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Abstract 

 
This Thesis reports different nanobiotechnological applications of electrochemically 

and electrically conducting polymers. The central, and also common, focus of all the studies 

and experiments described in Chapters 4 to 6 is the interaction between synthetic 

conducting polymers and bioentities (DNA, proteins, polysaccharides, small peptides, drugs 

and cells).  

One of the major challenges of this Thesis consisted on the characterization of the 

interactions between conducting polymers and DNA. The studies described in Chapter 4 

evidenced that specific hydrogen bonding interactions, in addition to conventional 

electrostatic interactions, are formed between conducting polymers bearing polar groups 

and plasmid DNA. In order to get more information about such interactions, studies were 

essentially focused on poly(3,4-ethylenedioxythiophene), a conducting polymer with 

excellent technological properties. On the basis of both the structural changes undergone 

by the DNA upon the formation of specific interactions with the conducting polymer and 

the preferences of the latter towards well-defined nucleotide sequences and bases, a 

mechanism has been proposed to explain the interaction between the two 

macromolecules. This mechanism, which is supported by theoretical calculations, is 

consistent with all the experimental data reported in this Thesis. 

Chapter 5 is devoted to examine the interaction between morphine molecules and 

conducting polymers. Within this general context, this block of results is essentially focused 

on the optimization of the conditions necessary for the detection of this drug using poly(N-

methylpyrrole) and poly(3,4-ethylenedioxythiophene). Studies have been performed 

considering the effect of: the polymer morphology (i.e. both flat films and films containing 

hollow microstructures with doughnut-like morphologies have been examined), the time of 

incubation with morphine, and the pH of the environment. In all cases detection was 

carried out using electrochemical techniques, which include electrochemical impedance 

spectroscopy and cyclic voltammetry. Results reflect that, under controlled conditions, the 

investigated conducting polymers exhibit a high ability to capture morphine molecules, 

retaining them for a long period of time. In addition, the fabrication of a portable drug 

detector device based on conducting polymers has been proposed.  
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Finally, Chapter 6 is devoted to the preparation and characterization of new hybrid 

conducting biocomposites for nanobiotechnological and biomedical purposes. More 

specifically, this block of the work presents the electropolymerization of poly(3,4-

ethylenedioxythiophene) with different biomolecules (i.e. an enzyme, poly- and 

oligosaccharides, and a small peptide) and the interaction of these new hybrid materials 

with cells. It was found that, in general, the prepared biocomposites retain the electrical 

and electrochemical properties of the individual conducting polymer and, in addition, show 

a prominent cellular activity. Lysozyme-containing biocomposites, which form compact and 

stable films, exhibit a high bactericidal activity against Gram (+) bacteria, which is promoted 

by a controlled release of the enzyme. The remarkable cellular activity of dextrins-

containing materials suggests that they are potential candidates for the fabrication of 

cellular scaffolds. Finally, the incorporation of a low concentration of CREKA peptide into 

the polymer matrix resulted in a very positive effect on the electrochemical properties of 

the conducting polymer, which were considerably enhanced.  

 

 

Keywords: conducting polymers; nanobiotechnology; electrochemistry; 

biological entities; especific interactions; drug detection; hybrid conducting 

biocomposites; biocompatibility. 
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Resumen 

 
La presente tesis describe diferentes aplicaciones en el ámbito de la 

nanobiotecnología de los polímeros conductores generados electroquímicamente.  El 

objetivo principal de la Tesis, que además es el nexo común de los diferentes estudios que 

se presentan en los Capítulos 4 al 6, es el análisis de las interacciones entre los polímeros 

conductores sintéticos y diversas entidades biológicas (ADN, proteínas, polisacáridos, 

pequeños péptidos, drogas, y células). 

Uno de los retos más importantes de esta Tesis ha sido la caracterización de las 

interacciones entre los polímeros conductores y el ADN. Los estudios descritos a lo largo del 

Capítulo 4 ponen en evidencia la existencia de interacciones específicas por puentes de 

hidrógeno entre plásmidos de ADN y polímeros conductores con sustituyentes polares. 

Estas interacciones específicas actúan reforzando las interacciones electrostáticas 

convencionales intrínsecas a la naturaleza cargada de ambos sistemas. Con la intención de 

obtener la máxima información acerca de estas interacciones, los estudios se han centrado 

esencialmente en el poli(3,4-etilendioxitiofeno), un polímero conductor con excelentes 

propiedades y un amplio número de aplicaciones tecnológicas. Los cambios estructurales 

que se producen en el ADN como consecuencia de la formación de interacciones 

específicas, las preferencias del polímero conductor por secuencias nucleotídicas bien 

definidas, así como por con algunas bases nitrogenadas, han permitido proponer un 

mecanismo que explica la interacción entre las dos sistemas. Este mecanismo, que también 

se apoya en cálculos teóricos, es totalmente consistente con todos los datos 

experimentales descritos en esta Tesis. 

El Capítulo 5 está dedicado al análisis de la interacción entre las moléculas de 

morfina y los polímeros conductores. Dentro de este contexto general, este el proposito 

general de este bloque de resultados ha sido optimizar las condiciones necesarias para la 

detección de esta droga con poli(N-metilpirrol) y con poli(3,4-etilendioxitiofeno). Los 

estudios se han realizado teniendo en cuenta el efecto de: la morfología del polímero (es 

decir, se han examinado las tanto películas planas como películas formadas por 

microestructuras huecas con morfología tipo rosquilla), el tiempo de incubación con la 

morfina, y el pH del entono. En todos los casos la detección se ha realizado mediante 

técnicas electroquímicas, que incluyen tanto la espectroscopia de impedancia 
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electroquímica, como la voltametría cíclica. Los resultados reflejan que, en condiciones 

controladas, los polímeros estudiados muestran no solo una elevada capacidad para 

capturar las moléculas de morfina, sino también para retenerlas por un período de tiempo 

largo. Se ha propuesto la fabricación de un dispositivo portátil para la detección de drogas 

basado en polímeros conductores. 

Finalmente, el Capítulo 6 está dedicado a la preparación y caracterización de nuevos 

biocomposites conductores híbridos para aplicaciones en nanobiotecnología y biomedicina. 

Concretamente, este bloque de resultados presenta la electropolimerización del poli(3,4-

etilendioxitiofeno) con diferentes biomoléculas (es decir, un enzima, poli- y oligosacáridos, 

y un péptido) y la interacción de estos nuevos materiales híbridos con células. Se ha 

descubierto que, en general, estos biocomposites conservan las propiedades 

electroquímicas del polímero conductor y que, además, muestran una prominente actividad 

celular. Los biocomposites que contienen lisozima, forman películas compactas y estables, 

muestran una elevada actividad bactericida contra las bacterias Gram (+), la cual es debida 

a que el enzima se libera de forma controlada. La notable actividad celular observada en los 

materiales que contienen dextrinas, sugiere que estos biocomposites son candidatos 

potenciales para la fabricación de soportes celulares. Por ultimo, la incorporación de una 

baja concentración del CREKA en la matriz polimérica, tiene un efecto muy positivo en las 

propiedades electroquímicas del polímero conductor, las cuales mejoran 

considerablemente. 

 

 

Palabras-clave: Polímeros conductores; Nanobiotecnología; Electroquímica; 

Entidades biológicas; Interacciones específicas; detección de drogas; 

biocomposites conductores híbridos; biocompatibilidad. 
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PSS
-
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PT3AME Poly(3-thiophen-3-yl-acrylic acid methyl ester) 
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SDS Sodium dodecyl sulfate 

SEM Scanning electron microscopy 

 



 

 xxix 

 

Ser Serine 

SO3
-
 Sulfur trioxide 

ss-hn Single-stranted homo-nucleotides 

STOs Slater type orbitals 

T Thymine 

T3M 3-methylthiophene 

TAE Tris-acetate-EDTA 
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CPEdl Capacitance of the double layer F.cm
-2

 

Δ Energy gap eV 

ΔEb Binding energies 

 

kcal/mol 



 

 xxx 

 

ΔEb,,sol Binding energy of the complexes in solution Kcal/mol 

gbE ,∆  Binding energy without counterpoise correction kcal/mol 

ΔEdisp Dispersion energy kcal/mol 

ΔEint Interaction energy kcal/mol 

ΔEPauli Pauli repulsion energy kcal/mol 

ΔEprep Preparation energy kcal/mol 

ΔEoi Orbital interaction energy kcal/mol 

CP

gbE ,∆  Binding energy with counterpoise correction kcal/mol 

grE ,∆  Relative energy kcal/mol 

CP

CHLbE ,∆  Binding energy with counterpoise correction in 

chloroform 

 

kcal/mol 

CP

WATbE ,∆  Binding energy with counterpoise correction in 

aqueous solution 

 

kcal/mol 

ΔG Complexation driving force kcal/mol 

solG∆  Free energy of solvation kcal/mol 

grG ,∆  Relative free energy kcal/mol 

CHLrG ,∆  Relative free energy in chloroform kcal/mol 

WATrG ,∆  Relative free energy in aqueous solution kcal/mol 

ΔQ Electroactivity mC 

∆Rp Polymer resistance variation  Ω.cm
-2

 

ΔVelstat Electrostatic interaction energy kcal/mol 

E˚ Standard Potential of an electrode or couple V 

ε Dielectric constant - 

εg Transition energy - 

jmax Anodic current maximum density mA.cm
-2

 

nox-red Number of oxidation-reduction cycles - 

pH Hydrogen potential - 

pKa Acid dissociation constant - 
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r Average RMS roughness nm 

r
2
 Correlation coefficient - 
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2
 

Rp Polymer resistance Ω.cm
-2
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2
 

Rs Resistance between WE and RE Ω.cm
2
 

σ Conductivity S/cm 

t Time min 

τ Residence time ps 

θ Polimerization time s 

Z Impedance Ω.cm
-2

 

Zre Impedance: real component Ω.cm
-2

 

Zim Impedance: imaginary component Ω.cm
-2
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1. – Introduction 

1.1 – Brief historical introduction 

 

The conducting polymers (CPs) history is a sequence of discovery and rediscovery. 

Many CPs were known before any evidence about their electrical properties. The first 

reference describing the synthesis of a CP dates from 1862 when Letheby reported the 

anodic oxidation of aniline in dilute sulphuric acid, which yielded an insoluble deep-blue 

shiny powdered deposit on a platinum electrode.
[1]

 At the end of 19
th

 century, 

Goppelsroeder established that oligomers were formed by the oxidation of aniline, and 

were named “aniline black”.
[1,2]

 

In 1958, Natta synthesized polyacetylene (PA) by bubbling acetylene gas through a 

titanium/trialkyl-aluminum catalyst solution, resulting in an insoluble and unstable black 

crystalline powder. PA was the first organic polymer to be shown as conductive.
[3]

 While 

organic conductors were intermittently discussed, the field was particularly energized by 

the prediction of superconductivity.
[4]

 

In 1963, Bolto reported the presence of high electric conductivity in oxidized iodine-

doped polypyrrol (PPy).
[5,6]

 In 1967, Hideki Shirakawa prepared a thin silvery PA film using a 

Zieglar-Natta catalyst. He found found that the treatment of PA with halogens promotes a 

drastic increase of its electrical conductivity. Thus, semiconducting PA transforms into an 

organic “pseudometal” by changing the dopant nature and/or concentration.
[7]

 In 1968, 

Dall’Ollio synthesized the first electronically CP bearing conjugated double bonds. He re-

discovered PPy, which until such moment was known as “pyrrole black”.
[8,9]

 High conducting 

polyaniline (PAni) was reported by De Surville in the same year.
[10]

 

In 1974, McGinness and co-workers described an electronic device made of organic 

polymers.
[1,11]

 In 1977, Alan J. Heeger, Alan MacDiarmid and Hideki Shirakawa reported that 

the partial oxidation of PA films with iodine vapors or other similar reagents enhances the 

conductivity of the films by 10
9
 times.

[6,12]
 Their research was distinguished in 2000 with the 

Nobel Prize in Chemistry “For the discovery and development of conductive polymers”.
[1]

 

In 1979 Heeger reported that CPs submitted to chemical and electrochemical redox 

processes yield materials with relatively high electronic conductivities.
[13]

 At the same time 

Diaz and co-workers, reported that PPy prepared under controlled electrochemical 

conditions is a high conducting material with strong adhesion to metal surfaces and good 
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stability.
[14]

 After the Heeger and Diaz studies, many CPs including PPy, polythiophene (PTh), 

poly(3,4-ethylenedioxythiophene) (PEDOT), polyfuran, polyflurene, PAni, poly(p-phenylene 

vinylene), and poly(p-phenylene), have been developed and extensively investigated.
[3,8,15]

  

 

1.2 – Introduction to the conducting mechanism 

 

Conductivity (σ ) has units of Siemens per centimetre (S/cm). Usually materials are 

deemed as insulators when their conductivities are below 10
-8

 S/cm, semiconductors when 

their conductivities are between 10
-7

 and 1 S/cm and conductors when they have 

conductivities higher than 100 S/cm. Most CPs in their neutral states are insulators or weak 

semiconductors. They only achieve high conductivity after being “doped” by either an 

oxidizing or a reducing dopant.
[16,17]

 It is generally believed that the so-called “soliton” or 

“polaron” and “bipolaron” structure is/are formed as a result of a redox reaction. PA will be 

used here to demonstrate the concept of solitons and PTh will be used to explain the 

concept of polaron and bipolaron. 

Neutral cis PA is an insulator (σ= 1.7 x 10
-9

 S/cm), while its neutral trans isomer is a 

weak semiconductor (σ= 4.4 x 10
-5

 S/cm). Upon doping, either cationic radicals or anionic 

radicals are formed, depending on the dopant used. These redox processes generate charge 

transfer complexes on the polymer backbone called soliton (Figure 1), which is responsible 

for the intramolecular conductivity. Further, it seems that doping rearranges the cis isomer 

to the trans configuration as well. 

 

soliton

 

Figure 1 – Proposed conducting unit of PA. Soliton may be neutral (radical), positive 

(carbocation), or negative (carbanion). 

 

However, when the soliton extends along the polymer backbone, energy 

accumulates due to double bond stretching and single bond constriction. This build-up of 

energy will eventually outweigh the stabilisation energy that arises from delocalisation. 

Therefore, solitons can only be elongated to a certain extent. Conductivity of the bulk PA 

though, depends not only on the solitons length and intramolecular conductivity. Electrons 



Chapter 1                                                                                                                                             Introduction 

 5 

moving intermolecularly across solitons also contribute to conductivity. The conduction 

thus generated is highly dependent on the polymer’s crystalline structure. For example, the 

conductivity of PA film can be increased to 10
5
 S/cm level by properly orienting the polymer 

chains.
[18]

 

Upon doping PTh, polarons and bipolarons are formed.
[19]

 A polaron is a radical 

cation that stabilises itself by polarising the medium around it. Each polymer segment 

containing polaron can be further oxidised to form two polarons or a bipolaron. Figure 2 

illustrates the formation of polaron and bipolaron. A bipolaron usually stretches from 1 to 6 

carbon atoms and has a structural deformation associated with it. For example, the 

rearrangement of the arylene rings form aromatic to quinoidal configuration, thus 

maintaining planarity along this chain and moving in tandem as a pair. Movement of a 

polaron or a bipolaron via rearrangement of the double and single bonds in the conjugated 

polymer backbone accounts for conductivity at the intra-molecular level. 

 

Figure 2 – Formation of polaron and bipolaron in PTh. 

 

Quantum-chemical calculations revealed that the removal of an electron out of a 

polyarylene system like PPy or PTh  leads to the formation of polaron and associated 

quinoid-like geometry (Figure 2) over four to five rings.
[20]

 The quinoid structure has a lower 

ionisation potential and a larger electron affinity than the benzenoid structure. This 

lowering of the ionisation energy compensates the increase in total electronic energy due 

to lattice deformation around the polaron, thus energetically favouring the formation of 

polaron.
[21,22]

 

Further oxidation results in the formation of bi-polaron as shown in Figure 2 above. 

At high doping levels, electrical transport is affected by bipolaron hopping (tunneling). 

Interchain hopping is believed to be the rate-determining step for the observed 
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macroscopic conductivity. Figure 3 illustrates interchain hopping of bipolaron according to 

Bredas et al.
[23,24]

 

 

Figure 3 – Interchain hopping of bipolaron according to Bredas et al. 

 

Almost all polymers are heterogeneous in terms of morphology, usually exhibiting 

two or more of the following characters: amorphous, quasi-amorphous, microcrystalline or 

fibrilar. However, it is generally agreed that the following criteria are necessary to obtain 

highly conducting systems: (i) extended-electron configuration; (ii) conjugated system over 

a planar polymer backbone; (iii) low ionisation potential (< 6.5 eV) for p-doping; (iv) low 

degree of structural defects, e.g., sp
3
 defects and cross-linkages along conduction 

backbone; (v) high degree of macrostructural order, for example, a face-to-face 

arrangement of monomeric units from neighbouring chains and highly oriented fibres 

obtained via poling or mechanical stretching. Such orders are believed to facilitate inter-

chain transport. 

 

1.3 – Classification of conducting polymers 

 

A number of conjugated polymer chains consisting of only unsaturated carbon atoms 

in the backbone or carbon atoms with electron rich heteroatoms or even totally non-carbon 

atom backbones have been synthesized in the last three decades (Figure 4).
[1,25]

  

Polyvinylenes, polyarylenes and polyheterocycles are the major classes of CPs (Figure 

4). Polyvinylenes are well known polymers, which possess good thermal stabilities and 

appreciably high electrical conductivities. Poly(p-phenylene) and poly(phenylene vinylene) 

belong to the class of polyarylenes or polyaromatics. Poly(p-phenylene) was the first non-

acetylenic hydrocarbon polymer that showed high conductivity on doping.
[26]

 PTh, PPy, 
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polyfuran and their derivatives having a five membered ring structure with one heteroatom 

like sulphur or nitrogen or oxygen, constitute the heterocyclic family of the CPs.
[27-31]

 

Firstly, PPy and their derivatives received greater attention because of their ease of 

preparation, good chemical and thermal stabilities, and high condutivity.
[14]

 However, in the 

last two decades some PTh derivatives with excellent electrical and electrochemical 

properties, as well as very high environmental stability, have been reported.
[1,25,32]

 Among 

them, PEDOT (Figure 4), is the most important due to its high conductivity (up to 400-600 

S/cm), good thermal and chemical stability, fast redox processes and excellent 

biocompatibility.
[33]

 Consequently, this material has attracted considerable interest and 

many applications based on these properties have been rapidly developed, e.g. anti-static 

coatings, electrode material in supercapacitors, hole injection layer in organic light-emitting 

diodes, and solar cells.
[34-36]

 Finally, PAni an electroactive conjugated polymer shows very 

good environmental stability and became an important subject of investigations since 1980 

because of its significant potential for technological applications.
[37]

 

 

 

Figure 4 – Classification of Conducting Polymers. 

Conducting Polymers 

Polymers containing 

carbon atoms 

Polymers without 

carbon atoms  

Alifatic Polymers Aromatic Heterocyclic Polymers 

Polymers without 

hetero atoms in the 

backbone 

Polymers with 

hetero atoms in 

the backbone 

Polymers without 

hetero atoms in the 

backbone 

Polymers with 

hetero atoms in 

the backbone 

n 

(e.g.: Polyacetylene) (e.g.: Poly(vinylene 

Sulphide)) 

(e.g.: Poly(p-phenylene)) (e.g.: Polyaniline) 

(e.g.: Polypyrrole) 

(e.g.: Poly(3,4-ethylenedioxythiophene)) 

(e.g.: Poly(sulphur nitride)) 
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1.4 – Synthesis of conducting polymers 

 

Synthesized conjugated CPs can be classified into two major categories: chemically 

and electrochemically polymerized materials. In chemical polymerization, conjugated 

monomers react with an excess amount of an oxidant in a suitable solvent. The 

polymerization takes place spontaneously and requires constant stirring. The second 

method is the electrochemical polymerization, which involves placing working, counter and 

reference electrodes into a solution containing diluted monomer and electrolyte (dopant 

agent). After applying a suitable voltage, the polymer film immediately starts to form on the 

working electrode. 

A major advantage of chemical polymerization concerns the possibility of mass-

production at a reasonable cost. This is often difficult with electrochemical methods. On the 

other hand, an important feature of the electropolymerization technique is the direct 

formation of CP films that are highly conductive.  

 

1.4.1 – Chemical polymerization. Chemical synthesis offers two advantages 

compared with electrochemical synthesis: a greater selection of monomers, and, using the 

proper catalysts, the ability to synthesize perfectly regioregular substituted 

polyheterocycles. The procedure involves a solution mixture of monomers and oxidizing 

agents (e.g. FeCl3, H2O2, H2SO4 and some Lewis acids), the latter transforming the 

monomers into chemically active cation radicals.
[9,38,39]

 These reactive species interact with 

other monomers yielding the polymer.
[40]

 

Catalyzed chemical polymerization is particularly important for PTh, which like many 

other linear polyaromatic compounds is insoluble in organic solvents (rigid backbone) and 

substitution in the 3 and/or 4 position is necessary to render the polymer soluble (i.e. with 

the introduction of substituents, a number of different regioisomers is possible). Although 

substituted PTh derivatives were chemically synthesized by accident more than a century 

ago, the first planed chemical syntheses using metal-catalysts were reported by two 

independent groups in 1980.
[41-43]

 Yamamoto et al. used Mg in tetrahydrofuran and 

nickel(bipyridine) dichloride, while Lin and Dudek also used Mg in tetrahydrofuran but with 

a series of acetyacetonate catalysts (i.e. Pd
+2

, Ni
+2

, Co
+2

 and Fe
+3

 complexes). The first 

synthesis of perfectly regioregular alkylated PThs was described by McCullough et al. in 
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1992.
[44]

 As shown in Figure 5, selective bromination produces 2-bromo-3-alkylthiophene, 

which is followed by transmetallation and then Kumada cross-coupling in the presence of a 

Ni catalyst. This method produces approximately 100% of head-to-tail couplings, according 

to NMR spectroscopy analysis of the diads. While the McCullough method produces 

structurally homogeneous alkylated PThs, it requires low temperatures, the careful 

exclusion of water and oxygen, and brominated monomers. Currently, the most popular 

method is the oxidative polymerization of thiophenes using ferric chloride described by 

Sugimoto in 1986, which can be performed at room temperature under less demanding 

conditions.
[45]

 

  

S

R

S

R

Br
S

R

S

S

R

S

R R

Br2/AcOH/

15ºC (75%)

1) LDA/THF/-40ºC/40 min

2) MgBr2·OEt2/-60ºC to -40ºC/ 40 min

3)-40ºC to -5ºC/20 min

4)0.5-1 mol NiCl2/-5ºC to 25ºC/18h

n

 

Figure 5 – Method for the production of head-to-tail coupling in PThs.  

 

The use of very strong oxidizing agents may result in an overoxidation and other 

eventual degradation processes, as for example the decomposition and/or even the loss of 

the polymer, which lead to materials of poor quality.
[46]

 Another disadvantage typically 

associated with the chemical polymerization occurs when the oxidized polymer precipitates 

in the polymerization medium reducing drastically the polymerization degree.
[47]

 

 

1.4.2 – Electrochemical polymerization. In electrochemical polymerization, the 

monomer, dissolved in an appropriate solvent containing the desired anionic doping salt, is 

oxidized at the surface of the working electrode by application of an anodic potential 

(oxidation). The choice of the solvent and electrolyte is of particular importance in 

electrochemistry since both solvent and electrolyte should be stable at the oxidation 

potential of the monomer and provide an ionically conductive medium. Organic solvents 

like acetonitrile or propylene carbonate have very large potential windows, and high 

relative permittivities, which allow a good dissociation of the electrolyte and thus a good 

ionic conductivity.
[41]

 For monomers with relatively low oxidation potentials, 

electropolymerization can be carried out in aqueous electrolytes. As a result of the initial 

oxidation, the radical cation of the monomer is formed and reacts with other monomers 
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present in solution to form oligomeric products and then the polymer. The extended 

conjugation in the polymer results in a lowering of the oxidation potential compared to the 

monomer. Therefore, the synthesis and doping of the polymer are generally done 

simultaneously. The anion is incorporated into the polymer to ensure the electrical 

neutrality and, at the end of the reaction, a polymeric film of controllable thickness is 

formed at the anode. The anode can be made of a variety of materials including steel, 

platinum, gold, glassy carbon, and tin or indium–tin oxide (ITO) coated glass.
[48]

 The 

electropolymerization is generally achieved by potentiostatic (constant potential) or 

galvanostatic (constant current) methods. These techniques are easier to describe 

quantitatively and have been therefore commonly utilized to investigate the nucleation 

mechanism and the macroscopic growth. Potentiodynamic techniques such as cyclic 

voltammetry correspond to a repetitive triangular potential waveform applied at the 

surface of the electrode. The latter method is mainly used to obtain qualitative information 

about the redox processes involved in the early stages of the polymerization reaction, and 

to examine the electrochemical behaviour of the polymer film after electrodeposition.
[49]

 

 

1.5 – A nanobiotechnological approach 

 

Nanobiotechnology is defined as a discipline that applies the nanoscale principles to 

understand and transform biosystems, and using biological principles and materials to 

create new devices and systems integrated from the nanoscale. Nanotecnology provides 

the tools and technological platforms for the investigation of biological systems, while 

biotechnology inspires models and offers bio-assembled components to nanotechnology.
[50]

 

The combination of these two disciplines, as well as infotechnology and cognitive science, is 

expected to accelerate the development of new nanobiotechnological materials.
[51,52]

 

The study of nanostructured materials involves manipulation, creation and use of 

materials, devices and systems, with dimensions smaller than 100 nm. Nanometer-scale 

materials provide important physical properties which are different from those of their bulk 

counterparts. Therefore, these are the keys features of nanomaterials which play an 

important role in the development of nanotechnology for human healthcare.
[53,54]

 The 

progress in nanobiotechnology fields promotes the demand of methods to observe, 

characterize and control material and biological phenomena at the nanometer-scale.
[55]
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Nanostructured CPs are relatively inexpensive and can be functionalized using methods to 

achieve required optical, electronic or mechanical properties, and they also demonstrate 

biocompatibility, non-toxicity, specific surface area, high chemical and thermal stability, 

electro-catalytic activity and fast electron communication features, which make them 

suitable materials as immobilization platform or labels for the sensitive recognition 

events.
[53]

 These unique features of conducting materials have led them to a variety of 

applications in analytical sciences. Such conducting nanostructured-based analytical tools 

are expected to have a major impact upon clinical diagnostics, environmental monitoring, 

security surveillance, and for ensuring food safety.
[54,56]

 However, this area is still in 

development. In order to fully exploit the potential application of conducting nanomaterials 

in clinical chemistry for construction of biomedical devices, more perfect nanoparticles with 

well-defined geometry and properties, and long-term stability in various environments have 

to be designed and synthesized.
[55]

 

 

1.6 – Nanobiotechnological applications  

 

CPs have been used for a large variety of applications in microelectronics industry 

(battery technology, photovoltaic devices, light emitting diodes, and electronic displays). 

More recently, the use of these materials has been extended to the biotechnological and 

biomedical fields.
[57]

 Thus, CPs have been shown to modulate cellular activities, including 

cell adhesion, migration, DNA synthesis, and protein secretion, upon electrical 

stimulation.
[58]

 Many CPs present a number of important advantages for this kind of 

applications, which include biocompatibility, ability to entrap and control the release of 

biological molecules, ability to transfer charge from a biochemical reaction, etc. These 

unique characteristics make them useful for many specific applications, such as biosensors, 

tissue-engineering, scaffolds, neural probes, drug-delivery devices, and bio-actuators.
[59]

 

 

1.6.1 – Biosensors. A biosensor is defined as a device that combines a bioreceptor, 

the biological component, and a transducer, which converts the recognition events into an 

analytical signal (preferably an electric signal). In the last decades, a wide variety of 

biosensors based on CPs have been developed for the detection of ions, small molecules, 

proteins, DNA, cells, and drugs. Biosensors have found extensive applications in medical 
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diagnostics, food quality assurance, environmental monitoring (air and water pollutants), 

industrial process control (e.g. fermentation processes) and to biological warfare agent 

detection.
[60-63]

 

Commonly the transduction principles employed in biosensors derived from CPs are 

based on electrochemistry or reflectance/absorption techniques, due to their small size and 

simple instrumentation. The majority of biosensors used for the detection of biological 

entities are from electrochemical/electrical type, such their applied for glucose, proteins 

and DNA detection. They present great advantages, attributed to their good analytical 

performance associated with easy instrument maintenance.
[63]

 

 

1.6.2 – Tissue engineering. Among biomedical applications of CPs, those based on 

their use as substrates for different cell types and functions are particularly important. Early 

in vitro and in vivo studies showed that cells such fibroblasts, neurons, and osteoblasts 

respond to electrical fields.
[64-67]

 The general CP properties desired for tissue engineering 

applications include conductivity, reversible oxidation, redox stability, biocompatibility, 

hydrophobicity (40-70˚ water contact angle promotes cell adhesion), three-dimensional 

geometry, and surface topography. Different studies have demonstrated cell and tissue 

compatibility not only of PPy but also of PTh derivatives.
[59,68,69]

 The advantage of CPs in 

tissue-engineering applications is based on the response of cells to the electrical field 

induced when a current or voltage is applied to the polymer.
[70,71]

 For example, the ability to 

support mammalian cell growth on CP surfaces is enhanced by the application of electrical 

stimuli. The majority of studies to date have focussed on nerve cells. Given the enormous 

benefits to be gained from effectively interfacing nerves and conducting materials for 

implants such as the cochlear implant or artificial retina, this is not surprising. The 

possibility of using such materials for nerve repair either in the peripheral nervous system 

or even for spinal chord regeneration underscores the need for this ongoing research.
[72,73]

 

Two different approaches are frequently employed. The first one uses micro- or 

nano-patterned CP surfaces created for potential tissue engineering applications, including 

three dimensional honeycombs, porous CP films, microsized circles and microfluidic mimics 

of the vascular network.
[74-77]

 For example, the application of PPy coated-microtubes as 

blood vessels connectors, which produces the expansion of the tissues on the polymer 

connecting the two ends together and reinforcing the vessel.
[77]

 In the second one, metallic 
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surfaces coated by electrodeposited CPs are applied as biocompatible and biofunctional 

interfaces for medical implants.
[59,78]

 For example, it has been demonstrated that neural 

glial cells grow on PPy-coated electrodes containing the nonapeptide CDPCYIGSR.
[79]

 

 

1.6.3 – Scaffolds. Scaffolds of electrically conducting and biologically active polymers 

are desirable for promote adhesion and proliferation.
[80]

 During the last years, CPs have 

been employed as tissue engineering scaffolds for restoring, maintaining and reconstructing 

the function of impaired tissues and organs. In most cases, conducting scaffolds are 

obtained by using a biodegradable synthetic/natural polymer as a matrix and an intrinsically 

CP as a conductive component. Electrically CPs such as PPy, PAni, PTh and their derivatives 

have been widely used as scaffolds in many areas such as cartilage formation, joint 

resurfacing, cell transplantation and neurite outgrowth. However, as scaffolds CPs present 

some weaknesses: poor biodegradability, hydrophobicity, and, depending on the material, 

they can liberate acidic products during their degradation.
[80,81]

 Research in this field is 

expected to contribute for the attainment of more efficient scaffolds, which should also 

avoid infections, multiple surgeries and additional costs to the patients.
[82]

 

The versatility of CPs synthesis enables the creation of a great variety of bioactive 

surfaces. For example, the incorporation of biomolecules such as proteins (enzymes and 

antibodies) in the synthesis medium results in the attainment of new hybrid materials, 

which may play and improve the intrinsic deficiencies of CPs in this field. 

 

1.6.4 – Neural probes. Many of the advances made in CPs for tissue engineering 

applications, in particular with respect to neurons, are important for the development of 

optimized neural electrodes. The need to intimately interface electrodes with neural tissue 

and to relay efficient signals between the cells and the electrode are particularly relevant in 

this field. CPs are attractive candidates for interface electrodes with neurons because they 

can provide a large surface area, promoting effective ion exchange between the recording 

sites and the surrounding tissue.
[59,71]

 Thus, the capacitance increases with surface area 

resulting in a reduction of the impedance and, therefore, in an improvement of the signal-

to-noise ratio. Ideally, a neural probe tends to: (i) maximize the recorded neural signals; (ii) 

minimize the noise; (iii) maintain high capacitances; and (iv) retain the conductivity. 
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Although PPy is the most studied CP for coating neural probes, PEDOT has been also 

considered in some recent studies because of its high stability and electrical conductivity.
[59]

 

 

1.6.5 – Drug delivery. Electroactive CP films are also ideal hosts for the controlled 

release of chemical substances, including therapeutic drugs. The redox state of CPs can be 

modulated and controlled through electrical external stimuli. Therefore, electrically-

controlled drug releasing system based on CPs can be easily designed and fabricated. 

Chronic diseases in which dosing requirements of drugs are not constant are among the 

most obvious applications of such drug-delivery systems. As was mentioned above, the 

biosensing capabilities of CPs have been largely developed in the last decades.
[83]

 

Amperometric biosensing devices able to provoke a response when the concentration of a 

specific compound (e.g.  glucose, cholesterol, lactate or urea) is larger than a threshold 

value, have been developed by immobilizing enzymes on CP films.
[84-88]

 Accordingly, in a 

near future the same CP is expected to be used as both biosensor and drug delivery device 

by creating a self regulating system.
[83,89]

  

 

1.6.6 – Bioactuators. Bioactuators consist on devices able to transform energy, 

especially chemical or electrochemical, into mechanical force.
[72]

 The combination of 

chemical reactions and molecular energy contributes to the development of 

electrochemical actuator devices, as for example, artificial muscles and smart 

membranes.
[90]

 Artificial muscles could be considered as electrochemo-mechanical 

actuators. Among the advantages of CPs to act as bioactuators, the most important are: (i) 

their strength at the molecular level; (ii) the ability of these materials to work at room or 

physiological temperatures; (iii) they can be fabricated at the micro and nanoscales; and (iii) 

their light-weight, which is due to their organic nature.
[91]

  

Recent studies on PPy, PAni and some PTh derivatives showed that these materials 

undergo significant changes in the volume upon electrochemical oxidation-reduction 

processes, which can be used to produce mechanical energy. The changes of volume can be 

due to the diffusion and intercalation of ionic species in the polymer bulk film (mechanism 

I), which maintain the electro-neutrality during the oxidation process, or due to drastic 

conformational changes that are induced by electrical activation (mechanism II).
[92-98]

 When 

the generation of work upon consumption of electromechanical energy involves 

mechanism I, resembles that of natural muscles.
[99]

 Thus, the muscular motion is initiated 
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with an electric impulse generated on the brain towards de nervous system, promoting an 

increase of Ca
2+

 concentration, which is subsequently released in the myofibrils of the 

muscles. The increase of ionic concentration in the muscles originates important 

conformational changes in the troponin-tropomyosin complex.
[100,101]

 When the operating 

mechanism of the actuator is based on the molecular flexibility (mechanism II), the CP 

responds to the electrochemical stimuli with conformational changes, producing 

contraction-expansion movements. In both mechanisms the magnitude of the structural 

change can be regulated by the external electrochemical potential. 
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2. – Objectives 

 

2.1 – The principal objective of the first block of this Thesis (Chapter 4) consists on the 

understanding of the more important characteristics of the specific non-

electrostatic interactions formed between selected CPs and DNA bases. In order to 

ascertain such characteristics, different secondary well-defined objectives have 

been explicitly studied in the five sections (from 4.1 – to 4.5) involved in this block. 

These secondary objectives can be summarized as follows: 

 

(a) The formation of stable adducts involving plasmid DNA and CPs has been 

examined. Special attention has been given to detect the possible existence of 

specific interactions will well-defined nucleotide sequences. Investigations of 

both the chemical requirements necessary for the formation of such specific 

interactions and the structural alterations induced in the DNA have analyzed 

with some detail. Studies have been developed considering a relatively wide 

number of PTh derivatives, even though the work has been mainly focussed on 

PEDOT because of its technological interest. 

 

(b) The influence of the doping level on CP···DNA interactions has been investigated 

considering PEDOT with three different doping levels, which include a reduced 

state with about +0.1 charges per repeating unit and a completely oxidized state 

with more than +1.0 charges per repeating unit. This will allow us to evaluate the 

importance of non-specific electrostatic interactions against specific weak 

interactions. 

 

(c) The interaction between PEDOT and the four DNA bases have been explicitly 

investigated using short single-stranded homo-nucleotides (ss-hn). The possible 

existence of hydrogen bonding and/or π-π stacking interactions in adducts 

involving such CP and different ss-hn have been studied using UV-Vis 

spectroscopy and circular dichroism (CD). In addition, a top-down hierarchical 

modelling approach has allowed us to provide a comprehensive picture of the 

experimental observations obtained for all the studied complexes. 
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(d) The chemical nature of the complexes involving the building block of PEDOT (i.e. 

a monomeric unit) and guanine, which is the DNA base preferred by this CP, has 

been investigated not only at the molecular level but also at the electronic one. 

 

 

2.2 – The second block of the Thesis (Chapter 5) is devoted to investigate the possible use 

of conventional CPs for the detection of morphine, a drug with well-known 

anaesthetic properties. For this purpose, the interaction of different CPs and 

morphine molecules has been examined through electrochemical techniques 

considering two different strategies, which correspond to the two sections (from 

5.1 – to 5.2) of this block. The secondary objectives of this chapter are: 

 

(a) In order to improve the electrochemical properties of conventional PNMPy films, 

which are known to be poor, and promote the interaction of this material with 

morphine molecules, the synthesis of PNMPy hollow microstructures have been 

investigated.  More specifically, anodic polymerization in aqueous solution 

assisted by gas templates was used for this purpose, three organic surfactants, 

which differ in their chemical nature and molecular weight, being considered. 

 

(b) The ability of PNMPy hollow microstructures to detect electrochemically 

morphine has been investigated using EIS measurements. 

 

(c) As the intrinsic electrochemical properties of PEDOT are known to be very good, 

films of this material have been used for the electrochemical detection of 

morphine molecules. The performance of both CV and EIS techniques have been 

examined and compared, different experimental conditions (i.e. incubation 

times and pHs) being considered for this purpose.  

 

 

2.3 – The last block of results (Chapter 6) presents three new biocomposites, which have 

been prepared by combining PEDOT with a protein (lysozyme), oligo- and poly-

saccharides (α-cyclodextrin and linear dextrin, respectively), and a peptide 

(CREKA). It should be remarked the main objective of this Chapter was to initiate a 

new research line in IMEM’s group devoted to the formulation of electroactive 



 Chapter 2                                                                                                                                                Objectives 

27 

biocomposites. PEDOT was selected for these preliminary studies not only because 

of its excellent electrochemical and electrical properties but also because previous 

studies of the own group showed that it is a biocompatible material. Currently, 

other researchers of the group are extending these investigations. More 

specifically, they are developing deeper studies on some of the systems reported in 

this work and preparing new biocomposites based on other CPs and/or 

biomolecules. The secondary objectives of this chapter can be summarized as 

follows: 

 

(a) A new biocomposite to protect PEDOT films from infection of bacterial 

microorganisms have been prepared and characterized. PEDOT has been 

reported to be an efficient electroactive substrate for the adhesion and growing 

of eukaryotic cells. Two different strategies have been used to prepare the 

biocomposite: adsorption of a bactericidal protein on the surface of PEDOT 

substrates and electropolymerization of the CP but introducing such protein in 

the generation medium with the monomer.  

 

(b) Bioactive platforms with good electrical properties have been fabricated by 

combining PEDOT with linear and cyclic dextrines. The electrochemical and 

electrical properties, morphology and structure, and hydrophobicity of the 

surface of the new biocomposites have been characterized. Furthermore, the 

behaviour of these hybrid materials as cellular matrix has been examined by cell 

adhesion and proliferation assays considering different epithelial- and fibroblast-

like lines. 

 

(c) PEDOT has been modified with CREKA, a positively charged peptide that 

recognizes clotted plasma proteins. The effectiveness of conventional 

electropolymerization techniques to entrap this peptide in the polymer matrix 

has been evaluated. Furthermore, the influence of the peptide in the 

electrochemical, structural and bioactive properties of the CP has been 

examined. 
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3. – Methodology 

3.1 – Electrochemistry 

 

All CPs used in the present work were produced by electrochemical synthesis, with 

exception to poly(3-thiophen-3-yl-acrylic acid methyl ester) (PT3AME) and poly(2-thyophen-

3-yl-malonic acid dimethyl ester) (PT3MDE), that were produced by chemical synthesis. The 

anodic polymerizations and electrochemical studies were performed using a VersaStat II 

potenciostat-galvanostat connected to a computer controlled through a Power Suite 

Princenton Applied Research Program. CPs were prepared using the chronoamperometry 

(CA) technique, in which a fast-rising potential pulse is enforced on the working electrode of 

an electrochemical cell and the current flowing through this electrode is measured as a 

function of time. Doping and dedoping processes were studied using the 

chronopotenciometry technique, in which the potential at the working electrode is 

measured against a reference electrode as a function of time after apply a fast-rising 

current pulse on the former electrode. Finally, oxidation-reduction processes have been 

examined by potentiodynamic electrochemical measurements through the cyclic 

voltammetry (CV) technique. In CV experiments the working electrode potential is ramped 

linearly versus time like linear sweep voltammetry. When the set potential is reached, the 

working electrode’s potential ramp is inverted. This inversion can happen multiple times 

during a single experiment. The current at the working electrode is plotted versus the 

applied voltage to give the cyclic voltammogram trace. CV is generally is used to study not 

only the potential of oxidation-reduction processes but also the potential range in which 

the solvent is stable, the reversibility grade and efficiency of the reaction, the ability of the 

material to storage charge, etc.
[1]

 

 

3.2 – Electrochemical impedance spectroscopy 

 

Electrochemical impedance spectroscopy (EIS) studies were performed in an Autolab 

PGSTAT 302N potentiostat/galvanostat equipped with a frequency response analyzer (FRA) 

software program. This technique measures the impedance of a system over a range of 

frequencies, and therefore the frequency response of the system, including the energy 

storage and dissipation properties, is revealed. Typically, data obtained by EIS are 
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represented graphically to show the system’s frequency (Bode plot) and/or stability 

(Nyquist plot) responses.  

The impedance of a system at a given frequency is defined by reason between the 

amplitude of alternate current signal and the phase angle. All these parameters at different 

frequencies constitute the impedance spectrum.
[1]

 EIS has been found to be a powerful tool 

to study charge-transfer parameters, ion diffusion, capacitance of CP-modified electrodes 

and corrosion. 

 

3.3 – Ultraviolet visible spectrophotometry 

 

Ultraviolet visible (UV-Vis) spectrophotometry studies were performed in a Nicolet 

Evolution 300 (Thermo Electron Co.) spectrophotometer controlled by the VisionPro 

software, and in a UV-3600 (Shimadzu) UV-Vis-NIR spectrophotometer controlled by the 

UVProbe 2.31 software. UV-Vis absorption spectroscopy was used to examine the between 

DNA (both plasmid and oligonucleotides) with PEDOT and the dextrins delivery from 

biocomposites used as cellular scaffolds. 

UV-Vis spectroscopy is used to obtain the absorbance spectrum of a material in 

solution or as a solid. What is actually being observed spectroscopically is the absorbance of 

light energy or electromagnetic radiation, which excites electrons from the ground state to 

the first singlet excited state of the material. The UV-Vis region of energy for the 

electromagnetic spectrum covers 1.5-6.2 eV which relates to a wavelength range of 800-

200 nm. The Beer-Lambert law (A=ε·b·c) is the principle behind the absorbance 

spectroscopy. For a single wavelength, A is absorbance (unitless, usually seen as arbitrary 

units), ε is the molar absorptivity of the compound or material in solution (M
-1

·cm
-1

), b is 

the path length of the cuvette or sample holder (usually 1 cm), and c is the concentration of 

the solution (M). 

The absorption of UV-Vis radiation corresponds to the excitation of outer electrons. 

There are three types of electronic transition which can be considered: 1) Transitions 

involving π, σ and n electrons (those of functional groups of organic molecules, typically 

named chromophores, that contain valence electrons of low excitation energy); 2) 

Transitions involving charge-transfer electrons (those of complexes made of a component 

with electron donating properties and the other able to accept electrons, absorption of 
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radiation involving the transfer of an electron from the donor to an orbital associated with 

the acceptor); and 3) Transitions involving d and f electrons (not frequent in organic 

materials).
[2]

 When an atom or molecule absorbs energy, electrons are promoted from their 

ground state to an excited state. In a molecule, the atoms can rotate and vibrate with 

respect to each other. These vibrations and rotations also have discrete energy levels, 

which can be considered as being packed on top of each electronic level. 

 

3.4 – Circular dichroism spectroscopy 

 

Circular Dichroism (CD) spectroscopy measurements were carried out in a Jasco J-

810 spectropolarimeter. CD spectroscopy technique was used to detect structural 

alterations undergone by DNA oligonucleotides and plasmidic DNA upon interaction with 

CPs. 

CD spectroscopy measures the difference in the absorption of left-handed circularly 

polarised light and right-handed polarised light, which occurs in molecules containing one 

or more chiral chromophores: 

∆A(λ)= AL(λ) – AR(λ) 

where L and R refers to left- and right-handed, respectively, and λ is the wavelength 

CD is used extensively to study chiral molecules of all types and sizes, but it is in the 

study of large biological molecules where it finds its most important applications. A primary 

use is in analysing the secondary structure or conformation of macromolecules, particularly 

proteins and DNA, and because secondary structure is sensitive to its environment, e.g. 

temperature or pH, circular dichroism can be used to observe how molecular structure 

changes with environmental conditions or on interaction with other molecules. Structural, 

kinetic and thermodynamic information about macromolecules can be derived from CD 

spectroscopy.
[3]

  

Measurements carried out in the visible and ultra-violet region of the electro-

magnetic spectrum monitor electronic transitions, and, if the molecule under study 

contains chiral chromophores then one circularly polarised light state will be absorbed to a 

greater extent than the other and the CD signal over the corresponding wavelengths will be 

non-zero. A circular dichroism signal can be positive or negative, depending on whether 
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left-handed circularly polarised light is absorbed to a greater extent than right-handed 

circularly polarised light (CD signal positive) or to a lesser extent (CD signal negative).  

 

3.5 – Fourier transform infrared spectroscopy 

 

Fourier Transform Infrared (FTIR) spectroscopy studies were performed in a FT/IR-

4100 Jasco spectrometer equipped with an attenuated total reflectance (ATR) ATR-MKII 

Golden Gate Heated Single Reflection Diamond Specac model. 

FTIR spectroscopy is a technique that provides information about the chemical 

bonding or molecular structure of materials. It is essentially used to identify the materials 

present in a specimen and is usually complemented with energy dispersive X-ray 

spectroscopy (EDX) analyses. The technique works on the fact that bonds and groups of 

bonds vibrate at characteristic frequencies. A molecule that is exposed to infrared radiation 

absorbs infrared energy at frequencies which are characteristic to that molecule. During 

FTIR analysis, a sample is subjected to a modulated IR beam. The sample’s transmittance 

and reflectance of the infrared radiation at the different frequencies is translated into an IR 

absorption plot consisting in reverse peaks. The resulting FTIR spectral pattern is the 

analyzed and matched with known signatures of identified materials in the FTIR library.
[4,5]

   

 

3.6 – Atomic force microscopy 

 

Atomic force microscopy (AFM) measurements for topographical and morphological 

characterization of CP films were carried out in tapping-mode AFM with Molecular Imaging 

PicoSPM using a NanoScope IIIa controlled in ambient conditions. 

AFM is a very high-resolution type of scanning probe microscopy. The precursor to 

the AFM, the scanning tunnelling microscope, was developed by Gerd Binning and Heinrich 

Rohrer in the early 1980s, a development that earned them the Nobel Prize for Physics in 

1986. The first commercially available atomic force microscope was introduced in 1989. The 

AFM is one of the foremost tools for imaging, measuring, and manipulating matter at the 

nanoscale. The information is gathered by "feeling" the surface with a mechanical probe. 

The AFM consists of a cantilever with a sharp tip (probe) at its end that is used to scan the 

specimen surface. The cantilever is typically silicon or silicon nitride with a tip radius of 
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curvature on the order of nanometers. When the tip is brought into proximity of a sample 

surface, forces between the tip and the sample lead to a deflection of the cantilever 

according to Hooke's law. Depending on the situation, forces that are measured in AFM 

include mechanical contact force, van der Waals forces, capillary forces, chemical bonding, 

electrostatic forces, magnetic forces (see magnetic force microscope, MFM), Casimir forces, 

solvation forces, etc. Along with force, additional quantities may simultaneously be 

measured through the use of specialized types of probe. Typically, the deflection is 

measured using a laser spot reflected from the top surface of the cantilever into an array of 

photodiodes. Other methods that are used include optical interferometry, capacitive 

sensing or piezoresistive AFM cantilevers. These cantilevers are fabricated with 

piezoresistive elements that act as a strain gauge. The AFM can be operated in a number of 

modes, depending on the application. In general, possible imaging modes are divided into 

static (also called contact) modes and a variety of dynamic (non-contact and tapping) 

modes where the cantilever is vibrated.
[6]

 

In the static mode operation, the static tip deflection is used as a feedback signal. 

Because the measurement of a static signal is prone to noise and drift, low stiffness 

cantilevers are used to boost the deflection signal. However, close to the surface of the 

sample, attractive forces can be quite strong, causing the tip to "snap-in" to the surface. 

Thus, static mode AFM is almost always done in contact where the overall force is repulsive. 

In the dynamic mode, the tip of the cantilever does not contact the sample surface. The 

cantilever is instead oscillated at a frequency slightly above its resonant frequency where 

the amplitude of oscillation is typically a few nanometers (<10 nm). In ambient conditions, 

most samples develop a liquid meniscus layer. Because of this, keeping the probe tip close 

enough to the sample for short-range forces to become detectable while preventing the tip 

from sticking to the surface presents a major problem for non-contact dynamic mode in 

ambient conditions. Dynamic contact mode (also called intermittent contact or tapping 

mode) was developed to bypass this problem. In tapping mode, the cantilever is driven to 

oscillate up and down at near its resonance frequency by a small piezoelectric element 

mounted in the AFM tip holder similar to non-contact mode. However, the amplitude of 

this oscillation is greater than 10 nm, typically 100 to 200 nm. 
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3.7 – Scanning electronic microscopy 

 

Scanning electron microscopy (SEM) studies for the morphological characterization 

of the materials prepared in this work were performed using a Focussed Ion Beam Zeiss 

Neon 40 scanning electron microscopy equipped with an EDX system for elemental 

detection. Samples involving cells adhered to the surface of films made of CPs and 

composites were coated with an ultrathin layer of carbon by low vacuum sputter coating. 

Coating prevents the accumulation of static electric charge on the specimen during electron 

irradiation.  

The scanning electron microscope uses a focused beam of high-energy electrons to 

generate a variety of signals at the surface of solid specimens. The signals that derive from 

electron-sample interactions reveal information about the sample including external 

morphology (texture), chemical composition, and crystalline structure and orientation of 

materials making up the sample. In most applications, data are collected over a selected 

area of the surface of the sample, and a 2-dimensional image is generated that displays 

spatial variations in these properties. Areas ranging from approximately 1 cm to 5 microns 

in width can be imaged in a scanning mode using conventional SEM techniques 

(magnification ranging from 20X to approximately 30,000X, spatial resolution of 50 to 100 

nm).
[7]

 The SEM is also capable of performing analyses of selected point locations on the 

sample; this approach is especially useful in qualitatively or semi-quantitatively determining 

chemical compositions (using EDX), crystalline structure, and crystal orientations. 

Accelerated electrons in an SEM carry significant amounts of kinetic energy, and this 

energy is dissipated as a variety of signals produced by electron-sample interactions when 

the incident electrons are decelerated in the solid sample. These signals include secondary 

electrons (that produce SEM images), backscattered electrons (BSE), diffracted 

backscattered electrons (EBSD that are used to determine crystal structures and 

orientations of minerals), photons (characteristic X-rays that are used for elemental analysis 

and continuum X-rays), visible light (cathodoluminescence - CL), and heat. Secondary 

electrons and backscattered electrons are commonly used for imaging samples: secondary 

electrons are most valuable for showing morphology and topography on samples and 

backscattered electrons are most valuable for illustrating contrasts in composition in 

multiphase samples (i.e. for rapid phase discrimination). X-ray generation is produced by 
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inelastic collisions of the incident electrons with electrons in discrete ortitals (shells) of 

atoms in the sample. As the excited electrons return to lower energy states, they yield X-

rays that are of a fixed wavelength (that is related to the difference in energy levels of 

electrons in different shells for a given element). Thus, characteristic X-rays are produced 

for each element in a mineral that is "excited" by the electron beam. SEM analysis is 

considered to be "non-destructive"; that is, x-rays generated by electron interactions do not 

lead to volume loss of the sample, so it is possible to analyze the same materials 

repeatedly.  

 

3.8 – Energy dispersive X-ray spectroscopy 

 

Interaction of an electron beam with a sample target produces a variety of emissions, 

including x-rays. An EDX detector is used to separate the characteristic X-rays of different 

elements into an energy spectrum, and EDX system software is used to analyze the energy 

spectrum in order to determine the abundance of specific elements. EDX can be used to 

find the chemical composition of materials down to a spot size of a few microns, and to 

create element composition maps over a much broader raster area. Together, these 

capabilities provide fundamental compositional information for a wide variety of materials. 

EDX systems are typically integrated into a SEM instrument. EDX systems include a 

sensitive X-ray detector, a liquid nitrogen dewar for cooling, and software to collect and 

analyze energy spectra. The detector is mounted in the sample chamber of the main 

instrument at the end of a long arm, which is itself cooled by liquid nitrogen. The most 

common detectors are made of Si(Li) crystals that operate at low voltages to improve 

sensitivity, but recent advances in detector technology make availabale so-called "silicon 

drift detectors" that operate at higher count rates without liquid nitrogen cooling. 

An EDX detector contains a crystal that absorbs the energy of incoming X-rays by 

ionization, yielding free electrons in the crystal that become conductive and produce an 

electrical charge bias. The x-ray absorption thus converts the energy of individual X-rays 

into electrical voltages of proportional size; the electrical pulses correspond to the 

characteristic x-rays of the element. 
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3.9 – Bacterial and cellular culture 

 

Bacterial cultures were performed using two bacterial strains: Escherichia coli CECT 

101 and Staphylococcus epidermis CECT 231 from the Spanish Collection of Type Culture 

(CECT, Valencia, Spain). These bacteria were used to study and characterize a conducting 

polymer-protein composite with antibacterial and electroactive properties.  

Bacteria were grown in aerobic conditions till achieve the exponential phase in broth 

culture (5 g/L beef extract, 5 g/L NaCl, 10 g/L peptone, pH 7.2 in distilled water). The 

bacterial growth was determined using a UV-Vis spectrophotometer at 600 nm of 

absorbance. Growth experiments were carried out in culture tubes of 15 mL. 10
3
 colony 

forming units (CFU) were seeded in 5 mL of broth culture containing the prepared CP-

protein composites, and incubated at 37 ˚C with 100 rpm agitation. After 24 and 48 h of 

incubation, a 100 µL sample was diluted 10 times in distilled water and the absorbance was 

measured at 600 nm.  

Cellular cultures were performed using three different cellular lines of adherent 

growth cells: cells HEp-2 (human cell derived from epidermoid larynx carcinoma), cells 

DU145 (human cell line derived from a prostate carcinoma), and cells COS-7 (cell line 

derived of Cercopithecus aethiops, African green monkey, kidney immortalized by 

transformation with SV40). The cells were plated in tissue flasks (25 cm
2
) and grown in 

Dubelcco’s Modified Eagle’s Medium (DMEM) with 10 % of fetal bovine serum (FBS), 

penicillin G (100 U/ml) and streptomycin (100 mg/ml). Cultures were grown in a humid 

ambient (95 %) at 37 ˚C containing 5 % of carbon dioxide (CO2). Two culture passages were 

done, and confluent cells were dispersed with trypsin (0.05 %) and EDTA (0.02 %) in Hank’s 

Balanced Salt Solution. At last, cells were harvested by centrifugation and counted in a 

Neubauer camera using trypan blue (0.4 %). 

 

3.10 – Gel electrophoresis 

 

Gel electrophoresis studies were employed in order to study the interaction of CPs 

with plasmid DNA. For this purpose, ultrasonicated polymer solutions were mixed with 

plasmid DNA considering different CP:DNA mass ratios. After incubation and centrifugation, 

electrophoretograms were carried out. 
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Gel electrophoresis is a technique typically used for the separation of DNA, RNA or 

protein molecules using an electric field applied to a gel matrix. In simple terms: 

electrophoresis is a procedure which enables the sorting of molecules based on size and 

charge. Using an electric field, molecules (such as DNA) can be made to move through a gel. 

The molecules being sorted are dispensed into a well in the gel material. The gel is placed in 

an electrophoresis chamber, which is then connected to a power source. When the electric 

current is applied, the larger molecules move more slowly through the gel while the smaller 

molecules move faster. The different sized molecules form distinct bands on the gel.
[8]

  

The term "gel" refers to the matrix used to separate the target molecules. In most 

cases, the gel is a crosslinked polymer whose composition and porosity is chosen based on 

the specific weight and composition of the target to be analyzed. When separating proteins 

or small nucleic acids (DNA, RNA, or oligonucleotides) the gel is usually composed of 

different concentrations of acrylamide and a cross-linker, producing different sized mesh 

networks of polyacrylamide. After the electrophoresis is complete, the molecules in the gel 

can be stained to make them visible. Ethidium bromide, silver, or Coomassie Brilliant Blue 

dye may be used for this process.
[8]
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4.1 – A comprehensive study of the interactions between DNA and 

poly(3,4-ethylenedioxythiophene) 
 

 
The interaction between poly(3,4-ethylenedioxythiophene), a CP with excellent electrical 
and electrochemical properties, and plasmid DNA has been investigated using 
electrophoresis, UV-visible and CD spectroscopy, and quantum mechanical calculations. 
Analyses of mixtures with different DNA:polymer mass ratios indicate that, in all cases, 
interactions form immediately and induce structural alterations in DNA. Furthermore, the 
existence of interactions between poly(3,4-ethylenedioxythiophene) and specific 
nucleotides sequences has been evidenced by adding restriction enzymes to the mixtures. 
In contrast, interactions between DNA and poly(3-methylthiophene), a similar 
polyheterocyclic CP but without hydrogen bonding acceptors, are weak or do not exist. 
These results suggest that, in addition to non-specific electrostatic interactions between 
the charged phosphate groups of DNA and the positively charged fragments of the CPs, 
specific hydrogen bonding interactions play a crucial role. The ability of 3,4-
ethylendioxythiophene units to form hydrogen bonds with the methylated analogues of 
DNA bases has been examined in different environments using MP2/6-31G(d) and MP2/6-
311++G(d,p) calculations. Results indicate that, in environments with low polarity, the 
formed interactions are significantly stronger than those reached by unsubstituted 
thiophene and similar to those established by pyrrole. However, in polar environments 
(aqueous solution) 3,4-ethylendioxythiophene provides stronger interactions with nucleic 
acids than both thiophene and pyrrole. These theoretical results are fully consistent with 
experimental observations.* 

 

*
 - Results described in this section previously appeared in Polymer 50 (2009) 1965. Theoretical calculations were 

preformed by C. Alemán and D. Zanuy. 

 

 

4.1.1 – Introduction 

 
The interaction of conducting electroactive polymers, such as PTh, PPy and their 

derivatives, with selected bioentities (e.g. amino acids, proteins, DNA and oligonucleotides, 

and living cells) is a subject f increasing interest.[1-8,18,19,23-25] The quest to interact more 

efficiently with biosystems, to obtain information related to system performance and to 

control that performance remain not only an exciting but also an essential area of research. 

Thus, the development of biotechnological applications based on CPs greatly depends on 

the control of such interactions.  

Within this area of research we are particularly interested in the interaction of CPs 

with DNA sequences, which may have great implications in numerous medical applications 

ranging from diagnosis to gene therapy.[8-18,24,25] The interaction of p-doped electroactive 

materials with DNA has been traditionally attributed to the tendency of the latter to 
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interact with positively charged molecules. However, in recent studies we found that some 

CPs, for example PPy, are able to interact forming specific interactions with well-defined 

nucleotide sequences of plasmid DNA.[15-17] This selectivity suggests that polymer:DNA 

adducts are stabilized not only by electrostatic interactions but also by interactions that act 

specifically, i.e. interactions that depend on the chemical environment, the spatial 

disposition and orientation of the chemical groups, etc. In particular, the importance of 

specific hydrogen bonding interactions in these complexes is expected to be significantly 

greater than those that are of non-specific, e.g. stacking, van der Waals and charge-transfer 

interactions. Indeed, we found that all the CPs able to form specific interactions with DNA 

contain functional groups that are excellent donors and acceptors of hydrogen bonds, e.g. 

the N-H in PPy or the ester side groups in some PTh derivatives.[15-17] Furthermore, we 

recently used sophisticated theoretical calculations to show that hydrogen bonding 

interactions between DNA bases and PPy are significantly stronger than interactions 

between DNA bases and PTh, the later lacking of hydrogen bonding donors and 

acceptors.[18] 

Within a recent study devoted to examine the potential applications of different 

materials, we preliminary investigated the interaction between DNA and two different PTh 

derivatives using qualitative electrophoretic assays.[15,16] Specifically, the CPs examined 

were poly(3,4-ethylenedioxythiophene), in which dioxane rings are fused onto thiophene 

rings, and poly(3-methylthiophene), hereafter denoted PEDOT and PT3M, respectively. 

Interestingly, we found that PEDOT interacts specifically with plasmid DNA forming strong 

and stable complexes. This feature together with its remarkable electrochemical stability 

and electrical properties, and notable electro-biocompatibility make this material a good 

candidate for different biotechnological applications that involve DNA, e.g. biosensor and 

drug-delivery system.[22,23,26-29] In contrast, PT3M, a PTh derivative without hydrogen 

bonding donors and acceptors, only formed stable adducts at very high DNA:polymer mass 

ratios, and specific interactions were significantly weaker than in DNA:PEDOT. Attracted by 

this field, in this work we report a comprehensive study about the microscopic details of the 

interactions between plasmid DNA and PEDOT using both experimental and computational 

methods. 

Specifically, the interaction of PEDOT with plasmid DNA has been examined 

considering different DNA:polymer mass ratios and using electrophoresis, UV-Vis 
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spectroscopy and CD. The possible formation of specific interactions have been examined by 

the digestion of DNA:PEDOT mixtures using restriction enzymes, which cut off at specific 

nucleotide sequences. Furthermore, ab initio quantum mechanical calculations have been 

used to examine the strength of the specific interactions between PEDOT and DNA. 

Calculations have been performed considering the building blocks of the two interacting 

systems, i.e. 3,4-ethylenedioxythiophene (EDOT) units and methylated analogues of DNA 

bases [9-methyladenine (mA), 1-methylthymine (mT), 1-methylcytosine (mC) and 9-

methylguanine (mG)], as well as environments with different polarity. 

 

4.1.2 – Methods 

 

Synthesis and characterization. EDOT, 3-methylthiophene (T3M) and acetonitrile of 

analytical reagent grade were purchased from Aldrich and used as received. Anhydrous 

lithium perchlorate (LiClO4), analytical reagent grade, from Aldrich was stored in an oven at 

80ºC before its use in the electrochemical trials. 

PEDOT and PT3M films were generated by anodic polymerization using a VersaStat II 

potentiostat-galvanostat connected to a computer controlled through a Power Suite 

Princenton Applied Research program. Electrochemical experiments were conducted in a 

three-electrode two-compartment cell under nitrogen atmosphere (99.995% in purity) at 

298 K. The working compartment was filled with 40 ml of a 10 mM monomer solution in 

acetonitrile containing 0.1 M LiClO4 as supporting electrolyte. A volume of 10 ml of the 

same electrolyte solution was placed in the cathodic compartment. Steel AISI 316 sheets of 

4 cm2 area were employed as working and counter electrodes. The reference electrode was 

an Ag|AgCl electrode containing a KCl saturated aqueous solution (E˚ = 0.222 V at 25 ˚C), 

which was connected to the working compartment through a salt bridge containing the 

electrolyte solution. Electrogeneration of PEDOT and PT3M was carried out by CA under a 

constant potential of 1.40 and 1.70 V, respectively, a polymerization time θ= 900 s being 

used in both cases. Uniform, adherent and insoluble polymeric films were obtained by this 

procedure, the coloration being dark-blue and black for PEDOT and PT3M, respectively. The 

electrical and electrochemical characterization of the materials derived from these 

experimental conditions was previously reported.[15,26]  
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Ultrafine particles of polymer were used to interact with DNA. These were obtained 

by applying ultrasounds to a polymer solution (5 μg polymer/μl; milliQ water), which was 

prepared by considering the polymer samples grinded with a mortar. The dimensions of the 

resulting particles were analyzed using scanning electron microscopy (SEM) with a JSM-

6400 JEOL microscope. 

 
Formation of DNA:PEDOT complexes and electrophoretic assays. DNA:PEDOT 

complexes were prepared upon aqueous solutions by mixing 4 μl of plasmid pMT4 (0.05 

μg/μl) with 0.00, 0.05, 0.50, 2.50 and 5.00 μl of polymer solution (5 μg polymer/μl; milliQ 

water), which corresponded to the desired DNA:PEDOT mass ratios (1:0, 1:1, 1:10, 1:50, 

1:100, respectively). Final volumes were raised to 13 μl with sterile milliQ water. The 

mixtures were incubated overnight at 37 ˚C. After this, an aliquot of 6X gel loading buffer 

was added, samples being centrifuged for 10 min. The supernatant was analyzed by 

electrophoresis with 1% of agarose gel containing ethidium bromide (0.5 μg/ml of gel) in 1X 

tris-acetate-EDTA buffer (TAE). To evaluate the cleavage of pMT4 with EcoRI and BamHI in 

DNA:PEDOT complexes, 1 μl of restriction enzyme (10 000 U/ml) and 1.56 μl of 10X enzyme 

buffer was added to each incubated sample. The digestion process was carried out at 37 ˚C 

for 1 h, the digested products being analysed by electrophoresis. 

 
Spectroscopic studies. A Nicolet Evolution 300 (Thermo Electron Co.) 

spectrophotometer controlled by the Vision Pro software was used to record UV-Vis spectra 

of DNA:PEDOT and DNA:PT3M complexes at 22 ˚C, in the 200-1000 nm range, with a 

bandwidth of 2 mm and a scan speed of 600 nm/min. Light scattering effects were avoided 

by correcting the maximum absorbance of nucleotide bases in DNA, which is 260 nm 

(A260nm), with respect to the absorbance at 350 nm (A350nm). For each sample, 36 cycles 

separated by an interval of 5 minutes between consecutive cycles were recorded. 

Circular dichroism (CD) measurements were carried out in a Jasco J-810 

spectropolarimeter at 22 ˚C using a quartz cuvette. The CD data were recorded with 

standard sensitivity (100 mdeg), in the 170-360 nm range, with bandwidth of 2 mm, 

response time of 0.5 s and scanning speed of 500 nm/min. The reported spectra correspond 

to the average of five scans, the raw spectra being smoothed by the Savitsky-Golay 

algorithm and deconvolutioned for analysis and interpretation. For each sample, the CD 
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spectrum of the polymer was subtracted from that of the DNA:polymer complex, and 

compared with the CD spectrum of the plasmid DNA.  

 
Quantum mechanical calculations. Calculations were performed using the Gaussian 

03 computer program.[30] The structures of the complexes were determined by full 

geometry optimization in the gas-phase at the MP2 level with the 6-31G(d) basis set, 

frequency calculations being performed to obtain the zero-point vibrational energies and 

both the thermal and entropic corrections.[31,32] Single point energy calculations were 

performed on the MP2/6-31G(d) geometries at the MP2/6-311++G(d,p) level.[33] In order to 

estimate the free energies in the gas-phase, the statistical corrections obtained at the 

MP2/6-31G(d) level were added to the electronic energies computed at the MP2/6-

311++G(d,p) level.  

The counterpoise (CP) method was applied to correct the basis set superposition 

error.[34] The binding energies, which were obtained with and without apply the CP 

(
CP

gbE ,∆ and gbE ,∆ , respectively), were calculated at the MP2/6-311++G(d,p) level as the 

difference between the total energy of the optimized complex and the energies of the 

isolated monomers with the geometries obtained from the optimization of the complex. 

The effect of the solvent on the relative stability of the complexes was estimated 

using the polarizable continuum model (PCM) developed by Miertus, Scrocco and 

Tomasi.[35,36] This Self-Consistent Reaction-Field (SCRF) method involves the generation of a 

solvent cavity from spheres centered at each atom in the molecule and the calculation of 

virtual point charges on the cavity surface representing the polarization of the solvent. The 

magnitude of these charges is proportional to the derivative of the solute electrostatic 

potential at each point calculated from the molecular wavefunction. Then, the point 

charges are included in the one-electron Hamiltonian inducing polarization of the solute. An 

iterative calculation is carried out until the wavefunction and the surface charges are self-

consistent.  

PCM calculations were performed in the framework of the ab initio MP2 level with 

the 6-31G(d) basis set and using the standard protocol and considering the dielectric 

constants of chloroform (ε= 4.9) and water (ε= 78.4). Calculations were performed 

considering the gas-phase optimized geometries. Thus, solvent–induced changes in bond 

lengths and angles have been proved to have small influence on the free energy of solvation 
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( solG∆ ), i.e. solute geometry relaxations in solution and single point calculations on the gas-

phase optimized geometries provide almost identical values of solG∆ .[37-39] The relative free 

energies and the binding energies in solution, which provide information about the relative 

stability of the complexes and the strength of the interactions in solution, respectively, were 

computed using the classical thermodynamics schemes. 

 

4.1.3 – Results and Discussion 

 
PEDOT films were prepared by chronoamperometry (CA) under a constant potential 

of 1.4 V. The electrogenerated films were grinded mechanically using a mortar. Scanning 

electron micrographs of the resulting samples (Figure 1a) showed that they are constituted 

by plates of large dimensions, i.e. larger than 50 µm, which preclude their use for the 

present study. In order to reduce the size of the PEDOT particles, ultrasounds were applied 

to a solution prepared with such grinded samples. This process led to ultrafine particles 

with dimensions ranging between 3 and 18 µm (Figure 1b) that are suitable to interact with 

biological macromolecules. 

 

 

 

 

 

 

 

 

 

Figure 1 – Scanning electron micrographs of PEDOT particles obtained by grinding the 

electrogenerated films (a) and by submitting to ultrasounds the grinded samples (b). 

  
The formation of DNA:PEDOT complexes was evidenced by electrophoresis (Figure 

2), different DNA:polymer mass ratios (1:1, 1:10, 1:50 and 1:100) being considered for 

analyses. Lane 1 corresponds to the pMT4 plasmid (1:0 ratio), and shows a mixture of the 

supercoiled form I (bottom or band at the front) and the singly nicked form II (top or band 

(a) (b)

50 µm 50 µm
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at the back). Lanes 2-5, which display the DNA:PEDOT series at 1:1, 1:10, 1:50 and 1:100 

ratios, reflect significant alterations in the bands associated to pMT4 evidencing the 

formation of complexes. Specifically, DNA:polymer complexes retard the mobility of form I 

and increase the intensity of form II. The variation in the mobility undergone by the former 

band is probably due to the conformational changes induced by the CP in the plasmid DNA 

during the formation of the corresponding DNA:PEDOT complexes. Accordingly, hereafter 

form I’ will refer to the altered form I. As can be seen, DNA:PEDOT complexes are formed 

for the four considered ratios. Specifically, interactions start at the 1:1 ratio, whereas all 

DNA is involved in the formation of stable adducts at the 1:100 ratio. Thus, the absence of 

bands in lane 5 must be attributed to the sedimentation of these adducts during the 

centrifugation process previous to the electrophoretic assay. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 – Interaction of pMT4 plasmid DNA and increasing concentrations of PEDOT after their 

incubation for 3h at 37 ºC. Lane M: molecular weight marker (1 Kb Plus DNA Ladder). Lane 1: 

pMT4 plasmid DNA (1:0 DNA:PEDOT). Lanes 2-5: 1:1, 1:10, 1:50 and 1:100 DNA:PEDOT mass 

ratios. Labels I and II indicate form I and II of pMT4 plasmid DNA, respectively. Label I’ refers to 

mobility alterations in the form I of plasmid DNA. 

 
In order to look for specific interactions between the CP and the plasmid DNA, 

restriction enzymes were added to the incubated samples. These enzymes were EcoRI and 

BamHI, which cut off at 5’-G/AATTC-3’ and 5’-G/GATCC-3’ nucleotide sequences, 

respectively. The pMT4 plasmid DNA contains only one restriction site for EcoRI converting 

supercoiled form I and singly nicked circular form II into linear DNA (form III). BamHI has 
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three restriction sites producing three DNA fragments, denoted F1, F2 and F3. The 

molecular weights of F1 and F2 are similar, their mobility in agarose gel corresponding to a 

single band. Fragment F3 presents the lowest molecular weight and, therefore, shows the 

fastest mobility. However, BamHI produces form III when it makes only one cut in the 

plasmid DNA.  

The electrophoretograms obtained for DNA:PEDOT complexes after digestion with 

EcoRI and BamHI are displayed in Figure 3. For each enzyme, lane 1 shows the untreated 

and undigested pMT4 plasmid DNA, lane 2 displays the digested plasmid DNA (1:0 

DNA:PEDOT ratio), and lanes 3-6 correspond to the digested DNA:PEDOT complexes with 

increasing mass ratios. Digestion with EcoRI produces the band associated to the formation 

of linear DNA (form III) for 1:1, 1:10 and 1:50 ratios. However, as was found in the Figure 2, 

the formation and subsequent sedimentation of DNA:PEDOT adducts preclude the 

detection of bands for the 1:100 ratio. The interaction of DNA with PEDOT at the 1:1 and 

1:10 ratios promotes, after digestion with EcoRI, the formation of new topoisomers with 

higher mobility than linear DNA. Regarding to the action of BamHI on DNA:PEDOT 

complexes (Figure 3b), results are very similar to those described for EcoRI. Thus, the bands 

associated to F1, F2 and F3 are detected in lanes 3-5, whereas lane 6 reflects the formation 

of DNA:polymer adducts. 

In order to provide details about the temporal evolution of the interaction between 

plasmid DNA and PEDOT, the behaviour of the nucleotide bases was investigated during the 

formation of the complexes by UV-Vis spectrophotometry. Figure 4 represents the 

evolution of (A-A0)/Amax against the time (t) for the 1:1 and 1:100 DNA:PEDOT mixtures, 

where A0 corresponds to the absorbance of DNA in solution (1:0 DNA:PEDOT ratio) at the 

initial time (t= 0 min), Amax is the absorbance of the bases in the DNA:polymer mixture after 

thermal denaturalization of DNA i.e. the sample is heated at 94 ºC during 15 min producing 

exposition of all DNA bases, and A is the absorbance of nitrogen bases in the DNA:PEDOT 

mixture measured at different times (cycles). 

As can be seen, UV-Vis results depend on the DNA:PEDOT mass ratio. The interaction 

between DNA and PEDOT is relatively low for the 1:1 ratio, which is reflected by the 

moderate exposition of the DNA nitrogen bases. In contrast, the degree of interaction 

found for the mixture with 1:100 mass ratio is very high. These strong interactions, which 

are formed immediately as revealed the fast exposition of the DNA nitrogen bases, are 
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consistent with the formation of adducts previously evidenced by the electrophoretic 

assays. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 – Interaction between pMT4 plasmid DNA and increasing concentrations of PEDOT 

followed by EcoRI (a) and BamHI (b) enzymatic digestion for a period of 1 h at 37 ºC. Lane M: 

molecular weight marker (1 Kb Plus DNA Ladder). Lane 1: undigested and untreated pMT4 

plasmid DNA (1:0 ratio). Lane 2: digested pMT4 plasmid DNA (1:0 ratio). Lanes 3-6: 1:1, 1:10, 

1:50, 1:100 DNA:PEDOT ratios after enzymatic digestion. Labels I, II and III refer to forms I, II and 

III of pMT4 plasmid DNA, respectively. F1, F2 and F3 indicate the DNA fragments obtained by 

digestion with BamHI. The head arrow indicates new topoisomers formed during the interaction 

between DNA and polymers. 

 

For the sake of comparison, UV-Vis spectra were also recorded for DNA:PT3M 

mixtures with 1:1 and 1:100 mass ratios (Figure 4). Ultrafine particles of this CP were 

prepared by applying ultrasounds to grinded samples, which were electrogenerated by CA 

under a constant potential of 1.7 V. The exposition of the nitrogen bases reveals the 

absence of interactions between the plasmid DNA and the CP for the 1:1 ratio. Similarly, no 
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interaction is detected during the first 50 minutes for the 1:100 ratio. After this, the 

exposition of the nitrogen bases increases slowly showing the formation of very stable 

DNA:PT3M adducts after 130 minutes. These results are fully consistent with the 

electrophoretograms previously reported for DNA:PT3M mixtures, which indicated that 

interactions between pWL102 plasmid DNA and PT3M are weak.[15] In addition, digestion 

with EcoRI and BamHI showed that the protection imparted by PT3M to DNA is very small 

evidencing that specific interactions are weak or do not exist. 

 

 

 

 

 

 

 

 

Figure 4 – Temporal evolution of DNA:PEDOT (-●-) and DNA:PT3M (-○-) mixtures with (a) 1:1 and 

(b) 1:100 DNA:polymer mass ratios followed by UV-Vis spectroscopy (see text). Spectra were 

recorded during the 36 cycles, two consecutive cycles being separated by a 5 minutes interval. 

 
Structural alterations undergone by plasmid DNA when it interacts with PEDOT were 

examined by CD spectroscopic measurements. Figure 5 compares the CD spectra recorded 

for plasmid DNA (1:0 ratio) and both DNA:PEDOT and DNA:PT3M mixtures with 1:1 and 

1:100 ratios. In order to detect structural changes in DNA, the CD spectrum of the polymer 

(0:1 ratio) was subtracted from those of the mixtures. 

The plasmid used in this work is a supercoiling circular DNA and its ellipiticity is 

negative. The raw CD spectra recorded between 200 and 360 nm show ellipiticity changes 

and loss of structure for the 1:100 DNA:PT3M mixture (Figure 5b), while the two 

DNA:PEDOT mixtures maintain negative ellipticity but with loss of the supercoiling structure 

(Figure 5a). On the other hand, DNA adopts the B-form in aqueous solution, the 

characteristics of the CD spectrum typically found for the canonical structure being the 

following: positive band at 275 nm, negative band at 245 nm and crossover point near 258 

nm.[40,41] Figure 5 indicates that the characteristic features of the pMT4 plasmid correspond 

to the B-form, even although small differences are detected with respect to the canonical 

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 25 50 75 100 125 150 175

Time (min)

(A
-A

o
)/

A
m

a
x

PEDOT

P3MT

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 25 50 75 100 125 150 175

Time (min)

(A
-A

o
)/

A
m

a
x

PEDOT

P3MT

(a) (b)

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 25 50 75 100 125 150 175

Time (min)

(A
-A

o
)/

A
m

a
x

PEDOT

P3MT

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 25 50 75 100 125 150 175

Time (min)

(A
-A

o
)/

A
m

a
x

PEDOT

P3MT

(a) (b)



Chapter 4                                                                                             DNA···Conducting Polymers Interaction 

57 

form: positive band at 280 nm, negative signal at 257 nm, and crossover point near 270 nm. 

The appearance of the spectrum changes in presence of the CPs. The observed differences, 

which include a significant reduction in the intensity of the negative and positive bands, 

correspond to conformational variations. Unfortunately, the DNA structure in DNA:polymer 

mixtures cannot be clearly defined due to the presence of the light scattering of spectral 

tails. Thus, the size of the complexes can contribute for the light scattering.[41 

 

 

 

 

 

 

 

 

 

Figure 5 – CD spectra of DNA:polymer complexes to study the structural alterations of DNA: (a) 

DNA:PEDOT and (b) DNA:PT3M mixtures with 1:1 (----) and 1:100 (∙∙∙∙∙∙) mass ratios. In all cases 

the CD spectrum of the corresponding CP was subtracted from the CD spectra of the 

DNA:polymer mixtures. The spectrum recorded for the pMT4 plasmid DNA () is also included. 

 
The CD results allow conclude that the contact between plasmid DNA and PEDOT 

produces changes in the secondary structure of DNA. The immediate consequence of this 

structural alteration is the exposition of the DNA bases, which favors the rapid formation of 

interactions with PEDOT. Some of such interactions are with specific nucleotide sequences, 

like those found for the 5’-G/AATTC-3’ (target for EcoRI) and 5’-G/GATCC-3’ (target for 

BamHI) sequences, inducing the protective effect in the restriction cleavage. The formation 

of specific interactions involves not only directional preferences but also dependence on 

the chemical nature of the CP. These features are typically associated to hydrogen bonds. 

Thus, the importance of hydrogen bonds in DNA:polymer complexes with specific 

interactions is expected to be significantly greater than those that are of non-specific, e.g. 

stacking, van der Waals, electrostatic and charge transfer.  

In order to ascertain the ability of EDOT units to form specific interactions with 

methylated nucleic acids (mNA), quantum mechanical calculations at the MP212 level were 

performed on EDOT∙∙∙mNA complexes (where mNA= mA, mG, mC and mT). The EDOT unit 
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was considered in the neutral (reduced) state rather than in the doped (oxidized) one. This 

is because in oxidized polyconjugated polymers, as PEDOT and PTh, charges are not 

uniformly distributed along the whole molecular chains but are localized in small segments 

that involve a few number of repeating units (typically a few tenths of rings present a 

quinoid-like electronic structure).[42-46] These segments are separated among them by 

blocks of rings with a benzenoid-like electronic structure, which is characteristic of 

conjugated heterocyclic species in the neutral state.[42-46] Neutral EDOT units belonging to 

non-charged blocks are expected to participate in the formation of specific hydrogen 

bonding interactions with DNA bases, while charged units are probably involved in non-

specific electrostatic interactions with the phosphate groups of DNA.  

A total of 26 starting geometries were prepared for EDOT∙∙∙mNA complexes applying 

the following scheme: (i) the thiophene (Th) units of the 11 Th∙∙∙mNA minimum energy 

complexes previously characterized were transformed into EDOT units; and (ii) 15 

EDOT∙∙∙mNA hydrogen bonded complexes were constructed using the oxygen atoms of the 

dioxane ring as interaction sites.[18] Geometry optimization and frequency calculations at 

the MP2/6-31G(d) level provided the following distribution of minimum energy complexes: 

6 EDOT∙∙∙mA, 3 EDOT∙∙∙mT, 7 EDOT∙∙∙mC and 9 EDOT∙∙∙mG, which are displayed in Figure 6, 

7, 8 and 9, respectively. Single point calculations at the MP2/6-311++G(d,p) level allowed to 

obtain accurate estimation of the both the relative stabilities and the affinities. Table 1 lists 

the relative energies ( grE ,∆ ), the relative free energies ( grG ,∆ ), and the binding energies, 

which were estimated with and without correct the basis set superposition error 

(
CP

gbE ,∆ and gbE ,∆ , respectively), for all the minimum energy complexes.  

The EDOT∙∙∙mA minimum of lowest energy (ImA-E) is stabilized by a strong hydrogen 

bond between the amino group of mA and one of the oxygen atoms of the dioxane ring. 

The remaining minima, which show grG ,∆  ≤ 2 kcal/mol, present N-H∙∙∙O (IImA-E), N-H∙∙∙π 

(IIImA-E and IVmA-E) or both N-H∙∙∙O and C-H∙∙∙N interactions (VmA-E and VImA-E). 

However, the most striking feature is that 
CP

gbE ,∆  values range from -6.9 kcal/mol (ImA-E) 

to -4.7 kcal/mol (IIImA-E). These results differ significantly from those obtained for the 

Th∙∙∙mA and Py∙∙∙mA minimum energy complexes previously reported.6 Thus, the 
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CP
gbE ,∆ values calculated for the three Th∙∙∙mA minima, which were stabilized by N-H∙∙∙π 

interactions, were comprised between -4.5 to -3.7 kcal/mol, while those of the four N-H∙∙∙N 

hydrogen bonded complexes found for Py∙∙∙mA ranged from -9.3 to -8.3 kcal/mol. These 

results reflect than the affinity of EDOT by mA is higher than that of Th, even though it is 

lower than that of pyrrole (Py). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 – Geometries of the six EDOT∙∙∙∙mA minimum energy complexes calculated at the 

MP2/6-31G(d) level. N-H∙∙∙O, C-H∙∙∙O and N-H∙∙∙π interactions are indicated by black dashed lines, 

red dashed lines and green arrows, respectively. Hydrogen bonding parameters (distances and 

angles) are displayed. 

 

A completely different situation appears when the building block of PEDOT interacts 

with mT. In this case three minimum energy complexes, which are almost isoenergetic 

( grG ,∆  ≤ 0.5 kcal/mol), have been characterized. The most stable one (ImT-E) presents an 

N-H∙∙∙π interaction, while the other two (IImT-E and IIImT-E) show N-H∙∙∙O hydrogen bonds. 

Five minimum energy complexes with grG ,∆ ≤ 0.7 kcal/mol were found for Py∙∙∙mT: the 

lowest energy one showed a π-stacked arrangement and the other four were stabilized by 

N-H∙∙∙O hydrogen bonds.6 In contrast, a single minimum forming a N-H∙∙∙π interaction was 
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detected for Th∙∙∙mT.[18] Interestingly, our calculations indicate that the strength of the 

interaction with mT is significantly higher for EDOT than for Py and Th. Thus, 
CP

gbE ,∆ is -10.3 

kcal/mol for ImT-E and about -8 kcal/mol for IImT-E and IIImT-E, whereas it ranges from -7.7 

to -6.6 in Py∙∙∙mT complexes and is -3.8 kcal/mol for the Th∙∙∙mT complex. 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 7 – Geometries of the three EDOT∙∙∙∙mT minimum energy complexes calculated at the 

MP2/6-31G(d) level. N-H∙∙∙O, C-H∙∙∙O and N-H∙∙∙π interactions are indicated by black dashed lines, 

red dashed lines and green arrows, respectively. Hydrogen bonding parameters (distances and 

angles) are displayed. 

 
Inspection of the results obtained for EDOT∙∙∙mC complexes suggests that the affinity 

of EDOT towards mC is similar to that obtained for Py. However, a detailed analysis of the 

structures evidences that the behavior of the two building blocks is completely different. 

Thus, 7 minimum energy complexes have been found for EDOT∙∙∙mC, even though only 3 of 

them show grG ,∆ ≤ 2 kcal/mol. The 
CP

gbE ,∆ values predicted for the latter structures, which 

are stabilized by π-stacking (ImC-E) and N-H∙∙∙O hydrogen bonds (IImC-E and IIImC-E), are -

9.1, -6.7 and -6.1 kcal/mol, evidencing that the strength of the former interaction is higher 

than that of the latter. In contrast, the three complexes characterized for Py∙∙∙mC, which 

were close in energies ( grG ,∆ ≤ 1.0 kcal/mol), were stabilized by N-H∙∙∙O and N-H∙∙∙N 

hydrogen bonds, and the calculated 
CP

gbE ,∆  values ranged from -9.7 to -8.4 kcal/mol.[18] 

Accordingly, hydrogen bonds with mC are stronger for Py than for EDOT, even although the 
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latter tends to form very stable π-stacking interactions with this mNA. Regarding to Th∙∙∙mC, 

the 
CP

gbE ,∆ obtained for the three minimum energy complexes were ∼ -4.5 kcal/mol, which 

indicate that Th provides the weakest interaction.[18]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 – Geometries of the seven EDOT∙∙∙∙mC minimum energy complexes calculated at the 

MP2/6-31G(d) level. N-H∙∙∙O, C-H∙∙∙N, N-H∙∙∙π and π-stacking interactions are indicated by black 

dashed lines, pink dashed lines, green arrows and pink arrows, respectively. Hydrogen bonding 

parameters (distances and angles) are displayed. 

 
On the other hand, seven minimum energy complexes were obtained for EDOT∙∙∙mG, 

five of them showing grG ,∆ < 2 kcal/mol. The 
CP

gbE ,∆  of the lowest energy one (ImG-E), 

which is stabilized by a N-H∙∙∙O hydrogen bond, is -9.8 kcal/mol. The 
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gbE ,∆  of the second 

complex (IImG-E) is higher by 0.6 kcal/mol, even though it involves both a N-H∙∙∙O hydrogen 
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N-H∙∙∙O hydrogen bonds, and show 
CP

gbE ,∆ values of -7.4 and -8.6 kcal/mol, respectively. 

Finally, the strength of the binding produced by the N-H∙∙∙O and C-H∙∙∙O interactions found 

in VmG-E is -7.0 kcal/mol. These results differ significantly from those obtained for the four 

complexes obtained for Th∙∙∙mG, which showed 
CP

gbE ,∆ values ranging between -6.8 and -

4.0 kcal/mol.6 All these structures were stabilized by N-H∙∙∙π interactions rather than by 

intermolecular hydrogen bonds. The five minimum energy complexes calculated for Py∙∙∙mG 

are predominantly stabilized by hydrogen bonds, even although grG ,∆  ≥ 2.8 kcal/mol for 

four of them.6 The 
CP

gbE ,∆ of the lowest energy one was -12.5 kcal/mol, while the strength 

of the interaction ranged from -8.7 to -7.5 kcal/mol for the other minima. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9 – Geometries of the seven EDOT∙∙∙∙mG minimum energy complexes calculated at the 

MP2/6-31G(d) level. N-H∙∙∙O, C-H∙∙∙O, C-H∙∙∙N and N-H∙∙∙π interactions are indicated by black 

dashed lines, red dashed lines, purple dashed lines and green arrows, respectively. Hydrogen 

bonding parameters (distances and angles) are displayed. 
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Table 1 – Relative free energya and energyb in the gas-phase (
grG ,∆  and

grE ,∆ ; in kcal/mol), 

and binding energiesc with and without correct the basis set superposition error 

( CP
gbE ,∆ and

gbE ,∆ ; in kcal/mol) for EDOT∙∙∙mNA complexes. 

 
a Estimated by adding the thermodynamic corrections obtained at the MP2/6-31G(d) level to the 

electronic energies calculated at the MP2/6-311++G(d,p) level using the MP2/6-31G(d) 

geometries. b Derived from single point calculations at the MP2/6-311++G(d,p) level on MP2/6-

31G(d) geometries.c Binding energies were calculated at the MP2/6-311++G(d,p) level. 

 

The free energies of solvation for EDOT∙∙∙mNA complexes were calculated using a 

SCRF method. Table 2 includes the relative free energy ( CHLrG ,∆  and WATrG ,∆ ) and 

binding energy (
CP

CHLbE ,∆ and
CP

WATbE ,∆ ) calculated for EDOT∙∙∙mNA complexes in both 

chloroform (CHL) and aqueous (WAT) solutions. As can be seen, the solvent produces some 

changes into the relative stabilities of both EDOT∙∙∙mT and EDOT∙∙∙mC complexes, even 

though they are not significant. Specifically, the lowest energy complex in the two solvents 

is the same that in the gas-phase, i.e. ImT-E and ImC-E, respectively, whereas the 

contribution of the other low-energy structures vary with the polarity of the environment. 

On the other hand, the effect of the solvent on the stability of the six EDOT∙∙∙mA minimum 
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energy structures is small. Thus, independently of the environment all the structures are 

within a free energy interval smaller than 2 kcal/mol. In contrast, the influence of the 

solvent on the relative stabilities of the EDOT∙∙∙mG complexes is very remarkable. Thus, in 

this case VmG-E, which was destabilized by 1.3 kcal/mol in the gas-phase, was found to be 

the lowest free energy structure in both chloroform and aqueous solution. Moreover, the 

contribution of all the other structures was negligible, i.e. CHLrG ,∆ ≥ 2.6 kcal/mol and 

WATrG ,∆ ≥ 3.9 kcal/mol, even although they showed grG ,∆ < 2.0 kcal/mol. 

 
Table 2 – Free energies of solvation ( CHL

solG∆  and WAT
solG∆ ; in kcal/mol), relative free energiesa 

(
CHLrG ,∆  and 

WATrG ,∆ ; in kcal/mol) and binding energiesb ( CP
CHLbE ,∆ and CP

WATbE ,∆ ; in kcal/mol) 

in the chloroform (CHL) and aqueous (WAT) solutions for EDOT∙∙∙mNA complexes. 

 
a Estimated by adding the free energies of salvation to the 

grG ,∆  values (Table 1). b Estimated 

considering the CP
gbE ,∆ values (Table 1) and the free energies of solvation calculated for the 

dimers and the corresponding monomers. 
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Analysis of the influence of the solvent on the strength of the binding reveals very 

remarkable features. Specifically, the interaction between mNA and EDOT has been 

predicted to be attractive in many cases. In chloroform solution the values of 

CP
CHLbE ,∆ obtained for IImA-E, ImT-E, ImC-E and VmG-E, which are the complexes with 

lowest CHLrG ,∆ , are -1.1, -2.2, -2.1 and -2.6 kcal/mol, respectively. On the other hand, ImT-

E, ImC-E and VmG-E are the only complexes with an attractive binding in aqueous solution, 

i.e. 
CP

WATbE ,∆  is -0.3, -2.3 and -1.6 kcal/mol, respectively. It should be mentioned that 

repulsive interactions were predicted in aqueous solution for all the Py∙∙∙mNA and Th∙∙∙mNA 

complexes.[18] Thus, the strength of the binding with mNA undergoes a solvent-induced 

reduction that is more drastic for Py and Th than for EDOT. Although the local polarity in the 

interaction sites is not known, it is probably smaller and larger than that of water and 

chloroform, respectively. Therefore, the results derived from MP2 calculations on model 

complexes are fully consistent with experimental data. 

 

4.1.4 – Conclusions 

 
This work presents a detailed study about the interaction of plasmid DNA with PEDOT, 

a CP with excellent electrical, electrochemical and environmental properties. Ultrafine 

particles of PEDOT were obtained by applying ultrasounds to the grinded samples of 

polymer, which was prepared by anodic electropolymerization. Electrophoresis, UV-Vis and 

CD results obtained for mixtures of pMT4 plasmid DNA and PEDOT with different mass ratios 

indicate that interactions form immediately giving place to stable adducts. Moreover, 

electrophoretograms obtained after digestion with restriction enzymes show that the CP 

interact with specific nucleotide sequences, i.e. 5’-G/AATTC-3’ (target for EcoRI) and 5’-

G/GATCC-3’ (target for BamHI). Completely different results have been obtained for PT3M, a 

PTh derivative without donor and acceptors of hydrogen bonds. Thus, depending on the 

mass ratios, interactions between the latter material and plasmid DNA have been not 

detected or have been found to be weak. These features suggest that hydrogen bonds are 

essential to determine the specificity for selected nucleotide sequences and to define the 

strength and temporal evolution of the interactions between the CP and the plasmid DNA.  
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On the other hand, the CD spectra clearly show that the interaction with CPs provokes 

an alteration in the secondary structure of DNA, i.e. the unfolding of the double helix, which 

increases the exposition of the nitrogen bases. Both this result and the importance of 

hydrogen bonds in specific interactions lead us to propose the following hypothesis for the 

interaction between DNA and CPs: the latter materials produce the unfolding of the double 

helix promoting its intercalation between the DNA strands. This enhances the exposition of 

the DNA bases and, in the case of PEDOT, allows the formation of hydrogen bonding 

interactions between the bases and the oxygen atoms of the dioxane ring. The absence of 

these specific interactions explains the higher degree of exposition found in DNA:PT3M 

mixtures.  

Ab initio quantum mechanical calculations in different environments show that the 

interactions with nucleic acid basis are stronger for EDOT than for Th. Indeed, EDOT usually 

interact through specific hydrogen bonds, while Th only forms complexes stabilized by 

interactions between the π-cloud of the ring and N-H groups of nucleic acid bases. These 

features are fully consistent with the experimental results presented for PEDOT and PT3M. 

On the other hand, the affinity towards the DNA bases are completely different for EDOT 

and Py, which should be attributed to the chemical characteristics of the oxygen atoms of 

EDOT (hydrogen bonding acceptors) and the N-H group of Py (hydrogen bonding donor). The 

strength of the binding in the gas-phase for EDOT∙∙∙mNA complexes grows in the following 

order: mA < mC < mG ≈ mT. Furthermore, EDOT retains a significant affinity towards DNA 

bases when the polarity of the environment increases, whereas repulsive interactions were 

predicted for Py∙∙∙mNA complexes in a polar solvent. 

The overall of the results presented in this work indicate that PEDOT, which was 

found to be a biocompatible material, is a potential candidate for the development 

electroactive devices, e.g. drug-delivery systems, able to act through specific molecular 

recognition patterns.[22,23] 
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4.2 – Influence of the doping level on the interactions between 

poly(3,4-ethylenedioxythiophene) and plasmid DNA 
 

 
The influence of the doping level in the formation of specific interactions between plasmid 
DNA and poly(3,4-ethylenedioxythiophene), a CP with excellent technological properties, 
has been investigated using experimental assays and theoretical calculations. 
Electrochemical methods have been used to prepare polymer samples with oxidation 
degrees ranging from 0.14 to 1.05 positive charges per repeat unit. Mixtures involving 
different DNA:polymer mass ratios have been examined using electrophoresis, UV-Vis and 
CD spectroscopy. On the other hand, quantum mechanical calculations have been carried 
out on model complexes, different electronic and ionization states being considered for 
the molecules that mimic the CP. Combination of experimental and theoretical results has 
been used to propose a mechanism for the formation of DNA:CP complexes, which 
consists on the initial stabilization of the adducts through non-specific interactions 
followed by small structural re-arrangements that allow establish specific hydrogen bonds 
involving the polar groups of the CP and selected DNA bases.* 

 

*
 - Results described in this section previously appeared in Macromolecular Chemistry and Physics 211 (2010) 1117. 

Theoretical calculations were preformed by D. Zanuy. 

 

 

4.2.1 – Introduction 

 
The interaction of CPs with bioentities, as for example living cells, proteins and DNA, 

to obtain information related to system performance and to control that performance, is not 

only an exciting but also an essential area of research.[1-7,11,12-21] Thus, the development of 

biotechnological applications based on CPs greatly depends on the control of such 

interactions. Within this topic, in the last years we have been particularly interested with the 

ability of CPs to form specific interactions with DNA.[15,17,19-21]   

We found that CPs bearing polar functional groups able to act as hydrogen bonding 

donors and/or acceptors, e.g. N-H in PPy and ester side groups in some substituted PThs, are 

able to form specific interactions with well-defined nucleotide sequences of plasmid 

DNA.[15,17,19-21] This selectivity suggests that CP:DNA adducts are stabilized not only by 

electrostatic interactions, i.e. the existence of these complexes has been traditionally 

attributed to the tendency of the negatively charged DNA to interact with oxidized materials, 

but also by the presence of additional specific interactions, i.e. weak interactions that 

depend on the spatial disposition and orientation of the chemical groups. Among them, 

hydrogen bonds are expected to be significantly more important than other weak but less 
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specific interactions, e.g. π-π stacking and van der Waals. Indeed, recently reported 

theoretical calculations showed that hydrogen bonds between DNA bases and PPy are 

considerably stronger than interactions involving these biological building blocks and 

unsubstituted PTh.[20] 

One of the most promising CPs, PEDOT (Scheme 1) shows particular abilities to 

interact specifically with plasmid DNA.[15,21] PEDOT is a commercial CP originally described by 

researchers at the Bayer company, which attracted considerable interest due to a 

combination of properties, i.e. moderate band gap, low oxidation potential, high 

conductivity, good optical transparency and exceptional environmental stability.[22-24] 

Electrophoretic and spectroscopic studies on mixtures of plasmid DNA and PEDOT showed 

the rapid formation of stable adducts, the formation of interactions with specific nucleotide 

sequences being evidenced through the protection imparted by this CP against restriction 

enzymes.[21] In contrast, interactions between DNA and poly(3-methylthiophene) (P3MT in 

Scheme 1), a PTh derivative without polar groups, were found to be non-specific, even 

although stable DNA:P3MT adducts were detected.[21] Thus, the specificity of PEDOT for 

selected nucleotide sequences as well as the temporal evolution of the DNA:PEDOT adducts, 

which was different from that of the DNA:P3MT ones, was attributed to the hydrogen 

bonds. 

 

S

OO

S

CH3

PEDOT P3TM  

Scheme 1 

 
In spite of these results, many aspects of the specific interactions between CPs and 

DNA remain unknown. Among them, the influence of the doping level on both the strength 

and specificity of the CP∙∙∙DNA interactions is a subject that deserves consideration. Our 

previous studied on CP:DNA adducts were carried out using polymers yielded by anodic 

electropolymerization techniques, which typically produces highly oxidized (doped) CPs.[25] 

Thus, the unequivocal formation of strong electrostatic interactions between these doped 
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materials and the negatively charged DNA is essential for the formation and stability of 

adducts, even although specific hydrogen bonding interactions are expected to define the 

preferences towards selected nucleotide sequences. The importance of the doping level on 

CP∙∙∙DNA interactions is the topic of the present study, in which we have examined 

experimentally and theoretically the interactions between plasmid DNA and PEDOT using 

samples of the latter material with three different oxidation degrees. In particular, we have 

performed electrophoretic assays, absorption spectroscopy, CD and quantum mechanical 

calculations to investigate the formation of stable adducts and specific interactions with DNA 

when the CP is used as prepared (0.54 charges per repeat unit), after subsequent oxidation 

(1.05 positive charges per repeat unit) or after subsequent reduction (0.14 charges per 

repeat unit). 

 

4.2.2 – Methods 

 
Synthesis and Characterization of the CP. EDOT monomer was purchased from Aldrich 

and used as received. Anhydrous LiClO4, analytical reagent grade from Aldrich, was stored in 

an oven at 80 ºC before use in the electrochemical trials.  

PEDOT was prepared by CA under a constant potential of 1.40 V using a 

polymerization time of 900 s. Both anodic electropolymerization and electrochemical 

experiments were performed on a VersaStat II potenciostat-galvanostat using a three-

electrode compartment cell under nitrogen atmosphere at 25 ºC. The anodic compartment 

was filled with 40 ml of a 10 mM monomer solution in acetonitrile containing 0.1 M LiClO4 as 

supporting electrolyte, while the cathodic compartment contained 10 ml of the same 

electrolyte solution. Steel AISI 316 sheets of 4 cm2 area were employed as working and 

counter electrodes. The reference electrode was an Ag|AgCl electrode containing a KCl 

saturated aqueous solution. 

The doping level of the generated PEDOT, hereafter called PEDOT-0, was altered by 

chronopotentiometric oxidation or reduction, respectively, using an electrochemical cell 

containing a 0.1 M LiClO4 solution in acetonitrile, i.e. without monomer. Specifically, the 

oxidation degree of PEDOT-0 was increased and decreased by fixing the value of current 

density to +0.50 mA∙cm-2 during 500 s and -0.50 mA∙cm-2 during 300 s, respectively. Oxidized 

and reduced samples of PEDOT-0 are denoted PEDOT-ox and PEDOT-red, respectively. The 
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percentage of −

4ClO  in each collected sample was obtained from reduction of 

approximately 2 mg of polymer with carbon, followed by determination of the amount of 

chloride ions released by standard ion chromatography. This analysis was performed with a 

Kontron 600 HPLC liquid chromatograph fitted with a Water IC-Pak anion column at 30 ºC 

and equipped with a Wescan conductimeter detector.  

In order to facilitate the interaction with DNA, ultrafine particles of PEDOT-0, PEDOT-

ox and PEDOT-red were obtained by applying ultrasounds to polymer solutions (5 μg 

polymer/μl; de-ionized water). 

 

Formation of complexes with DNA and electrophoretic assays. The procedure 

employed to prepare DNA:PEDOT complexes was identical in all cases, independently of the 

doping level of the CP. Complexes were formed in aqueous solution by mixing 2.5 μl of 

plasmid pMT4 (0.1 μg/μl) with 0.00, 0.05, 0.25, 0.50, 2.50 and 5.00 μl of polymer solution (5 

μg polymer/μl; de-ionized water), which corresponded to the desired DNA:PEDOT mass 

ratios (1:0, 1:1, 1:5, 1:10, 1:50, 1:100, respectively). Final volumes were raised to 10 μl with 

sterile de-ionized water. The mixtures were incubated overnight at 37 ºC. After this, an 

aliquot of 6X gel loading buffer was added, samples being centrifuged for 10 min. The 

supernatant was analyzed by electrophoresis with 1% of agarose gel containing ethidium 

bromide (0.5 μg/ml of gel) in 1X tris-borate-EDTA buffer (TBE). The electrophoretograms of 

plasmid pMT4 shows two characteristic bands, which correspond to a mixture of the 

supercoiled form I and the circular form II.[21]
 

The presence of specific interactions was examined using the EcoRI and BamHI 

restriction enzymes, which cut off at 5’-G/AATTC-3’ and 5’-G/GATCC-3’ nucleotide 

sequences, respectively. The pMT4 plasmid DNA contains only one restriction site for EcoRI 

converting supercoiled form I and circular form II into linear DNA (form III). BamHI has three 

restriction sites producing three DNA fragments, denoted F1, F2 and F3. The mobility of F1 

and F2 correspond to a single band in the electrophoretogram, while F3 is the fragment of 

lowest molecular weight showing the fastest mobility. However, BamHI produces form III 

when it makes only one cut in the plasmid DNA. To evaluate the cleavage of pMT4 in 

DNA:PEDOT complexes, 1.5 μl of restriction enzyme (10000 U/µl) and 1.28 μl of 10X enzyme 

buffer were added to each incubated sample. The digestion process was carried out at 37 ºC 

for 1 h, the digested products being analyzed by electrophoresis. 
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Spectroscopic studies. A UV-3600 (Shimadzu) UV-Vis-NIR spectrophotometer 

controlled by the UVProbe 2.31 software was used to record UV-Vis spectra of DNA:PEDOT 

at room temperature, in the 200-1000 nm range, with a bandwidth of 2 mm and a scan 

speed of 600 nm/min. Light scattering effects were avoided by correcting the maximum 

absorbance of nucleotide bases in DNA, which is 260 nm (A260nm), with respect to the 

absorbance at 350 nm (A350nm). For each sample, 36 cycles separated by an interval of 5 

minutes between consecutive cycles were recorded. The interaction between the DNA and 

the CP was examined by following the evolution of (A-A0)/Amax against time (t) for the 

mixtures, where A0 corresponds to the absorbance of DNA in solution (1:0 ratio) at the initial 

time (t= 0 min), Amax is the absorbance of the bases in the mixture after thermal 

denaturalization of DNA i.e. the sample is heated at 94 ºC during 15 min producing 

exposition of all DNA bases, and A is the absorbance of nitrogen bases in the mixture 

measured at different cycles. 

CD measurements were carried out in a Jasco J-810 spectropolarimeter at 22 ˚C using 

a quartz cuvette. The CD data were recorded with standard sensitivity (100 mdeg), in the 

170-400 nm range, with bandwidth of 2 mm, response time of 0.5 s and scanning speed of 

200 nm/min. The reported spectra correspond to the average of five scans, the raw spectra 

being smoothed by the Savitsky-Golay algorithm. For each sample, the CD spectrum of the 

polymer was subtracted from that of the DNA:PEDOT complex, and compared with the CD 

spectrum of the plasmid DNA. Previous CD studies indicated that plasmid pMT4 is a 

supercoiling circular DNA with negative ellipticity.[19,21] 

 

Quantum mechanical calculations. Calculations were performed using the Gaussian 03 

computer program.[26] The structures of the complexes were determined by full geometry 

optimization at the MP2/6-31G(d) level.[27,28] Calculations were carried out considering the 

neutral, monocationic and dicationic ionization states for EDOT-oligomers, the singlet (two 

paired electrons) and triplet (two unpaired electrons) electronic states being considered for 

the dication. The restricted formalism was considered for complexes involving neutral EDOT-

oligomers (closed-shell systems), while for monocationic and dicationic oligomers the 

unrestricted formalism of the MP2 method (UMP2) was used.  

Calculated model complexes involved EDOT-oligomers, hereafter denoted nEDOTm 

(where n refers to the number of EDOT units and m indicates the charge and electronic 
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state, being m= 0, +1, +2S and +2T for the neutral state, monocationic state, singlet 

dicationic state and triplet dicationic state, respectively) and dimethylphosphate (DMP), 9-

methylguanine (mG) or 1-methylthymine (mT). Previous calculations on 1EDOT0∙∙∙mNA, 

where mNA refers to methylated nucleic acids, indicated that the interaction with mG and 

mT was favored with respect to that with methyladenine (mA) and methylcytosine (mC), the 

strength of the binding in 1EDOT0∙∙mNA complexes growing as follows: mA < mC < mG ≈ 

mT.[21] Accordingly, the nEDOTm∙∙∙mNA complexes calculated for the current study are: 

3EDOT0∙∙∙mG, 3EDOT0∙∙∙mT, 3EDOT+1∙∙∙mG, 3EDOT+1∙∙∙mT, 3EDOT+2S∙∙∙mG, 3EDOT+2S∙∙∙mT, 

3EDOT+2T∙∙∙mG and 3EDOT+2T∙∙∙mT. On the other hand, the strength of non-specific 

electrostatic interactions was estimated by calculating the 1EDOT+1∙∙∙DMP complex. 

Binding energies (ΔEb), which were obtained by correcting the basis set superposition 

error with counterpoise method, were estimated as the difference between the total energy 

of the optimized complex and the energies of the isolated monomers with the geometries 

obtained from the optimization of the complex.[29] The effect of the solvent on the strength 

of the binding was estimated following the PCM developed by Tomasi and co-workers.[30,31] 

PCM calculations were performed in the framework of the ab initio (U)MP2/6-31G(d) level 

using the standard protocol and considering the dielectric constant of water (ε= 78.4), which 

is the solvent used for the experimental assays. Calculations were performed considering the 

gas-phase optimized geometries. Thus, solvent-induced changes in bond lengths and angles 

were found to have small influence on the free energy of solvation (∆Gsol), i.e., solute 

geometry relaxations in solution and single point calculations on the gas-phase optimized 

geometries provided almost identical values of ∆Gsol.
[32-34] The binding energy of the 

complexes in solution (∆Eb,sol) was estimated by using eq. 1: 

 

 ∆Eb,sol= ∆Eb + ∆∆Gsol (1) 

 

where ∆∆Gsol is the difference between the free energy of solvation of the complex and the 

separated monomers. 
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4.2.3 – Results and Discussion 

 
Preparation of PEDOT samples. The electrogenerated PEDOT-0 films were dark-blue, 

uniform, adherent and insoluble. Although the properties of this CP are not discussed in this 

work because they were previously reported, it should be remarked that the number of 

positive charges supported by each monomeric unit of PEDOT-0 was found to be 0.54.[25] 

This oxidation degree was altered by chronopotentiometry, the doping level of PEDOT-ox 

and PEDOT-red being found to be higher and lower than that of PEDOT-0. More specifically, 

PEDOT-ox showed 1.05 positive charges per repeat unit, which is an extremely high value, 

while PEDOT-red was close to a neutral (de-doped) material with only 0.14 positive charges 

per repeat unit. Accordingly, the formulas of PEDOT-0, PEDOT-ox and PEDOT-red can be 

approximated as follows: 

 PEDOT-0: [(EDOT2)
+ −

4ClO ]n 

 PEDOT-ox: [(EDOT)+ −

4ClO ]n 

   PEDOT-red:    [(EDOT7)
+ −

4ClO ]n 

 
Experimental measures on DNA:PEDOT complexes. Previous work evidenced that 

PEDOT-0 forms stable complexes with specific interactions with plasmid DNA.[21] Accordingly, 

the current study is focused on the influence of the doping level of the CP in the strength of 

such interactions. Figure 1 shows the electrophoretograms obtained for DNA:PEDOT-0, 

DNA:PEDOT-ox and DNA:PEDOT-red mixtures considering different mass ratios. In all cases 

lane 1 corresponds to the 1:0 mass ratio (pMT4 plasmid without CP), while lanes 2-6 displays 

the series at 1:1, 1:10, 1:50 and 1:100 mass ratios. The retard in the mobility of form I and 

the increase in the intensity of form II evidence the formation of complexes for PEDOT-0 and 

PEDOT-ox when the mass ratio ranges from 1:5 to 1:100, i.e. they were not clearly detected 

for 1:1. The absence of bands in lanes 5 and 6 for the complexes with PEDOT-0 and PEDOT-

ox must be attributed to the sedimentation of these adducts during the centrifugation 

process previous to the electrophoretic assays. In contrast, the electrophoretograms 

recorded for DNA:PEDOT-red mixtures do not allow a clear identification of stable 

complexes, a small retard in the mobility of the band of form I being the only alteration 

found for the 1:100 ratio. These results suggest that the formation of DNA:PEDOT complexes 
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are dominated by electrostatic interactions between the negative charges of the 

biomolecule and the positive charges of the doped CP. 

 

PEDOT-red PEDOT-oxPEDOT-0

1  2  3 4  5  6 1  2  3 4  5  6 1  2  3 4  5  6

DNA:PEDOT

Form I

Form II

M

 

Figure 1 – Interaction of pMT4 plasmid DNA and increasing concentrations of CP (PEDOT-red, 

PEDOT-0 and PEDOT-ox) after their incubation for 3h at 37 ºC. Lane M (only for PEDOT-red): 

molecular weight marker (1 Kb Plus DNA Ladder). Lane 1: pMT4 plasmid DNA. Lanes 2-6: 1:1, 

1:5, 1:10, 1:50 and 1:100 DNA:PEDOT mass ratios. Labels I and II indicate form I and II of pMT4 

plasmid DNA, respectively. 

 

EcoRI and BamHI restriction enzymes were added to the DNA:PEDOT mixtures. Figure 

2 displays the electrophoretograms obtained after enzymatic digestion of DNA:PEDOT-0, 

DNA:PEDOT-ox and DNA:PEDOT-red mixtures using 1:1, 1:10 and 1:100 mass ratios. The 

digestion of DNA:PEDOT-red with EcoRI produces the band associated to the formation of 

form III for all the studied ratios, while the band of linear DNA promoted by this enzyme is 

detected for the 1:1 and 1:10 ratios of DNA:PEDOT-0 and DNA:PEDOT-ox. Results obtained 

after the digestion of BamHI reveal that, although fragments F1, F2 and F3 were detected for 

the 1:1 and 1:10 mixtures of the three systems, DNA receives some protection in the 1:100 

mixtures. However, the protection imparted by PEDOT-ox was stronger than that provided 

by PEDOT-0 and, especially, PEDOT-red. The digestion of DNA:PEDOT-red with EcoRI 

produces the band associated to the formation of form III for all the studied ratios, while the 

band of linear DNA promoted by this enzyme is detected for the 1:1 and 1:10 ratios of 

DNA:PEDOT-0 and DNA:PEDOT-ox. Results obtained after the digestion of BamHI reveal that, 

although fragments F1, F2 and F3 were detected for the 1:1 and 1:10 mixtures of the three 

systems, DNA receives some protection in the 1:100 mixtures. However, the protection 

imparted by PEDOT-ox was stronger than that provided by PEDOT-0 and, especially, PEDOT-

red. 
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Figure 2 – Interaction between pMT4 plasmid DNA and increasing concentrations of CP (PEDOT-

red, PEDOT-0 and PEDOT-ox) followed by EcoRI (a) and BamHI (b) enzymatic digestion for a 

period of 1 h at 37 ºC. Lane M: molecular weight marker (1 Kb Plus DNA Ladder). Lane 1: 

undigested and untreated pMT4 plasmid DNA (1:0 ratio). Lane 2: digested pMT4 plasmid DNA 

(1:0 ratio). Lanes 3-5: 1:1, 1:10, 1:100 DNA:PEDOT ratios after enzymatic digestion. Forms I, II 

and III of pMT4 plasmid DNA, as well as fragments F1, F2 and F3 resulting from DNA digestion 

with BamHI, have been labeled. 

 

The temporal evolution of the mixtures formed by plasmid DNA and the different 

PEDOT species was examined using UV-Vis spectroscopy. Figure 3 represents the evolution 

of (A-A0)/Amax against time for the 1:1 and 1:50 mixtures.  

 

PEDOT-red PEDOT-oxPEDOT-0

M  1  2  3  4  5 1   2    3   4  5 1   2   3   4   5 

DNA:PEDOT

Form I

Form II

Form III

PEDOT-red

M  1   2  3  4  5

PEDOT-ox

M  1   2  3  4  5

PEDOT-0

M  1  2  3  4  5

DNA:PEDOT

Form I

Form II

F1,F2

F3

(a)

(b)



Chapter 4                                                                                             DNA···Conducting Polymers Interaction 

80 

 

Figure 3 – Temporal evolution of DNA:PEDOT-red, DNA:PEDOT-0 and DNA:PEDOT-ox mixtures 

with (a) 1:1 and (b) 1:50 mass ratios followed by UV-Vis spectroscopy (see text). Spectra were 

recorded during the 36 cycles, two consecutive cycles being separated by a 5 minutes interval. 

 
The moderate exposition of the nitrogen bases indicates that the interaction is relatively 

weak in the 1:1 mixture, independently of the oxidation degree of the CP. In contrast, 

interactions are clearly detected for the 1:50 DNA:PEDOT-0 and, especially, DNA:PEDOT-ox 

mixtures. These results reflect that the strength of the interactions strongly depend on the 

concentration of the doped CP. Moreover, the strong interactions found in the 1:50 

mixtures, which are formed rapidly as revealed the fast exposition of the DNA nitrogen 

bases, are consistent with the formation of adducts evidenced by the electrophoretic assays. 

On the other hand, the interaction was found to be very weak for the 1:50 DNA:PEDOT-red 

mixture, which agrees with the results displayed in Figure 1 and 2. 

Figure 4 shows the CD spectra recorded for DNA:PEDOT-red, DNA:PEDOT-0 and 

DNA:PEDOT-ox with 1:0 (isolated plasmid DNA), 1:1 and 1:100 mass ratios, which allow 

detect the structural changes induced by the CP in DNA.  
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Figure 4 – CD spectra of DNA:PEDOT-red (a), DNA:PEDOT-0 (b) and DNA:PEDOT-ox (c) complexes 

to study the structural alterations of DNA. Mixtures with 1:1 (----) and 1:100 (∙∙∙∙∙∙) are displayed. 

In all cases the CD spectrum of the corresponding PEDOT specie was subtracted from the CD 

spectra of the mixtures. The spectrum recorded for the pMT4 plasmid DNA () is also included. 

 

As it can be seen in Figure 4a, the raw spectra recorded between 200 and 260 show 

ellipticity changes (positive ellipticity) without loss of the supercoiling structure for the 1:1 

and 1:100 DNA:PEDOT-red mixtures. Although the neutral CP is not able to alter the 

secondary structure of DNA, such positive ellipticity reflects a variation in the rotational 

movement. This feature is fully consistent with the small retard in the mobility of the band 

of form I displayed in Figure 1. In contrast, the spectra of DNA:PEDOT-0 and DNA-PEDOT-ox 

(Figure 4b and 4c, respectively) show significant structural changes, even although the 

(a)

(b)

3

-10

-5

0

200 350250 300

C
D

[m
d
e
g
]

Wavelength [nm]

3

-10

-5

0

200 350250 300

C
D

[m
d
e
g
]

Wavelength [nm]

-5

0

5

200 350250 300

C
D

[m
d
e
g
]

Wavelength [nm]

-5

0

5

200 350250 300

C
D

[m
d
e
g
]

Wavelength [nm]

(c)

-5

0

5

200 350250 300

C
D

[m
d
e
g
]

Wavelength [nm]

-5

0

5

200 350250 300

C
D

[m
d
e
g
]

Wavelength [nm]



Chapter 4                                                                                             DNA···Conducting Polymers Interaction 

82 

negative ellipticity is retained. The CD spectrum of the canonical B-form of DNA, which is the 

usually adopted in aqueous solution, typically presents a positive band at 275 nm, a negative 

band at 245 nm and a crossover point near 258 nm.[35,36] It worth nothing that the spectrum 

displayed in Figure 4 for the isolated plasmid (1:0 ratio) clearly correspond to the B-form. 

However, the addition of PEDOT-0 and PEDOT-ox provokes important variations in the 

appearance of the spectra reflecting drastic structural alterations. These changes, which 

increase with the doping level, produce the exposition of the DNA basis favoring favor the 

formation of stable complexes. Unfortunately, the DNA structure in such mixtures cannot be 

clearly defined due to the presence of the light scattering of spectral tails.[36] 

The experimental results displayed in Figure 1-4 indicate that DNA:PEDOT-0 and 

DNA:PEDOT-ox complexes are formed rapidly, their strength and stability increasing with the 

oxidation degree of the CP. These features are consistent with the presence of non-specific 

electrostatic interactions between the DNA and oxidized PEDOT. Electrostatic interactions 

can be easily formed by all doped CPs, independently of their chemical nature, which is 

consistent with the stable DNA:P3MT adducts recently reported.[21] However, PEDOT is able 

to form interactions with specific nucleotide sequences, like those found in the 5’-G/AATTC-

3’ (target for EcoRI) and 5’-G/GATCC-3’ (target for BamHI) sequences, inducing protection in 

the restriction cleavage. These specific interactions are clearly detected for PEDOT-0 and 

PEDOT-ox while a high concentration of polymer is required for PEDOT-red (Figure 2). These 

results suggest that specific interactions are developed after the formation of stable adducts 

and, therefore, they should be considered as complementary reinforcement to the 

electrostatic ones. Structural alterations undergone by DNA are expected to facilitate the 

formation of specific interactions involving DNA bases once the complex has been 

constituted. 

 
Strength of the electrostatic interaction formed by the phosphate group of DNA and 

the oxidized PEDOT. Figure 5 shows the most stable structure obtained for the 

1EDOT+1∙∙∙DMP complex. The resulting ∆Eb value, -122.9 kcal/mol, reflects the significant 

strength of this electrostatic interaction. Moreover, the ΔEb,sol value is -41.7 kcal/mol 

reflecting that such interaction also remains stable in aqueous solution. 
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Figure 5 – Geometry of the most favored 1EDOT+1∙∙∙∙DMP complex. 

 
Theoretical calculations on complexes formed by DNA bases and PEDOT. Previous 

calculations on 1EDOT0∙∙∙mNA indicated that intermolecular interactions are significantly 

stronger when mNA= mG and mT.[21] Accordingly, the initial structures of 3EDOTm∙∙∙mG and 

3EDOTm∙∙∙mT were built for geometry optimization using the lowest energy arrangement 

reported for 1EDOT0∙∙∙mG and 1EDOT0∙∙∙mT, respectively. 

Figure 6 shows the optimized molecular geometries of 3EDOT0∙∙∙mG and 3EDOT0∙∙∙mT. 

The former complex is stabilized by N-H∙∙∙O and N-H∙∙∙S hydrogen bonds, the intermolecular 

parameters for these interactions being [dH∙∙∙O= 1.962 Å, ∠N-H∙∙∙O= 167.4˚] and [dH∙∙∙S= 2.862 

Å, ∠N-H∙∙∙S= 152.8˚], respectively. In contrast, 3EDOT0∙∙∙mT presents a π-stacking stabilizing 

interaction, the center of masses of the central thiophene ring and the mT being separated 

by 3.375 Å. This represents a significant change with respect to the minimum energy 

structures reported for 1EDOT0∙∙∙mT, which were stabilized by N-H∙∙∙O and N-H∙∙∙π 

interactions.[21] On the other hand, complexes involving 3EDOT+ (Figure 7) are completely 

different from those displayed in Figure 6. Specifically, the hydrogen bonding interaction 

pattern found for 3EDOT0∙∙∙mG transforms into a π-stacked arrangement in 3EDOT+1∙∙∙mG, 

the distance between the center of masses of the central thiophene ring and the mG being 

3.367 Å. On the other hand, 3EDOT+1∙∙∙mT presents a N-H∙∙∙π interaction, the distance 

between hydrogen atom of mT and the center of the C2- C2’ inter-ring bond being 2.371 Å. 
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Figure 6 – Geometries of the (a) 3EDOT0∙∙∙∙mG and (b) 3EDOT0∙∙∙∙mT complexes calculated at the 

MP2/6-31G(d) level. The N-H∙∙∙O and N-H∙∙∙S interactions are displayed using black dashed lines, 

while the π-stacking interaction is indicated by a double arrow. Intermolecular parameters are 

given in the text. 

 

 

Figure 7 – Geometries of the (a) 3EDOT+1∙∙∙∙mG and (b) 3EDOT+1∙∙∙∙mT complexes calculated at 

the MP2/6-31G(d) level. The π-stacking and N-H∙∙∙π interactions are indicated by double and 

single arrows, respectively. 

 

(a)

(b)

(a)

(b)



Chapter 4                                                                                             DNA···Conducting Polymers Interaction 

85 

Calculations on complexes containing the dicationic EDOT oligomer were performed 

considering both the singlet (3EDOT+2S) and the triplet (3EDOT+2T) electronic states. For the 

two nucleic acid bases the complex containing 3EDOT+2S was energetically stabilized with 

respect to that involving 3EDOT+2T by ∼48 kcal/mol. This is an expected result since short 

dicationic thiophene- and EDOT-oligomers (less than ∼9 repeat units) are known to prefer a 

bipolaronic structure (singlet state), while long oligomers form two well-defined and 

separated polarons (triplet state).[37-39] Figure 8 displays the optimized structures of the four 

complexes calculated considering the dicationic EDOT-oligomer.  

 

 
Figure 8 – Geometries of the (a) 3EDOT+2S∙∙∙∙mG and 3EDOT+2T∙∙∙∙mG, and (b) 3EDOT+2S∙∙∙∙mT and 

3EDOT+2T∙∙∙∙mT complexes calculated at the MP2/6-31G(d) level. The π-stacking and N-H∙∙∙π 

interactions are indicated by double and single arrows, respectively, while N-H∙∙∙O interactions 

are displayed using black dashed lines. 

 

As can be seen, 3EDOT+2S∙∙∙mG and 3EDOT+2S∙∙∙mT show π-stacked arrangements in which 

the center of masses of the nucleic acid base and the interacting thiophene ring are 

separated by 3.886 and 3.553 Å, respectively. In contrast, 3EDOT+2T∙∙∙mG shows a N-H∙∙∙O 

hydrogen bond with dH∙∙∙O= 2.179 Å and ∠N-H∙∙∙O= 162.5˚. Finally, the stability of 

3EDOT+2T∙∙∙mT arises from the interaction formed by the N-H group of mT and the π-cloud of 
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the C2-C2’ inter-ring bond, the distance between them (2.423 Å) being slightly larger than 

that obtained for 3EDOT+1∙∙∙mT. 

The values of ΔEb for all the calculated complexes are listed in Table 1. Interactions 

are stronger with mG than with mT in the gas-phase, this feature being independent of the 

charge of the EDOT-oligomer. Indeed, the difference between the two systems increases 

with the oxidation degree of the oligomer. The energy gain associated to the binding 

increases with the charge of the EDOT-oligomer for both mG- and mT-containing complexes, 

even although this increment is significantly higher for the former than for the latter. Thus, 

ΔEb is 44.2 kcal/mol more favorable for 3EDOT+2T∙∙∙mG than for 3EDOT0∙∙∙mG, whereas this 

difference decreases to 11.8 when 3EDOT+2T∙∙∙mT and 3EDOT0∙∙∙mT are compared. It should 

be noted that the ΔEb values listed in Table 1 are significantly higher than that obtained for 

the 1EDOT+1∙∙∙DMP complex, supporting the crucial role of the electrostatic interactions 

between the phosphate groups of DNA and the oxidized CPs in the formation of stable 

adducts. 

 
Table 1 – Binding energies in the gas-phase and aqueous solution (∆Eb and ∆Eb,sol, respectively; in 

kcal/mol) obtained at the MP2/6-31G(d) level for the complexes calculated in this work. 

Complex ∆Eb ∆Eb,sol Complex ∆Eb ∆Eb,sol 

3EDOT0∙∙∙mG -11.9 9.2 3EDOT0∙∙∙mT -10.9 -2.9 

3EDOT+1∙∙∙mG -12.3 -1.1 3EDOT+1∙∙∙mT -10.7 10.1 

3EDOT+2S∙∙∙mG -28.2 4.9 3EDOT+2S∙∙∙mT -18.0 3.5 

3EDOT+2T∙∙∙mG -56.1 -14.1 3EDOT+2T∙∙∙mT -22.7 9.0 

 

A completely different situation was obtained in aqueous solution, the estimated 

values of ΔEb,sol being included in Table 1. In this environment the relative affinities of the 

3EDOT-oligomer towards mG and mT depend on both the oxidation degree and the 

electronic state. Specifically, 3EDOT0 and 3EDOT+2T interact more favorably with mT than 

with mG, while 3EDOT+1 and 3EDOT+2S prefer mG. However, all the ΔEb,sol listed in Table 1 are 

significant higher than that obtained for 1EDOT+1∙∙∙DMP. On the other hand, in some cases 

the interaction between the 3EDOT-oligomer and the base becomes repulsive in aqueous 

solution. The ∆Gsol values predicted for all the complexes and their corresponding fragments, 

which are listed in Table 2, indicate that the strength of the binding in aqueous solution is 

modulated by the hydration of both the complexes and the nucleic acid bases.  
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Table 2 – Solvation free energies in aqueous solution (∆Gsol; in kcal/mol) provided by the PCM 

method for the complexes calculated in this work as well as for the corresponding monomers. 

Species Complex 3EDOT
m

 
a
 mNA 

b
 

3EDOT0∙∙∙mG -9.7 -5.70 -25.0 

3EDOT+1∙∙∙mG -44.0 -31.6 -23.6 

3EDOT+2S∙∙∙mG -118.8 -127.7 -25.3 

3EDOT+2T∙∙∙mG -114.7 -130.0 -26.7 

3EDOT0∙∙∙mT -6.9 -5.6 -9.4 

3EDOT+1∙∙∙mT -20.1 -31.4 -9.6 

3EDOT+2S∙∙∙mT -114.6 -126.4 -9.7 

3EDOT+2T∙∙∙mT -105.0 -126.9 -9.9 

a The super-index m refers to the charge and electronic state, being m= 0, +1, +2S and +2T for 

the neutral state, monocationic state, singlet dicationic state and triplet dicationic state, 

respectively. b mNA, which refers to methylated nucleic acid, are 9-methylguanine (mG) or 1-

methythymine (mT). 

 

Thus, the solute-solvent interaction is ∼15.5 kcal/mol more favorable for mG than for mT. In 

spite of this, it should be emphasized that in realistic DNA:PEDOT systems the influence of 

the solvent is expected to be smaller. This is because in the calculated complexes the small 

model molecules are completely surrounded by the solvent, while in a realistic systems 

hydration effects are significantly smoothed by the macromolecular size of the own 

interacting species. 

 

4.2.4 – Conclusions 

 
Mixtures formed by pMT4 plasmid DNA and PEDOT with doping levels ranging from 

0.14 to 1.05 positive charges per repeat unit were prepared considering 1:1, 1:5, 1:10 and 

1:50 mass ratios. PEDOT-0 and PEDOT-ox form stable adducts and specific interactions with 

plasmid DNA. However, PEDOT-red interacts with DNA only when the concentration of the 

CP is very high. Accordingly, non-specific electrostatic interactions between the negatively 

charged groups of DNA and the oxidized CP are essential to form stable adducts, the stability 

of the complexes increasing with the doping level of the CP. Once adducts are stabilized, 

weak interactions that depend on the spatial disposition and orientation of the chemical 
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groups are formed. These specific interactions, which are the responsible of the protection 

imparted by PEDOT against the attack of the restriction enzymes, is possible because of the 

exposition of the DNA basis. Thus, the B-DNA arrangement of the plasmid DNA undergoes 

significant structural alterations when it interacts with PEDOT-0 and PEDOT-ox. In contrast, 

the formation of specific interactions in DNA:PEDOT-red mixtures is obstructed by the 

absence of electrostatic interactions, i.e. the exposition of the bases is low because 

structural alterations in DNA are small. 

Quantum mechanical calculations on model complexes formed by 3EDOTm and either 

mG or mT confirm that PEDOT is able not only to form specific interactions but also to 

distinguish among DNA bases. Most importantly, we found that the geometric interaction 

pattern and the binding energy of 3EDOTm∙∙∙mNA complexes change with m, these features 

being fully consistent with experimental observations. Thus, the strength of the binding 

increases with the charge of the EDOT-oligomer supporting the fact that the stability of 

DNA:PEDOT adducts increases with the doping level. However, attractive specific 

interactions involving PEDOT and DNA bases, which depend on both the chemical nature of 

the latter and the oxidation degree of the former, are expected to play a significant role 

once the adducts are formed. 

It should be noted that in oxidized CPs charges are not uniformly distributed along the 

whole molecular chains but are localized in small segments that involve a few tenths of 

repeating units.[40-42] Accordingly, neutral EDOT units belonging to non-charged blocks are 

expected to participate in the formation of specific hydrogen bonding interactions with 

selected DNA bases, while charged units are probably involved in non-specific electrostatic 

interactions with the phosphate groups of DNA. The overall of the results presented in this 

work are expected to be useful for the development of new CPs able to delivery drugs at 

specific regions of DNA. 
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4.3 – Specific interactions in complexes formed by DNA and 

conducting polymer building blocks: Guanine and 3,4-

ethylenedioxythiophene 
 

 
The present contribution presents direct experimental evidences about the existence of 
hydrogen bonds between PEDOT and DNA complexes as well as a deeper of the 
knowledge how such interactions take place in these complexes. To this end, we have 
employed a combination of experimental and theoretical methodologies to examine the 
interactions between the building blocks of such two macromolecules. Specific 
interactions between EDOT and doubly protonated guanine (GH2

2+) monomers have been 
investigated using UV-Vis spectroscopy. Quantum mechanical calculations in the density 
functional theory (DFT) and time-dependent density functional theory (TDDFT) 
frameworks have been used to indentify the structure of the possible complexes, which 
differ in the interaction pattern, and to interpret the absorption spectra in terms of 
intermolecular interactions, respectively. Results allowed us to verify our previous 
hypothesis about the formation of specific N-H∙∙∙O interactions between G-containing 
nucleotide sequences and PEDOT. Clearly, DFT calculations indicate that EDOT:GH2

2+ 
complexes are stabilized by N-H∙∙∙O interactions, involving an EDOT oxygen and the –NH 
and –NH2 moieties of GH2

2+. Furthermore, TDDFT calculations have allowed us to 
reproduce the absorption spectra (both energy gaps and relative oscillator strength 
magnitudes) of EDOT and GH2

2+ but also of the complex. In summary, results provide 
evidence about the existence of specific N-H∙∙∙O interaction in the systems under study, 
allowing us to confirm our previous hypothesis and to explain previous experimental 
observations.*   

 

*
 - Results described in this section previously have been recently submitted for publication. Theoretical calculations 

were preformed by J. Preat and E. Perpète.  
 

 
 

4.3.1 – Introduction 

 
The control of the interactions between CPs and bioentities, for example living cells, 

proteins and DNA, is an essential research area for the development of advanced 

biotechnological applications.[1-4,8-13] Within this context, in the last years we have been 

particularly interested in the recognition of nucleotide sequences using polypyrrole and 

polythiophene derivatives.[14-20] Specifically, we found that CPs bearing polar functional 

groups are able to act as hydrogen bonding donors and/or acceptors forming specific 

interactions with well-defined nucleotide sequences of plasmid DNA.[14-17] In contrast, 

interactions between DNA and polymers without groups able to participate in hydrogen 

bonds, as for example poly(3-methylthiophene) and polythiophene, were found to be non-

specific, even although stable adducts were detected.[5,16,18] These features evidenced that 
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amongst specific interactions, hydrogen bonds are more important than other weak 

interactions, like π-π stacking and hydrophobic. 

CPs used in our investigations are usually in a highly oxidized (doped) state.[14,16-19] 

Spontaneous interpolymer complexation between cationic polyelectrolytes and DNA is a 

well-known process, which results from cooperative electrostatic forces.[21,22] Accordingly, 

the unequivocal formation of electrostatic interactions between positively charged CPs and 

negatively charged DNA is expected to essential for the formation and stability of the 

adducts. In a very recent study we investigated the influence of the doping level in the 

formation of specific interactions between DNA and CPs bearing polar functional groups.[19] 

Specifically, we considered a polymer in different oxidized states (1.0 and 0.5 positive 

charges per repeating unit) and in a reduced state (0.1 charges per repeating unit) states. 

Results allowed us to propose a mechanism for the formation of the adducts with DNA, 

which consists of an initial stabilization of the complexes through non-specific electrostatic 

interactions, followed by small structural re-arrangements that allow establishing specific 

hydrogen bonds between the polar groups of the CP and selected DNA bases. This process 

requires a structural alteration of the B-DNA double helix, which unfolds into two separated 

strands as was observed by circular dichroism and UV-Vis spectroscopy.[17,19] The proposed 

mechanisms was confirmed in a more recent investigation, in which the binding of an 

oxidized CP to a single-stranded DNA featuring the Dickerson’s dodecamer sequence was 

examined using Molecular Dynamics (MD) simulations.[21] 

Among CPs, poly(3,4-ethylenedioxythiophene), hereafter abbreviated PEDOT (Scheme 

1), has attracted considerable interest due to a combination of properties: low oxidation 

potential, good optical transparency, high conductivity (up to 500 S/cm), exceptional 

thermal and chemical stabilities, fast doping-undoping processes, and excellent 

biocompatibility.[23-27] Electrophoretic and spectroscopic studies on mixtures of plasmid DNA 

and both oxidized and reduced PEDOT have shown the formation of stable adducts, the 

formation of interactions with specific nucleotide sequences being evidenced through the 

protection imparted by this material against restriction enzymes.[16,18,19] Moreover, first 

principle calculations using the MP2 quantum mechanical method indicated that the binding 

strength between the 3,4-ethylenedioxythiophene (EDOT) monomeric units and DNA bases 

grows in the following order: Adenine (A) < Cytosine (C) < Thymine (T) ≈ Guanine (G).[18] 

These preferences were confirmed in a very recent MD study, in which the interaction 
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between an oxidized PEDOT chain and a single DNA strand with sequence 5’-

CGCGAATTCGCG-3’ was investigated at the atomistic level.[20] Thus, results revealed the 

formation of specific O∙∙∙H and S∙∙∙H hydrogen bonds, π-π stacking, and N-H∙∙∙π interactions, 

in addition to the expected electrostatic interactions. In general, O∙∙∙H hydrogen bonds were 

found to be very abundant showing relatively large accumulated lifetimes, these specific 

interactions being more frequent with G and T than with A and C.  

 

 
    Scheme 1 

 
 

In order to get direct experimental evidences about the existence of hydrogen bonds 

between PEDOT and DNA, as well as to obtain more knowledge how this interaction occurs 

in such complexes, in this work we use a combination of experimental and theoretical 

methodologies to examine the interactions between the building blocks of such two 

macromolecules. Specific interactions between EDOT and G monomers have been 

investigated using UV-Vis spectroscopy. Quantum mechanical calculations in the density 

functional theory (DFT) and time-dependent density functional theory (TDDFT) frameworks 

have been used to identify the structure of the possible EDOT:G complexes, which differ in 

the interaction pattern, and to interpret the absorption spectra in terms of intermolecular 

interactions, respectively. Results allowed us to verify our previous hypothesis about the 

formation of specific N-H∙∙∙O interactions between G-containing nucleotide sequences and 

PEDOT. 
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4.3.2 – Methods 

 
Complexes. EDOT and G were purchased from Aldrich and Sigma Aldrich, respectively, 

while HCl and dimethylsulfoxide (DMSO) of analytical reagent grade were purchased from 

Panreac. Trials with different solvents were performed before to find the appropriated 

conditions for the complete solubilisation of both EDOT and G.  

Initially, the following solutions were prepared independently: (i) 1 mg of G was 

dissolved in 1 mL of HCl (0.5 M, pH= 0.3), to give the protonated form GH2
2+ (see below); and 

(ii) 0.9 mg of EDOT was dissolved in 1 mL of DMSO. After this, a 1:1000 dilution was 

performed on each solution to obtain optimal concentrations for UV-Vis spectroscopy 

assays. Complexes were formed in aqueous solution by mixing the diluted solutions of G in 

HCl and EDOT in DMSO. Solutions were mixed to reach the following EDOT:GH2
2+ mass 

ratios: 0:1, 1:1, 1:2, 2:1 and 1:4. Final volumes were raised to 1 mL using mixed solutions of 

DMSO and HCl that were explicitly prepared for each mass ratio. 

 

Spectroscopic studies. An UV-3600 (Shimadzu) UV-Vis/NIR spectrophotometer 

controlled by the UVProbe V2.31 software was used to record UV-Vis spectra of G, EDOT and 

EDOT:GH2
2+ at room temperature in the 230-400 nm range, with a bandwidth of 2 mm, a 

scan speed of 600 nm/min, and a sampling interval of 0.1 nm. The deconvolution of the UV-

Vis spectra was performed using the PeakFit V4.0 software and applying a Gaussian 

deconvolution method with a width of 2 nm in Full-Width Half-Maximum (FWHM) mode and 

with scan amplitude of 1.5%. 

 

Computational details. Calculations were performed with the Gaussian 09 computer 

program.[28] Geometry optimizations were performed in the solvent-phase within the density 

functional theory framework (DFT) at the B3LYP level of theory with the 6-311G(d,p) basis 

set (BS).[29,30]  The counterpoise method (CM) is used to correct the basis-set superposition 

error (BSSE) for the evaluation of the complexation driving force (∆G) that have been 

obtained through the computation of the infrared spectrum for each optimized structures. 

The binding energies (B), which were obtained without applying the CM, are calculated as 

the difference between the total internal energy of the optimized complex and the isolated 

monomers’ internal energies associated to the complex equilibrium geometry. The vertical 
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electronic excitations have been obtained by using the time-dependent density functional 

theory (TDDFT) framework, in the solvent-phase, at the more refined CAM-B3LYP level of 

theory with the large 6-311+G(2d,2p) BS.[30-36] 

It is our experience that the combination of extended BSs with a long-range functional 

for TDDFT calculations is essential to accurately describe the electronic structures of systems 

likely to show marked charge-transfer excitations.[37,38]   

The complexes are formed in DMSO and the solvent effects on both the geometry 

optimizations and TDDFT calculations have been taken into account by the polarisable 

continuum model (PCM).[39] In PCM, one usually divides the problem into a solute part (the 

complex) lying inside a cavity, and a solvent part. By solving the Poisson’s at the interface, 

PCM gives a valid approximation of solvent effects. For the vertical excitation energies, we 

have selected the so-called non-equilibrium PCM solutions.[40] 

G shows two positive pKas estimated at 3.2 and 0.9 in water.[41] At pH = 0.3, we have 

two basic sites that are protonated (to give GH2
2+), as depicted in Figure 1. 

 

 
 

Figure 1 -  Molecular structure for GH2
2+ and the two protonated basic sites. 

 

 

 

 

 

 

 

 

 



Chapter 4                                                                                             DNA···Conducting Polymers Interaction 

96 

In the present contribution, we did focus on three different EDOT:GH2
2+ (1:1) 

complexes: 

 

 

Figure 2 - Molecular structure of the initial conformation of the three EDOT:GH2
2+ complexes of 

interest C-1, C-2, C-3. 

 

C-1, -2 and -3 have been chosen as starting conformations because it has been 

previously shown that the corresponding neutral forms (i.e. EDOT:G complexes) show the 

best stability in both gas- and solvent-phase.[18] 
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4.3.3 – Results and Discussion 

 
Experimental measures. Figure 3 shows the absorption spectra recorded for diluted 

solutions of EDOT, GH2
2+ and EDOT:GH2

2+ (1:1 mass ratio), the curves resulting from the 

deconvolution process being included in each case. Satisfactory statistical parameters [i.e. 

correlation coefficient r
2 > 0.98 and standard error s.e. < 0.005) were obtained by 

considering 2, 2 and 3 isolated curves in the deconvolution of EDOT, GH2
2+ and EDOT:GH2

2+ 

spectra, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3 - Absorption spectra (black lines) of (a) EDOT, (b) GH2
2+ and (c) EDOT:GH2

2+ (1:1 mass 

ratio) determined in dilute solution (see Methods). The curves and wavelength at the maxima 

resulting from the deconvolution process are also shown for each spectrum (gray lines). 
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As it can be seen, diluted EDOT shows two important transitions at 259 and 266 nm, 

while the transitions of GH2
2+ are observed at 249 and 276 nm. For the complex, the 

deconvolution process led to three peaks centred at 247, 257 and 281 nm. It should be 

mentioned that the shoulder observed at the largest wavelength region precludes any 

reasonable fitting with a lower number of curves. Accordingly, the interactions between the 

two species, which are responsible of the formation of the complex, affected considerably 

one of the transitions. Thus, although the peaks at 259 and 249 nm for EDOT and GH2
2+, 

respectively, undergo a change upon complexation (i.e. a blue shift of 2 nm is detected), the 

peaks at 266 and 276 nm merge and red-shift to 281 nm. Results obtained for complexes 

with 1:2, 2:1 and 1:4 mass ratios are very similar to those displayed in Figure 3c (data not 

shown). In order to interpret the transitions displayed in Figure 3, quantum mechanical 

calculations were performed on EDOT, GH2
2+ and EDOT:GH2

2+. 

 

Quantum mechanical calculations. Table 1 provides the binding energies and free 

enthalpies of complexation for the three above-evoked systems C-1, C-2 and C-3. The three 

systems present both binding energy and free enthalpies of complexation values in the same 

order of magnitude, from 0.91 to 0.95 eV for B and from 0.25 to 0.28 eV for ∆G.  

 
Table 1 – Theoretical binding energies (B) and free enthalpies of complexation (∆G) (in eV) for 

the three complexes (G//EDOT) 1:1 in DMSO. 

 

 

This can be related to the fact that for the three final structures, we have two hydrogen-

bonds (H-bonds), implying an EDOT oxygen and the –NH and –NH2 functions of GH2
2+. Since 

C-2 and -3 present a similar structure after optimization, we compute equivalent B and ∆G 

values. For C-1, however, the optimized EDOT:GH2
2+ configuration is quite different in 

regards to the two last ones (Figure 4), i. e. the GH2
2+ carbonyl group is far from the guanine 

moiety, and it results a increase (decrease) of the –NH2---O (–NH---O) H-bond length. 
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Figure 4 - Molecular structure of the final conformation of the three EDOT:GH2
2+ complexes of 

interest C-1, C-2, C-3. 

 

The theoretical excitation energies for the GH2
2+, EDOT and C-1 to -3 systems are 

listed and confronted to the experimental data in Table 2. For both the four considered 

systems, TDDFT systematically provides two peaks (λ(1), λ(2)) in the high energetic region of 

the UV-Vis spectrum. 

For both GH2
2+ and EDOT, the absorption band of higher energy (λ(1)) corresponds to a 

HOMO → LUMO transition. For GH2
2+, The MOs in Table 3 clearly show that λ(1) is related to 

an intramolecular charge transfer (CT) from the –NH2 to the carbonyl whereas for the second 

absorption band HOMO → LUMO+1 transition), the charge transfer occurs in the opposite 

C-1 

C-2 

C-3 
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direction (i. e. we have a –NH2 → –C=O photoinduced intramolecular CT). The nature of the 

CT is less obvious in the EDOT case but the MOs analysis lets us suggest that for λ(1), the 

charge transfer takes place from the oxygen atoms in the heterocycle to the aromatic moiety 

(the MO is mainly localized on the C-H bond) whereas for λ(1) we have a HOMO-1→ LUMO 

CT from the oxygen atoms to the sulfur atom. 

 

Table 2 – Comparison between experimental and theoretical UV-vis absorption bands, λ in eV 

[in nm] for the doubly-protonated Guanine (GH2
2+), EDOT and three complexes (C-1, -2, and -3) 

1:1 in DMSO. ∆ is the absolute energy difference between the first and second excitation, in eV 

[in nm].  We also provide the oscillator strength f related the theoretical λ(1), λ(2) and the related 

molecular orbitals (MOs) labels. 

 
 

Concerning the complexes, Table 3 reveals the intermolecular nature of the CT 

involved in the first excitation. Clearly, the HOMO → LUMO+4 transition is predominantly 

localized on EDOT but with a slight contribution of the –NH2 as well as the NH functions of 

GH2
2+ (LUMO+4). On the contrary, λ(2) is characterized by a pure intramolecular CT localized 

on the protonated guanine and C-1 λ(2) MOs’ topology nature is similar to the one observed 

for the first excitation of isolated GH2
2+, i. e. a  –NH2 → –C=O photoinduced intramolecular 
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CT. The similarity between the MOs involved in the GH2
2+ HOMO → LUMO transition and in 

the C-1 HOMO-2 → LUMO can explain the similar excitation energies and oscillator strength 

computed for GH2
2+ λ(1) (5.37 eV, f=0.22) and C-1, -2 and -3 λ(2) (5.32 and 5.7 eV, f=0.17 and 

0.21). 

 

Table 3 – Shape of the MOs (and their labels) involved in the λ(1) and λ(2) for GH2
2+, EDOT and C-

1, respectively. They have been obtained at the PCM(DMSO)-B3LYP/6-311G(d,p) level of theory 

with a contour threshold fixed at 0.05 |e|. 
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For GH2
2+ and EDOT, our TDDFT procedure is able to reproduce the λ(1)-λ(2) energy gap 

(∆) and the relative λ(1)-λ(2) oscillator strength magnitude. Indeed, ∆ is calculated at 0.46 and 

0.16 eV for GH2
2+ and EDOT, respectively whereas these gaps are measured at 0.49 and 0.12 

eV. On the other hand, the relative f(1)/f(2) parameter is estimated at  0.63 and 2.40 for GH2
2+ 

and EDOT, respectively in qualitative agreement with experimental trends. Indeed, for EDOT 

the peaks at 259 and 266 nm present absorbance of 0.038 and 0.067, and the ratio f(1)/f(2) 

values 0.57 whereas for GH2
2+, it is computed at ca. 1.84 with peaks at 249 and 276 nm 

presenting measured absorbance of 0.029 and 0.016.  If the theory successfully characterizes 

the UV-Vis spectra of the isolated GH2
2+ and EDOT, the analysis of the TDDFT results is quite 

problematic for the complexed form.  Indeed, whereas TDDFT provides two absorption 

bands, the deconvolution reveals three peaks at 4.41, 4.82 and 5.02 eV (281, 257 and 247 

nm, respectively).  Obviously, a characteristic feature of the absorption spectrum of the 

EDOT:GH2
2+ complex is the existence of several maxima in the short-wave band. Although 

many speculations can be held to elucidate this spectral pattern, our favor goes to the 

vibrational coupling hypothesis because the distance between the two neighbouring peaks 

at 257 and 247 nm sticks to an IR frequency. For instance, one can check that the typical 

~1600-1700 cm-1 stretching of carbonyl or ethylene side groups corresponds to 0.20 eV 

separation experimentally observed for the complex. Note that the gap between the peaks 

at 281 and 247 nm is superior to 0.60 eV and corresponds to ca. 5000 cm-1 separation, which 

is out of the infrared energetic region. The IR spectrum for C-1 clearly shows an absorption 

band of high intensity at 1720 cm-1 which corresponds to the stretching of the GH2
2+ 

carbonyle.  In such a context, we can associate the second excitation to the experimental 

UV-Vis peak that presents the highest intensity after deconvolution, i.e. the band at 257 nm 

(4.82 eV). 

The results discussed in this work confirm that G and EDOT interact through specific 

N-H∙∙∙O secondary bonds. It should be noted that, although the existence of weak hydrogen 

bonding interactions was proposed in previous studies describing PEDOT:DNA complexes, no 

direct experimental evidence about their existence was obtained.[16,18-20] Thus, the fast 

formation of PEDOT:DNA adducts was governed by electrostatic attraction between the 

positively charged polymer molecules (i.e. +0.5 per repeating unit was measured for oxidized 

PEDOT) and the negatively charged phosphate groups of the DNA.[25] However, the presence 

of weak interactions with specific nucleotide sequences was postulated to explanation both 
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the protection imparted by the PEDOT to the DNA digestion in presence of selected 

restriction enzymes and the formation of stable complexes when the charge of PEDOT was 

electrochemically reduced from +0.5 to +0.1 per repeating unit.[16,18,19] In this work, strong 

electrostatic interactions are not possible because of the lack of both negatively charged 

phosphate groups and oxidized EDOT units. DFT calculations show that the building blocks 

studied in this work form complexes stabilized through specific N-H∙∙∙O interactions. The 

agreement between the experimental and calculated absorption spectra proves the 

importance of the latter interactions in complexes formed by PEDOT and plasmid DNA. 

 

4.3.4 – Conclusions 

 
This works examines the specific interactions in complexes formed by between GH2

2+ 

and EDOT, which should be considered as building blocks of plasmid DNA and PEDOT, 

respectively, using UV-Vis spectroscopy and quantum mechanical calculations. In order to 

prepare EDOT:GH2
2+ mixtures with mass ratios 1:1, 1:2, 2:1 and 1:4, an acid pH was required, 

which provoked the protonation of G. In spite of this, EDOT:GH2
2+ should be considered as 

reliable model compounds since the co-existence of negatively charged phosphate groups in 

DNA and the positive charges of the oxidized polymer is avoided.  

DFT calculations indicate that EDOT:GH2
2+ complexes are stabilized by N-H∙∙∙O 

interactions, involving an EDOT oxygen and the –NH and –NH2 moieties of GH2
2+. 

Furthermore, TDDTF calculations have allowed us to reproduce the absorption spectra (both 

energy gaps and relative oscillator strength magnitudes) of EDOT and GH2
2+ but also of the 

complex. In summary, results provide evidence about the existence of specific N-H∙∙∙O 

interaction in the systems under study, allowing us to confirm our previous hypothesis and 

to explain previous experimental observations.  
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4.4 – Binding of 6-mer single-stranded homo-nucleotides to poly(3,4-

ethylenedioxythiophene): Specific hydrogen bonds with 

guanine 
 

 
Complexes formed by 6-mer of single-stranded homo-nucleotides and poly(3,4-

ethylenedioxythiophene), a π-conjugated polymer, have been investigated from both 
experimental and theoretical points of view. UV-Vis absorption and circular dichroism 
spectra indicate that adenine and cytosine homo-nucleotides form stable and compact 
adducts with the conducting polymer, which are stabilized by non-specific electrostatic 
interactions. In contrast, complexes involving the guanine homonucleotide are clearly 
dominated by specific hydrogen bonds. A hierarchical modeling approach has been used to 
gain some information of the complex formed by the homo-nucleotide of guanine and the 
polymer at both the molecular and electronic levels. Atomistic molecular dynamics 
simulations reveal that upon complexation the B-DNA conformation of the homo-
nucleotide unfolds into a completely disordered arrangement, which allows the 
simultaneous formation of N-H∙∙∙O and N-H∙∙∙S hydrogen bonds, N-H∙∙∙π, π-π stacking and 
electrostatic interactions with the extended polymer molecule. In spite of such variety of 
interactions, specific hydrogen bonds have been found to be the most abundant and 
decisive in this complex. The study has been complemented by ab initio and density 
functional theory calculations to examine the specific interactions between 1-
methylguanine and 3,4-ethylene-dioxythiophene (G:EDOT). The energy decomposition 
analyses performed show that the stability of the different structures is governed by the 
attractive electrostatic interaction and reveal the reason why the N–H∙∙∙O hydrogen bond 
is the strongest specific interaction between these two molecules.* 

 

*
 - Results described in this section have been accepted for publication in Soft Matter. Force-field simulations were 

performed by D. Zanuy, while quantum mechanical calculations were carried out by J. Poater and M. Solà.  
 

 
 

4.4.1 – Introduction 

 
CPs bearing polar functional groups form specific interactions with well-defined 

nucleotide sequences of plasmid DNA, which have been proposed to be hydrogen bonds.[1-5] 

In contrast, interactions between DNA and CPs without groups able to act as hydrogen 

bonding donors and/or acceptors, as for example poly(3-methylthiophene) and 

polythiophene, are non-specific, even though stable adducts were detected.[3,5,6] These 

features suggest that the role played by hydrogen bonds in CP∙∙∙DNA molecular recognition 

processes is crucial with respect to that showed by other less specific weak interactions (e.g. 

π-π stacking and hydrophobic) and by strong electrostatic interactions. 

The CPs used in our investigations are usually in a highly oxidized (doped) state.[1,3-5] 

Spontaneous interpolymer complexation between cationic polyelectrolytes and DNA is a 
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well-known process, which results from cooperative electrostatic forces.[7,8] Accordingly, the 

unequivocal formation of electrostatic interactions between positively charged CPs and 

negatively charged DNA is expected to be essential for the formation and stability of the 

adducts. In a very recent study we investigated the influence of the doping level in the 

formation of specific interactions between DNA and CPs bearing polar functional groups.[9] 

Specifically, we considered a polymer in different oxidized states (1.0 and 0.5 positive 

charges per repeating unit) and in a reduced state (0.1 charges per repeating unit) states. 

Results allowed us to propose a mechanism for the formation of the adducts with DNA, 

which consists of an initial stabilization of the complexes through non-specific electrostatic 

interactions, followed by small structural re-arrangements that allow establishing specific 

hydrogen bonds between the polar groups of the CP and selected DNA bases. This process 

requires a structural alteration of the B-DNA double helix, which unfolds into two separated 

strands as was observed by circular dichroism and UV-Vis spectroscopy.[4,9] The proposed 

mechanism was confirmed in a very recent study, in which the binding of an oxidized CP to a 

single-stranded DNA featuring the Dickerson’s dodecamer sequence was examined using 

Molecular Dynamics (MD) simulations. [10]  

Among CP, poly(3,4-ethylenedioxythiophene), hereafter abbreviated PEDOT (Scheme 

1), has attracted considerable interest due to a combination of properties: low oxidation 

potential, good optical transparency, high conductivity (up to 500 S/cm), exceptional 

thermal and chemical stabilities, fast doping-undoping processes, and excellent 

biocompatibility.[11-15] Electrophoretic and spectroscopic studies on mixtures of plasmid DNA 

and both oxidized and reduced PEDOT showed the formation of stable adducts, the 

formation of interactions with specific nucleotide sequences being evidenced through the 

protection imparted by this material against restriction enzymes.[3,5,9] Moreover, first 

principle calculations using the MP2 quantum mechanical method indicated that the binding 

strength between 3,4-ethylenedioxythiophene (EDOT) monomeric units in the neutral state 

and DNA bases grows in the following order: Adenine (A) < Cytosine (C) < Thymine (T) ≈ 

Guanine (G).[5] These preferences were confirmed in a very recent MD study, in which the 

interaction between an oxidized PEDOT chain and a single-stranded DNA molecule with 

sequence 5’-CGCGAATTCGCG-3’ was investigated at the atomistic level.10 Results revealed 

the formation of specific O∙∙∙H and S∙∙∙H hydrogen bonds, π-π stacking, and N-H∙∙∙π 

interactions, in addition to the expected electrostatic interactions. In general, O∙∙∙H 
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hydrogen bonds were found to be very abundant showing relatively large accumulated 

lifetimes, these specific interactions being more frequent with G than with the other bases. 

 
S

O O

n

PEDOT  

Scheme 1 

 
In this work we focused on the interaction between PEDOT and the four DNA bases 

considering short single-stranded homo-nucleotides (ss-hn). The possible existence of 

hydrogen bonding and/or π-π stacking interactions in adducts involving such CP and 

different ss-hn have been studied using UV-Vis spectroscopy and circular dichroism (CD). 

Specifically, the 6-mer ss-hn of A, T, C and G, hereafter denoted ss-dA6, ss-dT6, ss-dC6 and 

ss-dG6, respectively, have been used for the present study. In addition to their important 

role in biology (e.g. microRNA and understanding single-stranded DNA-binding proteins 

important in DNA replication) and technology (e.g. biodetection and development of new 

materials) short ss-hn should be considered as important models to explain and improve 

molecular recognition of DNA.[16-19] Experimental measurements have allowed us to 

demonstrate the presence of specific hydrogen bonds in the complexes formed by PEDOT 

and ss-dG6. Furthermore, a top-down hierarchical modeling approach has been used to 

provide a comprehensive picture of the experimental observations obtained for the latter 

complexes. Thus, in order to provide a description of both the molecular topology and the 

dynamical characteristics of the interactions in ss-dG6:PEDOT, atomistic MD simulations 

have been carried out. Finally, quantum mechanical calculations on small model complexes 

formed by a guanine base and a single EDOT unit have been used to rationalize at the 

electronic level the differences among all the possible interaction patterns, which have been 

generated by combining the interaction sites of the two molecules. 
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4.4.2 – Methods 

 

Synthesis of the conducting polymer. EDOT monomer was purchased from Aldrich and 

used as received. Anhydrous LiClO4, analytical reagent grade from Aldrich, was stored in an 

oven at 80 ºC before use in the electrochemical trials.  

PEDOT was prepared by chronoamperometry (CA) under a constant potential of 1.40 

V using a polymerization time of 900 s. Anodic electropolymerization was performed on a 

VersaStat II potenciostat-galvanostat using a three-electrode compartment cell under 

nitrogen atmosphere at 25 ˚C. The anodic compartment was filled with 40 mL of a 10 mM 

monomer solution in acetonitrile containing 0.1 M LiClO4 as supporting electrolyte, while the 

cathodic compartment contained 10 mL of the same electrolyte solution. Steel AISI 316 

sheets of 1 cm2 area were employed as working and counter electrodes. The reference 

electrode was an Ag|AgCl electrode containing a KCl saturated aqueous solution.  

Ultrafine particles of polymer were used to interact with ss-hn. These were obtained 

by applying ultrasounds to a polymer solution (0.5 μg polymer/μL; milliQ water), which was 

prepared by considering the polymer samples grinded with a mortar. The dimensions of the 

resulting particles were analyzed using scanning electron microscopy (SEM) with a JSM-6400 

JEOL microscope. 

 

Formation of DNA:PEDOT complexes. dA6, dT6, dC6 and dG6 were purchased from 

Sigma, re-dissolved in milliQ water to 100 uM, and diluted 10 times before use. Complexes 

with different mass ratios (1:0, 1:1 and 1:5) were prepared by mixing 166.7 µL of dA6 (0.018 

µg/µL), dT6 (0.017 µg/µL), dC6 (0.017 µg/µL) or dG6 (0.019 µg/µL) aqueous solutions and a 

volume V of a polymer solution (0.50 µg/µL), were V was 6.0, 5.6, 5.9 or 6.3 µL, respectively, 

for the 1:1 complexes and 29.9, 27.8, 29.3 or 31.7 µL for the 1:5 ones. Final volumes were 

raised to 500 μL with sterile milliQ water. 

 

Nature of intermolecular interactions in DNA:PEDOT complexes. Formaldehyde (FA) 

and ethylene glycol (EG), which promote hydrogen bonding and stacking interactions, 

respectively, were used to determine the chemical nature of the weak intermolecular 

interactions in dG6:PEDOT complexes.[20] For this purpose, dG6:FA:PEDOT and 

dG6:EG:PEDOT complexes were prepared in aqueous solution by mixing 166.7 µL of dG6 
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(0.019 µg/µL, respectively), 5-15 µL (1%-3% v/v) of FA or EG, and the volume of polymer 

solution (0.5.00 µg/µL) necessary to reach the 1:1, 1:2, 1:3, 1:4 and 1:5 dG6:PEDOT mass 

ratio (6.3, 12.7, 19.0, 25.4 and 31.7 µL, respectively). Final volumes were raised to 500 μL 

with sterile milliQ water. Initially, FA and EG solutions were incubated with dG6 for 30 min, 

PEDOT solutions being added after such time. Then, the three-component solutions were 

incubated overnight at 37 ˚C. Finally, samples were centrifuged for 10 min and the 

supernatants were analysed by UV-Vis spectroscopy. 

 

Spectroscopic studies. An UV-3600 (Shimadzu) UV-Vis/NIR spectrophotometer 

controlled by the UVProbe V2.31 software was used to record UV-Vis spectra at room 

temperature, in the 220-350 nm range, with a bandwidth of 2 mm, a scan speed of 600 

nm/min. Light scattering effects were avoided by correcting the maximum absorbance of 

dA6, dC6, dG6 and dT6 at 262 (A262), 275 (A275), 250 (A250) and 265 nm (A265), respectively, 

with respect to the absorbance at 350 nm (A350).  

CD measurements were carried out in a Jasco J-810 spectropolarimeter at 22 ˚C using 

a quartz cuvette. The CD data were recorded with standard sensitivity (100 mdeg), in the 

170-400 nm range, with bandwidth of 2 mm, response time of 0.5 s and scanning speed of 

200 nm/min. The reported spectra correspond to the average of five scans, the raw spectra 

being smoothed by applying the Savitsky-Golay algorithm. For each sample, the CD spectrum 

of the polymer was subtracted from that of the homo-oligonucleotide:PEDOT complex, and 

compared with the CD spectrum of the corresponding ss-hn. 

 

Molecular Dynamics simulations. MD simulations were performed to propose an 

atomistic model of the interaction between PEDOT and dG6. PEDOT was represented by an 

oligomer of 12 repeating units in the oxidized state, a net positive charge being located at 

every two repeating units. The number of positive charges supported by each monomeric 

unit of PEDOT produced under identical experimental conditions that those used in this work 

was found to be +0.549.[13] It should be noted that this oxidation degree, which was 

determined by standard ion chromatography, is accurately reproduced by the model used in 

this work for PEDOT i.e. [(EDOT0.539+)n( −

4ClO )0.539n]solid ≈ [(EDOT2)+Cl–]n where −

4ClO  refers to 

the counterions used in the experiments. Recent studies based on PEDOT samples with 

oxidation degrees ranging from +0.14 to +1.05 positive charges per repeating units, which 
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were obtained by modifying (reducing and oxidizing, respectively) the polymer after 

electrodeposition, indicated that the interaction with DNA is affected by the doping level.[9] 

However, in this work we only considered the chemical characteristics of PEDOT as 

frequently prepared (i.e. the conditions used in reference 13). On the other hand, the 5’-

GGGGGG-3’ sequence, where both 5’ and 3’ terminal positions refer to hydroxyl groups, was 

used to represent dG6.  

The PEDOT and dG6 molecules were initially placed at 12 Å of distance, being allowed 

to evolve freely during the equilibration period (see below). Both molecules together were 

placed in the center of a tetragonal simulation box with dimensions 85.0 × 85.0 × 125.0 Å3, 

full of previously equilibrated (1 atm and 298 K) water molecules. The box dimensions were 

chosen to avoid biased results that would result of the violation of periodic boundary 

conditions. The solvent consists of 28342 water molecules, which were represented using 

the TIP3 model.[21] In order to reach both the electric neutrality and the physiological 

strength, forty six positively charged sodium atoms and forty seven negative charged 

chloride atoms were added to the simulation box.  

The potential energy of the simulated system was computed using Amber force 

field.[22] All bonding and non bonding parameters were extracted from Amber libraries 

except for those describing PEDOT, that were previously reported.[10,22] MD simulations were 

performed using the NAMD program.[23] Atom pair distance cut-offs were applied at 14.0 Å 

to compute the van der Waals interactions. In order to avoid discontinuities in the Lennard-

Jones potential, a switch function was applied to allow a continuum decay of the energy 

when the atom pair distances are larger than 12.0 Å. For electrostatic interactions we 

computed the non-truncated electrostatic potential throughout Ewald Summations.[24] The 

real space term was determined by the van der Waals cut off (14 Å), while the reciprocal 

term was estimated by interpolation of the effective charge into a charge mesh with a grid 

thickness of 5 points per volume unit, i.e. Particle-Mesh Ewald (PME) method.[24] Both 

temperature and pressure were controlled by the weak coupling method, the Berendsen 

thermobarostat, using a time constant for heat bath coupling and a pressure relaxation time 

of 1 ps. Bond lengths were constrained using the SHAKE algorithm with a numerical 

integration step of 1 fs. Periodic boundary conditions were applied using the nearest image 

convention, and the nonbonded pair list was updated every 1000 steps (1 ps).[25,26]  
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Before starting the MD run series, 5∙103 steps of energy minimization were performed 

to relax conformational and structural tensions. Then the system was heated and 

equilibrated by a series of consecutive MD runs. Thus, 0.1 ns of NVT (constant volume and 

temperature) MD at 500 K were used to homogeneously distribute the solvent and ion in the 

box, while keeping the dG6 and PEDOT affixed. Next, thermal equilibration for 0.2 ns in the 

constant NVT ensemble at 298 K, and a density relaxation for 0.4 ns in the constant NPT 

(constant pressure and temperature) ensemble at 298 K were performed. The last snapshot 

of the NPT MD was used as the starting point for the production series. Coordinates were 

saved every 1 ps for further analysis for simulation length of 20 ns. 

 

Quantum mechanical calculations. In a previous work by some of us, seven minimum 

energy complexes G:EDOT were obtained through geometry optimization at the MP2/6-

31G(d) level of theory.[5] In the present work, energy decomposition analyses (EDA) have 

been performed on these MP2/6-31G(d) optimized geometries by means of the Amsterdam 

Density Functional package (ADF).[27-42] The EDA have been performed with the TZ2P basis 

set of Slater type orbitals (STOs) of triple-ζ quality containing with two sets of polarization 

functions.[40] The core shells of carbon, nitrogen, oxygen and sulfur were treated by the 

frozen-core approximation.[33] Energies were calculated with the generalized gradient 

approximation (GGA) with the PBE-D functional, which includes the dispersion-correction as 

developed by Grimme for a correct treatment of the stacking interactions.[43-46] 

In the EDA analysis, the total binding energy (ΔE) corresponds to the formation of the 

complex G:EDOT, and through EDA it is decomposed into two terms, the preparation and the 

interaction energies: ΔE=ΔEprep+ΔEint. The preparation energy (ΔEprep) is the amount of 

energy required to deform G and EDOT from their equilibrium structure to the geometry 

that they acquire in the complex; whereas the interaction energy (ΔEint) corresponds to the 

actual energy change when these geometrically deformed G and EDOT are combined to 

form the G:EDOT complex. ΔEint is analyzed in the framework of the Kohn-Sham molecular 

orbital model using a quantitative decomposition of the bond into electrostatic interaction, 

Pauli repulsion, orbital interactions and dispersion energy terms represented as: 

ΔEint=ΔEPauli+ΔVelstat+ΔEoi+ΔEdisp.[27-30] 
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4.4.3 – Results and Discussion 

 
Experimental measures. Figure 1 (curve 1) shows the absorption spectra of the four 

ss-hn. The maximum of absorbance appears at 253, 266, 257 and 274 nm for dG6, dT6, dA6 

and dC6, respectively. In addition, the spectrum of dG6 shows a characteristic shoulder 

around 285 nm. Figure 1 (curve 2) also includes the spectra of ss-hn:PEDOT mixtures 

considering 1:1 and 1:5 mass ratios. The interaction between the CP and the four ss-hn is 

evidenced by a reduction in the absorbance reflecting a hypochromic shift (i.e. the 

exposition of the nitrogen bases decreases). In many cases such reduction is moderate, as 

for example in all the 1:1 mixtures, which may be due to the participation of weak specific 

interactions (i.e. hydrogen bonds and/or π-π stacking) in the formation of ss-hn:PEDOT 

adducts. However, in some other cases, as for example in dA6:PEDOT with 1:5 mass ratios, 

the absorbance vanishes reflecting that the formation of compact adducts dominated strong 

non-specific interactions (e.g. electrostatic) in which the nitrogen bases are completely 

screened by the CP.  

In order to determine the existence of weak specific interactions in complexes that 

undergone a moderate reduction in the absorbance, mixtures were submitted to a thermal 

denaturalization process (i.e. samples were heated at 94 ˚C for 15 min producing exposition 

of all the nitrogen bases). Figure 1 (curve 3) shows the UV-Vis spectra recorded immediately 

after such thermal treatment. The annihilation of the absorbance displayed by denaturalized 

dC6:PEDOT (both 1:1 and 1:5 mass ratios) and dA6:PEDOT (1:5 mass ratio) evidence that 

complexes involving such ss-hn are dominated by strong non-specific interactions. In 

contrast, the role played by weak specific interactions was found to be relevant in 

dT6:PEDOT and, especially, dG6:PEDOT complexes since the absorbance is similar before and 

after the denaturalization process. It is worth noting that the absorbance of dG6 is higher 

after thermal denaturalization than before (1:5 mass ratios), which is fully consistent with 

the formation of specific interactions. These spectroscopic observations are in agreement 

with previously reported quantum mechanical calculations on model complexes formed by 

EDOT and DNA nitrogen bases, which allowed to predict the stabilizing effect of specific 

interactions involving G and T with respect to those with A and C.[5]  
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Figure 1 – UV-Vis spectra of ss-hn in dilute solution (curve 1), mixtures with PEDOT considering 

1:1 and 1:5 mass ratios (curve 2) and after thermal denaturalization (heating at 94 ˚C for 15 min) 

of the mixtures with PEDOT considering 1:1 and 1:5 mass ratios (curve 3). 
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Time resolved UV-Vis spectroscopy has been used to obtain kinetic information about 

the interaction of the ss-hn and PEDOT. Figure 2 represents the evolution of 







 −
−

0

01
A

AA  

against the time (t), where A0 corresponds to the absorbance of the ss-hn in solution (1:0 ss-

hn:PEDOT ratio) at the initial time (t= 0 min) and A is the absorbance of nitrogen bases in ss-

hn:PEDOT mixtures measured at different times (cycles).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 – Temporal evolution of dA6:PEDOT, dT6:PEDOT, dC6:PEDOT and dG6:PEDOT mixtures 

with 1:1 and 1:5 mass ratios followed by UV–Vis spectroscopy (see text). Spectra were recorded 

during 12 cycles, two consecutive cycles being separated by a 5 min interval. 

 

As it can be seen, the absorbance decay follows an exponential behaviour in all cases, which 

have been used to derive the velocity of the interaction (Table 1) by fitting these data to the 

following equation: 
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where y and x correspond to 







 −
−

0

01
A

AA  and the time, respectively, k is the constant of 

velocity, and y0 is the maximum decay.  

 

Table 1 – Kinetic parameters for the hypochromic effect observed in ss-hn:PEDOT mixtures (see 

Eqn 1): k, y0 and R
2 refer to the constant of velocity, the maximum decay (value ± standard 

deviation) and correlation coefficient. 

 

 

The regression coefficients indicate an excellent correlation in all cases (R2 > 0.95). 

Faster interactions occur for dA6 and dC6, which is consistent with the formation of 

aggregates stabilized by non-specific electrostatic interactions between the CP and the 

phosphate scaffold, while the slowest association process corresponds to dG6. The latter is 

also evidenced by the values of y0, which are higher for dG6:PEDOT than for dA6:PEDOT and 

dC6:PEDOT. Accordingly, the achievement of association geometries for the formation of 

specific interactions needs larger times than those required by non-specific interactions. 

Finally, the results obtained for dT6:PEDOT are half-way between those of dG6:PEDOT and 

those of the mixtures involving dA6 and dC6.  

CD spectroscopic analyses were carried out to examine the structural alteration 

undergone by ss-hn when they bound to the CP. The CD spectra of both the ss-hn without CP 

(1:0 mass ratio) and the ss-hn:PEDOT mixtures (both 1:1 and 1:5 mass ratios) are compared 

in Figure 3. It should be emphasized that, as was mentioned in the Methods section, in order 

to allow detection of structural changes in ss-hn, the CD spectrum of the polymer was 
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subtracted from the CD spectra of the ss-hn:PEDOT complexes. Results indicate that 1:0 ss-

hn presents a high degree of secondary structure, which previous studies attributed to highly 

stacked configurations somewhat close to the conventional B-DNA structure.[47,48] The 

spectra of the mixtures reflect the structural alterations produced in the ss-hn by the 

interactions with the CP. These alterations grow with the concentration of PEDOT. Thus, the 

reduction of the CD signal observed in Figure 3 for the 1:5 mixtures should be attributed to a 

significant loss of secondary structure. Indeed, dG6 is the only template able to retain the CD 

signal of its secondary structure for both 1:1 and 1:5 mixtures. The lost of secondary 

structure in dA6:PEDOT, dC6:PEDOT and dT6:PEDOT mixtures has been attributed to the 

intercalation of planar polymer molecules between neighboring bases.[49] It is worth noting 

that CD results are in excellent agreement with the conclusions extracted from the UV-Vis 

spectra (Figures 1 and 2). 
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Figure 3 – CD spectra of ss-hn:PEDOT complexes to study structural alterations of DNA: (i) ss-hn 

in dilute solution (curve 1); and (ii) ss-hn:PEDOT mixtures with 1:1 and 1:5 mass ratios (curves 2 

and 3, respectively). In all cases the CD spectrum of PEDOT was subtracted from the CD spectra 

of the mixtures. 
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The interaction between dG6 and PEDOT has been examined using FA and EG, which 

promote hydrogen bonding and stacking interactions, respectively. Figure 4a shows the 

curves obtained from the deconvolution of the UV-Vis spectrum of dG6, evidencing two 

important peaks at 250 and 275 nm. These transitions are in agreement with those reported 

in the literature for nucleotide bases.[50] Incubation of dG6 with EG 1% and 3% w/w did not 

produce any change in the absorption spectrum (data not shown) indicating the absence of 

new stacking interactions. Thus, in all cases transitions remained at 250 and 275 nm 

indicating that intramolecular stacking interactions are more stable than those that could be 

promoted by the EG molecules.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 – Deconvoluted absorption spectra of: (a) dG6; (b) dG6 incubated with 1% w/w FA; c) 

dG6 incubated with 3% w/w FA; and d) dG6:PEDOT mixture (1:5 mass ratio) incubated with 1% 

w/w FA. Thick gray line refers to the recorded spectra, while thin black lines correspond to the 

fitted model. The components derived from the deconvolution process are indicated by dashed 

lines. 
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In contrast, the UV-Vis spectra of dG6 incubated with FA 1% and 3% w/w show a new 

transition at 285 nm (Figures 4b and 4c, respectively), which reflects the formation of 

hydrogen bonding interactions. The peak at 285 nm, which increases with the concentration 

of FA, should be attributed to the n→π
* transition of FA molecules. Furthermore, the peak 

found at 275 nm undergoes a blue shift at 270 nm, the shape of the spectrum changing 

because of the loss of the inflection point.  

On the other hand, deconvolution of the spectra recorded for dG6:PEDOT mixture 

(1:5 mass ratio) after incubation with FA 1% w/w (Figure 4d) evidences the presence of the 

two peaks of dG6 at 250 and 270 nm, the peak of PEDOT at 260 nm, and the transition of FA 

at 285 nm. On the other hand, the spectrum of PEDOT shows a unique peak at 264 nm (data 

not shown), which corresponds to the n→π
* transition. Incubation of PEDOT with FA shows 

two transitions at 260 and 285 nm (data not shown), the latter being attributed to the 

formation of hydrogen bonding interactions between the two species. Furthermore, these 

interactions are also responsible of the blue shift (4 nm) detected in n→π
* transition of 

PEDOT. Overall these results demonstrate that both dG6 and PEDOT interact with FA 

through hydrogen bonds.  

Additional experiments were performed to compare the relative ability of dG6 and 

PEDOT to form hydrogen bonds. More specifically, the competition between FA and PEDOT 

for the formation of hydrogen bonds with dG6 was examined by keeping constant the 

concentration of FA and increasing progressively the concentration of PEDOT to change the 

dG6:PEDOT mass ratio. The variation of the relative area of the different bands derived from 

the spectra is represented in Figure 5 considering both 1% and 3% w/w FA concentrations. 

The area of the transition at 285 nm increases from 44% to 50% when the dG6:PEDOT mass 

ratio varied from 1:1 to 1:4 (Figure 5b). A very similar scenario is depicted in Figure 5a for the 

1% w/w FA concentration, even though in this case the increase of the area of the band at 

285 nm is more progressive. According to these results, interactions between PEDOT and FA 

are the most abundant indicating that the tendency to form hydrogen bonds is higher for the 

CP polymer than for dG6. 
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Figure 5 – Variation of the relative area (in %) of the absorption bands identified for the 

dG6:PEDOT mixture in presence of (a) 1% and (b) 3% of FA against the mass ratio. 

 

Modelling of dG6:PEDOT complexes. MD simulations of a complex formed by a single 

stranded dG6 and a PEDOT chain represented by twelve repeating units in aqueous solution 

were carried out to examine the specific interactions described in the previous sub-section 

at the atomistic level. The temporal evolution of the intermolecular distance, which has 

been determined by measuring the distance between the centre of masses of the dG6 and 

PEDOT chains (dcm-cm), is represented in Figure 6a. As it can be seen, dcm-cm remains stable 

during the whole simulation. This stability, which is also reflected by the low standard 

deviation of the average value, cm-cmd = 6.25±0.56 Å, indicates that the two molecules form 

a very stable adduct at the first stages of the simulation. Indeed, such adduct is formed 

during the equilibration period (i.e. dcm-cm= 12.0 Å at the beginning of the simulation) 

remaining practically unperturbed during the 20 ns simulation.  
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Figure 6 – From the MD simulation of the dG6:PEDOT complex: (a) temporal evolution of the 

distance between the center of masses of the two molecules (dcm-cm, solid black line), the 

distance between the 3’ edge of dG6 and the center of mass of PEDOT (d3’-cm, solid light gray), 

and the distance between the 5’ edge of dG6 and the center of mass of PEDOT (d5’-cm, dashed 

black line); (b) selected snapshots of the complex. 
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(d3’-cm and d5’-cm, respectively). Both distances show fast and abrupt re-organizations during 

the trajectory, which occur at 5.0 ns for d3’-cm and at 4.1 and 14.6 ns for d5’-cm. Thus, although 

the adduct remains stable through the whole simulation, the tails of the homo-

oligonucleotide undergo some re-arrangements, as it is schematically represented in Figure 

6b. As it can be seen, the PEDOT chain retains the initial all-anti conformation during the 

whole trajectory while the B-DNA shape of dG6 transformed into a disordered conformation 

at the first stages of the simulation (i.e. when the complex was formed during the 

equilibration period).  

Analysis of the trajectory led to identify four different types of weak specific 

interactions. These consist of: (1) conventional N-H∙∙∙O hydrogen bonds involving the oxygen 

atom of PEDOT; (2) N-H∙∙∙S hydrogen bonds involving the thiophene rings of PEDOT, which 

were reported to be significantly weaker than the N-H∙∙∙O interactions; (3) N-H∙∙∙π 

interactions; and (4) π-π stacking interactions.[5] Additionally, non-specific electrostatic 

interactions involving the phosphate groups of dG6 have been also detected. The 

identification of the interactions was based on the following geometric criteria: (a) for 

hydrogen bonds, the O∙∙∙H or S∙∙∙H distance is shorter than 3.0 Å; (b) for N-H∙∙∙π interactions, 

the distance between the hydrogen atom and the center of mass of the ring is shorter than 

3.0 Å; (c) or π-π stacking, the distance between the centers of mass of the stacked rings is 

shorter than 4.0 Å; and (d) for electrostatic interactions between the EDOT units and the 

phosphate groups, the distance between the interacting atoms is shorter than 6.5 Å. Table 2 

lists the average distance between the groups participating in such interactions for each of 

the six nucleotide bases. As it can be seen, only four of the six bases participate in the 

intermolecular interactions, the second and the sixth bases being important to adapt the 

conformation of the ss-hn and allow the formation of specific interactions between PEDOT 

and the other four bases. Inspection of the distances displayed in Table 2 clearly indicates 

that both specific N-H∙∙∙O and N-H∙∙∙S hydrogen bonds are stronger for the bases located at 

the central tract (i.e. third and fourth bases), while the first and the fifth guanines participate 

in the stronger π-π stacking. On the other hand, a more detailed analysis of both the two 

types of hydrogen bonds indicates that Nring-H∙∙∙O and Nring-H∙∙∙S intermolecular distances, 

where Nring refers to the endocyclic nitrogen atom, are in average 0.04 Å shorter than those 

involving the exocyclic NH2 group. 
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Table 2 – Averaged intermolecular distances and the corresponding standard deviations (both in 

Å) for the specific and non-specific interactions detected by MD simulations between each of the 

six nucleotide bases of dG6 and PEDOT. 

 
a Distance between the hydrogen atom of guanine and the oxygen or sulfur atom of PEDOT. c 

Distance between the hydrogen atom of guanine and the center of mass of the thiophene ring in 

EDOT units. d Distance between the centers of mass of the two interacting rings. e Distance 

between the oxygen atom of the charged phosphate group and the closest atom of PEDOT. 

 

Table 3 lists the average residence time (τ) and the maximum residence time (τmax) for 

each type of interaction.  

 
Table 3 – Averaged residence time (τ; in ps) and maximum residence time (τmax; in ps) for the 

specific and non-specific interactions detected by MD simulations between each of the six 

nucleotide bases of dG6 and PEDOT. 

 
a Distance between the hydrogen atom of guanine and the oxygen or sulfur atom of PEDOT. c 

Distance between the hydrogen atom of guanine and the center of mass of the thiophene ring in 

EDOT units. d Distance between the centers of mass of the two interacting rings. e Shortest 

distance between an oxygen atom of the charged phosphate group and an atom located at the 

thiophene rings of PEDOT. 
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As it can be seen, some interactions present values of τmax relatively large, as for example the 

electrostatic (417 ps with G4), the π-π stacking (269 ps with G5) and the N-H∙∙∙S hydrogen 

bond (191 ps with G3). However, in spite of this, the τ values are considerably low in all 

cases, independently of the interaction type and nucleotide base, reflecting the dynamic 

behaviour of the complex. Thus, thermal fluctuations induce the fast formation and 

disruption of both specific and non-specific interactions along the whole trajectory. 

Accordingly, interactions are frequently detected but with short life times, which explains 

the existence of multiple interaction types between PEDOT and each of the six bases of the 

ss-hn (Tables 2 and 3). Comparison of the hydrogen bonds involving the Nring-H and the 

amino N-H does not reveal any significant different in terms of τ and τmax values (data not 

shown).   

Figure 7 represents the accumulated life times in each of the six bases of dG6 for the 

four types of weak specific interactions as well as for the electrostatic ones. It should be 

noted that a given base may participate in more than one specific interaction 

simultaneously.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7 – Accumulated life time (in ns) of the different types of interactions (N-H∙∙∙O and N-H∙∙∙S 

hydrogen bonds, N-H∙∙∙π, π-π stacking and electrostatic) identified in the MD simulation of the 

dG6:PEDOT complex. The accumulated life times are indicated for each of the six nucleotide 

bases of dG6. Each base may participate in more than one specific interaction simultaneously. 
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The two hydrogen bonds involving the third base and the π-π stacking involving the first 

base remain formed during more than a half of the whole trajectory, evidencing the high 

stability of these interactions. However, it should be remarked that the dG6:PEDOT complex 

is completely dominated by the hydrogen bonding interactions, the accumulated life time of 

the π-π stacking being relatively small. Thus, the total accumulated life time considering the 

six bases is 34.9, 30.8, 7.7, 16.8 and 27.3 ns for N-H∙∙∙O, N-H∙∙∙S, N-H∙∙∙π, π-π stacking and 

electrostatic interactions, respectively. These results are fully consistent with the 

experimental evidences obtained above using EG and FA. Furthermore, it is particularly 

noticeable that the first and third bases interact with the PEDOT chain through weak 

interactions during the 20 ns trajectory, whereas the presence of weak interactions 

accumulates by 16.1 and 16.6 ns for the fourth and fifths bases, respectively. In contrast, the 

presence of electrostatic interactions is only remarkable for the fourth and fifth bases (i.e. 

19.4 and 6.7 ns, respectively), being null or practically negligible for all the others. It should 

be mentioned that the accumulated life times of Nring-H∙∙∙O and Nring-H∙∙∙S was ∼20% larger 

than those of the hydrogen bonds involves the exocyclic NH2 group. 

 

Electronic nature of the interactions in dG6:PEDOT complexes. In order to provide a 

deeper understanding of the specific interactions found in dG6:PEDOT complexes, a top-

down hierarchical modelling approach has been applied. Specifically, quantum mechanical 

calculations have been performed on model systems formed by guanine and a single 3,4-

ethylenedioxythiophene unit (G:EDOT), the different possible interaction patterns being 

considered. The resulting binding energies have been analyzed to determine the influence of 

the different contributions at the electronic level. Results allow to complete the molecular 

model described in the previous section for dG6:PEDOT complexes through an electronic 

description of the individual interactions. 

As said above, seven minimum energy complexes G:EDOT were previously obtained 

through geometry optimization at the MP2/6-31G(d) level of theory (labeled as Im-G – VIIm-

G in Figure 9 of reference 5). All systems, except VIIm-G, present an N-H∙∙∙O interaction; in 

addition, IIm-G has an N-H∙∙∙π, Vm-G a C-H∙∙∙O, and IVm-G and VImG a CH∙∙∙N interactions; 

whereas VIIm-G only presents an N-H∙∙∙π interaction. Unfortunately, the electronic study of 

the N-H∙∙∙S hydrogen bond has not been possible in the current work because MP2 geometry 

optimizations in the gas-phase of the G:EDOT model complex did not lead to any structure 
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stabilized by such specific interaction. Table 4 encloses the different terms of the EDA 

carried out on these systems at the PBE-D/TZ2P//MP2/6-31G(d) level. First, it is noticeable 

the good correlation of the binding energies between the MP2 (previous work) and the 

present PBE-D values.[5] PBE-D binding energies are always somewhat bigger than the 

MP2/6-31G(d) ones, although the differences are never larger than 2.5 kcal/mol. The 

ordering of the interactions given by the two methodologies is the same except for the VmG-

E that is considered slightly more stable than the IImG-E and IVmG-E at the MP2/6-31G(d) 

level.  

 
Table 4 – Energy decomposition analysis in kcal/mol at the PBE-D/TZ2P//MP2/6-31G(d) level. 

Relative energies with respect to ImG-E in parenthesis. See Figure 9 of reference 5 for 

nomenclature. 

 
a From ref. 5. 

 
Next, we go into the discussion of the different terms of the EDA in order to justify the 

differences, always taking compound ImG-E as reference because it is the most stable. First, 

we observe how the preparation energies have only a minor influence; they are always less 

than 1 kcal/mol. There is one system (VIImG-E) with negative preparation energy, and the 

reason is that EDA comes from single point energy calculations performed at the PBE-D/TZ2P 

level with the MP2/6-31G(d) optimized geometries. After, the most important attractive 

interactions in these complexes are the electrostatic ones that represent between 54% and 

39% of the total attractive forces (electrostatic+orbital interaction+dispersion). This ΔVelstat 

term is in general the most important in order to explain the differences among the 
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conformers. This is not surprising in the case of the hydrogen bonds, since it is well-known 

that the electrostatic interactions are the dominant ones in hydrogen bonded species.[51] The 

larger electrostatic contribution takes place in the species with Nring-H∙∙∙O hydrogen bonds 

(systems ImG-E and IIImG-E). This increase in the electrostatic contribution has to be 

attributed to the larger positive charge of the H attached to the N of the ring as compared to 

those of the NH2 group. The reason for this is the relative importance of resonance form B in 

guanine that leads to an aromatic six-membered ring (Scheme 2). Indeed, formation of the 

hydrogen bond in these complexes increase the importance of resonance form B in guanine, 

as can be proved from the fact that the aromaticity of the free 1-methylguanine is lower 

than that of the ImG-E and IIImG-E complexes (the HOMA value is 0.679 for the former and 

0.734 and 0.718 for the two latter while NICS results given in the SI lead to the same 

conclusion). Therefore these Nring–H∙∙∙O hydrogen bonds have to be considered resonance 

assisted hydrogen bonds (RAHB).[52,53] In general, the shorter the distance between the G 

and EDOT fragments (systems ImG-E and IIImG-E having RAHB), the higher the electrostatic 

interaction (in absolute value) and the Pauli repulsion. On the contrary, systems with planar 

conformation or with N-H∙∙∙π interaction, which have longer G–EDOT distances present 

lower ΔVelstat values (in absolute value) and Pauli repulsions (II, V, VI and VIImG-E). 

Interestingly, hydrogen bonding involving the NH2 substituent of guanine (IVmG-E) is less 

stabilizing than the one involving an NringH group of the guanine ring (ImG-E or IIImG-E). The 

reason is the above mentioned RAHB present in the Nring–H∙∙∙O hydrogen bonds. 
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Scheme 2 - Representative canonical forms of 1-methylguanine. 

 

Comparison of ImG-E (or IIImG-E) and IVmG-E conformers shows that the main 

difference in this case comes from both the orbital interaction and the electrostatic terms 

that are more stabilizing for the ImG-E (or IIImG-E) conformer. On the other hand, 

comparison of ImG-E (or IIImG-E) and IImG-E indicates that the main difference in this case 
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comes from the electrostatic term, however, in the latter an N-H∙∙∙π interaction is also 

involved and a comparison of the two isolated hydrogen bond interactions is not possible. 

Finally, the dispersion term is quite constant although somewhat higher (about 2 kcal/mol) 

for the II-mGE and IV-mGE that have N-H∙∙∙π or C-H∙∙∙N interactions. As a whole, this EDA 

analysis shows that the most stabilizing interaction of the G:EDOT complex comes from the 

Nring–H∙∙∙O hydrogen bond due to formation of a RAHB. 

 

4.4.4 – Conclusions 

 
Both the existence and identification of weak specific interactions between ss-hn and 

PEDOT have been investigated using experimental and theoretical approaches. Both UV-Vis 

and CD spectra indicate that dG6 interact with this CP through weak specific interactions, 

which do not produce major alterations in the secondary structure of the ss-hn. In contrast, 

dA6:PEDOT and dC6:PEDOT adducts are made of compact structures stabilized by strong 

electrostatic interactions, giving place to the loss of the ss-hn secondary structure. The 

characteristics of dT6:PEDOT complexes are half-way between those of dG6:PEDOT and the 

electrostatic adducts involving dA6 or dC6. Thus, experimental results for dT6:PEDOT 

complexes suggest that, although electrostatic interaction play an important role in their 

stabilization, weak specific interactions also participate in their final organization. The 

velocity of the association processes, which have been determined using time resolved UV-

Vis spectroscopy, are fully consistent with these features. Thus, the association of PEDOT 

with dA6 or dC6 is significantly faster than with dG6, whereas a half-way velocity was 

measured for dT6:PEDOT complexes. Incubation of dG6:PEDOT mixtures with different 

concentrations of EG and FA, which promote the formation of stacking and hydrogen bonds, 

respectively, confirmed the presence of the latter interactions in the complexes while the π-

π stacking are undetectable.  

On the other hand, atomistic MD simulations indicated that the dG6:PEDOT complex 

is formed very rapidly, which should be attributed to the electrostatic attraction of the 

negatively charged phosphate groups and the oxidized polymer. This produces the unfolding 

of the dG6 molecule, which abandons the B-DNA shape and adopts a disordered 

conformation, while the PEDOT chain retain the all-anti conformation. The complex was 

found to remain stable during the whole trajectory, even though small re-organizations were 
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detected at both the 3’ and 5’ edges. In addition to the electrostatic interactions, four weak 

specific interactions were detected: N-H∙∙∙O and N-H∙∙∙S hydrogen bonds, N-H∙∙∙π and π-π 

stacking. Analyses of the strength, residence times and accumulated life times indicate that 

the dG6:PEDOT complex is dominated by hydrogen bonds, which are the most populated 

and frequent interactions. Finally, the EDA analyses show that the most stabilizing 

interaction in the G:EDOT complex corresponds to the Nring–H∙∙∙O hydrogen bond that is 

especially favored by resonance assistance. 
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4.5 – Specific interactions in complexes formed by polythiophene 

derivatives bearing polar side groups and plasmid DNA 
 

 
The interaction between plasmid DNA and polythiophene derivatives bearing substituents 
with polar groups has been examined using electrophoresis assays, and both UV-Vis and 
CD spectroscopies. Results clearly indicate that such CPs form stable adducts with DNA, 
even although the interactions strongly depend on the chemical constitution of the 
polymers. Furthermore, digestion assays with EcoRI and BamHI evidence that the 
polymers form specific interactions with the DNA, protecting the target nucleotide 
sequences of these restriction enzymes. On the other hand, UV-Vis and CD spectra show 
that the interactions induce a fast and very significant exposition of the nitrogen bases, 
which is consequence of the structural alterations induced in the circular DNA. These 
results have been compared with those previously reported for polypyrrole, poly(3,4-
ethylendioxythiophene) and poly(3-methylthiophene). Finally, a model based on the 
intercalation of the conducting polymer between the two DNA strands has been 
proposed.* 

 

*
 - Results described in this section previously appeared in European Polymer Journal 44 (2008) 3700. 

 
 
 

4.5.1 – Introduction 

 
The interaction of conducting electroactive polymers, such as PTh, PPy and their 

derivatives, with selected bioentities (e.g. amino acids, proteins, DNA and oligonucleotides, 

and living cells) is a subject of increasing interest.[1-21] The quest to interact more efficiently 

with biosystems, to obtain information related to system performance and to control that 

performance remains not only an exciting but also an essential area of research. Thus, the 

development of biotechnological applications based CPs greatly depends on the control of 

such interactions.  

Within this area of research we are particularly interested in the interaction of CPs 

with DNA sequences, which may have great implications in numerous medical applications 

ranging from diagnosis to gene therapy.[8-16,21,22] The interaction of p-doped electroactive 

materials with DNA has been traditionally attributed to the tendency of the latter to interact 

with positively charged molecules. However, in recent studies we found that poly(3,4-

ethylenedioxythiophene), a widely used PTh derivative hereafter abbreviated PEDOT 

(Scheme 1), as well as PPy are able to bound forming specific interactions with well-defined 

nucleotide sequences of plasmid DNA.[10,16] The formation of specific interactions suggest 

that polymer:DNA adducts are stabilized not only by electrostatic interactions but also by 
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other kind of interactions. Thus, the importance of specific hydrogen bonding interactions in 

these complexes is expected to be significantly greater than those that are of non-specific, 

e.g. stacking, van der Waals and charge-transfer interactions. Indeed, the N-H groups of PPy 

and the dioxane oxygen atoms of PEDOT are excellent donors and acceptors of hydrogen 

bonds, respectively. Consistently, although plasmid DNA and poly(3-methylthiophene) 

(P3MT), a PTh derivative without hydrogen bonding donors and acceptors, form stable 

adducts, specific interactions are significantly weaker in DNA:P3MT than in DNA:PEDOT. In 

addition, we recently used advanced theoretical calculations to demonstrate that hydrogen 

bonding interactions between DNA bases and PPy are significantly stronger than interactions 

between DNA bases and PTh derivatives without hydrogen bonding donors and acceptors.[22] 

 

N
H

S

OO

PPy PEDOT  

Scheme 1 

 

Attracted by this field, we recently developed two PTh derivatives bearing carboxylate 

groups in the 3-position of the thiophene ring (Scheme 2).[23,24] These materials, which are 

expected to interact specifically with DNA through the oxygen atoms of the side groups, are 

the poly(3-thiophen-3-yl-acrylic acid methyl ester) and the poly(2-thiophen-3-yl-malonic acid 

dimethyl ester), hereafter abbreviated PT3AME and PT3MDE, respectively.  

 

S S

PT3AME PT3MDE

CH=CH-COOCH3 CH-(COOCH3)2

 

Scheme 2 
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PT3MDE presents better solubility properties than PT3AME, which should be attributed to 

the presence of two polar groups in the chemical repeating unit of the former polymer. 

Thus, the malonic ester derivative is soluble not only in polar organic solvents, as the 

acrylate derivative, but also in aqueous base solutions. On the other hand, PT3AME exhibits 

high electrical conductivity, even although this property decreases very fast with the time. 

In this work we present a complete study about the interaction of PT3AME and 

PT3MDE with plasmid DNA using electrophoretic analyses, and UV-Vis and circular dichroism 

(CD) spectroscopies. The possible formation of specific interactions have been examined by 

adding restriction enzymes, which cut off at specific nucleotide sequences, to the 

DNA:polymer mixtures. Thus, DNA is protected from digestion when the interactions with 

the CP occur specifically at the restriction sites. Results indicate that these polymers provide 

different interactions with DNA, a mechanism for the formation of stable DNA:polymer 

adducts being finally proposed. 

 

4.5.2 – Methods 

 
Polymer synthesis. The synthesis of PT3AME and PT3MDE were detailed in previous 

works.[23,24] The synthetic procedure is briefly summarized in Scheme 3. 3-Thiophen-3-yl-

acrylic acid and 2-thiophen-3-yl-malonic acid (3g) were refluxed in dry methanol (15mL) with 

one-two drops of concentrated sulfuric acid for 24 hours, to give 3-thiophen-3-yl-acrylic acid 

methyl ester (99.9 % of yield) and 2-thiophen-3-yl-malonic acid dimethyl ester (90% of yield), 

respectively. After purification by the evaporation of methanol and successive extraction 

with diethyl ether, polymerization of the protected monomers was performed by chemical 

oxidative coupling in dry chloroform using anhydrous ferric chloride. The oxidant:monomer 

molar ratio was 4:1, as was suggested in the literature.[25] After precipitation in a large excess 

of methanol, the resulting polymers were recovered in chloroform and successively washed 

with methanol to remove the residual FeCl3, monomers and small oligomers. Products were 

obtained with a yield between 60-75% after drying under vacuum at 40 °C for 72 hours. 

It should be noted that, in order to reduce the importance of the electrostatic 

interactions in the formation of stable DNA:PT3AME and DNA:PT3MDE complexes, the 

polymers produced using the procedure indicated in Scheme 3 were not subjected to a 

doping process with LiClO4. Thus, PT3AME and PT3MDE were used as produced, i.e. oxidized 



Chapter 4                                                                                             DNA···Conducting Polymers Interaction 

136 

with 
−

Cl  acting as counter-anion. It should be noted that replacement of 
−

Cl  by 
−

4ClO  

dopant ions enhances the p-doping state of polymer chains since the charge separation is 

significantly promoted by the latter anion with respect to the former one.[26,27] 
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R
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CH3OH

H2SO4 / reflux

S

R
'

FeCl3

CHCl3 / 0ºC
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n

1. R= -CH=CH-COOH

2. R= -CH-(COOH)2

1. R
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= -CH=CH-COOCH3
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'
= -CH-(COOCH3)2

1. PT3MDE: R
'
= -CH=CH-COOCH3

2. PT3AME: R
'
= -CH-(COOCH3)2  

Scheme 3 

 

Polymer Characterization. The structural characterization of PT3AME and PT3MDE 

was detailed in our previous works, a brief summary being provided in this section.[23,24] 

Specifically, the spectral properties recorded for the two materials were consistent with 

their structures. Analysis of the protons from 3.7 to 3.0 ppm region in the 1H-NMR spectra 

showed that the head-to-tail is the predominant linkage (∼ 75%-80%) for the polymers, the 

remaining ones being of head-to-head type. On the other hand, the π-π* lowest transition 

energy (εg) of the two polymers was derived in different environments using UV-Vis 

spectroscopy. The εg values obtained for PT3AME in acetone and DMSO were 2.54 eV and 

2.48 eV, respectively, while the values determined for PT3MDE in the same solvents were 

2.52 and 2.36 eV. 

Unfortunately, determination of the molecular weight by GPC analyses using 

polystyrene standards and hexafluoro-2-propanol as solvent did not led to any conclusive 

result. We also tried to perform MALDI-TOFF mass spectrometry in several types of matrices 

(dihydrobenzoic acid, dithranol, sinapinic acid, etc) but, again, all the polymers gave variable 

and inaccurate results. However, inspection to the 1H-NMR spectra recorded after the 

polymerization processes indicated the presence of shoulders at the ring proton multiple 

region, which were attributed to the remaining α-H. This is usually associated to low 

molecular weight polymer chains. 

The electrical conductivities of PT3AME and PT3MDE, which were determined using 

the standard four probe technique, were significantly high, i.e. 15 S/cm and 6 S/cm 
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respectively. However, such remarkable electrical properties decreased very fast, i.e. in 

about 24 hours. 

Formation of DNA:polymer complexes and electrophoretic assays. Polymers were 

dissolved in milliQ water (0.5 μg polymer/μl) for biological assays. Due to the difficulties 

associated to the solubilisation of PT3MDE in neutral water, 10% of acetone was included in 

the final volume. In order to guarantee a homogeneous solution, PT3AME was subjected to 

ultra-sounds.  

DNA:polymer complexes were prepared upon aqueous solutions by mixing 4 μl of 

plasmid pMT4 (0.5 μg/μl) with 0.00, 0.05, 0.50, 5.00 and 10.00 μl of polymer solution (5 

μg/μl), which corresponded to the desired DNA:polymer ratios (1:0, 1:1, 1:10, 1:100, 1:200, 

respectively).[28] Total volumes were raised to 13 μl with sterile milliQ water. The mixtures 

were incubated for 3 h at 37 ˚C, and an aliquot (20 μl) of 6×  gel loading buffer (2% (wt/vol) 

SDS, 10% (vol/vol) glycerol, 62.5 mM Tris-HCl, 5% (vol/vol) β-mercaptoethanol, and 0.001% 

(vol/vol) bromphenol blue) was added and centrifuged for 10 min. The supernatant was then 

analysed by electrophoresis with 1% of agarose gel containing ethidium bromide (0.5 μg/ml 

of gel) in 1×tris-acetate-EDTA buffer (TAE). The cleavage of pMT4 with EcoRI and BamHI in 

DNA:polymer complexes was evaluated by adding 10 U of restriction enzyme in 1.56 μl of 

10×  enzyme buffer to the samples previously incubated. The composition of the 10×  buffer 

for EcoRI and BamHI was 0.5 M Tris-HCl, 1M NaCl, 100 mM MgCl2 and 10 mM DTE (pH= 7.5 

at 37 ˚C) and 100 mM Tris-HCl, 1M NaCl, 50 mM MgCl2 and 10 mM 2-mercaptoethanol (pH= 

8.0 at 37 ˚C), respectively, The digestion process was carried out at 37 ˚C for 1 h, the 

resulting products being analysed by electrophoresis. 

 

Characterization techniques. A Nicolet Evolution 300 (Thermo Electron Co.) 

spectrophotometer controlled by the Vision Pro software was used to record UV-Vis spectra 

of DNA:PT3AME and DNA:PT3MDE complexes with ratios 1:1 and 1:200 at 22 ˚C, in the 200-

1000 nm range, with a bandwidth of 2 mm and a scan speed of 600 nm/min. For each 

sample, 15 cycles separated by an interval of 2 min between consecutive cycles were 

recorded. 

Circular dichroism (CD) measurements were carried out in a Jasco J-810 

spectropolarimeter at 22 ˚C using a quartz cuvette. The CD data were recorded with 

standard sensitivity (100 mdeg), in the 170-360 nm range, with bandwidth of 2 mm, 
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response time of 0.5 s and scanning speed of 500 nm/min. The reported spectra correspond 

to the average of five scans, the raw spectra being smoothed by the Savitsky-Golay 

algorithm and deconvolutioned for analysis and interpretation. For each sample, the CD 

spectrum of the polymer was subtracted from that of the DNA:polymer complex, and 

compared with the CD spectrum of the plasmid DNA. 

 

4.5.3 – Results and Discussion 

 
Electrophoretic analyses of DNA:polymer complexes. The interaction of PT3AME and 

PT3MDE with plasmid DNA to form DNA:PT3AME and DNA:PT3MDE complexes was 

investigated using electrophoretic assays. For this purpose, polymer solutions were mixed 

with plasmid DNA (0.5 μg) considering different DNA:polymer ratios, i.e. 1:0, 1:1, 1:10, 1:100 

and 1:200, followed by homogeneization and equilibration for 3h in a shaking plate at 37 ˚C. 

The electrophoretograms obtained for DNA:PT3AME and DNA:PT3MDE complexes at 

different DNA:polymer ratios are displayed in Figure 1. 

Lane 1 in Figures 1a and 1b, which corresponds to the plasmid (1:0 DNA:polymer 

ratio),  shows the typical mixture of the supercoiled form I (bottom or band at the front) and 

the singly nicked form II (top or band at the back). Lanes 2-5 display the interactions 

between DNA and polymers at increasing DNA:polymer ratios. As can be seen, both PT3AME 

and PT3MDE are able to interact with DNA, the formation of adducts being evidenced by 

significant alterations in the bands associated to the plasmid DNA (forms I and II). The 

formation of complexes retards the mobility of form I and enhances slightly the mobility of 

form II. Furthermore, the interaction between DNA and polymers produces changes in the 

intensity of the bands. Specifically, the intensity decreases and increases for forms I and II, 

respectively. Caution is required to analyze the fluorescence of DNA because the variation of 

this property during experiments involving formation of adducts cannot be related with the 

amount of interacting plasmid. However, CPs may induce conformational changes in plasmid 

DNA during the formation of the corresponding complexes, which could explain the 

variations in the mobility and intensity undergone by the two bands. Therefore, hereafter 

forms I’ and II’ will refer to forms I and II, respectively, after undergo alterations in the 

mobility due to the formation of adducts. 
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(a)

(b)

 

Figure 1 – Interaction of pMT4 plasmid DNA and increasing concentration of PT3AME (a) and 

PT3MDE (b) after their incubation for 3h at 37 ˚C. Lane M: molecular weight marker (1 Kb Plus 

DNA Ladder). Lane 1: pMT4 plasmid DNA (1:0 DNA:polymer ratio). Lanes 2-5: 1:1, 1:10, 1:100 

and 1:200 DNA:polymer ratios. Labels I and II indicate form I and II of pMT4 plasmid DNA, 

respectively. Labels I’ and II’ refer to the forms I an II of plasmid DNA, respectively, that 

underwent alterations in the mobility after interact with the CP. 

 

On the other hand, a detailed inspection of Figure 1 reveals that the interaction 

between the plasmid DNA and the CP may be different in DNA:PT3AME and DNA:PT3MDE 

complexes. This is because no interaction is detected for PT3AME at the 1:1 ratio, the 

absence of adduct being evidenced by the lack of mobility in the two bands (Figure 1a, lane 

2). Furthermore, after formation of the complex, which occurs at the 1:10 DNA:PT3AME 

ratio (Figure 1a, lane 3), the mobility of the bands is similar in all cases, independently of the 

concentration of CP. In contrast, DNA:PT3MDE complexes are detected for all the ratios 
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examined, even although the alteration in the mobility clearly depends on the concentration 

of PT3MDE (Figure 1b, lanes 2-5). 

In order to look for specific interactions between plasmid DNA and the CPs 

investigated in this work, additional assays were performed adding restriction enzymes. 

Specifically, the two enzymes considered in this work were EcoRI and BamHI, the digestion 

period being 1 h after the formation of the DNA:polymer adducts. These restriction enzymes 

cut off at specific nucleotide sequences: 5’-G/AATTC-3’ (EcoRI) and 5’-G/GATCC-3’ (BamHI). 

The pMT4 plasmid contains one and three restriction sites for EcoRI and BamHI, respectively. 

The digestion with EcoRI converts supercoiled form I and single nicked circular form II of DNA 

into linear form III, while BamHI produces three DNA fragments named F1, F2 and F3. The 

molecular weights of F1 and F2 are similar, their mobility in the agarose gel being associated 

to a unique band. Fragment F3 presents the lowest molecular weight, which is evidenced the 

fastest mobility. However, BamHI produces form III when it makes only one cut in the 

plasmid DNA.  

Figure 2 shows the gel electrophoresis results for DNA:PT3AME (Figure 2a) and 

DNA:PT3MDE (Figure 2b) complexes after digestion with EcoRI and BamHI. For both 

complexes, lane 1 corresponds to the untreated and undigested pMT4 plasmid DNA, while 

lanes 2 and 7 display the plasmid DNA (1:0 DNA:polymer ratio) digested with EcoRI and 

BamHI, respectively. Finally, lanes 3-6 and 8-11 correspond to increasing DNA:polymer ratios 

(1:1, 1:10, 1:100 and 1:200) digested with EcoRI and BamHI restriction enzymes, 

respectively.   

The band patterns obtained for DNA:PT3AME and DNA:PT3MDE complexes after 

digestion with EcoRI depends on the polymer concentration (Figure 2). As can be seen, 

digestion produced a unique band associated to linear DNA (form III) for complexes formed 

using 1:1 to 1:200 ratios. In general, the band intensity of form II decreases when the 

concentration of CP increases. This is a direct evidence that PT3AME and PT3MDE polymers 

protect the restriction site of EcoRI (5’-G/AATTC-3’ sequence). Furthermore, others bands 

associated to supramolecular structures with high molecular weights are also observed. 

Specifically these bands, which are explicitly marked in Figure 2, should be attributed to 

complexes formed by polymers and linear DNA molecules. This is consistent with the lack of 
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detection of such bands when the polymers interact with circular DNA (Figure 1). 

 

 

 

Figure 2 – Enzymatic digestion with EcoRI and BamHI of DNA:PT3AME (a) and DNA:PT3MDE (b) 

complexes. Different DNA:polymer ratios (1:0, 1:1, 1:10, 1:100 and 1:200) were incubated for 3 h 

at 37 ˚C to promote the formation of complexes, followed by their enzymatic digestion for a 

period of 1 h at 37 ˚C. Lane 1: undigested and untreated pMT4 plasmid. Lanes 2-6 and 7-11: 1:0, 

1:1, 1:10, 1:100, 1:200 DNA:polymer ratios after enzymatic digestion. Labels I, II and III 

correspond to the forms I, II and III of pMT4 plasmid DNA, respectively. Labels F1, F2 and F3 

refer to the three produced fragments by enzymatic digestion with BamHI restriction enzyme. 

The asterisks indicate the bands associated to supramolecular structures with high molecular 

weight (see text). 

 

On the other hand, enzymatic digestion with EcoRI of the 1:100 DNA:PT3AME 

complexes is particularly interesting (Figure 2a, lane 5). This ratio favours interchain 

interactions giving place to the formation of supramolecular adducts or products with high 

molecular weights. This result, which is fully consistent with that obtained when the 

digestion is carried out with BamHI (Figure 2a, lane 10), suggests that the 1:100 is the 

optimum DNA:PT3AME ratio. Thus, the formation of DNA:PT3AME adducts depends on the 

DNA:polymer ratio, and the effects of the interaction between the two systems may follow a 

normal distribution. 
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Digestion experiments with BamHI on DNA:PT3AME complexes demonstrate a 

protective effect that depends on the ratio (Figure 2a). This fact is evidenced by the 

reduction in the intensity of the band associated to the F1 and F2 fragments. Furthermore, 

linear DNA or form III, which is produced by one cut-off, appears in the 1:100 and 1:200 

ratios. These results clearly indicate that PT3AME protects the target sequence of BamHI (5’-

G/GATCC-3’). Figure 2b shows the results obtained for DNA:PT3MDE complexes with EcoRI 

and BamHI. The results are similar to those described for DNA:PT3AME. Thus, PT3MDE 

interacts specifically with the sequences of circular DNA that are targets of the restriction 

enzymes.  

 

UV-Vis spectroscopy of DNA:polymer complexes. In order to provide a better 

understanding of the interactions between plasmid DNA and the two CPs examined in this 

work, the behaviour of the nucleotide bases was investigated during the formation of the 

adducts by UV-Vis spectroscopy. Light scattering effects were avoided by correcting the 

maximum absorbance of nucleotide bases in DNA, which is 260 nm (A260nm), with respect to 

the absorbance at 350 nm (A350nm). The absorbance of the bases was recorded during 15 

cycles separated by 2 min for the DNA:polymer mixtures with the 1:1 and 1:200 ratios. 

Figure 3 represents the evolution of (A-A0)/Amax against the time (t), where A0 corresponds to 

the absorbance of DNA in solution (1:0 DNA:polymer ratio) at the initial time (t= 0 min), Amax 

is the absorbance of the bases in the DNA:polymer mixture after thermal denaturalization of 

DNA by heating the sample at 94 ˚C during 15 min, i.e. when 100% of DNA bases are 

exposed, and A is the absorbance of nitrogen bases in DNA:polymer mixtures measured at 

different times (cycles). 

Results displayed in Figure 3a, which correspond to the 1:1 DNA:polymer ratio, reveal 

different behaviours for PT3AME and PT3MDE. The latter interacts very rapidly with plasmid 

DNA, i.e. the maximum of the profile is reached in two minutes (second cycle). In opposition, 

the value of (A-A0)/Amax remains at zero during 30 min for the DNA:PT3AME mixture. This 

feature is consistent with the lack of interaction between the plasmid DNA and the PT3AME, 

this result being in agreement with electrophoretic observations (Figure 1a, lane 2). 

Inspection to the results obtained for the 1:200 DNA:polymer ratio, which are displayed in 

Figure 3b, reveals a significant change for the DNA:PT3AME mixture. Thus the interaction 

between the plasmid DNA and the CP induce a fast and very significant exposition of the 
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nitrogen bases. This dependence on the DNA:PT3AME ratio is fully consistent with the 

electrophoresis results displayed in Figure 1. On the other hand, the behaviour showed by 

the DNA:PT3MDE mixture is very similar for both the 1:1 and 1:200 ratios, as is evidenced by 

the immediate formation of DNA:PT3MDE adducts. Moreover, Figure 3b clearly shows that 

the exposition of DNA bases is considerably smaller in DNA:PT3MDE complexes than in 

DNA:PT3AME complexes. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3 – Temporal evolution of DNA:PT3MDE and DNA:PT3AME mixtures with 1:1 (a) and 

1:200 (b) DNA:polymer ratios followed by UV-Visible spectroscopy (see text). Spectra were 

recorded during the 15 cycles, two consecutive cycles being separated by a 2 min interval. For 

the 1:1 DNA:PT3AME ratio no interaction was detected, the profile being a straight line with all 

the values at zero. 

 

The results provided by UV-Vis spectroscopy and electrophoretic assays indicate that 

the interaction between the plasmid DNA and the CPs to form DNA:PT3AME and 

DNA:PT3MDE adducts depends on the chemical nature of the polymer. Thus, the two 

polymers provide different interactions with DNA as is evidenced by the following 
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observations: (1) no DNA:PT3AME adduct was identified at the 1:1 ratio while, in contrast, 

the DNA:PT3MDE complex was clearly detected for the same ratio; and (2) for the 1:200 

ratio, the exposition of nitrogen bases is considerably higher in DNA:PT3AME than in 

DNA:PT3MDE complexes.  

 

Structure of DNA: A circular dichroism study. The objective of the CD investigation 

presented in this section was to examine the structural alterations undergone by the plasmid 

DNA when it is bound to the CPs. For this purpose, CD spectroscopic analyses were 

performed on solutions containing plasmid DNA (1:0 DNA:polymer ratio) and DNA:polymer 

mixtures with 1:1 and 1:200 ratios. Results are provided in Figure 4. It should be emphasized 

that, as was mentioned in the Methods section, the CD spectrum of the polymer was 

subtracted from the CD spectra of the DNA:polymer adducts. This allowed detect structural 

changes in DNA. 

The plasmid is a supercoiling circular DNA and its ellipiticity is negative. The raw CD 

spectra recorded between 200 and 360 nm show ellipiticity changes as well as lost of 

supercoiling for the DNA:PT3AME and DNA:PT3MDE complexes (data not shown). The 

supercoiling was lost in the 1:200 DNA:PT3AME mixture, while positive ellipiticity was 

obtained for the 1:1 ratio (Figure 4a). For DNA:PT3MDE mixtures, both ratios provided lost 

of supercoiling and negative ellipiticity (Figure 4b). 

DNA adopts the B-form in aqueous solution, the CD signals typically found for the 

canonical structure being as follow: positive band at 275 nm, negative band at 245 nm and 

crossover point near 258 nm.[29,30] As can be seen in Figure 4, the characteristic features of 

the DNA plasmid correspond to the B-form, even although small differences are detected 

with respect to the canonical form: positive band at 280 nm, negative signal at 257 nm, and 

crossover point near 272 nm. The DNA:PT3AME and DNA:PT3MDE complexes show that the 

CD of plasmid DNA is significantly perturbed when it interacts with the two CPs (Figure 4a 

and 4b, respectively). Changes include a significant reduction in the intensity of the negative 

and positive bands. Although these changes correspond to conformational variations, the 

structure of the DNA in the complexes cannot be clearly defined due to the presence of the 

light scattering of spectral tails. Thus, the size of the complexes can contribute to the light 

scattering.[30] However, the changes observed by CD spectroscopy together with the increase 

in absorbance evidenced by UV-Vis spectroscopy and the protective effect in the restriction 
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cleavage clearly indicate that the formation of DNA:PT3AME and DNA:PT3MDE complexes 

involve structural alterations in the DNA. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 – CD spectra of DNA:polymer complexes to study structural alterations of DNA: (a) 

DNA:PT3AME and (b) DNA:PT3MDE complexes with 1:1 (dashed line) and 1:200 (dotted line) 

DNA:polymer ratios. In all cases the CD spectrum of the corresponding CP was subtracted from 

the CD spectra of the DNA:polymer complexes. The spectrum recorded the pMT4 plasmid DNA 

represented by the solid line. 

 
These results allow conclude that the interaction between the plasmid DNA and the 

two CPs produces ellipiticity changes and alteration in the secondary structure of DNA. The 

immediate consequence of this structural alteration is the exposition of the DNA bases 

allowing the rapid interaction with the polymer molecules. 

 

4.5.4 – Conclusions 

 
This work provides reliable information about the interaction of plasmid DNA with 

two PTh derivatives, PT3AME and PT3MDE, bearing polar side groups, these results being 

complementary to those previously reported for PPy, PEDOT and P3MT.[10,16] The two CPs 

used in this work were prepared by chemical oxidation using FeCl3. Therefore, the oxidation 
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degrees of PT3AME and PT3MDE are significantly lower than those of the CPs used in our 

previous works, which were doped with LiClO4. In spite of this, both PT3AME and PT3MDE 

are able to form adducts, even although a relatively high concentration of CP is required for 

the formation of DNA:PT3AME complexes.  

The ability of positively charged molecules to interact with DNA is based on the 

propensity of the latter to form adducts with cationic species.[31] However, the interactions 

of CPs with specific nucleotide sequences, like those found for the 5’-G/AATTC-3’ (target for 

EcoRI) and 5’-G/GATCC-3’ (target for BamHI) sequences with both PT3AME and PT3MDE, 

require the formation of directional and specific interactions like hydrogen bonds. This 

allows to conclude that the formation of specific interactions with DNA depends on the 

chemical nature of the CP, which is fully consistent with the results provided not only in this 

but also in our previous works.[10,16] In particular, PPy, PEDOT, PT3AME and PT3MDE, which 

contain acceptors or donors of hydrogen bonds, have been found to form specific 

interactions with DNA, while this kind of interaction was weak and poorly detected for P3MT 

and PTh derivatives without donor and acceptors of hydrogen bonds. 

Finally, UV-Vis results revealed significant differences in the interaction pattern of 

PT3AME and PT3MDE with DNA. The first one was mentioned above and refers to the 

concentration of CP required for the formation of the DNA:PT3AME and DNA:PT3MDE. 

Taken into account that the oxidation level is similar for the two polymers, this should be 

attributed to the chemical constitution of PT3AME and PT3MDE, which involve one and two 

polar groups per repeating unit, respectively. The second difference refers to the exposition 

of the DNA bases to radiation, which is higher in DNA:PT3AME than in DNA:PT3MDE 

complexes. This should be also related with the different capabilities of the two CPs to act as 

hydrogen bonding acceptors. Thus, the degree of interaction between the nitrogen bases 

and the CP is higher for PT3MDE than for PT3AME. Moreover, CD spectra clearly show that 

the interaction with the CPs provokes an alteration in the secondary structure of DNA, i.e. 

the unfolding of the double helix. 

The overall of these results lead us to propose the following hypothesis for the 

interaction of DNA with both PT3AME and PT3MDE: these polymers produce the unfolding 

of the double helix promoting the intercalation of the CP molecules between the DNA 

strands. This leads to enhance the exposition of the DNA bases, the degree of such 

exposition depending on the number of hydrogen bonding interactions between the bases 
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and the polar groups. A schematic description of the proposed mechanism is provided in 

Figure 5. 

 

 

Figure 5 – Schematic view of the proposed mechanism for the interaction between plasmid DNA 

and the two PTh derivatives under consideration, which is based on the intercalation of the 

polymer between the two strands of DNA. 
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5.1 – Microstructures of poly(N-methylpyrrole) and their interaction 

with morphine 
 

 
Microstructures of poly(N-methylpyrrole) have been generated by direct electrochemical 

oxidation of N-methylpyrrole with poly(styrenesulfonic acid) in aqueous solution, using a 

micelle formation mechanism with gas bubble templates. These microstructures present a 

“doughnut”-like morphology with diameters ranging from 20 to 100 μm. Other anionic 

surfactants, such as camphorsulfonic acid and β-naphthalenesulfonic acid, have been also 

employed, results evidencing that the morphology of the microstructures depends on the 

nature of the surfactant electrolytes. The dimensions, abundance and texture of the 

microstructures have been modulated by varying the surfactant molecules, the 

electrochemical technique, and the distance between the working and counter-electrode. 

The generated microstructures have been characterized using electrochemical techniques, 

RAMAN and infrared spectroscopies, scanning electron microscopy and atomic force 

microscopy. Hollow microstructures-containing films made of poly(N-

methylpyrrole)/poly(styrenesulfonic acid), which present remarkable electroactivity and 

electrostability, has been proved to interact with morphine molecules. Thus, systems 

based on this prominent material show a high ability to capture the drug molecules and to 

retain them for a long period of time.
*
 

 

*
 - Results described in this section previously appeared in Electrochimica Acta 56 (2011) 5836. 

 

 

 

5.1.1 – Introduction 

 

Many of the nanostructured materials currently under development draw their 

inspiration from the structures found in nature.
[1-3]

 Highly sophisticated morphologies and 

functions have been achieved using supramolecular architectures of polymer structures.
[4]

 

Within this context, micro- and nanostructures based on CPs are a class of important 

materials with many potential applications because of their low density, large specific area, 

high stability and surface permeability, and good electrochemical properties.  

In recent years, a new approach for the fabrication of CP micro- and nanostructures 

has emerged. The general process can be described as the one-step electrochemical 

generation of the CP in a solid substrate assisted by a solid or soft template mechanism. 

Thus, this method can be applied using solid templates with well defined shapes (e.g. 

porous alumina membranes and polystyrene colloidal particles) limiting the size of the 

materials, or “soft” templates formed by assemblies of molecules (e.g. surfactants and 

gases) in solution or solid surface.
[5-8]

 In this field, the research developed by Gaoquan Shi 

and co-workers in complex systems based on CPs was a brilliant and pioneering 
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contribution.
[9-17]

 These authors reported microspheres, microcrocks, microbowls, 

microbarrels and micropumpkins made of PPy, all them showing remarkable thermal 

stability and distinct cation-exchange behaviour during the redox processes. The most 

recent advances in the study of micro- and nanostructures prepared by electrosynthesis, as 

well as the future research directions in the field, were recently reviewed by Shi et. al..
[18]

  

In this work we apply the electrochemical method developed by Shi and co-workers, 

and based on “soap bubble” templates, to generate microstructures made of poly(N-

methylpyrrole) (PNMPy). The most relevant characteristic of this approach is the use of gas 

molecules as templates, in spite of the solid templates frequently used.
[19]

 Typically, the 

fabrication of micro- and nanostructures starts with a very fine electrodeposition of a 

polymer film on a metal surface. After this, the CP grows in the bubble surface assisted by 

anionic surfactants as electrolytes.
[9,13-14,20]

 The formation of microstructures using this 

method with gas templates presents some advantages. More specifically, the control of the 

electrochemical process is very easy and the production of intact microstructures requires 

only one step of synthesis without any intermediate stages.
[21-24]

  

In this work we explore the synthesis of PNMPy hollow microstructures using three 

different organic acid surfactants as supporting electrolytes: (1) poly(styrenesulfonic acid) 

(PSSA), a dopant agent that can be immobilized in the polymer matrix and shows cation-

exchange properties during the redox properties, which are due to the large size of 

poly(styrene sulfonate) (PSS
–
) chains; (2) (±)-camphorsulfonic acid (CSA), a low molecular 

weight surfactant that is expected to enhance the mobility and capacity of the ionic species; 

and (3) β-naphthalenesulfonic acid (β-NSA), whose large aromatic rings are expected to 

stabilize the cation radicals and to reduce the oxidation potential of the monomer.
[18]

 The 

morphology and dimensions of the resulting PNMPy hollow microstructures are discussed 

and compared with those obtained using PPy. Finally, we examine the ability of these 

microstructures to detect morphine, a drug with well-known anaesthetic properties and, 

recently, associated to cardiovascular protective effects.
[25]

 The detection of morphine using 

PPy modified electrodes was early described by Johnson and Kriz in 1997.
[26]

 These authors 

showed that the current response of the polymer increased with the increase concentration 

of the drug. The overall of the results reported in this work suggests that the 

electrochemical generation assisted by gas templates is a successful method for the 

preparation of microstructured materials, including capsules, nanotubes and biomimetic 
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structures, which have many potential applications (e.g. drug detection, sensors, 

microreactors, mechanisms for the adsorption or immobilization of organic and inorganic 

molecules, catalysis). 

 

5.1.2 – Methods 

 

Reagents. N-methylpyrrole (NMPy) and Py were purchased from Sigma Aldrich 

Química S.A. and distilled before use. PSSA, 18 wt% in aqueous solution (Mw ∼75000) and β-

NSA (M= 208.24 g/mol) were purchased from Aldrich and used as received. CSA (M= 232.3 

g/mol) was purchased from Fluka Analytical and used as received.  

 

Equipments. Electrochemical experiments were recorded with an Autolab 

PGSTAT302N (Ecochimie, The Netherlands) potenciostat-galvanostat equipped with GPES 

and FRA software, and using a conventional three-electrode system. Electrochemical 

characterization was performed by cyclic voltammetry (CV) in the potential range of -1.00 

to 1.00 V at a scanning rate of 50 mV/s for consecutive oxidation-reduction cycles.  

FTIR-ATR spectra were obtained using a 4100 Jasco spectrophotometer equipped 

with an ATR MKII Golden Gate Heated Single Reflection Diamond Specac model. RAMAN 

spectra were recorded with a Dilor Jobin Yvon dispersive spectrometer equipped with a 

1024 diodes multichannel detector using a He/Ne laser (20 mW) with 633 nm of excitation 

wavelength. 

Optical photographs were carried out using an optical microscope Olympus BX51 

with a digital camera and software AnalSIS. Scanning electron microscopy (SEM) 

photographs were obtained using a JEOL JSM-6400 scanning electron microscope equipped 

with EDS Oxford analyzer. Tapping-mode atomic force microscopy (AFM) measurements 

were carried out with a Molecular Imaging PicoSPM using a NanoScope IIIa controller in 

ambient conditions. 

 

Electrochemical polymerization. All microstructures based on PNMPy and PPy were 

prepared by anodic polymerization using an Autolab PGSTAT 302N potenciostat-galvanostat 

equipped with the GPES software. Electrochemical experiments were conducted in three-

electrode two-compartment cells under nitrogen atmosphere (99.995% in purity). Steel AISI 
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316 sheets of 4 cm
2
 areas were employed as working (WE) and counter electrodes (CE), 

both electrodes being separated with a distance of 0.5 cm and arranged face-to-face. The 

reference electrode (RE) was Ag/AgCl (3 M KCl) electrode in all cases.  

In order to generate enough gas bubbles as templates, the solution was pre-treated 

by CV scanning before the electrochemical generation of the CPs, as was recommended in 

reference.
[12]

 The synthesis of PNMPy and PPy microstructures was performed by CV 

scanning over the potential range of 0.00-1.00 V in the case of the PSSA electrolyte, and in 

the range 0.00-0.90 V for CSA and β-NSA at a scanning rate of 20 mV/s for 2 cycles. This was 

followed by a chronoamperometry (CA) with a constant potential of 1.00 V (PSSA) or 0.90 V 

(CSA and β-NSA), the time of polymerization being 240 seconds. The electrochemical media 

were aqueous solutions of Py or NMPy monomers (0.5 M) and PSSA, CSA or β-NSA 

surfactant electrolytes (0.5 M). Experiments were performed at room temperature in all 

cases. 

 

Morphine detection. Electrochemical impedance spectroscopy (EIS) was carried out 

in a two-compartment cell with a three-electrode configuration, using an Autolab 302N 

potentiostat/galvanostat with the FRA software program. PNMPy/PSSA microstructures 

were electrogenerated (see section 2.3) on the surface of a 2 cm
2
 AISI 316 sheet (WE), an 

identical sheet of AISI 316 being used as CE. The cell was filled with 40 ml of PSSA (0.5 M) 

aqueous solution and all the measurements were performed at room temperature.  

EIS measurements were carried out in the 1 kHz – 10 mHz frequency range and 

sinusoidal voltage amplitude of ±5 mV for 70 frequencies. EIS data were plotted in terms of 

real and imaginary parts of the impedance (Z’ and –Z’’, respectively). This procedure was 

employed for the analysis of the experimental impedance spectra of PNMPy/PSSA 

microstructures, before and after the incubation of the modified WEs with morphine 

solution (30 μM) for 0 h, 3 h and 24 h. 

 

5.1.3 – Results and Discussion 

 

Synthesis of PNMPy and PPy microstructures. Initial CVs of stainless steel electrodes in 

aqueous solutions of NMPy and Py with organic acid surfactants as supporting electrolytes 

are displayed in the Figure 1. According to Shi and co-workers, the monomer/electrolyte 
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solution pretreatment produced gas bubbles from water decomposition and a very thin film 

of polymer in the working electrode (data not shown).
[9-17]

 In the subsequent 

electrochemical polymerization of NMPy monomers by CV (Figure 1a), we observe a steep 

increase of the current density at about EAg/AgCl = 0.78 V and 0.86 V in the positive going scan 

for β-NSA and CSA electrolytes, respectively. In the negative going scan a trace crossing 

occurs for NMPy at EAg/AgCl = 0.72 V and 0.84 V for β-NSA and CSA electrolytes, respectively. 

It has been suggested that trace crossing may be due to nucleation overpotential, previously 

described in many works or, alternatively, to a local increase in concentration of oligomers 

easier to oxidize (i.e. at lower electrode potentials) close to the electrode.
[27-30]

 Recently, this 

phenomenon has been also attributed to a comproportionation reaction between oligomeric 

reaction products and starting monomer molecules at the solution/metal interface.
[31]

 No 

trace crossing was obtained for NMPy/PSSA system. In spite of this, NMPy/PSSA complex 

showed better electrochemical response than β-NSA and CSA electrolytes, with two positive 

potentials at EAg/AgCl = 0.63 V and 0.90 V. This behaviour may be attributed to the fact that 

NMPy was better stabilized by a polymer with high molecular weight as electrolyte than by 

small surfactant molecules or to an overall faster reaction resulting in higher concentrations 

of reactive species migrating to the working electrode. The first potential is associated to 

polaron species initially formed at the electrode surface, their subsequently transformation 

into bipolaron species, and finally the polymerization of the latter at the WE surface. In 

contrast, the CVs obtained during electropolymerization of the Py monomer (Figure 1b) did 

not show oxidation processes associated to a polaron or bipolaron species in the employed 

potential range.
[32]

 The oxidation wave of PPy and the passivation wave of the electrode 

were too weak to be clearly identified from these curves. Py monomers usually need less 

positive potentials than NMPy for their polymerization at the stainless steel surface in 

acetonitrile or acid aqueous solutions.
[32]

 In spite of this, the PNMPy/PSSA system presented 

easier oxidation behaviour than PPy/PSSA systems. The later needs higher electrogeneration 

potential than PNMPy (Figure 1). However, we can not use more positive potentials than 

1.00 V in aqueous solutions due to the extremely high concentration of oxygen molecules 

from water electrolysis produced at EAg/AgCl = 1.00 V or EAg/AgCl = 1.23 V. Another limiting 

factor for the electropolymerization of NMPy and Py in aqueous solution was the pH of the 

surfactant solutions.  
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Figure 1 – Electropolymerization of (a) NMPy and (b) Py monomers in aqueous solutions of 

organic acid surfactants by two CV scans. PNMPy/PSSA, and PNMPy/CSA were generated from 

0.00 to 1.00 V, while NMPy/β-NSA was generated from 0.0 to 0.90 V. PPy/PSSA was generated 

from 0.00 to 1.40 V, while PPy/CSA or β-NSA were generated with the same CV parameters than 

PNMPy. Scan rate: 20 mV/s. All potentials are referred to Ag/AgCl (KCl saturated) electrode. 
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steel electrodes in surfactant aqueous solutions (i.e in the absence of the monomer) show 
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associated with the vigorous formation of hydrogen gas burbles in the anode electrode that 

migrate to the cathode electrode.
[11]

 However, PSSA electrolyte (pH = 2.50) did not show 

oxidation/reduction processes in the same conditions (data not shown). We associate this 

behaviour to the higher molecular weight of PSSA molecules, which prevent the fast H2 gas 

migration towards the WE, as occurs with β-NSA and CSA.  

Our results indicate that the CV followed by the CA produces PNMPy stable films at 

the electrode surface, i.e. not powdery deposit, and that the adhesion of the film to the WE 

depends on the chemical composition of the surfactant molecules. PNMPy presents better 

film forming properties in PSSA aqueous solutions with high thickness and weak adhesion to 

the substrate, whereas β-NSA and CSA produce lower thickness and stronger adhesion to 

the substrate. However, PPy films obtained with these two techniques were very thin 

evidencing that these system require more positive potential than PNMPy. Therefore, from 

an electrochemical point of view, PNMPy and PSSA, as organic acid surfactant, complexes 

seem to be interesting systems with low potentiostatic requirements for their generation. 

Electrochemical characterization of the PNMPy-surfactant complexes was performed 

using cyclic voltammetry control (CVC), results being displayed in the Figure 2. The oxidation 

of PNMPy/β-NSA and PNMPy/CSA films generates a significant amount of H2 gas burbles due 

to the chemical characteristics of the surfactants (i.e. low molecular weight and high 

concentration of hydrogen protons). This phenomenon increases with the number of CVC 

cycles. Furthermore, these systems do not show a well defined reversibility (Figure 2). The 

oxidation potential occur as a shoulder at EAg/AgCl = 0.63-0.70 V at a scan rate of 50 mV·s
-1

 in 

both cases, whereas the reduction potentials are observed at EAg/AgCl = -5 mV and -0.23 V for 

β-NSA and CSA, respectively. Finally, a complete loss of electroactivity is observed for both 

PNMPy/β-NSA and PNMPy/CSA complexes after 10 cycles. On the other hand, PNMPy/PSSA 

films showed high reversibility with well defined oxidation-reduction peaks at EAg/AgCl = 0.80 

V and EAg/AgCl = -0.28 V, respectively, at a scan rate of  

50 mV·s
-1

. As it can be seen, in spite of the electrochemical stability decreases from the first 

to the tenth cycle, the material is able to maintain its redox reversibility and electroactivity. 

This should be attributed to the role of the PSSA molecules as dopant and counter-ion 

incorporated and stabilized inside the PNMPy film during the electropolymerization process.  
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Figure 2 – Control voltammograms for 10 consecutive oxidation-reduction cycles of 

PNMPy/organic acid surfactants microstructures prepared using two cycles of CV and followed 

by a CA. The CV range varied from -0.70 to 1.00 V for (a) PNMPy/PSSA and (b) PNMPy/CSA; and 

from -0.40 V to 0.90 V for (c) PNMPy/β-NSA microstructures. Labels c1 and c10 refer to the 

voltammograms recorded in the first and tenth cycles, respectively. 
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Thus, PSSA surfactant shows electrocatalytic properties during the preparation of the 

PNMPy hollow microstructures, activating the NMPy monomers and lowering their oxidation 

potential. As the electrochemical properties of PNMPy/PSSA are better than those of 

PNMPy/β-NSA and PNMPy/CSA, characterization and application studies have been focused 

in the former complex. The hollow microstructures obtained with two cycles of CVs followed 

by CA techniques will be discussed in morphological characterization section.  

 

Spectroscopic characterization. The IR spectra displayed in Figure 3a show the main 

absorption bands for the NMPy monomer and the PNMPy/PSSA microstructures. It should 

be remarked that the characterization of CPs by IR spectroscopy is a difficult task compared 

to conventional and insulating polymers. Thus, the effect of polymerization and the presence 

of charges in heterocyclic rings and dopant ions cause a general broadening and overlapping 

of some absorption bands.
[33]

 In spite of this, an approach in terms of chemical groups can be 

provided. The absorbance of the aromatic C-H stretch of the Py ring (α C-H and β C-H) 

sometimes does not appear in the IR spectrum and, therefore, this band is not typically for 

C-H identification. However, in this case we observe a very weak peak at ∼3103 cm
-1

 in the 

NMPy monomer, which can be attributed to the α -hydrogen position of the aromatic ring 

(Figure 3a).
[34]

 On the other hand, the β C-H out-of-plane deformation was observed as a 

medium peak at 968 cm
-1

 while the α C-H out-of-plane deformation appeared as a very 

sharp band at 720 cm
-1

. As it was expected, the weak peak at ∼3103 cm
-1

 and the strong 

peak at 720 cm
-1

 of the α C-H groups disappear in the spectrum of the PNMPy/PSSA 

microstructure, indicating that the α positions (2- and 5- positions, alternatively) of NMPy 

ring have been successfully bonded. Additionally, the absence of the ring deformation band 

at 1510 cm
-1

 (C=C, non-conjugated diene) in the PNMPy/PSSA spectrum also reflect the 

NMPy polymerization.  

The FTIR-ATR spectrum of the oxidized material also reflects the existence of 

degradation processes affecting the polymerization of NMPy. Thus, a strong band from C=O 

carbonyl groups, which is produced by polymer oxidation, can be appreciated at 1745 cm
-1

. 

The overoxidation undergone by CPs, which has been extensively described in the literature, 

is a well known process difficult to avoid.
[35-37]
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Figure 3 – (a) FTIR-ATR spectra of the NMPy monomer freshly distilled and the PNMPy/PSSA 

hollow microstructures. (b) Raman spectra of PNMPy/PSSA and PPy/PSSA hollow 

microstructures. Exciting radiation: 632.8 nm. 

 

Analysis of the spectrum of PNMPy/PSSA microstructures allows confirm that PSSA 

was successfully incorporated into the CP as anionic dopant. In fact, the major absorption 

bands observed in the spectrum are related with the PSSA molecules. The mean peaks of 

PSSA are observed at 3030 and 2932 cm
-1

 (C-H aromatic and aliphatic stretching), 1494 and 

1454 cm
-1

 (C=C aromatic stretching), 1032 and 916 cm
-1

 (C-H in-plane and out-of-plane 

bending), and two intense absorption bands at 759 and 698 cm
-1

 (substituted benzene rings). 
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The SO3
-
 group is observed as two intense peaks at 1368 and 1218 cm

-1
 (Figure 3a), which 

correspond to the asymmetric and symmetric SO stretching vibrations, respectively.
[38]

 On 

the other hand, the C=C stretching band from the PNMPy conjugated system was observed 

as a very weak band at 1604 cm
-1

.  

Fortunately, absorption bands corresponding to non-polar or weakly polar groups 

(e.g. C=C and N-C) can be identified by RAMAN spectroscopy. The bands corresponding to 

the CP are increased by the Raman resonant effect; while the bands of the dopant molecules 

are not in resonance conditions.
[35]

 Therefore, PNMPy/PSSA and PPy/PSSA microstructures 

were characterized by Raman analysis, their spectra being displayed in Figure 3b. 

Comparison of the two spectra allows identify the absorption bands corresponding to N-CH3 

and N-H deformations at 1175 cm
-1

 and 1250 cm
-1

, respectively. Furthermore, we can 

observe strong bands at 1578 cm
-1

 (C
α
=C

β

 ring stretching), 1425 and 1327 cm
-1

 (C-N 

antisymmetrical stretching) and duplicated peaks associated to partially doped polymer 

chains in the 1200-900 cm
-1

 region. These duplicated peaks have been related with the 

bipolaron and polaron structures formed after the incorporation of the PSSA dopant into the 

CP.
[17,39-40]

 However, the peaks assigned to the C
β

-H bending vibrations at 1080-1040 cm
-1

 

and the duplicated C
β

=C
β

 ring bending at 970-925 cm
-1

 are not detected in the Raman 

spectra of the PNMPy/PSSA microstructures. This phenomenon was attributed to the noise 

of the spectrum (i.e. only a small shoulder is observed at ∼1065 cm
-1

) in previous works.
[44]

 

However, in this case we relate such disappearance with the polymer backbone 

overoxidation of the C-H (β) position in the NMPy ring, which is consistent with our previous 

observations in the FTIR spectrum.  

 

Morphological characterization. The morphology of the microstructures was studied 

by SEM and AFM. Figure 4 evidences the “doughnut”-like morphology of the hollow 

microstructures obtained when PNMPy/PSSA is prepared by CV followed by CA techniques. 

The concentration of PNMPy/PSSA microstructures can be controlled through the distance 

between the WE and the CE. Thus, abundant microstructures, which tend to collapse (Figure 

4a), are produced when the separation between the two electrodes is higher than 1.5 cm. 

Figure 4b shows some microstructures with a diameter ranging from 15 to 35 μm and hollow 

interiors with diameters of ∼15 μm. The deep and wall thickness were around 12 μm and 7-8 

μm, respectively. Figure 4b also evidences that the “doughnut”-like microstructures are well 
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adhered and incorporated on the surface of the PNMPy flat films, which present a thickness 

of ∼12 μm. However, in some cases we obtain bigger “doughnut” structures with diameter 

of ∼60 μm (Figure 4c). In contrast, individually separated “doughnuts” with an average 

diameter of 30 ± 5.0 μm are produced when the distance between WE and CE is reduced to 

0.5 cm, which is consequence of the small size of the gas bubbles formed in these 

conditions. Independently of the distance between the electrodes, the PNMPy/PSSA 

microstructures present rough walls and surface (Figure 4c). The texture of the surface has 

been characterized at the nanometric scale using AFM (Figure 4d).  

 

 

 

Figure 4 – SEM images of PNMPy/PSSA “doughnuts”-like microstructures obtained by 

electropolymerization in aqueous solution with a separation of 1.7 cm between the WE and CE: 

(a) low magnification; (b) high magnification and transversal section; (c) high magnification of an 

individual “doughnut”; and (d) AFM image of the “doughnut” surface. 

 

On the other hand, the morphologies of the PNMPy microstructures obtained using β-

NSA and CSA electrolytes were completely different to the “doughnut” displayed in Figure 4. 

As it can be seen in Figure 5a, the PNMPy microstructures produced using such two low 

molecular weight electrolytes present a brain-like morphology forming a wrinkle network 

system. According to our observations, the formation of microstructures with such 

morphology may be attributed to different factors. The first is related with the limited 
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capability of the low molecular weight surfactants to surround the gas bubble template (i.e. 

no regular spherical structure reaches the WE surface). Another hypothesis we have 

considered is that both the acidity and hydrogen gas production is higher for the β-NSA and 

CSA electrolytes than for the PSSA one (as mentioned in the synthesis section), which causes 

a larger concentration of gas molecules coalescing together at the metal surface followed by 

the polymer deposition. Finally, we should point out that the oxidizing ability of β-NSA and 

CSA is lower than PSSA, limiting the formation of the “doughnuts” in the former cases.  

 

 

 
Figure 5 – SEM images of (a) PNMPy/CSA wrinkle films after two cycles of CV in the potential 

range of 0.00-1.00 V and one CA at 1.00 V for 240s, and (b) PPy/CSA bottle structures obtained 

after seven cycles of CV in the potential range of 0.00-1.20 V. Scan rate: 20 mV/s in both cases. 
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The electrochemical techniques used to generate PNMPy/PSSA microstructures were 

not efficient to obtain PPy/organic acid electrolytes microstructures. However, PPy/CSA was 

easily obtained following the same conditions employed by Qu and co-workers (i.e. applying 

seven CV scanning in the potential range of 0.00-1.20 V and at a scan rate of 20 mV/s).
[12]

 As 

it can be seen in Figure 5b, “micro-bottles” grew from the bottom to the top, the number of 

rings being consistent with the number of CV cycles. These microstructures are randomly 

distributed in the surface of the film without following any regular apparition pattern. 

However, the PPy/CSA microstructures do not have good adhesion to the surface of the 

PNMPy membrane, being easily removed from the polymer film by ultrasonic treatment. 

This system showed better electrochemical stability than the PPy/PSSA complexes obtained 

after two CV scanning and CA. 

In summary, the overall of these results allow state that the high electrochemical 

stability observed for the PNMPy/PSSA system is due to the large surface area generated 

when regular microstructures are formed. However, characteristics like the permeability and 

the shape of these microstructures may also contribute to the improvement of the 

electrochemical stability.  

 

On the use of PNMPy/PSSA microstructures for the electrochemical detection of 

morphine. EIS was employed to investigate the interaction of morphine with PNMPy/PSSA 

electrodes immersed in a PSSA (0.5 M) aqueous solution. Figure 6 shows the Nyquist (6a) 

and Bode plots (6b) of the stainless steel coated electrodes obtained in the absence and 

presence of morphine. After initial exposure of the PNMPy film to the PSSA electrolyte, 

diffusion of water molecules and ions into the “doughnuts” (Figure 4b) and the porous of the 

film take place. Figure 6a inset show the Nyquist plot detail for high frequency time 

constant. 

The experimental EIS plots were fitted using an equivalent circuit (EC) composed of 

two time constants (Figure 6c), as reported previously in the case of a coated glassy carbon 

electrodes.
[42]

 The proposed EC is given by Rs(CPEc[Rpo(CPEdlRct)]), where Rs represents the 

ohmic resistance between the working and the reference electrodes, Rpo the pore resistance 

of the polymer layer and Rct the charge transfer resistance, whereas CPEc and CPEdl 

correspond to the capacitance of the polymer film and of the double layer, respectively.  
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Figure 6 – Nyquist (a) and Bode (b) plots showing the evolution of the impedance data, before 

and after morphine incubation, on PNMPy/PSSA “doughnuts”-like microstructures. Points 

represent the experimental data, while the full lines correspond to the fitting of such data using 

the equivalent circuit model depicted on (c). The inset in (a) corresponds to the high frequency 

in the Nyquist plot. 
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Thus, the time constants at the high and the low frequencies were related to the polymer 

layer and the interfacial layer, respectively. These time constants were affected by the 

presence of pores on the polymer layer through which the solution can reach the metallic 

surface. The capacitance was replaced by a constant phase element (CPE) that describes a 

non-ideal capacitor when the phase angle is different from –90°. The CPE impedance is 

attributed to the distributed surface reactivity, surface heterogeneity, and roughness of the 

current and potential distribution, which in turn are related to the electrode geometry and 

the electrode porosity, being expressed as ZCPE = [Q (jω)
n
]

-1
; where Q is a frequency-

independent constant, ω is the angular frequency and n values are the correlation 

coefficients for the CPE.
[43]

  

The CPE represents a capacitor for n = 1, a resistor when n= 0 and if n= 0.5, the CPE is 

associated with a diffusion process. Table 1 shows the values of the equivalent circuit 

elements obtained by fitting the experimental results. The fitting quality was judged 

according to the error percentage associated to each circuit component, showing errors 

smaller than 5%. 

 

Table 1 – Fitting parameters used to simulate the EIS data obtained for the systems studied in this work. 
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The coating capacitance (CPEc) exponent values (n) are around 0.50-0.60 for all 

samples which were ascribed to a diffusion process taking place at the [PNMPy
+
/PSS

-
] 

microstructures. The pore resistance (Rpo) are low, varying from 68.2 ohm·cm
2
 in the 

absence of morphine to 80 ohm·cm
2
 after 24 hours incubation in a solution containing 

morphine. As the CP presents interconnected conductive paths promoted by the electrolyte 

filled micropores, diffusion through the polymer film can occur at high frequencies. This 

phenomenon is consequence of the difference between the chemical potentials of the outer 

(solution side) and inner (phase boundary side between the polymer film and the steel test 

panel) regions. In addition, this behaviour is attributed to the diffusion of PSSA electrolyte in 

the polymer film. The blank control referred to the PNMPy/PSSA microstructures without 

morphine and incubated for 3 and 24 h in PSSA solutions do not show variations in the 

Nyquist plot respect to the blank control at 0 h (directly after electropolymerization) (Figure 

6a), as expected, and proving that changes observed after morphine incubation are not 

related with the displacement of PSSA molecules by morphine. 

The low frequency time constant shows a nearly capacitive behaviour with the double 

layer capacitance (CPEdl) exponent values close to 0.90. On the other hand, charge transfer 

resistance (Rct) increased from ∼25 kohm·cm
2
 in the solution without morphine to ∼100 

kohm·cm
2
 after 24 h of incubation in a morphine solution, indicating that the polymer matrix 

is saturated with morphine molecules leading to an enhanced resistance. The bode plots, 

illustrated in the Figure 6b (data for blank control at 3 h and 24 h were not plotted for better 

visualization), show a perfect correlation between the experimental data and the simulated 

curves. 

The effect of the incubation time with morphine on the overall impedance illustrates 

how fast the drug is captured by the polymer matrix, reducing the electron-transfer 

capability of the hollow microstructures-containing PNMPy/PSSA film. The mechanism of the 

morphine capture inside the PNMPy/PSSA matrix is predominantly adsorption followed by 

the occlusion inside the film. No detachment of morphine molecules was observed after 

washing repeatedly with water. 

In the mentioned circuit, the charge transfer resistance (Rct) of the electrode is the 

only circuit element that as a simple physical meaning describing how fast the rate of charge 

transfer, during morphine adsorption, changes with the time.  
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5.1.4 – Conclusions 

 

This work reports the electrochemical preparation of PNMPy/PSSA microstructures 

using gas templates. The formation of the microstructures occurs through a versatile and 

fast process, which allows modulate their dimensions, abundance and texture by controlling 

the monomer and electrolyte concentrations, the type of anionic surfactant molecules, and 

the distance between the WE and the CE. The stability of the CP film in an aqueous solution 

was improved when an appropriate surfactant counterion was used. The high 

electrochemical stability of PNMPy/PSSA systems can be attributed to the “doughnut” 

morphology of their microstructures, which present an extremely high surface area and 

good ability to release and to catch the ions molecules during the anodic and cathodic 

current charging. These characteristics also explain the interaction of this system with 

morphine molecules, as proved by EIS measurements. The electrochemical results displayed 

in this work indicate that electrodes modified PNMPy/PSSA microstructures are potential 

candidates for the development of new chemo- and bio-sensors, including drugs detectors. 
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5.2 – Response of poly(3,4-ethylenedioxythiophene) to the 

interaction with morphine 
 

 
The interaction between morphine, a very potent analgesic psychoactive drug, and 

poly(3,4-ethylenedioxythiophene) has been investigated considering different 

environments for the detection, i.e. acid (pH= 2), neutral (pH= 7) and basic (pH= 8.5 and 

12) TRIS solutions. For this purpose, conducting polymer samples were incubated in 

morphine solutions and examined by cyclic voltammetry and electrochemical spectroscopy 

impedance, results being compared with those obtained using blank samples. The sensing 

ability of poly(3,4-ethylenedioxythiophene) has been found to be maximum at pH= 2 and 7 

for incubation times of 3 h and 12 h, respectively, the anodic current density at 1.40 V 

being an excellent indicator of the interaction with morphine molecules. Moreover, 

detection measurements are reproducible after consecutive oxidation-reduction cycles 

due to the high electrostability of this conducting polymer. Scanning electron microscopy 

has been used to investigate the remarkable influence of the incubation medium, the 

oxidation-reduction processes and the absorption of morphine on the morphology of 

PEDOT. Finally, a simple portable device, which is based on the use of PEDOT electrodes 

and the optimum sensing conditions (pH= 2 and 3 h incubation), has been proposed for 

the detection of morphine.
*
 

 

*
 - Results reported in this section have been provisionally accepted for publication in Journal of Applied Polymer 

Science. 

 

 

 

5.2.1 – Introduction 

 

Because their chemical and physical properties may be tailored over a wide range of 

characteristics, the use of polymers is finding a permanent place in sophisticated electronic 

measuring devices such as sensors.
[1-5]

 Among this wide family of organic materials, 

intrinsically conducting polymers (CPs), which are π-conjugated macromolecules that show 

electrical, electrochemical and optical property changes when they are doped by some 

chemical agents, have emerged as attractive candidates for sensing elements. Thus, these 

property changes can be observed at room temperature when they are exposed to lower 

concentrations of chemical species, making CPs useful as sensors of gases, metallic ions, 

biomolecules, etc, for environmental and clinical monitoring. 
[6-17]

 

Poly(3,4-ethylenedioxythiophene) (Scheme 1), abbreviated PEDOT, and its derivatives 

were settled among the most successful CPs due to their excellent properties: high 

electrochemical and environmental stability, high conductivity, high transparency and high 

electrocompatibility.
[18-24]

 Due to these advantageous properties, PEDOT is a very promising 

material for biosensor applications, as was recently reviewed.
[25]

 We are currently interested 
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in the development of CP-based biosensors to detect narcotic drugs able to affect the road 

safety. Within this specific context, the development of advanced systems to detect 

morphine (MO), which is the principal active component in opium, is particularly interesting 

since it is frequently used in medicine to relieve severe pain of patients. The ability to drive is 

seriously affected by this extremely potent analgesic psychoactive drug, which in addition is 

toxic in excess or when abused. 

S

O O

n

PEDOT

O

N

HO

HO

CH3

MO  

 

Scheme 1 – Molecular structure of PEDOT and MO. 

 

Currently, detection of MO in clinical assays is carried out using high-performance 

liquid chromatography followed by UV spectroscopy and conventional electrochemical 

methods.
[26-28]

 Recently, the excellent properties of PEDOT were used to propose a more 

convenient method to detect MO.
[29,30]

 Specifically, a microfluidic system based on 

immobilized molecularly imprinted polymer (MIP) particles was used for the amperometric 

detection of the drug, the detection being successful with MO concentrations ranging from 

0.01 to 0.2 mM. More recently, Atta and co-workers successfully investigated the 

electrochemical determination of MO at PEDOT modified platinum electrode in presence of 

sodium dodecyl sulfate.
[31]

 In spite of the satisfactory results reported in such works, no 

other attempt to develop MO biosensors using this excellent and popular CP has been 

reported.
[29-31]

 

In this work we present a comprehensive study about the intrinsic abilities of PEDOT 

to interact with MO. According to our recent findings on complexes formed by PEDOT and 

plasmid DNA, this CP is able to form weak specific interactions protecting nucleotide 

fragment with well-defined sequences from the attack of restriction enzymes.
[31,32]

 This 

ability to form weak specific interactions is expected to play also an essential role in the 

detection of MO, which also contain groups able to act as hydrogen bonding donors (Scheme 
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1). Specifically, this study examines the detection of MO with PEDOT films deposited on 

platinum (Pt) electrodes using cyclic voltammetry (CV) and electrochemical impedance 

spectroscopy (EIS), and considering different pHs and incubation times. 

 

5.2.2 – Methods 

 

Materials.  3,4-ethylenedioxythiophene (EDOT) monomer and acetonitrile, both of 

analytical reagent grade, were purchased from Aldrich and used as received. Anhydrous 

LiClO4, analytical reagent grade from Aldrich, was stored in an oven at 80 ˚C before use in 

the electrochemical trials. MO solution also was purchased from Aldrich, and used as 

received. TRIS buffer solutions, purchased from Aldrich, were adjusted to different pH 

values:  pH=2 and 7 with HCl (purchased from Panreac), and pH=8.5 and 12 with NaOH 

(purchased from Panreac). 

 

Preparation. PEDOT films were prepared by chronoamperometry (CA) under a 

constant potential of 1.40 V using polymerization times of θ= 900 s and θ= 300 s for CV and 

EIS studies, respectively. Anodic electropolymerization and electrochemical experiments 

were performed on a VersaStat II potenciostat-galvanostat using a three-electrode two-

compartment cell under nitrogen atmosphere at 25 ˚C. The anodic compartment was filled 

with 40 mL of a 10 mM monomer solution in acetonitrile containing 0.1 M LiClO4 as 

supporting electrolyte, while the cathodic compartment contained 10 mL of the same 

electrolyte solution. Pt and steel AISI 316 sheets of 1 cm
2
 area were employed as working 

electrodes for CV and EIS experiments, respectively, whereas counter electrodes were made 

of steel AISI 316 in all cases. The reference electrode was an Ag|AgCl electrode containing a 

KCl saturated aqueous solution. 

 

Electrochemical behavior. The ability to store charge (electroactivity) and 

electrochemical stability upon consecutive oxidation-reduction cycles (electrostability) of the 

films studied in this work were determined by CV using TRIS buffer solutions adjusted to pH 

= 2, 7, 8.5 and 12. The initial and final potentials were -0.50 V, while a reversal potential of 

1.40 V was considered. The electroactivity increases with the similarity between the anodic 

and cathodic areas of the first control voltammogram, whereas the electrostability 

decreases with the oxidation and reduction areas of consecutive control voltammograms. 
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Accordingly, electroactivity and electrostability were determined through direct measure of 

the anodic and cathodic areas in the control voltammagrams using the Power Suite 

Princenton Applied Research software. A scan rate of 100 mV·s
-1

 was used in all cases. Cyclic 

voltammograms were recorded for PEDOT films deposited on Pt that were previously 

immersed at room temperature in TRIS buffer solutions at pH= 2, 7, 8.5 and 12 during 3 h, 12 

h and 24 h (blank samples), and for PEDOT films deposited on Pt that were incubated at 

room temperature during 3, 12 and 24 h in 3.5 mM MO TRIS buffer solutions at pH= 2, 7, 8.5 

and 12 (incubated samples). 

EIS studies were carried out on an Autolab 302N potenciostat-galvanostat with GPES 

and FRA software programs (Eco Chimie, Netherlands) using a three-electrode compartment 

cell. The cell was filled with 45 mL of TRIS buffer solution at the desired pH values (pH= 2, 7, 

8.5 and 12). Blank or incubated PEDOT films coating steel AISI 316 sheets were used as 

working electrodes. EIS measurements were carried out in the frequency range 1-10000 Hz 

using ±0.05 V amplitude sinusoidal voltage for 70 frequencies at room temperature. The 

electrochemical cell was represented using a Randles circuit. The data obtained following the 

EIS experiments have been represented as a Nyquist plot. The expression for impedance (Z) 

is composed of real (Zre) and imaginary (Zim) parts. The imaginary part is due to capacitative 

effects of the alternating current frequency and the real part is due to resistance. The 

Nyquist graphic, in which Zre is plotted on the X axis and the negative of Zim on the Y-axis, for 

a bare electrode shows a semicircular region at higher frequencies on the Zre axis followed 

by a straight line. 

 

Morphological characterization. The morphology of the blank and incubated PEDOT 

samples was examined using scanning electron microscopy (SEM). Images were analyzed 

using a Focused Ion Beam Zeiss Neon40 scanning electron microscope at 3 kV. 

 

5.2.3 – Results and Discussion 

 

The interaction between the CP and MO was examined by CV considering incubation 

times of 3 h, 12 h and 24 h and pH values of 2, 7, 8.5 and 12. Comparison of the control 

voltammograms of the blank and incubated PEDOT samples with those of uncoated Pt is 

provided in Figure 1. It is worth noting that the electrochemical responses of the incubated 
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samples were different from those obtained for the blank ones in all cases with exception of 

pH=12, for which the electrochemical response was very weak in all cases. Due to this 

feature, the latter medium was discarded for subsequent MO detection studies.  
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Figure 1 – Control voltammograms for the oxidation of 3 h, 12 h and 24 h incubated PEDOT 

samples and the corresponding blank ones. The voltammogram recorded for the uncoated Pt 

electrode has been included for comparison. Voltammograms were recorded in TRIS solutions at 

pH= 2, 7, 8.5 and 12. Initial and final potentials: -0.50 V; reversal potential: 1.40 V; scan rate: 100 

mV·s
-1

. 

 

Furthermore, the response of PEDOT changes with both the incubation time and the 

pH. Control voltammograms displayed in Figure 1 indicate that the anodic current density 

increases from 1.00 V, reaching the maximum value (jmax) at the reversal potential, 1.40 V, in 

all cases. The larger jmax values were obtained at pH= 2 and 7 for incubation times of 3 h and 

12 h, respectively. These jmax values are 45.3 mA·cm
-2 

(pH= 2, 3 h) and 45.9 mA·cm
-2

 (pH= 7, 

12 h), different incubation times at the same pHs providing significantly lower values (e.g. at 

pH= 7, jmax=35.0 and 28.7 mA·cm
-2

 for incubation times of 3 h and 24 h, respectively). It 

should be noted that jmax decreases significantly at basic pHs, the largest value at pH= 8.5 
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being 36.1 mA·cm
-2

 (3 h). On the other hand, it should be remarked that the cyclic 

voltammogram obtained at pH= 7 for the 12 h incubated sample is the only with an 

oxidation shoulder, Ep
a
= 1.02 V, indicating that such conditions considerably favour the 

interaction of the MO molecules with the PEDOT film. 

The electroactivity (∆Q) consists on the reversible ability to store charge, being 

directly related with the anodic intensity values obtained for the different anodic scanning 

potentials. This property has been determined by measuring the area of the voltammograms 

displayed in Figure 1. Results indicate that the ∆Q values of samples incubated at pH= 2 and 

7 are significantly larger than that of the blank samples, which is fully consistent with the 

observed jmax values. At pH=2, the ability to store charge of the 3 h, 12 h and 24 h incubated 

samples is 57%, 28% and 22 %, respectively, larger than that of the corresponding blank 

samples. The increase of ∆Q detected at pH= 7 is maximum for the 12 h incubated sample 

(i.e. ∼87%). Amazingly, the ∆Q of blank PEDOT is 90% higher at pH= 8.5 than at pH= 2 and 7, 

whereas in opposition the incubated samples show the lowest ∆Q at such basic pH. Indeed, 

the only significant enhancement of ∆Q at pH= 8.5 occurs for the 3h sample (27%), the 

difference being lower than 10% for the 12 h and 24 h incubated samples. This fact suggests 

that the basic pH is not the most appropriated for the MO detection. 

The electrochemical stability of CPs, also denoted electrostability, quantifies how the 

ability to store charge of the material decreases upon consecutive oxidation-reduction 

cycles. This property, which is essential for technological applications related with 

electronics, allows to measure how repetitive is the measure of an electrochemical 

parameter for the detection of MO without detriment in the intensity of the signal. Within 

this context, it should be mentioned that PEDOT is among the more, if not the most, 

electrostable polythiophene derivatives.
[18-23]

 Figure 2 shows the control voltammograms 

recorded after 10 consecutive oxidation-reduction cycles for samples at pH= 2 and pH= 7. 

Comparison with Figure 1 indicates that the ability to store charge of the incubated and 

blank samples is considerably preserved, especially in acid conditions, evidencing the 

usefulness of this CP for the fabrication of efficient MO detectors. 
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Figure 2 – Control voltammograms for the oxidation 3 h, 12 h and 24 h incubated PEDOT 

samples and the corresponding blank ones after 10 consecutive oxidation-reduction cycles. The 

voltammogram recorded for the uncoated Pt electrode has been included for comparison. 

Voltammograms were recorded in TRIS buffer solutions at pH= 2 and 7. Initial and final 

potentials: -0.50 V; reversal potential: 1.40 V; scan rate: 100 mV·s
-1

. 

 

Figure 3 compares the SEM micrographs of the 24 h incubated samples at pH= 2, 7 

and 8.5 with the corresponding blank samples. The globular morphology obtained for the 

blank sample at pH= 2, which is very similar to that reported for PEDOT produced in other 

organic media (e.g. acetonitrile solution), indicates that the TRIS buffer solution does not 

affect significantly the surface of the film in such conditions.
[33]

 Thus, the SEM image of the 

blank film at pH= 2 reflects a porous structure formed by a dense network of thin fiber-like 

morphologies connecting small clusters of aggregated molecules that are located at very 

different levels. In spite of this, it should be noted the occasional apparition of small regions 

covered by a compact coating, which has been attributed to the deposition of small 
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molecules. In contrast, blank samples at pH= 7 and 8.5 are completely covered by such 

compact coating, evidencing the significant impact of neutral and basic pHs. Inspection to 

the morphology of the incubated samples indicates that the MO inhibits considerably the 

influence of the pH. Thus, incubated films retain the globular and porous morphology 

typically reported for PEDOT.
[33]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 – SEM micrographs of the blank and 24 h incubated samples at pH= 2, 7 and 8.5. 

 

Figure 4 shows SEM micrographs of the 24 h incubated and blank samples at pH= 2, 7 

and 8.5 after 15 consecutive oxidation-reduction cycles. As it can be seen, the morphology of 

all samples underwent drastic changes due to the degradation at the surface. The globular 

and porous morphology transform into a compact and relatively flat surface, the fiber-like 

structures that connect the molecular aggregates disappearing in all cases. This behaviour is 
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fully consistent with the reduction of electroactivity upon consecutive oxidation-reduction 

processes. Furthermore, in this case morphological changes at the surface of PEDOT films 

are accentuated by presence of MO in the incubation media, especially at pH= 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 – SEM micrographs of the blank and 24 h incubated samples at pH= 2, 7 and 8.5, after 

15 consecutive oxidation-reduction cycles. 

 

Electrochemical impedance spectroscopy (EIS) is an effective analytical method for 

detection since it is very sensible to the interfacial response of surface modified electrodes 

by applying periodic small amplitude signals. In this case, the adsorption or desorption of 

insulating MO on the conductive supports can be assayed due to the change of the 

interfacial electron transfer features at the electrode surface.
[34]

 In the last years, EIS has 

been used for the determination of DNA, proteins, small drugs, etc. offering important 
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information about the electrode interfacial properties such as electronic transport resistance 

and double layer capacitance.
[35-37]

 Figure 5 displays the Nyquist plot recorded for the 

isolated and incubated PEDOT samples. The polymer resistance (RP) and the double-layer 

capacitance (CDL) obtained by fitting the Nyquist graphic to a Randles circuit are displayed in 

Table 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 – Impedance plots obtained for incubated (3, 12 and 24 h) and blank PEDOT samples at 

pH= 2, 7 and 8.5. 
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Table 1 – Polymer resistance (RP) and double-layer capacitance (CDL) obtained by fitting the 

Nyquist graphics displayed in Figure 5 to a Randles circuit. 

 

 

EIS spectra of blank PEDOT samples included a semicircle part and a linear part. The 

semicircle part corresponds to the electron transfer process while the linear part arises from 

the diffusion process. The semicircular portion of the graphs indicates the impedance due to 

both the kinetics processes produced by imperfections at the coated electrode surface and 

the resistance provided by the modified polymer, i.e. the semicircular region is expected to 

be sensible to the presence or absence of adsorbed MO molecules. In the Randles circuit, RP 

corresponds to the diameter of the semicircle. The value of RP of blank samples was found to 

vary between 7.89 (pH= 2) and 12.51 Ω/cm
2
 (pH= 8.5). 

MO produces drastic changes in the EIS spectra of the incubated samples, which 

depend not only on the pH but also on the incubation time. Thus, Rp increases in all cases, 

the largest ∆Rp values being measured after 12h of incubation for all the investigated pHs. 

The % ∆Rp range of variation for the 3, 12 and 24 h incubated samples ranges from 12% (pH= 

2) to 111% (pH= 7), from 76% (pH= 2) to 308% (pH=7) and from 27% (pH= 2) to 140% 

(pH=8.5), respectively. Although the variation produced by the adsorbed MO in the 

resistance of the polymer is considerable in all cases, it is particularly remarkable when the 

incubation time is 12 h. 
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The dependence of both the CV and EIS results on the incubation time suggests that 

the interaction between PEDOT and MO is through weak non-covalent interactions. Thus, 

the electrochemical response of the 24 h incubated samples is, independently of the pH 

lower, than those obtained using smaller incubation times, which indicates that the 

adsorbed MO molecules are partially delivered from the PEDOT surface to the incubation 

medium after 12 h. This feature probes the non-covalent nature of the interactions that 

immobilize the MO molecules, which are broken because of the degradation of the polymer 

surface. This is fully consistent with our recent results on complexes formed by CPs and 

plasmid DNA. Thus, we detect the formation of specific weak interactions with CP bearing 

groups able to from hydrogen bonds (e.g. PEDOT).
[32,38,39]

 

Although both CV and EIS have been found to be very efficient techniques for the 

detection of MO using PEDOT modified electrodes, the latter presents a practical difficulty 

since it requires a potentiostat with specific accessories. In contrast, the simplicity of the 

equipments used for CV measurements combined with the effect of MO on the anodic 

density at 1.40 V, especially for 3h (pH= 2) and 12h (pH= 7) incubated samples, can be used 

to propose a simple analytical procedure for the detection of this psychoactive drug in the 

human body. Within this context, detection at pH=2 is clearly more desirable than at pH=7 

since the former acid environment requires the lowest incubation time and minimizes the 

degradation produced by the TRIS solution on the PEDOT surface. Considering such 

conditions (i.e. pH= 2 and 3 h incubation time), detection of MO could be carried out by 

individual measurements of the anodic intensity at a potential of 1.40 V, the complete 

scanning of potentials used in control voltammograms being not necessary. On the basis of 

these results, we propose a simple detection device, which is schematically displayed in 

Figure 6, based on a simple portable potentiostat as well as disposable and interchangeable 

electrodes (i.e. two small (1 cm
2
) electrodes: the working electrode made of a Pt sheet 

modified with PEDOT and the counter electrode made of uncoated steel). 
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Figure 6 – Device proposed for the detection of MO. WE and CE refer to the working and 

counter electrodes, respectively. 

 

5.2.4 – Conclusions 

 

CV assays in TRIS solutions clearly indicate that the electrochemical response of the 

incubated and blank PEDOT samples is very different at acid and neutral pHs. Cyclic 

voltammgrams indicate that the interaction between this CP and the MO molecules can be 

easily identified by comparing the jmax values measured at 1.40 V. Although the jmax obtained 

for the incubated sample is significantly larger than that of the blank one in all cases, the 

maximum difference is observed for incubation times of 3 h (pH= 2) and 12 h (pH= 7). 

Furthermore, the incorporation of MO to the incubation medium also produces a significant 

enhancement in the electroactivity of PEDOT, indicating that the ability to store charge of 

the incubated samples is larger than the blank ones. The maximum increment was detected 
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for incubation times of 3 h (pH= 2) and 12 h (pH= 7), which is fully consistent with the effect 

on MO on jmax. The effect of consecutive oxidation-reduction cycles in jmax is relatively small, 

which should be attributed to the high electrostability of PEDOT. This feature ensures that 

measures provided by a detection device based on the electrochemical response of 

incubated PEDOT will be reproducible. 

Comparison of the SEM micrographs obtained for blank and incubated samples 

indicates that the influence of the medium on the morphology of PEDOT, which is very 

significant at neutral and basic pHs, is inhibited by MO. Thus, independently of both the pH 

and the incubation time, the morphology of incubated samples is very similar to that 

typically observed for this conducting polymer. However, this protective role disappears 

when samples undergo consecutive oxidation-reduction cycles, which produce a 

considerable degradation of the conducting polymer surface in all cases. 

On the other hand, EIS measurements on blank and incubated PEDOT samples 

evidenced the large effect produced by the adsorbed MO molecules in the resistance of the 

polymer. This feature was found to be particularly remarkable when the incubation time is 

12 h. The fact that the electrochemical response of the 24 h incubated samples is in all cases 

smaller than that of the 12 h ones indicates that the adsorbed MO are delivered to the 

incubation medium when the medium degrades the PEDOT surface. This suggests that the 

MO molecules and the PEDOT surface interact through relatively weak non-covalent forces.  

Finally, a simple detection device for the identification of small concentrations of MO 

has been proposed. This is based on the use of a portable potentiostat, a working Pt 

electrode coated with PEDOT and an uncoated counter electrode. The proposed device is 

expected to detect small concentrations of MO by performing reproducible measurements 

of the anodic intensity at 1.40 V of samples incubated 3 h in acid TRIS solution. 
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6.1 – Conducting polymer-protein composite with antibactericidal 

and electroactive properties 
 

 
Lysozyme, an enzyme with bactericidal activity over Gram-positive bacteria cells, has been 

incorporated in poly(3,4-ethylenedioxythiophene), a conducting polymer with many 

potential applications in electronics and nanotechnology, for the preparation of films with 

high bio- and electrochemical activity. For this purpose, two different strategies have been 

used. In the first one, poly(3,4-ethylenedioxythiophene) films were coated with a layer of 

enzyme, which was adsorbed on the surface, whereas in the second one the lysozyme was 

added in the polymerization medium used to prepare the conducting polymer. The 

enzyme adsorbed in the surface of the polymer produced a biphasic system that retains 

the electrochemical properties of the conducting polymer but practically unable to protect 

against bacterial growth. This latter drawback is due to the rapid release of the enzyme to 

physiological medium. In opposition, the addition of lysozyme to the polymerization 

medium results in a homogeneous composite in which the enzyme is entrapped within the 

material matrix. The new composite shows a very high bactericidal activity as well as a 

relatively high electrochemical activity, even though the latter is smaller than that 

observed for the unmodified conducting polymer. Moreover, incubation of the new 

homogeneous material in physiological conditions reflects a progressive, slow and 

controlled release of the enzyme.
*
 

 

*
 - Results reported in this section have been submitted for publication. 

 

 

 

6.1.1 – Introduction 

 

CPs have electrical and optical properties similar to those of metallic and inorganic 

semiconductors, and also exhibit some properties typically associated with conventional 

polymers.
[1-3]

 Among CPs poly(3,4-ethylenedioxythiophene), hereafter abbreviated PEDOT, 

has emerged as a promising material in different fields, such as electronics and 

nanotechnology.
[4-7]

 This polythiophene derivative presents high conductivity (up to 500 

S/cm), good thermal and chemical stability, fast doping-dedoping processes and excellent 

electrochemical properties in terms of electroactivity and electrostability.
[4-7]

 

Although the interaction of common CPs (i.e. polyaniline and, specially, polypyrrole 

derivatives) with selected bioentitites, such as amino acids, proteins, DNA and living cells, 

has been extensively studied, it has been only quite recently that polythiophene derivatives 

have been explored as materials with promising biotechnological and/or biomedical 

applications.
[8-33]

 Within these exciting fields, PEDOT has been used to: recognize specific 

nucleotide sequences; interact with epithelial, fibroblasts and neuronal cells favoring their 
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adhesion and proliferation; prepare bifunctional films with high bio- and electrochemical 

activities through the incorporation of collagen, which is one of the known constituents of 

the extracellular matrix of neurons; construct functionalized devices for protein detection; 

etc.
[12-33]

 

The quest to interact more efficiently with biosystems, to obtain information related 

to system performance, to control that performance and to develop new biomedical 

applications based on CPs remain an essential area of research. In this work we report the 

interaction of PEDOT with lysozyme (also known as muramidase or N-acetylmuramide 

glycanhydrolase), an enzyme (EC 3.2.1.17) with bactericidal activity, especially over Gram-

positive bacteria cells. This enzyme (129 aminoacids), which is non-specific, produces 

damage on bacterial cells walls by catalyzing the hydrolysis of the glycosidic bonds between 

N-acetylmuramic acid and N-acetylglucosamine residues in peptidoglycan. Its catalytic 

activity provides some protection against bacterial infections. Thus, the lytic activity on the 

cell wall of a broad spectrum of Gram-positive micro-organisms led to use lysozyme in 

alimentary, as a preservative of many food products (e.g. wine and cheese), and in 

pharmaceutical applications related with otorhinolaryngology (e.g. treatment of sore 

throats and of canker sores), and in ophthalmology (e.g. eye drop and solutions for the 

decontamination of contact lenses).
[34-36]

 

In this work we use lysozyme to protect PEDOT films from infection of bacterial 

micro-organisms. It should be emphasized that PEDOT has been reported to be an efficient 

electroactive substrate for the adhesion and growing of eukaryotic cells.
[26,28]

 Accordingly, 

the development of PEDOT films with bactericidal activity is expected to be of great 

importance in fields like biotechnology and bioengineering, in which PEDOT has many 

potential applications (e.g. tissue regeneration, components of orthopedic devices, and 

implantable neural and cochlear electrodes). Two different strategies have been used: (i) 

adsorption of lysozyme on the surface of PEDOT substrates, hereafter denoted PEDOT/LZ; 

and (ii) anodic electro-copolymerization considering a solution containing both the 3,4-

ethylenedioxythiophene (EDOT) monomer and lysozyme, the resulting material being called 

P(EDOT-LZ). It should be emphasized that P(EDOT-LZ) is a new hybrid material in which the 

two constituents are homogenously distributed, whereas the binding between the CP and 

the enzyme is physical in PEDOT/LZ. The morphology, secondary structure and stability of 

the enzyme, and electroactivity of both PEDOT/LZ and P(EDOT-LZ) have been examined and 
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compared. Results indicate that P(EDOT-LZ) should be considered as a new bifunctional 

material with bactericidal and electrochemical activities. 

 

6.1.2 – Methods 

 

Materials. EDOT monomer was purchased from Aldrich and used as received. 

Anhydrous LiClO4 from Aldrich, analytical reagent grade, was stored in an oven at 80 ˚C 

before use in the electrochemical trials. Lysozyme (chicken egg white) was obtained from 

Sigma and used as received. 

 

Synthesis of PEDOT. The CP was prepared by chronoamperometry (CA) under a 

constant potential of 1.40 V using a polymerization time of 600 s. Both anodic 

electropolymerization and electrochemical experiments were performed on a VersaStat II 

potenciostat-galvanostat using a three-electrode two-compartment cell under nitrogen 

atmosphere (99.995% in purity) at 25 ˚C. The anodic compartment was filled with 40 mL of 

a 0.01 M monomer solution in acetonitrile containing 0.1 M LiClO4 as supporting 

electrolyte, while the cathodic compartment contained 10 mL of the same electrolyte 

solution. Steel AISI 316 sheets of 1 cm
2
 area were employed as working and counter 

electrodes. In order to avoid interferences during the electrochemical analyses, the working 

and counter electrodes were cleaned with acetone before each trial. The reference 

electrode was an Ag|AgCl electrode containing a KCl saturated aqueous solution (E
o
 = 0.222 

V vs. standard hydrogen electrode at 25 ˚C), which was connected to the working 

compartment through a salt bridge containing the electrolyte solution. 

 

Preparation of PEDOT/LZ: Adsorption of lysozyme on PEDOT films. An aliquot of 40 μL 

of lysozyme in solution (1.0 μg/μL) was superficially adsorbed on PEDOT substrates. After 

drying in a vacuum oven, PEDOT/LZ films were stored at 4 ˚C. 

 

Synthesis of P(EDOT-LZ). This new hybrid material was generated by CA using a 

constant potential of 1.40 V and a polymerization time of 600 s. An acetonitrile solution (10 

mL) containing 0.01 M of EDOT monomer and 0.1 M of LiClO4 was added to 40 mL of milliQ 

water solution containing 2 mL of lysozyme (250 mg/mL). The electrochemical process, the 
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potencisotant-galvanostat and the electrodes used for the preparation of P(EDOT-LZ) were 

identical to those employed for the synthesis of PEDOT. 

 

Scanning electron microscopy (SEM) and elemental analyses. SEM studies were 

carried out using a Focussed Ion Beam Zeiss Neon 40 scanning electron microscopy 

equipped with an energy dispersive X-ray (EDX) spectroscopy system, which was used for 

the elemental analyses of the prepared materials, and operating at 10 kV. 

 

Electrochemical characterization. The electrochemical behaviour of PEDOT, 

PEDOT/LZ and P(EDOT-LZ) films were studied by cyclic voltammetry (CV). Cyclic 

voltammograms were registered at a scan rate of 100mV·s
-1

 in the potential range from -

0.50 to +1.60 V. For these measurements, films were incubated at 37 ˚C in 10 mL of a 

sterilized phosphate buffer saline solution (PBS; pH= 7.4 adjusted with NaOH), which was 

also used as electrolyte in the three-electrode cell. Incubated samples during 28 days were 

retrieved and dried at intervals of 2 days for electrochemical analysis. PBS was prepared 

using 137 mM of NaCl (Pharmasal), 2.7 mM of KCl (Merk), 10 mM of Na2HPO4 (Fluka), 2 mM 

of KH2PO4 (Aldrich) and milliQ water. 

 

Electrophoresis. The structural stability of the immobilized lysozyme into the surface 

(PEDOT/LZ samples) or matrix (P(EDOT-LZ) samples) of the CP was examined using dodecyl 

sulphate polyacrylamide gel electrophoresis, abbreviated SDS-PAGE. Native enzyme (free-

state) and molecular weight markers were used as controls. Lysozyme was extracted from 

films using 0.2 mL Tris-HCl (0.06 mM, pH 6.8), dodecyl sulphate polyacrylamide (1% w/v) 

and β-mercaptoethanol (0.05% v/v). Samples were kept overnight in a shaker at 200 rpm 

and constant temperature of 27 ˚C. The resulting suspensions were heated for 10 minutes 

at 96 ˚C and centrifuged for 10 minutes at 13000 rpm. The supernatants were precipitated 

using cold acetone (6 vol acetone:1 vol sample) and, subsequently, recovered by 

centrifugation. After drying in vacuum, they were re-suspended in 50 μL of loading buffer 

for SDS-PAGE. 

The lysozyme content of the extracted solution was determined by a UV-Vis 

spectrophotometer based on the method of Bradford, in which the concentration was 

obtained using a standard curve from known concentrations of lysozyme solutions.
[37]
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FTIR spectroscopy. FTIR spectra of lysozyme, PEDOT, PEDOT/LZ and P(EDOT-LZ) were 

recorded on a FTIR 4100 Jasco spectrophotometer. The samples were placed in an 

attenuated total reflection accessory with thermal control and a diamond crystal (Specac 

model MKII Golden Gate Heated Single Reflection Diamond ATR). 

FTIR spectroscopy was used to examine the secondary structure of lysozyme. 

Specifically, the number and position of the peaks in the Amide I region, which were 

derived from the second derivative and deconvoluted spectra, provided information about 

the protein conformation. Fourier self-deconvolution was performed with the software 

PeakFit 4 (Jandel Scientific Software, AISN Software Inc.), the resulting profiles being fitted 

to Gaussian functions through the OriginPro 7.5 software.
[38]

 

 

Bacterial growth and adhesion. The bacterial strains used in this work were 

Escherichia coli CECT 101 and Staphylococcus epidermidis CECT 231 from the Spanish 

Collection of Type Culture (CECT, Valencia, Spain). Bacteria were grown aerobically to 

exponential phase in broth culture (5 g/L beef extract, 5 g/L NaCl, 10 g/L peptone, pH 7.2 in 

distilled water). Bacterial growth was determined by measuring the absorbance at 600 nm 

with a UV/VIS Cary 100Bio spectrophotometer (Varian, Australia). 

Growth experiments were performed in culture tubes of 15 mL. 10
3
 colony forming 

units (CFU) were seed in 5 mL of broth culture in presence of the materials prepared in this 

work. Cultures were incubated at 37 ˚C with 100 rpm agitation. After incubation for 24 and 

48 h, a 100 μL aliquot was diluted 10 times in distilled water, and the absorbance at 600 nm 

measured. The bacterial number was counted using a McFarland curve. 

Adhesion experiments were carried out using seeds of 10
7
-10

8
 CFU in 5 mL of broth 

culture in the presence of investigated materials. Cultures were incubated at 37 ˚C with 100 

rpm agitation. After incubation, cultures were aspired and the material washed one time 

using distilled water. Next, 1 mL of sterile 0.01M sodium thiosulfate was added and 

vortexes for 2 min. After this, samples were maintained 30 min in repose to remove the 

bacteria. Finally, 4 mL of broth culture was added and the tubes were incubated for 24 h at 

37 ˚C and 100 rpm agitation. The bacterial growth was measured by absorbance at 600 nm 

allowing count the bacteria adhered on the surface of investigated materials.  

All assays were performed in triplicate and results were obtained as the mean ± SD. 

The t-student test was used as statistical analysis at a confidence level of 95% (p < 0.05). 
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Enzymatic activity. The activity of the immobilized lysozyme was determined using a 

standard procedure.
[39]

 Micrococcus luteus CECT 245 was selected as the substrate to 

determine the catalytic activity of lysozyme by examining the degradation rate of the 

peptidoglycan at the cells walls. The substrate was introduced and, subsequently, dispersed 

in a cuvette with TM buffer, i.e. 10 mM Tris (pH 6.5) and 5 mM MgCl2. The prepared 

suspension was monitored by UV-Vis spectroscopy to determine the degradation rate of 

the Micrococcus walls through the variation in the absorbance. The suspension was ready 

for examination of the enzymatic activity when the absorbance stabilizes at 450 nm. After 

this, free lysozyme (dissolved in TM buffer), PEDOT/LZ, P(EDOT-LZ) and PEDOT were 

introduced in the Micrococcus suspension and the variation of the absorbance at 450 nm 

was recorded every 5 minutes. 

Experiments were repeated three times for every system, the average curve being 

used for mathematical analysis. The decay of the enzymatic activity against time was 

adjusted to a first order model, ANOVA and χ
2
 tests being used to evaluate the reliability of 

such kinetic model.  

 

6.1.3 – Results and Discussion 

 

Identification of the lysozyme and morphology of the PEDOT/LZ and P(EDOT-LZ) 

samples.  

Table 1 lists the C, O, S, N and Cl elemental composition in the surface of PEDOT, 

PEDOT/LZ and P(EDOT-LZ) obtained using EDX analysis, the penetration of this technique 

being limited to ∼20 nm. The presence of nitrogen in PEDOT/LZ confirms that the PEDOT film 

is coated by the adsorbed enzyme. In contrast, the absence of nitrogen and the reduction of 

sulfur in P(EDOT-LZ) suggest that the enzyme is entrapped within the matrix forming a 

homogenous composite with the CP. 
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Table 1 – EDX analysis of the PEDOT, PEDOT/LZ and P(EDOT-LZ). The average (five samplings) 

content of C, O, S, N and Cl (in wt. %) and the corresponding standard deviation is listed for each 

case. 

 

 

Figures 1 and 2 show low- and high-resolution SEM images, respectively, comparing 

the morphologies of PEDOT, PEDOT/LZ and P(EDOT-LZ).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Low resolution SEM images of (a) PEDOT, (b) PEDOT/LZ and (c) P(EDOT-LZ). 
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PEDOT films show a porous and spongy morphology in which irregular clusters of molecular 

aggregates connected by thin elements with a fiber-like morphology are uniformly 

distributed on the surface (Figure 1a and 2a).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 – High resolution SEM images of (a) PEDOT, (b) PEDOT/LZ and (c) P(EDOT-LZ). 

 

The adsorption of the enzyme on the surface of PEDOT films results in a ultrathin uniform 

coating, which is clearly identified in Figures 1b and 2b, without produce significant 

alterations in the morphology of the CP. Thus, the CP remains below the enzyme coating in a 

separated phase that can be clearly distinguished, this feature being particularly evident for 

the protuberances associated to the clusters of PEDOT aggregates. The only relation 

between the two constituents is the physical contact at the interface between the PEDOT 

and lysozyme films. 
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In contrast, inspection to the P(EDOT-LZ) surface (Figures 1c and 2c) reveals significant 

changes with respect to PEDOT. The participation of the enzyme in the anodic 

polymerization process produces a material with a compact and irregular surface. Thus, the 

spongy appearance of PEDOT in the surface transforms into a smooth-like surface with 

protuberance formed by the dense aggregation of compact elements. This produces a 

reduction of the porosity found for the CP (Figure 2a). Furthermore, Figure 2c clearly shows 

that the enzyme and the CP form a single phase suggesting that P(EDOT-LZ) film is formed by 

a homogeneous composite. In order to ascertain, if this homogeneity is located in the 

surface only or distributed through the whole sample, the P(EDOT-LZ) film was carefully 

separated from the electrode to examine the morphology of the internal side. Inspection of 

low and high resolution micrographs, which are displayed in Figure 3, reveals the same 

structure for the whole sample. This allows one to conclude that P(EDOT-LZ) is a new 

material, in which the enzyme is entrapped in the matrix giving place to a uniformly 

distributed  composite.  

200 nm

(a)

(b)

1 µm External side

External
side

Internal side

Internal side

Steel electrode

Steel electrode

 

Figure 3 – Low resolution (a) and high resolution (b) images of P(EDOT-LZ) showing the 

morphology of both the internal and external sides of the film. 
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Structure of the enzyme. Figure 4 shows the FTIR spectra of lysozyme (free state), 

PEDOT, PEDOT/LZ and P(EDOT-LZ) in the 1700-1400 cm
-1

 range. This interval corresponds to 

the amide I and II bands that has been used to identify the conformational changes of 

lysozyme in the two latter systems with respect to the free state.  
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Figure 4 – FTIR spectra, in the range 1700-1400 cm
-1

, of lysozyme (free state), PEDOT, PEDOT/LZ 

and P(EDOT-LZ) at room temperature. 

 

The amide I band (1700-1600 cm
-1

) arises primarily from the C=O stretching vibration of the 

peptide linkages that constitute the backbone structure of proteins and is well-known to be 

sensitive to the conformational changes.
[40-42]

 The amide II band (1600-1480 cm
-1

) is assigned 

to the coupling of the N-H in-plane bending and C-N stretching modes of peptide linkages 

and is less useful in protein structural analysis.
[42]

 For lysozyme, these vibrations correspond 

the two strong bands centered near 1640 (amide I) and 1526 cm
-1

 (amide II). These values 

are slightly lower than those reported in the literature, which are around 1656 and 1540 cm
-

1
, respectively.

[43,44]
 The amide I bands around 1650-1656 and 1620-1630 cm

-1
 are assigned 

to α-helix motifs and the intermolecular β-sheet aggregations, respectively, while the bands 
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around 1670-1685 cm
-1

 are typically associated to the β-turn structure.
[44-46] 

For PEDOT, the 

bands in the investigated region are due to the C-C and C=C stretching modes of the 

thiophene ring, as was previously reported.
[47,48] 

The FTIR spectrum of PEDTOT/LZ shows the amide I and II bands centred at 1640 and 

1523 cm
-1

, respectively, confirming the immobilization of the enzyme on the surface of the 

PEDOT film. Moreover, these frequencies are very similar to those obtained for the lysozyme 

in the free-state suggesting that the adsorption process does not induce any conformational 

change. PEDOT/LZ samples prepared using solutions with different lysozyme concentrations 

led to very similar results (data not shown). The amide I and II absorption bands of P(EDOT-

LZ), which are identified at 1648 and 1515 cm
-1

, respectively, indicate small differences with 

respect to the spectrum obtained for free lysozyme. 

In order to provide a quantitative estimation of the amount of each secondary 

structural element in the enzyme, the amide I absorption band was fitted to a sum of 

Gaussian functions. The qualitative assignment of the overlapping Gaussian components to 

the secondary motifs was performed using the spectra of proteins with known three-

dimensional structure for comparison.
[49]

 Thus, after deconvolution, the areas of the 

different components were associated to the ratios of the different types of secondary 

structure: α helix, β sheet and turn. Figure 5a represents the fitted Gaussian elements 

obtained for the amide I absorption band of lysozyme in the free-state. These elements 

correspond to following populations: 50.1% α helix (1640.2 and 1651.4 cm
-1

), 36.6% β-sheet 

(1613.6 and 1626.6 cm
-1

), 13.3% turns (1661.8 cm
-1

). 

On the other hand, for P(EDOT-LZ) the populations derived from the deconvoluted 

amide I absorption band (Figure 5b) are: 46.8% α helix (1647.1 cm
-1

), 27.7% β-sheet (1614.1 

and 1628.3 cm
-1

), 25.5% turns (1667.8 and 1681.5 cm
-1

). It is worth noting that the 

conformational differences with respect to the free state are non-negligible (i.e. the α helix 

and β-sheet content decrease 3.3% and 8.9%, respectively, whereas the turn population 

increases 12.2%). These results indicate that the enzyme undergoes some structural 

reorganization upon entrapment into the matrix of the new composite. Specifically, the 

reductions in α helix and β-sheet content suggest a loss of secondary structure and 

intermolecular aggregation, respectively.
[49,50]

 The increment of the turn population (12.2%) 

suggests the possible formation of hydrogen bonding interactions between the enzyme and 

the oxygen atoms of the polymer chains, which is consistent with a decrease of protein 
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structural integrity. Within this context, it should be mentioned that PEDOT recognizes 

specific nucleotide sequences in plasmid DNA through the formation of hydrogen bonds, 

which illustrates the capability of this CP to form weak interactions.
[51,52]

 Results obtained for 

PEDOT/LZ (data not shown) are practically identical to those displayed in Figure 5a 

evidencing that, as expected, adsorption does not alter the structure of the enzyme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 5 – Deconvolution of the amide I absorption band recorded by FTIR spectroscopy for (a) 

free lysozyme and (b) P(EDOT-LZ) at room temperature. 

 

Stability of the enzyme in PEDOT films. The enzyme extracted from PEDOT/LZ and 

P(EDOT-LZ) films incubated in PBS (see Methods section) was analyzed using SDS-PAGE gels 

to quantify the stability of the lysozyme immobilized by adsorption and anodic electro-

copolymerization, respectively. Within this context, stability refers to the structural integrity 

of the enzyme retained in substrate, which is inversely proportional to the velocity of the 

releasing process. Quantitative analysis of the PEDOT/LZ allowed determine the releasing of 
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38 μg/cm
2
 after 48 h, which represents a high degree of fast releasing (i.e. 95% of the 

enzyme deposited on the surface of the PEDOT film). Thus, although the lysozyme of 

PEDOT/LZ is clearly appreciated after a few hours of incubation in PBS, its band becomes 

undetectable after 48 h (data not shown). In contrast the enzyme incorporated into the 

P(EDOT-LZ) samples was released progressively, indicating a very high stability. Thus, after 

28 days the released lysozyme was in average 28.75 ± 5.52 μg/cm
2
 from the initial 34.93 ± 

3.41 μg/cm
2
. Thus, approximately 18% of the lysozyme remains immobilized in the P(EDOT-

LZ) matrix after almost one month. The progressive release of lysozyme, which is reflected in 

the electrophoretograms displayed in Figure 6, evidences that P(EDOT-LZ) may be used as a 

reservoir of such bactericidal enzyme. It should be noted that the release of lysozyme from 

P(EDOT-LZ) is very slow compared with that of other proteins and drugs encapsulated using 

core-shell structures or fibres (e.g. 45-65% of the protein release was observed after 2 days 

in fibers with 0.2% of entrapped bovine serum albumin).
[53]

 

 

 

Figure 6 – Load and release of lysozyme from P(EDOT-LZ) evaluated using SDS-PAGE  gels (see 

methods).  After extract the films, half volume of the extraction was load in the gel (lanes 0-28). 

From lane 2 to 28, lysozyme was extracted from P(EDOT-LZ) samples incubated in PBS (pH 7.4) 

during the same number of days that the label of the lane. MW: standard ladder; L: standard 

lysozyme (40 µg of protein). 

 

Protection against bacteria and catalytic activity. The bactericidal activity of PEDOT/LZ 

and P(EDOT-LZ) has been evaluated using two different but complementary approaches. In 

the first one the inhibition of bacterial growth was examined, while in the second the 

catalytic activity of the enzyme was investigated by monitoring the damage on the bacterial 

wall. 



Chapter 6                                                                                                                     Conducting Biocomposites 

 206 

Bacterial strains of Escherichia coli (Gram –) and Staphylococcus epidermidis (Gram +) 

were cultured in presence of PEDOT/LZ, P(EDOT-LZ) and PEDOT films, the latter being used 

as control. After 24 and 48 h, the growth of E. coli was not affected by the presence of 

lysozyme in PEDOT/LZ and P(EDOT-LZ), results being similar to those obtained for PEDOT 

(Figure 7a).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 – Biological activity of PEDOT (control), PEDOT/LZ and P(EDOT-LZ). The inhibition of 

bacterial growth was evaluated at 24 and 48 h for (a) Escherichia coli and (b) Staphylococcus 

epidermidis. The number of bacteria adhered to the surface of the films (c) was determined after 

48 h of culture. All the assays were performed in triplicate. The asterisk indicates p < 0.05. 
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In opposition, the growth of S. epidermidis in presence of P(EDOT-LZ) was considerably 

inhibited with respect to the control (Figure 7b), whereas the enzyme adsorbed in PEDOT/LZ 

did not affect the bacterial growth. The different effects provided by P(EDOT-LZ) form Gram 

– and Gram + bacteria are fully consistent with the specificity of the enzyme. On the other 

hand, adhesion experiments indicated a significant reduction in the number of bacteria, 

especially of S. epidermidis, adhered to the surface of P(EDOT-LZ) with respect to the control 

(Figure 7c), no effect being detected for PEDOT/LZ. The overall of these results indicate that 

the antibacterial activity of P(EDOT-LZ) is remarkably better than that of PEDOT/LZ. The poor 

behaviour of the latter should be attributed to fast releasing of the enzyme, whereas a 

significant concentration of bactericidal agent remains entrapped in P(EDOT-LZ) films since, 

as was showed in the previous section, the releasing to the medium is very slow. 

The activity of immobilized enzymes has been reported to increase with the surface 

coverage (i.e. the concentration).
[54,55]

 Figure 8 compares the enzymatic activity of free 

lysozyme (solution), PEDOT/LZ and P(EDOT-LZ), PEDOT being used as control.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 – Enzymatic activity of lysozyme on the peptidoglycan of Micrococcus luteus. Curves 

refer to: (1) PEDOT (control); (2) PEDOT/LZ; (3) P(EDOT-LZ); and (4) free lysozyme. 

 

The parameters derived from the adjusted kinetic model being displayed in Table 2. The 

velocity of degradation of the peptidoglycan at the bacterial cell walls was similar for free 

lysozyme and P(EDOT-LZ), whereas this enzymatic process is slower for PEDOT/LZ. Again, the 

lower activity of the latter should be mainly attributed to the releasing process, even though 
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the heterogeneous coverage of the surface and the aggregation of the adsorbed enzyme 

molecules may also contribute to such effect. However, the latter limitations may be 

overcome by optimizing the loading amount of enzyme, as was found for lysozyme adsorbed 

on silica nanotubes.
[39]

 

 
Table 2 – Parameters of the kinetic model used to explain the enzymatic activity of lysozyme in 

the free state, P(EDOT-LZ) and PEDOT/LZ using Micrococcus luteus as substrate. The equation 

used for the fitting was: 1xt

10 eAyy
−

+=  

 
a
 p-value: Lysozyme or P(EDOT-LZ) against PEDOT/LZ

  

 

Electroactivity of PEDOT films covered with lysozyme. The electroactivity of PEDOT, 

PEDOT/LZ and P(EDOT-LZ) was determined by CV in a PBS medium. The electroactivity 

increases with the similarity between the anodic and cathodic areas of the first control 

voltammogram. Inspection of the recorded voltammograms (Figure 9a) indicates that the 

electroactivities of PEDOT and PEDOT/LZ films are similar, indicating that the access and 

escape of dopant anions is not altered by the adsorbed enzyme (i.e. the dopant ions cross 

the lysozyme coating without difficulty). The voltammogram of P(EDOT-LZ) shows a decrease 

of the cathodic current density, which produces a reduction of the electroactivity with 

respect to PEDOT and PEDOT/LZ. In spite of such reduction, the electroactivity of P(EDOT-LZ) 

is still remarkably high in relation with that obtained for other CPs, like for example 

polypyrrole derivatives.
[56]

 The differences in electrochemical behaviour of P(EDOT-LZ) with 

respect to PEDOT should be attributed to the changes introduced by the enzyme not only in 

the porosity of the films (Figures 1c and 2c) but also in the chemical structure of the CP. 

Thus, the addition of enzyme to the polymerization medium and its entrapment in the 

composite matrix presumably reduce the π-conjugation of the CP chains. 
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Figure 9 – (a) Control voltammograms of PEDOT (curve 1), PEDOT/LZ (curve 2) and P(EDOT-LZ) 

(curve 3) in PBS. (b) Maximum of current density in control voltammograms against the number 

of days for P(EDOT-LZ) samples incubated in PBS. Voltammograms were recorded at 100 mV·s
-1

 

and 25 ºC. Initial and final potentials: -0.50 V; Reversal potential: 1.60 V. 

 

In order to examine stability of the electrochemical activity of P(EDOT-LZ) in 

physiological conditions, control voltammograms of samples incubated in PBS at 4 ˚C were 

recorded at regular intervals. Inspection of Figure 9b, which represents the maximum of 

current density against the number of days in PBS, indicates that the electroactivity 

decreases during the first ten days stabilizing at around 7 mA/cm
2
 after such period of 

incubation. These results evidence that, although P(EDOT-LZ) samples are affected by the 

PBS, the electroactivity after 10 days remains relatively high. Thus, the electrochemical 
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properties of the homogeneous composite made of PEDOT are better than those observed 

for some conventional CPs.
[56]

 

 

6.1.4 – Conclusions 

 

Lysozyme is an enzyme with bactericidal activity Gram-positive bacteria cell, which 

have been incorporated into PEDOT via adsorption on the surface of the film and 

electrochemical polymerization. Adsorption produces films able to retain the 

electrochemical activity of PEDOT but with relatively low bactericidal activity. In contrast, 

P(EDOT-LZ) consists on a homogeneous composite, in which the enzyme initially added to 

the polymerization medium is entrapped in the matrix of the produced material. Results of 

Escherichia coli and Staphylococcus epidermidis cultures show that P(EDOT-LZ) allows the 

growing of the Gram-negative bacteria while it presents remarkably high bactericidal activity 

against Gram-positive bacteria. Deconvolution of the amide I absorption band indicates that 

the entrapped lysozyme undergoes some structural changes with respect to the enzyme in 

the free state. However, such variations do not affect to the catalytic activity of the enzyme, 

which is similar for both the free lysozyme and P(EDOT-LZ). On the other hand, 

electrophoretic assays performed on P(EDOT-LZ) samples incubated in PBS indicated a 

controlled and progressive releasing of the enzyme. Immobilization of lysozyme in PEDOT 

can serve to improve the potential applicability of this CP in biomedicine, for example in the 

regeneration of tissues. 
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6.2 – Dextrin- and conducting polymer-containing biocomposites: 

Properties and behaviour as cellular matrix  
 

 

α-cyclodextrin (cyclohexaamylose) and linear dextrin have been used to prepare 

biocomposites with poly(3,4-ethylenedioxythiophene). Materials have been prepared 

electrochemically in aqueous solution. Comparison with the pure conducting polymer 

indicates that both the electroactivity and electrostability decreases because of the 

incorporation of the dextrins while the electrical conductivity of the biocomposites and the 

poly(3,4-ethylenedioxythiophene) are very similar. On the other hand, topographical and 

morphological images, elemental analyses, and contact angle measures reflect significant 

differences between the two biocomposites suggesting that the linear dextrin is mainly 

located at the surface, whereas the cyclodextrin is homogeneously distributed in the 

polymeric matrix. The concentration of cyclodextrin and linear dextrin in the 

biocomposites has been found to be 15% and 20% w/w, respectively, the releasing of the 

former being largely influence by the pH. Cell adhesion and proliferation assays 

considering two epithelial-like and one fibroblast-like lines indicates that the cellular 

activity is significantly higher in the dextrins-containing biocomposites than in poly(3,4-

ethylenedioxythiophene). Accordingly, the incorporation of dextrins improves the 

behaviour of the latter conducting polymer as cellular matrix.
*
 

 

*
 - Results reported in this section have been accepted for publication in Macromolecular Materials and Engineering. 

 

 

 

6.2.1 – Introduction 

 

Among CPs with π-conjugated bonds, poly(3,4-ethylenedioxythiophene) (PEDOT; 

Scheme 1), a derivative of polythiophene, has attracted great interest because of its 

advantageous properties: high electrical conductivity, good electrochemical behaviour, 

thermal and environmental stability,  suitable morphologies, and fast doping/undoping 

mechanism.
[1-4]

 On the other hand, recent studies indicated that PEDOT shows potential 

applications related with biotechnology and biomedicine. For example, PEDOT is able to 

interact with specific DNA nucleotide sequences, act as a bioactive platform for adhesion 

and proliferation of cells, form biocomposites with collagen, and detect proteins.
[5-20] 
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Cyclodextrins (CDs) are toroidally shaped cyclic oligosaccharides with a hydrophobic 

internal cavity and a hydrophilic outer side. They are soluble in water and form stable 

inclusion complexes with hydrophobic guests that fit tightly inside the CD cavity. The host-

guest interaction leads to encapsulation of small particles into the cavity of oligosaccharides 

without the formation of chemical bonds (i.e. the driving forces for the complexation are 

non-covalent: van der Waals forces, hydrophobic interactions, etc.) and without changing 

their chemical structure.
[21]

 Chemical structure, physical properties in solution and solid 

state, chemical reactivity, electrochemical behaviour, formation and properties of CD-

polymeric films and biological effects of CDs have been reviewed.
[21-25]

 

In the last decade, several composites formed by a CPs and CDs have been prepared 

and characterized.
[26-36]

 Specifically, Lagrost et al. prepared composites by 

electropolymerizing bithiophene and hydroxypropyl-β-cyclodextrin in aqueous media.
[26,27]

 

Although the resulting composites showed the usual features of poly(bithiophene), the 

structure of the films appeared to be considerably modified by the presence of CDs within 

the material but not grafted onto the polymeric backbone. Shimomura et al. and Yoshida et 

al. studied the insulation effect of an inclusion complex formed by polyaniline in the 

emeraldine base form and β-CD using the oxidation of iodine in solution of N-methyl-2-

pyrrolidone.
[28,29]

 Electrochemical methods were also used to prepare composites of 

polypyrrole and poly(3-methylyrrole) with α- and β-CDs.
[30-33]

 Results evidenced the 

influence of the CDs on interchain interactions during the electropolymerization process.
[31]

 

In addition, composites made with polypyrrole showed different permeabilities towards a 

variety of metal ions upon appropriated electrochemical stimuli.
[30]

 Hadziioannou and co-

workers described the synthesis and visualization of insulated semiconducting polymers 

based on polythiophene and polyfluorene, with a high coverage of β-CDs as insulating 

sheath.
[34]

 Regarding to PEDOT, the only reported composites were recently obtained by 

electropolymerizing 3,4-ethylendioxythiophene monomer and hydroxypropyl-β-CD in 

aqueous solution.
[35,36]

 The resulting materials effectively catalyzed the oxidation of sulphur 

oxoanions and nitrite by reducing their overoxidation potential. 

On the other hand, systems based on linear dextrins (LDs) have been found to 

promote the cellular growing.
[37-40]

 This bioreactive response added to the intrinsic 

characteristics of PEDOT as conducting bioactive platform (i.e. substrate electro-compatible 

with cellular-monolayers that behaves as a cellular matrix) suggest that the combination of 
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the two materials may result in new composites with important biomedical and 

biotechnological applications.
[14,16]

 Specifically, composites formed by PEDOT and dextrins 

are very promising candidates to act as efficient substrates for the adhesion and growing of 

eukaryotic cells. In spite of this, the many characteristics of these composites, like for 

example the structure and morphology, remain practically unknown and the investigation 

their applicability as cell substrate was never explored. 

In this work new biocomposites obtained by combining PEDOT with CD and LD, 

hereafter denoted P(EDOT-CD) and P(EDOT-LD) have been prepared and characterized. The 

properties of these materials, which were produced by anodic polymerization in aqueous 

solution, have been characterized in terms of electrochemical and electrical behaviour, 

morphology and structure, and hydrophobicity of the surface. In order to determine the role 

played by the dextrins on each of these properties, the two biocomposites have been 

systematically compared with PEDOT. The concentration of dextrins in the biocomposites 

has been determined and, in addition, their releasing has been investigated considering 

different conditions. 

 

6.2.2 – Methods 

 

Materials. 3,4-ethylendioxythiophene (EDOT), α-CD (cyclohexaamylose), LD 

[(C6H12O6)x from potato starch] were purchased from Aldrich. Anhydrous LiClO4, analytical 

reagent grade, from Aldrich was stored in an oven at 80 ˚C before use in the electrochemical 

trials. 

 

Synthesis. PEDOT, P(EDOT-CD) and P(EDOT-LD) were prepared by 

chronoamperometry (CA) under a constant potential of 1.10 V using a polymerization time 

θ= 300 s. Both anodic polymerizations and electrochemical experiments were conducted in a 

three-electrode two-compartment cell under nitrogen atmosphere (99.995% in purity) at 25 

˚C. A VersaStat II (Princenton Applied Research) potenciostat-galvanostat connected to a 

computer controlled through a Power Suite Princenton Applied Research program was used 

in all cases. For the preparation of PEDOT, the anodic compartment was filled with 50 mL of 

a 10 mM EDOT solution in ultrapure MilliQ water containing 0.1 M LiClO4 as supporting 

electrolyte, while the cathodic compartment was filled with 10 mL of the same electrolyte 
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solution. For the synthesis of P(EDOT-CD) and P(EDOT-LD) the anodic compartment was 

filled by adding 10 mL of milliQ water solution containing the corresponding dextrin (50 

mg/mL) to 40 mL of the above mentioned EDOT/LiClO4 electrolyte solution. Steel AISI 316 L 

sheets of 1×1 cm
2
 were employed as working and counter electrodes. The reference 

electrode was an Ag|AgCl electrode containing a KCl saturated aqueous solution (E
o
 = 0.222 

V vs. standard hydrogen electrode at 25 ˚C), which was connected to the working 

compartment through a salt bridge containing the electrolyte solution. 

 

Electrochemical characterization. The electrochemical properties of PEDOT, P(EDOT-

LD) and P(EDOT-CD) films were studied by cyclic voltammetry (CV). The ability to store 

charge (electroactivity) and electrochemical stability upon consecutive oxidation-reduction 

cycles (electrostability) were determined using an ultrapure MilliQ water solution with 0.1 M 

LiClO4. The initial and final potentials were -0.50 V, and the reversal potential was 1.40 V. 

The electroactivity increases with the similarity between the anodic and cathodic areas of 

the first control voltammogram, whereas the electrostability decreases with the oxidation 

and reduction areas of consecutive control voltammograms. Accordingly, electroactivity and 

electrostability were determined through direct measure of the anodic and cathodic areas in 

the control voltammagrams using the Power Suite Princenton Applied Research software. A 

scan rate of 100 mV·s
-1

 was used in all cases. 

 

Electrical properties. The electrical conductivity (σ) was measured on films 

synthesized on steel AISI 316 L sheets of 2×2 cm
2 

area using the sheet resistance method, as 

was previously described.
[41]

 

 

Electrochemical Impedance Spectroscopy. Electrochemical impedance spectroscopy 

(EIS) studies were carried using three-electrode two-compartment cell with an Autolab 302N 

potenciostat/galvanostat and the FRA software program. The cell was filled with 50 mL of 

ultrapure MilliQ water solution containing 0.1 M of LiClO4 and all the measurements were 

performed at room temperature. Coated and uncoated steel AISI 316 L sheets of 1×1 cm
2
 

were employed as working and counter electrodes, respectively. EIS measurements were 

carried out in the 0.05-20 Hz frequency range and sinusoidal voltage amplitude of ±0.05 V 

for 70 frequencies. EIS data were plotted in terms of real and imaginary parts of the 

impedance (Z’ and –Z’’, respectively). 



Chapter 6                                                                                                                     Conducting Biocomposites 

219 

 

Morphology. Atomic force microscopy (AFM) images were obtained with a Molecular 

Imaging PicoSPM using a NanoScope IV controller in ambient conditions. The average RMS 

roughness (r) was determined using the statistical application of the Nanoscope software, 

which calculates the average considering all the values recorded in the topographic image 

with exception of the maximum and the minimum. Nanometric measurements were 

conducted under ambient conditions at ∼50% relative humidity and 20-22 ˚C. The system 

was placed on an active vibration isolation table for minimum acoustic disturbance (20 

series, TMC, Peabody, MA, USA). 

Scanning electron microscopy (SEM) studies were carried out using a Focused Ion 

Beam Zeiss Neon 40 scanning electron microscope equipped with an energy dispersive X-ray 

(EDX) spectroscopy system and operating at 3.00 and 10.00 kV (micrographs and EDX 

analyses, respectively). 

 

Contact angles measurements. Contact angles were obtained using the water drop 

method. Images of water drops (3 μl) in the surface of the films were recorded with a 

contact angle meter (Dataphysics, Contact Angle System OCA15+) after stabilization (30 s). 

The images of the drop shapes were analysed and the contact angle measures were carried 

out with the SCA20 software. Measurements were performed four times for each material. 

 

Quantification of the concentration of dextrins in composites. P(EDOT-LD) and 

P(EDOT-CD) films were removed from the steel working electrodes using a scraper. The 

resulting material was transformed into a powder using an Agatha mortar prior to the 

extraction of the dextrins. Powder of each composite (6 mg) was placed in a glass tube, 5 mL 

of sulphuric acid (12.5 M) being added to extract the dextrins. Centrifugation of the tubes 

was performed after 24 h to clarify the extracts, and the insoluble material, which forms a 

pellet, was discarded. The quantification of LD and CD was determined using a phenol-

sulfuric acid procedure, which consists on the following three steps:
[42]

 (1) 0.5 mL of extract 

was mixed with 0.5 mL of phenol (5%); (2) 2 mL of concentrated sulphuric acid (∼18 M) was 

slowly (10 min) added to the tube, the mixture being agitated at the end; and (3) the 

absorbance at 490 nm (A490) was measured after rest 30 min. The control blank was 

prepared with the solution of extraction. Furthermore, PEDOT was extracted as control 
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because of the weak colour reaction produced by the aromatic rings. The A490 was converted 

into LD and CD concentration using the respective calibration curves. 

The same procedure was used to quantify the concentration of released dextrin in the 

corresponding release assays (see below). In this case, the concentrations of LD and CD 

contained in the composites as prepared were used as references. 

 

Release experiments. Controlled release experiments were performed using P(EDOT-

LD) and P(EDOT-CD) films electrodeposited on AISI 316 L steel electrodes of 1×0.5 cm
2
, 

which were incubated at 37 ˚C in an orbital shaker at 60 rpm in eppendorf tubes with 1 mL 

of Phosphate Buffer Saline (PBS, pH 7.2) or Britton-Robinson Buffer (BRB, pH 3.0). The 

release medium was changed and analyzed every 24 h. For this purpose, the tubes were 

centrifuged at 13000 rpm during 5 min, and the supernatant was collected and storage at 4 

˚C to determine the concentration of released LD and CD through the phenol-sulphuric acid 

procedure described above.
[42]

 All the release experiments were repeated three times to 

control the homogeneity of the results, and the released concentrations were averaged. 

 

Cell adhesion and proliferation assays. In vitro adhesion and proliferation assays were 

performed using three different cellular lines of adherent growth: (i) cells HEp-2 (human line 

derived from an epidermoid carcinoma of larynx); (ii) cells DU145 (human line derived from 

a prostate carcinoma); and (iii) cells COS-7 (line derived of Cercopithecus aethiops - African 

green monkey- kidney and immortalized by transformation with SV40). HEp-2 and DU145 

have an epithelial morphology while COS-7 is a fibroblast-like cell line. 

Cells were plated in 25 cm
2
 tissue flasks and grown in Dulbecco’s Modified Eagle’s 

Medium (DMEM) supplemented with 10% fetal bovine serum (FBS), penicillin G (100 U/ml) 

and streptomycin (100 mg/mL). The cultures were performed at 37 °C and humid 

atmosphere with 95% air (5% carbon dioxide). Passage 2 cultures were used for 

experiments. Cellular confluent cultures were dissociated with 0.05% trypsin and 0.02% 

EDTA in Hanks′ Balanced Salt Solution, harvested by centrifugation, and counted in 

Neubauer camera using 0.4% trypan blue. 

The adhesion and proliferation assays were performed seeding 5×10
4
 and 2×10

4
 cells, 

respectively, from an appropriate cell suspension concentration with viability >95%. PEDOT 

and composite electrodeposited on 1 cm
2
 steel sheets were placed in 24-well plates, and 
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subsequently sterilized by UV-radiation during 15 min in the laminar flow cabinet. Next, cells 

were seeded by a slowly pipette of the cell suspension onto the top surface of each sample, 

covering 80-90% of the sample’s surface. In order to avoid a reduction of the seeding 

efficiency, no contact between cell suspensions and the sides of the wells was allowed. The 

plates were gently place into an incubator, avoid agitating the plate. After 1 h, fresh medium 

(1 mL) was added into each well and the plate was returned to the incubator. Cultures to 

evaluate cellular adhesion and proliferation were incubated during 24 h and 7 days, 

respectively. All experiments were repeated at least three times. 

To evaluate the cell number in the samples, the medium of each well was changed by 

fresh medium supplemented with MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium; 5 mg/mL] and the plate returned to the incubator for 3 h. After this, 

the medium of each well was removed and the samples recoveries were placed in wells of a 

clean plate. The MTT reaction in the viable cells was determined by dissolving the formazan 

crystals in 1 mL of DMSO/methanol/water (70%/20%/10%, % in vol.).
[43]

 Then, the 

absorbance at 540 nm was read in a spectrophotometer. The cells number was determined 

using a standard curve of A540nm vs. number of viable cells. Analyses were carried out using 

the cell adherence density in each sample (number of cells/cm
2
). 

To evaluate the cellular morphology, samples incubated with cells were fixed in 1 mL 

of 2.5% paraformaldehyde in PBS during 24 h at 4 °C. Then, samples were progressively 

dehydrated using alcohols of 30°, 40°, 50°, 70°, 90°, 95°, and 100° for 30 min at 4 °C in each 

one. Finally, samples were coated by carbon sputtering for the observation in the scanning 

electronic microscope. 

 

6.2.3 – Results and Discussion 

 

Characterization of the biocomposites. Figure 1a compares the control 

voltammograms recorded in the potential range from -0.50 to +1.40 V for PEDOT, P(EDOT-

LD) and P(EDOT-CD). Results clearly indicate that the dextrins contained in the 

biocomposites obstruct the formation of polarons and bipolarons in PEDOT chains. The first 

anodic peak (O1), which is identified as a small shoulder with 
a

pE (O1)= 0.74 V for PEDOT, 

corresponds to the formation of polarons. This process is not detected in P(EDOT-LD) and 

P(EDOT-CD) due to the blocking effect of the dextrins. The second anodic peak (O2) with 
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a

pE (O2)= 1.29 V for PEDOT indicates the presence of bipolarons. These are formed through a 

process with low reversibility, as evidences the small reduction peak with 
c

pE (R1)= -0.16 V 

detected in the cathodic scanning. For P(EDOT-LD) and P(EDOT-CD) the O2 anodic peak 

shows 
a

pE (O2)= 1.37 and 1.28 V, respectively, suggesting that the behaviour of the former 

biocomposite looks closer to that of PEDOT. The cathodic scan shows a reduction peak R1 

with 
c

pE (R1)= -0.25 and -0.23 V for P(EDOT-LD) and P(EDOT-CD), respectively, which 

corresponds to a reduction of a small concentration of the bipolaron formed in the anodic 

scan. The variation of the anodic and cathodic peak potentials is fully consistent with the 

current densities (j in Figure 1a), which indicates that the concentration of oxidized 

molecules is larger for PEDOT than for the biocomposites. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – (a) Control voltammograms for the oxidation of PEDOT, P(EDOT-LD) and P(EDOT-CD) 

films. (b) Control voltammograms for the oxidation of PEDO, P(EDOT-LD) and P(EDOT-CD) films 

after 30 consecutive cycles of oxidation-reduction. 
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The voltammograms recorded after 30 consecutive oxidation-reduction cycles (nox-red= 

30), which are displayed in Figure 1b, indicate a drastic reduction of the electroactivity, 

especially for the biocomposites. Furthermore, the current density decreases drastically for 

the three materials evidencing that electrochemical degradation produces a significant 

reduction in the concentration of oxidized CP chains. The electrostability of the three 

materials is analyzed in Figure 2, which compares the variation of the electroactivity against 

nox-red.  
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Figure 2 – Evolution of the electroactivity (in %) against the number of consecutive oxidation-

reduction cycles (nox-red) for PEDOT, P(EDOT-LD) and P(EDOT-CD). 

 

The electroactivity of PEDOT, which presents the highest electrochemical stability, decreases 

30% after 30 consecutive redox cycles, whereas that of P(EDOT-LD) and P(EDOT-CD) reduces 

by 43% and 52%, respectively. Furthermore, the profiles displayed in Figure 2 reflect that the 

negative effects of the dextrins in the electrostability of PEDOT occur immediately. Thus, the 

electroactivity of PEDOT and the two biocomposites decreases by ∼5% and ∼25%, 

respectively, after only five consecutive redox cycles. 

Nyquist impedance plots of PEDOT and the two biocomposites over a frequency range 

of 0.05-20 Hz are shown in Figure 3. The impedance spectra show a single semicircle in the 

high frequency region and a nearly vertical line in the low frequency region, which indicate 

that the electrode process is controlled by electrochemical reaction at high frequencies and 

by mass transfer at low frequencies. The incorporation of dextrins produces a significant 
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enhancement of the capacitance and the resistance. These effects are more important in 

P(EDOT-LD), which presents the highest resistance, than in P(EDOT-CD). 
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Figure 3 – Nyquist impedance plots of PEDOT, P(EDOT-LD) and P(EDOT-CD). 

 

The electrical conductivity of perchlorate-doped PEDOT films generated in aqueous 

solution at 1.10 V is σ= 5 S/cm, this value being two orders of magnitude smaller than that 

obtained for perchlorate-doped PEDOT films generated in acetonitrile solution at 1.40 V (σ= 

315 S/cm).
[44]

 Interestingly, the incorporation of LD and CD does not alter significantly the 

electrical conductivity of the CP, the values measured for P(EDOT-CD) and P(EDOT-LD) being 

σ= 3 and 1 S/cm. This similarity suggests that dextrins do not produce drastic structural 

changes at the bulk. 

Figure 4 compares the 5×5 μm
2
 topographic AFM images of PEDOT, P(EDOT-LD) and 

P(EDOT-CD). As it can be seen, LD and CD provoke different changes on the topography of 

the PEDOT surface. Thus, the globular surface of the pure PEDOT films transforms into the 

powdery and layered topographies of P(EDOT-LD) and P(EDOT-CD), respectively. On the 

other hand, the average roughness was lower for PEDOT (r= 63 nm) than for P(EDOT-LD) 

(r=76 nm) and P(EDOT-CD) (r= 105 nm), indicating that the effect of the dextrins in the 

topological levels of the CP molecules is moderate but non negligible. Similar feature are 

observed in the high- and low-resolution SEM micrographs displayed in Figure 5. Dextrins 

affect the morphology of the PEDOT surface, even though the changes induced by LD and CD 
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are different. Molecular aggregates are significantly smaller in P(EDOT-LD) than in PEDOT, 

which results in the powdery topography displayed in Figure 4b.  

(b)

(c)

(a)

 

Figure 4 – Topographic AFM images of: (a) PEDOT, (b) P(EDOT-LD) and (c) P(EDOT-CD). 

 

In contrast, larger aggregates are identified for P(EDOT-CD) than for PEDOT, explaining the 

transformation of the globular morphology found for the latter into the layered structure 



Chapter 6                                                                                                                     Conducting Biocomposites 

226 

identified for the former (Figure 5c, inset). However, the relative similitude between PEDOT 

and P(EDOT-CD) suggests that the cyclic oligosaccharide is homogeneously distributed in the 

polymeric matrix, producing only small changes in the morphology and topology because of 

its small size. Moreover, Figure 5 evidences that the porosity of the two biocomposites is 

lower than that of PEDOT, which is consistent with the lower electroactivity of the 

biocomposites (Figure 1). 
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Figure 5 – High resolution and low resolution (inset) SEM micrographs of: (a) PEDOT, (b) P(EDOT-

LD) and (c) P(EDOT-CD). 

 

Results displayed in Figures 4 and 5 are fully consistent with the energy dispersive EDX 

spectroscopy analyses performed at the surface of PEDOT, P(EDOT-LD) and P(EDOT-CD) films 
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(Table 1). Thus, quantitative elemental analyses of C, O, S and Cl (% w/w) evidence different 

chemical compositions for P(EDOT-LD) and P(EDOT-CD). The concentration of S and C is 

considerably smaller and larger, respectively, in P(EDOT-LD) than in PEDOT. This feature 

suggests that the LD is mainly located at the surface, which is consistent with the powdery 

morphology of the biocomposite. On the other hand, the composition of P(EDOT-CD) and 

PEDOT are relatively similar. 

 

Table 1 – Composition (concentration of C, O, S and Cl) obtained by energy dispersive X-ray 

spectroscopy analyses at the surface of PEDOT, P(EDOT-LD) and P(EDOT-CD) films. 

 

 

Figure 6 shows the contact angle images of PEDOT, P(EDOT-LD) and P(EDOT-CD) films, 

illustrating the influence of the morphological changes induced by dextrins on the wettability 

of the films. In general, dextrins are usually considered to be highly hydrophilic since they 

contain no obvious apolar moieties but a large number of hydroxyl groups. The contact angle 

of PEDOT at room temperature is θ= 54.0°±0.6°, decreasing to θ= 46.9°±0.9° and 52.1°±0.7° 

after incorporation of LD and CD, respectively. Thus, the reduction of the hydrophobicity at 

the surface of the composites with respect to that of PEDOT is significantly higher in P(EDOT-

LD) than in P(EDOT-CD). These results are fully consistent with the SEM and AFM images 

reflecting that the structural changes produced by the CD are relatively small, whereas the 

LD alters considerably the structure of PEDOT at the surface. Moreover, the concentration of 

dextrins in the composite was found to be slightly larger for P(EDOT-LD) than for P(EDOT-CD) 

(see below). 
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Figure 6 – Contact angle measurements of: (a) PEDOT, (b) P(EDOT-LD) and (c) P(EDOT-CD). 

 
 

Content and release of dextrins. The phenol-sulphuric acid method, described in the 

Methods section, was used to quantify the concentration of dextrins in the P(EDOT-LD) and 

P(EDOT-CD) composites prepared in this work, which was found to be 20% and 15% w/w, 

respectively. On the other hand, Figure 7 represents the cumulative dextrins release 

considering two different media, i.e. BRB (pH 3) and PBS (pH 7.2). These releasing curves 

have been analyzed using four different models: zero order kinetic model, first-order kinetic 

model, Higuchi model, and Korsmeyer-Peppas model.
[45,46]

 The fitted parameters are listed in 

Table 2. As it can be seen, the release occurs in the first 4 days of incubation independently 
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of both the pH and the biocomposite, a plateau being reached in all cases after such 

incubation period. The release of a molecule entrapped in polymeric matrix is typically 

controlled by the diffusion through the matrix, the degradation of matrix and the strength of 

the intermolecular interactions.
[47,48]

 

(a)

(b)

 

 

Figure 7 – Cumulative release of CD and LD from P(EDOT-CD) and P(EDOT-LD) samples, 

respectively, incubated in (a) BRB (pH= 3.0) and (b) PBS (pH 7.2). 

 

Results evidence the large influence of the pH on the CD releasing process. Thus, in 

acidic conditions most of the CD (76%) was effectively released from the composite after 96 

h, while the releasing of LD reduced to 32%. In contrast, the release of dextrin was similar 

and relatively low (i.e. 32% and36% for CD and LD, respectively) at pH= 7.2. PEDOT chains 

are expected to form stronger intermolecular interactions with LD than with CD due to the 

polymeric nature of the former. Accordingly, the release of CD from P(EDOT-CD) is expected 

to be significantly higher than the release of LD from P(EDOT-LD), as was observed in BRB. 

However, dextrins tend to self-aggregate at neutral pH, making difficult the diffusion of the 
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CD molecules for their releasing in PBS.
[49]

 In opposition, the hydroxyl group protonation 

produced by the strong acidic medium increases the hydrophilic character. This reduces the 

surface activity and enhances the releasing in BRB, The influence of this pH-effect is 

relatively low in P(EDOT-LD) since, in this case, the biocomposite is dominated by the 

interactions between two polymeric systems. 

 
Table 2 – Parameters of the release kinetics based on four different models. Releasing assays 

were carried out in PBS (pH 7.2) and in BRB (pH 3.9). Mt/M∞ is the cumulative percentage of 

dextrin release. 100-(Mt/M∞) corresponds to the percentage of dextrin remaining in the matrix. 

 

 

Table 2 shows the parameters derived from the different kinetic models. As it can be 

seen, the correlation coefficients (r
2
) provided by the zero-order model are, in general, very 

poor. In opposition, the first order-model led to very high r
2
 values, especially in PBS, 

indicating a relationship between the releasing rate and the concentration of dextrins. Good 

correlations were also identified for the Higuchi’s model, which reflects the dependence of 

the release of dextrins with the square root of time (i.e. diffusive process).
[45]

 Finally, the 

Korsmeyer-Peppas model introduces the parameter n to describe the morphological 

characteristics from material (i.e. porous materials present n < 0.5).
[46]

 In the present study, 

the coefficient n fits to values larger than 0.5 in all cases suggesting a compact morphology.  

 

Cellular adhesion and proliferation. The utility of the two dextrin-containing 

biocomposites in biotechnological applications based on regeneration of tissues has been 

examined by analyzing cellular adhesion and proliferation on films. Assays were performed 

considering three different lines of eukaryotic cells: HEp-2, DU145 and COS-7. The former 
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two are epithelial-like cell lines, while the later is a fibroblast-like cell line. Both PEDOT and 

tissue culture polystyrene (TCPS) have been used as control substrates. 

Quantitative results of cellular adhesion are displayed in Figure 8a. The number of 

cells by area of material observed on the biocomposites is larger than on the control 

substrates, independently of the cell line. Thus, incorporation of dextrins to PEDOT 

promotes cell adhesion, this feature being especially remarkable for the HEp-2 and DU-145 

cells (i.e. adhesion of these epithelial-like cells on PEDOT is lower than that of COS-7).  
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Figure 8 – Cellular adhesion (a) and cellular proliferation (b) on the surface of the investigated 

biocomposites. Values were normalized with respect to the area of material. PEDOT and TCPS 

were used as control substrates. Bars represent the mean ± standard deviation. The asterisk (�) 

indicates a significant difference with the control TCPS, Tukey’s test (p<0.05). 
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On the other hand, Figure 8a reveals that the adhesion of cells on P(EDOT-LD) films is 

significantly higher than on P(EDOT-CD). This observation should be attributed to the fact 

that the cells have a direct contact with the polysaccharide, which has been hypothesized to 

be mainly located at the surface, whereas the impact of the CD on the cells is lower because 

of its homogeneous distribution. 

The number of viable cells per unit of material after 7 days of culture (i.e. proliferation 

on the material) is displayed in Figure 8b for the four tested susbtrates. In all cases, there is a 

significant increment in the amount cells with respect to those obtained after 24 h of culture 

(Figure 8a). Again, the number of cells adhered to the two biocomposites is higher than 

adhered to control substrates, independently of the cell line, supporting the fact that the 

dextrins produce a benefit in terms of biocompatibility. However, the number of cells 

adhered to P(EDOT-CD) is higher than that observed for P(EDOT-LD). This feature suggests 

that once the cells are adhered to the biocomposite, the activity and proliferation of the cells 

is promoted by the diffusion of the small CD molecules towards the surface.   

SEM micrographs showing details of the adhesion of COS-7 cells to PEDOT, P(EDOT-

LD) and P(EDOT-CD) are displayed in Figure 9, the connection sites between the cells and the 

surface or between two cells being marked with arrows. As it can be seen, in general, there 

is a significant spreading of cells on the surface of the substrates, which is especially 

remarkable for the two biocomposites. Details showing the stress fibers formed by the cells 

to move along the substrates are displayed in Figure 9b (inset). These correspond to the 

lamellipodia, which are delicate sheet-like extension of cytoplasm that form transient 

adhesions with the substrate, and the actin filaments known as fillopodia. Interestingly, the 

formation of fillopodia is detected with much more proliferation and spreading on the 

P(EDOT-LD) surface (Figures 9f and 9g) than on the P(EDOT-CD) one. Thus, Figure 9d shows a 

cell without any evident connection to P(EDOT-CD) surface (arrow mark), evidencing that 

adhesion of the cell with filopodia is much less apparent in the latter biocomposite. 
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Figure 9 – Cellular adhesion of cells COS-7 (fibroblast type) onto PEDOT (a-b), P(EDOT-CD) (c-d), 

and P(EDOT-LD) (e-g) substrates. The cells adhered on the surface (s) are shown with asterisk 

(�), while the arrows indicate connections or interactions between the cell and the surface or 

between two cells. 

 

6.2.4 – Conclusions 

 

P(EDOT-LD) and P(EDOT-CD) biocomposites have been prepared electrochemically in 

water using mixtures of EDOT monomer and the corresponding dextrin. Both the 

electroactivity and the electrostability of the two biocomposites are considerably lower than 

those of PEDOT. This is because the incorporation of dextrins promotes the formation of 

compact structures, reducing the porosity. Consequently, the access and escape of dopant 

ions upon oxidation and reduction processes, respectively, become more difficult in the 

biocomposites than in PEDOT films. In contrast, the electrical conductivities of the 
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biocomposites are similar to that of PEDOT, suggesting that dextrins do not produce 

significant changes in the bulk. Inspection to the topographies and morphologies indicates 

that the globular surface of PEDOT transforms into a powdery surface upon the 

incorporation of LD. The influence of the CD, which changes the aspect of the surface from 

globular to layered, is less drastic. These observations combined with the EDX elemental 

analyses suggest that the LD mainly concentrates at the surface of the films, while the CD is 

homogeneously distributed in the composite.  

The concentration of CD and LD in P(EDOT-CD) and P(EDOT-LD) has been found to be 

15% and 20%, respectively. The releasing of the CD from the biocomposite depends 

significantly on the environment, which has been attributed to the aggregation effects at 

neutral pH and the increase of hydrophilic character at low pH. In contrast, no pH-

dependence was found in the releasing of LD from P(EDOT-LD). This is because the latter 

biocomposite is dominated by strong interactions between the polysaccharide and PEDOT 

chains. On the other hand, cell adhesion and proliferation assays have been performed 

considering three different cellular lines: two epithelial-like and one fibroblast-like. Results 

clearly indicate that the two biocomposites behave as a cellular matrix. Thus, the 

incorporation of dextrins significantly improves the cellular activity of PEDOT. 
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6.3 – Impact of the incorporation of positively charged peptide with 

advanced properties in the electrochemical and cellular activity 

of PEDOT  
 

 
This study reports the synthesis and characterization of poly(3,4-ethylenedioxythiophene) 

(PEDOT) modified with CREKA, a positively charged pentapeptide that recognizes clotted 

plasma proteins. Modified PEDOT (PEDOT/CREKA) was prepared by anodic polymerization 

using as electrolyte solution a mixture of acetonitrile and water with LiClO4. The peptide, 

which has been identified by high performance liquid chromatography and infrared 

spectroscopy, has been found to incorporate to the polymer matrix at the first stages of 

the polymerization process. The concentration of peptide in PEDOT/CREKA films was 

estimated to be 0.3-0.4% only, which has been attributed to both its small size and its net 

positive charge. In spite of such small concentration, the peptide imparts a blocking effect 

against the oxidation of the conducting polymer, improves considerably both the redox 

capabilities and electrochemical stability of PEDOT, and also enhances the capacitance and 

resistance. Cellular adhesion and proliferation assays provided similar results for both 

PEDOT and PEDOT/CREKA.
*
 

 

*
 - Results reported in this section have been submitted for publication. 

 

 

 

6.3.1 – Introduction 

 

Conducting polymer (CP) coatings have been shown to improve the charge transfer 

characteristics of conventional metal electrodes and biological assays have revealed that 

cells preferentially adhere to coated electrodes.
[1-3]

 As a consequence, many CPs have been 

used in tissue engineering applications, even though research efforts have been mainly 

concentrated on polypyrrole (PPy), poly(3,4-ethylenedioxythiophene) (PEDOT) and their 

derivatives.
[4]

 Some extracellular matrix biomolecules, specially peptides, are known to 

support cell attachment and growth when incorporated into CPs or used as a coating.
[5-14]

 

The incorporation of these peptides can be carried out using different approaches. 

Cell attachment properties improves when the incorporated peptides present an 

overall anionic behaviour, which has been attributed to role exerted by such anionic 

biomolecules as dopant agents of the CPs.
[4-10]

 The use anionic peptides as dopants, is 

achieved through their incorporation into the monomer medium, where the polymerization 

process occurs. Unfortunately, this particular class of dopants may produce significant 

undesirable changes in the bulk properties of the CP, reducing the electrical conductivity, the 

electroactivity, the electrochemical stability, etc. For example, anionically modified laminin 
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peptides were used to dope PEDOT electrodeposited on platinum electrodes.
[8]

 Comparison 

of the performance of the peptide doped films with conventional PEDOT films doped with p-

toluenesulfonate indicated that, in spite of peptide dopant impart better cell attachment 

properties, the electrochemical stability and electroactivity of PEDOT films were clearly 

superior. 

Besides using anionic peptides as dopants to modify CPs properties, there are other 

emerging non-covalent approaches to further modify CPs for biomedical applications. For 

instance, one approach to modify CPs non-covalently was achieved using a peptide selected 

from phage display libraries, that specifically binds PPy doped with chloride.
[11]

 This study 

demonstrated that the PPy surface modified with Arg-Gly-Asp (RGD) peptide promotes the 

PC12 cell adhesion in serum-free media, whereas no adhesion was seen on unmodified 

surfaces. An advantage of this entrapped approach is that, apparently, it should not modify 

the intrinsic properties of the CP and could be used with a wide range of different 

biomolecules that do not need to be negatively charged. 

In addition to the dopant and entrapped non-covalent approaches, modification of 

CPs via covalent bonds has been also explored. Multiple techniques have been used, like for 

example: the modification of the β-position on PPy to create strong disulfide bonds with the 

Cys of Arg-Gly-Asp-Cys (RGDS), enhancing osteoblast adhesion; and the modification of the 

surface to immobilize peptides through covalent bonds, which have been successfully used 

to immobilize nerve growth factor to the surface of CPs through a photo-crosslinker.
[12-14]

 

Over the last few years, Ruoslahti and coworkers have identified a series of tumor-

homing peptides by using in vivo screening of peptide libraries.
[15,16]

 Among the homing 

peptides discovered by this procedure is a linear peptide that contains only five amino acids 

with sequence Cys-Arg-Glu-Lys-Ala (CREKA).
[15,16]

 This pentapeptide, which recognizes fibrin-

fibronectin complexes, was used to design a self-amplifying nanoparticle delivery system.
[17]

 

Iron oxide nanoparticles coated with this peptide accumulate in tumor vessels, where they 

induce additional local clotting and thereby produce new binding sites for more 

nanoparticles. This amplification system enhanced homing of the nanoparticles in a mouse 

tumor model without causing clotting or other obvious side effects in the body. Although 

self-amplified tumor accumulation produced enhancement of tumor imaging, significant 

inhibition of tumor growth was not obtained. Determination of the bioactive conformation 

of CREKA through computer aided modelling tools led to engineer a series of analogues by 
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targeted replacements in Arg and Glu, which were replaced by the corresponding N- and C
α

-

methylated amino acids.
[18-20]

 CREKA analogues nanoparticles were combined with 

nanoparticles coated with another tumor-homing peptide (Cys-Arg-Lys-Asp-Lys-Cys) and 

nanoparticles with an elongated shape (nanoworms). Treatment of mice with prostate 

cancer with multiple doses of these nanoworms induced tumor necrosis and highly 

significant reduction in tumor growth.
[20]

 

Modification of CPs through the incorporation of N- and C
α

-methylated CREKA 

analogues, which due to their unique properties could extend the biomedical applications of 

these materials, is highly desirable. Unfortunately, the synthesis of these analogues requires 

of an expensive and large chemical effort essentially related with the preparation of the 

modified amino acids. However, as the charge distribution is the same in CREKA that in its N- 

and C
α

-methylated analogues, the former should be considered a good model in studies 

devoted to both: (i) select the approach and conditions used for their incorporation into the 

polymer matrix; and (ii) ascertain the influence of these peptides in the CP properties. 

Within this context, in this work we have used an entrapping approach to modify PEDOT 

doped with LiClO4 with CREKA. It should be noted that the cationic nature of CREKA, which 

involves two positively charged amino acids and only one negatively charged, is expected to 

difficult its entrapment into the polymer matrix. Furthermore, the impact of the peptide on 

morphological and electrochemical properties, as well as on the cellular activity, of the CP 

has been established by comparing PEDOT with modified PEDOT, hereafter referred as 

PEDOT/CREKA. 

 

6.3.2 – Methods 

 

Materials. 3,4-ethylenedioxythiophene (EDOT) monomer and acetonitrile (analytical 

reagent grade) were purchased from Aldrich and used as received without further 

purification. Anhydrous LiClO4 (analytical reagent grade, Aldrich) was stored in an oven at 80 

ºC before use in electrochemical trials. CREKA peptide with > 98% of HPLC purity was 

purchased from GenScript USA Inc. and prepared by dissolving 4.5 mg of peptide in 5 mL of 

ultrapure milliQ water. 
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Synthesis. PEDOT was prepared by chronoamperometry (CA) under a constant 

potential of 1.40 V using a polymerization time of 200 s. Both anodic polymerization and 

electrochemical assays were performed with a VersaStat II potentiostat-galvanostat 

(Princeton Applied Research) using a three-electrode compartment cell under nitrogen 

atmosphere (99.995% pure) at room temperature. The anodic compartment was filled with 

5 mL of a 0.01 M EDOT solution in acetonitrile containing 0.1 M LiClO4 as supporting 

electrolyte and 5 mL of ultrapure milliQ water solution, while the cathodic compartment was 

filled with 10 mL of the same electrolyte solution. Steel AISI 316 sheets of 1 cm
2
 in area were 

used as working and counter electrodes. To prevent interferences during the 

electrochemical assays, the working and counter electrodes were cleaned with acetone 

before each trial. The reference electrode was an Ag|AgCl electrode containing a KCl 

saturated aqueous solution [offset potential versus the standard hydrogen electrode, E
0
= 

0.222 Volts (V) at 25 ˚C], which was connected to the working compartment through a salt 

bridge containing the electrolyte solution. 

The experimental conditions used for the preparation of PEDOT/CREKA were identical 

to those of PEDOT with the exception of the anodic compartment, which was filled with 5 

mL of 0.01 M EDOT solution in acetonitrile containing 0.1 M LiClO4 as supporting electrolyte 

and 5 mL of CREKA aqueous solution. 

 

Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) spectroscopy. 

SEM and EDX spectroscopy studies were performed to examine the effect of the peptide on 

the film surface morphology and composition. Dried samples were placed in a Focussed Ion 

Bean Zeiss Neon 40 scanning electron microscope at 5 kV, equipped with an EDX 

spectroscopy system. 

 

High-performance liquid chromatography (HPLC). Analyses were carried out using a 

isocratic gradient of 0.1% trifluoroacetic acid, 10% acetonitrile, and 10% methanol in 100% 

Water, with 1 mL/h of flux and a sample loop of 20 μL on a Licrospher (Merk) C18 column 

(4.6 mm x 250 mm) with 5 μm diameter particle. The HPLC system consisted on a LC-410 

Perkin Elmer HPLC Pump, a LC-235 Perkin Elmer UV-VIS detector, and a Perkin Elmer (Diode 

Array Detector) interface. The HPLC analysis was running by 15 minutes and the 

chromatograms were analyzed using the Grams v.8 software (Galactic Inc.). Samples were 

detected by two channels of absorbance at 220 nm and 280 nm. The standard curve was 
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prepared with different concentrations of CREKA, the area of the peaks being represented 

against the peptide concentration. Models were adjusted through linear regression analyses. 

The PEDOT/CREKA samples (2 mg of powder) were extracted in the same HPLC buffer (1 mL) 

overnight. After this, samples were centrifugated and the supernatant isolated for the HPLC 

analysis. The determination of CREKA in the sample was performed using the method of 

substance added. Accordingly, samples were injected in the column and the chromatogram 

recorded. Next, a known amount of CREKA was added to the sample, which was 

subsequently injected in the HPLC column. This process allowed us to determine the peaks 

of CREKA in the sample. 

 

FTIR spectroscopy. The influence of the polymer matrix on the secondary structure of 

the entrapped peptide was performed using a FTIR 4100 Jasco spectrophotometer. Spectra 

of CREKA, PEDOT and PEDOT/CREKA were recorded in the transmittance mode. The samples 

were placed in an attenuated total reflection accessory with thermal control and a diamond 

crystal (Specac model MKII Golden Gate Heated Single Reflection Diamond ATR). 

 

Electroactivity and electrostability. Electrochemical properties of PEDOT and 

PEDOT/CREKA were investigated by cyclic voltammetry (CV) using 5 mL of acetonitrile 

solution containing 0.1 M LiClO4 and 5 mL of ultrapure milliQ water as electrolyte solution. 

The initial and final potentials were -0.50 V, whereas a reversal potential of 1.60 V was 

considered. The scan rate was 100 mV·s
-1

 in all cases. The electroactivity increases with the 

similarity between the anodic and cathodic areas of the first control voltammogram, 

whereas the electrostability decreases with the oxidation and reduction areas of consecutive 

control voltammograms. 

 

Electrochemical impedance spectroscopy (EIS). EIS studies were carried using three-

electrode two-compartment cell with an Autolab 302N potenciostat/galvanostat and the 

FRA software program. The cell was filled with an electrolyte solution prepared by mixing 5 

mL of acetonitrile with 0.1 M LiClO4 and 5 mL of ultrapure MilliQ water. All the 

measurements were performed at room temperature. Coated and uncoated steel AISI 316 L 

sheets of 1×1 cm
2
 were employed as working and counter electrodes, respectively. EIS 

measurements were carried out in the 0.05-10000 Hz frequency range and sinusoidal 
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voltage amplitude of ±10 mV for 70 frequencies. EIS data were plotted in terms of real and 

imaginary parts of the impedance (Z’ and –Z’’, respectively). 

 

Cell adhesion and proliferation test. In vitro adhesion and proliferation assays were 

performed using two different cellular lines of adherent growth: (i) cells HEp-2 (human line 

derived from an epidermoid carcinoma of larynx); and (ii) cells DU145 (human line derived 

from a prostate carcinoma). HEp-2 and DU145 have an epithelial morphology. Tissue culture 

polystyrene (TCPS) has been used as control substrate. 

Cells were plated in 25 cm
2
 tissue flasks and grown in Dulbecco’s Modified Eagle’s 

Medium (DMEM) supplemented with 10% fetal bovine serum (FBS), penicillin G (100 U/ml) 

and streptomycin (100 mg/mL). Cultures were performed at 37 °C and humid atmosphere 

with 95% air (5% carbon dioxide). Passage 2 cultures were used for experiments. Cellular 

confluent cultures were dissociated with 0.05% trypsin and 0.02% EDTA in Hanks′ Balanced 

Salt Solution, harvested by centrifugation, and counted in Neubauer camera using 0.4% 

trypan blue. 

The adhesion and proliferation assays were performed seeding 2×10
4
 cells, from an 

appropriate cell suspension concentration with viability >95%. PEDOT and PEDOT/CREKA 

electrodeposited on 1 cm
2
 steel sheets were placed in 24-well plates, and subsequently 

sterilized by UV-radiation during 15 min in the laminar flow cabinet. Next, cells were seeded 

by a slowly pipette of the cell suspension onto the top surface of each sample, covering 80-

90% of the sample’s surface. In order to avoid a reduction of the seeding efficiency, no 

contact between cell suspensions and the sides of the wells was allowed. The plates were 

placed with care into an incubator, avoiding agitation. After 1 h, fresh medium (1 mL) was 

added into each well and the plate was returned to the incubator. Cultures to evaluate 

cellular adhesion and proliferation were incubated during 24 h and 7 days, respectively. All 

experiments were repeated at least three times. 

To evaluate the cell number in the samples, the medium of each well was changed by 

fresh medium supplemented with MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium; 5 mg/mL] and the plate returned to the incubator for 3 h. After this, 

the medium of each well was removed and the samples recoveries were placed in wells of a 

clean plate. The MTT reaction in the viable cells was determined by dissolving the formazan 

crystals in 1 mL of DMSO/methanol/water (70%/20%/10%, % in vol.). Then, the absorbance 
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at 540 nm was read in a spectrophotometer. The cells number was determined using a 

standard curve of A540nm vs. number of viable cells. Analyses were carried out using the cell 

adherence density in each sample in comparison to the control (%, relative of control). 

To evaluate the cellular morphology, samples incubated with cells were fixed in 1 mL 

of 2.5% paraformaldehyde in PBS during 24 h at 4 ˚C. Then, samples were progressively 

dehydrated using alcohols of 30˚, 40˚, 50˚, 70˚, 90˚, 95˚, and 100˚ for 30 min at 4 ˚C in each 

one. Finally, samples were coated by carbon sputtering for the observation in the scanning 

electronic microscope. 

 

6.3.3 – Results and Discussion 

 

Figure 1a displays low- and high-resolution SEM images representative of the overall 

PEDOT morphology. This material presents a heterogeneous globular morphology similar to 

that found when it is generated in pure organic electrolyte solutions.
[21]

 This characteristic 

morphology has been typically attributed to the linear growing of polymer molecules 

through α-α linkages (i.e. the β-positions of the thiophene are occupied by the dioxane 

ring).
[21,22]

 In spite of this resemblance, the morphology of PEDOT yielded in acetonitrile is 

significantly more porous than that obtained with the acetonitrile/water mixture.
[21]

 

Differences in porosity are expected to have an impact on the electrochemical properties of 

CPs (see below). Inspection of the SEM images recorded for PEDOT/CREKA (not shown) does 

not reflect any significant difference with respect to those displayed in Figure 1a. Similarly, 

EDX spectroscopy analyses evidenced a very similar elementary composition for PEDOT and 

PEDOT/CREKA films (data not shown), indicating that the entrapped peptide do not alter the 

surface of the CP. 

In order to ascertain if the peptide affects the surface morphology of the internal side, 

films were detached from the steel electrodes and coated with an ultrathin layer of carbon. 

Low- and high-resolution SEM images of the internal side of PEDOT and PEDOT/CREKA are 

shown in Figures 1b and 1c, respectively. As it can be seen, entrapped CREKA affects both 

the texture and morphology of PEDOT. The more noticeable results are the homogeneous 

smooth texture and the practical absence of small nodular outcrops in PEDOT/CREKA films, 

whereas these are frequently and homogeneously present in PEDOT. These nodules 

correspond to the typical PEDOT agglomerates previously mentioned, their absence in 
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PEDOT/CREKA suggesting a more compact internal surface. The similarity between PEDOT 

and PEDOT/CREKA in the external surface morphology has been attributed to the fact that 

peptide molecules incorporate to the polymer matrix at the first stages of the 

polymerization process. 

 

400 nm

(a)

2 µµµµm

2 µµµµm

2 µµµµm

400 nm

400 nm

(b)

(c)

 

 

Figure 1 – Low- and high-resolution SEM images (left and right, respectively) of (a) the external 

surface morphology of PEDOT and the internal surface morphology of (b) PEDOT and (c) 

PEDOT/CREKA. Internal surfaces of PEDOT and PEDOT/CREKA films were coated with an 

ultrathin layer of carbon. 

 

HPLC analyses were carried to confirm the presence of the peptide in PEDOT/CREKA 

films as well as to determine the peptide concentration. Results for CREKA, PEDOT and 

PEDOT/CREKA are displayed in Figure 2. Detection of the eluted at 220 nm produced two 

peaks with retention times of 3.3 and 4.8 min for CREKA (Figure 2a), whereas a single peak 
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with a retention time of 4.8-5.0 min was identified when the eluted was detected at 280 nm 

(data not shown). We assumed that the peak detected at 280 nm corresponds to a 

honeycomb structure formed by layers of peptides, as was previously found in other 

polymer-peptide conjugates.
[17,18]

 The response of PEDOT was the same at both 220 and 280 

nm, two peaks with different intensities and retention times of 4.8-5.0 min and 9.3 min 

being detected (Figure 2b).  
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Figure 2 – Detection of CREKA in PEDOT/CREKA by HPLC. (a) Chromatograms of CREKA at 

different concentrations show overlapping. The detection was carried out by absorbance at 220 

nm. The retention times are indicated over each peak. The inset shows the linear models 

obtained using the two peaks of CREKA. (b) Chromatograms used to analyze the peptide 

extracted from PEDOT/CREKA. The correspondence of peaks was determined by adding a known 

concentration of CREKA in the extracted sample. A PEDOT extract was used as control to identify 

the peaks of the conducting polymer. 
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The chromatograms of CREKA standards have been followed by absorbance at 220 nm, the 

linear models for the peaks at 3.3 min (r= 0.9812) and 4.8 min (r= 0.9999) being displayed in 

the inset of Figure 2a. As a consequence of the excellent correlations between the peak 

areas and the CREKA concentrations, the two models become indistinguishable. 

The concentration of peptide extracted from PEDOT/CREKA was determined using the 

method of the added concentration (Figure 2b). As can be seen, there is an overlapping 

between the peaks of CREKA and the peptide extracted from PEDOT/CREKA. The 

concentration of peptide in the latter was estimated to be 0.3-0.4%, which corresponds to a 

PEDOT:CREKA mass ratio of 300:1. This ratio is significantly lower than that used for the 

electropolymerization of the films (3:1). Both the small size of the pentapeptide and its net 

positive charge made difficult the entrapment of CREKA in the polymer matrix. However, in 

spite of this small concentration, the peptide produced drastic changes in the 

electrochemical properties of the CP, as is evidenced below. 

Figure 3 displays the FTIR-ATR spectra of CREKA, PEDOT/CREKA and PEDOT. The 1900-

1100 cm
-1

 interval shows the amide I, amide II and amide III bands of CREKA, which have 

been used to examine the influence of the polymer matrix on the structure of the entrapped 

peptide. The amide I band (1700-1600 cm
-1

) arises primarily from the C=O stretching 

vibration of the peptide linkages (70-85%) that constitute the backbone structure of 

peptides and proteins, its sensitivity towards conformational changes being well-known.
[23-26]

 

The amide II band (1600-1480 cm
-1

) is assigned to the coupling of the N-H in-plane bending 

(40-60%) and C-N stretching modes (18-40%) of peptide linkages and C-C
α
 stretching 

vibrations (∼ 10%). This band is conformationally sensitive.
[25]

 Amide III is a very complex 

band resulting from a mixture of several coordinate displacements. Moreover, this signal 

depends on the nature of side chain and hydrogen bonding interactions, which limits its use 

for the extraction of structural information.
[23,25]

 

The amide I of CREKA and PEDOT/CREKA appears centred at 1739 and 1741 cm
-1

, 

respectively. These wavelengths are slightly larger than those typically identified for the 

amide I of proteins, which has been attributed to the small size of the pentapeptide. 

Similarly, the amide III absorptions of CREKA (1368 and 1213 cm
-1

) are not influenced by the 

polymer matrix in PEDOT/CREKA (1366 and 1210 cm
-1

). In spite of the CP does not alter the 

amide I and II absorption bands, it induces a small shift in the amide II, which are identified 

at 1639 and 1618 cm
-1

 for CREKA and PEDOT/CREKA respectively. In addition to confirm the 
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presence of the entrapped peptide in PEDOT/CREKA, which is consistent with the HPLC 

analyses, these results indicate that the CP does not produce major alteration in the 

conformational characteristics of CREKA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3 – FTIR spectra of CREKA, PEDOT/CREKA and PEDOT at room temperature. 

 

The cyclic voltammograms of PEDOT and PEDOT/CREKA, which were recorded in the 

potential range from -0.50 to 1.60 V, are compared in Figure 4a. Two consecutive anodic 

processes, O1 and O2, and one cathodic process, R1, are detected in the voltammograms of 

both PEDOT and PEDOT/CREKA. Table 1 summarizes the effect of the peptide in the 

potentials associated to such oxidation and reduction processes. The first oxidation peak of 

PEDOT, which corresponds to a shoulder with anodic peak potential 
a

pE (O1)= +0.713 V, is 

not detected in the PEDOT/CREKA voltammogram, suggesting that the peptide blocks the 

formation of polarons at such potential.  
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Figure 4 – (a) Control voltammograms of PEDOT (black) and PEDOT/CREKA in acetonitrile:water 

solution recorded using samples (a) as prepared and (b) after 12 consecutive oxidation-

reduction cycles. 

 

This is consistent with the fact that the first oxidation shoulder of PEDOT/CREKA appears at a 

higher potential 
a

pE (O1)= +1.183 V. A similar but less pronounced effect is induced by the 

peptide in the second oxidation shoulder of PEDOT, which has been attributed to the 

formation of bipolarons. Specifically, the anodic peak potential of PEDOT, 
a

pE (O2)= +1.381 V, 

is shifted to a slightly higher potential, 
a

pE (O2)= +1.410 V in PEDOT/CREKA. The fact that the 

displacement of the anodic potential is smaller for O2 than for O1 is also fully consistent with 

the previously mentioned blocking effects against oxidation of the CP imparted by CREKA. 
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Thus, these effects are expected to become more difficult at higher electric potentials. The 

two voltammograms show a reduction shoulder with very similar cathodic peak potentials: 

c

pE (R1)= -0.005 V and 
c

pE (R1)= -0.025 V for PEDOT and PEDOT/CREKA, respectively. Redox-

pairs associated to the formation of polarons in the CP chains are identified from these 

reduction peaks. However, as the intensity of the reduction peak is higher in PEDOT/CREKA 

than in PEDOT, it can be concluded that the peptide promotes the redox capabilities of the 

CP molecules. 

 
Table 1 – Comparison of the oxidation and reduction potentials (in V) for the anodic and 

cathodic processes detected in the control voltammograms of PEDOT and PEDOT/CREKA using 

samples as prepared (Figure 4a) and after 12 consecutive oxidation-reduction cycles (Figure 4b). 

 

 

On the other hand, the small concentration of the entrapped peptide does not alter 

the intrinsically high electroactivity of the CP, as is evidenced by the resemblance between 

the cathodic and anodic areas of the two voltammograms. In contrast, the peptide enhances 

considerably the maximum anodic current density (jmax), which is reached at the reversal 

potential, 1.60 V, in both cases. Thus, jmax increases from 5.84 mA·cm
-2

 (PEDOT) to 7.60 

mA·cm
-2

 (PEDOT/CREKA), which represents an increment of 30%. 

Figure 5 represents the variation of the relative electroactivity against the number of 

consecutive oxidation-reduction cycles. The response of the PEDOT and PEDOT/CREKA 

degraded in the first cycles and tended to plateau after 8 and 12 cycles, respectively. The 

loss of activity is significantly smaller for PEDOT/CREKA than for PEDOT evidencing that the 

peptide molecules promote the electrostability of the CP. This result is fully consistent with 

the fact that CREKA enhances the redox capabilities of the CP molecules, as was discussed 

above (Figure 4a). 
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Figure 5 – Evolution of the electroactivity over 12 consecutive oxidation-reduction cycles for 

PEDOT and PEDOT/CREKA. The electroactivity loss is represented as the percentage of the 

original electrochemical activity measured at cycle 1. 

 

Figure 4b compares the cyclic voltammograms of PEDOT and PEDOT/CREKA after 12 

consecutive oxidation-reduction cycles, the anodic and cathodic peak potentials for the 

detected oxidation and reduction processes being included in Table 1. As it can be seen, in 

both systems the first oxidation shoulder, which was clearly identified as O1 in the first 

control voltammogram (Figure 4a), is not detectable. This suggests that the oxidative 

degradation induces the re-organization of the CP aggregates, blocking the entrance of ions 

and, consequently, precluding the formation of polarons. The oxidation shoulder identified 

as O2 in Figure 4a corresponds to the only oxidative process detected in Figure 4b. This 

anodic peak potential 
a

pE (O2) of both PEDOT and PEDOT/CREKA decreases by ∼ 0.03-0.05 V 

due to the oxidative degradation of the CP. A similar effect is observed in the cathodic peak 

potential 
c

pE (R1) of the reduction process, which shifts to more negative potentials. 

Figure 6 displays the Nyquist plot recorded for the steel AISI 316 (control), PEDOT and 

PEDOT/CREKA samples. The impedance plot of PEDOT in the acetonitrile:water mixture 

shows two semicircles, in the high and low frequency regions, followed by a linear part that 

arises from the diffusion process. The high frequency semicircle is related with the organic 

nature of the coating, while the low frequency semicircle is consequence of the pores in the 

coating.
[27]

 As it can be seen, the incorporation of CREKA produces a significant 

enhancement of both the capacitance and the resistance. This effect should be attributed to 
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the structural changes induced by the peptide, which reduces the porosity of the CP. This 

feature was clearly evidenced in the internal side of PEDOT/CREKA films (Figure 1c). 
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Figure 6 – Impedance plots obtained for steel AISI 316 (control sample), PEDOT and 

PEDOT/CREKA. 

 

The abilities of PEDOT and PEDOT/CREKA to cellular adhesion and proliferation were 

compared by considering two different cellular lines: HEp-2 and DU-145. These carcinogenic 

cells were selected due to their fast growth. Quantitative results of cellular adhesion assays 

are displayed in Figure 7a, TCPS being used as control substrate. As can be seen, the peptide 

does not affect the adhesion of the cells, which is similar in all cases to that obtained for the 

control substrate. After 7 days of culture, the cellular activity was re-evaluated. Results, 

which are displayed in Figure 7b, show a similar number of viable cells per unit of material 

for the three tested substrates. Although the entrapment of CREKA in the polymer matrix 

was expected to favour cellular adhesion and/or proliferation through the binding to the 

fibrin molecules from the serum used as supplement in the culture medium, the peptide 

concentration is, unfortunately, too low (0.3-0.4%). 
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Figure 7 – Cellular adhesion (a) and cellular proliferation (b) on the surface of PEDOT and 

PEDOT/CREKA. TCPS was used as control substrate. DU-145 and HEp-2 cells were cultured during 

24 h (adhesion assay) and 7 days (proliferation assay). The experiments were performed using 

six samples for each substrate. 

 

Figure 8 shows SEM micrographs adhered and subsequently proliferated on the 

surface of PEDOT and PEDOT/CREKA films. The cellular mechanism for the adhesion of the 

cells onto the PEDOT/CREKA surface is similar that operating for PEDOT. In both cases the 

cells connect to the surface with filopodia. The spreading of the cells was achieved through 

an intimate contact between cells and surface of the films. Thus, abundant cytoplasmatic 

filopodias were detected forming bridges between the agglomerates of the material at the 

surface of the PEDOT and PEDOT/CREKA. 
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Figure 8 – Adhesion and proliferation of DU-145 cells onto PEDOT (a-d) and PEDOT/CREKA) (e-g) 

surfaces. a) Cells group in cluster (asterisk) to adhere the PEDOT surface. b) The adhesion is tight 

and recovers diverse irregular elements of the PEDOT surface morphology. c) Clustered cells are 

connected by bridge cytoplasmatic elements (arrow), which is a prerequisite to colonize the 

material. d) The cells use filopodias (arrows) to adhere to PEDOT surface. e) Cells grouped in 

clusters (asterisk) to adhere to PEDOT/CREKA surface. f-g) The filopodias are the cytoplasmatic 

elements responsible of cellular adhesion to PEDOT/CREKA. 

 

As it was expected, modification of PEDOT with CREKA is not an easy task because of 

both the small size and, specially, the positive charge of the peptide, the latter precluding its 

incorporation as a dopant. However, results presented in this work are very promising since, 

in spite of its small concentration, the peptide promotes and improves the electrochemical 

properties of the conducting polymer. In order to increase the concentration of CREKA in the 

polymer, several strategies are currently being tested in our laboratories. The first one refers 
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to the complete or partial elimination of the positive charges at the peptide through the pH 

of the generation medium. Unfortunately, preliminary results in this direction evidenced a 

severe degradation of the electrochemical properties of PEDOT produced in basic 

environments. Another interesting alternative consists on enhance the incorporation of 

peptide to the polymer matrix during the whole polymerization process and not only at the 

first stages, as was observed in this work. Thus, modification of the diffusion coefficient can 

be reached by introducing the suitable chemical modification at the peptide. Our current 

research is addressed in this direction. 

 

6.3.4 – Conclusions 

 

Comparison of the morphologies of PEDOT and PEDOT/CREKA indicates that the 

peptide incorporates to the polymer matrix at the first stages of the polymerization process. 

Interestingly, the entrapment of a very low concentration CREKA (0.3-0.4 % w/w) into PEDOT 

significantly affects the electrochemical properties of the CP. Specifically the peptide, which 

has been detected by HPLC and FTIR spectroscopy, not only blocks the oxidation of the CP 

molecules but also promotes the redox capabilities, electrochemical stability, and 

impedance characteristics of PEDOT. Unfortunately, the cellular activity of PEDOT was not 

altered by the incorporation of such low amount of CREKA, even though this peptide is 

expected to bind the fibrin molecules from the serum used as supplement in the culture 

medium. Currently, we are examining alternative strategies to incorporate CREKA into the 

polymer matrix. Elimination of the positive charges of the peptide by varying the pH of the 

generation medium was found to damage the electrochemical properties of PEDOT. Another 

possible strategy, which we are developing at present time, consists on the chemical 

modification of the peptide to promote its incorporation at the last stages of the 

polymerization process. 
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Chapter 7 

 

7. – Discussion of the Results 

 

Global spending for implantable medical devices was around US$200 billion in 2010. 

The majority of biomaterials for medical applications are based on metals such as stainless 

steel and titanium. These materials offer desirable properties, including high tensile 

strength and stability for medical use; however, their biocompatibility is still a problem that 

needs to be addressed.
[1,2] 

Corrosion resistance and superior mechanical properties make stainless steel one of 

the most potential candidates for manufacturing implantable medical devices. However, it 

is not fully biocompatible, but poses various biocompatibility problems. The most 

commonly encountered biocompatibility problems associated with implantation of metallic 

medical devices include: (i) inflammatory response; (ii) cell migration and proliferation; (iii) 

coagulation and hemolysis, caused by interaction of the biomaterial with various blood 

components; and (iv) thrombosis and restenosis as an arterial response to injury. Besides 

these, protein adsorption on the surface that occurs immediately after implantation is a key 

determinant of all subsequent unfavorable biological responses, such as platelet activation, 

adhesion and thrombus formation.
[3,4]

  

Considering these problems, there has been a continuous search for more 

biocompatible options, which include gold, titanium, cobalt–chromium alloys, tantalum 

alloys, nitinol and various polymers such as polypropylene, polycarbonates and 

polyurethanes.
[4]

 Another approach is to modify the steel surface with organic molecules, 

polymers or inorganic coatings.
[5]

 Improved biocompatibility by surface modification 

involves: (i) changing the surface properties of the implant, such as surface texture, surface 

charge, surface energy and surface chemistry, thereby altering the nature of interaction at 

the material–tissue interface; and (ii) coating the material surface with a polymer or 

biomolecular layer to prevent its recognition as a foreign body or to create a less reactive 

layer. This latter approach can be achieved either by: (i) forming a passive surface on the 

biomaterial which elicits little or no immune response; or (ii) creating an active surface 

which elicits beneficial responses and suppresses unwanted reaction.
[6]
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Various coating techniques, such as dip coating, spray coating and 

electropolymerization, are available for coating the surface of a metal. The use of 

conducting polymers as coating materials and electropolymerization as a coating method 

offers several advantages: (i) it is simple and reproducible; (ii) it can form an integrated, 

uniform and durable film; (iii) the coating composition can be easily controlled; (iv) it can 

enable copolymerization of different monomers; and (v) grafting functional substituents 

and entrapment of biomolecules on surface is also possible.
[7,8]

 PTh derivatives are among 

widely used monomers for the preparation of electroconducting polymeric coatings. In 

particular, PEDOT offers several advantages, such as easy availability, chemical stability and 

polymerizability. With the aim of extend the applications of PEDOT to biotechnology and 

biomedicine, both the lack of toxicity and the remarkable cellular activity of this material 

was recently proved by our group.
[9,10]

 The ease preparation and manipulation make PEDOT 

suitable for electrocoating metal surfaces and further provides feasibility of 

immobilization/coupling of biomolecules.  

On the other hand, interaction of CPs with small and large biomolecules, for example 

drugs and DNA, respectively, is a subject of recent interest. Thus, CPs have emerged as 

potential candidates for biosensors. Gerard et al. have reviewed the literature on 

applications of CPs to biosensors.
[11]

 Geetha et al. have discussed the applications of 

conducting PPy to drug delivery.
[12]

 Cosnier has discussed the analytical applications of 

affinity biosensors based on electropolymerized films.
[13,14]

 Ramaniviciene and 

Ramanavicius have reported an interesting overview on the potential use of CPs as 

electrochemical based affinity biosensors.
[15]

 Malinauskas et al. have reviewed the 

electrochemical aspects of CP-based nano-structured materials for application to super-

capacitors, energy conversion systems, batteries and sensors.
[16]

 Adhikari and Majumdar 

have discussed the role of non-conducting and intrinsically CPs in sensor devices.
[17]

 

Drummond et al. have discussed numerous approaches to electrochemical detection based 

on modified electrodes, electrochemical amplifications with nanoparticles and 

electrochemical devices using DNA-mediated charge transport chemistry and 

electrochemistry of DNA-specific redox reporters.
[18]

 Habermuller et al. have reported on 

the various electron-transfer mechanisms operating in amperometric biosensors.
[19]

 

Kerman et al. have predicted that electrochemical DNA biosensors with suitable 

microfabrication techniques are likely to be increasingly popular in the near future.
[20]
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Part of the work presented in this Thesis (Chapters 4 and 5) focuses on the 

prospective applications of CPs in biosensors. More specifically, Chaper 4 presents different 

studies devoted to examine the interaction between different PTh derivatives and DNA. 

These CPs provide a unique surface for DNA binding in that its delocalized electronic 

structure allows positively charged groups mobility along the chain axis. This surface charge 

mobility leads us to conclude that DNA as a polyelectrolyte possessing a fixed negative 

charge distribution would bind very strongly since the surface positive charge could 

redistribute to maximize a favourable energetic interaction. However, the present Thesis 

evidences that CPs bearing polar functional groups are also able to act as hydrogen bonding 

donors and/or acceptors. For example, the side groups of some substituted PTh derivatives 

are able to form specific interactions with well-defined nucleotide sequences of plasmid 

DNA. This selectivity reflects that CP···DNA adducts are stabilized not only by electrostatic 

non-specific interactions but also by additional interactions that depend on the spatial 

disposition and orientation of the chemical groups.  

Amongst specific interactions, hydrogen bonds have been found to be more 

important than other weak interactions, like π-π stacking and hydrophobic. Electrophoretic 

and spectroscopic studies on mixtures of plasmid DNA and both oxidized and reduced 

PEDOT have shown the formation of stable adducts, the formation of interactions with 

specific nucleotide sequences being evidenced through the protection imparted by this 

material against restriction enzymes. These investigations allowed us to propose a 

mechanism for the formation of the adducts with DNA. This consists of an initial 

stabilization of the complexes through non-specific electrostatic interactions, followed by 

small structural re-arrangements that allow establishing specific hydrogen bonds between 

the polar groups of the CP and selected DNA bases. This mechanism requires a structural 

alteration of the B-DNA double helix, which undergoes a drastic transformation as observed 

by CD and UV-Vis spectroscopy. Thus, the very high degree of exposition detected for DNA 

bases was attributed to the effect of the π-conjugated polymer, which promotes the DNA 

unfolding into two separate strands. Furthermore, results presented in this Thesis reflect 

that these specific interactions are predominant for the thymine and, especially, the 

guanine, which is in perfect agreement with previous theoretical observations.    

In summary, the studies described in this Thesis were useful to refine the 

understanding of CP···DNA interactions. PEDOT and other CPs bearing polar groups appear 
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to be promising substrates for the detection of specific DNA sequences. Their remarkable 

electronic and optical properties provide intriguing possibilities for use in biosensor and 

biotechnological device applications. In conjunction with their rational structural 

modification, incorporation of biological macromolecules such as DNA into novel molecular 

architectures possessing intelligent properties may be useful for device applications. 

Applications of CPs to detection of drugs have recently aroused much interest. This is 

because these molecular electronic materials offer control of different parameters such as 

polymer layer thickness, morphology, electrical properties and bio-reagent loading, etc. 

Moreover, CP based sensors are likely to cater to the pressing requirements such as 

biocompatibility, possibility of in vivo sensing, continuous monitoring of drugs, multi-

parametric assays, miniaturization and high information density. Morphine is an opioid 

analgesic used for the treatment of moderate to severe pain. However, morphine is toxic 

when used in excess or abused. For safety precautions, sensitive monitoring of morphine in 

blood or urine is necessary. Several methods have been developed for the detection and 

determination of morphine, including sequential injection analysis method, cation-selective 

exhaustive injection and sweeping micellar electrokinetic chromatography, fast Fourier 

transformation with continuous cyclic voltammetry method, gas chromatography –mass 

spectrometry, high-performance liquid chromatography – fluorescence method, liquid 

chromatography – electrospray ionization ion trap mass spectrometry, etc.
[21-26]

 However, 

these analytical methods are time-consuming and devices are expensive.  

Compared with these approaches, electrochemical sensors based on CPs are of 

particular interest for their practicality, simplicity, low-cost, and suitability for real-time 

detection. Ho et al. reported the amperometric detection of morphine using a Prussian 

blue-modified indium tin oxide electrode.
[27]

 The selective morphine sensitive devices based 

on molecularly imprinted polymer have been described.
[28,29] 

Pournaghi-Azar and Saadatirad 

used
 
Prussian blue film modified-palladized aluminum electrode

 
to monitor morphine by 

both hydrodynamic amperometry
 
and differential pulse voltammetry.

[30]
 But in most cases, 

oxidation of morphine at conventional electrodes always requires a high overpotential, or 

their fabrication process is complex, which usually leads to poor electrochemical 

performance. As a consequence, CP-modified electrodes turn out to be the candidates 

because of their stable physicochemical properties and excellent electrocatalytic activity. To 
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the best of our knowledge, this Thesis presents the first two reports on the electrochemical 

determination of morphine at CP-modified electrodes. 

The results described in this Thesis show the influence of the morphology and the 

chemical nature of the CP on the detection of morphine. The results show that CPs able to 

form microstructures with very large accessible surface exhibit improved detection activity. 

Furthermore, PEDOT-containing electrodes show high sensitivity and fast response towards 

the electrochemical determination of morphine under well-defined conditions (i.e. pH and 

incubation time). The overall results suggest that CP hold great promising potential 

applications for narcotic drugs in the voltammetric determination and sensitive detector 

methods. The main advantages of the electrochemical methods based on the use of CPs are 

their simplicity and rapidity compared to other determination methods. Moreover, results 

have provided the basis for designing portable morphine sensors due to its easy and fast 

preparation, and low cost. 

CPs have attracted much interest as suitable matrices of biomolecules, and can be 

used to enhance stability, speed, sensitivity and hence are finding increasing use in medical 

diagnostics and nanobiology. A number of techniques such as physical adsorption, 

electrochemical entrapment and covalent attachment based on coupling chemistry 

techniques, have been used to improve the stability of the desired biomolecules onto 

CPs.
[31]

 In this Thesis we have examined the abilities of different electrochemically prepared 

PEDOT-containing biocomposites as electroactive scaffolds for cell culture. Martin and co-

workers modified a neural microelectrode with PEDOT, poly(hydroxymethylated-3,4-

ethylenedioxythiophene), or PEDOT/sulfonatoalkoxy EDOT coatings, all of which lowered 

the impedance of the coated electrode over a wide range, while increasing the charge 

capacity compared to the bare electrode.
[32-34]

 The same group also reported that the 

neural probe coated by the order surfactant-templated PEDOT exhibited lower impedance 

and higher charge capacity than uncoated gold, nodular PEDOT, and nodular PPy-coated 

electrodes. In addition human neuroblastoma cells can adhere and perform neurite 

extension on the coated electrode, though the surfactant poly(oxyethylene)10-oleyl ether 

they used is toxic to cells.
[35]

 Development of electrically conducting biomaterials intended 

for direct, functional contact with electrically active tissue, such as the nervous system, 

heart and skeletal muscle, signified a new electrode paradigm for creating soft, low 

impedance implantable electrodes.
[36,37]

 Recently, del Valle et al. reported that the steel 
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electrodes coated by PEDOT films showed good biocompatibility with Hep-2 cells, and 

revealed that the electroactivity of PEDOT in different biological fluids is significantly 

enhanced by the attached cellular monolayer.
[38]

 Neuron-to-electrode attachment is vitally 

important in the performance of deep stimulating electrodes used in the treatment of 

neural diseases such as Parkinson’s and is a concern in the performance of prosthetic 

devices such as retinal and cochlear implants. This involves electrode materials selection 

and design, surface chemical modification strategies and optimization of cell culture 

conditions.
[39]

 Self-assembled method for surface modifications of neural electrodes has 

proved to be more controllable than with the electrodeposited method.
[40] 

In the last chapter of results (Chapter 6) much attention has been focused on the 

combination of PEDOT and biomolecules (lysozyme, dextrins and CREKA) to prepare of 

electroactive conductive films for cell culture. For this purpose, a simple and 

straightforward deposition method, which did not require special instrumentation, has 

been used to produce hybrid biocomposites with reproducible properties. To assess the 

biocompatibility of the new hybrid material with dextrins and CREKA, the attachment and 

proliferation of cells were studied. In contrast the bactericide properties of the 

biocomposite with lysozyme were examined by considering the proliferation of bacteria. 

From an electrochemical point of view, the properties (i.e. electroactivity and 

electrostability) of the lysozyme- and CREKA-containing hybrid biocomposites are better 

than those of individual PEDOT.  Moreover, all these new materials, without any exception, 

resulted more compact and less porous than PEDOT controls, suggesting biological entities 

are evenly distributed in the composites. From a biotechnological point of view, we found 

that the lysozyme- and dextrins-containing biocomposites are not only biocompatible 

materials but also display higher cellular activity than PEDOT. However, the incorporation of 

CREKA into the polymer matrix did not alter the cellular activity of the CP, which has been 

attributed to the small concentration of peptide.  
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8. – Conclusions 

 

8.1 – Block 1: DNA···Conducting Polymers Interaction 

 

(a) PT3M, PEDOT, PT3AME and PT3MDE form stable adducts with plasmid DNA. 

However, assays with restriction enzymes show that only the polymers bearing 

polar groups, especially PEDOT and PT3MDE, are able to interact with specific 

nucleotide sequences.  

 

(b) The interaction of CPs bearing polar groups with plasmid DNA provokes an 

alteration in the secondary structure of the latter: the double helix unfolds 

increasing the exposition of the nitrogen bases. This reorganization allows the 

formation of specific interactions between the DNA bases and such CPs bearing 

polar groups. 

 

(c) The formation of specific interactions between the plasmid DNA and the CP 

depends on the chemical nature of the substituent, even though the presence of 

polar groups seems to be essential. Thus, the degree of exposition of the DNA 

bases depends on the concentration of polar groups per repeating unit contained 

in the CP. 

 

(d) Experiments using PEDOT with different doping levels indicate that neutral PEDOT 

interacts with DNA only when the concentration of the CP is very high. Thus, non-

specific electrostatic interaction between the negatively charged groups of DNA 

and the oxidized CP are essential to form stable adducts, the stability of the 

complexes increasing with the doping level of the CP. 

 

(e) Once the CP:DNA adducts are stabilized, weak interactions that depend on the 

spatial disposition and orientation of the polar groups are formed. These specific 

interactions, which are possible because of the exposition of the DNA bases, are 

responsible of the protection imparted by PEDOT, PT3AME and PT3MDE against 

the attack of the restriction enzymes. 
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(f) Both UV-Vis and CD spectra indicate that dG6 interact with PEDOT through weak 

specific interactions, which do not produce major alterations in the secondary 

structure of the ss-hn. In contrast, dA6:PEDOT and dC6:PEDOT adducts are made 

of compact structures stabilized by strong electrostatic interactions, giving place to 

the loss of the ss-hn secondary structure. The characteristics of dT6:PEDOT 

complexes are half-way between those of dG6:PEDOT and the electrostatic 

adducts involving dA6 or dC6. Thus, experimental results for dT6:PEDOT complexes 

suggest that, although electrostatic interaction play an important role in their 

stabilization, weak specific interactions also participate in their final organization. 

 

(g) Incubation of dG6:PEDOT mixtures with different concentrations of EG and FA, 

which promote the formation of stacking and hydrogen bonds, respectively, 

confirmed the presence of the latter interactions in the complexes while the π-π 

stacking are undetectable. This feature is fully consistent with theoretical results 

derived from MD simulations on dG6:PEDOT mixtures and quantum mechanical 

calculations on small model complexes. 

 

(h) The overall of the results obtained in this Thesis suggests that hydrogen bonds are 

responsible of the interactions with specific nucleotide sequences of DNA. Thus, 

electrophoretograms and both UV-Vis and CD spectra are fully consistent with this 

hypothesis, which is also supported by theoretical calculations. 

 

(i) Hydrogen bonded model complexes formed the building blocks of PEDOT and dG6 

have been used to reproduce the experimental absorption spectra (both the 

energy gaps and relative oscillator strength magnitudes). This feature allowed us 

to conclude the existence of specific N-H···O interactions involving the EDOT 

oxygen and the N-H moiety of G. 

 

8.2 – Block 2: Drug Detection 

 

(a) PNMPy/PSSA hollow microstructures with doughnut-like morphologies, which are 

adhered to the surface of the PNMPy films, have been prepared by CV followed by 

CA techniques using gas bubbles as templates. The concentration and dimensions 
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of the microstructures have been controlled through the distance between the WE 

and the CE. The high electrochemical stability of PNMPy/PSSA has been attributed 

to the doughnut shape of these microstructures, which present a high surface area 

and a good ability to release and catch the ion molecules during the oxidation and 

reduction processes. 

 

(b)  Application of the electrochemical oxidation process in presence of low molecular 

weight electrolytes, like β-NSA and CSA, produces PNMPy microstructures with a 

brain-like morphology forming a wrinkle network system. The electrochemical 

properties of PNMPy/β-NSA and PNMPy/CSA microstructures have been found to 

be significantly lower than those of the hollow microstructures containing films 

made of PNMPy/PSSA. 

 

(c) EIS measurements evidenced the interaction between PNMPy/PSSA and morphine 

molecules. Thus, this prominent material shows a high ability to capture the drug 

molecules and to retain them for a long period of time. This allows to conclude 

that PNMPy/PSSA microstructures are potential candidates for the development 

of new drug detectors. The maximum difference with respect to the blank PEDOT 

samples was obtained at pH= 2 and 7 for incubations times of 3 and 12 h, 

respectively. 

 

8.3 – Block 3: Conducting Biocomposites 

 

(a) Adsorption of lysozyme in the surface of PEDOT films produces a biphasic 

composite that retains the electrochemical properties of the CP but with relatively 

low bactericidal activity. The latter limitation has been attributed to the rapid 

release of the enzyme to the physiological medium. 

 

(b) The addition of lysozyme to the medium used for the electropolymerization of 

PEDOT produces a homogeneous composite in which the enzyme is entrapped 

within the polymer matrix. The electroactivity of this biocomposite is smaller than 

that observed for the unmodified CP, but relatively high yet. The new 

biocomposite shows a very high bactericidal activity against Gram-positive 
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bacteria, which has been attributed to the controlled and progressive release of 

the enzyme. 

 

(c) P(EDOT-LD) and P(EDOT-CD) biocomposites have been synthesized by anodic 

polymerization in water. The electroactivity of the two materials is lower than that 

of pure PEDOT, which has been attributed to the fact that dextrins promote the 

formation of compact surfaces. In spite of this, the electrical conductivities of 

PEDOT and the two biocomposites are very similar, suggesting that dextrins do not 

produce significant changes in the bulk but only in the surface. 

 

(d) The concentration of dextrins in P(EDOT-LD) and P(EDOT-CD) is around 20% and 

15% w/w, respectively. Furthermore, the release of dextrins from P(EDOT-CD) 

depends on the pH, which is due to the existence of aggregation effects at neutral 

pH and the enhancement of the hydrophilic character at acid pH. In contrast, no 

pH-dependence is observed in the release of dextrins from P(EDOT-LD). This is 

because the macromolecular nature of the LD molecules facilitates their 

interaction with the CP molecules. 

 

(e) Cell adhesion and proliferation assays considering two epithelial-like and one 

fibroblast-like lines indicates that the cellular activity is significantly higher in the 

dextrins-containing biocomposites than in pure PEDOT. This allows us to conclude 

that the incorporation of dextrins improves the behaviour of the latter CP as 

cellular matrix. 

 

(f) Anodic polymerization of PEDOT in presence of CREKA allows the entrapment of a 

very low concentration of peptide (0.3-0.4%) into the polymer matrix, which 

occurs at the first stages of the polymerization process. This low amount of CREKA 

affects considerably the redox capabilities, electrochemical stability and oxidation 

characteristics of the CP, even though the intrinsic cellular activity of the latter 

material remains essentially unaltered. 
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