO+H0) . (6.1)

From now on, these results will be used as a constraint for the two model parameters.

6.1.1 First F (R) model

In the first place, a model that appeared in [227] which could unify inflation and current acceleration will
be considered. This model is given by

F (R) = R+
αRm+l − βRn

1 + γRl
, (6.2)

where α , β and γ are positive constants and m , n and l are positive integers satisfying the condition
m+l > n . The model given by (6.2) is a generalization of the Hu-Sawicki model (see [148]) which has been
proposed by Hu and Sawicki as a model which is in agreement with the constraints imposed by the Solar
System tests. Model (6.2) can be reparametrized by choosing n = l , β = 2Λ/(bΛ)n and γ = 1/(bΛ)n

yielding

F (R) = R− 2Λ

(
1− 1

1 +
(

R
bΛ

)n
)

+
αRm+n

1 +
(

R
bΛ

)n , (6.3)

with Λ being the current cosmological constant. It is worth noting that the new constant b can be
negative when n is a positive even; in any other it must be positive.

The next step should be to solve Eq.(5.10) for model (6.3) and to find out the constraints on the values
of the model parameters needed to fulfill the conditions given by (6.1). Unfortunately, because Eq.(5.10)
cannot be solved in an analytical way for the F (R) model given by (6.3), this is not possible. Thus, the
way to solve this problem is to suggest a set of parameters for (6.3), to solve Eq.(5.10) numerically and to
check if the results are in accordance with (6.1).

For the model given by (6.3), the following values for the parameters have been chosen:

n = 4, m = 1, b =
3

8
, α = 10−10m̃−8, (6.4)

with Λ = 7.93m̃2 in accordance with [170]. In order to obtain the initial conditions needed to solve
Eq.(5.10) numerically, we may evaluate the dark energy density ρDE = ρeff − ρm from Eq.(5.7) at the
matter dominated era (high redshifts) by putting R = 3m̃2(1 + z)3 . In the case of the first model with
the set of parameters given by (6.4), the initial conditions can be written as

yH(z)|zi =
Λ

3m̃2
− 81αm̃4(1 + z)3,

dyH(z)

dz

∣∣∣∣
zi

= −243αm̃4(1 + z)2. (6.5)

In the case of model (6.3) with the set of parameters given by (6.4) and the initial conditions given by
(6.5), I set zi = 3.40 , obtaining ωDE(0) = −1.000 and ΩDE = 0.725 , which are in accordance with the
observational data given by (6.1). Note that it is hard to solve Eq.(5.10) for higher values of the redshift
due to the large frequency of the dark energy oscillations.

In the following, model (6.3) with the set of parameters given by (6.4) will be called model I.
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6.1.2 Second F (R) model

The second model considered [233] is given by

F (R) = R−α0

[
tanh

(
b0(R−R0)

2

)
+ tanh

(
b0R0

2

)]
−αI

[
tanh

(
bI(R−RI)

2

)
+ tanh

(
bIRI

2

)]
. (6.6)

It will be assumed that RI � R0 , αI � α0 and bI � b0 , with bIRI � 1 . By choosing 2Λ0 =
α0

[
1 + tanh

(
b0R0

2

)]
and 2ΛI = αI

[
1 + tanh

(
bIRI

2

)]
, Eq.(6.6) reduces to

F (R) = R− 2Λ

⎡
⎣1− 1− tanh

(
b0(R−R0)

2

)
1 + tanh

(
b0R0

2

)
⎤
⎦− 2ΛI

⎡
⎣1− 1− tanh

(
bI(R−RI)

2

)
1 + tanh

(
bIRI

2

)
⎤
⎦ , (6.7)

where Λ is the current cosmological constant, while ΛI accounts for the effective cosmological constant
in the early Universe. In the following it will not be considered the last part, the one that accounts for
inflation, in (6.7). Thus, the second model we take into consideration will be the one given by

F (R) = R− 2Λ

⎡
⎣1− 1− tanh

(
b0(R−R0)

2

)
1 + tanh

(
b0R0

2

)
⎤
⎦ . (6.8)

As already shown in the first model, analytical solutions for Eq.(5.10) cannot be found for (6.8). The
procedure followed in order to solve the problem is the same one used in the previous subsection; i.e., a
set of parameters will be chosen for model (6.8), then Eq.(5.10) will be solved numerically, and, finally, I
will check whether the results are in accordance with (6.1) or not.

For the model (6.8), I set

R0 = 10−66eV 2, b = 1.16R−1
0 , Λ = 7.93m̃2. (6.9)

Following the same steps as in the previous subsection, it is found that the initial conditions are given by

yH(z)|zi =
Λ

3m̃2

⎛
⎝1−

1− tanh
(
b 3m̃

2(1+z)3−R0

2

)
1 + tanh

(
bR0

2

)
⎞
⎠ ,

dyH(z)

dz

∣∣∣∣
zi

=
3bΛ

2

[
cosh

(
b 3m̃

2(1+z)3−R0

2

)]−2

1 + tanh
(
bR0

2

) (1 + z)2. (6.10)

And, finally, for model (6.8) with the set of parameters (6.9) and initial conditions given by (6.10), I
set zi = 2.51 , obtaining ωDE(0) = −0.969 and ΩDE = 0.735 , which are also in accordance with the
observational data given by (6.1).

From now on, model (6.8) with the set of parameters given by (6.9) will be called model II.

6.2 Growth of matter perturbations: Growth rate

In this section, the growth of matter density perturbations, δ = δρm

ρm
, for model I and model II is studied.

Since it is known that many different gravitational theories can mimic the Λ CDM unverse, which is



94 Chapter 6: Growth of matter perturbations for realistic F (R) models

(a) Geff/G (model I) (b) Geff/G (model II)

Figure 6.1: Contour plot of the effective gravitational constant Geff/G as a function of z and
log k(Mpc−1) for model I (a) and model II (b).

(a) model I (b) model II

Figure 6.2: Cosmological evolution of Geff/G as a function of z for k = 0.1Mpc−1 (blue line), k =
0.01Mpc−1 (red line) and k = 0.001Mpc−1 (green line) for model I (a) and model II (b).

commonly accepted as the Universe in which we live, the study of the growth history of these theories
may be considered an essential tool to discriminate among them.

In the previous chapter it was shown that, under the subhorizon approximation, the matter density
perturbation δ = δρm

ρm
satisfies the following equation [280] (and references therein):

δ̈ + 2Hδ̇ − 4πGeff(a, k)ρmδ = 0, (6.11)

with k being the comoving wave number and Geff(a, k) being the effective gravitational “constant” given
by

Geff(a, k) =
G

F ′(R)

[
1 +

(
k2/a2

)
(F ′′(R)/F ′(R))

1 + 3 (k2/a2) (F ′′(R)/F ′(R))

]
. (6.12)
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(a) fg (model I) (b) fg (model II)

Figure 6.3: Contour plot of the growth rate fg as a function of z and log k(Mpc−1) for model I (a) and
model II (b).

(a) model I (b) model II

Figure 6.4: Cosmological evolution of the growth rate fg as a function of z for k = 0.1Mpc−1 (blue
line), k = 0.01Mpc−1 (red line) and k = 0.001Mpc−1 (green line) for model I (a) and model II (b).

In Figs. 6.1 and 6.2, the cosmological evolution of the ratio Geff/G as a function of redshift z and
the comoving wave number k for both model I and model II is depicted.

The appearance of the comoving wave number k in the expression of the effective gravitational constant
Geff has a huge importance due to the fact that now the evolution of the matter density perturbations
also depends on k . This kind of dependence does not appear in the framework of general relativity. This
fact can be easily checked by taking F (R) = R in Eq. (6.12).

In deriving Eq. (6.11), I assume the subhorizon approximation (see [115]), for which the comoving
wavelengths λ ≡ a/k are considered to be much shorter than the Hubble radius H−1 . In terms of the
comoving wave number, the subhorizon approximation can be written as follows:

k2

a2
� H2 . (6.13)
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(a) model I (b) model II

Figure 6.5: Constant growth index as a function of log k(Mpc−1) for model I (a) and for model II (b).
The bars express the 68% CL.

For model I, the subhorizon approximation states that k � 0.000116Mpc−1 . For model II, it states
that k � 0.000118Mpc−1 . In order to fulfill (6.13), the values considered for k in this work will always
satisfy log k ≥ −3 , with k written in Mpc−1 , for both model I and model II. From now on, the expression
log k(Mpc−1) will be used to specify taking the logarithm of k , with k written in Mpc−1 . On the other
hand, deviations from the linear regime have to be taken into account [74] when log k(Mpc−1) > −1 .
Thus, the range of values considered for k throughout this work for both model I and model II is

−3 ≤ log k(Mpc−1) ≤ −1 .

Equation (6.11) can be written in a different way by using the so-called growth rate fg given by
fg ≡ d ln δ/d ln a . In terms of this growth rate, Eq. (6.11) reduces to

dfg(z)

dz
+

(
1 + z

H(z)

dH(z)

dz
− 2− fg(z)

)
fg(z)

1 + z
+

3

2

m̃2(1 + z)2

H2(z)

Geff(a(z), k)

G
= 0 . (6.14)

This equation can be solved numerically for model I and model II by imposing the condition that at
high redshift the results for the Λ CDM universe are recovered. In Figs. 6.3 and 6.4, the growth rate is
shown as a function of the redshift z and the comoving wave number k for model I and model II.

The next step should be to use the growth rate of these two models to compare them, but a new
problem comes up when we face this task. Equation (6.14) usually must be solved numerically because of
its complexity. This means that, generally, we will not have an analytic expression for the growth rate to
deal with. In order to compare and discriminate among different theories it would be helpful to have one
or more parameters that characterize their growth history.
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(a) model I (b) model II

(c) model I (d) model II

(e) model I (f) model II

Figure 6.6: Cosmological evolutions of the growth rate fg (red line) and Ωγ
m (blue line) with γ = γ0 as

functions of the redshift z in model I for k = 0.1Mpc−1 (a), k = 0.01Mpc−1 (c) and k = 0.001Mpc−1

(e), and those in model II for k = 0.1Mpc−1 (b), k = 0.01Mpc−1 (d) and k = 0.001Mpc−1 (f).

6.3 Characterizing the growth history: Growth index

In this section the concept of the growth index is developed. The growth index γ appears as an important
quantity in characterizing the growth of matter density perturbations.

In order to compare the growth of matter density perturbations between different theories, the so-called
growth index γ appears. This index is given by

fg(z) = Ωm(z)
γ(z), (6.15)

where Ωm(z) =
8πGρm

3H2 is the matter density parameter. The growth index γ cannot be directly observed,
but it could have a huge importance in discriminating among different gravitational theories; it can be
inferred from the observational data of both the growth factor fg(z) and the matter density parameter
Ωm(z) at the same redshift z .
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(a) model I (b) model II

Figure 6.7: Cosmological evolution of the relative difference εr =
|fg−Ωγ

m|
fg

with γ = γ0 for k = 0.1Mpc−1

(blue line), k = 0.01Mpc−1 (red line) and k = 0.001Mpc−1 (green line) in model I (a) and model II (b).

As it was done in [31], different parametrizations for the growth index γ will be considered for both
model I and model II. In a first stage, a constant γ will be assumed [142, 157]; afterwards, a linear
dependence [251] given by γ(z) = γ0 + γ′0 · z will be considered; and, finally, an ansatz of the type
γ(z) = γ0 + γ1 · z/(1 + z) will be suggested.

In what follows, we will study these different parametrizations of the growth index for model I and
model II.

6.3.1 Case γ = γ0

We consider the ansatz for the growth index given by

γ = γ0, (6.16)

where γ0 is a constant.

The results obtained by fitting Eq. (6.15) to the solution of Eq. (6.14) for different values of the
comoving wave number k for model I and model II are shown in Fig. 6.5, where the points denote the
median value while the bars express the 68% confidence level (CL). It can be easily observed that both
models exhibit a strong and quite similar dependence on log k(Mpc−1) . Moreover, γ seems to be worse
determined for model II.

The cosmological evolutions of the growth rate fg(z) and the expression Ωm(z)
γ0 as functions of the

redshift z for several values of the comoving wave number k for model I and model II are depicted in
Fig. 6.6. From what is shown in this figure it is clear that the worst fit is given for the highest value of
the comoving wave number k .

In order to clarify the results obtained, the relative difference between fg(z) and Ωm(z)
γ0 is defined

as

εr(z, k) =
|fg(z, k)− Ωm(z)

γ |
fg(z, k)

. (6.17)

In Fig. 6.7, the cosmological evolution of εr as a function of z for the same values of k in both models
are shown. For model I the relative difference is less than 13% for log k(Mpc−1) = −1 , 3.5% for
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(a) model I (b) model II

(c) model I (d) model II

Figure 6.8: Growth index fitting parameters in the case γ = γ0 + γ1 · z as a function of log k(Mpc−1) for
model I [(a) and (c)] and model II [(b) and (d)]. The legend is the same as Fig. 6.5.

log k(Mpc−1) = −2 and 2% for log k(Mpc−1) = −3 ; while for model II, the highest value of εr is 14%
for log k(Mpc−1) = −1 , 7% for log k(Mpc−1) = −2 and 3% for log k(Mpc−1) = −3 . Thus, two points
can be made. First of all, the fits for model I are, generally, better than the ones for model II. Second of
all, the fits are better for lower values of log k(Mpc−1) for both models.

6.3.2 Case γ = γ0 + γ1 · z

In this subsection, the case of a growth index given by

γ = γ0 + γ1 · z, (6.18)

where γ0 and γ1 are constants, will be studied following the same steps taken in the case of a constant
growth index. The results obtained with this ansatz should improve those for a constant growth index.
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(a) model I (b) model II

(c) model I (d) model II

(e) model I (f) model II

Figure 6.9: Cosmological evolutions of the growth rate fg (red line) and Ωγ
m (blue line) with γ = γ0+γ1 ·z

as functions of the redshift z in model I for k = 0.1Mpc−1 (a), k = 0.01Mpc−1 (c) and k = 0.001Mpc−1

(e), and those in model II for k = 0.1Mpc−1 (b), k = 0.01Mpc−1 (d) and k = 0.001Mpc−1 (f).

In Fig. 6.8, the parameters γ0 and γ1 for several values of log k(Mpc−1) in both models are shown.
For model I, γ0 exhibits a clear dependence on log k(Mpc−1) , while γ1 is almost constant for −3 ≤
log k(Mpc−1) ≤ −1.75 . For model II, the dependence on log k(Mpc−1) is strong for both γ0 and γ1
throughout the range of values considered for log k(Mpc−1) . It may also be noted that the parameter γ1
gives the main difference between model I and model II.

In Fig. 6.9, the cosmological evolutions of the growth rate fg(z) and Ωm(z)
γ(z) as functions of the

redshift z together for model I and model II are depicted. Compared with the fits for a constant growth
index, it can be easily noticed that the linear ansatz improves the results obtained, especially in the case
of log k(Mpc−1) = −1 .

The cosmological evolution of the relative difference εr as a function of z for several values of k in
model I and model II is shown in Fig. 6.10. For model I the relative difference is less than 3.5% for
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(a) model I (b) model II

Figure 6.10: Cosmological evolution of the relative difference εr =
|fg−Ωγ

m|
fg

with γ = γ0 + γ1 · z for

k = 0.1Mpc−1 (blue line), k = 0.01Mpc−1 (red line) and k = 0.001Mpc−1 (green line) in model I (a)
and model II (b).

log k(Mpc−1) = −1 and 1.5% for log k(Mpc−1) ≤ −2 ; while for model II, the highest value of εr is
2.5% for log k(Mpc−1) = −1 , 1.5% for log k(Mpc−1) = −2 and 2.5% for log k(Mpc−1) = −3 . It might
be accurate to note that these results improve those obtained for the case given by γ = γ0 , particulary
those for the case log k(Mpc−1) = −1 .

6.3.3 Case γ = γ0 + γ1 · z
1+z

Finally, we assume the following ansatz for the growth index:

γ = γ0 + γ1 · z

1 + z
, (6.19)

where γ0 and γ1 are constants.

The parameters γ0 and γ1 for several values of log k are shown in Fig. 6.11 for both models. For
model I, as it happened in the linear case, γ0 exhibits a strong dependence on log k(Mpc−1) , while γ1 is
almost constant for −3 ≤ log k(Mpc−1) ≤ −2 . In the case of model II, the dependence on log k(Mpc−1)
is clear for both parameters γ0 and γ1 .

The cosmological evolutions of the growth rate fg(z) and Ωm(z)
γ(z) in model I and model II for

several values of k are depicted in Fig. 6.12. The fits in this case improve the results obtained for a
constant growth index, but they seem similar to those obtained for the linear case.

As in the previous subsections, the relative difference εr for several values of k in model I and model
II is shown in Fig. 6.13 in order to analyze the fits quantitatively. For model I the relative difference is less
than 3% for log k(Mpc−1) = −1 and 1.5% for log k(Mpc−1) ≤ −2 ; while for model II, the highest value
of εr is 5% for log k(Mpc−1) = −1 , 3% for log k(Mpc−1) = −2 and 3.5% for log k(Mpc−1) = −3 .
These results improve those obtained for the case given by γ = γ0 . For model I the results are very
similar to the corresponding ones of γ = γ0 + γ1 · z , but for model II they are worse.

To conclude, it is important to point out that three parametrizations for the growth index have been
studied for both model I and model II. As it may have been expected, the fits obtained for a constant growth
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(a) model I (b) model II

(c) model I (d) model II

Figure 6.11: Growth index fitting parameters in the case γ = γ0 + γ1 · z
1+z as a function of log k(Mpc−1)

for model I [(a) and (c)] and model II [(b) and (d)]. The legend is the same as Fig. 6.5.

index give the worst results. The results obtained for the other two ansatz considered, i.e. γ = γ0 + γ1 · z
and γ = γ0 + γ1 · z

1+z , are quite similar for model I, but γ = γ0 + γ1 · z gives better fits for model II than
those corresponding to the ansatz γ = γ0 + γ1 · z

1+z . In conclusion, the linear ansatz, γ = γ0 + γ1 · z , is
the best parametrization for the growth index for the two models considered.

6.4 Discussion

In this section, the content of the paper is summarized and the results obtained for model I and model II
are analyzed.

Two models of F (R) modified gravity given by (6.3) and (6.8) have been considered throughout this
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(a) model I (b) model II

(c) model I (d) model II

(e) model I (f) model II

Figure 6.12: Cosmological evolutions of the growth rate fg (red line) and Ωγ
m (blue line) with γ =

γ0 + γ1 · z
1+z as functions of the redshift z in model I for k = 0.1Mpc−1 (a), k = 0.01Mpc−1 (c)

and k = 0.001Mpc−1 (e), and those in model II for k = 0.1Mpc−1 (b), k = 0.01Mpc−1 (d) and
k = 0.001Mpc−1 (f).

work. The parameters of these models have been set in order to agree with current observational data
coming from [170]. Model (6.3) with the set of parameters given by (6.4) is the so-called model I, while
model (6.8) with the set of parameters given by (6.9) is the so-called model II.

The growth of matter density perturbations has been studied for model I and model II. The so-called
growth rate has been obtained numerically for both models and three ansatz for the so-called growth
index have been considered. In Figs. 6.5, 6.8 and 6.11, the results of the different parametrizations for the
growth index are shown for both models.

To determine which ansatz of those considered for the growth index fits better Eq. (6.15) to the solution
of Eq. (6.14), the results obtained for the three parametrizations have been analyzed in the previous section.
The ansatz given by γ = γ0 + γ1 · z seems to be the best choice for both models.
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(a) model I (b) model II

Figure 6.13: Cosmological evolution of the relative difference εr =
|fg−Ωγ

m|
fg

with γ = γ0 + γ1 · z
1+z for

k = 0.1Mpc−1 (blue line), k = 0.01Mpc−1 (red line) and k = 0.001Mpc−1 (green line) in model I (a)
and model II (b).

Thus, in order to discriminate between model I and model II (or with the models considered in [31])
using the growth history, the values of γ0 and γ1 in γ = γ0 + γ1 · z could have an essential importance.
In Fig. 6.14 these two parameters, γ0 and γ1 , are depicted for the two models together. We see that the
behavior of γ0 is very similar for both models. However, the values for γ1 are totally different for model
I to model II and they could be used to discriminate between these two models.

(a) (b)

Figure 6.14: Growth index fitting parameters in the case γ = γ0 + γ1 · z as a function of log k(Mpc−1) .
The legend is the same as Fig. 6.5.

One final note must be made. As it was pointed out in Eq.(6.11), the evolution of matter density
perturbations for F (R) modified gravity theories depends on the comoving wave number k , which does
not occur in the framework of general relativity. Throughout this work, this fact has been confirmed, in
the first place with the results obtained for the growth rate fg , and finally, with those obtained for each
of the three parametrizations considered for the growth index γ . Nevertheless, these parametrizations
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do not depend on the comoving wave number k , and it may be very interesting in the future to propose
some scale-dependent ansatz for these F (R) modified gravity theories.
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Part III

The singularity problem and the
weak field limit of modified gravity

theories





Chapter 7

Future singularities in dark energy
models

In order to explain the late-time cosmic acceleration, and to unify it with inflation, a new family of theories
has been proposed, based on modifications of Einstein’s gravity (see [221, 234] for a recent review). These
theories, such as f(R) and f(G) modified gravities (R for the curvature and G for the Gauss-Bonnet
invariant), and also non-local gravity, have the power to unify primordial inflation with late-time inflation
in a natural way. While a number of the original models had to be rejected by several reasons, some
subfamilies of them (see [87, 111]) fulfill all available cosmological constraints and have been checked to
pass the solar system tests and cosmological bounds, e.g., the fact that, at these scales, Einstein’s gravity
is valid to a very high degree of accuracy. But even these, so called viable, modified gravities are not
free from other problems, one of the most important being the frequent appearance of finite-time, future
singularities.

The singularity problem is indeed of fundamental importance in modern cosmology. In order to address
this issue rigorously it would be necessary to develop a fully-fledged theory of quantum gravity, but this
has proven to be a very difficult, up to now impossible, challenge. Anyhow, the presence of a finite-time,
future singularity may cause various problems of physical nature, as instabilities in current black hole
and stellar astrophysics. It turns out that, even without the support of a quantum gravity theory, it is
still meaningful at first instance (and of great importance) to try to find natural scenarios, already at the
classical and semiclassical levels, that may cure the emergence of these finite-time, future singularities.
Usually, one starts with some given theory and then solves the corresponding equations of motion in order
to define the associated background dynamics. But, for several models of modified gravity or scalar-tensor
gravity, there is in fact another possibility owing to the fact that those models are defined in terms of some
arbitrary functions or potentials. The new possibility consists in using the freedom in the choice of such
arbitrary functions or potentials, with the aim to reconstruct the—in general complicated—background
cosmology which complies with the latest observational data.

In this chapter, a reconstruction program of this sort is applied to a number of theories which do give
rise to models that exhibit finite-time, future singularities, with the purpose to investigate its structure
in detail and try then to cure this common problem. Specifically, it will be found in all cases that the
addition of an R2 term provides a universal tool capable to cure these finite-time future singularities.

The chapter is organized as follows. In Sect. I the case of a fluid with an equation of state (EoS)
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depending on a parameter, α , which can give rise to finite-time future singularities, is considered. Different
possibilities for the evolution of this universe, depending on the value of α , were studied in [230, 220].
In the subsections it will be explicitly shown that, adding a function G(H, Ḣ, Ḧ, ...) to the EoS of the
fluid, the different singularities can indeed be cured. Such function G is actually to be considered as a
modification of Einsteinian gravity. Sect. II is devoted to the case of non-minimal coupling of modified
gravity to a matter Lagrangian. The reconstruction scheme is developed for this case and the specific
example of the cosmology given by the Hubble function H(t) = hs/(ts − t) is analyzed. The calculation
of the Friedmann equations for this example of modified gravity non-minimally coupled to the matter
Lagrangian is explicitly carried out in Appendix D. In Sect. III the case of non-local gravity is discussed.
The example of the de Sitter space is reproduced in the framework of non-local gravity. It is pointed out
there that theories of this kind can give rise to a finite-time, future singularity. Finally, Sect. IV is devoted
to the case of isotropic turbulence in the dark fluid universe. It will be shown there that the contribution
of the turbulent part of dark energy can be reproduced through the use of a scalar-tensor theory. Several
examples are discussed in detail. The chapter ends with some conclusions and an outlook.

This Chapter is based on the publications: [186].

7.1 Accelerating universe with and without a future singularity

Different accelerating universes, with and without finite-time future singularities, are considered in this
section. We work with a particular fluid with EoS given by:

p = −ρ+Aρα, (7.1)

The nature of each singularity depends on the value of the parameter α . All possibilities, corresponding
to the different values of α , have been studied in [220, 230]. It will be shown below that introducing a
specific function, G(H) , into Eq. (7.1),

p = −ρ+Aρα +G(H), (7.2)

the singularity can be avoided.

The spatially flat Friedmann-Robertson-Walker (FRW) universe in the frame of General Relativity will
be considered

ds2 = −dt2 + a(t)2
(
dx2 + dy2 + dz2

)
, (7.3)

a(t) being the scale factor. The Friedmann equations are

H2 =
κ2

3
ρ, (7.4)

Ḣ +H2 = −κ2

6
(ρ+ 3p), (7.5)

with κ2 = 8πG . For future use, it is useful to classify the future singularities as in [240], namely,

• Type I (“Big Rip”) : For t → ts , a → ∞ , ρ → ∞ and |p| → ∞ . This type of singularity is
discussed in [20, 21, 23, 37, 53, 57, 84, 85, 88, 93, 94, 96, 108, 112, 119, 134, 136, 137, 140, 143, 181,
188, 195, 196, 210, 214, 216, 258, 265, 266, 284, 291, 297].

• Type II (“sudden”) : For t→ ts , a→ as , ρ→ ρs and |p| → ∞ .
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• Type III : For t→ ts , a→ as , ρ→∞ and |p| → ∞ .

• Type IV : For t→ ts , a→ as , ρ→ ρs , |p| → ps and higher derivatives of H diverge.

Here ts , as , ρs and ps are constants, with as 	= 0 .

In the next subsections we will consider four different cases for the dark fluid (7.1), which lead to the
four possible different singularities. We will produce a particular function G(H) for each case, which will
cure each specific singularity. Finally, in the last subsection, a general function G(H, Ḣ, Ḧ, ...) that cures
all possible finite-time future singularities of (7.1) will be constructed.

7.1.1 Case p = −ρ+ Aρ2

For this particular EoS a Type III singularity occurs (H(t) ∝ (t0 − t)
1

1−2α , α > 1) . However, if the
following EoS is considered

p = −ρ+Aρ2 +G(H), (7.6)

with

G(H) = −9A

κ4
H4 + C, (7.7)

being C real, then the singularity is avoided. In order to explain this fact, one must take into account
that, using the Friedmann equation (7.4), Eq. (7.7) reduces to

G(H) = −Aρ2 + C, (7.8)

and using now Eq. (7.8) the EoS (7.6) yields

p = −ρ+ C, (7.9)

which does not have future finite-time singularities of any kind. It is interesting to note that the above
specific choice of G(H) can be motivated by modified gravity (see [221, 234]).

7.1.2 Case p = −ρ+ Aρ
2
3

In this case, a Type I singularity occurs, namely H(t) =
− 2

3A

t0−t , α = 1 and A < 0 or H(t) ∝
(t0 − t)

1
1−2α , 1/2 < α < 1 . Considering now Eq. (7.6), with

G(H) = BH2, (7.10)

and using the Friedmann equation given by (7.3), the EoS (7.6) reduces to

p = −ρ+Aρ
2
3 +B′ρ, (7.11)

where B′ = B κ2

3 . When ρ → ∞ the term B′ρ dominates over the term Aρ
2
3 which was the one that

caused the singularity. If B > 0 then this Type I singularity is removed.
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7.1.3 Case p = −ρ+ Aρ
1
5

With this EoS there appears a Type IV singularity, namely H(t) ∝ (t0 − t)
1

1−2α and 1
1−2α is not an integer .

Now, if Eq. (7.6) is considered, with
G(H) = C, (7.12)

where C is real, then the EoS (7.6) turns into

p = −ρ+Aρ
1
5 + C. (7.13)

Whenever ρ→ 0 the term C dominates over the term Aρ
1
5 and the existing singularity, of Type IV, is

cured.

7.1.4 Case p = −ρ+ Aρ−2

In this case a Type II singularity shows up, namely H(t) ∝ (t0 − t)
1

1−2α , α < 0 . By taking in Eq. (7.6)

G(H) = −Aκ4

9
H−4 + C, (7.14)

with C real, and using Friedmann’s equation (7.3), Eq. (7.14) yields

G(H) = −Aρ−2 + C. (7.15)

Then, the EoS (7.6) reduces to
p = −ρ+ C, (7.16)

which does no more exhibit any kind of finite-time future singularity.

Summing up, we have shown in all previous situations that, for each case, a particular function, G(H) ,
can be found which cures the singularity which can possibly appear in the model given by Eq. (7.1). It is
interesting to realize that a function G(H) of this kind can be interpreted as a contribution of modified
gravity, as was shown in [34, 221, 226, 234]. Putting everything together, we thus have demonstrated, in a
very explicit way, how modified gravity is able to cure all finite-time future singularities that can possibly
appear in a fluid with the particular EoS given by Eq. (7.1).

7.1.5 A generic function G(H, Ḣ, Ḧ, ...) which cures all singularities for the
fluid with p = −ρ+ Aρα

In this subsection we will develop a systematic method for finding a function G(H, Ḣ, Ḧ, ...) which avoids
any possible singularity for the model with p = −ρ + Aρα . Let us recall [34, 226] that every F (R) -
modified gravity can be seen as Einsteinian gravity with a particular EoS which absorbs the effects of
F (R) .

We consider the case
F (R) = R+ f(R), (7.17)

being f(R) = aR2 (it is known that the term R2 cures the possible appearance of all future finite-time
singularities [8, 65, 221, 234]). For Eq. (7.17), using the results obtained in [34, 226], it follows that

ρeff =
1

κ2

[
−1

2
f(R) + 3

(
H2 + Ḣ

)
f ′(R)− 18

(
4H2Ḣ +HḦ

)
f ′′(R)

]
+ ρmatter, (7.18)
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peff =
1

κ2

[
1

2
f(R)−

(
3H2 + Ḣ

)
f ′(R) + 6

(
8H2Ḣ + 4Ḣ2 + 6HḦ +

...
H
)
f ′′(R)+

+36
(
4HḢ + Ḧ

)2
f ′′′(R)

]
+ pmatter. (7.19)

It is also known that the Friedmann equations can be written as

ρeff =
3H2

κ2
, (7.20)

peff = − 1

κ2

(
2Ḣ + 3H2

)
. (7.21)

In the case of f(R) = aR2 and taking into account Eqs. (7.20) and (7.21), Eqs. (7.18) and (7.19) reduce
to:

ρmatter = ρeff − 18a

κ2

(
Ḣ2 − 6H2Ḣ − 2HḦ

)
, (7.22)

pmatter = peff − 6a

κ2

(
9Ḣ2 + 18H2Ḣ + 12HḦ + 2

...
H
)
, (7.23)

respectively. If we now consider the EoS

pmatter = −ρmatter +Aραmatter, (7.24)

introducing into Eq. (7.24), the results obtained in Eqs. (7.22) and (7.23), we get

peff = −ρeff +Aραeff +G(H, Ḣ, ...), (7.25)

where G(H, Ḣ, ...) , in the case of F (R) = R+ aR2 , is given by:

G(H, Ḣ, ...) =
12a

κ2

(
6Ḣ2 + 3HḦ +

...
H
)
+

A

κ2α

{[
3H2 + 18a

(
Ḣ2 − 6H2Ḣ − 2HḦ

)]α
− (3H2

)α}
.

(7.26)
Thus, using F (R) modified gravity (adding in the action a term proportional to R2 , see [8, 65, 221, 234]),
a function G(H, Ḣ, ...) has been found which cures all the singularities which appeared in the model given
by Eq. (7.24), in the frame of Einstein’s gravity.

7.2 f(R) modified gravity with possible future singularities for
the case: L = 1

κ2R + f(R)Lm

In this section we will investigate f(R) modified gravities non-minimally coupled to matter-like La-
grangians that lead to future finite-time singularities. A general Lagrangian density of this sort is (see
[13, 218, 221, 234])

L =
1

κ2
R+ f(R)Lm. (7.27)

By varying with respect to the metric, the following field equations are obtained

1

κ2

(
Rμν − 1

2
gμνR

)
+Rμνf

′(R)Lm +
(
gμν∇2 −∇μ∇ν

)
(f ′(R)Lm)− 1

2
f(R)Tμν = 0. (7.28)

Furthermore, considering the particular case given by Lm = ∂μφ∂μφ , and varying with respect to the
field, we get

∂μ
(√−gf(R)∂μφ

)
= 0, (7.29)
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and, if it is now assumed that φ = φ(t) , Eq. (7.29) reduces to

∂t
(√−gf(R)∂tφ

)
= 0⇒ √−gf(R)∂tφ = 0. (7.30)

Considering a spatially flat FRW universe, this is
√−g = a(t)3 , and writing ∂tφ = φ̇ , Eq. (7.30) yields

a(t)3f(R)φ̇ = C, (7.31)

where C is a constant. Then,

φ̇ =
C

a(t)3f(R)
. (7.32)

Taking once more into account that φ = φ(t) , one gets

Lm = −φ̇2 = − C2

a(t)6f(R)2
. (7.33)

Thus, considering a spatially-flat FRW universe and Eq. (7.33), Friedmann’s equations for the Lagrangian
density given by (7.27) can be derived. Details of the long calculations leading to these equations are given
in Appendix D. One should note that (D.7) and (D.8) constitute a pair of differential equations for f(R)
with the variable being the scalar curvature, R . Thus, starting from a given Hubble function H(t) and
taking into account that t = t(R) , from the relation R = 6Ḣ(t) + 12H(t)2 and by using (D.7) or (D.8)
we obtain a specific function f(R) that reproduces the given Hubble function.

Another important remark is the following. From the stress-energy tensor Tμν

Tμν = − 2√−g
δ (
√−gLm)

δgμν
⇒
{

T00 = −φ̇2 = − C2

a(t)6f(R)2

Tii = −a(t)2φ̇2 = − C2

a(t)4f(R)2

, (7.34)

by comparison of

Tμν = − 2√−g
δ (
√−gLm)

δgμν
⇒
{

T00 = −ρg00 = ρ
Tii = pgii = a(t)2p

(7.35)

with (7.34), we obtain the result:

p = ρ = −φ̇2 = − C2

a(t)6f(R)2
. (7.36)

Now, from (7.36) we know that, for this model, a singularity of type II is avoided (for the classification of
the future singularities, see [240] or Sect. II above).

In order to find a model with the Lagrangian density (7.27) that ends in a future finite-time singularity,
we now consider the case:

H(t) =
hs

ts − t
(7.37)

where, from R = 6Ḣ(t) + 12H(t)2 , it follows that

t = ts − h1√
R
, (7.38)

where h1 =
√

6hs(1 + 2hs) . Then, we can write

H = h2R
1
2 , (7.39)

Ḣ = h3R
2
2 , (7.40)
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Ḧ = h4R
3
2 , (7.41)

being h2 =
√

hs

6(1+2hs)
, h3 = 1

6(1+2hs)
and h4 = 1

3(1+2hs)
√

6hs(1+2hs)
. For (7.37), we have

t(R)∫
t0

H(t′)dt′ = ln

(
ts − t0
h1

√
R

)hs

, (7.42)

hence, Eq. (D.7) reduces to

f(R) + a1R
a2f(R)2 + a3R

df(R)

dR
+ 2a4

R2

f(R)

(
df(R)

dR

)2

− a4R
2 d

2f(R)

dR2
= 0, (7.43)

where a1 =
a6
0h

2
2

κ2C2

(
ts−t0
h1

)6hs

, a2 = 3hs + 1 , a3 = h3 + 7h2
2 and a4 = 6h2(h4 + 4h2h3) . The solution

for Eq. (7.43) gives us the function f(R) that reproduces the Hubble function given by (7.37). Eq. (7.43)
can be solved, but the solution obtained is too long and not particularly insightful to be written here.

To conclude, we should mention that quantum gravity effects (which usually contain different powers
of the curvature) become very important near the future singularity (see [107, 219]). There, classical
considerations are not valid. It is known [8, 65, 221, 234] that the �R term works against the singularity.
Thus, an R2 term (which will generate a �R term) would cure the possible singularities that could arise
in the theory.

7.3 Future finite-time singularities in non-local gravity

The case of non-local gravity will be here considered. This theory gives a natural unification of inflation
with the current cosmic acceleration and it is inspired by quantum loop corrections (see [100, 155, 221,
228, 234]). Non-local effects come from the introduction in the action of the inverse of the D’Alembertian,
�−1 , and the simplest action of non-local gravity is therefore

S =

∫
d4x

√−g
{

1

2κ2

[
R
(
1 + f(�−1R)

)− 2Λ
]
+ Lmatter(Q; g)

}
, (7.44)

where Q stands for the matter fields and Λ is the cosmological constant. Introducing two scalar fields,
η and ξ , action (7.44) can be rewritten as

S =

∫
d4x

√−g
{

1

2κ2
[R (1 + f(η)) + ξ (�η −R)− 2Λ] + Lmatter

}
(7.45)

If we assume a spatially-flat FRW metric, and that η = η(t) and ξ = ξ(t) , the equations of motion for
the scalar fields and the Friedmann equations read (see [221, 234])

0 = η̈ + 3Hη̇ + 6Ḣ + 12H2, (7.46)

0 = ξ̈ + 3Hξ − (6Ḣ + 12H2)f ′(η), (7.47)

0 = −3H2 (1 + f(η)− ξ) +
1

2
ξ̇η̇ − 3H

(
f ′(η)η̇ − ξ̇

)
+ Λ+ κ2ρmatter, (7.48)

0 =
(
2Ḣ + 3H2

)
(1 + f(η)− ξ) +

1

2
ξ̇η̇ +

(
d2

dt2
+ 2H

d

dt

)
(f(η)− ξ)− Λ + κ2pmatter. (7.49)
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Given a Hubble function, H(t) , Eq. (7.46) can then be solved to obtain η = η(t) ; moreover, the function
ξ = ξ(t) can be obtained from Eq. (7.47) if one assumes a form for the function f(η) . Once we have
the functions η(t) and ξ(t) , assuming an EoS for pmatter and ρmatter , Eqs. (7.48) and (7.49) yield the
relation between the different parameters that appear in the model (i.e. the constants of integration of
the functions η(t) and ξ(t) , the cosmological constant Λ , etc.).

In [221, 234] the previous scheme is used to show that de Sitter space (H(t) = H0 ) can be a solution
in non-local gravity. This is the case for matter of constant EoS ω , when

H = H0, (7.50)

η(t) = −4H0t, (7.51)

f(η) = f0e
η
β = f0e

− 4H0t
β , (7.52)

ξ(t) = − 3f0β

3β − 4
e−

4H0t
β − ξ1, (7.53)

with H0 , f0 , β and ξ1 being constants. For de Sitter space and for matter with constant EoS ω , the
energy density is

ρmatter(t) = ρ0e
−3(1+ω)H0t. (7.54)

In order to fulfill Eqs. (7.46), (7.47), (7.48) and (7.49), it is necessary that

β =
4

3(1 + ω)
, (7.55)

f0 =
κ2ρ0

3H2
0 (1 + 3ω)

, (7.56)

ξ1 = −1 + Λ

3H2
0

. (7.57)

Thus, de Sitter space can indeed be a solution of non-local gravity.

There are also singular solutions; however, they are very involved and will not be considered here.
These singular solutions could also be cured by the addition of an R2 term (inspired by quantum gravity
effects near the singularity), a procedure which could again turn into a universal tool in order to suppress
all finite-time future singularities, as before (see [8, 65, 221, 234]).

7.4 Reproducing isotropic turbulence in a dark fluid universe
with scalar-tensor gravity

We will now emphasize the fact that a scalar-tensor theory can be used [69] in order to reproduce isotropic
turbulence in a dark fluid universe [50]. To this end, let us consider the following scalar-tensor theory
action

S =

∫
d4x

√−g
[

1

2κ2
R − 1

2
ω(φ)∂μφ∂

μφ − V (φ) + Lmatter

]
, (7.58)

which leads to the Friedmann equations

3H2

κ2
=

1

2
ω(φ)φ̇2 + V (φ) + ρmatter, (7.59)
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−2Ḣ + 3H2

κ2
=

1

2
ω(φ)φ̇2 − V (φ) + pmatter. (7.60)

If we consider that the scalar part of the action dominates over the matter part, these Friedmann equations
reduce to

3H2

κ2
=

1

2
ω(φ)φ̇2 + V (φ), (7.61)

−2Ḣ + 3H2

κ2
=

1

2
ω(φ)φ̇2 − V (φ). (7.62)

On the other hand, the Friedmann equations describing isotropic turbulence in a dark fluid universe (see
[50]) are

3H2

κ2
= ρdark + ρturb + ρrad + ρmatter, (7.63)

−2Ḣ + 3H2

κ2
= pdark + pturb + prad + pmatter. (7.64)

Now, under the proviso that the turbulent part ρturb dominates, Eqs. (7.63) and (7.64) reduce to, respec-
tively,

3H2

κ2
= ρturb, (7.65)

−2Ḣ + 3H2

κ2
= pturb. (7.66)

Thus, comparing Eqs. (7.61) and (7.62) with Eqs. (7.65) and (7.66),

ρturb =
1

2
ω(φ)φ̇2 + V (φ), (7.67)

pturb =
1

2
ω(φ)φ̇2 − V (φ), (7.68)

and assuming at this point that φ = t , we get the expressions

ρturb =
1

2
ω(φ) + V (φ), (7.69)

pturb =
1

2
ω(φ) − V (φ), (7.70)

respectively. Finally, the functions ω(φ) and V (φ) are given by

ω(φ) = ρturb + pturb, (7.71)

V (φ) = ρturb − pturb. (7.72)

In [50] some examples of isotropic turbulence were given. In the following subsections, by using
Eqs. (7.71) and (7.72), scalar-tensor gravities that reproduce these specific examples will be constructed.
In what follows below, the EoS pturb = ωturbρturb is assumed for the isotropic turbulence.
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7.4.1 De Sitter space

In this subsection we consider the case of de Sitter space, for which the scale factor is given by a(t) =
a0e

H0t , with constant a0 and H0 . For this case, the energy density of the turbulent part is

ρturb = e−3γturbH0t

[
C

3γturb

(
e−

5
2γturbH0tin − e−

5
2γturbH0t

)
+

2C0a
5
2γturbH0

0

5γturb

]− 6
5

, (7.73)

with C = 6
5tin

[ρturb(tin)]
− 5

6 and where tin is an initial time, from which the universe starts its develop-
ment onwards. C0 is an integration constant, which can be determined from the initial condition t = tin
and γturb = 1 + ωturb . Then, use of Eqs. (7.71) and (7.72) yields

ω(φ) = ρturb + pturb = γturbρturb =

= γturb e
−3γturbH0φ

[
C

3γturb

(
e−

5
2γturbH0tin − e−

5
2γturbH0φ

)
+

2C0a
5
2γturbH0

0

5γturb

]− 6
5

(7.74)

and
V (φ) = ρturb − pturb = (1− ωturb)ρturb =

= (1− ωturb) e
−3γturbH0φ

[
C

3γturb

(
e−

5
2γturbH0tin − e−

5
2γturbH0φ

)
+

2C0a
5
2γturbH0

0

5γturb

]− 6
5

. (7.75)

As a consequence, considering the action (7.58), with Eqs. (7.74) and (7.75), together with the assumption
of being φ = t , is just equivalent to consider isotropic turbulence in a de Sitter universe.

7.4.2 Effective quintessence-like power-law expansion

In this subsection we discuss the situation when the scale factor is given by a(t) = a0t
h0 , with a0 and

h0 constant. For this case, the energy density of the turbulent part is

ρturb = t−3γturbh0

[
5C

6
(
1− 5

2γturbh0

) (t1− 5
2γturbh0 − t

1− 5
2γturbh0

in

)
+ C0a

5
2γturbh0

0

]− 6
5

, (7.76)

being C = 6
5tin

[ρturb(tin)]
− 5

6 and tin , as before, an initial time from which the universe starts its
development onwards. Again, C0 is a constant of integration, to be determined from the initial condition
t = tin and γturb = 1 + ωturb . Repeating the procedure of the previous subsection, we can write

ω(φ) = ρturb + pturb = γturbρturb =

= γturb t
−3γturbh0

[
5C

6
(
1− 5

2γturbh0

) (t1− 5
2γturbh0 − t

1− 5
2γturbh0

in

)
+ C0a

5
2γturbh0

0

]− 6
5

(7.77)

and
V (φ) = ρturb − pturb = (1− ωturb)ρturb =

= (1− ωturb) t
−3γturbh0

[
5C

6
(
1− 5

2γturbh0

) (t1− 5
2γturbh0 − t

1− 5
2γturbh0

in

)
+ C0a

5
2γturbh0

0

]− 6
5

. (7.78)

Also, as remarked above, the scalar-tensor gravity given by the action (7.58), with Eqs. (7.77) and (7.78),
together with the assumption φ = t , is here equivalent to consider isotropic turbulence in the dark energy
component, now in an effective quintessence-like power-like expanding universe.
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7.4.3 Phantom-like power law expansion

Here we will deal with a phantom-like power law expansion, given by a(t) = a0(ts− t)−h0 , which is known
to give rise to Type I finite-time future singularities, with constant a0 and h0 . The energy density of the
turbulent part is

ρturb = (ts − t)3γturbh0

{
5C

6
(
1 + 5

2γturbh0

) [(ts − t)1+
5
2γturbh0 − (ts − tin)

1+ 5
2γturbh0

]
+ C0a

5
2γturbh0

0

}− 6
5

,

(7.79)

where C = 6
5tin

[ρturb(tin)]
− 5

6 and tin and C0 have exactly the same meaning as before. In this case

ω(φ) = ρturb + pturb = γturbρturb =

= γturb (ts − t)3γturbh0

{
5C

6
(
1 + 5

2γturbh0

) [(ts − t)1+
5
2γturbh0 − (ts − tin)

1+ 5
2γturbh0

]
+ C0a

5
2γturbh0

0

}− 6
5

(7.80)
and

V (φ) = ρturb − pturb = (1− ωturb)ρturb =

= (1−ωturb) (ts−t)3γturbh0

{
5C

6
(
1 + 5

2γturbh0

) [(ts − t)1+
5
2γturbh0 − (ts − tin)

1+ 5
2γturbh0

]
+ C0a

5
2γturbh0

0

}− 6
5

.

(7.81)
Therefore, a scalar-tensor gravity with functions ω(φ) and V (φ) given by expressions (7.80) and (7.81),
respectively, is equivalent to isotropic turbulence in a phantom-like power-like expanding universe.

Thus, we have shown that an equivalence exists between isotropic turbulence and scalar-tensor gravity
and that in the isotropic turbulence theory, finite-time future singularities appear too (see Sect. 7.4.3).
As in previous sections, addition of a R2 term to the Langrangian density can avoid the development of
these finite-time future singularities [234, 221, 8, 65].

7.5 Conclusions

In this chapter, a reconstruction program has been dealt with which uses the freedom in the choice of
arbitrary functions or potentials, for several models of modified gravity or scalar-tensor gravity, with
the aim to reconstruct a background cosmology—quite complicated in general—which complies with the
latest observational data. Along this line, a systematic search for different viable models of the dark
energy universe, all of which give rise to finite-time, future singularities, has been undertaken, having
as goal their detailed study to try to find common features, in the search for a general solution to this
important problem. Specifically, it has been checked that the addition of an R2 term provides indeed a
universal tool to cure these finite-time future singularities.

More specifically, a universal procedure to cure all future singularities has been defined and carefully
tested with the help of explicit examples, corresponding to each of the four different types of possible
singularities, as classified in the literature. To start, the case of a fluid with an EoS which depends on a
parameter α , which can give rise to finite-time future singularities, has been considered. We have shown
explicitly that, adding a specific function G(H, Ḣ, Ḧ, ...) to the EoS of the fluid, the different singularities
can be cured, and it has been seen that this function can actually be considered as a modification of
Einsteinian gravity.
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The case of the non-minimal coupling of modified gravity to a matter Lagrangian has been investigated,
too. The reconstruction scheme has been run for this case and the example of the cosmology given by
the Hubble function H(t) = hs/(ts − t) was analyzed. In Appendix B, the calculation has been done
of the Friedmann equations for this non-minimal coupling of modified gravity to a matter Lagrangian.
Further, the case of non-local gravity has been discussed. The example of the de Sitter space has been
reproduced in the framework of non-local gravity, having been pointed out that such kind of theories can
also give rise to finite-time, future singularities. Finally, the case of isotropic turbulence in the dark fluid
universe was discussed, with the conclusion that the contribution of the turbulent part of dark energy can
indeed be reproduced through the use of a scalar-tensor theory. As already indicated, several examples,
corresponding to the different cases, have been studied in the paper in detail.

Concerning future perspectives, it is rather clear that, in order to address the singularity issue in all
rigor it will be necessary to develop a fully-fledged theory of quantum gravity, what has proven to be a
very difficult, up to now impossible, task. In any case, the presence of a finite-time, future singularity may
cause various problems of physical nature, as instabilities in current black hole and stellar astrophysics.
And, even without the recourse to a quantum theory of gravity, it is still meaningful to try to find
natural scenarios, already at the classical level, that may cure this possible finite-time, future singularities.
This has been successfully addressed in the paper, with the explicit construction of a general, universal
procedure to cure all future singularities—what has been carefully tested with the help of specific examples
corresponding to each one of the four different types of possible singularities, as classified in the literature.

To conclude, we should mention that quantum gravity effects (which usually contain different powers
of the curvature) may become very important near future singularities. Even if classical considerations
are, in principle, not valid there, it is known that the �R term works against the singularity. Thus, an
R2 term (which will on its turn generate a �R term) would, in principle, cure the possible singularities
that could arise in the quantum theory, too. As a consequence, our method here could presumably be also
extended to the quantum case without much trouble.



Chapter 8

Weak field limit of f (R,G) modified
gravity

The discovery of the current acceleration in the expansion of the Universe showed up that General Rela-
tivity fails at large scales; but it still provides fantastic results at short scales and low energies, as at the
solar system level (see [289]). This is the reason why it is mandatory for a new gravitational theory to
reproduce the results obtained with General Relativity in the weak field limit. Thus, the study of the weak
field limit is of great importance and can be used in order to retain or rule out a gravitational theory.

The purpose of this chapter is to obtain the Newtonian, PN and PPN limits for f(R,G) modified
gravity. In order to do that, we will work under the following two hypothesis: (i) asking for low velocities
with respect to the speed of light and (ii) asking for weak fields. In this case, the Newtonian limit

consists in obtaining the equations of motion of the system to the same power of v̄2

c2 than the ones given
by Newtonian mechanics, with v̄ being the typical value of the velocities of the particles in the system
and c being the speed of light in vacuum. The PN limit is given by the motion of system to the next

higher power of v̄2

c2 , while the PPN limit is given by the motion of system to the following higher power

of v̄2

c2 as for the PN limit. In this sense, these limits can be seen as an expansion in powers of v̄2

c2 (note
that as we work with speeds squared, the order increase is in half-integer powers, what sometimes leads
to confusion among non-experts). We will consider, in the following, that c = 1 , then our expansion will
be in powers of v̄2 .

The chapter is organized as follows. In Sect. I, the field equations for f(R,G) modified gravity theories
are reviewed and the Newtonian, post–Newtonian and post–post–Newtonian are obtained for this kind of
theories. In Sect. II, the Newtonian limit for f(R,G) gravities is solved in terms of Green’s functions. In
Sect. III, the weak field limit of the special cases of f(R) and f(G) modified gravities are, respectively,
studied. Finally, in Sect. IV, the results obtained in this chapter are summarized.
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8.1 f(R,G) modified gravity: the field equations and the New-
tonian limit

This section is devoted to the study of the field equations for f(R,G) modified gravity and their Newtonian,
Post–Newtonian (PN) and Post–Post–Newtonian (PPN) limits (for other examples of weak field limit in
modified gravity theories, see [70, 72, 73, 273]). The first remarkable characteristic of f(R,G) modified
gravity is that, in this case, we obtain fourth–order field equations, instead of the standard second–order
ones obtained in the case of General Relativity (GR). This fact is due to the existence of some boundary
terms that disappear in GR thanks to the divergence theorem, but they remain in other theories, as in
the case of f(R,G) modified gravity.

8.1.1 General form of the field equations

This subsection is devoted to find out the field equations for f(R,G) modified gravity. The starting action
for f(R,G) modified gravity is given by:

S =

∫
d4x
√−g

{
1

2κ2
f(R,G) + Lmatter

}
, (8.1)

where κ2 = 8πGN , GN is the Newton constant, and G is the Gauss-Bonnet invariant, defined by:

G = R2 − 4RαβR
αβ +RαβρσR

αβρσ. (8.2)

The variation of (8.1) with respect to the metric tensor gμν gives rise to the field equations for f(G)
modified gravity, which are:

−1

2
gμνf(R,G) + fR(R,G)Rμν + gμν∇2 (fR(R,G))−∇μ∇ν (fR(R,G))+

+2fG(R,G)RRμν − 4fG(R,G)RμρR
ρ

ν + 2fG(R,G)RαβρμR
αβρ

ν − 4fG(R,G)RμρνσR
ρσ+

+2gμνR∇2fG(R,G)− 4gμνRρσ∇ρ∇σfG(R,G)− 2R∇μ∇νfG(R,G)− 4Rμν∇2fG(R,G)+
+4Rνρ∇ρ∇μfG(R,G) + 4Rμρ∇ρ∇νfG(R,G) + 4Rμρνσ∇ρ∇σfG(R,G) = 2κ2Tμν , (8.3)

and the trace equation is given by:

−2f(R,G)+fR(R,G)R+3∇2fR(R,G)+2fG(R,G)G+2R∇2fG(R,G)−4Rρσ∇ρ∇σfG(R,G) = 2κ2T. (8.4)

In Eq.(8.3) and Eq.(8.4), the following notation has been used: fR(R,G) = df(R,G)
dR and fG(R,G) =

df(R,G)
dG .

The fact that the scalar curvature, R , and the Gauss-Bonnet invariant, G , involves second derivatives
of the metric tensor gμν makes of Eq.(8.3) and Eq.(8.4) fourth-order differential equations for the metric,
gμν .

8.1.2 The Newtonian, PN and PPN limits

In this subsection, all the quantities involved in the Newtonian, PN and PPN limits of the f(R,G) -gravity
given by (8.1) will be expanded in powers of v̄2 .
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We expect that it should be possible to find a coordinate system in which the metric tensor is nearly
equal to the Minkowski tensor ημν = diag(1,−1,−1,−1) , the corrections being expandable in powers of
v̄2 . We will consider the following ansatz for the metric tensor:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g00 = g
(0)
00 + g

(2)
00 + g

(4)
00 +O(6) with

{
g
(0)
00 = 1

g
(2)
00 = −2U

g0i = g
(3)
0i +O(5)

gij = g
(0)
ij + g

(2)
ij + g

(4)
ij +O(6) with

{
g
(0)
ij = −δij
g
(2)
ij = −δij2V

(8.5)

The inverse metric of (8.5) can be calculated using the relation gαρgρβ = δαβ , giving the following results:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g00 = g(0)00 + g(2)00 + g(4)00 +O(6) with

⎧⎨
⎩

g(0)00 = 1
g(2)00 = 2U

g(4)00 = −g(4)00 + 4U2

g0i = g(3)0i +O(5) with g(3)0i = δijg
(3)
0j

gij = g(0)ij + g(2)ij + g(4)ij +O(6) with

⎧⎨
⎩

g(0)ij = −δij
g(2)ij = δij2V

g(4)ij = −4V 2δij − δikδjlg
(4)
kl

(8.6)

Given a metric tensor, the connection associated can be calculated with the equation: Γα
μν =

1
2g

αβ (∂μgνβ + ∂νgμβ − ∂βgμν) , which can be expanded in powers of v̄2 introducing, in the last equa-
tion, the expressions given by (8.5) and (8.6), namely:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Γ0
00 = Γ

(3)0
00 +O(5) with Γ

(3)0
00 = −∂0U

Γ0
0i = Γ

(2)0
0i + Γ

(4)0
0i +O(6) with

⎧⎪⎨
⎪⎩

Γ
(2)0

0i = −∂iU

Γ
(4)0

0i =
1
2

(
∂ig

(4)
00 − 4U∂iU

)

Γ0
ij = Γ

(3)0
ij +O(5) with Γ

(3)0
ij =

1
2

(
∂jg

(3)
0i + ∂ig

(3)
0j + 2δij∂0V

)

Γi
00 = Γ

(2)i
00 + Γ

(4)i
00 +O(6) with

⎧⎪⎨
⎪⎩

Γ
(2)i

00 = −δil∂lU

Γ
(4)i

00 = 1
2δ

il
(
∂lg

(4)
00 + 4V ∂lU − 2∂0g

(3)
0l

)

Γi
0j = Γ

(3)i
0j +O(5) with Γ

(3)i
0j =

1
2δ

il
(
∂lg

(3)
0j − ∂jg

(3)
0l + 2δlj∂0V

)

Γi
jk = Γ

(2)i
jk + Γ

(4)i
jk +O(6) with

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Γ
(2)i

jk = δil (−δjk∂lV + δlj∂kV + δlk∂jV )

Γ
(4)i

jk = − 1
2δ

il
[
∂jg

(4)
kl + ∂kg

(4)
jl − ∂lg

(4)
jk

]
−

−2V δil [δlk∂jV + δlj∂kV − δjk∂lV ]

(8.7)
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Given a metric tensor, the following can be immediately calculated: the Riemann tensor, the Ricci
tensor and the scalar curvature, using the following expressions

Rαβρσ =
1

2
(∂σ∂αgβρ − ∂σ∂βgαρ − ∂ρ∂αgβσ + ∂ρ∂βgασ) + gμν

(
Γμ
σαΓ

ν
βρ − Γμ

ραΓ
ν
βσ

)

Rμν = ∂ρΓ
ρ
μν − ∂μΓ

ρ
ρν + Γρ

μνΓ
σ
ρσ − Γρ

σνΓ
σ
ρμ,

R = gμνRμν . (8.8)

The components of the Riemann tensor that we will need later can be expanded in powers of v̄2 using
(8.5)-(8.8):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ri0j0 = R
(2)
i0j0 +R

(4)
i0j0 +O(6) with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R
(2)
i0j0 = ∂i∂jU

R
(4)
i0j0 = 1

2

(
∂0∂ig

(3)
0j + ∂0∂jg

(3)
0i + 2δij∂0∂0V − ∂i∂jg

(4)
00

)
+

+(∂iU) (∂jU)− (∂iU) (∂jV )− (∂jU) (∂iV )+

+δijδ
kl (∂kU) (∂lV )

R0ij0 = R
(2)
0ij0 +R

(4)
0ij0 +O(6) with

⎧⎪⎨
⎪⎩

R
(2)
0ij0 = −R(2)

i0j0

R
(4)
0ij0 = −R(4)

i0j0

Rijk0 = R
(3)
ijk0 +O(5) with R

(3)
ijk0 = 1

2

[
∂k

(
∂jg

(3)
0i − ∂ig

(3)
0j

)
+ 2∂0 (δik∂jV − δjk∂iV )

]
(8.9)

By assuming the harmonic gauge, given by gμνΓρ
μν = 0 (in order to simplify the expressions), and using

(8.5)-(8.8), we can expand the Ricci tensor in powers of v̄2 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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(4)
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⎧⎪⎨
⎪⎩
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(2)
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R
(4)
00 = 1
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(4)
00 + 2V�U + ∂0∂0U − 2δmn (∂mU) (∂nU)

R0i = R
(3)
0i +O(5) with R

(3)
0i = 1

2�g
(3)
0i

Rij = R
(2)
ij +R

(4)
ij +O(6) with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R
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ij = −δij�V

R
(4)
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2
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∂0

(
∂jg

(3)
0i + ∂ig

(3)
0j + 2δij∂0V

)
−

−δmn
(
∂m

(
∂ig

(4)
nj + ∂jg

(4)
ni

)
− ∂i∂jg

(4)
mn

)
+�g

(4)
ij − ∂i∂jg

(4)
00

]
+

+2V ∂i∂jV + 2U∂i∂jU + ∂iU ∂j(U − V )+

+∂iV ∂j(3V − U) + δij
(
δkl∂lV ∂k(U + V ) + 2V�V

)
(8.10)
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and the scalar curvature too:

R = R(2)+R(4)+O(6) with

⎧⎨
⎩

R(2) = 3�V −�U

R(4) = 1
2�g

(4)
00 + 2V (�U − 3�V ) + ∂0∂0U − 2δij (∂iU) (∂jU)− 2U�U

(8.11)

On the matter side, we start with the general definition of the energy-momentum tensor of a perfect
fluid:

Tμν = (ρ+Πρ+ p)uμuν − pgμν (8.12)

where Π denotes the internal energy density, ρ the energy density and p the pressure. Taking into
account that:

u0 =
1√

1− v2
= 1 +

1

2
v2 +

3

8
v4 +O(6)

ui =
vi√

1− v2
= vi

(
1 +

1

2
v2 +O(4)

)
(8.13)

and the expressions (8.5) and (8.6), we can calculate the different components of (8.12):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T00 = T
(0)
00 + T

(2)
00 + T

(4)
00 +O(6) with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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(0)
00 = ρ

T
(2)
00 = ρ
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Π+ v2 − 4U

)
T

(4)
00 = ρ
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v4 − 3Uv2 + 4U2 + 2g

(4)
00 + 2g

(3)
0i v

i+

+ Π(v2 − 4U)
]
+ p

(
v2 − 2U

)

T0i = T
(1)
0i + T

(3)
0i +O(5) with

⎧⎪⎨
⎪⎩

T
(1)
0i = −viρ

T
(3)
0i = −viρ

(
Π+ 1

2v
2 − 2U + p

ρ

)

Tij = T
(2)
ij +O(4) with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T
(2)
ij = ρδikδjlv

kvl + pδij

T
(4)
ij = ρ

{
−δikvkg(3)0j − δjlv

lg
(3)
0i +

+δikδjlv
kvl
(
v2 +Π+ 4V
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+

+p
{
δikδjlv

kvl + 2V δij
}

(8.14)
Finally, the expansion of the Gauss-Bonnet invariant G in orders of v̄2 can be calculated using (8.5)-
(8.11):

G = G(4) +O(6)

with G(4) = −3 (�U)
2
+ (�V )

2 − 6 (�U) (�V ) + 4δimδjn [∂i∂j (U + V )] [∂m∂n (U + V )] (8.15)

We have now all the ingredients, expanded in orders of v̄2 , needed to write the field equations and the
trace equation in the Newtonian, PN and PPN limits. In order to do this, we assume that:

f∗(R,G) = f∗(0, 0) + f∗R(0, 0)R+ f∗G(0, 0)G +
1

2

(
f∗RR(0, 0)R

2 + 2f∗RG(0, 0)RG + f∗GGG2
)
+ ... (8.16)
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where f∗(R,G) denotes the function f(R,G) or any of its derivatives, i.e. fR(R,G) , fG(R,G) , fRR(R,G)
... Considering (8.11) and (8.15), we can write (8.16) as an expansion in orders of v̄2 :

f∗(R,G) = f∗(0, 0) + f∗R(0, 0)R
(2) +

(
1

2
f∗RR(0, 0)R

(2) 2 + f∗R(0, 0)R
(4) + f∗G(0, 0)G(4)

)
+O(6). (8.17)

We now proceed to calculate the Newtonian, PN and PPN limits for the first Friedmann equation and
the trace equation.

(0, 0) -field equation

The (0, 0) -field equation is given from (8.3) by:

−1

2
g00f(R,G) + fR(R,G)R00 + g00∇2 (fR(R,G))−∇0∇0 (fR(R,G))+

+2fG(R,G)RR00 − 4fG(R,G)R0ρR
ρ

0 + 2fG(R,G)Rαβρ0R
αβρ

0 − 4fG(R,G)R0ρ0σR
ρσ+

+2g00R∇2fG(R,G)− 4g00Rρσ∇ρ∇σfG(R,G)− 2R∇0∇0fG(R,G)− 4R00∇2fG(R,G)+
+8R0ρ∇ρ∇0fG(R,G) + 4R0ρ0σ∇ρ∇σfG(R,G) = 2κ2T00, (8.18)

At the lowest order in the velocity, we obtain: f(0, 0) = 0 .

In the Newtonian limit, i.e. at O(2) order in the velocity, Eq.(8.18) reduces to:

−1

2
g
(0)
00 fR(0, 0)R

(2) + fR(0, 0)R
(2)
00 +

[
g00∇2 (fR(R,G))−∇0∇0 (fR(R,G))](2) = 2κ2T

(0)
00 , (8.19)

where it has been considered that f(0, 0) = 0 . Introducing (8.5), (8.10), (8.11) and (8.14) into (8.19), we
finally obtain the following equation:

fR(0, 0) (3�V +�U) + 2fRR(0, 0)
(
3�2V −�2U

)
= −4κ2ρ. (8.20)

Where the notation: �2 := � · � , has been introduced, being � = δij ∂
∂xi

∂
∂xj .

In the PN limit, i.e. at O(4) order in the velocity, Eq.(8.18) reduces to:

fR(0, 0)
{
− 1

2g
(2)
00 R

(2) − 1
2g

(0)
00 R

(4) +R
(4)
00

}
+

+ fG(0, 0)
{
− 1

2G(4) + 2R(2)R
(2)
00 − 4R

(2) 2
00 + 2

(
Rαβρ0R

αβρ
0

)(4)
− 4 (R0ρ0σR

ρσ)
(4)

}
+

+ fRR(0, 0)
{
− 1

4R
(2) 2 +R(2)R

(2)
00 +

(
g
(2)
00 g

(0) ij + g
(0)
00 g

(2) ij
)
∂i∂jR

(2) + g(0) ij
(
∂i∂jR

(4) − Γ
(2) k

ij∂kR
(2)
)}

+

+ fRG(0, 0)
{
g(0) ij∂i∂jG(4) + 2∂i∂jR

(2)
[
g(0) ij

(
R(2) − 2R

(2)
00

)
+ 2g(0) ikg(0) jl

(
−R(2)

kl +R
(2)
0k0l

)]}
+

+ fRRR(0, 0) g(0) ij
{
∂iR

(2)∂jR
(2) +R(2)∂i∂jR

(2)
}
= 2κ2T

(2)
00 ,

(8.21)
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where it has been considered, once more, that f(0, 0) = 0 . The calculations that make possible to derive
Eq.(8.21) from Eq.(8.18) are written in Appendix E. Introducing in (8.21) the results obtained in the
previous section, we finally obtain:

fR(0, 0)
{

1
4�g

(4)
00 + 3(U + V )�V + V�U + 1

2∂0∂0U − δij∂iU∂jU
}
+

+ fRR(0, 0)
{
− 1

2�2g
(4)
00 + 15

4 (�V )
2 − 7

2�U�V + 11
4 (�U)

2
+ 6(U + 2V )�2V − 4V�2U−

−∂0∂0�U + δij [3∂iV ∂j (3�V −�U) + 8∂iU ∂j�U + 4δmn∂i∂mU ∂j∂nU ]
}
+

+ 2fRG(0, 0)
{
4 (�U +�V )�2U − 4�V�2V + δij [3∂i�U ∂j (�U + 2�V )− ∂i�V ∂j�V ] +

+2δijδmn [∂i∂m (3�V −�U) ∂j∂nU −� (∂i∂m(U + V ) ∂j∂n(U + V ))]
}−

− fRRR(0, 0)
{
δij∂i (3�V −�U) ∂j (3�V −�U) + (3�V −�U)� (3�V −�U)

}
+

+ fG(0, 0)
{
− 1

2 (�U −�V )
2
+ 2δimδjn∂i∂j (U − V ) ∂m∂n (U − V )

}
= 2κ2ρ

(
Π+ v2 − 4U

)
(8.22)

In the PPN limit, i.e. at O(6) order in the velocity, using the results obtained in Appendix E, Eq.(8.18)
reduces to:

fR(0, 0)
{
− 1

2

[
g
(4)
00 R

(2) + g
(2)
00 R

(4) + g
(0)
00 R

(6)
]
+R

(6)
00

}
+

+ fG(0, 0)
{
− 1

2

[
g
(2)
00 G(4) + g

(0)
00 G(6)

]
+ 2

[
R(2)R

(4)
00 +R(4)R

(2)
00

]
−

−4
[
2g(0) 00R

(2)
00 R

(4)
00 + g(2) 00R

(2) 2
00 + g(0) ijR

(3)
0i R

(3)
0j

]
+ 2

(
Rαβρ0R

αβρ
0

)(6)
− 4 (R0ρ0σR

ρσ)
(6)

}
+

+ fRR(0, 0)
{
− 1

2

[
1
2g

(2)
00 R

(2) 2 + g
(0)
00 R

(2)R(4)
]
+R(2)R

(4)
00 +R(4)R

(2)
00 +

+g
(0)
00

[
g(2) 00

(
∂0∂0R

(2) − Γ
(2) i

00∂iR
(2)
)
+

+g(0) ij
(
∂i∂jR

(6) − Γ
(3) 0

ij∂0R
(2) − Γ

(2) k
ij∂kR

(4) − Γ
(4) k

ij∂kR
(2)
)
+

+g(2) ij
(
∂i∂jR

(4) − Γ
(2) k

ij∂kR
(2)
)
+ g(4) ij∂i∂jR

(2) + 2g(3) 0i∂0∂iR
(2)
]
+

+g
(2)
00

[
g(0) 00

(
∂0∂0R

(2) − Γ
(2) i

00∂iR
(2)
)
+ g(0) ij

(
∂i∂jR

(4) − Γ
(2) k

ij∂kR
(2)
)
+ g(2) ij∂i∂jR

(2)
]
+

+g
(4)
00 g

(0) ij∂i∂jR
(2)
}
+

+ fRG(0, 0)
{
− 1

2g
(0)
00 R

(2)G(4) +R
(2)
00 G(4) − ∂0∂0G(4) + Γ

(2) i
00∂iG(4) + 2R(2)

[
R(2)R

(2)
00 − 2g(0) 00R

(2) 2
00

+
(
Rαβρ0R

αβρ
0

)(4)
− 2 (R0ρ0σR

ρσ)
(4) − ∂0∂0R

(2) + Γ
(2) i

00∂iR
(2)

]
+
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+8
[
R

(2)
00 g

(0) 00
(
∂0∂0R

(2) − Γ
(2) i

00∂iR
(2)
)
+R

(3)
0i g

(0) ij∂j∂0R
(2)
]
+

+g
(0)
00

[
g(0) 00

(
∂0∂0G(4) − Γ

(2) i
00∂iG(4)

)
+ g(0) ij

(
∂i∂jG(6) − Γ

(2) k
ij∂kG(4)

)
+ g(2) ij∂i∂jG(4)

]
+

+g
(2)
00 g

(0) ij∂i∂jG(4) + 2
[
g
(0)
00 R

(2) − 2R
(2)
00

] [
g(0) 00

(
∂0∂0R

(2) − Γ
(2) i

00∂iR
(2)
)
+

+g(0) ij
(
∂i∂jR

(4) − Γ
(2) k

ij∂kR
(2)
)
+ g(2) ij∂i∂jR

(2)
]
+

+2
[
g
(0)
00 R

(4) + g
(2)
00 R

(2) − 2R
(4)
00

]
g(0) ij∂i∂jR

(2)−

−4g(0)00 R
(2)
00

(
g(0) 00

)2 [
∂0∂0R

(2) − Γ
(2) i

00∂iR
(2)
]
+

+4
[
R

(2)
k0l0 − g

(0)
00 R

(2)
kl

] [
g(0) kig(0) lj

(
∂i∂jR

(4) − Γ
(2)m

ij∂mR(2)
)
+

+
(
g(2) kig(0) lj + g(0) kig(2) lj

)
∂i∂jR

(2)
]− 8g

(0)
00 R

(3)
0j g

(0) 00g(0) ij∂0∂iR
(2)+

+ 4g(0) ikg(0) jl
[
R

(4)
k0l0 − g

(0)
00 R

(4)
kl − g

(2)
00 R

(2)
kl

]
∂i∂jR

(2)
}
+

+ fGG(0, 0)
{
2
[
g
(0)
00 R

(2) − 2R
(2)
00

]
g(0) ij∂i∂jG(4) + 4g(0) ikg(0) jl

[
R

(2)
k0l0 − g

(0)
00 R

(2)
kl

]
∂i∂jG(4)

}
+

+ fRRR(0, 0)
{
R(2)

[
R(2)

(
− 1

12R
(2) + 1

2R
(2)
00

)
− ∂0∂0R

(2) + Γ
(2) i

00∂iR
(2)
]
− ∂0R

(2) ∂0R
(2)+

+g
(0)
00

[
g(0) 00

(
∂0R

(2) ∂0R
(2) +R(2)∂0∂0R

(2) − Γ
(2) i

00R
(2)∂iR

(2)
)
+

+g(0) ij
(
2∂iR

(2)∂jR
(4) +R(2)∂i∂jR

(4)+

+R(4)∂i∂jR
(2) − Γ

(2) k
ijR

(2)∂kR
(2)
)
+ g(2) ij

(
∂iR

(2)∂jR
(2) +R(2)∂i∂jR

(2)
)]

+

+g
(2)
00 g

(0) ij
[
∂iR

(2)∂jR
(2) +R(2)∂i∂jR

(2)
]}

+

+ fRRG(0, 0)
{
g
(0)
00 g

(0) ij
[
2∂iR

(2)∂jG(4) + G(4)∂i∂jR
(2) +R(2)∂i∂jG(4)

]
+ 2

[
g(0) ij

(
g
(0)
00 R

(2) − 2R
(2)
00

)
+

+2g(0) ikg(0) jl
(
R

(2)
k0l0 − g

(0)
00 R

(2)
kl

)] [
∂iR

(2)∂jR
(2) +R(2)∂i∂jR

(2)
]}

+

+ fRRRR(0, 0) g
(0)
00 g

(0) ijR(2)
{
∂iR

(2)∂jR
(2) + 1

2R
(2)∂i∂jR

(2)
}
= 2κ2T

(4)
00 .

(8.23)



8.1 f(R,G) modified gravity: the field equations and the Newtonian limit 129

And introducing in (8.23) the results obtained in the previous section, we finally obtain:

fR(0, 0)
{

1
2

(
R

(6)
00 + δijR

(6)
ij

)
− δijg

(3)
0i R

(3)
0j − 1

2�V
[
3
(
g
(4)
00 + 4UV − 4V 2

)
+ δijg

(4)
ij

]
−

−(U + V )
[
1
2

(
6∂0∂0V −�g

(4)
00 + 2δij

(
�g

(4)
ij + ∂0∂ig

(3)
0j

)
− 2δijδmn∂i∂mg

(4)
jn

)]
+

+8V�V + 2U�U + δij [∂iU∂j(U − V ) + 2∂iV ∂j(3V + U)]
}
+

+ fG(0, 0)
{
− 1

2G(6) + (8V − 7U) (�U)
2
+ U (�V )

2
+ 2(4V − 3U)�U�V+

+2�U
[
�g

(4)
00 + 2∂0∂0(U + 2V )− 4δij∂iU∂j(U + V )

]
+

+�V
[
�g

(4)
00 + 6∂0∂0(U + 2V ) + 4δij

(
∂0∂ig

(3)
0j + ∂iU∂j(U − 2V )

)]
+

+δij
[(
�g

(3)
0i + 4∂0∂iV

)
�g

(3)
0j − 8∂0∂iV ∂0∂jV

]
+ 4δijδmn [U∂i∂m(U + V )∂j∂n(U + V )−

−∂i∂mg
(3)
0j ∂0∂nV + 1

2

[
∂0

(
∂ng

(3)
0j + ∂jg

(3)
0n − 2δjn∂0V

)
+

+δkl
(
∂k

(
∂jg

(4)
ln + ∂ng

(4)
lj

)
− ∂j∂ng

(4)
kl

)
−�g

(4)
jn − ∂j∂ng

(4)
00

]
− 2V ∂j∂nV−

− (U + 2V )∂j∂nU + ∂jU ∂n(U − V )− ∂jV ∂n(3V + U)− δjn
(
δkl∂lV ∂k(U + V ) + 2V�V

)]−
− 1

2δ
ijδmnδkl∂k

(
∂mg

(3)
0i + ∂ig

(3)
0m

)
∂l

(
∂ng

(3)
0j + ∂jg

(3)
0n

)}
+

+ fRR(0, 0)
{
−�R(6) + (U + V )�2g

(4)
00 +�2U

(
g
(4)
00 − 4U2 + 4UV + 8V 2

)
−

−3�2V
(
g
(4)
00 + 4UV + 8V 2

)
− (�U)

2 ( 5
2U + 7V

)− 3 (�V )
2 ( 5

2U + V
)
+

+2�U�V (2U + 5V ) + 3 (�V −�U)
(

1
4�g

(4)
00 + 1

2∂0∂0U − δij∂iU∂jU
)
+ 2V ∂0∂0�U+

+δij
[
1
2

(
2∂ig

(3)
0j − ∂0g

(2)
ij

)
∂0 (3�V −�U)− ∂iV ∂0∂0∂jU + 2 (3�V −�U) ∂iV ∂jV+

+2�U∂iU∂jV − 1
2∂iV ∂j�g

(4)
00 + 2g

(3)
0i ∂0∂j (3�V −�U) + 2∂i�U (U∂j (V − 8U)− 8V ∂jU)−

−2 (V + 3U) ∂iV ∂j (3�V −�U)] +

+δijδmn
[
− 1

2

(
2∂ig

(4)
mj − ∂mg

(4)
ij

)
∂n (3�V −�U)− g

(4)
im∂j∂n (3�V −�U)−

−4 (2(U + V )∂i∂mU − ∂iV ∂mU) ∂j∂nU ]}+

+ fGG(0, 0)
{
12 (�U +�V )

2�2U + 4 (3�V −�U) (�U +�V )�2V+

+4 (�U +�V ) δij [3∂i�U∂j (�U + 2�V )− ∂i�V ∂j�V ] +
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+4δijδmn
[
� (∂i∂m(U + V )∂j∂n(U + V )) + ∂i∂mU∂j∂n

(
−3 (�U)

2
+ (�V )

2 − 6�U�V+

+4δklδrs∂k∂r(U + V )∂l∂s(U + V )
)]}

+

+ fRG(0, 0)
{
−�G(6) + 15

2 (�U)
3 − 7�V (�U)

2
+ 21

2 �U (�V )
2
+ 21

2 (�V )
3 − 2 (�U +�V ) ∂0∂0�U+

+�2U
[
−�g

(4)
00 − 2∂0∂0U − 8(U + 3V )�U − 4(U + 2V )�V + 4δij (∂iU∂jU + ∂iV ∂jV )

]
+

+�2V
[
3�g

(4)
00 + 6∂0∂0U − 4(3U − 2V )�U − 8(U + 7V )�V − 12δij (∂iU∂jU + ∂iV ∂jV )

]
+

+�U
[
−�2g

(4)
00 + 2δij {5∂iV ∂j (3�V −�U) + 8∂iU∂j�U + δmn [∂i∂mU∂j∂n(U − V )−

− ∂i∂mV ∂j∂n(U + V )]}] +

+�V
[
−�2g

(4)
00 + 2δij {3∂iV ∂j (3�V −�U) + 8∂iU∂j�U + δmn [∂i∂mU∂j∂n(7U − 3V )−

3∂i∂mV ∂j∂n(U + V )]}]− δij∂iV ∂j

[
−3 (�U)

2
+ (�V )

2 − 6 (�U) (�V )+

+ 4δmnδkl∂m∂k (U + V ) ∂n∂l (U + V )
]
+

+4(U + V )δij [∂i�V ∂j�V − 3∂i�U∂j (�U + 2�V ) + 2δmn� (∂i∂m(U + V )∂j∂n(U + V ))] +

+2δijδmn
[
∂i∂mU

(
∂j∂n

(
�g

(4)
00 − 4V (3�V −�U) + 2∂0∂0U − 4U�U

)
−

−4∂jV ∂n (3�V −�U)− 8V ∂j∂n (3�V −�U)) + ∂i∂m (3�V −�U)
(
− 1

2�g
(4)
jn −

−2V ∂j∂nV − 2U∂j∂nU − 3∂jV ∂nV + 1
2δ

kl
[
∂k

(
∂jg

(4)
ln + ∂ng

(4)
lj

)
− ∂j∂ng

(4)
kl

])]
−

−8δijδmnδkl∂i∂mU∂j∂n (∂kU∂lU)
}
+

+ fRRR(0, 0)
{
�2U

[
1
2�g

(4)
00 + ∂0∂0U + 2(3V − U)�U − 18V�V − 2δij∂iU∂jU

]
+

+�2V
[
− 1

2�g
(4)
00 − ∂0∂0U − 2(7V + 2U)�U + 6(7V + 3U)�V + 2δij∂iU∂jU

]
−

−
(

1
2�g

(4)
00 + ∂0∂0�U

)
(3�V −�U)− 29

12 (�U)
3
+ 111

12 �V (�U)
2 − 57

4 �U (�V )
2
+

+ 63
4 (�V )

3
+ δij [∂i (3�V −�U) (3 (3�V −�U) ∂jV + 2 (3�V +�U) ∂j (3�V −�U)−

2∂j

(
1
2�g

(4)
00 + ∂0∂0U − 2U�U

))
+ 8 (3�V −�U) ∂iU∂j�U

]
+

+4δijδmn [∂i∂m (3�V −�U) ∂j∂n (3�V −�U) + (3�V −�U) ∂i∂mU∂j∂nU ]
}
+
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+ fRRG(0, 0)
{
�2U

[
−11 (�U)

2
+ 25 (�V )

2
+ 10�U�V + 4δijδmn∂i∂m(U + V )∂j∂n(U + V )

]
+

+�2V
[
9 (�U)

2 − 39 (�V )
2
+ 26�U�V − 12δijδmn∂i∂m(U + V )∂j∂n(U + V )

]
+

+2δij [(3�V −�U) (3∂i�U∂j (�U + 2�V )− ∂i�V ∂j�V )−

−∂i (3�V −�U) ∂j

(
−3 (�U)

2
+ (�V )

2 − 6�U�V+

+4δmnδkl∂m∂k(U + V )∂n∂l(U + V )
)− (�U +�V ) ∂i (3�V −�U) ∂j (3�V −�U)

]
+

+4δijδmn [∂i∂mU [∂j (3�V −�U) ∂n (3�V −�U) + (3�V −�U) ∂j∂n (3�V −�U)]−

− (3�V −�U)� (∂i∂m(U + V )∂j∂n(U + V ))]}+

+ fRRRR(0, 0)
{
− 1

2 (3�V −�U)
2 (

3�2V −�2U
)− δij (3�V −�U) ∂i (3�V −�U) ∂j (3�V −�U)

}
=

= 2κ2
{
ρ
[
v4 − 3Uv2 + 4U2 + 2g

(4)
00 + 2g

(3)
0i v

i +Π(v2 − 4U)
]
+ p

(
v2 − 2U

)}
(8.24)

Then, Eq.(8.20), Eq.(8.22) and Eq.(8.24) constitute the Newtonian, PN and PPN limits, respectively,
for the (0, 0) -field equation of f(R,G) -gravity when the metric tensor (8.5) is assumed.

Trace equation

We proceed to find the Newtonian, PN and PPN limits for the trace equation. From Eq.(8.4) at O(0)
order in the velocity we obtain again: f(0, 0) = 0 .

In the Newtonian limit, i.e. at O(2) order in the velocity, Eq.(8.4) reduces to:

−fR(0, 0)R(2) + 3fRR(0, 0)
(∇2R

)(2)
= 2κ2T (0). (8.25)

Using (8.6), (8.11) and (8.14), Eq.(8.25) is given by:

fR(0, 0) (3�V −�U) + 3fRR(0, 0)
(
3�2V −�2U

)
= −2κ2ρ. (8.26)

In the PN limit, i.e. at O(4) order in the velocity, using the calculations given in Appendix E, Eq.(8.4)
reduces to:

+ 3fRR(0, 0)
{
g(0) 00

(
∂0∂0R

(2) − Γ
(2) i

00∂iR
(2)
)
+ g(0) ij

(
∂i∂jR

(4) − Γ
(2) k

ij∂kR
(2)
)
+ g(2) ij∂i∂jR

(2)
}
+

+ 3fRRR(0, 0) g(0) ij
{
∂iR

(2)∂jR
(2) +R(2)∂i∂jR

(2)
}
+

+ fRG(0, 0)
{
3g(0) ij∂i∂jG(4) + 2R(2)g(0) ij∂i∂jR

(2) − 4g(0) img(0) jnR
(2)
ij ∂m∂nR

(2)
}
−

− fR(0, 0)R
(4) = 2κ2

{
g(0) 00T

(2)
00 + g(2) 00T

(0)
00 + g(0) ijT

(2)
ij

}
.

(8.27)
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Using in (8.27) the results obtained in the previous section, the PN limit for the trace equation is given
by:

− fR(0, 0)
{

1
2�g

(4)
00 + 2V (�U − 3�V ) + ∂0∂0U − 2δij (∂iU) (∂jU)− 2U�U

}
+

+ 3fRR(0, 0)
{
− 1

2�2g
(4)
00 + 2 (�U)

2 − 2�U �V + 6 (�V )
2
+ ∂0∂0 (3�V − 2�U) + 2 (U − 2V )�2U+

+12V�2V + δij [∂i (3V + U) ∂j (3�V −�U) + 8∂iU ∂j�U + 4δmn (∂i∂mU) (∂j∂nU)]
}−

− 3fRRR(0, 0)
{
δij∂i (3�V −�U) ∂j (3�V −�U) + (3�V −�U)� (3�V −�U)

}
+

+ 2fRG(0, 0)
{
2 (4�U + 5�V )�2U + 6 (2�U −�V )�2V + 3δij [3∂i (�U) ∂j (�U + 2�V )−

−∂i (�V ) ∂j (�V )]− 6δijδmn� [∂i∂m(U + V )∂j∂n(U + V )]
}
= 2κ2 {ρ (Π− 2U)− 3p}

(8.28)

In the PPN limit, i.e. at O(6) order in the velocity, using the calculations given in Appendix E,
Eq.(8.4) reduces to:

− fR(0, 0)R
(6) +

+ 3fRR(0, 0)
{
g(0) 00

[
∂0∂0R

(4) − Γ
(3) 0

00∂0R
(2) − Γ

(2) i
00∂iR

(4) − Γ
(4) i

00∂iR
(2)
]
+

+g(2) 00
[
∂0∂0R

(2) − Γ
(2) i

00∂iR
(2)
]
+ g(0) ij

[
∂i∂jR

(6) − Γ
(3) 0

ij∂0R
(2) − Γ

(2) k
ij∂kR

(4)−

−Γ(4) k
ij∂kR

(2)
]
+ 2g(3) 0i∂0∂iR

(2) + g(2) ij
[
∂i∂jR

(4) − Γ
(2) k

ij∂kR
(2)
]
+ g(4) ij∂i∂jR

(2)
}
+

+ fRG(0, 0)
{
R(2)G(4) + 2R(4)g(0) ij∂i∂jR

(2) − 4R
(2)
00

(
g(0) 00

)2 [
∂0∂0R

(2) − Γ
(2) i

00∂iR
(2)
]
+

+3
[
g(0) 00

(
∂0∂0G(4) − Γ

(2) i
00∂iG(4)

)
+ g(0) ij

(
∂i∂jG(6) − Γ

(2) k
ij∂kG(4)

)
+ g(2) ij∂i∂jG(4)

]
+

+2R(2)
[
g(0) 00

(
∂0∂0R

(2) − Γ
(2) i

00∂iR
(2)
)
+ g(0) ij

(
∂i∂jR

(4) − Γ
(2) k

ij∂kR
(2)
)
+

+g(2) ij∂i∂jR
(2)
]− 4R

(2)
jn g

(0) ijg(0)mn
[
∂i∂mR(4) − Γ

(2) k
im∂kR

(2)
]
−

−4R(2)
jn

[
g(2) ijg(0)mn + g(0) ijg(2)mn

]
∂i∂mR(2)−

−8R(3)
0i g

(0) 00g(0) ij∂0∂jR
(2) − 4R

(4)
jn g

(0) ijg(0)mn∂i∂mR(2)
}
+

+ 2fGG(0, 0) g(0) ij
{
R(2)∂i∂jG(4) − 2R

(2)
jn g

(0)mn∂i∂mG(4)
}
+

+ fRRR(0, 0)
{

1
6

(
R(2)

)3
+ 3

[
g(0) 00

(
∂0R

(2)∂0R
(2) +R(2)∂0∂0R

(2) − Γ
(2) i

00R
(2)∂iR

(2)
)
+
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+g(0) ij
(
2∂iR

(2)∂jR
(4) +R(2)∂i∂jR

(4) +R(4)∂i∂jR
(2) − Γ

(2) k
ijR

(2)∂kR
(2)
)
+

+g(2) ij
(
∂iR

(2)∂jR
(2) +R(2)∂i∂jR

(2)
)]}

+

+ fRRG(0, 0)
{
3
[
g(0) ij

(
2∂iR

(2)∂jG(4) + G(4)∂i∂jR
(2) +R(2)∂i∂jG(4)

)]
+

+2R(2)g(0) ij
[
∂iR

(2)∂jR
(2) +R(2)∂i∂jR

(2)
]−

−4R(2)
jn g

(0) ijg(0)mn
[
∂iR

(2)∂mR(2) +R(2)∂i∂mR(2)
]}

+

+ 3fRRRR(0, 0) g(0) ijR(2)
{
∂iR

(2)∂jR
(2) + 1

2R
(2)∂i∂jR

(2)
}
=

= 2κ2
{
g(0) 00T

(4)
00 + g(2) 00T

(2)
00 + g(4) 00T

(0)
00 + 2g(3) 0iT

(1)
0i + g(0) ijT

(4)
ij + g(2) ijT

(2)
ij

}
(8.29)

Introducing in (8.29) the results obtained in the previous section, we finally obtain:

− fR(0, 0) R(6)+

+ fRR(0, 0) 3
{
∂0∂0

[
1
2�g

(4)
00 − 2V (3�V −�U) + ∂0∂0U − 2δij (∂iU) (∂jU)− 2U�U

]
+

+2U∂0∂0 (3�V −�U) + ∂0(3V + U) ∂0 (3�V −�U)−�R(6) + V�2g
(4)
00 +

+4V (2V − U)�2U − 24V�2V − 4V�U� (U − V )−

−12V (�V )
2
+ 2g(3) 0i∂0∂i (3�V −�U) + δij

[
−
(

1
2∂ig

(4)
00 − ∂0g

(3)
0i

)
∂j (3�V −�U)+

+∂i(U − V )
(

1
2∂j�g

(4)
00 − 2∂jV (3�V −�U) + ∂j∂0∂0U − 2∂jU �U − 2U∂j�U

)
−

−2 ((2V − U)∂iU + V ∂iV ) ∂j (3�V −�U)− 16V ∂iU∂j�U + ∂ig
(3)
0j ∂0 (3�V −�U)

]
−

−δijδmn
[
8V ∂i∂mU ∂j∂nU + 1

2

(
2∂ig

(4)
jn − ∂ng

(4)
ij

)
∂m (3�V −�U)+

+g
(4)
im∂j∂n (3�V −�U) + 4∂i(U − V )∂mU∂j∂nU

]}
+

+ fRG(0, 0)
{
�2U

[
�g

(4)
00 − 4 (U + 6V )�U − 4 (2U + 9V )�V + 2∂0∂0 (U + 2V )+

+4δij (∂iV ∂j (U + V )− ∂iU∂jU)
]
+�2V

[
−3�g

(4)
00 + 12 (U − 6V )�U + 24V�V−

−2∂0∂0 (3U + 2V ) + 4δij (3∂iU∂jU − ∂iV ∂j (U + V ))
]− 3�G(6) + 3 (�U)

3
+

+3∂0∂0

[
−3 (�U)

2
+ (�V )

2 − 6 (�U) (�V ) + 4δimδjn∂i∂j (U + V ) ∂m∂n (U + V )
]
−

−11�U�V� (U + V ) + 2�U
[
∂0∂0 (3�V −�U)− 2δijδmn∂i∂m(U + V )∂j∂n(U + V )

]−
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−21 (�V )
3
+ 2�V

[
�2g

(4)
00 + ∂0∂0 (9�V −�U) + 6δijδmn∂i∂m(U + V )∂j∂n(U + V )

]
+

+4δij [∂iU (− (5�U + 14�V ) ∂j�U + 3 (2�V −�U) ∂j�V+

+ 3δmnδkl∂j [∂m∂k(U + V )∂n∂l(U + V )]
)− ∂iV (−2 (2�U + 5�V ) ∂j�U +

+6 (3�V −�U) ∂j�V + 3δmnδkl∂j [∂m∂k(U + V )∂n∂l(U + V )]
)
+

+ �g
(3)
0i ∂0∂j (3�V −�U)− 3V (3∂i�U∂j (�U + 2�V )− ∂i�V ∂j�V )

]
+

+4δijδmn [6V� (∂i∂m(U + V )∂j∂n(U + V ))− 4�V ∂i∂mU∂j∂nU−

−∂i∂m (3�V −�U)
{

1
2

(
∂0∂jg

(3)
0n + ∂0∂ng

(3)
0j +�g

(4)
jn − ∂j∂ng

(4)
00 −

− δkl
(
∂k∂jg

(4)
ln + ∂k∂ng

(4)
lj − ∂j∂ng

(4)
kl

))
+ 2U∂j∂nU + 2V ∂j∂nV+

+∂jU∂n(U − V ) + ∂jV ∂n(3V − U)}]}+

+ fGG(0, 0) 2 (�U −�V )�
{
−3 (�U)

2
+ (�V )

2 − 6 (�U) (�V ) + 4δimδjn∂i∂j (U + V ) ∂m∂n (U + V )
}
+

+ fRRR(0, 0)
{
− 3

2 (3�V −�U)�2g
(4)
00 − 37

6 (�U)
3
+ 51

2 (�U)
2�V − 81

2 �U (�V )
2
+ 117

2 (�V )
3
+

+3�2U
[
1
2�g

(4)
00 + ∂0∂0U − 2(U + 3V ) (3�V −�U)− 2δij∂iU∂jU − 2U�U

]
+

+9�2V
[
− 1

2�g
(4)
00 − ∂0∂0U + 6V (3�V −�U) + 2δij∂iU∂jU + 2U�U

]
+

+3 (3�V −�U) ∂0∂0 (3�V − 2�U) + 3∂0 (3�V −�U) ∂0 (3�V −�U)+

+3δij
[
8 (3�V −�U) ∂iU∂j�U +

(
−∂i�g

(4)
00 + (3�V −�U) ∂i (U + 7V )+

+6V ∂i (3�V −�U)− 2∂i∂0∂0U + 4�U∂iU + 4U∂i�U) ∂j (3�V −�U)] +

+12δijδmn [(3�V −�U) ∂i∂mU ∂j∂nU + 2∂iU∂m (3�V −�U) ∂j∂nU ]
}
+

+ fRRG(0, 0)
{
�2U

[
−25 (�U)

2
+ 63 (�V )

2
+ 10�U�V + 12 δijδmn ∂i∂m(U + V ) ∂j∂n(U + V )

]
+

+3�2V
[
(�U)

2 − 15 (�V )
2
+ 46�U�V − 12 δijδmn ∂i∂m(U + V ) ∂j∂n(U + V )

]
+

+2δij [3 (3�V −�U) (3∂i�U∂j�U − ∂i�V ∂j�V + 6∂i�U∂j�V )−

−3∂i (3�V −�U) ∂j

(
−3 (�U)

2
+ (�V )

2 − 6 (�U) (�V )+ +

+4δimδjn ∂i∂j (U + V ) ∂m∂n (U + V )
)
+ (5�V −�U) ∂i (3�V −�U) ∂j (3�V −�U)

]−
−12δijδmn (3�V −�U)� [∂i∂j (U + V ) ∂m∂n (U + V )]

}−
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− fRRRR(0, 0) 3 (3�V −�U)
{
∂i (3�V −�U) ∂j (3�V −�U) + 1

2 (3�V −�U)
(
3�2V −�2U

)}
=

= 2κ2
{
ρ
[
−v2 (U + 2V ) + g

(4)
00 + 2g

(3)
0i v

i − 2UΠ
]
− 2Up

}
.

(8.30)

Then, Eq.(8.26), Eq.(8.28) and Eq.(8.30) constitute the Newtonian, PN and PPN limit, respectively,
for the trace equation of f(R,G) modified gravity when the metric tensor given by (8.5) is assumed.

8.2 Solving the Newtonian limit

In this section our aim is to solve the system of equation for the Newtonian limit of f(R,G) modified
gravity, i.e. the system constituted by Eq.(8.20) and Eq.(8.26), in the most general way. In order to do
this, we will search for solutions in terms of Green’s functions (see [70]).

We start considering the set of equations given by Eq.(8.20) and Eq.(8.26), this is:

fR(0, 0) (3�V +�U) + 2fRR(0, 0)
(
3�2V −�2U

)
= −4κ2ρ

fR(0, 0) (3�V −�U) + 3fRR(0, 0)
(
3�2V −�2U

)
= −2κ2ρ

(8.31)

By introducing the new auxiliary functions A = fR(0, 0)(3V +U) and B = 2fRR(0, 0) (3V − U) , we can
write (8.31) as:

−4κ2ρ = �A+�2B

−4κ2ρ = fR(0,0)
fRR(0,0)�B + 3�2B

(8.32)

Considering now the new function Φ = A+�B , (8.32) reduces to:

−4κ2ρ = �Φ

−4κ2ρ = fR(0,0)
fRR(0,0)�B + 3�2B

(8.33)

It is important to remark that (8.33) is a set of uncoupled equations. We are interested in the solution of
the second equation in (8.33) in terms of the Green’s function G(x,x’) defined by:

B = −4κ2C

∫
d3x’G(x,x’)ρ(x’) (8.34)

where C is a constant, which is introduced for dimensional reasons. Now the set of equations given by
(8.33) is equivalent to:

−4κ2ρ = �Φ

1
C δ(x− x’) = fR(0,0)

fRR(0,0)�xG(x,x’) + 3�2
xG(x,x’)

(8.35)

where δ(x− x’) is the three-dimensional Dirac δ -function. The general solutions of equations (8.31) for
U(x) and V (x) , in terms of the Green’s function G(x,x’) and the function Φ(x) , are:

U(x) = 1
2fR(0, 0)

Φ(x) + 2κ2C

(
�x

fR(0, 0)
+ 1

2fRR(0, 0)

)∫
d3x’G(x,x’)ρ(x’)

V (x) = 1
6fR(0, 0)

Φ(x) + 2
3κ

2C

(
�x

fR(0, 0)
− 1

2fRR(0, 0)

)∫
d3x’G(x,x’)ρ(x’)

(8.36)
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In summary, the functions U(x) and V (x) , which are related with g
(2)
00 and g

(2)
ij , respectively, by

Eq.(8.5) have been found in terms of the Green’s function G(x,x’) and the function Φ(x) , giving in this
way a general solution to the Newtonian limit for f(R,G) modified gravity theories.

8.3 Weak field limit in two especial cases: f(R) and f(G) modi-
fied gravities

In this section, the results obtained previously will be used for two special cases: f(R) modified gravity
and f(G) modified gravity, respectively.

8.3.1 f(R) modified gravity

The starting action is given by:

S =

∫
d4x
√−g

(
1

2κ2
f(R) + Lm

)
. (8.37)

In order to obtain the Newtonian, PN and PPN limits for this theory we will use the equations of the
previous section considering the change: f(R,G)→ f(R) . The field equations for f(R) modified gravity
are obtained from Eq.(8.3):

−1

2
gμνf(R) + f ′(R)Rμν + gμν∇2f ′(R)−∇μ∇νf

′(R) = 2κ2Tμν , (8.38)

while the trace equation is obtained from Eq.(8.4):

−2f(R) + f ′(R)R+ 3∇2f ′(R) = 2κ2T. (8.39)

Before analyzing the Newtonian, PN and PPN limits for this theory, it is important to remark that at the
lowest order in the velocity, i.e. O(0) -order, from Eq.(8.38) and Eq.(8.39), we obtain: f(0) = 0 .

Newtonian limit

The Newtonian limit of f(R) modified gravity corresponds to O(2) -order for Eq.(8.38) and Eq.(8.39).

The (0, 0) -field equation for f(R) modified gravity at Newtonian order can be obtained from (8.20)
and it is given by:

f ′(0) (3�V +�U) + 2f ′′(0)
(
3�2V −�2U

)
= −4κ2ρ. (8.40)

The trace equation for f(R) modified gravity at Newtonian order can be obtained from Eq.(8.26) and
it is given by:

f ′(0) (3�V −�U) + 3f ′′(0)
(
3�2V −�2U

)
= −2κ2ρ. (8.41)
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PostNewtonian limit

In this case, the aim is to obtain Eq.(8.38) and Eq.(8.39) at O(4) -order in the velocity.

For the (0, 0) -field equation, we use Eq.(8.22). For f(R) modified gravity it reduces to:

f ′(0)
{

1
4�g

(4)
00 + 3(U + V )�V + V�U + 1

2∂0∂0U − δij∂iU∂jU
}
+

+ f ′′(0)
{
− 1

2�2g
(4)
00 + 15

4 (�V )
2 − 7

2�U�V + 11
4 (�U)

2
+ 6(U + 2V )�2V − 4V�2U − ∂0∂0�U+

+ δij [3∂iV ∂j (3�V −�U) + 8∂iU ∂j�U + 4δmn∂i∂mU ∂j∂nU ]
}−

− f ′′′(0)
{
δij∂i (3�V −�U) ∂j (3�V −�U) + (3�V −�U)� (3�V −�U)

}
= 2κ2ρ

(
Π+ v2 − 4U

)
.

(8.42)
While for the trace equation, Eq.(8.28) gives:

− f ′(0)
{

1
2�g

(4)
00 + 2V (�U − 3�V ) + ∂0∂0U − 2δij (∂iU) (∂jU)− 2U�U

}
+

+ 3f ′′(0)
{
− 1

2�2g
(4)
00 + 2 (�U)

2 − 2�U �V + 6 (�V )
2
+ ∂0∂0 (3�V − 2�U) + 2 (U − 2V )�2U+

+12V�2V + δij [∂i (3V + U) ∂j (3�V −�U) + 8∂iU ∂j�U + 4δmn (∂i∂mU) (∂j∂nU)]
}−

− 3f ′′′(0)
{
δij∂i (3�V −�U) ∂j (3�V −�U) + (3�V −�U)� (3�V −�U)

}
= 2κ2 {ρ (Π− 2U)− 3p}

(8.43)

PostPostNewtonian limit

Finally, the PPN limit corresponds to O(6) -order for Eq.(8.38) and Eq.(8.39).

For the (0, 0) -field equation we obtain from Eq.(8.24) the following result:

f ′(0)
{

1
2

(
R

(6)
00 + δijR

(6)
ij

)
− δijg

(3)
0i R

(3)
0j − 1

2�V
[
3
(
g
(4)
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And Eq.(8.30) implies that the trace equation is given by:
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(8.45)

Summing up, the Newtonian limit of f(R) modified gravity theories is given by Eq.(8.40) and
Eq.(8.41); the post–Newtonian limit is given by Eq.(8.42) and Eq.(8.43); and the post–post–Newtonian
limit is given by Eq.(8.44) and Eq.(8.45), respectively.

8.3.2 f(G) modified gravity

We will consider the following action:

S =

∫
d4x
√−g

{
1

2κ2
[R+ f(G)] + Lmatter

}
. (8.46)

We proceed in the same way as we did for f(R) modified gravity, but in this case the change is given
by f(R,G)→ R+ f(G) .

The field equations for this theory can be obtained from (8.3):

−1

2
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while the trace equation is obtained from Eq.(8.4):

−R− 2f(G) + 2f ′(G)G + 2R∇2f ′(G)− 4Rρσ∇ρ∇σf ′(G) = 2κ2T. (8.48)

From the lowest order we obtain again: f(0) = 0 .

Newtonian limit

In this case, the (0, 0) -field equation obtained from Eq.(8.20) is given by:

�U + 3�V = −4κ2ρ. (8.49)
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While the trace equation can be obtained from Eq.(8.26) and it reduces to:

�U − 3�V = 2κ2ρ. (8.50)

PostNewtonian limit

The PN limit for the (0, 0) -field equation can be calculated from Eq.(8.22) and it reduces to:
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For the case of the trace equation, Eq.(8.28) reduces to:

− 1
2�g

(4)
00 + 2V (�U − 3�V ) + ∂0∂0U − 2δij (∂iU) (∂jU)− 2U�U = 2κ2 {ρ (Π− 2U)− 3p}

(8.52)

PostPostNewtonian limit

The PPN limit for the (0, 0) -field equation is obtained from Eq.(8.22) and can be written as:
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And for the trace equation, Eq.(8.30) reduces to:
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Summarizing, the Newtonian limit of f(G) modified gravity theories is given by Eq.(8.49) and
Eq.(8.50); the post–Newtonian limit is given by Eq.(8.51) and Eq.(8.52); and the post–post–Newtonian
limit is given by Eq.(8.53) and Eq.(8.54), respectively.

8.4 Conclusions

In this chapter, the weak field limit of f(R,G) modified gravity has been considered in much detail. The
importance of this analysis lies in the fact that it is mandatory, for any relativistic theory of gravity, to
reproduce the extremely precise experimental results of the theory of General Relativity of Albert Einstein
at this level. As a most ubiquitous example, any viable gravitational theory must pass the solar system
tests.

The Newtonian, post–Newtonian and post–post–Newtonian limits of f(R,G) modified gravity have
been calculated and they have been applied to the special cases of f(R) and f(G) modified gravities
respectively. The next step, for future works, could be compare these limits for viable f(R,G) with those
of General relativity and with the most accurate observational data.

In the case of the Newtonian limit of f(R,G) modified gravity, a most convenient, general solution in
terms of the Green’s functions has been calculated.
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Part IV

General conclusions and perspectives
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This memory is the product of work done during the last four years. In it I will present the results
obtained in the study I have carried out of some aspects related to different gravitational theories, focusing
overall in the so–called f(R) modified gravity. In this section, the conclusions obtained throughout the
memory are summarized.

The first part of the memory was devoted to the reconstruction program of cosmological solutions for
different gravitational theories. With the help of these tools, it has been shown that any cosmology, given
by its scale factor or its Hubble parameter, can be reproduced in the framework of a theory of gravity.
In first place, two well–known reconstruction schemes for f(R) modified gravity were reviewed and, for
the first time, the results obtained, by means of their use, are compared for the same example. These
two reconstruction schemes are successfully extended to more realistic physical theories, the Yang–Mills
theories and, as in the case of f(R) modified gravity, they are compared. One of the reconstruction
schemes is based on the use of an auxiliary scalar field while the other scheme does not require it. By
developing the same example for both methods, it is clear that they do not give the same results; in the
case of f(R) modified gravity, the result obtained by using the reconstruction program with an auxiliary
scalar field seems to be more general than the one obtained with the other method, but under some cir-
cumstances the results coming from both schemes have a similar behavior at low and large curvatures; in
the case of Yang–Mills theory, two results are obtained by applying the reconstruction scheme with the
auxiliary scalar field, one of these results coincides with the one obtained by using the other method. The
non–equality between the results, given by the two methods, seems to support the point of view that the
Einsteinian and the Jordanian frame descriptions are not equivalent, and actually lead to two physically
different theories. This non–equivalence between the results obtained is due to the fact that the action
with the auxiliary scalar field expresses a more extensive class of theories than the other action. Any
cosmology can be realized in the framework of f(R) modified gravity, or Yang–Mills theory, with the
help of any of these reconstruction programs; even though, it is worth saying that the choice of one of
the schemes over the other may greatly ease the task. In fact, there are examples in which there exist
analytical solutions for one of the reconstruction schemes, but not for the other. In a future work, it
would be of great interest to perform a numerical analysis, of several cosmological models, following the
two different reconstruction schemes in order to further compare them and to provide more evidences
that support the non–equivalence between the Einsteinian and Jordanian frame descriptions. After the
comparison between the two methods, a reconstruction scheme is developed for a minimal gravitational
coupling of the Yang–Mills field, which includes second– and fourth–order terms of the Yang–Mills field
strength tensor, in the general theory of relativity. This kind of theories is usually more complicated than
the one considered before and analytical results are hard to find, but it is shown that de Sitter solutions
exist only in the trivial case, i.e. when the arbitrary function of the Yang–Mills field, that appears in
the action of the theory, is a constant. In order to find out a non–trivial de Sitter solution, the case of
a non–minimal gravitational coupling of the Yang–Mills field is considered. The reconstruction scheme is
developed for this kind of theories and the equation that must be satisfied in order to obtain the desired
de Sitter solutions is shown. This equation includes an arbitrary parameter and, depending on its value,
it is demonstrated that the equation can be easily solved in quadratures or, in the most general case,
numerically. The performance of the numerical analysis for this model could be interesting for a future
work. In order to finish the study of the reconstruction schemes for the gravitational theories, the case
of cyclic universes in the framework of f(R) Hořava–Lifshitz gravity is also considered. The Hořava–
Lifshitz gravity is a power–counting renormalizable gravitational theory introduced by Hořava, in which
the invariance under full diffeomorphisms of General Relativity is broken by introducing an anisotropy
between the spatial and time coordinates through a critical exponent z . In this work, a modification of
this theory, achieved by changing the scalar curvature for a generic function of it, is considered in order
to reproduce cyclic universes. The two reconstruction schemes reviewed for the cases of f(R) –gravity
and Yang–Mills theory are now used to realize cosmologies with a cyclic behavior. In the case of the
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reconstruction program in terms of e–folding, the final equation that gives us the function f(R̃) , for an
example of a cyclic universe is shown, but the solution is not analytic. Instead, a solution of a cyclic
universe is found by using the reconstruction scheme with an auxiliary scalar field. As in the previous
cases of f(R) gravities and Yang–Mills theories, the numerical analysis of the cosmological models is of
great importance for future works in order to be able to compare the results obtained for cyclic universes
by using both reconstruction methods. In addition, the shape of the action along each phase of a typical
ekpyrotic universe is studied.

After the first part, devoted to the study and development of the reconstruction program for some grav-
itational theories, the memory of the thesis goes on with a second block dedicated to the detailed analysis
of the cosmic history and growth of the matter density perturbations for some viable F (R) modified
gravities. In a first place, two viable F (R) models, one exponential and one power–form, are studied. A
matter domination era is checked to take place in the framework of both models, but the large frequency of
the oscillations of dark energy, which appear in this epoch, together with the stability conditions imposed,
cause a divergence in the high derivatives of the Hubble parameter. This problem grows worse at high
redshift because the frequency of the dark energy oscillations increases with this parameter. To avoid this
problem, a corrective term is added to the models in order to stabilize the frequency of the oscillations. It
is demonstrated that this new term does not cause any problem to the viability of the models. The new
models are checked to be in agreement with the observational data and they easily pass the local test of
the solar system. The cosmological future of the two viable F (R) gravities is also studied and the crossing
of the phantom divide, which characterizes the de Sitter epoch, is demonstrated to take place in a very far
future. It is also proposed that the adding of inhomogeneous fluids to the models may avoid this crossing.
It is very important to remark that all the results obtained in an analytical way, using the perturbation
theory, are in agreement with the numerical analysis performed on the two models. After the analysis of
the expansion history is done, the study of the growth of matter density perturbations is performed for
the two viable F (R) modified gravities. The fact that different gravitational theories can exhibit very
similar cosmic history can make it very difficult to discriminate among them. In this sense, the study of
the growth of matter density perturbations can provide a significant tool in order to distinguish among
the different theories. In a first step, the growth rate for the two F (R) models considered is obtained
via numerical analysis. Even if the growth rate can always be obtained, at least in a numerical way, for
every gravitational model, it is clear that, in order to discriminate among theories, the growth rate is not
very useful. In this sense, one way of characterizing the growth of matter density perturbations can be
the so–called growth index. A detailed analysis of several ansätze for the growth index is performed for
the two viable models, concluding that the choice of the growth index with a linear dependence with the
redshift is the most appropriate parameterization for the models considered. To end with the first part
of the block dedicated to the cosmic and growth histories, two new viable exponential models, which can
unify early– and late–time cosmic acceleration, are proposed and a detailed analysis of inflation is done for
them. It is demonstrated that the number of e –folds obtained for the two models depends on the model
parameters in the presence of ultrarelativistic matter, whose existence makes inflation end. A numerical
analysis of inflation is performed for both exponential models. Thus, an unified description of early– and
late–time acceleration is built in the framework of F (R) modified gravity, but these different periods of
the cosmic history has been studied one by one; for a future work, it would be of great importance to
obtain the evolution equation expressing all the processes from inflation to the current cosmic acceleration.
To finish this part of the memory, the analysis of the growth of matter density perturbations is performed
for two new viable F (R) modified gravities, which parameters are set in order to be in agreement with
the last observational data. The growth rate is obtained for both models in a numerical way and the
same parameterizations of the growth index proposed for the previous models are studied for the new
theories. As it happened for the previous viable models, the best choice for the parameterization of the
growth index is the one with a linear dependence with respect to the redshift. Concerning future works, it
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would be of great interest to study the different parameterizations of the growth index for more realistic
modified gravity models and other dark energy theories in order to determine the best parameterization
and to generalize its use for the characterization of the growth of the matter density perturbations in
cosmological theories.

The first part of the last block of the memory is dedicated to the appearance of future finite–time
singularities in some dark energy models. The singularity problem is of fundamental importance in modern
cosmology, but a quantum theory of gravity is needed in order to address this issue rigorously. Even if
we do not have it up to now, it is also important, even at classical or semiclassical level, to try to find a
way to cure the emergence of this kind of singularities. In this sense, it is known that the addition of an
R2 –term in the action cures the possible appearance of all future finite–time singularities. In a first step,
a particular fluid with a given equation of state with one free parameter is considered. It is demonstrated
that the four types of future singularities can be realized with this fluid, depending on the value of the
parameter in the equation of state. For each special case, a function depending on the Hubble parameter
and its derivatives is found in order to avoid the appearance of the singularity. As it is demonstrated in the
literature, this function can be interpreted as a contribution of modified gravity. It is also shown that, with
the help of modified gravity, a function of the Hubble parameter and its derivatives can be found in order
to cure all the singularities of the considered fluid with a given equation of state. The next case considered
is an f(R) modified gravity non-minimally coupled to matter–like Lagrangians. It is shown that, for this
kind of theories, the appearance of a singularity of type II is avoided. It is also considered an example
of this kind of theories that leads to a future finite–time singularity. The differential equation for f(R) ,
which gives rise to this singularity, is given explicitly. Even if this differential equation has an analytical
solution, it is not written here because it is too long. The case of non–local gravity is also considered
and this part of the memory finishes with a study of isotropic turbulence in the dark fluid universe. It
is demonstrated that the contribution of the turbulent part of dark energy can indeed be reproduced
through the use of a scalar-tensor theory and several examples are developed in this framework, showing
that future finite–time singularities can appear in this theory. An important conclusion is that, even in the
absence of a quantum theory of gravity, an R2 –term would, in principle, cure the singularities. Concerning
future perspectives, it is clear that a more fully–fledged theory of quantum gravity is necessary in order
to address the singularity problem. In any case, the fact that future finite–time singularities can cause
various problems, as instabilities in current black hole and stellar astrophysics, suggests that finding natural
scenarios, even at classical and semiclassical level, that cure this kind of singularities, is of fundamental
importance. After the analysis of the singularity problem, the second part of the last block is devoted to the
study of the weak field limit of f(R,G) modified gravity. This analysis is of great importance because it is
mandatory for any gravitational theory to reproduce the results obtained with General Relativity at short
scales. The Newtonian, post–Newtonian and post–post–Newtonian limits of f(R,G) modified gravity are
calculated and they are applied to the special cases of f(R) and f(G) modified gravities respectively. In
the case of the Newtonian limit of f(R,G) modified gravity, a most convenient, general solution in terms
of the Green’s functions is calculated. For future work, it would be interesting to consider viable f(R,G)
theories and compare their limits with the corresponding ones in General Relativity. The differences could
be relevant in order to discriminate some of these theories by invoking the accurate cosmological data to
be obtained in ongoing and future sky surveys.
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Appendix A

Equations in the FLRW metric for
non–minimal gravitational coupling
with the Yang–Mills field

In the FLRW spatially flat space–time

Γ0
ij = Ha2δij , Γi

j0 = Hδij , Γμ
00 = 0, Γ0

μ0 = 0,

� = − ∂0∂0 − 3H∂0 +
1

a(t)2
(∂1∂1 + ∂2∂2 + ∂3∂3) ,

(A.1)

R00 = − 3
(
Ḣ +H2

)
, R0i = 0 , Rij =

(
Ḣ + 3H2

)
gij , R = 6

(
Ḣ + 2H2

)
. (A.2)

Using the field Ab in the form (3.41), we get two independent equations. The first one reads:

R00 − 1

2
Rg00 = 3H2 =

1

M2
P

(
T

(YM)
00 + Λ

)
. (A.3)

For any twice-differentiable functions f(R) and W(t) , we get

� [f ′(R)W] = −f ′′′(R)Ṙ2W − 2f ′′(R)R̈Ẇ − f ′(R)Ẅ − 3H
[
f ′′(R)ṘW + f ′(R)Ẇ

]
,

g00� [f ′(R)W]−∇0∂0 [f
′(R)W] = 3H

[
f ′′(R)ṘW + f ′(R)Ẇ

]
.

Using

F b
β0F

b
α0g

αβ = F b
i0F

b
i0g

ii = 3
φ̇2

a2
, gαβF b

0βF
b
0α −

1

4
g00F =

3

2

(
φ̇2

a2
+

g̃2φ4

a4

)
,

we obtain that Eq. (A.3) is equivalent to

2M2
PH

2 = (1 + f(R))

(
φ̇2

a2
+

g̃2φ4

a4

)
− 6

(
Ḣ +H2

)
f ′(R)

(
g̃2φ4

a4
− φ̇2

a2

)
+

2Λ

3
+

+ 6H

(
Ṙf ′′(R)

(
g̃2φ4

a4
− φ̇2

a2

)
+ 2f ′(R)

(
2g̃2φ3(φ̇−Hφ)

a4
− φ̇(φ̈−Hφ̇)

a2

))
.

(A.4)
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field

The second equation reads:

Rii − 1

2
Rgii = − gii

(
2Ḣ + 3H2

)
=

1

M2
P

(
T

(YM)
ii + T

(4)
ii

)
. (A.5)

To calculate T
(YM)
ii we use the following formulae (no summation over i )

F b
βiF

b
αig

αβ = F b
0iF

b
0ig

00 + F b
jiF

b
jig

jj = − φ̇2 + 2g̃2
φ4

a2
, (A.6)

gαβF b
iβF

b
iα −

1

4
giiF =

1

2

(
g̃2φ4

a2
+ φ̇2

)
, (A.7)

and get (A.5) in the following form

− 2Ḣ − 3H2 =
1

2M2
P

[
(1 + f(R))

(
g̃2φ4

a4
+

φ̇2

a2

)
− 2Λ +

+ 6(Ḣ + 3H2)f ′(R)

(
g̃2φ4

a4
− φ̇2

a2

)
− 6[∂0∂0 + 2H∂0]

(
f ′(R)

(
g̃2φ4

a4
− φ̇2

a2

))]
.

(A.8)

Using (3.45), we rewrite Eqs. (A.4) and (A.8) in terms of ψ(t) , to get (3.57) and (3.58).



Appendix B

Conformal transformation of the
exponential model for inflation

In several cases, a suitable conformal frame to study inflation may be the so-called “Einstein frame”. An
F (R) gravity theory can be rewritten in the scalar field theory form via the conformal transformation.
We can rewrite the action in Eq. (5.1) by introducing a scalar field which couples to the curvature. Of
course, this is not exactly physically-equivalent formulation, but the formulation in the Einstein frame
may be used to obtain some of intermediate results in simpler form (especially, the case that the matter
is not taken into account).

We introduce a scalar field A into the action

IJF =
1

2κ2

∫
M

√−g [F ′(A) (R−A) + F (A)] d4x . (B.1)

Here, the subscript “JF” means “the Jordan frame” and we neglect the contribute of matter. By making
the variation of the action with respect to A , we have A = R . We define the scalar field σ as

σ = −
√
3√

2κ2
ln[F ′(A)] . (B.2)

We make the conformal transformation of the metric

g̃μν = e−σgμν , (B.3)

for which we acquire the “Einstein frame” (EF) action of the scalar field σ [125, 189]

IEF =

∫
M

d4x
√
−g̃
{

R̃

2κ2
− 1

2

(
F ′′(A)

F ′(A)

)2

g̃μν∂μA∂νA− 1

2κ2

(
A

F ′(A)
+

F (A)

F ′(A)2

)}

=

∫
M

d4x
√
−g̃
(

R̃

2κ2
− 1

2
g̃μν∂μσ∂νσ + V (σ)

)
, (B.4)

where

V (σ) ≡ − 1

2κ2

(
A

F ′(A)
− F (A)

F ′(A)2

)
= − 1

2κ2

{
eσR(e−σ)− e2σF [R(e−σ)]

}
. (B.5)
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Here, R(e−σ) is the solution of Eq. (B.2) with A = R , becoming R a function of e−σ , and R̃ denotes
the Ricci scalar evaluated with respect to the conformal metric g̃μν . Furthermore, g̃ = e−4σg is the
determinant of conformal metric.

As an example, we explore our unified model (5.66) with γ = 1 . Since we are interested in the de
Sitter solution, we take exp[−(R/Ri)

n] → 0 and neglect the cosmological constant Λ . In this case the
potential V (σ) reads

V (σ) = − 1

2κ2

[
R̃

(
e−σ̃ − 1

α

) 1
α−1 (

eσ̃ − 2e2σ̃
)
+ Λi e

2σ̃

]
. (B.6)

According with Sec. 5.4.1, we put R̃i = RdS . It is clearly seen that for R = RdS , σdS =
−√3/(2κ2) log(1 + α) and V ′(σdS) = 0 , where the prime denotes the derivative with respect to the
inflation field σ . Since V ′′(σdS) > 0 , the scalar potential has a minimum, that is a necessary condition
for a slow-roll inflation. For slow-roll parameters, we have to require

ε(σ) =
1

2κ2

(
V ′(σ)
V (σ)

)2

� 1 ,

|η(σ)| =
1

κ2

∣∣∣∣V ′′(σ)V (σ)

∣∣∣∣� 1 . (B.7)

By defining the energy density and pressure of σ as ρσ = σ̇2/2 − V (σ) and Pσ = σ̇2/2 + V (σ) ,
these conditions imply that the gravitational field equations in the flat FLRW space-time are given by
3H2/κ2 = −V (σ) , 3Hσ̇ � −V ′(σ) , and that ä(t) > 0 , and hence guarantee a sufficiently long time
inflation. In our case, since V (σdS) 	= 0 , these two conditions are well satisfied around the de Sitter
solution. Thus, since σ̇ � 0 , we find HdS = RdS/ [12(1 + α)] = R̃dS/12 .



Appendix C

Asymptotically phantom or
quintessence modified gravity

In general, realistic models of modified gravity are similar to GR with the cosmological constant, i.e., the
dark energy fluid with the EoS parameter ωDE = −1 and the de Sitter universe as the final scenario for
the cosmological evolution. Since in principle quintessence/phantom-dark energy phases are not excluded
by observations, it may be of some interest to try to reconstruct an F (R) gravity theory where the
quintessence or phantom dark energy (with a constant ωDE ) emerges. The big difficulty is due to the fact
that in the dark energy density ρDE and pressure PDE of modified gravity, the effective gravitational
terms appear. In this appendix, we reconstruct the form of F (R) gravity which resembles to a fluid with
ωDE being very close but not equal to −1 .

If the energy density of a quintessence/phantom fluid is given by

ρ = ρ0(z + 1)3(1+ω) , (C.1)

where ω is the EoS parameter, the Hubble parameter reads

H(z) =

√
κ2

3
ρ �

√
κ2ρ0
3

+
1

2

√
3κ2ρ0(1 + ω) log[z + 1] . (C.2)

Here, we have taken into account that ω is very close to −1 . We can write R as a function of the
redshift as

R(z) =
1

2
κ2ρ0 [2 + 3(1 + ω) log(z + 1)] [1− 3ω + 6(1 + ω) log(z + 1)] . (C.3)

In addition, from Eq. (5.7), in vacuum we find

ρeff ≡ ρDE =
1

2κ2

{[(
dR(z)

dz

)−1
dF (z)

dz
R(z)− F (z)

]
− 6H2(z)

[(
dR(z)

dz

)−1
dF (z)

dz
− 1

]

+ 6H2(z)(z + 1)
dR(z)

dz

[(
d2R(z)

dz2

)−1
dF (z)

dz
+

(
dR(z)

dz

)−2
d2F (z)

dz2

]}
. (C.4)

Here, F (R) model is expressed as a function of the redshift F (z) . By equating ρeff to ρ of Eq. (C.1),
we can find the F (R) model realizing this cosmology. For |ω− 1| � 0 , the solution of Eq. (C.4) is given



154 Chapter C: Asymptotically phantom or quintessence modified gravity

by

F (z) � 6κ2ρ0 [11 + (34− 9ω)ω]

(5− 3ω)2
− 6κ2ρ0(1 + ω) log(z + 1) , (C.5)

From Eq. (C.3), we have

z = −1 + exp

{
ρ0κ

2(5− 3ω)± (1 + ω)
√
ρ0κ2 [16R+ 9ρ0κ2(1 + ω)2]

12ρ0κ2(1 + ω)

}
, (C.6)

where the plus sign corresponds to the quintessence solution, whereas the minus sign does to the phantom
one. We can now write the modified gravity model as a function of the Ricci scalar as

F (R) =
ρ0κ

2(257 + 183ω + 27ω2 − 27ω3)

2(5− 3ω)2
±
√
ρ0κ2 [16R+ 9ρ0κ2(1 + ω)2]

2
, (C.7)

where ρ0 is a free parameter of the theory, and ω is the EoS parameter of dark energy coming from
the modification of gravity and equivalent to ωDE . In this way, we have reconstructed the form of F (R)
gravity that gives the quintessence or phantom fluid solution in the empty universe. Remind that this
reconstruction is valid for ωDE close to −1 .



Appendix D

Friedmann equations for modified
gravity non-minimally coupled to the
matter Lagrangian

In this appendix we carry out, in some detail, the calculations which are necessary to obtain the Friedmann
equations for the Lagrangian density of Eq. (7.27). Assuming a spatially-flat FRW universe and taking
into account Eqs. (7.33) and (7.34), Eq. (t, t) from Eq. (7.28) reads

3H(t)2

κ2
+ 3C2

(
Ḣ(t) +H(t)2

) f ′(R)

a(t)6f(R)2
− 3C2H(t)∂t

(
f ′(R)

a(t)6f(R)2

)
+

1

2

C2

a(t)6f(R)
= 0, (D.1)

and Eq. (i, i) from Eq. (7.28),

2Ḣ(t) + 3H(t)2

κ2
+ C2

(
Ḣ(t) + 3H(t)2

) f ′(R)

a(t)6f(R)2
− 2C2H(t)∂t

(
f ′(R)

a(t)6f(R)2

)
−

−C2∂t∂t

(
f ′(R)

a(t)6f(R)2

)
− 1

2

C2

a(t)6f(R)
= 0. (D.2)

Taking derivatives with respect to time, one gets

∂t

(
f ′(R)

a(t)6f(R)2

)
=

1

a(t)6f(R)2

(
f ′′(R)Ṙ− 6f ′(R)H(t)− 2f ′(R)2Ṙ

f(R)

)
(D.3)

and

∂t∂t

(
f ′(R)

a(t)6f(R)2

)
=

1

a(t)6f(R)2

[
6f ′(R)

(
6H(t)2 − Ḣ(t)

)
+ f ′′(R)

(
R̈− 12ṘH(t)

)
+

+f ′′′(R)Ṙ2 + 2f ′(R)2

(
12ṘH(t)− R̈

f(R)

)
+ 6f ′(R)3

Ṙ2

f(R)2
− 6f ′(R)f ′′(R)

Ṙ2

f(R)

]
. (D.4)

Introducing Eq. (D.3) into Eq. (D.1) and taking into account that

a(t) = a0 exp

⎡
⎣ t∫
t0

H(t′)dt′

⎤
⎦
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yields

1

6
f(R) +

a60H(t)2 exp

[
6

t∫
t0

H(t′)dt′
]

κ2C2
f(R)2 +

(
Ḣ(t) + 7H(t)2

)
f ′(R)+

+
2H(t)Ṙ

f(R)
f ′(R)2 − ṘH(t)f ′′(R) = 0, (D.5)

and putting Eqs. (D.3) and (D.4) into Eq. (D.2), this reduces to

−1

2
f(R) +

2Ḣ(t) + 3H(t)2

κ2C2
a60 exp

⎡
⎣6

t∫
t0

H(t′)dt′

⎤
⎦ f(R)2 + 7

(
Ḣ(t)− 3H(t)2

)
f ′(R)+

+2

(
R̈− 10ṘH(t)

f(R)

)
f ′(R)2 − 6

Ṙ2

f(R)2
f ′(R)3 +

(
10ṘH(t)− R̈

)
f ′′(R)+

+6
Ṙ2

f(R)
f ′(R)f ′′(R)− Ṙ2f ′′′(R) = 0. (D.6)

The other possibilities for Eq. (7.28) are identities.

We also know that R = 6Ḣ(t) + 12H(t)2 , which could be solved in terms of t as t = t(R) . Taking
this into account, Eq. (D.5) can be written as

1

6
f(R) +

a60H(t(R))2 exp

[
6

t(R)∫
t0

H(t′)dt′
]

κ2C2
f(R)2 +

[
Ḣ(t(R)) + 7H(t(R))2

] df(R)

dR
+

+
12H(t(R))

[
Ḧ(t(R)) + 4Ḣ(t(R))H(t(R))

]
f(R)

(
df(R)

dR

)2

−

− 6
[
Ḧ(t(R)) + 4H(t(R))Ḣ(t(R))

]
H(t(R))

d2f(R)

dR2
= 0, (D.7)

and Eq. (D.6) as

−1

2
f(R) +

2Ḣ(t(R)) + 3H(t(R))2

κ2C2
a60 exp

⎡
⎢⎣6

t(R)∫
t0

H(t′)dt′

⎤
⎥⎦ f(R)2 + 7

[
Ḣ(t(R))− 3H(t(R))2

] df(R)

dR
+

+12
−40H(t(R))2Ḣ(t(R)) + 4Ḣ(t(R))2 − 6H(t(R))Ḧ(t(R)) +

...
H(t(R))

f(R)

(
df(R)

dR

)2

−

− 216

[
Ḧ(t(R)) + 4H(t(R))Ḣ(t(R))

]2
f(R)2

(
df(R)

dR

)3

−

− 6
[
−40H(t(R))2Ḣ(t(R)) + 4Ḣ(t(R))2 − 6H(t(R))Ḧ(t(R)) +

...
H(t(R))

] d2f(R)

dR2
+

+216

[
Ḧ(t(R)) + 4H(t(R))Ḣ(t(R))

]2
f(R)

df(R)

dR

d2f(R)

dR2
− 36

[
Ḧ(t(R)) + 4H(t(R))Ḣ(t(R))

]2 d3f(R)

dR3
= 0.

(D.8)
Eqs. (D.7) and (D.8) are the Friedmann equations for the Lagrangian density given by (7.27) and constitute
the two differential equations we were looking for f(R) .



Appendix E

Calculations needed for the
PostNewtonian and
PostPostNewtonian limits

In this Appendix, the different calculations needed to write the PostNewtonian and PostPostNewtonian
limits for the (0, 0) -field equation and the trace equation are presented.

E.1 The PostNewtonian approximation

I present now the calculations needed to obtain the PN limit for the field equations and the trace equation.

First, I write some calculations that will be needed after:

(∇2f∗(R,G))(2) = g(0) ijf∗R(0, 0)∂i∂jR
(2)

(∇2f∗(R,G))(4) = g(0) 00
{
f∗R(0, 0)∂0∂0R

(2) − Γ
(2) i

00f
∗
R(0, 0)∂iR

(2)
}
+

+g(0) ij
{
f∗RR(0, 0)∂iR

(2)∂jR
(2) + f∗R(0, 0)∂i∂jR

(4) + f∗RR(0, 0)R
(2)∂i∂jR

(2)+

+f∗G(0, 0)∂i∂jG(4) − Γ
(2) k

ijf
∗
R(0, 0)∂kR

(2)
}
+ g(2) ijf∗R(0, 0)∂i∂jR

(2)

(∇2f∗(R,G))(6) = g(0) 00
{
f∗RR(0, 0)∂0R

(2)∂0R
(2) + f∗R(0, 0)∂0∂0R

(4) + f∗RR(0, 0)R
(2)∂0∂0R

(2)+

+f∗G(0, 0)∂0∂0G(4) − Γ
(3) 0

00f
∗
R(0, 0)∂0R

(2) − Γ
(4) i

00f
∗
R(0, 0)∂iR

(2)−

−Γ(2) i
00

[
f∗R(0, 0)∂iR

(4) + f∗RR(0, 0)R
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(2) + f∗G(0, 0)∂iG(4)
]}

+
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+g(2) 00
{
f∗R(0, 0)∂0∂0R
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(2) i

00f
∗
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(2)
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+
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(2)∂iR
(2)∂jR

(2) + 2f∗RG(0, 0)∂iR
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(
�g

(3)
0j − 2∂0∂jV

)

(R0ρ0σR
ρσ)

(4)
= − (�U) (�V )

(R0ρ0σR
ρσ)

(6)
= �V

{
1
2�g

(4)
00 − 3 ∂0∂0V + 4V�U − δij

[
1
2∂0

(
∂ig

(3)
0j + ∂jg

(3)
0i

)
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(∇ρ∇σfG(R,G))(4) = g(0) ρ0g(0)σ0
{
fRG(0, 0)∂0∂0R(2) − Γ
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+
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(2)
}
+

+
{
g(2) ρig(0)σj + g(0) ρig(2)σj

}
fRG(0, 0)∂i∂jR(2)

For the (0, 0) -field equation the following results are necessary:

(− 1
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∂i∂jR

(4) − Γ
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(2)
})
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]
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In the case of the trace equation, we need:

(−2f(R,G))(4) = −2fR(0, 0)R(4) − fRR(0, 0)R
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E.2 The PostPostNewtonian approximation

I present now the calculations needed to obtain the PPN limit for the field equations and the trace equation.

In the case of the (0, 0) -field equation we need to know the following expressions:
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Finally, in the case of the trace equation, the expressions needed are:
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energy and dark mater. In J.-M. Alimi & A. Fuözfa, editor, American Institute of Physics Conference
Series, volume 1241 of American Institute of Physics Conference Series, pages 1094–1099, 2010,
0910.1464.

[232] S. Nojiri and S. D. Odintsov. Dark energy, inflation and dark matter from modified F (R) gravity.
TSPU Bulletin, N8(110):7–19, 2011, 0807.0685.

[233] S. Nojiri and S. D. Odintsov. Non-singular modified gravity unifying inflation with late-time acceler-
ation and universality of viscous ratio bound in F (R) theory. Prog.Theor.Phys.Suppl., 190:155–178,
2011, 1008.4275.

[234] S. Nojiri and S. D. Odintsov. Unified cosmic history in modified gravity: from F (R) theory to
Lorentz non-invariant models. Phys.Rept., 505:59–144, 2011, 1011.0544.

[235] S. Nojiri and S. D. Odintsov. Accelerating cosmology in modified gravity: from convenient F (R)
or string-inspired theory to bimetric F (R) gravity. 2013, 1306.4426.

[236] S. Nojiri, S. D. Odintsov, and D. Saez-Gomez. Cosmological reconstruction of realistic modified
F (R) gravities. Phys. Lett. B, 681:74–80, 2009, 0908.1269.

[237] S. Nojiri, S. D. Odintsov, and D. Saez-Gomez. Cyclic, ekpyrotic and little rip universe in modified
gravity. AIP Conf.Proc., 1458:207–221, 2011, 1108.0767.

[238] S. Nojiri, S. D. Odintsov, and M. Sasaki. Gauss-Bonnet dark energy. Phys. Rev. D, 71(12):123509,
2005, arXiv:hep-th/0504052.

[239] S. Nojiri, S. D. Odintsov, A. Toporensky, and P. Tretyakov. Reconstruction and deceleration-
acceleration transitions in modified gravity. Gen. Rel. Grav., 42:1997–2008, 2010, 0912.2488.

[240] S. Nojiri, S. D. Odintsov, and S. Tsujikawa. Properties of singularities in the (phantom) dark energy
universe. Phys. Rev. D, 71(6):063004, 2005, arXiv:hep-th/0501025.

[241] K. Nozari and F. Kiani. On the cosmological viability of the Hu-Sawicki type modified induced
gravity. Phys. Lett. B, 703:395–401, 2011, 1108.4519.

[242] A. M. Nzioki, P. K. S. Dunsby, R. Goswami, and S. Carloni. A Geometrical Approach to Strong
Gravitational Lensing in f(R) Gravity. Phys. Rev. D, 83:024030, 2011, 1002.2056.

[243] G. J. Olmo. Limit to general relativity in f(R) theories of gravity. Phys. Rev. D, 75(2):023511,
2007, arXiv:gr-qc/0612047.

[244] H. Oyaizu. Non-linear evolution of f(R) cosmologies I: methodology. Phys. Rev. D, 78:123523,
2008, 0807.2449.



176 Bibliography

[245] H. Oyaizu, M. Lima, and W. Hu. Nonlinear evolution of f(R) cosmologies. 2. Power spectrum.
Phys. Rev. D, 78:123524, 2008, 0807.2462.

[246] M.-I. Park. The black hole and cosmological solutions in IR modified Hořava gravity. JHEP, 9:123,
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[266] J. Solà and H. Štefančić. Effective equation of state for dark energy: Mimicking quintessence and
phantom energy through a variable Λ . Phys. Lett. B, 624:147–157, 2005, arXiv:astro-ph/0505133.

[267] E. J. Son and W. Kim. Smooth cosmological phase transition in the Hořava-Lifshitz gravity. JCAP,
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[284] H. Štefančić. Generalized phantom energy. Phys. Lett. B, 586:5–10, 2004, arXiv:astro-ph/0310904.

[285] J. Vainio and I. Vilja. Stability of the scale parameter: Hu-Sawicki model. 2012, 1205.5393.

[286] A. Wang. f(R) theory and geometric origin of the dark sector in Horava-Lifshitz gravity. 2010,
arXiv:1003.5152.

[287] A. Wang and Y. Wu. Thermodynamics and classification of cosmological models in the Horava-
Lifshitz theory of gravity. JCAP, 7:12, 2009, arXiv:0905.4117.

[288] S. Weinberg. The Cosmological Constant Problem. Rev.Mod.Phys., 61:1–23, 1989.

[289] C. M. Will. Theory and Experiments in Gravitational Physics. Cambrigde University Press, 1993.

[290] P. U. Wu and H. W. Yu. Constraints on a variable dark energy model with recent observations.
Phys. Lett. B, 643:315–318, 2006, astro-ph/0611507.

[291] P. X. Wu and H. W. Yu. Avoidance of big rip in phantom cosmology by gravitational back reaction.
Nucl. Phys. B, 727:355–367, 2005, astro-ph/0407424.

[292] X. Wu and Z. H. Zhu. Reconstructing f(R) theory according to holographic dark energy.
Phys. Lett. B, 660:293–298, 2008, 0712.3603.

[293] K. Yamamoto, G. Nakamura, G. Hutsi, T. Narikawa, and T. Sato. Constraint on the cosmological
f(R) model from the multipole power spectrum of the SDSS luminous red galaxy sample and
prospects for a future redshift survey. Phys. Rev. D, 81:103517, 2010, 1004.3231.

[294] L. Yang, C. C. Lee, and C. Q. Geng. Gravitational Waves in Viable f(R) Models. JCAP, 1108:029,
2011, 1106.5582.

[295] L. Yang, C. C. Lee, L. W. Luo, and C. Q. Geng. Observational Constraints on Exponential Gravity.
Phys. Rev. D, 82:103515, 2010, 1010.2058.

[296] K. R. Yesmakhanova, N. A. Myrzakulov, K. K. Yerzhanov, G. N. Nugmanova, N. S. Serikbayaev,
and R. Myrzakulov. Some Models of Cyclic and Knot Universes. 2012, 1201.4360.

[297] X. F. Zhang, H. Li, Y. S. Piao, and X. Zhang. Two-Field Models of Dark Energy with Equation of
State across -1. Mod. Phys. Lett. A, 21:231–241, 2006, arXiv:astro-ph/0501652.

[298] G. B. Zhao, B. Li, and K. Koyama. N-body Simulations for f(R) Gravity using a Self-adaptive
Particle-Mesh Code. Phys. Rev. D, 83:044007, 2011, 1011.1257.

[299] G. B. Zhao, L. Pogosian, A. Silvestri, and J. Zylberberg. Searching for modified growth patterns
with tomographic surveys. Phys. Rev. D, 79:083513, 2009, 0809.3791.



Bibliography 179


