

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR.
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate
the name of the author

Contributions to Presence-Based

Systems for Deploying Ubiquitous

Communication Services

Victoria Beltran Martinez

Wireless Network Group, Department of Telematics

Technical University of Catalonia

Advisor: PhD Josep Paradells Aspas

Co-advisor: PhD Henning Schulzrinne

A thesis submitted for the degree of

PhilosophiæDoctor (PhD)

2011 December

mailto:vbeltran@entel.upc.edu
http://www.upc.edu

10

Context-Aware Rule-Based

Service Composition Platform:

Sense Everything, Control

Everything

There is a current lack of service cooperation and automation that restrains users from

exploiting telecommunication technologies during their daily routine, as described in

Section 2.8. To date, there is no easy way to create new services which integrate

location, presence, calendar, address book, IM, SMS, calls, email, Facebook and Twit-

ter. Networked sensors and actuators for lights, temperature, humidity, smoke, and

motion are also becoming popular both in residential and commercial environments.

Some platforms for creating user-defined services have been proposed, as described in

Section 2.8. These platforms are however only partial solutions (e.g., call handling)

and does not offer easy-to-use and intuitive interfaces or languages for general users.

Furthermore, the Semantic Web is working towards fully automation of service com-

position and invocation. Although the technologies that support such automation are

mature, the Semantic Web is still lacking of pioneer applications that attract large

populations of users and therefore motivate web services to move towards automation.

With these issues in mind, we have developed Sense Everything Control Everything

(SECE), a platform for context-aware service composition based on user-defined rules.

The contributions of SECE are two-fold: a user-friendly rule language and the design

245

10. CONTEXT-AWARE RULE-BASED SERVICE COMPOSITION
PLATFORM: SENSE EVERYTHING, CONTROL EVERYTHING

and implementation of a context-aware service composition framework.

SECE takes actions automatically on behalf of the users depending on the monitored

information and triggered events. In order to build such a system, the user has to define

event-action rules. There are several ways to allow users to define these rules such as

using XML, forms or scripts. We choose to develop SECE using a natural-English-like

formal language because it is more powerful and easy-to-use than XML and form-based

solutions. Below, an example script that turns the home lights on every sunset shows

the end-user friendliness of SECE.

every sunset {

homelights on;

}

Section 10.1 outlines the main benefits of SECE. The SECE language is described

in Section 10.2. Section 10.3 discusses the architecture of SECE. Section 10.4 presents

enhancements of SECE towards the Semantic Web. Lastly, some conclusions are given

in Section 10.5.

10.1 Overview

SECE differs from other rule-based systems in that it provides an interface for creating

rules in natural English-like-language commands. The main drawback of rule-based

systems is that the rule languages involve complex formulaic or XML descriptions. Lay

people are not as inclined to use these systems as the learning curve for these languages

may be steep. Thus, we have defined a formal rule language which resembles English.

With a simplified English-like interface to creating rules, users will be more prone

to incorporate rule-based systems into their lives, making context-aware computing a

seamless part of everyday life. Figure 10.1 compares SECE to some proposed solutions

for user-created services described in Section 2.8. The second column indicates the

user language for defining events and conditions that trigger action scripts. The third

column indicates the language for action scripts. The fourth column shows the kinds of

communication services that the users can use. The following columns show the types

of information handled by the systems. It can be seen that the proposed solutions tackle

partial domains. CPL [152], LESS [47], SPL [153], VisuCom [154] and DiaSpec [155]

are all limited to controlling call routing. CPL and LESS use XML, and hence even

246

10.1 Overview

Systems	
 User	
 rules	
 User	
 ac.ons	
 Communica.ons	
 Time	
 Loca.on	
 Presence	
 Sensors	
 Web	

services	

Actuators	

SECE	
 Natural-­‐language-­‐
like	
 rules	

Tcl	
 scripts	
 Call,	
 email,	
 IM	
 ✔	
 User	
 &	
 buddies	
 Rich	
 ✔	
 ✔	
 ✔	

CPL	
 XML	
 tree	
 Fixed	
 XML	
 ac0ons	
 Call	
 ✖	
 ✖	
 ✖	
 ✖	
 ✖	
 ✖	

LESS	
 XML	
 tree	
 XML	
 ac0ons	
 Call	
 ✔	
 ✖	
 Basic	
 ✖	
 ✖	
 X10,	
 vcr	

SPL	
 script	
 Signaling	
 ac0ons	
 Call	
 ✖	
 ✖	
 ✖	
 ✖	
 ✖	
 ✖	

VisuCom	
 Graphical	
 UI	
 Signaling	
 ac0ons	
 Call	
 ✖	
 ✖	
 ✖	
 ✖	
 ✖	
 ✖	

CybreMinder	
 Form	
 based	
 Reminder	
 ✖	
 ✔	
 ✔	
 ✖	
 ✔	
 ✖	
 ✖	

Task.fm	
 Time	
 rule	
 Reminder	
 ✖	
 ✔	
 ✖	
 ✖	
 ✖	
 ✖	
 ✖	

DiaSpec	
 Java	
 Java	
 ✔✖	
 ✖✔	
 ✖✔	
 ✖✔	
 ✖✔	
 ✖✔	
 ✖✔	

Figure 10.1: Comparison to related work

simple services require long programs. Moreover, XML-based languages are difficult

to read and write for non-technical end-users. DiaSpec is very low level and therefore

only suitable for advanced developers. VisuCom allows users to create services visually

via GUI components. CybreMinder [159] is a context-aware tool which allows users to

setup email, SMS, print out and on-screen reminders. This tool is not as powerful as

scripting-based systems due to its form-based nature. Task.fm [160] is a similar SMS

and email remainder system that uses natural language to describe time instants when

email or SMS reminders will be sent. This tool only supports time-based rules. It can

be seen that only SECE considers rich presence information about the user and his or

her buddies.

SECE provides a platform for context-aware service composition for a number of

services, such as, presence, telecommunication, sensors and location-aware services.

Users can create compositions of services by formulating simple rules. The rules trigger

event-based service composition depending on the user’s context, such as her location,

time, and communication requests. Traditional rule-based systems are mostly designed

to handle a single service domain. SECE, on the other hand, interacts with a few

service domains. SECE connects services that until now were isolated, leading to new,

more useful and user-personalized, composite services. These services do not require

user interaction; they are automated and embedded into users’ life. SECE converges

fixed and mobile services by integrating the Internet, cellular and sensor networks. This

integration requires interacting with Internet servers, web services, home gateways, and

wireless and fixed user devices.

247

10. CONTEXT-AWARE RULE-BASED SERVICE COMPOSITION
PLATFORM: SENSE EVERYTHING, CONTROL EVERYTHING

GContact	
 GCalendar	
 GVoice	
 Twitter	
 PS	
 SER	
 GMail	
 GMaps	
 Flickr	

RULE	
 TYPES	

Time	
 Op$onal	

Calendar	
 Required	

Context	
 Required	

Communication	
 Op$onal	
 SMS,	
 	

voicemail	

SIP	
 call,	

IM	

email	

Location	
 Required	

ACTIONS	

email	
 Op$onal	
 Op$onal	

tweet	
 Required	

Dlickr	
 Required	

sms	
 Op$onal	
 Required	

call	
 Op$onal	
 	
 phone	
 number	
 SIP	

address	

status	
 Required	

forward	
 Op$onal	
 Required	

schedule	
 Required	

homelights	
 Required	

Figure 10.2: Third-party services of SECE rules and some actions

10.2 The SECE Language

The SECE language provides five types of rules: time, calendar, location, context and

communication. As a formal language, it states the valid combinations of keywords

and variables for each kind of event, and provides a set of commands such as “sms”,

“email”, “tweet” or “call”. SECE rules interact with different third-party services based

on their actions and subscribed events. Thus, SECE users need to learn about the

services needed by the rule types and actions that they wish to use for configuring their

SECE accounts for such services. SECE will provide online documentation about each

rule’s and action’s syntax and required services. This documentation will also contain

example rules to help users build rules for specific events and goals, and get familiarized

with SECE rules. Figure 10.2 summarizes the required and optional services for the

SECE rules and some actions.

Any SECE rule has the structure “event { actions }”. Event defines the conditions

that need to be satisfied to execute the actions that are delimited by braces. The SECE

language for describing events is a formal language similar to English that has been

designed to be easy to use and remember by end-users. This language is generated by

an ANTLR grammar [213]. We use the Tcl language [214] as the syntax for the rule

actions. This choice is due to Tcl extensibility that allows adding new commands to

its core with relative ease. Tcl provides a command that receives the name, arguments

248

10.2 The SECE Language

Command Description Parameters Example

accept accepts a SIP call none accept

reject rejects a SIP call none reject

call sends a SIP destination call 0034687137921

or phone call request (from origin) from 1646428479

email sends an email destination subject email azi40@gmail.com “hi”

body (from origin) ”do not forget the milk!”

event returns a calendar title, description,

event’s info location, duration,

participants, event title

start, end

facebook post a message on FB message facebook “Hi all!”

origin,

incoming returns a request’s info destination, incoming origin

content

my returns the user’s info shortcut my activity

status change the shortcut value status activity busy

user’s info

schedule publish a calendar event name schedule “meeting finished”

Table 10.1: Some SECE actions (optional parameters in parenthesis)

and code of a new command as parameters, constructs the corresponding Tcl command

and incorporates it into the Tcl interpreter. Thus, SECE users can describe events in

a user-friendly and natural way while taking advantage of the expressive power of Tcl

to define actions. Moreover, Tcl syntax is simple if no complex control statements

and structures are considered, which can be seen in the rule examples given by the

following subsections. SECE provides a set of new Tcl commands, such as “sms”,

“email”, “tweet” or “call”. Some commands are specific for particular events as for

example the “accept” and “reject” commands can only be used in request-based rules.

Table 10.1 shows some Tcl actions provided by SECE. We may add support for other

scripting languages like Ruby [215] or Python [216] in the future. However, a promising

although challenging future step would be to extend the SECE language to define rule

actions.

SECE tries to make it easy to integrate external knowledge seamlessly without

having to explicitly invoke libraries or functions. User information can be accessed by

natural expressions such as “my mobile” and “John’s address” and their equivalent

shortcuts “me.mobile” and “John.address”. SECE makes it easy to automate actions

249

10. CONTEXT-AWARE RULE-BASED SERVICE COMPOSITION
PLATFORM: SENSE EVERYTHING, CONTROL EVERYTHING

since the context about any rule event can be accessed by means of commands such

as incoming and event that retrieve information from communication and calendar

events, respectively. Address books, IM/presence names and Internet calendars are

put together for creating a single view of the user’s world. Convenient daily times such

as sunset, sunrise and dawn, as well as landmarks names such as “Columbia University”

facilitate rule writing. The following subsections describe the types of SECE rules and

their involved services. In order to clearly display the structure of the rule and action

language, the variables that are set by the user are highlighted in bold. Appendix H

shows the structure of the SECE language’s BNF-based grammar. Moreover, Section

10.2.6 addresses some issues about error detection and event handling.

10.2.1 Time-Based Rules

Time-based rules define single and recurring events, which start with the on and every

keyword, respectively. The iCalendar specification [217] covers single and recurring

events but it is designed to be processed by computers rather than users. We designed

the SECE’s time sublanguage to be easy-to-write while maintaining the full expressive

power of the iCalendar specification. Figure 10.3 shows an example SECE recurrent

event and its equivalent iCalendar definition. As SECE time events are fully iCalendar-

compliant, any time-based rule can be exported to other iCalendar-compliant calendars,

and SECE can import external calendars’ events. Appendix G describes the mapping

between iCalendar and SECE expressions. Sections 10.2.1.1 and 10.2.1.2 describe time-

based rules about single events and recurrences. As well, special considerations about

some particular types of recurrences are given in Section 10.2.1.3.

10.2.1.1 Single-Event rules

A single-event rule defines a particular date at which the rule has to be executed.

Figure 10.4 deptics the structure of this kind of rule. The dateExpr and timeExpr

parameters are date and time expressions, respectively, which are described below.

The timezone parameter is the identifier of the time zone of reference as for example

“America/Los Angeles”. A city name or a user’s location may be indicated, rather than

a complete time zone name. In this case, SECE needs to deduce the corresponding time

zone. If a time zone is not indicated, the default local time zone for the user who created

250

10.2 The SECE Language

Every	
 day	
 at	
 12:00	
 from	
 01/01/2010	
 un4l	
 04/01/2010	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 email	
 employees	
 “lunch	
 4me”	
 	
 “Loca4on:	
 5th	
 floor	
 Dinning	
 Room,	

Time:	
 12:30”	
 	
 	
 	
 	
 	
 	

}	

BEGIN:VCALENDAR	
 	

BEGIN:VEVENT	
 	

DTSTART;TZID=America/New_York:20100101T120000	

RRULE:FREQ=DAILY;BYHOUR=12;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 UNTIL=20100401T120000	
 	

END:VEVENT	
 	

END:VCALENDAR	

SECE	

Export	
 /	
 Import	

Figure 10.3: iCalendar-SECE mapping

on	
 dateExpr	
 	
 (at	
)meExpr	
)	
 (in	
)mezone)	
 {	
 body	
 }	

Figure 10.4: Sketch for single-event rules (optional parameters in parenthesis)

the rule is assumed. Below, some example rules are shown. Figure 10.5 shows the main

grammar rule for single-event rules.

on Anne’s birthday, 2010 at 12:00 in Europe/Zurich {
sms Anne “Happy Birthday!!!kisses. John”;

}
on July 16, 2011 at 10:00 am in bob.location {

call bob;

}
on today at sunset { turn office.lights on }

Date expressions A date expression is a particular day in a year that can be ex-

pressed in multiple formats. Figure 10.6 shows the grammar rule for date expressions.

In addition to the common formats yyyy-mm-dd and mm/dd/yyyy, such as 2012-12-20

and 12/20/2010, other flexible formats are allowed:

• A day in a year: It is an ordinal number followed by the word day. A minus

sign means that the number of day is counted from the last day of the year. In

addition, textual ordinal numbers are allowed such as first, second and so on.

Some examples are “last day, 2011”, “-5th day, 2012” and “45th day, 2012”.

251

10. CONTEXT-AWARE RULE-BASED SERVICE COMPOSITION
PLATFORM: SENSE EVERYTHING, CONTROL EVERYTHING

Figure 10.5: Grammar rule for single-event rules

• A day in a month: It can be expressed as an ordinal number like “25th day of

February, 2012” or a cardinal number like “February 25, 2012”. Months abbrevi-

ations are given by the first three letters of the month such as “Feb” and “Jan”.

A minus sign indicates that the day is counted from the last day in the month

and textual ordinal numbers can be used instead of “th”. For example, “-1th day

of April, 2012” is equivalent to “on last day of April, 2012” and “on April -1,

2012”.

• A weekday in a month: A weekday can be written as its name such as “Sunday”

or its abbreviation, which is the first two letters of its name, such as “SU”. A

particular weekday in a month is expressed as a cardinal or ordinal number such

as “2th TU of December, 2011”, “2 TU of December, 2011”, “December 2 TU”

and “December 2th TU”. A minus sing indicates that the weekday number is

counted from the last day of the month as in “-1 MO of January, 2012”. Textual

ordinal numbers can be used instead of “th” such as “Aug first SU, 2012”.

• A weekday in a particular week: It is expressed as the weekday followed by “in”

and the week number such as “MO in 38th week, 2012”. A minus sign is allowed

to count the week number from the last day of the year. For instance, “WE in

-1th week, 2012” means the last Wednesday in 2012.

In addition to the previous kinds of date, users can indicate special dates. A special

date is a well-known date, such as “Halloween, 2013” or “Thanksgiving day, 2011”, or

a user-defined event, such as “my birthday, 2012”, “bob’s speech, 2011” or “interview

with Tom, 2012”. Users need to define these dates in their calendars. For example,

“my birthday” is defined in one of the user’s calendars for 2012. Moreover, SECE

uses a database of well-known dates in the case the date is not found in the user’s

calendars. The special value “today” is an exception that means the current date and

is not therefore defined in any calendar. Special dates can be combined with the after

252

10.2 The SECE Language

Figure 10.6: Grammar rule for date expressions

and before operators for referring to future and past dates, respectively, as described

below.

Future and past time points The after and before operators refer a future and

past point in time, respectively, from a given special date (e.g., “Christmas day”) or

time (e.g., “sunset”). A future time is pointed by adding an amount of time to the

given time like “2 days after Christmas day” and a past time by subtracting that time

from the given time like “1 month before Christmas day”. If the given expression is

a special date, the time that is added or subtracted can be expressed as days, weeks,

months or years. If the given time is a special time, a number of hours, minutes or

seconds can be used. The after and before operators are exchangeable with the plus

(+) and minus (-) signs, respectively. Some examples are “1 day before bob’s birthday,

2011”, “Thanksgiving day, 2012 + 1 month”, “1 day after annual meeting, 2012”, “30

minutes before midnight” and “sunrise - 1 hour”.

Time expressions A time expression determines the time at which a rule is executed.

Times has the format hh:mm:ss, and am (ante meridiem) and pm (post miridiem) can

be indicated. The number of seconds (ss), is optional. Some examples are “9:00”,

“4:34:20 am” and “1:00:08 pm”. Moreover, there are special times in every day that

can be referred to in SECE rules: “sunrise”, “sunset”, “evening twilight”, “morning

twilight”, “afternoon” and “midnight”. User-defined special times are also allowed,

such as “lunch break”, “TV news” and “first working hour”. A special time can be a

253

10. CONTEXT-AWARE RULE-BASED SERVICE COMPOSITION
PLATFORM: SENSE EVERYTHING, CONTROL EVERYTHING

every	
 freq	
 (on	
 dateExpr)	
 	
 (at	
 *meExpr	
)	
 (in	
 *mezone)	
 (from	
 dateExpr	
)	
 (un1l	
 dateExpr	
)	

(for	
 num	
 1mes|	
 1meUnits)	
 (during	
 period)	
 	

(except	
 dateExprList)	
 (including	
 dateExprList)	
 	
 {	
 body	
 }	

Figure 10.7: Sketch for recurrent-event rules (optional parameters in parenthesis)

reference point for past or future times by means of the before and after operators, as

described above.

10.2.1.2 Recurrent-Event Rules

A recurrent rule is a recurrence that determines a set of repetitive events over time

and has the general form depicted by Figure 10.7. A recurrent rule always starts with

the keyword every, followed by the type of frequency: second for secondly, minute for

minutely, hour for hourly, day for daily, week for weekly, month for monthly and year

for yearly (e.g., every year, every second, every day, etc). It is possible to indicate at

which intervals a recurrence repeats as for example “every 2 years”. If the frequency

interval is not present, the unit is assumed. All the conditions of SECE recurrences

are optional, which are in parenthesis in Figure 10.7. Some simple example rules are

shown below:

every day at last working hour except August {
backup;

}
every day at sunset { turn home.lights on; }
every last monthly day {

email me “Reminder: Check the students’ monthly report”;

tweet “one more month is finished.”;

}
every week on WE at 6:00 PM from 1/1/10 until May 10, 2010 except 3th WE of Feb

including first day of June, 2010 {
email irt-list “reminder: weekly meeting today at 6:00 PM”;

}

A rule’s recurrence pattern is mainly defined by the frequency (i.e, yearly, monthly,

weekly and so on), and optionally by the date expression in its on condition. An on

condition describes when the occurrences within the recurrence take place, as for ex-

ample “every week on WE”. A recurrence will repeat indefinitely if no until, during,

or for conditions are indicated. If the recurrence’s frequency is bound by the date

254

10.2 The SECE Language

expression in the on part, the frequency limits the number of occurrences in the recur-

rence, as in “every week on January”. On the contrary, if the date expression in the

on part is bound by the frequency, the frequency expands the number of occurrences,

as in “every year on January”. When the frequency interval is the unit, the on term is

present and the frequency expands the recurrence, the frequency can be omitted. For

example, “every week on MO” is equivalent to “every MO” while, in “every week on

January”, the frequency can not be omitted because it determines the recurrence. The

from, until, for and during conditions do not define the recurrence pattern but delimit

it. Except and including conditions do not affect the recurrence pattern either. The

former removes occurrences from the recurrence set and the latter includes occurrence

in the set. Recurrent-event rules provide a powerful flexibility and expressiveness that

allows users to define a wide variety of recurrence patterns. End users are therefore

responsible of expressing semantically correct recurrences. As instance, the rule “ev-

ery Thanksgiving Day from August, 1, 2011 until September, 1, 2011” does not make

sense because no Thanksgiving Day occurs between the specified date range. Table

10.2 shows the meaningful combinations of the frequency types and date expressions

in the on condition of recurrent-event rules. Below we describe the possible conditions

of recurrent events and some example time events. Lastly, some considerations about

omitted information in recurrent rules are given.

On condition This term describes when the occurrences within the recurrence occur.

An on condition is a date expression similar to that described in Section 10.2.1.1 but

can indicate multiple dates as described below. A date in an on condition can indicate

a year as long as the kind of frequency is not yearly.

• A set of months: A list of months such as “every day on Jan, Feb, Mar”. In this

case, the preposition “in” can be used instead of “on” for the sake of readability,

as in “every day in Jan, Feb, Mar”.

• A set of days in a set of months: A list of ordinal or cardinal day numbers before

a list of months, such as “every year on 23th, 24th, 25th days of Jan, Feb, Mar”

and “every year on Jan, Feb, Mar 23,24,25”.

• A set of week days in a set of months: A set of weekdays before a list of months,

such as “every MO, TU, WE of Apr, May” and “every year on Apr, May SU”.

255

10. CONTEXT-AWARE RULE-BASED SERVICE COMPOSITION
PLATFORM: SENSE EVERYTHING, CONTROL EVERYTHING

on CONDITION YEARLY MONTHLY WEEKLY DAILY

A day every year every month

on 20th day on 20th day

A yearly day every 20th

yearly day

A monthly day every 20th

monthly day

A month every year every week every day

on Jan on Jan on Jan

A day in a month every Jan 21

A weekday every 2th

in a month MO of Jan

Weekdays every Jan MO

in a month (four MO days)

Any weekday every week

on MO

A particular every year every month

weekday on 1th SA on 1th SA

A particular every year

week on 50th week

A weekday in every year on

a particular week MO in 50th week

A day that every month on

is a weekday 13th day and FR

Table 10.2: Date expressions and frequency types

A particular weekday can be determined by an ordinal or cardinal number as in

“every year on January 2 Monday” and “every year on 4th SU of Feb”.

• A set of days that are some particular weekdays: A list of ordinal day numbers

followed by the keyword “and” and a list of weekdays, such as “every month

on 13th day and Friday”. These expressions only have sense within monthly

recurrences, and hence if no recurrence type is specified, a monthly one is assumed.

• A set of weekdays in a set of weeks: A list of weekdays followed by the keyword

“in” and a list of ordinal week numbers as in “every year on Saturday, Sunday in

20th, 50th weeks”.

• A set of weekdays in every month or year: Time events at some weekdays can

be expressed by means of a weekly recurrence such as “every week on WE, TH”,

256

10.2 The SECE Language

which generates an event every Wednesday and Thursday. A particular occur-

rence of weekday in every month or year can be determined by an ordinal or

cardinal number such as “every month on 1th Monday” and “every year on 8th

SU”. Since weekdays are more commonly bound to months, a monthly frequency

is assumed if the kind of recurrence is not specified. As instance, “every month

on 2th MO” means the second Monday in every month, which can be rewrit-

ten as “every 2 MO”. The second Monday of every year can only be written by

specifying the yearly recurrence as in “every year on 2th MO”.

• A set of days in every month or year: A list of ordinal day numbers before the

keywords “yearly days” and “monthly days” for yearly and monthly recurrences,

respectively, as in “1th, 365th yearly days” and “20th, 25th monthly days”. If

“monthly” or “yearly” is not specified, the day is bound to every month or year

based on the kind of recurrence in the every term (e.g., “every year on 30th

day”). If no kind of recurrence is indicated, a yearly recurrence is assumed (e.g.,

“every 30th day”). The keywords “yearly” and “monthly” are thought to help

differentiating between a day in every month or every year when the type of

recurrence is not indicated. For example, the expression “every month on 30th

day” can be expressed as “every 30th monthly day”. Likewise, the expression

“every year on first day” is equivalent to “every first yearly day”.This is also

helpful in hourly, minutely and secondly recurrences because it makes it possible

to write rules like “every hour on last monthly day”.

From condition This term specifies the time from which the rule gets active in

an inclusive manner. This time is a date expression, which is described in Section

10.2.1.1. Users can indicate only a year rather than a complete date, as in “every

month from 2012”. A from term can include a time after the date expression as in

“from Feb 10, 2010, 9:00”. This time determines the time at which the recurrence

starts and therefore the time at which all the occurrences occur. In the case that an

At term specifies a different time, this time always prevails over that in the from term.

Moreover, from terms can specify any of the special values described in Section 10.2.1.1,

such as sunset and sunrise. From conditions are incompatible with during conditions,

which are described below. Some example events with from terms are “every month

on 14th day from Jan, 1, 2012” and “every MO from March 1, 2012, 11:00 am”

257

10. CONTEXT-AWARE RULE-BASED SERVICE COMPOSITION
PLATFORM: SENSE EVERYTHING, CONTROL EVERYTHING

Until condition This condition indicates when the recurrence finishes in an inclusive

manner. This is a date expression, which is described in Section 10.2.1.1. Users can

also specify a year alone, as in “every month from May, 14, 2011 until 2012”. A time

can also be specified as for example “until my birthday, 2014, 11:00”, which is is only

useful for hourly, minutely and secondly recurrences. Until conditions can specify any

of the special values described in Section 10.2.1.1 such as Christmas Day or sunrise,

and are incompatible with for and during conditions. Two example events are: “every

SA, SU from April,1, 2012 until Aug, 1, 2012” and “every hour from today, 19:00 until

today, 21:00”

For condition This condition limits the number of occurrences in a recurrence by

means of a maximum number of instances or amount of time. The first case uses the

keyword “times” and means “repeat until n occurrences are done”, as in “every day

for 2 times”. The second case uses a time unit, which can be seconds, minutes, hours,

days, months or years, and means “repeat during n time-units”, as in “every week on

FR from Jun, 1, 2012 for 2 months”. The for condition is incompatible with the until

term.

During condition This condition bounds the recurrence by a period of time defined

by the user. A period of time has a start date and an end date. Using a during condition

in a rule is equivalent to combining a from term set as the condition’s start date and

an until term set as the condition’s end time. Thus, during conditions can not coexist

with from and until conditions. An example is “every day at 23:00 during summer”.

In condition The in condition allows indicating a time zone different of the local

one. A user’s location or a city name can be used instead of a time zone identifier,

which involves SECE deducing corresponding time zone. E.g.: “every month on last

day at 9:00 in alex.location”.

Except and Including conditions The except and including conditions are lists

of date expressions that are taken out of and added to the final set of occurrences,

respectively. Section 10.2.1.1 discusses the format of date expressions. Multiple except

and including terms can coexist in a particular rule in an additive manner (i.e., “every

258

10.2 The SECE Language

day except today except Halloween, 2011” is equivalent to “every day except today,

Halloween, 2011”). An except condition takes precedence over any including condition.

This means that if a particular date is included in both an except and an including con-

dition, the date is removed from the recurrence set. Two examples of these conditions

are “every day in November, 2011 except Thanksgiving day,2011” and “every month

until December, 2011 including Jan 15, 2012, Jan 11, 2012”. Date expressions in except

and including terms can specify a time. In the case of an including term, a date with a

time is simply added to the recurrence set regardles whether or not that time is equal

to that in the recurrence set that is given by the from and at conditions. However, if a

time is specified in an except term, that time should be equal to that of the recurrence

set. Otherwise, the mismatched except term is ignored and therefore has no effect on

the final set of occurrences. As instance, the except term in the rule “every day at 10:30

except Sept, 2011, 12:00” has no effect. If no time is specified, the time of the added or

removed occurrences is assumed to be the time of the recurrence set. For example, the

rule “every day at 12:00 except September 22, 2010” takes out the event “September

22, 2010, 12:00” of the recurrence set.

When a particular month is specified in an except or including condition without

a particular day, the set of occurrences that are taken out or added depends on the

particular recurrence. This is the set that matches the rule’s recurrence pattern for the

specified month. For example, “every week except June” takes out the four events that

corresponds to the weeks in June while “every day except June” takes out 30 events,

one for each day in June. The on condition affects the set of occurrences that are

derived from an except or including condition. For example, in the rule “every week

on Saturday, Friday until February, 2012 including April”, the including term adds

eight occurrences, which are all the Saturdays and Fridays in April, to the final set of

occurrences.

A rule’s occurrences can be set to occur at particular hours, minutes or seconds by

defining at terms or by hourly, minutely or secondly frequencies. For example, “every

MO at 12 hours at 20, 40 min” generates one event at 12:20 and other event at 12:40

every Monday, and “every 2 hours on 30th monthly day” generates events at 9:00,

11:00, 13:00, etc., every last day of month. In these cases, if an except or including date

does not specify a time, this date is split into multiples occurrences that match the

rule’s recurrence pattern. As instance, “every MO at 12 hours at 20,40 min except first

259

10. CONTEXT-AWARE RULE-BASED SERVICE COMPOSITION
PLATFORM: SENSE EVERYTHING, CONTROL EVERYTHING

MO of April,2012” takes out the two events that occur on the first MO of April, 2012,

at 12:20 and at 12:40. The example “every 2 hours on 30th monthly day including 3th

day of April, 2011” includes the events that occur every 2 hours on April 3, 2011, into

the set of occurrences. As mentioned above, if an except date includes a time, it must

match the rule’s time pattern. Otherwise, that date is not taken out of the recurrence

set. On the contrary, any time can be specified in an including condition because it is

an addition. For instance, the rule “every MO at 12 hours at 20, 40 min including first

MO of April, 2011, 11:00” includes the specified event that occurs at 11:00.

At condition This condition specifies the time at which the occurrences happen in

a recurrence (e.g., “every TU at 10:00 am”). Special times can be specified such as

sunrise, as described in Section 10.2.1.1. At conditions allow defining a set of occur-

rences by nesting hours, minutes and seconds. This means that recurrence instances

can be set to occur at particular hours in a day such as “at 8, 9, 10 hours”, at par-

ticular minutes into an hour like “at 20, 45 minutes” and at particular seconds into a

minute “at 10, 20 seconds”. For example “every day at 8, 9 hours at 30 minutes at

15, 40 sec” generates occurrences at the times 8:30:15 , 8:30:40, 9:30:15 and 9:30:40.

Nested at terms expands the rule recurrence since they split every occurrence in the

recurrence into multiple times. When an at condition does not include any textual

time unit (e.g., “hours”), this means the time at which all the occurrences occur and

no more at conditions are permitted.

Default information in recurrences Any occurrence within a recurrence is uniquely

defined by a year, month, day and time. If a rule does not contain an on condition,

the set of occurrences is determined by the from condition. This term specifies the

first occurrence in the set, which will repeat at the given frequency. As instance, “ev-

ery year from September 1, 2011” generates a recurrence that repeats the first day of

September every year. If neither an on nor a from condition is specified (e.g., “every

week”), only the frequency determines the recurrence. In this case, the first day of the

frequency type (i.e., every year, month or week) is assumed. If a rule does contain an

on condition but lacks the particular day (e.g., “every year on April”), a default value

defined by the user is assumed or, otherwise, the first day that matches the recurrence

is assumed (e.g., first day of April).

260

10.2 The SECE Language

The time at which each occurrence occurs can be specified by means of the at and

from conditions. For instance, the rules “every day at 12:00 from 12th day of Septem-

ber,2011” and “every day from 12th day of September, 2011, 12:00” are equivalent.

If a rule contains an at condition, it should not include a time in a from condition.

The time in at conditions always prevails over that in from conditions. If no time is

specified in an at or a from condition, a default time defined by the user is assumed.

Nested at conditions can be used to split the occurrences into different times, as de-

scribed previously. In this case, the time at which the occurrences occur is the result

of combining the at conditions and the time in the from term. For example, the rule

“every day at 20, 30 minutes from March 1, 2011, 11:00” generates two events at 11:20

and 11:30 every day.

10.2.1.3 Hourly, Minutely, and Secondly Recurrent-Event Rules

In addition to the description of recurrent-event rules given in Section 10.2.1.2, this

section gives special considerations about hourly, minutely and secondly recurrences.

SECE distinguishes two types of hourly, minutely and secondly recurrence: continuous

and discontinuous recurrences. Continuous recurrences start and end at the times

specified by the from and until conditions, respectively. The period during which the

recurrence lasts is continuous and the recurrence is not restarted when a new day

begins. This type of recurrence follows the iCalendar definition of hourly, minutely and

secondly recurrences and its rule structure is depicted in Figure 10.7. For example,

the rule “every 3 hours from January 15, 2011, 22:00 until January 16, 2011, 8:00”

generates the events “‘January 15, 2011, 22:00”, “January 16, 2011, 1:00”, “January

16, 2011, 4:00” and “January 16, 2011, 7:00”. A discontinuous recurrence also starts

and ends at the times indicated by the from and until terms, respectively. This kind

of recurrence however is only active in a given time range. SECE provides a flexible

way to define discontinuous recurrences. There are two ways of defining the time range

during which a recurrence gets active: the from/to and in condition. The in condition

is an identifier that represent a start and end time defined by the user. For example, the

rule “every hour in working hours from October 1, 2011 until June 1, 2012” generates

an event every hour from 9:00 to 17:00 in every day, assumed that “working hours” is

the time range [9:00, 17:00]. The from/to’ condition indicates the start and end times

explicitly rather than a predefined variable. For example, the afore-mentioned rule can

261

10. CONTEXT-AWARE RULE-BASED SERVICE COMPOSITION
PLATFORM: SENSE EVERYTHING, CONTROL EVERYTHING

at CONDITION HOURLY MINUTELY SECONDLY

Particular hours boundary (every boundary (every boundary (every

hour at 10, 11 hours) minute at 10, 11 hours) second at 10, 11 hours)

Particular minutes multiplier (every boundary (every boundary(every

hour at 30, 45 mins) minute at 80, 45 mins) second at 80, 45 mins)

Particular seconds multiplier (every multiplier (every boundary (every

hour at 300 sec) minute at 50, 40 secs) second at 300 sec)

Table 10.3: Effect of at conditions on hourly, minutely, and secondly recurrences

be rewritten as “every hour from 9:00 to 17:00 from October 1, 2011 until June 1, 2012”.

Time ranges can be defined with any of the special times described in Section 10.2.1.1 as

for example “sunrise”. If an on term is not specified in a discontinuous recurrence, the

recurrence repeats every day. If an on term is included, the recurrence is restarted on

the specified days. Thus, a discontinuous recurrence is an hourly, minutely or secondly

recurrence that repeats every day or the days determined by an on condition.

If an hourly, minutely or secondly recurrence does not include a from condition, the

current date is taken as start point for the recurrence. The time of the occurrences is

based on the type of recurrence. In the recurrence is continuous and the from condition

does not contain a time, the first hour in the day (00:00:00) is assumed. If the until

condition does not contain a time, the latest time in the day (23:59:59) is assumed. If

the recurrence is discontinuous, the time at which the first and last occurrences occur

is determined by the from/to or in condition, as described above. If a discontinuous

recurrence contains a from or until condition with a time, this time should be according

to the time range during which the recurrence is active. Otherwise, the time is ignored.

Nested at conditions, which were described in Section 10.2.1.2, can be used in hourly,

minutely and secondly recurrences for expanding or limiting the recurrence. Table 10.3

outlines the effect of nested at conditions on these types of recurrences.

10.2.2 Calendar-Based Rules

These rules specify events that are defined in the user’s Google Calendar (GCalendar)

and always start with the keyword when. Thus, the user needs to configure his GCal-

endar in his SECE account before entering rules of this kind. Figure 10.8 depicts the

syntax of calendar-based rules.

262

10.2 The SECE Language

when	
 mee#ng-­‐name	
 	
 begins|finishes	
 {	
 body	
 }	

when	
 #me	
 #me-­‐units	
 	
 before|a2er	
 	
 mee#ng-­‐name	
 {	
 body	
 }	

Figure 10.8: Sketch for calendar-based rules

Figure 10.9: Grammar rule for calendar-based rules

These rules can be triggered some time before or after calendar events occur, as

well as when these events begin or finish. These rules may be useful to create user-

personalized reminders, as the first example below, but also for other services, as the

second example. When a calendar-based rule is entered, SECE checks out that the

event exists in any of the user’s calendars (e.g., “weekly meeting” in the examples

below). Otherwise an error message is displayed and the rule is not created. SECE

determines when the rule should be triggered based on the rule’s conditions and the

event’s starting and end times. Calendar-based rules accept the text “any meeting”

instead of an event’s name for referring to any event in the user’s calendars. Figure

10.9 shows the main grammar expression for the Calendar-based rules’ syntax. Some

example rules are given below:

when 30 minutes before “weekly meeting” {
email [event participants] “The weekly meeting will start in 30 minutes”;

if {![me within 3 miles of campus] } {
email [status bob.email] “I’m away” “Please, head the conference room and prepare

everything for the weekly meeting. Not sure if I will be on time.”;

}
}
when “weekly meeting” begins {

status activity busy;

sms [event participants] “Please, switch your cell phone off or set silent mode”;

}

263

10. CONTEXT-AWARE RULE-BASED SERVICE COMPOSITION
PLATFORM: SENSE EVERYTHING, CONTROL EVERYTHING

User	
 	
 operator	
 	
 loca,on	
 {	
 body	
 }	

Figure 10.10: Sketch for location rules

10.2.3 Location-Based Rules

A location rule starts with the keyword me, if it is about the user that is entering the

rule, or an identifier of one of her friends such as a nickname, email or SIP address.

Figure 10.10 shows the general structure of these rules. Five types of location infor-

mation are supported: geospatial coordinates (longitude/latitude), civic information

(street addresses), well-known places, user-specified places and user locations. Well-

known places are unique and widely-known landmarks such as “Columbia University”

or “Rockefeller Center”. User-specific locations are places that are of interest for the

local user and therefore are defined by the user in the system, such as “office”, “home”

and “school”. The system resolves these constants via the user’s address book. SECE

interacts with the Google Maps (GMaps) web service [218] for performing geocoding

(i.e., obtaining geographic coordinates) of civic information and well-known places. The

GMaps service returns more than one solution when the user’s input location is inac-

curate. In this case, SECE will request the user to select one of the possible locations

before creating the rule. In the future, SECE will guess the best possible candidate

locations based on the user’s position. User position could be given via two means:

the PS and the Google Latitude (GLatitude) service [219]. The former requires the

user to use a mobile presence application that publishes his location information such

as mobile instant messengers (see Section 2.1), and configure this application with the

SECE PS (see the SECE architecture in Section 10.3). The latter requires the user to

have installed GLatitude [220] on his mobile device. This application determines the

user device’s location through Wi-Fi, 2G/3G/4G mobile or GPS satellite signals.

Different geospatial operators can be used in location-based rules, such as near,

within, in, outside of or moved. Below, a location rule using the near operator is

shown.

Bob near “Columbia University” {
if{ [my status is idle } { call bob; }

}

264

10.2 The SECE Language

Figure 10.11: SECE geographical database GUI

The Within operator means that the user is within a radius of the given location.

The Near operator means the same but the radius is a default distance that the user

defines in his SECE account. The Outside of and in operators mean that the user

is outside of and inside the given location, which must be represented as a polygonal

structure. We are working on a location database that allows users to predefine places

and polygonal locations through a GMaps-based GUI. Figure 10.11 shows a snapshot

of this interface. The moved operator means that the user moved the given distance

from where he was located when the rule was entered or triggered for the last time.

Some example location events are shown below:

Bob near “Columbia University” { ... }
me near 37:46:30N,122:25:10W { ... }
me within 3 miles of “1000 Massachusetts Avenue, Washington, DC” { ... }
Alice in clubhouse { ... }
Tom within 5 miles of me { ... }

Figures 10.12 and 10.13 show the main grammar expressions for location rules;

Section 10.2.3.1 describes breifly the operation of location rules.

265

10. CONTEXT-AWARE RULE-BASED SERVICE COMPOSITION
PLATFORM: SENSE EVERYTHING, CONTROL EVERYTHING

Figure 10.12: Grammar rule for location rules

Figure 10.13: Grammar rule for the location element of location rules

10.2.3.1 Operation

Location rules are logically split into three parts: the user or subject, the location

operator and the given location. For instance, in the first example rule above, the

user is “Bob”, the operator is “near” and the given location is “Columbia University”.

The operation of a location rule depends on the type of the rule’s given location.

As described above, this location can be expressed as geospatial coordinates, civic

information, a well-known place, a user-defined place and other user’s location. We are

working on integrating a server based on the Location-to-Service Translation Protocol

(LoST) for handling civic information and generic locations such as “a museum” and

“a postal office”. LoST [221] is an XML-based protocol for mapping service identifiers

and civic information to contact URIs. This protocol is being enhanced for finding

location-based services according to the user’s location [222]. Generic locations will be

accepted by any of the location operators described previously by preceding them with

the “a” or “an” indefinite articles as in “me near a post office”.

Figure 10.14 depicts the operation steps when a new location rule is entered into

SECE, and it interacts with the above-mentioned LoST server. If the rule’s given

location (i.e., location in Figure 10.14) is a set of geographic coordinates or a user-

defined place, SECE does not need to find out the location’s geographic coordinates.

In the case of a user-defined place, SECE stored its coordinates in a geo-cache at the

266

10.2 The SECE Language

SECE	

Server	

LoST	

Server	
 Geographical	
 	

database	

LOST	
 REPLY	

LOST	
 QUERY	

loca=on=civic	
 info	

Loca=on	
 rule	

geo-­‐cache	

Figure 10.14: Operation flows for a new location rule entered into SECE

moment the place was defined by the user. If the given location is a user or generic

place, SECE does not need to resolve this location when the rule is created. Since this

location is variable, geocoding will be done whenever the rule is evaluated. SECE only

asks the LoST server to geocode the given location if it is a civic address or well-known

place and its coordinates have not been stored yet in the geo-cache. Figure 10.15 shows

the operation flows when a location rule is evaluated. This occurs when the location of

the rule’s subject changes. Although in Figure 10.15, location changes are notified by

the PS, the GLatitude web service may also be configured to detect the user location.

Whenever SECE detects a change in a user’s location, it checks out whether the user

is the subject of any location rule. In this case, the actions to take depend on the type

of the rule’s given location. If the given location is a user, SECE retrieves the user’s

current location from the presence database. If this information is outdated or does not

exist in the database, SECE tries to find it out via the PS or GLatitude. If the rule’s

given location is a civic address or well-known place, SECE retrieves its geographical

coordinates from the geo-cache (i.e., they were stored at the time the rule was created).

Then, SECE checks out that the geographic coordinates of the rule’s given location

and subject satisfy the specified geospatial relationship (i.e., the rule’s operator) and,

in this case, executes the rule. Only if the given location is a place type (e.g., “a

museum”), SECE will pass the LoST server the place type, the geospatial relationship

and the subject’s geographic coordinates for obtaining the geographic coordinates of

the places that satisfy the relationship with the subject. If the LoST server’s response

is not empty, the location rule is executed.

10.2.4 Request-Based Rules

Request-based rules specify the actions to execute in response to (a) incoming calls,

IMs, emails, SMSs and voicemails, (b) outgoing calls and IMs, and (c) missed calls.

267

10. CONTEXT-AWARE RULE-BASED SERVICE COMPOSITION
PLATFORM: SENSE EVERYTHING, CONTROL EVERYTHING

SECE	

Server	

LoST	

Server	

Presence	

Server	

PUBLISH	
 LOST	
 REPLY	

LOST	
 QUERY	

loca9on=place	
 type	

NOTIFY	

SECE	
 User	

geo-­‐cache	

Presence	
 database	

loca9on=civic	
 info	
 loca9on=user	

Figure 10.15: Operation flows for a location change

incoming|outgoing	
 event	
 	
 (from	
 	
 user|address)(to	
 address)	
 {	
 body	
 }	

missed	
 call	
 	
 (from	
 	
 user|address)(to	
 address)	
 {	
 body	
 }	

Figure 10.16: Sketch for request-based rules (optional parameters in parenthesis)

A request rule can start with the keyword incoming, outgoing or missed, followed by

the type of event. While an incoming or outgoing call is always a SIP call, a missed

call could be also a phone call. As described in Section 10.3, SECE tightly interacts

with a SIP Express Router (SER) server for handling SIP requests. Users need to

configure their SIP-based applications to forward any SIP communication to the SER

server. When this server receives an incoming request for multimedia session or instant

messaging (i.e., SIP INVITE and MESSAGE methods, respectively), it notifies SECE

of this event through an efficient proprietary protocol. If the request is for a session,

the SER server stands by until SECE determines the action to take, that is, to accept

or reject the call. Then, SECE checks out whether any rule matches the incoming

event. In this case, it executes the rule’s actions, which most probably include some

action that interacts with the SER server such as “reject” or “call”. In the case that

the incoming request is a call and the rule does not decide whether or not to accept

it, SECE rejects the request. SECE uses the GVoice service [223] for detecting new

missed calls, voicemails and SMSs. Thus, users need to configure the phone numbers

that they wish to use in request-based rules into their GVoice account. As regards

incoming emails, the Google e-Mail (GMail) service [224] is used.

Figure 10.16 depicts these rules’ structure. All these events can be filtered by the

268

10.2 The SECE Language

user destination and origin by using the from and to parameters, respectively. Some

request-based rules are given below. The parameter to can be an address, phone number

or shortcut (e.g., phones.personal). As a missed call may come from the cellular network

or Internet, if the to condition is missing, both sources are considered. Users can restrict

missed calls to cellular calls by typing a Google Voice (GVoice) identifier such as “to

google voice” or “to gv”, or specifying a particular phone number. SIP missed calls are

indicated by a SIP address. The parameter “from” specifies the requester, which can be

expressed in different ways. A nickname, as for example bob, implicitly includes all the

communication means associated with the user identified by the nickname. An address

identifies a SIP or email requester. Expressions like “John Brown’s phone.personal”

or “alice smith@gmail.com’s 1-646-32-8412” are used to refer to a particular user’s

communication means. Figure 10.17 shows the grammar rule for request-based rules.

incoming call from a workmate {
if {[my activity is “on the phone”] } { forward sip:bob@example.com; }

}
missed call {

if { [my activity is meeting] } {
sms [incoming caller] “Sorry,I am in a meeting but will call you back asap.”;

}
}
incoming call to me.phone.work {

if { ![my location is office] } {
autoanswer audio no office.au;

email me “[incoming caller] tried to reach you on your work phone at

[incoming time]”;

}
}
incoming email from my boss {

if { ![my activity is working] } {
sms me “New email from the boss at [incoming time]. Subject:

[incoming subject]”;

}
}
incoming im {

if { [my status is away] } {
sms me “[incoming from] sent this IM: [incoming message]”

}
}

269

10. CONTEXT-AWARE RULE-BASED SERVICE COMPOSITION
PLATFORM: SENSE EVERYTHING, CONTROL EVERYTHING

Figure 10.17: Grammar rule for request-based rules

if	
 context	
 	
 (value)	
 {	
 body	
 }	

Figure 10.18: Sketch for context-based rules

10.2.5 Context-Based Rules

These rules specify the action to execute when some context information changes, such

as presence or sensor state. These rules always start with the keyword if. If the rule

is about the user that is entering the rule, this keyword is followed by my. Otherwise,

the if keyword is followed by an identifier of one of the user’s contacts. Figure 10.18

depicts the structure of this kind of rule and some examples are shown below.

if my activity changed { schedule “activity: [status activity]”; }
if bob@example.com’s status is available { alarm me; }
if my stock.google >14 { sms me “google stock: [stock google]”; }

The user’s context (e.g., activity, status and stock.google in the above rules)

is a hierarchical variable in the form of x.y.z.t, such as phone.office, activity and of-

fice.temperature built from the user’s tree registry, which is described in Section 10.3.

The rule’s subject is given by the my and ’s operators (e.g., “bob’s phone.office” and

“my activity”). Shortcuts can be used instead of these operators, so that for example

bob.device.mobility is equivalent to bob’s device.mobility. Internally, each context-

based rules generates a listener for a node of the user’s registry. Figure 10.19 shows the

grammar rule for context-based rules. Relational operators can be expressed as symbols

or text (e.g., the equal relation can be given by “=” and “is”’). The changed, re-

moved and added conditions are satisfied when the rule’s context is changed, removed

or created, respectively. When no shortcut is included, only the changed condition is

allowed. This means “any change in the specified user’s registry”.

270

10.2 The SECE Language

Figure 10.19: Grammar rule for context-based rules

Information derived from sensors such as smoke, light, humidity, motion and tem-

perature can be also used in context-based rules. Naming of sensors is an open problem

that, for now, is beyond our scope. We have adopted a simple solution that consists

in a translation table from internal, machine-friendly names (e.g., 00-0C-F1-56-98-AD)

to more user-friendly identifiers (e.g., office.smoke).

if my warehouse.motion equals true { sms me “person in the warehouse.”; }
if my office.smoke equals true {

sms me “fire in the office”;

calltts firedepartment “fire in [status office.address]”;

}

10.2.5.1 States vs. Events

SECE is designed for handling events (i.e., state transitions) that trigger a set of actions.

State transitions are suitable for discrete events such as calls and calendar events.

However, state transitions have some limitations on behavior that combines a set of

variables to define the state of another variable. For example, to manage the home

heating systems, events would have to be defined for people entering and leaving the

house, along with temperature and time-of-day conditions. It is much easier to write

such cases as predicates, such as “turn on the air conditioner if the indoor temperature

is higher than 80 F and I am at home”. One possible syntax for such conditions is

shown in the example below. Only one predicate can exist for a variable and, hence,

rule conflicts on actuators are avoided. We are currently exploring the applicability of

predicate- and event-based systems, and whether it makes sense to integrate them or

keep them separate.

ac := temperature > 80 and me in home;

271

10. CONTEXT-AWARE RULE-BASED SERVICE COMPOSITION
PLATFORM: SENSE EVERYTHING, CONTROL EVERYTHING

10.2.6 Error Detection and Handling

Users can create multiple rules of a variety of kinds, which are running parallel on

SECE. It is therefore possible that a user creates a rule that involves unexpected results,

specially if the user has little experience in creating rules. Although unexpected results

are very hard to detect, we can address this issue in several ways. SECE provides online

documentation about events and how to create correct compositions. Nevertheless, we

can not assume that users enter the correct rules that will execute exactly what they

intended. Thus, we are planning to add a dry-run mode that allows users to know

what SECE would do when rules are triggered. Actions are just logged rather than

executed. A functionality to test rules before inserting them into SECE will also be

provided. This will show the sequence of rule actions and possibly the value of rule

variables that will be executed when triggering the rule. Moreover, we will avoid

infinite loops by simple preventions such as limitations on the times a particular action

is invoked and the CPU time taken by a rule. Moreover, we are working on formalizing

SECE events through an event algebra for tackling instantaneous (point-based) and

durative (interval-based) events. This algebra will formally define how these events can

be composed and their temporal relationships (e.g., sequence and concurrency). This

will permit SECE to exactly detect when the state of resources, such as actuators (see

Section 10.2.5.1) and voicemails, have to be changed, thereby avoiding unexpected or

wrong results. For example, if the event of the rule “if me in home { ac on; }” is treated

as an instantaneous transition state, the user’s air conditioner will be switched on at

any time when he gets home. However, this rule does not necessarily involve turning the

air conditioner off when the user goes out. This event would better be considered as the

durative event “during(me in home){ ac on; }”, and hence SECE would switch the air

conditioner off whenever the event “me in home” gets false. Composite events require

more complex semantics definition. The length of durative events should be considered

when composing events. Let us take the example “If me in home and temperate > 80F {
ac on; }” that means “if I get home and afterwards my home temperature is higher than

80F, switch the air conditioner on”. Then, let A be the set of all user location events

in his house. Let B be the set of all temperature events higher than 80 Fahrenheits.

If both A and B events were considered as instantaneous events, SECE would wrongly

detect the situation depicted on the upper line in Figure 10.20 as a matching event. The

272

10.3 Architecture

Figure 10.20: Example of point-based and interval-based event timestamps

user got home but, before the temperature rose above 80 Fahrenheits, he left home. On

the contrary, if A events were considered as durative events (the bottom line in Figure

10.20), SECE would detect that this event finished before the event B arose and the

rule would not be triggered incorrectly.

10.3 Architecture

Figure 10.21 gives an overview of the overall SECE architecture and how it interacts

with its environment. SECE is a web service that interacts with other web services,

namely Google Services and Social Media services such as Twitter, Flickr and Facebook.

The rules that are running on SECE and the rules’ actions that will potentially be

executed determine the services with which SECE needs to interact. Thus, based on

the kinds of rule that the user wishes to create and the actions that she wishes to

compose, the user will need to configure the proper third-party services in her SECE

account. Section 10.2 explains the SECE rules and actions, and their required services

in more detail.

We are developing two services that tightly collaborate with SECE: the PS and the

VoIP proxy server. The PS is built on the Mobicents Presence Service [225], which

is compliant with SIMPLE . This server is responsible for collecting and aggregating

context from different sources, and sending it to SECE. This server receives presence

publications from context sources that contain the latest information about a user, and

in turn notifyies SECE of the context changes. In the SECE framework, context sources

include user devices’ presence applications and gateways that control sensor networks,

energy consumption and user location via Radio Frequency IDentification (RFID). To

use the presence service, the end user needs to create an account from the SECE website

in order to obtain the SECE PS access information. Thus, the user can configure the

SIMPLE-compliant presence applications that run on her mobile devices or desktop

computers to use the SECE PS. Section 2.1 mentions some SIMPLE-compliant instant

273

10. CONTEXT-AWARE RULE-BASED SERVICE COMPOSITION
PLATFORM: SENSE EVERYTHING, CONTROL EVERYTHING

SECE	
 PUBLISH	

PIDF-­‐LO	

SUB/NOT	

PIDF-­‐LO,	
 RPID,	

others	

geocoding	

travel	
 Bme	

next	
 appt.	

GW	

control	
 appliances	

update	
 SNs,	
 ,	
 email…	

B2BUA	

call	
 state	

Alice	
 	
 a@b.com,	

	
 +1	
 212	
 555	
 1234	

RFID	

GW	

monitor	
 energy	

usage	

GW	

Call	
 events,	
 VM,	
 SMS	

Figure 10.21: SECE architecture

messengers. In the future, the SECE PS will interact with the SECE home gateway for

obtaining information from sensor networks and changing the state of actuators. The

VoIP proxy server is a SER [226] extended to interact with SECE for handling users’

SIP communications. This server and SECE implement an efficient binary protocol

that lets SER inform SECE of a SIP event and lets SECE notify SER of the action to

take for this event. Basically, SER informs SECE of calls and IMs. If a call or an IM

matches a rule, the rule is triggered, and hence it decides to forward, reject, or modify

the call by invoking an action. Then, SECE will let SER know about the action to

take. Figure 10.22 depicts the interaction model between the SER server, SECE and

media servers. The user needs to create a SER account through her SECE account for

using the VoIP proxy service. The user also needs to set her SIP-compliant multimedia

applications to use the SECE VoIP proxy server as outbound/inbound SIP proxy.

SECE considers not only the user’s context but also information about external

entities other than sensors, such as her buddies. SECE keeps the user information

in a Document Object Model (DOM) [227] tree registry. The user information is not

restricted to personal information but also includes contextual information from sensors

and Internet services. Context-based rules associate events with the registry’s nodes. A

274

10.3 Architecture

Figure 10.22: SER SIP server and SECE interaction model

root	

me	
 Bob	
 Alice	

phone	

home	
 office	
 mobile	

ac2vity	
 loca2on	
 loca2on	
 office	

temperature	
 lights	

me.office.lights	

video	

placeis	
 placeis	

video	
 text	
 audio	

bob.ac0vity	
 	

alice.placeis.video	

Figure 10.23: Partial user information registry

rule does not have to be associated with a leaf node; it can be associated with any node.

The benefit of associating rules with top-level nodes is to write generic rules like “if Bob

changes {...}” to allow monitoring any activity related to a subtree. Figure 10.23 shows

a user’s partial information registry. Each node of a user’s tree registry represents an

attribute, which is identified hierarchically by concatenating the intermediate attributes

from the root element, which is the user’s name, as in me.phone.home. We refer to a

registry node’s identifier as shortcut.

Since SECE is aimed to converge multiple Internet services and information sources,

the address book of SECE users can be composed from multiple external services. Cur-

rently, SECE obtains the user’s address book from his Google Contacts (GContacts)

275

10. CONTEXT-AWARE RULE-BASED SERVICE COMPOSITION
PLATFORM: SENSE EVERYTHING, CONTROL EVERYTHING

SECE	

Home	
 Gateway	

Office	
 Gateway	

Device	

Indepe
ndent	

Insteon	

ZigBee	

RFID	

…	

Device	

Indepe
ndent	

Insteon	

ZigBee	

RFID	

…	

Presence	

Server	

RDF	

model	

RDF	

model	

SI
M
PL
E	

SIMPLE	

HTTP	

Figure 10.24: The architecture of sensors and actuators gateway

account [228]. In the future, users will be capable to aggregate their contacts in social

networks and presence-enabled applications into their SECE address books. SECE will

communicate with the PS for downloading the user’s buddy lists in presence applica-

tions. When a new contact is downloaded, SECE analyzes its information and maps

it to the user’s tree registry. A contact can have multiple identifiers such as SIP and

email addresses, and phone numbers. Users can also identify their contacts with more

convenient nicknames (e.g., Bob or Anne) for convenience. Nicknames therefore should

be unique. Users can type any kind of identifier in their rules and SECE will figure out

what contact is associated with the identifier.

Figure 10.24 shows the interactions between SECE, its PS and home gateway for

handling sensor information. SECE obtains sensor information through SIMPLE noti-

fications that include RDF [170] documents, which makes SECE sensor-network agnos-

tic. Actions on actuators are described in RDF documents that are sent to the gateway

via POST HTTP. The gateway is split into two layers: the device-independent layer

maintains an RDF database that represents the conceptual sensor model. The protocol

layer carries out the necessary translations between the RDF model and the device-,

network-dependent information and actions. SECE automatically creates Tcl com-

mands for each actuator after being notified of the RDF model. Currently, we are

experimenting with ZigBee and Insteon wireless device control modules.

A first prototype of SECE has already been developed as a web service and is being

tested by members of the Internet Real Time Lab (IRT) at Columbia University. Figure

276

10.3 Architecture

Figure 10.25: Snapshot of the SECE web service

10.25 shows a snapshot of the SECE web service that shows the rules created by a user.

By default, only the rule events are shown; double clicking a rule header displays the

rule’s actions.

10.3.1 The Software Components of SECE

Figure 10.26 shows the software components of SECE. We are developing SECE in Java

due to its extensive libraries and support for any OS. Figure 10.26 only shows some

relevant Java libraries such as ANTLR, which is used by the language compiler, JACL

[229] that is a Tcl implementation in Java, JAINSIP for SIP signaling and GDATA to

access the Google web services. The agent layer contains the agents that communicate

with external services. Agents can generate events (e.g., the Mobicents agent creates

277

10. CONTEXT-AWARE RULE-BASED SERVICE COMPOSITION
PLATFORM: SENSE EVERYTHING, CONTROL EVERYTHING

SIP	
 SIMPLE	
 HTTP	

JAVA	
 RUNTIME	
 ENVIRONMENT	

JAINSIP	
 ANTLR	
 JACL	
 GDATA	

SER	

HGATEWAY	
 LoST	
 GVOICE	
 GCONT	

GCAL	
 GMAIL	
 GMAPS	
 FACEBOOK	
 TWEETER	

FLICKR	

NETWORK	
 LAYER	

	
 AGENT	
 LAYER	

JAVA	
 LIBRARIES	

RULES	
 LAYER	

CTXRL	
 REQRL	
 LOCRL	
 TIMERL	
 CALRL	

EV
EN
T	

BU
S	

	
 	
 &
	

CO
N
TE
XT
	
 D
B	

TCL	
 COMMANDS	

SERVICE	
 API	
 LAYER	

AGENT	
 APIS	
 SECE	
 API	

MOBICENTS	

Figure 10.26: The software components of SECE

presence events), provide some useful functions (e.g., the GMaps agent provides direct

and reverse geo-coding) or take some action (e.g., the Gmail agent can send emails).

The rules layer contains the rule implementations. These implementations utilize the

service API layer to subscribe to interesting events, to check rule conditions and to

execute rule actions if necessary. The context DB contains all the users’ and their bud-

dies’ context, including presence, location, preferences, configuration data and sensor

information. Rules only can modify or read this DB through the APIs in the Service

API layer.

10.4 Enhancing SECE Toward Ontology-Based User-Defined

Rules for Automatic Service Discovery

As it stands, SECE has no way of automatically discovering a new type of service,

generating a rule language for it and incorporating it in its system. The set of services

that are supported in SECE are hard-coded. Thus, we have enhanced SECE to sup-

port ontology-based user-defined rules for automatic service discovery. The simple but

illustrative example below emails the user whenever a new restaurant that satisfies the

given conditions is found.

Any japanese restaurant that is cheaper than 20$ and whose location contains Manhattan {
email me “new restaurant found” “Details: [event description]”;

}

We have incorporated GloServ (Global Service Discovery Architecture) [230] [231],

an ontology-based service discovery system, within SECE’s back-end architecture. GloServ

278

10.4 Enhancing SECE Toward Ontology-Based User-Defined Rules for
Automatic Service Discovery

classifies services in an ontology and provides ontology descriptions of different service

domains. GloServ provides an API whereby service ontology descriptions, for a num-

ber of domains, can be downloaded and queried for with an ontology query. GloServ

uses the OWL DL (OWL Description Logic) ontology to describe its services. Thus,

SECE can access these OWL specifications in order to dynamically define rules for

each specific service domain. Users are made aware of these services by a front-end

application to SECE that displays the discoverable services’ descriptions. Currently,

users still need to learn how the rules are constructed, however, for the future, we plan

on building a GUI that will use the ontology description to aid the user in constructing

the rules. Sections 10.4.1 and 10.4.2 describe the design and implementation of these

enhancements. We have developed a SECE sublanguage for web service events, which

is discussed in Section 10.4.3. Section 10.4.4 discusses some future steps for further

enhancing SECE.

10.4.1 Design

Figure 10.27 outlines the main interactions between SECE, GloServ, front-end applica-

tions and web services. Although SECE is a standalone web service, we are enhancing

it toward a more flexible architecture. We envision SECE as a common layer on which

advanced front-end applications can be built. In this mode of operation, end users

are connected to front-end applications that provide more functionality or fancy GUIs.

Users that are not comfortable with scripts will therefore be able to use more sophis-

ticated graphical tools with probably advanced online guides. On the other hand, the

SECE web service provides a lightweight solution for the sake of simplicity and effi-

ciency. Users can enter rules into the SECE web service quickly without any resource-

demanding graphical application, which is very convenient for mobile user devices with

limited resources.

From the moment at which a web service rule is entered into SECE on, SECE will

periodically communicate with GloServ for discovering web services that match the

rule. A GloServ request specifies the web service of interest as a SPARQL query [232]

and matching services’ profiles, if any, are sent to SECE into a GloServ response. Below,

An example SPARQL query that requests a vegetarian restaurant that is inexpensive

and open 24 hours, and whose address contains “new york” is shown:

279

10. CONTEXT-AWARE RULE-BASED SERVICE COMPOSITION
PLATFORM: SENSE EVERYTHING, CONTROL EVERYTHING

Front-­‐
end	

Adver,sed	

services	

sdfsdf	

User	

context	

Ontology	

User	

rules	

SECE	

GloServ	

GloServ	
 request	
 	

(SPARQL)	

GloServ	
 response	
 	

(Service	
 profile)	

Service	
 model	

(WSDL)	

HTTP	
 request/
response	

User	

context	

User	

rules	

Automa,c	
 service	
 	

discovery	

Automa,c	
 service	
 	

invoca,on	

Figure 10.27: SECE, GloServ, front-end applications, and web services

SELECT ?x WHERE{?x ?p0 <http://www.owl-ontologies-gloserv.com/Restaurant.owl#inexpensive> .

?x ?p1 <http://www.owl-ontologies-gloserv.com/Restaurant.owl#vegetarian> .

?x <http://www.owl-ontologies-gloserv.com/Restaurant.owl#open24Hours> true .

?x <http://www.owl-ontologies-gloserv.com/Restaurant.owl#streetAddress> ?var0 .

FILTER(regex(?var0, "new york","i"))

}

If a new web service matches a rule, SECE executes the rule’s body. In the fu-

ture, some SECE actions will be capable to compose and communicate with services

automatically based on service descriptions encoded in WSDL, as addressed in Section

10.4.4. Section 2.8.1 gives an overview of the technologies involved in web service au-

tomation. We have integrated a Jena ontology model, which contains the necessary

ontologies’ schemes, and an agent that pulls GloServ for checking out new web services

of interest, which we refer to as GloServ Context Mediator.

10.4.2 Implementation

SECE stores the OWL specifications of web services in an ontology database that is

built upon the Jena Framework [233]. When a web service rule is entered into SECE,

it takes the following steps: 1) parse the rule (i.e., syntactic checking); 2) verify that

the described kind of web service exists (i.e., semantic checking); 3) subscribe to the

described web service event; and 4) take the rule’s actions whenever this event occurs.

Figure 10.28 outlines the main interactions for creating a web service subscription. In

this figure, the component SECECore is the orchestrator for all the software agents in

SECE.

280

10.4 Enhancing SECE Toward Ontology-Based User-Defined Rules for
Automatic Service Discovery

Figure 10.28: Sequence diagram from entering a web service rule to querying GloServ

281

10. CONTEXT-AWARE RULE-BASED SERVICE COMPOSITION
PLATFORM: SENSE EVERYTHING, CONTROL EVERYTHING

When a web service rule is entered into SECE, the SECE parser checks that the

input rule is consistent with the SECE ontology-based sublanguage, which is generated

by t he ANTLR grammar outlined in Section 10.4.3. As a result, the parser creates

a WSRule object that encapsulates information about the rule, namely a web service

event and the actions that will be taken if this event occurs. A web service event is

defined by the web service’s name and optionally a set of property constraints in the

form of (propertyName, operator, value). If the rule parsing is successful, SECECore

verifies that the rule’s web service description corresponds to a web service’s ontology.

To this end, SECECore interacts with the SECE ontology model (i.e., SECEOntModel

in Figure 10.28). The SECE ontology model encapsulates the Jena database that con-

tains the web services’ ontologies and provides convenient functions for searching and

retrieving information about them. A web service description is semantically correct

if there exists an ontology that describes a service type named as the web service and

associated with the described properties. SECE will ask the SECE Ontology Model

for the namespace URI of the web service type and its properties. If the web service

does not correspond to any ontology, the SECE ontology Model returns null values.

This means that the rule’s web service event is semantically incorrect, which results in

aborting rule creation and warning the user. Otherwise, the rule’s web service event is

semantically correct and SECECore proceeds to create the corresponding subscription

(i.e., WSSubs in Figure 10.28). SECECore, therefore, retrieves an event monitor from

the Event Monitor Broker (EMBroker in Figure 10.28). An event monitor (OntEM

object in Figure 10.28) is an agent that watches a particular service type and generates

an event whenever a new service of this type is discovered. The Event Monitor Broker

maintains a list of the event monitors that are monitoring web service types. Thus, if

an event monitor for the web service event already exists, the Event Monitor Broker

returns it. Otherwise, the Event Monitor Broker creates a new one, appends it to

the list of monitors and returns it. Then, SECECore associates the event subscription

with the event monitor and starts the subscription. Event monitors maintain a cache

of discovered events. When a new subscription is associated to an event monitor, it

checks out its cache of web services and notifies the new subscription of any cached

web service that matches the subscription.

Starting and pausing an event subscription makes the corresponding WSSubs object

subscribe and unsubscribe to the associated event monitor, respectively. When an

282

10.4 Enhancing SECE Toward Ontology-Based User-Defined Rules for
Automatic Service Discovery

event monitor receives a subscription request and there are no other subscribers, it

creates the corresponding SPARQL query that describes the web service event. The

event monitor also starts up a recursive timer to query the GloServ Context Mediator

(i.e., GloServCM in Figure 10.28) with the SPARQL query periodically. Whenever

GloServCM is invoked, it sends the SPARQL query given as parameter to GloServ,

which replies with the matching web services, if any. Thus, the event monitor creates

an OntEvent object for each matching service, and notifies the subscriber of this event.

When an event monitor is associated with more than one subscriber, the SPARQL

query represents the least restrictive subscription. When a web service matches this

subscription, the event monitor checks out whether this service matches any of the

other subscriptions. Figure 10.28 outlines this process through the matchedServ call.

10.4.3 SECE Ontology-Based Sublanguage

SECE provides a simple and generic ontology-based language for end-users to define

web service rules. In line with SECE philosophy, this language looks like natural English

and is easy to learn. Its basic structure is “any service whose prop rel value” given

that service is a web service class, prop is one of this service class’ properties and rel

and value represent a restriction on the property. Rel is a relational operator that

depends on the property’s type: contains and is for textual values, and =, <,>,≤, and

≥ for numbers. Multiple property constraints can be added by the and and or boolean

operators as for example “any shopping offer whose type contains “ski boots” and

whose price is cheaper than 150$”. Equality on numeric properties can be expressed

by the verb has followed by a number and the property name as in “any happy hour

and inexpensive bar that has 20 free seats”. Users can place property values before

the class name when the property works as adjective. In the previous example, the bar

class has the boolean properties happyHour and inexpensive. Boolean constraints can

also be expressed by the operators that has (no) and that is (not) as in “any restaurant

that has delivery”, “any restaurant that is open 24 hours” and “any cultural exhibition

that is free and is not crowded”. Boolean constraints can be applied to class properties

or classes themselves, which depends on the ontology’s structure and is transparent for

end-users. An example of boolean property is the above-mentioned delivery property

whose domain is the restaurant class. Boolean constraints on classes restrict inherited

283

10. CONTEXT-AWARE RULE-BASED SERVICE COMPOSITION
PLATFORM: SENSE EVERYTHING, CONTROL EVERYTHING

Figure 10.29: Grammar rule for web service rules

Figure 10.30: Grammar rule for ontproperty elements in web service rules

types as for example “any restaurant that is southamerican” subscribes to restaurants

of type Southamerican, which is a subclass of the class Restaurant.

The SECE ontology-based sublanguage is a simplistic approach for testing web

service rules that will be enhanced in the near future. This language is built on some

simple agreements between SECE and GloServ about ontology class and property nam-

ing. For example, ontology class names starts with an upper-case letter while property

names with a lower-case letter. Property names composed of more than one word are

made up by concatenating the first word with the other words having their their first

letter in upper-case, as for example “open24Hours”. Based on these simple rules, SECE

can analyze the class and property names of each web service ontology and therefore

check out the syntax of web service rules. This first approach presents some limitations

in expressiveness that will be overcome in the future. Figures 10.29 and 10.30 show the

grammar rules for web service rules added to the SECE grammar.

10.4.4 Future Work Towards Automation

Integrating web service rules into SECE brings out many possibilities in the Semantic

Web. Sections 10.4.4.1 and 10.4.4.2 briefly introduce some of these possibilities.

10.4.4.1 Automatic Learning of SECE Rules

Automatic suggestions about service composition, events and actions are essential for

beginner users, whom can feel lost when creating rules. We are growing SECE to-

wards automation, and hence we find that suggestion systems for SECE rules should

284

10.4 Enhancing SECE Toward Ontology-Based User-Defined Rules for
Automatic Service Discovery

be automated too. Thus, in the near future, we will provide a mechanism for front-end

applications to build suggestions dynamically. We will model the semantics and syntax

of SECE rules ontologically. Front-ends applications will therefore be able to obtain

the rules’ ontologies and reason about them, and hence they will dynamically create

suggestions on rule construction. This mechanism will provide front-end applications

with the ability to learn rules’ semantics and syntax automatically.

Although SECE offers a set of in-built rules, front-ends may want to offer more

sophisticated rules, for example, by combining multiple kinds of events or using an event

syntax other than SECE’s. To allow front-ends to add new event syntax dynamically

into SECE, we will provide proper interfaces to subscribe to events, obtain user context

and interact with SECE core functions. Ontologies for rules, events and context as well

as semantic paths will provide developers with a high-level interface to SECE data,

independent from any underlying data structure. This mechanism may be considered

as a plugging system whereby third-parties can insert customized event descriptions

into SECE, and SECE will learn these descriptions automatically. The SECE web

service will provide an API for entering new rule event descriptions.

10.4.4.2 Event-Based Context-aware Web Service Composition

SECE provides a set of actions for users to build up compositions. Some actions interact

with web services, such as tweet, publish and email ; other actions send protocol-specific

requests, such as call (i.e., SIP INVITE); and others are supportive routines. The set

of web services with which SECE communicate and the communication flow is hard-

coded. Therefore, SECE compositions are static in the sense that, once a composition

is created, it will not change. We are planning to incorporate dynamic compositions to

SECE through automatic web service discovery and composition. Section 2.8.1 outlines

the main features of web service automation. SECE will interact with web services

automatically by retrieving their models and, according to their WSDL specifications,

constructing HTTP requests. Two new SECE actions will add this functionality: find

and plan for discovery and composition, respectively. An example rule is shown below,

in which the plan and find commands are pseudo-code because they have not been

implemented yet. In this example, whenever a new flight is found, other web services are

discovered (i.e., hostels, car rentals and restaurants) and composed (i.e., trip planning).

Note that the plan action could invoke find in order to discovery web services that are

285

10. CONTEXT-AWARE RULE-BASED SERVICE COMPOSITION
PLATFORM: SENSE EVERYTHING, CONTROL EVERYTHING

necessary for the composition. As the discovered web services and the communication

with them can be different each time the composition is executed, we say that this

composition is dynamic.

Any domestic flight that is cheaper than 200$ and whose date is after June 1, 2011 {
p=plan flight with hostel and car rental;

r=find good restaurants according to $p;

email me “new plan found” “Details: $p $r”;

sms me “New Plan discovered. See email inbox for details!”;

}

With these two new actions, SECE would perform semantic web service discovery

and composition that does not need user interaction to be executed; it is automatically

triggered by events. In addition, SECE would allow combining static and dynamic

composition. For example, the rule above provides dynamic composition through the

plan and find actions and static composition through the email and sms actions. Be-

sides web service discovery events, semantic compositions could be triggered by any

SECE event, such as location, context, calendar, communication and time. For in-

stance, the example below discovers web services based on time events. Web services of

kind “brunch offer” are found according to the user’s location and are emailed to her.

Every Sunday at 12:00 {
offer=find brunch offer whose location is near me;

email me “Brunch offer” $offer;

}

As the Semantic Web is not widely adopted yet, hybrids platforms like SECE are

necessary to offer users flexible and powerful composition tools. Table 10.4 indicates

the types of composition that SECE already supports (white column) and will support

in the future (gray columns). Rows define the events that trigger the compositions and

columns the types of web service communication in the compositions.

10.5 Conclusions

SECE enables end-users to create advanced services. Although users today can use

several individual Internet services, there is currently no easy way to create new services

that integrate diverse information, such as location, presence, IM, SMS, calls, Facebook,

Twitter, sensors and actuators. Facing it, we are developing a context-aware platform

286

10.5 Conclusions

Semantic service

communication

Hard-coded service

communication

Both kinds of commu-

nication

Web service

events

Dynamic composition

triggered by discovered

web services

Static composition trig-

gered by discovered

web services (enhanced

SECE)

Mixed composition trig-

gered by discovered web

services

Other events Dynamic composition

triggered by real-world

events

Static composition trig-

gered by real-world

events (typical SECE

composition)

Mixed composition

triggered by real-world

events

Table 10.4: Types of SECE composition

and associated language to create user-personalized composite services and automate

their execution. SECE is intended for not only developers but also end-users without

programming skills. SECE users create natural-language-like rules to compose their

own services. Every rule specifies the event that triggers the rule’s actions (i.e., its

service); SECE monitors the event and proactively executes the service whenever the

event occurs. In the future, it will be possible to develop a more advanced GUI (e.g.,

suggestions and templates for service composition) without modifying the SECE core.

The definition and syntax of the language has been finalized. We developed a multi-

user server to allow users to edit, compile, and deploy SECE scripts, which provides a

web-based interface. From the components shown in Figure 10.26, all the rules are fully

implemented except some location operators. The home gateway and Mobicents PS

are also still under development. Although rule conflicts have already been considered

for a particular user, multi-user conflicts should be studied in the future, as well as

run-time error handling, specially for resource rules as described in Sections 10.2.5 and

10.2.6. Future work also includes experimenting with real-life scenarios in order to

demonstrate the usability of the language by end-users and the system scalability.

Moreover, we integrated SECE with GloServ (i.e., a scalable network for web ser-

vice discovery) for providing a context-aware, event-based platform for web service

discovery and composition. The Semantic Web is investing much effort in developing

standards for providing automatic web service discovery and composition. Although

many authors have been interested in this exciting topic in the last decade, complete

solutions do not yet exist. Most authors describe or propose theoretical work. The

few that present real implementations are partial solutions and domain-specific. Thus,

there is a strong need for general-purpose platforms for automatic web service discovery

287

10. CONTEXT-AWARE RULE-BASED SERVICE COMPOSITION
PLATFORM: SENSE EVERYTHING, CONTROL EVERYTHING

and composition. Such platforms should provide intuitive and user-friendly interfaces

that do not require engineering or technical skills. Besides template-based composi-

tion, end users should be able to orchestrate service composition. Service discovery

and composition should be user-centric, context-aware and proactive. SECE is a user-

centric, context-aware service composition platform that provides a formal language

similar to natural English for defining event-based rules. Thus, SECE satisfies many

of the above-mentioned requirements to become an underlying platform for automatic

web service composition. To move SECE towards the Semantic Web, we implemented

the communication between GloServ and SECE. We extended SECE with an ontology

database that stores the web services’ schemes that are downloaded from GloServ. We

also developed an ontology-based language for creating rules that work as subscriptions

to web service discovery events. This language is independent from any particular web

service description, and hence new kinds of service supported by GloServ can be added

transparently. We described the whole platform and the advantages it can bring to the

Semantic Web. This allows subscribing to web service discovery events by creating rules

in a user-friendly language that looks like natural English. SECE also allows creating

service compositions that can be triggered by real-world events such as context changes,

location, or time. This permits end-users to define and personalize context-aware web

service discovery, invocation and composition based on a variety of events. In the fu-

ture, the technologies developed by The Semantic Web for fully automation in web

service composition and automation (see Section 2.8.1) will be integrated into SECE.

SECE will be decoupled from front-end applications so that more fancy GUIs can be

built on top of it. Moreover, modeling SECE rules ontologically will provide front-ends

with the means of understanding and learning new SECE rules automatically.

288

11

Discussion

Next-Generation Networks (NGNs) are aimed to bring value to human life through new

experiences and convenient services as well as to provide a playground for everybody to

create, share, compose, and deliver services. Presence information is considered as a key

service in NGNs. This provides applications with all the user context that is necessary

to handle user communications in an intelligent, proactive manner. NGN relies on an

all-IP approach, the IMS, that allows IP-enabled devices to access any service regardless

of the access technology. NGN uses SIP for controlling communication sessions and a

set of extensions of SIP, which are known as SIMPLE, for handling presence information

and instant messages. Nowadays, there is an overwhelming emergence of technologies

that will support all the deployment aspects of NGNs, from hardware, network infras-

tructure to application development. Adopting all these technologies implies a costly

investment that is restraining operators from moving towards next-generation services.

On one hand, operators need to adopt a customer-need-driven model for deploying the

services that attract the largest number of people, thereby maximizing revenue the

most. On the other hand, operators need to be sure that such revenue will compensate

for the investment done and the impact of the provided services on the network. The

capacity impact of next-generation services on the operator network is far from trivial

due to multiple reasons. These services will be ubiquitous, access-network- and device-

independent. They will in large measure rely on context information, enriched data,

and social relationships. These features require complex functionality, and introduce

traffic load, which operators should be capable to bear for world-wide used services.

User context dissemination is specially challenging because information updates are

289

11. DISCUSSION

timely spread over the network, which traverse centralized servers and may involve

terminal devices with limited resources. Moreover, the protocol for distributing user

context in NGNs, that is, SIMPLE, is a subscription-based framework that involves

periodic signaling traffic for keeping subscriptions alive.

This thesis is aimed to contribute to the deployment of presence-based next-generation

services, and provide a comprehensive view of what the presence service is and what

it can be used for. In a nutshell, the main goals of this thesis can be summarized as

follows: to enlighten readers about the SIMPLE framework; to give a deep analysis

about the parameters that affect presence overload and how they can be tackled for

optimizing the presence service; to overcome some limitations of SIMPLE regarding

the control on the timing of presence updates; to optimize the overall presence service

by reducing the traffic sent over access links and the core network; to ensure that the

presence service’s performance is not degraded because of delays in presence updates

that are due to some rate control; to probabilistically model changes in presence in-

formation; to provide a detailed analysis of presence traffic in large-scale scenarios and

the impact of this traffic on the IMS; to reduce presence traffic in large-scale scenar-

ios and therefore alleviate the impact of this traffic on the IMS; to optimize the PS’

performance in large-scale scenarios for the sake of scalability; to provide an scalable,

user-centric platform for handling presence information; to provide a web service for

user-created and automatic service composition that relies on presence information.

The realization of this thesis required to acquire a good knowledge about both the

industry and academia efforts in the frame of presence-based services. We transferred

this knowledge and some of this thesis’ results to several entities related to the Industry

and Academia. We incorporated the presented personal proxy within a technological

project directed by Fundacio I2Cat. As well, some of this proxy’s functionality was

integrated within other project mutually directed by Vodafone R&D and Fundació

I2Cat. We contributed to an IETF Internet-Draft [193] that analyses presence traffic,

which may be noticed in this draft’s Acknowledgements section. A stay of one year

in Columbia University, in New York, was granted for collaborating with the IRT

group at the Department of Computer Science. During this year, we initiated a new

project, which evolved into the presented software platform SECE. The contributions

of this thesis have been published throughout 3 book chapters, 4 international journals

(three of them indexed in Journal Citation Reports (JCR)), 10 international conference

290

papers, 1 demonstration in an international conference and 1 national conference paper.

Moreover, 2 papers are under review (second round with minor changes and first round)

to be published in international journals indexed in JCR. Appendix I gives information

on these publications. Throughout this thesis, we discussed how we tackled the above-

mentioned goals, and the resulting contributions. Nevertheless, below we summarize

these contributions for the sake of clarification:

• SIMPLE is not a compact protocol but a collection of specifications, both IETF

RFC and Internet-Drafts. Moreover, the large number of specifications related to

SIMPLE and the numerous topics covered by these specifications (e.g., privacy,

information, optimization, IM, location, etc.) makes it difficult to understand

SIMPLE in depth. This may result in beginners giving up the SIMPLE frame-

work. To face this issue, we gave a comprehensive vision of this framework, by

analyzing the concepts involved, its specifications and how these specifications

relate to each other.

• SIMPLE is not concerned about the subscriber’s needs on presence attributes

when limiting the rate of presence notifications. Although notification rate con-

trol is suitable for reducing presence traffic, it may involve watchers keeping ob-

solete information for too long. Watchers however should not perceive delays in

receiving presence notifications, since the actual usefulness of the presence service

is its instantaneous nature. Thus, a tradeoff between traffic optimization and the

watcher’s needs on information consistency should be found. We proposed an

extension of the XML schema for SIMPLE notification filters that defines new

trigger conditions for controlling the notification rate of particular presence at-

tributes. This allows subscribers to indicate the maximum and minimum rates

at which they wish to be notified of subsets of presence information. Further-

more, this extension provides other trigger conditions for pausing and un-pausing

notifications of presence attributes as well as triggering one-time notifications.

This allows a subscriber to adopt a pull approach while having its notifier main-

taining the resource state information up-to-date. SIMPLE as it stands does

not provide this functionality. However, it may be very resource-efficient under

some circumstances. The proposed notification filtering is specially interesting in

location-based systems. In this systems, location updates occur very frequently

291

11. DISCUSSION

and are timely spread over the network. Regardless of the rest of presence in-

formation, our approach permits to control the rate of location updates and to

pause, un-pause, and pull them when necessary.

Filtering the information of notifications may involve some computational cost, as

stated in the specification of this mechanism [140]. Given that a PS may handle

a high number of presence subscriptions, filtering the notifications of all these

subscriptions may impact the PS processing resources. Likewise, controlling the

notification rate of subsets of each subscription’s resource state information may

be a resource-intensive task. We are therefore conscious that such a fine-grained

rate control may not be viable in large-scale scenarios. Nevertheless, the proposed

XML schema can be used to control the rate of presence updates in a scalable

way by delegating this process to the presentities themselves, which is mentioned

below.

• We tackled the traffic involved in presence publications, which affects all the com-

ponents of the presence service: the presentity that publishes its presence infor-

mation, the presentity’s PS, all of the presentity’s watchers that are authorized to

see the published change, and their RLSs if these servers are used. Thus, presence

information may degrade the overall presence service’s performance. To reduce

the number of presence publications sent by presentities, we proposed applying

the above-mentioned extended notification filters to presentities, which we refer to

as publication filtering. This approach lets presentities know what information is

important and when it should be published. Publication filters allows controlling

the publication timing by setting minimum and maximum publication rates of

presence information, pausing and un-pausing publications, and requesting pre-

sentities to publish immediately. Such control of publications can be perform

based on particular subsets of presence attributes rather than the complete pres-

ence information. This allows optimizing presence traffic on the access link while

ensuring that certain presence attributes are updated frequently enough. More-

over, reducing the number of publications alleviates the PS load, and reduces

the number of notifications, which in turn optimizes the presence traffic on the

network core too. We proposed that the PS let presentities know about their

publication filters by means of PUBLISH messages.

292

As mentioned previously, fine-grained control on the timing of presence notifica-

tions at the PS may not be scalable since the PS is likely to handle a high number

of presence subscriptions. Since the timing of presence publications determines

the timing of presence notifications, the proposed publication filtering implicitly

controls the rate of presence notifications. This approach delegates the process

of filtering to the presentities themselves, which is a fully-distributed alternative

and therefore scalable. Thus, it is possible to control the rate at which presence

updates are disseminated over the network in an attribute-based manner. The

sacrifice of such scalability is that filtering is performed in a 1:N mode rather than

1:1. The PS creates the publication filter for each presentity according to some

traffic optimization policy, and the interests and needs of all of the presentity’s

watchers. It is therefore necessary to find out a tradeoff between the needs of

all of the presentity’s watchers. Although this seems to be an arduous task, the

presence of watchers is very helpful. For example, the PS may take only the

watchers that are online into account to create publication filters.

We modeled presence changes through a continuous-time Markov chain. We used

this chain to probabilistically estimate the traffic rate generated by a presentity

when its publication rate is controlled by a single maximum value and multiple

maximum values associated with different presence attributes. We approximated

a maximum rate as a timer set to the inverse of the rate (i.e., throttling interval)

that is constantly restarted. This assumption allows calculating the probability of

presence changes during each throttling interval. We gave a guideline about how

to model presence changes through Markov chains, and took an example chain for

estimating presence traffic. The presented mathematical model is valuable since,

to the best of our knowledge, there are not other models of presence changes that

are as general as it and are studied in continuous time. Since presence information

may include a wide variety of information, many kinds of applications may rely

on this kind of information such as LBSs, social networks, messengers and so on.

Thus, there is not a common pattern of the behavior of presence applications.

Even, the presence information of a particular application’s users usually do not

follow any particular pattern because the actions that users take and affect their

presence information (e.g., modifying personal state, mood, activities, location)

293

11. DISCUSSION

are highly subjective and depend on temporary circumstances. This makes the

analysis of presence systems specially difficult.

We presented the mathematical formulas that calculate the probability of pres-

ence changes occurring during each throttling interval with a single and multiple

intervals. From these formulas, we derived the total number and rate of bytes

sent on the network access link because of presence publications during part of an

application session. The reported results for a single throttling interval showed

that minimum intervals of 5, 10, 15, and 30 minutes reduce the traffic of presence

publications by 41%, 61%, 71%, and 85%, respectively. These results validated

the mathematical model and confirmed reasonable assumptions: It is not recom-

mended to apply a very short throttling interval because it saves few bytes, which

does not compensate for the complexity of implementing it at end devices. More-

over, the longer the throttling interval, the largest the traffic saved on the access

link. However, the delay perceived by watchers increases with the throttling in-

terval length. When the delay in presence updates acceptable by watchers varies

from some presence attributes to others, setting attribute-based maximum publi-

cation rates is necessary to ensure that watchers are updated frequently enough.

We described an algorithm for calculating the probability of publishing presence

changes after each throttling interval when multiple intervals are used. Thus,

we calculated the presence traffic rate for multiple scenarios that give attributes

different levels of importance. Multiple throttling intervals make it possible to set

short intervals for the most important information, while the rest of information

is regulated by longer intervals. The efficiency of this mechanism depends on

the level of importance that is set for the presence attributes that change most

frequently. In the best case, these attributes are not important and therefore can

be associated with long throttling intervals. In the worst case, these attributes

are the most important and therefore have to be notified at short intervals.

The length of throttling intervals should be chosen carefully because presence at-

tributes that change frequently should not be published at low rates. Otherwise,

watchers would keep obsolete presence information for too long and publications

would even turn out inefficient. If the presence information changes much more

rapidly than the publication rate, the short time during which watchers see valid

294

information does not compensate for the traffic generated to publish such in-

formation. We proposed calculating throttling intervals over time based on a

Markov chain that models presence changes, which we refer to as sojourn-based

intervals. This avoids setting too long throttling intervals, thereby preventing

too long delays in publishing. We analytically estimated the traffic rate gener-

ated by sojourn-based intervals and compared it to that generated by predefined

throttling intervals. While sojourn-based intervals change over time for adapting

to the presence attributes’ change frequency, predefined intervals are static. The

reported traffic rate showed that applying sojourn-based intervals increases the

traffic rate generated by predefined intervals by around 17%. This increase is be-

cause sojourn-based rates are higher than the predefined ones in order to publish

the presence information that changes the most frequently enough. This shows

that sojourn-based intervals can ensure a certain update rate.

• The scalability of SIMPLE is specially challenging in large-scale federation sce-

narios in which millions of users in a domain subscribe to millions of users in other

federated domains. This is mainly due to the fact that two federated domains es-

tablish as many presence subscriptions between them as the number of different

watcher-presentity interests. Each of these subscriptions is refreshed and kept

up to date separately. Whenever a presentity’s presence information changes,

the presentity’s domain sends a different presence document to each subscribed

watcher within each federated domain regardless of whether these documents

contain the same information. Some proposals for reducing the number of notifi-

cations or subscriptions in federation scenarios emerged as IETF Internet-Drafts,

namely dialog optimization, CN and VS. We studied these proposals in depth,

giving details about their operation and parameters. Based on this study, we

analytically estimated the amount of traffic involved by dialog optimization, CN

and VS. This study is intended to enlighten the reader about how complex inter-

domain traffic optimization is, how the studied strategies operate, what parame-

ters network administrators should take into account for optimizing inter-domain

presence traffic and last, but not least, what the sensitivity of each technique to

these parameters is. Based on the results of the presented traffic estimation, the

conclusions below can be extracted.

295

11. DISCUSSION

Dialog optimization always generates much more traffic than CN and VS. This

technique is discouraged because it adds more complexity to the overall presence

service, and only reduces inter-domain traffic to a short extent. When subscribers

implement conditional notifications, not to apply any inter-domain traffic opti-

mization is preferable to dialog optimization since it adds traffic load. It is rec-

ommended to combine CN and VS with conditional notifications, since it greatly

helps in reducing presence traffic. When the presentities set the same privacy

rules for all the watchers in a federated domain (i.e., domain-based privacy filter-

ing) and the presentities’ domain does not require to know the list of watchers

subscribed, VS with partial or full trust drastically reduces the inter-domain pres-

ence traffic (i.e., by more than 90%). Thus, VS is highly recommended in this

case. However, when the presentities’ domain needs to be aware of the watchers

subscribed (for authorization or security reasons) or presentities set privacy rules

to particular watchers (i.e., watcher-based privacy filtering), CN reduces more

inter-domain traffic than VS (i.e., by around 60%). The operation and perfor-

mance of VS is strongly affected by two parameters: the type of trust between the

domains and the number of privacy filters. Partial trust always involves a smaller

number of bytes than full and minimal trust. The number of privacy filters deter-

mines the number of views and, therefore, the number of presence subscriptions

in VS with partial and full trust. This is the reason why the efficiency of VS

drops considerably as the number of views increases. Although minimal trust

generally generates much more traffic than partial or full trust, minimal trust is

more efficient when there are numerous views. The reported results showed that

when 80% of the watchers have a different view, minimal trust is preferable to

partial or full trust. The increase in the number of presence changes has a harm-

ful effects on VS because a single presence change may involve notifying through

more than one subscription. Likewise, changes in the presentities’ privacy filters

may have disastrous effects on VS because a single change may involve modify-

ing, creating or eliminating one or more presence subscriptions. The inter-domain

traffic involved by CN is affected by the way the watcher lists are obtained. There

are three methods: 1) the notifier domain adds the list to the body of NOTIFY

messages, 2) the watcher domain subscribes to the presentities’ winfo events and

3) the subscriber side PS maintains the list. Only the methods 1) and 2) involve

296

presence traffic. The increase in the number of watchers affects the latter more

seriously than the former. The main parameter that affects the first method is

the number of presence changes per presentity. We advise that the presentities’

average activity be considered in making a choice between one of these two meth-

ods. In general, when presence changes occur very frequently, the second method

is more efficient than the first.

Moreover, we studied the impact of CN and VS on the IMS capacity. We esti-

mated the number of SIP messages that the IMS brain, the CSCF, has to process

for implementing these strategies. The reported results showed that CN and VS

add relevant capacity demands on the CSCF. Only when no privacy filtering is

performed and the notifier domain does not need to know about the watchers

subscribed, VS with partial or full trust is preferable to CN since it adds less

load to the CSCF. Regarding CN, the afore-mentioned methods 1) and 2) for

obtaining the watcher lists have the important advantage that they do not re-

quire an intermediate server in the watchers’ presence subscriptions. Thus, CN

combined with either of these methods injects fewer messages into the CSCF than

VS. Since method 2) generates extra messages because of winfo subscriptions, we

recommend the use of method 1), that is, the notifier domain adds the list to the

body of NOTIFY messages.

• The need to make presence federation scenarios scalable still remains for the

future large-scale converged networks. Nevertheless, the IETF has not yet found

the standardization of inter-domain presence traffic optimization necessary. Thus,

the only proposals for reducing inter-domain presence traffic, namely CN and VS,

have been discontinued in the IETF. The fact that SIMPLE, the standard protocol

for presence in the IMS, is no longer involved in reducing inter-domain presence

traffic should alarm both the industry and academia. We, therefore, propose

the strategies CS and FCS for reducing inter-domain traffic. These strategies

reduce the number of inter-domain presence subscriptions up to one per presentity,

regardless of the number of subscribed watchers. We analytically estimated the

presence traffic involved by CS and FCS and compared it to that generated by

CN and VS. The reported results showed that CS is considerably more efficient

at reducing presence traffic than VS and CN. The only exception happens when

297

11. DISCUSSION

domain-based privacy filtering is performed and the presentities’ domain does not

require to know the list of subscribed watchers. In this case, VS with partial or

full trust is preferable. FCS is preferable to CS only if conditional notifications

are applied, which saves 3% of the CS traffic.

CS and FCS rely on the fact that the notifier domain lets the subscriber do-

main know about the presentities’ privacy filters (i.e., authorization rules set

by presentities) through subscriptions. Subscriptions to privacy filters account

for a considerable part of CS and FCS traffic, and notify sensitive information.

Thus, we enhanced CS and FCS by reducing the number of privacy rules that

are disclosed. We analyzed the variables that affect the traffic related to privacy

filters in depth. We analytically estimated the number of bytes related to pri-

vacy filters that is generated by two federated domains that apply CS and FCS

with and without the proposed enhancements. The reported results showed that

the enhanced FCS saves between 45% and 81% of the traffic related to privacy

rules in the regular FCS. The enhanced CS saves between 18% and 60% of the

privacy-filters subscriptions’ traffic in the regular CS. We studied the effect of

conditional notifications on our proposals. This optimization greatly reduces the

traffic related to privacy rules, and is therefore strongly recommended in both

FCS and CS. The application of conditional notifications to the enhanced FCS

is always recommended. However, in the case of CS, the reported results showed

that when more than half the presentities’ privacy rules become active during the

presence session, the enhanced CS with conditional notifications performs worse

than the regular one with conditional notifications. In this case, the regular CS

is preferable to the enhanced CS.

Moreover, we studied the impact of CS and FCS on the main IMS server, that is,

the CSCF. These strategies as they stand increase the CSCF workload. However,

when CS and FCS are combined with an RLS, the S-CSCF message load is

decreased by approximately 29%. Since the RLS by itself increases the CSCF

workload to a large extent, CS and FCS combined with an RLS are not only

helpful in optimizing inter-domain presence traffic but also ease the impact of the

presence service on the IMS.

298

On the basis of the presented study, we concluded that the proposed enhance-

ment of FCS combined with conditional notifications is strongly recommended to

save inter-domain presence traffic as far as possible. The main drawback of FCS

is that the process of privacy filtering must be delegated to the subscriber side

PS. This entails the notifier domain giving in the presentities’ complete presence

information to the subscriber domain. Nevertheless, the fact that two domains

exchange presence information and allow their users to communicate is an indi-

cation that some degree of trust relationship exists between them. Some kind of

trust relationship must always exist since the notifier domain trusts the subscriber

domain to distribute the right presence documents to the right watchers. Thus,

delegating privacy filtering to the subscriber side domain would simply mean an

extension of an existing trust required for the sake of scalability. As regards the

interoperability of privacy rules, PSs only need to exchange the rules encoded as

SIMPLE authorization rules [177] regardless of their low-level implementations

of privacy filtering.

• Although the RLS is widely adopted to reduce presence traffic in mobile presence

applications, its performance has not been studied in depth yet. Furthermore,

some studies raise doubts about how effective and suitable the RLS is. The au-

thors of [193] concluded that dialog optimization, which consists in a federated

RLS, only helps in reducing presence traffic when it is combined with conditional

notifications. An analytical study presented in this thesis showed that a feder-

ated RLS adds traffic load to the network if compared when watchers subscribe

directly and apply conditional notifications, as described above. An estimation

of the impact of the RLS on the IMS CSCF presented in this thesis showed

that the RLS seriously increases the CSCF workload if it is not optimized with

other techniques. Thus, the reduction in presence traffic on the network access

achieved by the RLS may not compensate for its impact. We estimated the pres-

ence traffic over the access link when a user subscribes to an RLS and his or her

presentities directly. We studied these two alternatives with and without two op-

timizations: partial-state documents and conditional notifications. The reported

results showed that the RLS is not efficient at reducing presence traffic. An RLS

without any optimization is strongly discouraged. The performance of the RLS

299

11. DISCUSSION

decreases dramatically as the number of presence changes increases. Partial-state

presence documents ease the impact of presence changes on the RLS. However,

having an RLS handle each presentity’s partial-state changes involves some com-

putational cost. Even when the RLS is optimized with the two above-mentioned

strategies, subscribing to presentities directly is more efficient under some cir-

cumstances. If subscribers and notifiers implement conditional notifications and

partial-state documents, direct subscriptions are always more efficient than an op-

timized RLS except when presentities only change their presence once per hour

on average. Even when direct subscriptions are not optimized at all, if presence

changes occur frequently and presence documents are small, which is probable

in some LBSs, direct subscriptions are more efficient than an optimized RLS.

Network administrators should carefully study three parameters before configur-

ing watcher applications to subscribe to an RLS: average size of resource lists,

number of presence changes, and size of presence documents.

• Fine-grained rate control of presence notifications is not scalable in large-scale

federation scenarios. This involves the PS handling multiple notification buffers,

one for each different maximum notification rate for each watcher. Given that

large-scale scenarios involve millions of presence subscriptions, this mechanism

is obviously not viable. We proposed a queuing system at the PS for reducing

presence traffic in large-scale federation scenarios that apply CS or FCS. Thus,

the proposed system relies on the fact that the PS handles only one presence sub-

scription per federated domain. This system is designed to controlling the rate

of both presence notifications and publications in a scalable way. The PS only

handles a notification buffer for each watcher domain, and delegates publication

control to the presentities themselves. We mathematically modeled the proposed

queuing system, and obtained its main probability features. We proposed an

adaptive algorithm for changing publication and notification rates based on the

watcher domains’ needs on traffic optimization and information consistency. This

algorithm allows the PS to adapt its behavior to the watcher domains’ QoS needs

as long as the probability of the PS getting saturated is kept under a threshold.

This ensures a maximum delay in notifying each watcher domain while limiting

300

the rate of presence publications and notifications and ensuring the PS perfor-

mance is not degraded. Based on the presented mathematical model, we studied

the performance of the proposed adaptive algorithm with different QoS parame-

ters. This algorithm effectively adapted both the notification rate for a watcher

domain and the publication rates of the presentities to which this domain is sub-

scribed for ensuring that presence change notifications are not delayed longer

than a maximum delay set by this domain. Moreover, we discussed how sojourn-

based throttling intervals can be used to avoid controlling the publication rate

inefficiently.

• Figuring out the adequate applications that will motivate customers to use always-

on valued-added services is crucial for the success of NGNs. We have devel-

oped “Sense Everything, Control Everything” (SECE), a platform for context-

aware service composition based on user-defined rules. SECE rules trigger action

scripts whenever events of interest occur such as communication requests, context

changes, location updates, time events, etc. SECE relies on a SIMPLE-complaint

PS that handles all the users’ presence information, which includes personal in-

formation, device capabilities, location information and even information about

sensor networks at the user’s office or home. SECE differs from other rule-based

systems in that it provides an interface for creating rules in natural-English-like

language commands. With a simplified English-like interface to creating rules,

users will be more prone to incorporate rule-based systems into their lives, making

context-aware computing a seamless part of everyday life.

Moreover, we improved SECE to use the semantic description of service domains

to dynamically create a rule language for these service domains. We modify

SECE architectural platform to integrate with a back-end ontology-based global

service discovery system, GloServ, to access any type of service domain within

the GloServ directory [230] [231]. With these improvements, SECE can now

be generalized to include all types of service domains, described in an ontology,

as well as issue more complex ontology-based queries for service discovery and

composition. Having the ability to adapt a rule language to new service domains

makes SECE into a powerful front-end context-aware system. Additionally, by

using GloServ as its back-end, SECE can now interoperate with any type of service

301

11. DISCUSSION

that has an ontology description, broadening its scope drastically. We envision

that SECE will enable services to seamlessly integrate into people’s lives. A

person can now create rules with ease and be notified of services at the right

time and place. This will create a profound impact in how people interact with

services. There will now be a closer connection between a person and services

available, establishing a personalized network of services.

• We proposed and implemented a decentralized architecture for handling SIP/SIM-

PLE presence information and user communications in an efficient, user-personalized

way. This solution is a logical, user-centric presence and multimedia functional-

ity that may be added to a home gateway (or even a femtocell) as a value-added

service. We call such functionality Personal Proxy (PP). This approach avoids

a centralized PS that may easily become a bottleneck. A user’s personal proxy

works as the unique contact point with the user, which provides more security

and flexibility for user personalization. PP allows users to set up fine-grained

preferences about presence information sharing, privacy, and traffic optimization

in a scalable way. This approach allows centralizing user access to certain Internet

services, such as HTTP or VoIP, in a single point. Presence-based, user-centric

personalization of these services paves the way for maximizing the users’ QoE.

SIP-based applications might be built on top of PP, and use its functionality to

adapt their behavior efficiently. Thus, we present the personal proxy as an enabler

of user personalization, which may be combined with proactive communication

services that require advanced context and presence information processing. In

particular, PP would improve the scalability of the presented SECE platform.

Since this platform is aimed to handle as much context as possible, which includes

sensor information, for each watcher, distributing presence handling among each

user’s personal proxy would upgrade the overall system’s scalability. We envision

the PP functionality integrated into the presented SECE gateway for handling

sensor information. This would reduce the number of nodes to which the user’s

context is given in, thereby improving user privacy in SECE.

PP is a middleware designed to optimize presence traffic and user communi-

cations. This implements presence traffic optimizations emerged from the IETF

SIMPLE working group, such as notification filtering and partial-state documents.

302

Moreover, the PP client and sever parts can perform non-standard optimization

techniques for reducing traffic on the air interface as much as possible when it is

necessary. We analytically estimated the amount of presence traffic on the access

downlink and uplink reduced by PP; thus, we concluded that PP can help in

reducing this traffic. Moreover, PP decreases the response time perceived by the

user when navigating the Web by means of an HTTP cache, a DNS cache, content

compression and HTTP header reduction. The last one requires the client and

server parts of the middleware to collaborate with each other. We experimen-

tally measured the response time of HTTP requests when the user’s end device

is configured to use the user’s PP as proxy. The reported results showed the PP

is very helpful in decreasing the response time of HTTP requests.

Based on the above-mentioned contributions, we have several on-going and future

lines of work. We will study about publish/subscribe systems in depth, specially their

capability to incorporate presence features and be integrated into sensor networks.

This study will include an analysis of the functionality, flexibility, extensibility, and

performance on restricted networks of several publish/subscribe systems. As part of this

study, we will analyze the applicability of the SIP/SIMPLE framework on constrained

networks, which could result in optimizing this framework for this type of network

or designing a mixed framework that combines SIP/SIMPLE with more optimized

publish/subscribe protocols. We will continue working on SECE, specially on its aspects

related to sensor networks and nearby services (e.g., museums, bars, shops, etc.). We

will continue developing and enhancing PP. Moreover, we will update some of the

PP’s functions that have become obsolete with some advances in IETF WG (e.g., EXI

and SIMPLE conditional notifications). We will implement the proposed strategies for

reducing inter-domain presence traffic, namely CS and FCS. Thus, we will evaluate

these strategies’ performance through a simulated IMS environment. Last, but not

least, we will study the applicability of the proposed queue system at the PS in more

detail and evaluate its performance on a simulated environment.

303

11. DISCUSSION

304

	10 Context-Aware Rule-Based Service Composition Platform: Sense Everything, Control Everything
	10.1 Overview
	10.2 The SECE Language
	10.2.1 Time-Based Rules
	10.2.1.1 Single-Event rules
	10.2.1.2 Recurrent-Event Rules
	10.2.1.3 Hourly, Minutely, and Secondly Recurrent-Event Rules

	10.2.2 Calendar-Based Rules
	10.2.3 Location-Based Rules
	10.2.3.1 Operation

	10.2.4 Request-Based Rules
	10.2.5 Context-Based Rules
	10.2.5.1 States vs. Events

	10.2.6 Error Detection and Handling

	10.3 Architecture
	10.3.1 The Software Components of SECE

	10.4 Enhancing SECE Toward Ontology-Based User-Defined Rules for Automatic Service Discovery
	10.4.1 Design
	10.4.2 Implementation
	10.4.3 SECE Ontology-Based Sublanguage
	10.4.4 Future Work Towards Automation
	10.4.4.1 Automatic Learning of SECE Rules
	10.4.4.2 Event-Based Context-aware Web Service Composition

	10.5 Conclusions

	discussion.pdf
	11 Discussion

