

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR.
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate
the name of the author

Contributions to Presence-Based

Systems for Deploying Ubiquitous

Communication Services

Victoria Beltran Martinez

Wireless Network Group, Department of Telematics

Technical University of Catalonia

Advisor: PhD Josep Paradells Aspas

Co-advisor: PhD Henning Schulzrinne

A thesis submitted for the degree of

PhilosophiæDoctor (PhD)

2011 December

mailto:vbeltran@entel.upc.edu
http://www.upc.edu

6

Capacity Demands of

Inter-domain Traffic

Optimizations on the IMS

Network Servers

The presence service is considered as one of the enablers of the ubiquitous services that

NGNs are expected to provide. Thus, the presence service plays a key role in the IMS,

which is the foundation of NGNs. This provides an all-IP approach for the support and

integration of multimedia services that will be accessed independently of the terminal

device and access network. We refer the reader to Section 2.4 for further information

on the IMS and NGNs. As explained in Section 2.9.4, the presence service may inject

an unbearable amount of traffic into network servers because of periodic subscription

refreshes and dissemination of presence information. This is a critical issue in the IMS,

in which all the SIP messages initiated by and sent to IMS terminals traverse several

centralized servers. The authors of [200] discuss important scalability issues of the IMS.

The authors of [179] analytically estimate presence traffic, and thereby conclude that

this traffic may account for more than 50% of the total traffic handled by the CSCF in

the IMS. The performance analysis in [201] shows that SIP signaling traffic introduces

long transmission delays on the UMTS network. Much of this delay is due to the

network core, and hence optimizing traffic on the radio access side is insufficient for

providing multimedia services in real time. As explained in Section 2.9.5, the presence

159

6. CAPACITY DEMANDS OF INTER-DOMAIN TRAFFIC
OPTIMIZATIONS ON THE IMS NETWORK SERVERS

service’s signaling traffic may overload and seriously damage networks servers when a

large population of users in a domain subscribe to users in a different domain and vice

versa. This scenario is referred to as presence federation. An analytical study [193]

show that the traffic exchanged between two federated presence domains may reach 44

terabytes during 8 hours. This amount of traffic is calculated under the assumptions

that 20 millions of users within a domain subscribe to 10 presentities in a federated

domain each, and each presentity updates its presence information 6 times per hour.

These assumptions are moderate considered that some presence applications such as IM

are used in a planetary scale, measuring users in numbers of billions (see Section 2.1).

Moreover, since a user’s presence information may include dynamic information such

the user’s location, presence changes may occur at a rate higher than 6 changes per hour.

A real presence service may therefore inject into federated domains much more presence

traffic than that estimated in [193]. Section 5 analytically estimates the inter-domain

presence traffic when some optimization techniques, such as Common Notify (CN) [194]

and View Sharing (VS) [195], are applied. This section also proposes a novel strategy,

Common Subscribe (CS), and its variation, Federated Common Subscribe (FCS), for

optimizing presence traffic in federation scenarios. The reported results in Section 5.1

show that CS and FCS are more efficient at reducing inter-domain presence traffic than

CN and VS. To further study the viability and performance of these strategies, this

section discusses the impact of optimizing inter-domain traffic on the IMS. Given the

stateful and centralized nature of the IMS network servers, reduction of its workload

is crucial for increasing the scalability of presence applications and for preventing end-

to-end delays.

Although Section 2.4.1 describes the IMS architecture, let us summarize it here for

convenience. Figure 6.1 depicts the IMS architecture (IMS CN). HSS is a database

that contains user-related information. The CSCF processes SIP signaling. There are

three types of CSCF: Proxy, Interrogating, and Serving CSCF. The Proxy CSCF (P-

CSCF) is the first point of contact between the IMS terminal and the IMS network.

The Serving CSCF (S-CSCF) is the brain in the IMS signaling plane. This is a SIP

server and SIP registrar that performs session control as well. The Interrogating CSCF

(I-CSCF) receives SIP requests and routes them to the appropriate destination, an

S-CSCF or an Application Server (AS). An AS is a SIP entity that hosts and executes

160

6.1 IMS Signaling Flows

Figure 6.1: IMS architecture overview

services, such as the presence service. The MGCF, MGW, and SGW servers form the

PSTN gateway.

Section 6.1 depicts the signaling flows involved in each optimization technique.

Section 6.2 discusses the impact of these techniques on the IMS based on an analytical

estimation of the workload at the CSCF.

6.1 IMS Signaling Flows

The following subsections depict the operation of the strategies for reducing inter-

domain presence traffic and their signaling flows in the IMS. The sequence diagrams

in Figures 6.2, 6.3, 6.4, and 6.5 provide a deep insight into the message load that

each strategy injects into the IMS servers. In these diagrams, inter-domain messages

are delimited by boxes that are marked with an indicator of the amount of messages

(oval rectangle) and the type of messages (drop shadow rectangle). Servers within the

watchers’ domain are marked with 1 and servers within the presentities’ domain with

2. Henceforth, we refer to the former as watcher or subscriber side domain, and to the

latter as watched or notifier side domain.The dotted line arrows are the requests sent

and received by the watchers (i.e., IMS terminals). The remaining messages triggered

from these requests are omitted since they are intra-domain traffic. The subscriber

side S-CSCF has to forward all the SUBSCRIBE messages sent by the watchers to the

“module” containing the intelligence for optimizing inter-domain presence traffic. We

assume that this intelligence is placed inside the subscriber side PS.

161

6. CAPACITY DEMANDS OF INTER-DOMAIN TRAFFIC
OPTIMIZATIONS ON THE IMS NETWORK SERVERS

6.1.1 Common Notify

Rather than sending one NOTIFY message per presence subscription, CN proposes

sending a single NOTIFY message to each watcher domain when a presentity’s pres-

ence information changes, as described in Section 5.1.2. A common NOTIFY message

carries the presentity’s complete presence information and is targeted at all of his or her

authorized watchers. Thus, the watcher domain is responsible for providing the watch-

ers with the presence documents that they are allowed to see. To this end, the PS

needs to know the privacy rules set by the presentity to these watchers. Section 5.1.2.1

describes the operation of privacy-filters subscriptions as the means for the watcher

domain to obtain the presentities’ privacy rules. When the first presence subscription

to a presentity is established between two federated domains, the subscriber side PS

should subscribe to the presentity’s privacy-filters event. In addition, the watcher do-

main needs to know to which watchers each common NOTIFY message is targeted.

Three alternatives are contemplated by [194]: Maintaining the list on the subscriber

side PS, including the list in notifications and obtaining the list by subscribing to the

presentity’s winfo event [145]. The first alternative does not involve extra traffic but

consumes memory at the subscriber side PS. The second alternative increases the size

of the NOTIFY messages that are sent by the presenties’ PS. Figure 6.2 depicts the

message flows of CN configured with these two alternatives. Lastly, the third alter-

native involves a winfo subscription to each presentity; the message flows of CN with

winfo subscriptions, therefore, result from adding these subscriptions to the diagram in

6.2 (i.e., a box like that for privacy-filters subscriptions).

6.1.2 View Sharing

This mechanism classifies the presentity’s watchers according to the part of the presen-

tity’s presence they are authorized to see, as described in Section 5.1.3. It is referred to

as the watcher’s “view” on the presentity. Two watchers who share the same view will

always receive the same presence document when the presentity’s presence changes. The

key idea in VS is that the watcher domain handles a single subscription for the watch-

ers that share a particular view of the presentity’s presence. Whenever the watcher

domain is notified of a new presence document associated with a view, it is responsible

for distributing this document to all the watchers who are allowed to see that view.

162

6.1 IMS Signaling Flows

Figure 6.2: Common Notify’s message flows

With VS, the watcher domain does not perform privacy filtering. Presentities’ views

are represented by Access Control Lists (ACLs), which are encoded by the XML scheme

described in [195]. An ACL is basically a set of rules, each identifying a different view

and containing the list of authorized watchers. When a watcher domain subscribes to

a presentity, the presentity’s ACL is attached to the resulting NOTIFY message. The

content of this ACL depends on the type of trust established between both domains.

Full trust means that all of the presentity’s rules are sent. Thus, the complete asso-

ciation of watchers with views is disclosed and the watched domain will not know the

full set of watchers actually subscribed. With partial trust, only the rule associated

with the subscriber is sent. Thus, the presentity’s PS only discloses the watchers who

see the same view, but is still not aware of the subscribed watchers. With minimal

trust, the ACL only contains the subscriber, and hence there is a backend subscription

163

6. CAPACITY DEMANDS OF INTER-DOMAIN TRAFFIC
OPTIMIZATIONS ON THE IMS NETWORK SERVERS

Figure 6.3: View Sharing’s message flows

for each watcher. This lets the presentity’s PS know about the watchers that are ac-

tually subscribed. However, if multiple watchers share a particular view, the presence

changes are sent through one of the subscriptions and the watcher domain distributes

the changes to all the other watchers. As regards the number of inter-domain presence

subscriptions, the application of full or partial trust is more efficient, since there is only

one subscription for each view. Figures 6.3 depicts the signaling traffic of VS.

6.1.3 Common Subscribe

CS creates a single subscription for each watched presentity between the federated

domains, as described in Section 5.1.4. A common subscription to each presentity

saves a great deal of the signaling traffic involved in multiple subscriptions (one per

watcher with CN or one per view with VS). In turn, the list of watchers that are

actually watching a presentity must be included in any common SUBSCRIBE message

to the presentity. This lets the presentity’s PS know about these watchers as well as

performing authorization tasks. NOTIFY messages as a result of subscription requests

must include the list of authorized watchers. Thus, these messages have a multipart

structure with a presence document and a watcher list (encoded by the XML scheme

described in [178]). Like CN, with CS, the PS does not notify a presence document to

164

6.1 IMS Signaling Flows

Figure 6.4: Common Subscribe’s message flows

a single watcher, but rather to a set of watchers. The watcher domain therefore needs

to know the presentity’s privacy rules for the watchers at which the presence document

is targeted. These privacy rules will be used to filter the complete presence information

and so generate the presence document that each watcher is authorized to see. Thus,

CS requires the watcher domain to subscribe to the presentities’ privacy-filters events

as described in 5.1.4.1. Figure 6.4 shows the flow of messages of CS in IMS.

6.1.4 Federated Common Subscribe

FCS is a variation of CS that unifies the presence and privacy-filters events into a

composed event denominated as federated-presence, as described in 5.1.4. This event

represents all the information about a presentity that a watcher domain is authorized to

165

6. CAPACITY DEMANDS OF INTER-DOMAIN TRAFFIC
OPTIMIZATIONS ON THE IMS NETWORK SERVERS

Figure 6.5: Federated Common Subscribe’s message flows

see: his or her presence information and privacy rules for watchers within the watcher

domain. Thus, in addition to the presence information and watcher list, NOTIFY

messages resulting from subscription requests contain privacy rules. However, a change

in a presentity’s presence information or privacy filters only results in a notification of

the information that has changed (i.e., a presence document or privacy rule). Figure

6.5 shows the flow of FCS messages in the IMS.

6.2 Impact of Traffic Optimization on the IMS CSCF

As depicted in Figures 6.2, 6.3, 6.4 and 6.5, the S-CSCF is the element most impacted

by the presence service. This section discusses the workload that the inter-domain

presence traffic optimizations inject into the IMS servers. This is an important QoS

parameter for measuring the performance of each strategy, since an excessive workload

at the CSCF may cause end-to-end delays. Moreover, Section 6.2.1 studies how privacy

filtering can increase the workload at the network servers. Section 6.2.2 analyzes the

impact of traffic optimizations on the network servers compared to the absence of any

optimization.

166

6.2 Impact of Traffic Optimization on the IMS CSCF

Name Description Default

average value

np Total number of presentities 40000

wat Total number of federated watchers per presentity 20

stime Presence session time 8 hours

rtime Subscription refresh interval 1 hour

nr Total number of subscription refreshes (slife/sref) 20

pch Number of presence changes per presentity 3 per hour

views Number of views per presentity 1

watv
Number of watchers associated to a view

(wat/views)
20 watchers

ip Presence change’s impact percentage on views 1

Table 6.1: Variables for estimating presence load in number of messages

We calculate the number of messages handled by the CSCF during a presence

session, based on the message flows described in Section 6.1 and the variables in Table

6.1. We assume the presence federation scenario in which there are 40,000 presentities

(np variable) in a domain (that is the notifier side domain). Every presentity is watched

by 20 watchers on average in another domain. We assume the average session time

to be 8 hours (stime variable). The subscription lifetime is 1 hour (rtime variable),

which is the default value for presence subscriptions [120]. Thus, a watcher needs to

resubscribe stime/rtime times in order to keep the subscription alive (nr variable). To

tackle privacy filtering, we assume an average number of views per presentity that is

given by the views variable. As described in Section 6.1.2, a view on a presentity’s

presence information is the subset of information that a set of watchers are authorized

to see. Thus, a view is determined by a privacy rule [177], and henceforth we use the

terms “presence view” and “privacy rule” indistinctly. We assume that the number of

watchers associated to each view (watv variable) is uniformly distributed, and hence is

calculated as wat/views. A presence change does not necessarily affect all the views,

but only those that include the information that has changed. We therefore assume

an impact percentage of presence changes on views (ip variable). This determines the

number of views affected by each presence change, and hence the number of watchers

that have to be notified. We classify presence traffic into the following two classes:

Presence update messages: This constitutes all the traffic for notifying the watcher

domain of presence changes. In the case of CS, FCS, and CN, there is only

167

6. CAPACITY DEMANDS OF INTER-DOMAIN TRAFFIC
OPTIMIZATIONS ON THE IMS NETWORK SERVERS

one presence notification anytime a presence change occurs. Thus, the amount

of NOTIFY messages handled by the subscriber side S-CSCF and PS is np ∗
pch ∗ stime. In the case of VS, there are as many inter-domain notifications as

different views. This means that the subscriber side S-CSCF and PS need to

handle np ∗ pch ∗ stime ∗ views ∗ ip NOTIFY messages.

Subscription maintenance messages: This is all the traffic for creating, refreshing

and terminating subscriptions. In the case of CN and VS with minimal trust,

there is one inter-domain presence subscription per watcher, per presentity. VS

with full or partial trust creates a presence subscription for each view. With CS

and FCS, there is only one subscription per presentity. In addition, CN and CS

need to handle one privacy-filters subscription per presentity. CN may need to

handle one winfo subscription per presentity for obtaining the list of subscribed

watchers. Every subscription request triggers multiple flows of messages that tra-

verse the IMS servers in both the watcher and notifier domains. Moreover, the

number and type of subscriptions are different for each optimization technique.

Thus, to provide an intuitive comparison of the optimization techniques’ sub-

scription maintenance traffic, we use Tables 6.2 and 6.3. Let us define a server’s

incoming flow as a sequence of SIP messages of a particular type that the server

receives. Table 6.2 shows the types of incoming flow that the maintenance of

subscriptions causes for each IMS server. The subscriber side servers are marked

with 1 while the notifier side servers with 2, as in Section 6.1. The types of

flow are the same for all the optimization strategies, but not their magnitudes.

The number of messages involved in incoming flows, which we refer to as flow

weight, varies with the strategies. Table 6.3 shows each strategy’s flow weight. A

strategy flow weight is the same for all the types of incoming flow at any server,

except for the CN strategy with winfo subscriptions2. For instance, with FCS,

the subscriber side PS needs to handle a total of 2 ∗ np ∗ (wat + nr) messages

(half NOTIFY messages and half OK for SUBSCRIBE messages).

Figure 6.6 shows the total number of presence messages that each IMS server would

have to handle under the presence scenario defined by the variables in Table 6.1. The

2Both the NOTIFY and OK for NOTIFY incoming flows has np∗ (wat−1) extra messages because

of notifications of new watchers through winfo subscriptions

168

6.2 Impact of Traffic Optimization on the IMS CSCF

IMS Types of incoming flows

server SUBSCRIBE NOTIFY OK for SUBSCRIBE OK for NOTIFY

S-CSCF1 X X X X

PS1 X X

S-CSCF2 X X

PS2 X X

Table 6.2: Types of incoming flows involved in subscription maintenance

Technique flow weight

CN np ∗ (wat ∗ (1 + nr) + (1 + nr))

CN with winfo subs. np ∗ (wat ∗ (1 + nr) + 2 ∗ (1 + nr))2

VS full or partial trust np ∗ views ∗ (1 + nr)

VS minimal trust np ∗ wat ∗ (1 + nr)

CS np ∗ (wat+ 2 ∗ nr + 1)

FCS np ∗ (wat+ nr)

Table 6.3: Incoming flow weight for each optimization strategy

inter-domain presence traffic optimizations presented in Section 6.1 are shown on the

X-axis. CN is the number of messages with CN when the watcher list is obtained by

either maintaining the list on the PS or including the list in notifications. CN-winfo is

the number of messages when CN uses winfo subscriptions for obtaining the watcher

lists. Thus, CN-winfo involves more messages than CN. VS-full means VS with full or

partial trust, while VS-min is VS with minimal trust. The subscriber side servers are

marked with 1 and the notifier side servers with 2. We do not include the P-CSCF,

since the traffic that it receives is intra-domain; neither do we include the notifier side I-

CSCF because its workload is the same as that at the notifier side S-CSCF. We assume

that the presentities do not set up privacy rules to any watcher and hence, privacy

filtering is not performed. Thus, there is only one view that all the watchers can see

and therefore, the impact percentage is one (i.e., any change affects the view). It is

obvious that the S-CSCF is the most overloaded server and that a great part of its

load is a result of notification messages. This is due to the fact that all the NOTIFY

messages sent and received by the subscriber side PS traverse the S-CSCF.

Figure 6.7 shows the number of SIP messages per second that the subscriber side

S-CSCF needs to handle during the session. One may observe that the S-CSCF has to

handle a high number of inter-domain messages, which may require a considerable part

169

6. CAPACITY DEMANDS OF INTER-DOMAIN TRAFFIC
OPTIMIZATIONS ON THE IMS NETWORK SERVERS

0.0E+00

1.0E+07

2.0E+07

3.0E+07

4.0E+07

5.0E+07

6.0E+07

7.0E+07

8.0E+07

SC
SC

F-1
 (C

N
)

P
S-1

 (C
N

)

SC
SC

F-2
 (C

N
)

P
S-2

 (C
N

)

SC
SC

F-1
 (C

N
-w

in
fo

)

P
S-1

 (C
N

-w
in

fo
)

SC
SC

F-2
 (C

N
-w

in
fo

)

P
S-2

 (C
N

-w
in

fo
)

SC
SC

F-1
 (V

S-fu
ll)

P
S-1

 (V
S-fu

ll)

SC
SC

F-2
 (V

S-fu
ll)

P
S-2

 (V
S-fu

ll)

SC
SC

F-1
 (V

S-m
in

)

P
S-1

 (V
S-m

in
)

SC
SC

F-2
 (V

S-m
in

)

P
S-2

 (V
S-m

in
)

SC
SC

F-1
 (C

S)

P
S-1

 (C
S)

SC
SC

F-2
 (C

S)

P
S-2

 (C
S)

SC
SC

F-1
 (FC

S)

P
S-1

 (FC
S)

SC
SC

F-2
 (FC

S)

P
S-2

 (FC
S)

N
u

m
b

er
 o

f
m

es
sa

ge
s

d
u

ri
n

g
th

e
se

ss
io

n
 t

im
e SUBSCRIBE NOTIFY OK for SUBSCRIBE OK for NOTIFY

Figure 6.6: Number of presence messages when no privacy filtering is performed

of its capacity. The processing requirements at the S-CSCF vary approximately between

1500 and 2500 SIP messages per second. VS with full or partial trust is the strategy

that load the network servers least. However, we do not consider privacy filtering, and

hence there is a single presence subscription per presentity. In Section 5.1.5.3, we show

that privacy filtering may seriously increase the VS traffic. Section 6.2.1 discusses the

impact of privacy filtering on the network servers when VS is used. VS with minimal

trust is the strategy that introduces the largest number of messages. However, this is

the only way for VS to let the presentities’ PS know about the list of watchers that are

actually subscribed. Neither partial or full trust provide the presentities’ PS with this

information. CS generates more messages than VS with partial or full trust for two

reasons: presence resubscriptions for new watchers and privacy-filters subscriptions.

The first reason is due to the fact that CS always ensures that the presentities’ PS has

knowledge about the set of watchers actually subscribed. FCS is a variation of CS that

avoids subscribing to privacy-filters events. However, its load is still slightly higher than

that of VS because of the presence resubscriptions for new watchers. VS with minimal

trust is very similar to CN, but the former does not need to establish privacy-filters

subscriptions. This is the reason why the load on the S-CSCF with VS-min is slightly

lower than that with CN. However, VS generates as many notifications per presence

change as privacy rules created by the presentity, rather than one. As the number of

privacy rules increases, CN could be preferable to VS with minimal trust. Regarding

CN, the use of winfo subscriptions (CN-winfo) increases the load on the IMS servers.

170

6.2 Impact of Traffic Optimization on the IMS CSCF

0.0E+00

1.0E+07

2.0E+07

SC
SC

F-1
 (C

N
)

P
S-1

 (C
N

)

SC
SC

F-2
 (C

N
)

P
S-2

 (C
N

)

N
u

m
b

er
 o

f
m

es
sa

ge
s

d
u

ri
n

g
th

e
se

ss
io

n
 t

im
e

0 500 1000 1500 2000 2500 3000

CN

CN-winfo

VS-full

VS-min

CS

FCS

Number of messages per second

Figure 6.7: Number of inter-domain messages per second at the subscriber side S-CSCF

Another alternative for obtaining the list of watchers to which the notifications are

targeted is to include this list in the notifications themselves. Section 5.1.5.4 studies

the performance of these two alternatives. The reported results in this section show

that winfo subscriptions save around 7% of the second alternative’s traffic in the case

of high activity (from 5 to 10 presence changes per hour). However, even in this case,

the impact of winfo subscriptions on the servers’ workload may not compensate for this

saving of inter-domain traffic.

6.2.1 Privacy Filtering

Section 6.2 shows that VS with partial or full trust is the optimization technique that

least impacts the IMS servers when no privacy filtering is performed. After VS, FCS,

and CS are the strategies that involve the fewest number of messages. This section

studies the effect of privacy filtering on VS, and compares it to that on FCS. This

comparison is also applicable to CS since its mode of operation and involved load is

very similar to FCS. Figure 6.8 shows the amount of messages that VS and FCS generate

to each IMS server. With VS, the number of incoming messages at the servers increases

with the number of views linearly. However, the number of messages generated by FCS

does not vary, since there is a single subscription regardless of the number of views.

We see that FCS causes less overload than VS from two presence views per presentity,

that is, when privacy filtering is performed. We assume that presence changes affect

all the presence views. However, a privacy rule many not include the information

that has changed, and may therefore not be affected by the change. In Section 6.2,

we define the impact percentage as the average percentage of views that are affected

171

6. CAPACITY DEMANDS OF INTER-DOMAIN TRAFFIC
OPTIMIZATIONS ON THE IMS NETWORK SERVERS

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7
x 10

7

Number of presence views per presentity

N
um

be
r

of
 m

es
sa

ge
s

du
rin

g
th

e
se

ss
io

n
tim

e

S−CSCF1 with VS
PS1 with VS
S−CSCF2 with VS
PS2 with VS
S−CSCF1 with FCS
PS1 with FCS
S−CSCF2 with FCS
PS2 with FCS

Figure 6.8: Number of presence messages as the number of views per presentity increases

0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

7

Impact porcentage of presence changes (given 5 views per presentity)

N
um

be
r

of
 m

es
sa

ge
s

du
rin

g
th

e
se

ss
io

n
tim

e

S−CSCF1 with VS
PS1 with VS
S−CSCF2 with VS
PS2 with VS
S−CSCF1 with FCS
PS1 with FCS
S−CSCF2 with FCS
PS2 with FCS

Figure 6.9: Number of presence messages as the impact percentage increases

by each presence change. Figure 6.9 shows the load of VS and FCS as the impact

percentage increases, given that the presentities create five privacy rules. VS sends

as many NOTIFY messages as the number of views affected by the presence change.

Thus, its load increases with the impact percentage. FCS only sends a single NOTIFY

message, regardless of the number of views or the impact percentage. It can be seen

that even when only one view is affected, FCS involves less message load for each

network server than VS.

6.2.2 Impact of an Application Server for Traffic Optimization on the

IMS

Although traffic optimization is a necessary step to make the IMS presence service

viable, this may make a profound impact on the S-CSCF. Section 6.1 only considers

inter-domain traffic, and intra-domain traffic is left out of consideration. We consider

172

6.2 Impact of Traffic Optimization on the IMS CSCF

intra-domain traffic as the traffic that is sent and received by IMS terminals, depicted

by the dotted line arrows in Figures 6.2, 6.3, 6.4, and 6.5. To optimize inter-domain

presence traffic, an AS needs to be added in the IMS architecture for performing the

necessary intelligence . This requires the subscriber side S-CSCF to redirect the SUB-

SCRIBE messages sent by IMS terminals to the AS, and to act as an intermediary in

any transaction with this server. Traffic optimization therefore requires some of the

CSCF capacity. Section 6.1 assumes that the intelligence for traffic optimization is

placed into the subscriber side PS. It is reasonable, however, to collocate this inter-

mediary with the subscriber side Resource List Server (RLS) (see Section 2.7). This

is a well-known concept in presence frameworks that is designed to drastically reduce

the number of messages between watchers and the network. In the SIMPLE normal

mode of operation, watchers subscribe to their presentities directly, and hence there are

as many subscriptions established on the access network as the number of presentities

for each watcher. Henceforth, we refer to this operation mode as Direct Subscriptions

(DS). With the RLS, watchers subscribe to their RLSs instead of their presentities,

and so the number of presence subscriptions on the access network is reduced to one

for each watcher. In turn, the RLS is responsible for subscribing to the watchers’ pre-

sentities on the watchers’ behalf as well as notifying them of the presentities’ presence

changes. Figures 6.10 and 6.11 depict the signaling flows with DS and when watchers

use the RLS for optimizing intra-domain traffic, respectively. It is obvious that the

RLS reduces considerably the number of messages sent over the access link. However,

the RLS causes more load for the S-CSCF because it is the intermediary in any com-

munication with the RLS, as shown in Figure 6.11. Although Section 6.1 assumes that

all the optimization strategies require an AS for optimizing presence subscriptions, CN

supports a mode of operation that is less harmful to the S-CSCF. When the list of

watchers at which the common notifications are targeted is attached to the notifica-

tions themselves, the subscriber side PS does not need to maintain the watcher lists or

subscribe to winfo subscriptions for obtaining these lists. Thus, the subscriber side PS

does not need to be an intermediary in the watchers’ presence subscriptions. In this

case, the signaling flows introduced by CN would be almost equal to those in Figure

6.10. The only difference is that there is a single common notification at any time when

a presentity changes its presence, rather than one per watcher. Common notifications

are sent to the subscriber side PS, which notifies each watcher, as shown in Figure 6.2.

173

6. CAPACITY DEMANDS OF INTER-DOMAIN TRAFFIC
OPTIMIZATIONS ON THE IMS NETWORK SERVERS

Figure 6.10: Signaling flows of presence subscriptions without any optimization

This section discusses how the workload at the S-CSCF can be affected by using

an AS, either the PS or RLS, for optimizing presence traffic. Figure 6.12 shows the

number of inter- and intra-domain messages per second handled by the subscriber side

S-CSCF during a session. We take into account both intra-domain and inter-domain

traffic. We calculate the message load when presence traffic is not optimized at all, and

thereby watchers subscribe directly without any optimization technique (i.e., DS); when

intra-domain traffic is optimized by an RLS (i.e., RLS); when CN is applied without

an AS for optimizing inter-domain traffic (i.e., CN-WA); when FCS optimizes inter-

domain presence traffic (i.e., FCS-DS), and when FCS is collocated with the RLS for

optimizing intra-domain traffic too (i.e., FCS-RLS). We study CN because it is the only

strategy that does not require an intermediary in the watchers’ presence subscriptions,

as described previously. Among the other strategies (i.e., those that need an AS), we

focus on FCS because this is the one that impacts the S-CSCF the least, as shown in

Section 6.2. To calculate the number of intra-domain messages, we need to estimate the

population of watchers in the subscriber side domain. Let Lw be the average size of the

watchers’ resource list and nw the number of watchers. Thus np ∗wat = nw ∗Lw must

satisfy since np∗wat determines the number of inter-domain presence subscriptions and

the RLS establishes Lw subscriptions on behalf of each watcher. Let us assume that the

watchers watch 10 presentities on average; that is Lw = 10. We therefore deduce that

174

6.2 Impact of Traffic Optimization on the IMS CSCF

Figure 6.11: Signaling flows of presence subscriptions with an RLS

the number of watchers (nw) is equal to 80,000. Thus, the RLS and DS will involve

80,000 and 800,000 presence subscriptions on the access network, respectively. Thus,

the S-CSCF needs to handle the traffic generated by 80,000 subscriptions with RLS

and FCS-RLS, and 800,000 subscriptions with DS, CN-WA and FCS-DS, in addition

to the inter-domain traffic.

It can be seen that the RLS seriously increases the capacity demands on the S-CSCF.

This is due to the fact that the S-CSCF is the intermediary in any communication of

the the RLS with the watchers and the notifier side PS. Thus, the RLS by itself (i.e., not

combined with any optimization) is very harmful to the CSCF. It should be carefully

studied whether the saving of presence traffic achieved by the RLS compensates for

its impact on the IMS servers. Likewise, all the strategies for optimizing inter-domain

presence traffic increase the workload at the S-CSCF. This is because they require an

AS that processes the subscription requests sent by the watchers and the notification

requests sent by the notifier side PS. Compared to the FCS strategy in Figure 6.7,

one may observe that intra-domain traffic increases the workload at the S-CSCF by

175

6. CAPACITY DEMANDS OF INTER-DOMAIN TRAFFIC
OPTIMIZATIONS ON THE IMS NETWORK SERVERS

0 500 1000 1500 2000 2500 3000 3500 4000

DS

RLS

CN-WA

FCS-DS

FCS-RLS

Number of messages per second

Figure 6.12: Number of inter- and intra-domain SIP messages/second at the subscriber

side S-CSCF

approximately 1000 messages per second. This increase is the same for the remaining

strategies in Figure 6.7, since all except CN-winfo need an AS. The CN-winfo strategy

in Figure 6.12 is configured in such a way that the subscription requests sent by the

watchers are not forwarded to any AS. This decreases the workload at the S-CSCF

caused by the CS-winfo strategy in Figure 6.7. One may observe that, when intra-

domain messages are taken into account, the CN-winfo strategy injects fewer messages

into the S-CSCF than the FCS strategy (and therefore the other studied strategies).

However, reducing the number of inter-domain and intra-domain presence subscriptions

at the same time is the alternative with the least impact. Figure 6.12 shows that the

combination of the RLS with the FCS strategy even reduces the processing requirements

of the presence service on the S-CSCF. The workload at the S-CSCF without any

optimization (i.e. w/o RLS) is approximately 2300 messages per second. An RLS that

performs the FCS strategy reduces this load up to approximately 1600 messages per

second. An RLS applying the CS strategy, or applying the VS strategy with partial or

full trust if no privacy filtering is performed, would achieve a similar reduction.

6.3 Conclusions

Presence information is regarded as a key tool to personalize and adapt next-generation

services. However, the scalability of large-scale presence-enabled applications is chal-

lenging because of the large amounts of signaling traffic that presence services generate.

SIMPLE is the SIP extension for presence and instant messaging that has become the

de facto protocol for presence services. To date, the proposals for reducing inter-domain

176

6.3 Conclusions

presence traffic, Common Notify (CN) and View Sharing (VS), have been discontinued

in the IETF. However, the need to make presence federation scenarios scalable still

remains for the future large-scale converged networks. The fact that SIMPLE, the

standard protocol for presence in IMS, is no longer involved in reducing inter-domain

presence traffic should alarm both the industry and academia. Common Subscribe (CS)

and Federated Common Subscribe (FCS) drastically reduce the number of inter-domain

presence subscriptions up to one per presentity, regardless of the number of subscribed

watchers, as decribed in 5.1. CS and FCS are more efficient at reducing inter-domain

presence traffic than CN and VS (see Section 5.1).

We estimated the processing requirements in the number of messages that CN,

VS, CS and FCS add to the IMS servers. High processing requirements can worsen

the IMS scalability and introduce end-to-end delays. They are therefore an important

parameter to consider when choosing an optimization strategy apart from the reduction

of presence traffic between the federated domains. The reported results show that the

presence service adds relevant capacity demands on the S-CSCF. The introduction of an

AS that optimizes presence traffic into the IMS considerably increases this server’s load.

This is because the S-CSCF is the intermediary in any communication with the AS. All

the inter-domain presence traffic optimizations increase the S-CSCF load as compared

to when no optimizations are applied. The common optimization of access network

traffic, the RLS, almost doubles the S-CSCF workload without any optimization. The

RLS is therefore strongly discouraged if it is not combined with other optimization to

reduce its overload. However, if the RLS applies the FCS or CS strategies for optimizing

inter-domain presence traffic, it decreases the S-CSCF message load when presence

traffic is not optimized by around 29%. Thus, these optimization strategies combined

with the RLS are not only helpful in optimizing inter-domain presence traffic but also

ease the impact of the presence service on the CSCF. However, it does not necessarily

mean that the intra-domain presence traffic is reduced. This depends on a number of

factors, as described in Section 7. Regarding CN, the subscriber PS needs to obtain the

watcher list to which any common notification is targeted by one of three alternatives:

1) the subscriber side PS maintains the list, 2) the subscriber side PS subscribes to

winfo events and 3) the notifier side PS includes the list in the notifications. The

third alternative has the important advantage that it does not require an AS acting as

an intermediary in the watchers’ presence subscriptions. Thus, this alternative injects

177

6. CAPACITY DEMANDS OF INTER-DOMAIN TRAFFIC
OPTIMIZATIONS ON THE IMS NETWORK SERVERS

fewer messages into the S-CSCF than the other optimization strategies without being

combined with the RLS. The second alternative increases the S-CSCF workload because

of winfo subscriptions. We therefore recommend the use of the third alternative in CN.

When no privacy filtering is performed, VS with partial or full trust is the strategy that

least increases the CSCF’ workload. This means that all the watchers of a presentity

are allowed to see the same piece of the presentity’s presence information. This may

not be true in many scenarios. Moreover, VS with partial or full trust does not allow

the presentities’ PS to know about the set of watchers that are actually subscribed,

which may not be acceptable by the presentities’ domain. When privacy filtering is

performed, FCS is the strategy that places the lowest capacity demands on the IMS

servers, closely followed by CS.

We therefore conclude that the FCS strategy is a good alternative for reducing inter-

domain presence traffic. This should be implemented by the subscriber side RLS in

order to reduce the capacity impact on the S-CSCF. To better study the efficiency and

viability of CS and FCS, our next step is to implement these strategies for evaluating

their complexity, performance, and processing demands in real scenarios. We envision

that the impact of FCS and CS on the AS memory resources will be fairly lower than

that of regular SIP subscriptions, since these strategies reduce drastically the number

of inter-domain subscriptions. Regarding CPU usage, CS and FCS require some extra

computation at the AS for handling common subscriptions. We will therefore study

the computational cost of CS and FCS in detail, thereby concluding whether or not

their implementation at large-scale operator networks is viable.

178

7

SIP/SIMPLE Resource List

Server: Optimization or Burden

for Presence Systems?

SIMPLE relies on event subscriptions for disseminating context information to sub-

scribed services or users. Event subscriptions generate a considerable amount of signal-

ing traffic that is restraining the widespread adoption of presence-enabled services, as

described in Section 2.9.4. On one hand, the SIMPLE subscription model requires send-

ing periodic messages to prevent subscriptions from expiring. On the other hand, any

presence change triggers end-to-end notification flows that involve end-user applications

and multiple network nodes exchanging numerous messages. Presence traffic overload

is specially harmful and critical in mobile applications because of low-bandwidth links

and end-user devices with limited battery life and processing capabilities. Moreover,

the fact that SIMPLE encodes presence information by XML, which is textual and

verbose, constitutes a heavy burden for mobile devices. User location is a primordial

parameter in many pervasive and proactive applications. Although presence is seen as

a tool for implementing next-generation LBSs, timely dissemination of frequent loca-

tion updates is still challenging in presence systems. Both industry and academia have

concern about the need to reduce presence traffic for making presence services scalable

and viable. Sections 2.9.4 and 2.9.6 describe some techniques for optimizing presence

traffic that have emerged to date. One of the most popular optimizations of presence

traffic specified by the SIMPLE WG is the RLS [121], which dramatically reduces the

179

7. SIP/SIMPLE RESOURCE LIST SERVER: OPTIMIZATION OR
BURDEN FOR PRESENCE SYSTEMS?

number of messages that are sent on the user’s access link. Let us reiterate here the

description about the RLS given in Section 2.7 for convenience. Although watchers can

subscribe to each of their presentities directly, typically they subscribe to their RLSs.

This allows watchers to subscribe to their presentities through a single SUBSCRIBE

message. This message contains a URI that identifies the watcher’s resource list, in

which each resource represents a presentity. When an RLS receives a subscription re-

quest, it subscribes to each resource on the list, and when any resource changes it sends

an RLMI document [121] to the subscriber. An RLMI document is a list that contains

zero or more resource items, each one for a presentity. A resource item points to the

resource’s presence document in the message’s body, which has a Multipart structure

[203]. Appendix B shows an example of RLMI document. The sequence of notification

is as follows: the presentity sends a PUBLISH message to its PS. Then, the PS sends a

NOTIFY message, which contains a PIDF document, to the RLS of each watcher that

is authorized to see the published presence change. Each of these RLSs, in turn, sends a

NOTIFY message that contains an RLMI document, which includes the notified PIDF

document, to its subscribed watcher. PSs and RLSs are called notifiers because they

are in charge of notifying RLSs and watchers of presence changes, respectively.

Although the RLS is widely adopted to reduce presence traffic in mobile presence

applications, its performance has not been studied in depth yet. Only the authors of

[193] estimate inter-domain presence traffic when a federated RLS is used to reduce

traffic on the network core. Section 5 explains this work in more detail. The authors

conclude that a federated RLS only helps in reducing presence traffic when it is com-

bined with other techniques such as conditional notifications. Even so, a federated RLS

may be discouraged because it increases the complexity of some parts of the system

such as subscription state, interlinkage and notifications. As the authors state, further

work is necessary to analyze and optimize presence traffic. Section 5 compares a feder-

ated RLS with other strategies for reducing inter-domain presence traffic. The results

reported in this section show that a federated RLS always involve more traffic than

the other studied strategies. Furthermore, when conditional notifications are applied,

a federated RLS introduces more traffic rather than optimizing it. Section 6 discusses

the impact of an RLS on the IMS and concludes that this impact may be severe if the

RLS is not optimized. The reduction in presence traffic on the network access achieved

by the RLS may not compensate for this impact.

180

7.1 Calculation of RLS Traffic on the Access Link

Since the afore-mentioned studies reveal that an RLS may not be as efficient as

expected and may even be harmful to the network servers, this section analyses the

efficiency of an RLS at reducing traffic on the network access in detail. This section also

studies the parameters that affect the performance of the RLS and gives some guide-

lines on its usage. Section 7.1 presents the mathematical formulas that calculate the

traffic in bytes generated by an RLS, with and without two optimizations: conditional

notifications and partial-state documents. Section 7.2 discusses the results of these

formulas in a particular scenario. Lastly, Section 7.3 summarizes the main findings of

this study.

7.1 Calculation of RLS Traffic on the Access Link

We follow the methodology described in Section 5 for estimating the presence traffic

that is sent over the wireless link between an end-user and the network with or without

an RLS. Presence traffic is given in number of bytes through a set of formulas, which

are based on the following assumptions. Messages are classified into three groups. The

initial messages are those in the initial phase of establishing a subscription. The steady

state messages are exchanged in the time that elapses between the initial subscription

and the termination of the subscription. They contain the notifications due to state

changes and subscription refreshes. Finally, the termination messages are those in the

termination phase of the subscription. A subscription’s traffic is calculated as the sum

of the initial, steady state and termination messages during a session. The reported

formulas are functions of the variables in Table 7.1. We assume that the average sub-

scription lifetime is 8 hours (slife variable), and the average refresh interval to keep

subscriptions alive is 1 hour (sref variable). The variables sub, sok, not and nok are

the sizes of subscription-related SIP messages and their values have been taken from

[110]. The variable mpb is the size of a boundary in Multipart documents. The rlitem

variable is the size of each resource item (i.e, a presentity’s identity) of RLMI doc-

uments. Appendix B shows an example of RLMI document. The rlroot variable is

the size of the root XML elements that contain resource items in RLMI documents.

The value of the rlroot and rlitem variables has been deduced from [121]. The psdoc

variable is the size of partial-state presence documents, which has been deduced from

the examples in [139]. In Table 7.1, we have marked the variables whose values vary for

181

7. SIP/SIMPLE RESOURCE LIST SERVER: OPTIMIZATION OR
BURDEN FOR PRESENCE SYSTEMS?

Name Description Average value

slife Subscription lifetime 8 hours

sref Subscription refresh interval 1 hour

pres* Number of presentities per watcher 20

pch* Number of presence changes per presentity 3 per hour

sub SUBSCRIBE message size 450 bytes

sok size of 200 OK for SUBSCRIBE message 370 bytes

not NOTIFY message size 500 bytes

nok size 200 OK for NOTIFY message 370 bytes

mpb Size of a boundary in Multipart bodies 144 bytes

rlroot Size of RLMI documents’ root 144 bytes

rlitem Size of RLMI documents’ resource items 144 bytes

doc* size of full-state presence documents 1000 bytes

psdoc size of partial-state presence documents 400 bytes

Table 7.1: Variables for estimating the RLS traffic

the analysis described in Section 7.2 with an asterisk: the number of presentities (pres

variable), the number of presence changes per presentity (pch variable) and the size

of presence documents (doc variable). Initially, we have assumed that a user watches

20 presentities that make three presence changes per hour on average. We have also

assumed presence documents of 1000 bytes. These assumptions are quite moderate

if we consider always-on users with rich presence information that may contain geo-

graphical coordinates, contact information, activities, mood, status, device and service

capabilities, etc. Appendix B shows an example presence document with this kind of

information.

The mathematical formulas below are based on the variables in Table 7.1 and cal-

culate the presence traffic on the user access link 1) without an RLS and 2) with an

RLS, during a presence session. These two methods can be combined with conditional

notifications and partial-state documents. When conditional notifications are used, sub-

scription refreshes and terminations do not trigger presence notifications. Partial-state

presence documents only contain the changes that have occurred from the last notifi-

cation rather than the complete resource information. Thus, when presence changes

are notified in partial-state documents, the change variable takes the psdoc variable

instead of doc. Moreover, the RLS can notify partial-state RLMI documents, which

only contain the presentities whose presence has changed rather than the complete

182

7.1 Calculation of RLS Traffic on the Access Link

list of presentities. Both methods’ total number of bytes is given by the sum of four

variables based on the above-mentioned message classification: The initial variable is

the number of bytes of initial messages. The termination variable counts the number

of bytes of termination messages. The variables change and refresh are the number

of bytes of the messages involved in presence changes and subscription refreshes (i.e.,

steady state messages), respectively. For the change variable, we subtract 2 from the

number of presence changes because the presence changes because the user gets online

and goes offline are not counted as steady state traffic.

1. Direct subscription: The user subscribes to each of his or her presentities directly.

initial = pres ∗ (sub+ sok + not+ doc+ nok)

change = pres ∗ (pch− 2) ∗ (not+ doc+ nok)

refresh = pres ∗ (slife/sref − 1) ∗ (sub+ sok + not+ doc+ nok)

termination = pres ∗ (sub+ sok + not+ doc+ nok)

If conditional notifications are applied, the refresh and termination messages are:

refresh = pres ∗ (slife/sref − 1) ∗ (sub+ sok)

termination = pres ∗ (sub+ sok)

2. RLS: The user subscribes to his or her RLS, which in turn subscribes to each of

his or her presentities.

initial = (sub+ sok + not+ rlroot+ pres ∗ (rlitem+mpb+ doc) + nok)

change = pres ∗ (pch− 2) ∗ (not+ rlroot+ pres ∗ (rlitem+mpb+ doc) + nok)

refresh = (slife/sref − 1) ∗ (sub+ sok + not+ rlroot+ pres ∗ (rlitem+mpb+

doc) + nok)

termination = (sub+ sok + not+ rlroot+ pres ∗ (rlitem+mpb+ doc) + nok)

If partial-state RLMI documents are used, the change messages are:

change = pres ∗ (pch− 2) ∗ (not+ rlroot+ (rlitem+mpb+ doc) + nok)

If conditional notifications are applied, the refresh and termination messages are:

refresh = (slife/sref − 1) ∗ (sub+ sok)

termination = sub+ sok

183

7. SIP/SIMPLE RESOURCE LIST SERVER: OPTIMIZATION OR
BURDEN FOR PRESENCE SYSTEMS?

1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

16

18
x 10

5

Average number of presentities

P
re

se
nc

e
tr

af
fic

 (
by

te
s)

direct subscriptions
RLS
RLS with partial−state RLMI
RLS with partial state RLMI and presence
direct subscriptions with partial−state presence

Figure 7.1: Presence traffic with and without RLS, and partial-state documents

7.2 Estimation of RLS Traffic on the Access Link

Based on the mathematical formulas presented in Section 7.1, Figure 7.1 shows the

presence traffic that is generated when the user employs direct subscriptions and

an RLS, with and without conditional notifications and partial-state documents. A

non-optimized RLS is clearly the least efficient technique. The performance of non-

optimized direct subscriptions and an RLS optimized with partial-state RLMI docu-

ments is very similar, and hence direct subscriptions are recommended for the sake of

simplicity. Only when the RLS combines partial-state presence and RLMI documents,

it is preferable to non-optimized direct subscriptions. If all the watchers notify partial-

state presence documents, direct subscriptions are still recommended because of their

simplicity. However, guaranteeing that all the watchers notify partial-state presence

may not be possible in real scenarios. On the contrary, an RLS is a centralized server

that can ensure the implementation of optimizations on the user’s access link more

easily.

Figure 7.2 compares non-optimized direct subscriptions with an RLS that notifies

partial-state RLMI documents. It can be seen that the performance of the RLS worsens

as the number of presence changes increases. Direct subscriptions are preferable to an

RLS from 4 presence changes per hour. The number of presentities affect more seriously

direct subscriptions than the RLS.

Figure 7.3 shows the number of presentities up to which non-optimized direct sub-

scriptions are preferable to an RLS. The absence of Y coordinate for an X coordinate

184

7.2 Estimation of RLS Traffic on the Access Link

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5
x 10

6

Average number of changes per hour, per presentity

P
re

se
nc

e
tr

af
fic

 (
by

te
s)

direct subscriptions, 5 pres.
RLS with partial−state RLMI, 5 pres.
direct subscriptions, 10 pres.
RLS with partial−state RLMI, 10 pres.
direct subscriptions, 20 pres.
RLS with partial−state RLMI, 20 pres.

Figure 7.2: Traffic of an RLS with partial-state RLMI documents, and direct subscriptions

1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

16

Number of presence changes per hour, per presentity

 M
ax

im
um

 n
um

be
r o

f p
re

se
nt

iti
es

re

co
m

m
en

de
d

to
 s

ub
sc

rib
e

di
re

ct
ly

vs. RLS with partial−state RLMI and pres. (400 bytes doc.)
vs. RLS with partial−state RLMI and pres. (+600 bytes doc.)
vs− RLS with partial state RLMI (all doc sizes)

Figure 7.3: Maximum number of presentities recommended to use direct subscriptions

means that direct subscriptions are always preferable (i.e., the maximum number of

presentities is infinite). When the RLS does not implement partial-state presence doc-

uments and presentities change their presence 3 times per hour, direct subscriptions are

recommended up to 6 presentities. If the frequency of change is higher, direct subscrip-

tions are always recommended regardless of the document size. When the RLS notifies

partial-state presence and the size of presence documents is larger than 600 bytes, di-

rect subscriptions are discouraged. However, when there are more than 6 changes per

hour and the document size is small (400 bytes), direct subscriptions are always rec-

ommended. These conditions may be satisfied in LBSs that only include geographical

coordinates into presence documents (which usually take less than 400 bytes).

As an RLS makes it easier to implement optimization techniques, let us assume that

185

7. SIP/SIMPLE RESOURCE LIST SERVER: OPTIMIZATION OR
BURDEN FOR PRESENCE SYSTEMS?

the watchers do not optimize presence traffic but the RLS does implement conditional

notifications and partial-state RLMI documents. We refer to conditional notifications

as Notify Optimization (NO) for distinguishing between this technique and Common

Notify (CN), which is an strategy studied in Section 5. Figure 7.4 compares both

alternatives’ presence traffic with 5, 10 and 20 presentities as the number of presence

changes increases. One may observe that the amount of traffic saved by the RLS is not

significative and may not compensate for its complexity. Even, when the 5, 10, and 20

presentities change their presence more than 4, 5, and 6 times per hour, respectively,

non-optimized direct subscriptions are more efficient than the optimized RLS. Now,

let us assume that the watchers do optimize presence traffic by means of conditional

notifications and partial-state notifications. Figure 7.5 compares the presence traffic

generated by such optimized direct subscriptions and a likewise optimized RLS. It also

shows the direct subscriptions’ traffic when the watchers only implement partial-state

presence. It can be seen that the optimized direct subscriptions are more efficient than

the optimized RLS from 3 changes per hour. Direct subscriptions are more efficient as

the number of presence changes increases. They save 6.6% and 22.8% of the RLS traffic

with 3 and 10 presence changes per hour, respectively. If the watchers do not implement

conditional notifications but they do implement partial-state documents and there are

more than 6 hours per hour, direct subscriptions are still preferable. However, non-

optimized direct subscriptions always generate more traffic than the optimized RLS. In

this case, the RLS saves 69.4% and 29% of the direct subscriptions traffic with 1 and

10 changes per hour, respectively.

7.3 Conclusions

RLS is a widely-adopted optimization of presence traffic in mobile applications that

importantly reduces the number of presence messages on access links. However, this

server introduces complexity and generates much larger presence documents, which

may not compensate for the saving of messages. Network administrators should care-

fully study three parameters before configuring watcher applications to subscribe to an

RLS: average number of presentities, number of presence changes and size of presence

documents. We estimated the access link’s presence traffic when a user subscribes to

both an RLS and his or her presentities directly. We studied these two alternatives with

186

7.3 Conclusions

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

Average number of changes per hour, per presentity

P
re

se
nc

e
tr

af
fic

 (
by

te
s)

direct subscriptions, 5 pres.
RLS with NO and partial−state RLMI, 5 pres.
direct subscriptions, 10 pres.
RLS with NO and partial−state RLMI, 10 pres.
direct subscriptions, 20 pres.
RLS with NO and partial−state RLMI, 20 pres.

Figure 7.4: Traffic of direct subscriptions, and an RLS with partial-state RLMI documents

and conditional notifications (NO)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

Average number of presence changes per hour, per presentity

P
re

se
nc

e
tr

af
fic

 (
by

te
s)

direct subscriptions with NO and partial−state presence
RLS with NO and partial−state RLMI and presence
direct subscriptions with partial−state presence
direct subscriptions

Figure 7.5: Traffic of optimized direct subscriptions, and an RLS with partial-state

presence documents and conditional notifications (NO)

and without two optimizations: partial-state documents and conditional notifications.

The reported results revealed that the RLS is not efficient at reducing presence traffic.

An RLS without any optimization is strongly discouraged. The performance of the

RLS decreases dramatically as the number of presence changes increases. Partial-state

presence documents ease the impact of presence changes but having an RLS handle

each presentity’s partial-state changes involves some computational cost. Even when

the RLS is optimized with the above-mentioned strategies, subscribing to presentities

directly is more efficient under many circumstances. If there is a guarantee that all

the watchers implement conditional notifications and partial-state documents, direct

subscriptions are always more efficient than an optimized RLS excepting when presen-

187

7. SIP/SIMPLE RESOURCE LIST SERVER: OPTIMIZATION OR
BURDEN FOR PRESENCE SYSTEMS?

tities only change their presence once per hour. Even when direct subscriptions are

not optimized at all, if presence changes occur frequently and presence documents are

small, which is probable in some LBSs, direct subscriptions are more efficient than an

optimized RLS.

188

8

Queueing System and Adaptive

QoS Mechanism for Controlling

the Rate of Presence

Publications and Notifications

Presence protocols normally adopt a push approach because of the asynchronous na-

ture of presence changes. This means that watchers are notified of presence changes,

rather than querying the presence service periodically. Such a timely dissemination

of presence changes entails much signaling traffic, and therefore scalability issues in

presence-enabled applications, as described in Section 2.9.4. Even if presence updates

are discarded, signaling traffic for keeping presence subscriptions alive may be quite

considerable. The authors of [179] analytically estimate presence traffic, thereby con-

cluding that this traffic may account for more than 50% of the total traffic handled

by the CSCF in the IMS. The IMS, which is the foundation of NGNs, evolves mobile

operators towards an all IP technology for the support of advanced multimedia services

(see Section 2.4). The performance analysis in [201] shows that SIP signaling traffic

introduces long transmission delays on the UMTS network. Much of this delay is due

to excessive traffic on the network core, and hence optimizing this traffic is necessary

for providing multimedia services in real time.

Section 2.9.4 introduces some proposals for reducing subscription-related presence

traffic. Since presence notifications constitute a large part of the excessive traffic gener-

189

8. QUEUEING SYSTEM AND ADAPTIVE QOS MECHANISM FOR
CONTROLLING THE RATE OF PRESENCE PUBLICATIONS AND
NOTIFICATIONS

ated by presence applications [181][182], most of these proposals tackle the number of

NOTIFY messages. As described in Section 2.7.4, conditional notifications [147], notifi-

cation filtering [140], partial-state presence documents [139] and resource list subscrip-

tions (i.e., RLS) [121] are proposals that have emerged from the IETF SIMPLE WG.

SIMPLE allows notifiers to limit the rate of notifications [110] but does not mandate

any particular rate control mechanism. The authors of [183] describe a mechanism that

allows watchers to specify the desirable maximum rate when subscribing. The draw-

back of this mechanism is that it requires handling a different notification buffer for

each watcher, which may not be scalable in large-scale presence services. Some authors

have proposed queuing systems for controlling the presence notification rate recently.

The authors of [188] propose a delayed threshold in order not to notify watchers of

presence changes immediately. When the PS receives a presence publication, it starts

the delayed timer and, once this timer expires it sends the corresponding notifications.

This allows aggregating presence changes that occur during the delayed timer, and

hence it save some notifications. This mechanism requires a different buffer for each

presentity, which may be costly in large-scale presence services. Moreover, notifications

are always delayed, which introduce unnecessary delays in notifying when the arriving

publication rate is lower than the desirable output rate. The authors of [189] propose

TNTC, which is a token-bucket based mechanism for controlling the notification rate

that the PS injects into the network core. This mechanism ensures that the maximum

output rate is the token generating rate of the bucket. If the presence publication ar-

rival rate is higher than the token generating rate, the tokens will be consumed at some

point. When it happens, the arrival publications are queued until new tokens are gen-

erated. During this time, new publications replace older publications in the queue so

as to save presence notifications. The main difference between this mechanism and the

above-mentioned notification control mechanisms [183][188] is that TNTC can change

the maximum notification rate over time based on the publication arrival rate, while

the others assume a predefined rate. Although the authors of both [188] and [189] are

concerned about the probability of watchers accessing to consistent information, the

notification rate, either static [188] or dynamic [189], is chosen just to meet the PS

policy on output rate. This means that the watchers’ needs on information consistency

are not considered when delaying notifications.

190

As described in Section 2.9.5, scalability becomes even more critical in large-scale

presence federation scenarios, where millions of users in a domain subscribe to millions

of users in other federated domains. In these scenarios, SIMPLE generates millions of

inter-domain subscriptions, a different one for each (watcher, presentity) pair. Section

2.9.5 shows that large-scale presence services may inject dozens of terabytes into the

network core during 8 hours. This amount does not include access link traffic and is

calculated under quite moderate assumptions. In such scenarios, optimizing the number

and size of notifications sent through presence subscriptions is not enough. Reducing

the number of inter-domain subscriptions is necessary for scaling down inter-domain

traffic. Section 5 proposes the optimization technique Common Subscribe (CS) for

reducing the number of subscriptions between two federated domains to one for each

watched presentity. Section 5.1.5 estimates the presence traffic generated when this

optimization, among others, is applied. This shows that CS saves 80% of the presence

traffic of the studied use case, resulting more efficient than other studied inter-domain

traffic optimizations. Nevertheless, even with CS or other optimization techniques, the

amount of presence notifications injected into federated domains may be harmful.

On the other hand, each presence publication normally involves the PS notifying

all the watchers authorized to see the publication. Since the PS is the intermediary

in any presence publication and notification, presence publications may demand a con-

siderable part of the PS capacity. As described in Section 2.9.6, presence publications

also may overconsume the wireless user devices’ battery life and processing resources,

as well as the radio access bandwidth, specially in LBSs. Section 2.4 shows that apply-

ing a minimum throttling time between two consecutive publications can dramatically

reduce presence traffic on the access link. The reported results show that this strategy

saves around 41%, 61%, and 71% of presence traffic with minimum intervals of 5, 10,

and 15 minutes, respectively. However, controlling the rate of presence publications

and notifications may result in watcher applications keeping obsolete information, as

described in Section 2.9.7. This may make the presence service useless since its success

is actually due to the instantaneous knowledge of presence changes; presence appli-

cations by its very nature have strict real-time constrains. Watcher applications or

the users themselves may take inadequate decisions or assumptions based on wrong

presence information. Thus, Section 4.3 proposes adapting the presentities’ publica-

tion rates according to a probabilistic model of changes in their presence information.

191

8. QUEUEING SYSTEM AND ADAPTIVE QOS MECHANISM FOR
CONTROLLING THE RATE OF PRESENCE PUBLICATIONS AND
NOTIFICATIONS

This kind of rate is referred to as sojourn-based rate. This strategy allows optimizing

presence traffic on the network access link while avoiding too long publication delays.

This section proposes a novel queuing mechanism for controlling the rate of both

notifications and publications in presence federation scenarios. This mechanism pro-

vides: a) optimization of access link and network core traffic in a correlated way, b)

avoidance of inconsistency between the presentities’ latest presence information and

the information kept by watcher domains, and c) guarantee that the PS performance

is not degraded. This queueing mechanism overcomes the limitations of sojourn-based

rates. Calculating this kind of interval is not viable without a Markov chain that mod-

els presence changes. Moreover, a sojourn-based interval is based on a delay factor

that represents how long a presence change publication should be delayed. Section 4.3

does not tackle how this delay factor can be deduced. Section 4.3.1 assumes the delay

factor to be half of the maximum delay in notifications acceptable by watchers. This

assumption is however too simplistic. The PS plays the leading role in notifying watch-

ers, and hence it introduces the better part of the total time taken to notify watchers

of a presence change. The PS may even delay notifying presence changes with some

rate control mechanism [110].

Section 8.1 discusses about the design of the proposed queuing system. Sections

8.2, 8.3, and 8.4 describe a mathematical model for this system. Section 8.5 describes

an algorithm for dynamically setting the proposed queuing system’s parameters based

on some QoS conditions. This section also evaluates this algorithm’s performance

under different circumstances. Section 8.6 addresses a limitation of this algorithm by

combining it with sojourn-based intervals. Lastly, Section 8.7 presents the main findings

of this study.

8.1 Design

Figure 8.1 shows the PS operation modules involved in receiving presence publications

and notifying watchers. White boxes represent basic tasks that are always present at

any PS. Presence publications arrive to the Publication Receiver (PR) module, which

performs presentity authorization and acknowledges them. The Notification Genera-

tion (NG) module is responsible for generating the notifications that need to be sent

out. In Figure 8.1, ‘Nxy’ denotes a notification from a presentity ‘x’ to a watcher

192

8.1 Design

Figure 8.1: Presence Server components

‘y’. In federation scenarios optimized with CS, when a presentity publishes a presence

change, only one notification is sent to each watcher domain. We consider a watcher

domain as any federated domain to which one or more of the presentity’s watchers

belong. Thus, in Figure 8.1, ‘y’ denotes a watcher domain rather than an individual.

To limit the rate at which notifications are sent out, the PS may apply a control mech-

anism to either publications or notifications, that is, the PT or NT module in Figure

8.1, respectively. Some authors propose throttling publications [189][188], while others

notifications [183]. The main advantage of the former is that presence publications can

be aggregated at the PT module. This may reduce the number of publications that go

through the notification process, thereby optimizing the PS processing resources. How-

ever, throttling notifications enable watcher-based notification control to be conducted,

which is reasonable since watchers (i.e., in the presented study, watcher domains) may

wish to be notified at different rates.

Figure 8.2 shows the proposed queuing system, which is capable of controlling the

rate of both notifications and publications. The PS performs fine-grained notification

rate control by adapting to the needs of each watcher domain. The NT module therefore

consists of a notification buffer for each watcher domain, each controlled by a different

maximum notification rate θw. The PR module only queues arriving presence publica-

tions and forwards them to the NT module. We omit the process of generating noti-

fications for the sake of simplicity. As mentioned previously, throttling presence pub-

lications is recommended to prevent notifications from being generated. We delegate

this process to the presentities themselves, which we denominate as source-throttling.

Section 4.1.1 discusses about limiting the rate of publications. The presented approach

prevents not only presence notifications in a more scalable way but also presence pub-

lications on the access link, which is beneficial for wireless presence applications. The

system is designed to provide a rate control of publications and notifications adapted

193

8. QUEUEING SYSTEM AND ADAPTIVE QOS MECHANISM FOR
CONTROLLING THE RATE OF PRESENCE PUBLICATIONS AND
NOTIFICATIONS

Figure 8.2: Proposed queuing system

to presentities and watcher domains while keeping the PS scalable. Each presentity

throttles its own publications by means of a queue of size 1. The PS only handles one

publication queue and as many notification queues as the number of watcher domains

subscribed to any of the presentities under the PS control. The maximum size of the

publication queue is the total number of presentities. The maximum size of a watcher

domain’s notification queue is the number of presentities that notify this domain. There

can only be one message for each presentity in any queue. When a presentity’s message

arrives to a queue and finds that there is an older message of this presentity waiting in

the queue, the arriving message replaces the older one.

The level of traffic optimization is determined by the maximum rates at the pre-

sentities and at the NT module. The lower the rates, the more presence traffic that is

saved. However, the notification delay increases as these rates decrease. Thus, pub-

lication and notification rates should be carefully selected in order to find a tradeoff

between traffic optimization and presence information consistency. Section 8.5 proposes

an algorithm for dynamically setting these rates while ensuring a maximum delay in

notifying the watcher domains.

194

8.2 Analytical Modeling of Publication Receiver

Figure 8.3: State transition diagram of the publication queue

8.2 Analytical Modeling of Publication Receiver

Let us assume that each presentity changes its presence information at times that are

exponentially distributed with mean λ−1
p . Thus, the presence change process of each

presentity conforms to Poisson distribution with mean λp. Let us assume that the

presence change processes of different presentities are independent of each other, and

the total number of presentities is Np. As the sum of N independent Poisson variables

with the same mean λ is a Poisson variable with mean Nλ [199], we can conclude the

arrival process of PUBLISH messages at the PS conforms to Poisson distribution with

mean λP , as shown in (8.1):

λP = Npλp (8.1)

Therefore, the PR module can be modeled as an M/M/1/SP queuing system, which

we refer to as the publication queue. Service times are exponentially distributed with

mean µ−1
P and PUBLISH messages are served by a single server on an FCFS (First

Come First Served) basis. The queue capacity is denoted by SP . Let NP (t) be the

number of PUBLISH messages waiting in the queue. NP (t) is increased by one unit

when a PUBLISH message is put into the queue and decreased by one when a PUBLISH

message is processed by the server. Since the Poisson process prohibits the possibility

of having more than one arrival in ∆t, and the exponential service time ensures that

there is at most one departure in ∆t, NP (t) is a birth-death process because it can

only go to its neighboring states, (NP (t) + 1) or (NP (t)−1) in a time interval ∆t [199].

Figure 8.3 shows the state transition graph of NP (t).

An arriving PUBLISH message is queued only if there is not other message in the

queue that belongs to the same presentity; otherwise, the arriving message replaces the

older one. Since the presence change process of each presentity is independent, each

presentity has the same probability of owning a message that is waiting in the queue.

Thus, the probability that a PUBLISH message arrives in the queue and does not find

195

8. QUEUEING SYSTEM AND ADAPTIVE QOS MECHANISM FOR
CONTROLLING THE RATE OF PRESENCE PUBLICATIONS AND
NOTIFICATIONS

a waiting message that belongs to its presentity is 1 − NP (t)
Np

. The effective PUBLISH

arrival rate at the PS is therefore (1 − NP (t)
Np

)λP . Substituting (8.1) into the previous

expression, we obtain the effective PUBLISH arrival rate, as shown in (8.2).

λP (t) = (Np −NP (t))λp (8.2)

From the theory of Markov chains [199], it follows that {NP (t), t ≥ 0} has a unique

equilibrium distribution. Let pk(t) denote the probability of k messages in the queue,

as shown in (8.3). The limitation of pk(t) as t goes to inifinity is given by (8.4).

pk(t) = P{NP (t) = k}, 0 ≤ k ≤ SP (8.3)

pk = lim
t→∞

pk(t), 0 ≤ k ≤ SP (8.4)

From Figure 8.3, we obtain the following equilibrium state transition equations:

p0λ0 = p1µP (8.5)

pk(λk + µP) = pk−1λk−1 + pk+1µP , 0 < k < SP (8.6)

SP∑
k=0

pk = 1 (8.7)

where λk is defined as shown below:

λk = (Np − k)λp, 0 ≤ k ≤ SP (8.8)

This linear equations array (8.5)-(8.7) can be solved recursively, which leads to the

following solution:

pk =

{
1

1+υ k = 0∏k−1
i=0 (Np−k)

1+υ (
λp
µP

)k 0 < k ≤ SP
(8.9)

where υ =
∑SP−1

j=0

∏j
i=0(Np − i)(λpµP)j+1

196

8.2 Analytical Modeling of Publication Receiver

8.2.1 Loss Probability of PUBLISH Messages

The publication queue loss probability, LPP , is the probability that a PUBLISH arrives

at the PS and is discarded because the queue is full. It happens when an arriving

PUBLISH message finds that the queue is full and none of the SP PUBLISH messages

that are waiting in the queue belongs to its presentity. Let ak(t) be the probability of

the state {NP (t) = k} as seen by an arriving PUBLISH message. From the PASTA

property [199], for Poisson processes, the probability of the state as seen by an arriving

customer ak(t) is the same as the probability of the state as seen by an outside observer,

that is, pk(t). However, the publication queue input process λP is time-dependent as

shown in (8.2), and hence the PASTA property does not hold. We define ak as:

ak = lim
t→∞

ak(t), 0 ≤ k ≤ SP (8.10)

Since ak is the probability of the queue having k waiting messages at the time a

new PUBLISH message arrives, it can be calculated as the proportion of arrivals that

occur when the queue has k messages, as shown in (8.11).

ak =
λkpk∑SP
i=0 λipi

, 0 ≤ k ≤ SP (8.11)

Substituting (8.8) into (8.11), we obtain:

ak =
(Np − k)pk∑SP
i=0(Np − i)pi

, 0 ≤ k ≤ SP (8.12)

As mentioned previously, the loss probability LPP is the probability that an arriving

PUBLISH message finds the queue full, that is, aSP :

LPP = aSP =
(Np − SP)pSP∑SP
i=0(Np − i)pi

(8.13)

Note that when SP is equal to Np, LPP = 0, and hence the system is lossless. In this

case, the publication queue can accommodate any arriving PUBLISH message. The

queue capacity SP therefore does not need to be larger than Np, that is the number of

presentities.

197

8. QUEUEING SYSTEM AND ADAPTIVE QOS MECHANISM FOR
CONTROLLING THE RATE OF PRESENCE PUBLICATIONS AND
NOTIFICATIONS

8.2.2 Average Length of the Publication Queue

Let us define LP as the number of PUBLISH messages waiting in the queue, and hence

P{LP = k} = pk, 0 ≤ k ≤ SP . Therefore, the average publication queue length is:

LP = E[LP] =

SP∑
i=1

ipi (8.14)

8.2.3 Average Waiting Time of PUBLISH Messages

From Little’s theorem [199], the average number of customers (LP) in a steady-state

queueing system is the product of the average arrival rate of customers entering the

system (λP) and the average time a customer spends in that system (WP). Thus, the

average waiting time of a PUBLISH message can be calculated as follows:

WP =
LP

λP
=

∑SP
i=1 ipi∑SP

i=0(Np − i)λppi
(8.15)

8.2.4 Mathematical Analysis

This section studies the correctness of the mathematical model for the publication queue

described previously. We assume the publication queue to be lossless, which means that

its length is equal to the number of presentities (Np = SP), for investigating the effects

of different parameters on its performance. Some results below rely on traffic intensity,

which is a measure of the congestion of queuing systems. Traffic intensity is defined by

the number of arrivals per unit time over the number of departures per unit time [199].

Thus, let ρP be the publication queue traffic intensity is:

ρP =
Npλp
µP

(8.16)

Figure 8.4 shows the publication queue average waiting time WP as each presentity’s

PUBLISH arrival rate λp increases, for different number of presentities Np. The increase

in λp results in more messages waiting in the queue, and hence WP increases. When

λp is small, WP increases significantly and, when λp gets larger, the increase in WP

decreases. We explain this phenomenon as follows. At the beginning the queue length

increases rapidly because there are few messages in the queue. When the queue length

increases, the arriving PUBLISH message will probably replace the older one waiting

198

8.2 Analytical Modeling of Publication Receiver

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

λ
p

W
P

Np=10, µ=30

Np=30, µ=30

Np=50, µ=30

Np=70, µ=30

Figure 8.4: Effect of λp on WP

0 20 40 60 80 100 120
0

1

2

3

4

5

6

7

N
p

W
P

Figure 8.5: Effect of Np on WP (λp = 0.2, µP = 10)

in the queue. As λp increases, the increasing rate of WP slows down and gets closer to

the maximum average waiting time, which occurs when the arrival PUBLISH message

finds (Np − 1) messages waiting in the queue. The increase in Np intensifies the effect

of λp on WP , since this increase results in more messages waiting in the queue (i.e., the

total arrival process of PUBLISH messages at the queue in Npλp).

Figure 8.5 plots the effect of Np on WP when λp = 0.2 and µP = 10. It can be seen

that WP continuously increases as Np increases. This occurs because we set SP = Np,

and hence when SP increases more messages are placed into the queue and WP therefore

increases. When Np > 50, the traffic intensity ρP , which is shown in (8.16), is higher

than 1, and hence the average PUBLISH arrival rate exceeds the average service time.

Thus, the increasing rate of WP augments rapidly with high values of Np.

Figure 8.6 plots the effect of λp on the average publication queue length LP with

different values of Np. The number of messages that arrive to the queue increases

199

8. QUEUEING SYSTEM AND ADAPTIVE QOS MECHANISM FOR
CONTROLLING THE RATE OF PRESENCE PUBLICATIONS AND
NOTIFICATIONS

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

25

30

35

λ
p

L
P

Np=10, µ=30

Np=20, µ=30

Np=40, µ=30

Figure 8.6: Effect of λp on LP

with λp, which leads to the increase in LP . When λp is small, LP increases rapidly

since there are few messages in the queue and an arrival PUBLISH message is highly

probable to be queued. When LP gets larger, there are more messages in the queue

and an arrival PUBLISH message is more probable to replace an older one waiting in

the queue. As λp increases, LP gets closer to its maximum length. The increase in Np

intensifies the effect of λp on LP , since this increase results in more messages waiting

in the queue and SP is equal to Np.

Figure 8.7 shows the distribution of LP with different values of intensity traffic

ρP and Np = 20. When ρP ≤ 1, LP tends to be zero. When ρP ≥ 1, the arrival

rate of PUBLISH messages (Npλp) is greater than the service rate (µP). Thus, LP

increases with ρP . Figure 8.7 helps in estimating the minimum queue length necessary

to guarantee that the publication queue is lossless. For instance, when ρP = 1.5, the

probability that the queue length is higher than 14 tends to be zero. Thus, setting the

queue length SP to 14 is sufficient to keep the message loss probability under a certain

threshold while optimizing the PS resources.

Figure 8.8 plots the effect of SP on the publication queue loss probability LPP when

Np = 20. As SP increases, LPP decreases because more messages can be accommo-

dated. When SP = 20, the publication queue is lossless and therefore LPP is zero. LPP

is higher for higher values of λp, since it involves more messages arriving at the queue.

200

8.3 Analytical Modeling of Notification Throttling

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

L
p

P
ro

ba
bi

lit
y

ρP=0.1

ρP=0.5

ρP=1

ρP=1.5

ρP=2

ρP=5

Figure 8.7: Distribution of LP with different values of ρP

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
P

LP
P

λp=0.2, µ=20

λp=1, µ=20

λp=2, µ=20

Figure 8.8: Effect of SP on LPP

8.3 Analytical Modeling of Notification Throttling

The TN module performs watcher-domain-based notification throttling by setting a

minimum passive time between any two consecutive notifications that are sent to each

watcher domain. When the PS sends a NOTIFY message to a watcher domain, it starts

a throttling timer, and during this interval any other arriving NOTIFY message to the

watcher domain is queued. We study the publication queue and the notification queue

independently rather than in tandem. Although these queues are dependent since the

notification queue input is the publication queue output, we perform an approximate

mathematical analysis for the sake of simplicity. This assumption greatly simplifies the

mathematical analysis of the overall queuing system. When a presentity’s PUBLISH

message is processed by the publication queue, a NOTIFY message is generated to

the watcher domains subscribed to the presentity. Thus, the number of NOTIFY

messages inserted into a watcher domain’s notification queue depends on the number of

201

8. QUEUEING SYSTEM AND ADAPTIVE QOS MECHANISM FOR
CONTROLLING THE RATE OF PRESENCE PUBLICATIONS AND
NOTIFICATIONS

presentities to which this domain is subscribed and the rate at which these presentities

send PUBLISH messages. Let δw ∈ [0, 1] denote the percentage of the total number of

presentities to which the domain w is subscribed. We refer to δw as the subscription

factor of the domain w. Thus, Npδw is the number of presentities that notify the watcher

domain w. Let Nw(t) be the number of NOTIFY messages waiting in the notification

queue of the watcher domain w at time epoch t. As described in Section 8.2, the arrival

process of PUBLISH messages of each presentity conforms to Poisson distribution with

mean λp. Thus, we assume that the arrival process of NOTIFY messages targeted at

the watcher domain w conforms to Poisson distribution with mean λw, as shown in

(8.17):

λw = Npδwλp (8.17)

There can only be one NOTIFY message waiting in a notification queue for each

presentity. When an arriving NOTIFY message finds an older message in the queue

that belongs to its presentity, the arriving message replaces the older one. We therefore

deduce the effective arriving rate λw(t) of NOTIFY messages at a notification queue

as in Section 8.2, thereby obtaining:

λw(t) = (Npδw −Nw(t))λp (8.18)

The notification queue of any watcher domain w is described by four parameters:

the service rate (µw); the throttling time (θ−1
w); the queue capacity (Sw), and the

subscription factor (δw). Service times are exponentially distributed with mean µ−w1.

NOTIFY messages are served by a single server on an FCFS basis. Figure 8.9 shows

an approximate state transition graph for a notification queue. Whenever the server

processes a NOTIFY message, it goes on vacation during the passive time θ−1
w . This

ensures that the notification output rate for the watcher domain is never higher than

θw. Let Bw(t) = 1 and Bw(t) = 0 denote the events that the server is busy and on

throttling vacation at time t, respectively. Setting

pw1,k(t) = P{Nw(t) = k,Bw(t) = 1}, 0 ≤ k ≤ Sw (8.19)

pw0,k(t) = P{Nw(t) = k,Bw(t) = 0}, 0 ≤ k ≤ Sw (8.20)

202

8.3 Analytical Modeling of Notification Throttling

Figure 8.9: State transition diagram of a notification queue

From the Markov theory [199], it follows that {Nw(t), Bw(t), t ≥ 0} has a unique

steady-state probability distribution. Setting

pw1,k = lim
t→∞

pw1,k(t), 0 ≤ k ≤ Sw (8.21)

pw0,k = lim
t→∞

pw0,k(t), 0 ≤ k ≤ Sw (8.22)

From Figure 8.9, we obtain the following state transition equations:

pw0,0(λw0 + θw) = pw1,1µw (8.23)

pw0,k(λ
w
k + θw) = pw0,k−1λ

w
k−1 + pw1,k+1µw, 0 ≤ k ≤ Sw (8.24)

pw1,0λ
w
0 = pw0,0θw (8.25)

pw1,k(λ
w
k + µw) = pw1,k−1λ

w
k−1 + pw0,kθw, 0 ≤ k ≤ Sw (8.26)

Sw∑
k=0

pw0,k + pw1,k = 1 (8.27)

where λwk = (Npδw − k)λp. This linear equations array (8.23)-(8.27) cannot be

solved by recursive substitutions. Therefore, we use the tool Matlab to obtain the state

probabilities pw1,k and pw0,k, k = 0, 1, ..., Sw.

8.3.1 Loss Probability of NOTIFY Messages

The notification queue loss probability, LPw, is the probability that a NOTIFY message

arrives at the notification queue of the watcher domain w and is discarded because the

queue is full. This happens when an arriving NOTIFY message finds that the queue is

203

8. QUEUEING SYSTEM AND ADAPTIVE QOS MECHANISM FOR
CONTROLLING THE RATE OF PRESENCE PUBLICATIONS AND
NOTIFICATIONS

full and none of the Sw NOTIFY messages that are waiting in the queue belongs to its

presentity. We can deduce LPw as in Section 8.2.1, thereby obtaining:

LPw =
(Npδw − Sw)(pw0,Sw + pw1,Sw)∑Sw

i=0(Npδw − i)(pw0,i + pw1,i)
(8.28)

When Sw is equal to Npδw, LPw = 0, and hence the system is lossless. The queue

capacity Sw therefore does not need to be larger than Npδw, that is, the number of

presentities that notify the watcher domain.

8.3.2 Average Length of the Notification Queue

Let us define Lw as the number of NOTIFY messages waiting in the notification queue

of the watcher domain w. Thus, P{Lw = k} = pw0,k + pw1,k, 0 ≤ k ≤ Sw. Therefore, the

average notification queue length is:

Lw = E[Lw] =

Sw∑
i=1

i(pw0,i + pw1,i) (8.29)

8.3.3 Average Waiting Time of NOTIFY Messages

From Little’s theorem [199], the average number of customers (Lw) in a steady-state

queueing system is the product of the average arrival rate of customers entering the

system (λw) and the average time a customer spends in that system (Ww). Thus, the

average waiting time of a NOTIFY message in the watcher domain’s notification queue

can be calculated as follows:

Ww =
Lw

λw
=

∑Sw
i=1 i(p

w
0,i + pw1,i)∑Sw

i=0(Npδw − i)λp(pw0,i + pw1,i)
(8.30)

8.3.4 Mathematical Analysis

This section studies the correctness of the mathematical model for a watcher domain’s

notification queue described previously. We assume that the notification queue for a

watcher domain is lossless, which means that its capacity is equal to the number of

presentities that notify this domain (Npδw = Sw). We investigate the parameters that

affect this queue performance, namely λp, Np, δw, and θw. In this analysis, we consider

traffic intensity, which is the number of arrivals per unit time over the number of

204

8.3 Analytical Modeling of Notification Throttling

0 0.5 1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

14

16

18

λ
p

W
w

Npδw=10, µw=30, θw=5

Npδw=30, µw=30, θw=5

Npδw=50, µw=30, θw=5

Npδw=70, µw=30, θw=5

Figure 8.10: Effect of λp on Ww

departures per unit time [199]. Thus, let ρw be the notification queue traffic intensity,

as shown below:

ρw =
Npδwλp
µw

(8.31)

Figure 8.10 plots the effect of λp on Ww. The increase in λp results in more messages

waiting in the queue, and hence Ww increases. One may notice that Ww increases

rapidly when λp < 0.5. When λp > 0.5, the increasing rate of Ww decreases towards

an stationary value. We explain this phenomenon as follows. When λp is small, the

queue length increases rapidly since there are few messages in the queue, and hence

an arriving message is not probable to replace an older one. Moreover, the high rate

at which Ww increases is due to the fact that any time a notification is processed

the queue goes to a passive time θ−1
w , during which notifications are not processed.

Thus, Ww rapidly gets close to its maximum value, which occurs when the arriving

notification finds (Npδw−1) messages in the queue. Obviously, θw is expected to affect

Ww dramatically.

Figure 8.11 shows the effect of θw on Ww. It can be seen that Ww is inversely

proportional to θw. We explain this phenomenon as follows. Since θw is the rate at

which the server moves out from passive intervals in which no messages are served, the

increase in θw reduces the time during which messages are queued without being pro-

cessed. Thus, the increase in θw leads to the decrease in the notification queue length,

thereby decreasing Ww. One may notice that the effect of θw on Ww is considerable

when its value ranges from 0.5 to 2. This range means that any time when the server

205

8. QUEUEING SYSTEM AND ADAPTIVE QOS MECHANISM FOR
CONTROLLING THE RATE OF PRESENCE PUBLICATIONS AND
NOTIFICATIONS

0 1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

θ
w

W
w

Figure 8.11: Effect of θw on Ww (µw = 30, λp = 1, Npδw = 30)

sends a message to the watcher domain, it waits from 2 minutes to 30 seconds, respec-

tively, to process the next message. Such times are very long and lead to a dramatic

increase in the queue length, which results in high values of Ww . When θw > 2, the

passive time θ−1
w is smaller and fewer messages are therefore queued. As θw increases,

Ww gets closer to its minimum value, which occurs when θw is so high that no messages

are queued during the passive intervals.

Figure 8.12 plots the effect of δw on Ww. We assume µw = 10, λp = 0.2, Np = 120

and θw = 8. As δw is the percentage of presentities that notify the watcher domain

and we set the system to be lossless (Sw = Npδw), the queue length increases with δw,

which leads to the continuous increase in Ww. It can be seen than, when δw < 0.2, the

increasing rate of Ww is lower. We explain this phenomenon as follows. As δw increases,

the arrival rate of notifications at the queue increases. However, the service rate µw

remains the same, which leads to the rapid increase in the queue length, and hence

Ww reaches its maximum value (i.e., when the arriving notification finds (Npδw − 1)

messages in the queue).

Figure 8.13 shows the effect of λp on Lw. The increase in λp leads to the increase

in Lw because more messages arrives at the queue. It can be seen that Lw rapidly

gets close to its maximum value, that is the queue size (Sw = Npδw). It is due to the

passive interval times θ−1
w during which no messages are processed by the server. Lw

increases rapidly when λp < 0.5 because there are fewer messages in the queue, and

hence an arriving notification is less probable to replace an older one. As Lw increases,

the probability of an arriving notification replacing an older notification waiting in the

queue is higher, and hence the increasing rate of Lw decreases.

206

8.3 Analytical Modeling of Notification Throttling

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

δ
w

W
w

Figure 8.12: Effect of δw on Ww (µw = 10, λp = 0.2, Np = 120, θw = 8)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

25

30

35

40

λ
p

L
w

Npδw=10, µw=30, θw=5

Npδw=20, µw=30, θw=5

Npδw=40, µw=30, θw=5

Figure 8.13: Effect of λp on Lw

Figure 8.14 shows the effect of θw on Lw. The increase in θw leads to the decrease in

Lw because the server spends less time in passive intervals, and hence fewer messages

are queued. This decrease is slow, since the server goes to a passive time of θ−1
w unit

times whenever a message is processed.

Figure 8.15 shows the probability distribution of Lw with different values of traffic

intensity ρw. The probability of Lw being large increases with ρw, since the increase

in ρw means that the arrival rate of notifications becomes higher in proportion to the

service rate. It can be seen that, when ρw > 0.5, the probability of Lw is distributed

among the highest values. Even, when ρw = 5, the most probable value of Lw is 20,

which means that the queue is full. We explain this phenomenon with θw. The passive

times θ−1
w involve queuing many messages, and hence Lw increases with ρw quickly.

Figure 8.16 shows the probability distribution of Lw when θw is set to 10. Compared to

Figure 8.15, it can be seen how the probability distribution of Lw moves towards lower

207

8. QUEUEING SYSTEM AND ADAPTIVE QOS MECHANISM FOR
CONTROLLING THE RATE OF PRESENCE PUBLICATIONS AND
NOTIFICATIONS

0 1 2 3 4 5 6 7 8
0

5

10

15

20

25

30

θ
w

L
w

Figure 8.14: Effect of θw on Lw

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L
w

P
ro

ba
bi

lit
y

ρw=0.1, Npδw=20, θw=5

ρw=0.5, Npδw=20, θw=5

ρw=1, Npδw=20, θw=5

ρw=1.5, Npδw=20, θw=5

ρw=2, Npδw=20, θw=5

ρw=5, Npδw=20, θw=5

Figure 8.15: Distribution of Lw with different values of traffic intensity ρw

values. Thus, θw is a determining factor on Lw. This fact can be noticed in Figure

8.17, which shows the distribution of Lw with ρw = 1 and different values of θw.

Figure 8.18 shows the effect of Sw on the notification queue loss probability LPw,

with different values of λp. LPw decreases as Sw increases, since more messages can be

queued. When Sw = 20 the queue is lossless, and hence LPw = 0. LPw is higher for

higher values of λp, since more notifications arrive at the queue. It can be seen that,

when λp = 1 and λp = 2, LPw is high and only decreases with high values of Sw. These

two cases involve a traffic intensity ρ2 of 1 and 2, respectively. In Figure 8.15, it can

be seen that the probability of Lw is distributed among high values for ρw = 1 and

ρw = 2. Thus, LPw is high if Sw is not close to these values since the queue cannot

accommodate most of the arriving messages.

Figure 8.19 shows LPw as Sw increases, with different values of θw. It can be seen

that LPw decreases with higher values of θw. It is due to the fact that Lw decreases as

208

8.4 Analytical Modeling of Publication Throttling

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

L
w

P
ro

ba
bi

lit
y

ρw=0.1, Npδw=20, θw=10

ρw=0.5, Npδw=20, θw=10

ρw=1, Npδw=20, θw=10

ρw=1.5, Npδw=20, θw=10

ρw=2, Npδw=20, θw=10

ρw=5, Npδw=20, θw=10

Figure 8.16: Distribution of Lw with different values of ρw and θw = 10

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

L
w

P
ro

ba
bi

lit
y

ρw=1, Npδw=20, θw=0.5

ρw=1, Npδw=20, θw=1

ρw=1, Npδw=20, θw=3

ρw=1, Npδw=20, θw=0.5

Figure 8.17: Distribution of Lw with ρw = 1 and different values of θw

θw increases, and hence more messages can be queued.

8.4 Analytical Modeling of Publication Throttling

As previously described, the presence change process of each presentity conforms to

Poisson distribution with mean λp. The PS may set a presentity to throttle its pub-

lications by setting a minimum time between two consecutive publications, that is,

source-throttling. Let us assume that PUBLISH message service times at the presen-

tity are exponentially distributed with mean µs. Let θ−1
s be the throttling time for

the presentity. Thus, source-throttling at the presentity can be modeled through the

queuing system described in Section 8.3 by setting Np = 1, Sw = 1, µw = µs, θw = θs

and δw = 1. We refer to this system as the presentity’s source queue. Thus, the av-

erage waiting time that the presentity takes to publish a presence change Ws can be

209

8. QUEUEING SYSTEM AND ADAPTIVE QOS MECHANISM FOR
CONTROLLING THE RATE OF PRESENCE PUBLICATIONS AND
NOTIFICATIONS

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

S
w

LP
w

λp=0.2, Npδw=20, µw=20, θw=5

λp=1, Npδw=20, µw=20, θw=5

λp=2, Npδw=20, µw=20, θw=5

Figure 8.18: Effect of Sw on LPw, with different values of λp

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
w

LP
w

λp=1, Npδw=20, µw=20, θw=5

λp=1, Npδw=20, µw=20, θw=8

λp=1, Npδw=20, µw=20, θw=11

λp=1, Npδw=20, µw=20, θw=13

Figure 8.19: Effect of Sw on LPw, with different values of θw

calculated as described in Section 8.3.3. When source-throttling is not applied, the

presentity does not queue publications, and Ws is therefore equal to the average service

time µ−1
s .

8.5 Adaptive Control Algorithm

Since watcher domains may have different traffic capacities and policies on traffic op-

timization, we assume that they are able to let the PS know about their preferred

maximum notification rates. Dropping off the number of notifications could however

involve watchers keeping obsolete information, thereby perceiving notification delays.

Therefore, we also assume that watcher domains are able to let the PS know about

their preferred maximum notification delays. We consider the notification time for a

210

8.5 Adaptive Control Algorithm

watcher domain as the total time that elapses from the occurrence of a presence change

until the corresponding notification to the domain is sent. This is the time that watch-

ers within the domain are keeping obsolete information. Let NTw denote the average

notification time for the domain w. For the sake of simplicity, we analyze notification

queues independently of the publication queue in Section 8.3. We therefore approximate

the average time taken by the PS to notify a watcher domain of a presence change as

the sum of the average time spent by the PUBLISH message at the publication queue

plus the average time spent by the corresponding NOTIFY message at the watcher

domain’s notification queue. Moreover, presentities may control the rate at which they

send PUBLISH messages to the PS. Thus, we calculate NTw as Ws + WP + Ww (see

Sections 8.4, 8.2.3 and 8.3.3). In addition, presence traffic overload at the PS should be

carefully taken into consideration in order not to waste communication and processing

resources. A PS under saturation conditions would drop messages, thereby wasting

network and server resources and degrading the overall presence system performance.

We propose an adaptive algorithm for satisfying the following input QoS parameters:

• α: The notifier domain’s maximum probability of PUBLISH message loss, that

is, LPP ≤ α.

• β: The notifier domain’s maximum probability of NOTIFY message loss, that is,

LPw ≤ β.

• maxDelayw: Delay in notifications acceptable by the watcher domain w, that is,

NTw < maxDelayw.

• θw: The watcher domain’s preferred maximum notification rate.

• θwmax: The watcher domain’s threshold notification rate for traffic optimization.

This means that the watcher domain is willing to increase θw up to θwmax with the

aim of keeping the notification time under maxDelay. Thus, when θwmax ≤ θw,

it means that the watcher domain gives priority to traffic optimization.

Although keeping a maximum notification rate θw and a maximum notification delay

maxDelayw at the same time may seem contradictory conditions, they can certainly

be combined. The former determines a minimum time between any two consecutive

notifications, while the latter is the maximum time that the notifier domain should

211

8. QUEUEING SYSTEM AND ADAPTIVE QOS MECHANISM FOR
CONTROLLING THE RATE OF PRESENCE PUBLICATIONS AND
NOTIFICATIONS

Np Number of presentities

λp Average rate of presence changes per presentity

δw The watcher domain’s subscription factor

µs Source queue service rate

µP Publication queue service rate

µw Notification queue service rate

Table 8.1: Variables that describe the queuing system

hold back a presence change notification. In addition to the QoS parameters above,

the control algorithm receives the parameters in Table 8.1, which describe the system

scenario and were defined in Sections 8.2 and 8.3. From the above-mentioned input

parameters, the algorithm returns the following outputs:

• Sw: minimum size of the watcher domain’s notification queue that ensures LPw ≤
β.

• SP : minimum size of the publication queue that ensures LPP ≤ α.

• θwn: Maximum notification rate for the watcher domain’s notification queue (i.e.,

notification throttling).

• θws: Maximum publication rate for the presentities that notify the watcher do-

main (i.e., source throttling).

We propose a strategy for always ensuring the PS QoS conditions on message loss

probability (i.e., α and β). Moreover, the algorithm finds the most suitable notifica-

tion rate based on the maximum rate and delay preferred by the domain (i.e., θw and

maxDelayw). When it is possible, the algorithm finds the minimum rate at which

presentities can throttle PUBLISH messages while meeting the watcher domain’s pref-

erences. Below, the control algorithm in pseudo-code summarizing this strategy is

shown.

SP =MinSizeP (LPP < α)

TP = WP (SP)

Sw=MinSizew(θw, LPw < β)

Tw=Ww(Sw, θw)

Ts=
1
µs

NTw = Ts + TP + Tn

212

8.5 Adaptive Control Algorithm

θwn = θw

θws = 0

IF(NTw > maxDelayw AND θwmax 6= 0) THEN

notT ime = maxDelayw − Ts − TP
Find minimum θ that satisfies

1. θw < θ ≤ θwmax
2. Ww(Sw, θ) ≤ notT ime

IF(θ is not found) THEN θwn = θwmax

ELSE θwn = θ END

Sw=MinSizew(θwn, LPw < β)

ELSE IF(NTw < maxDelayw)

sourceT ime = maxDelay − TP − Tw
Find minimum θws that satisfies

1. Ws(θws) ≤ sourceT ime
END

This algorithm should be applied to each watcher domain w for obtaining its θwn

and θws. Thus, the PS can set each watcher domain’s maximum notification rate

to θwn and the publication rates of the presentities that notify the domain to θws.

We assume that µs is the same for all the presentities. Note that presentities are

likely to notify more than one watcher domain. A presentity’s publication rate should

therefore be the maximum θs obtained from applying the control algorithm to each

of the domains subscribed to the presentity. This ensures that the maximum delay

preferred by each of these domains is satisfied. The publication queue size SP needs

only to be calculated once since there is only one publication queue. The algorithm

first finds the Sp and Sw that satisfy the conditions LPp ≤ α and LPw ≤ β by invoking

MinSizeP andMinSizew, respectively. These conditions are strict because they ensure

that the PS does not get saturated. The functions WP and Ww calculate the average

waiting time of the publication and notification queue, respectively. Ensuring LPw ≤ β
may require a large queue size Sw, since the larger the queue size the lower the loss

probability. However, the queue waiting time increases with the queue size. Thus,

ensuring the condition LPw ≤ β may result in the average notification time being

longer than the preferred maximum delay, that is, NTw > maxDelayw. In this case, if

the watcher domain prefers to sacrifice traffic optimization for information consistency

(i.e., θwmax > θw), the algorithm tries to find a minimum notification rate between

θw and θwmax that meets this condition. If such a rate is not found, the algorithm

sets θwn to θwmax. Initially, the average notification time NTw is calculated assuming

213

8. QUEUEING SYSTEM AND ADAPTIVE QOS MECHANISM FOR
CONTROLLING THE RATE OF PRESENCE PUBLICATIONS AND
NOTIFICATIONS

that no source-throttling is applied (Ts = µ−1
s). If NTw meets the notification delay

condition, that is, NTw < maxDelayw, the algorithm finds the minimum publication

rate θws that meets this condition. The function Ws calculates the average waiting

time of PUBLISH messages at the source queues.

8.5.1 Performance Evaluation

This section studies the performance of the proposed adaptive control algorithm on a

watcher domain, as well as the correctness of the mathematical models described in

Sections 8.2 and 8.3. We set the scenario variables as follows: Np = 100, δw = 0.1,

λp = 1, µs = 1, µP = 100 and µw = 10. We assume the QoS conditions a) LPP ≤ 0.2,

b) LPw ≤ 0.2, c) NTw < 5, and d) θwmax = 10.

The algorithm’s outputs under different preferred maximum notification rates θw

are shown in Figures 8.20 and 8.21. Figure 8.20 shows the values of SP and Sw that

satisfy the above-mentioned conditions. SP is constant and the same for all the watcher

domains. Sw decreases as θw increases. The higher θw, the shorter the minimum time

that has to elapse between two consecutive notifications θ−1
w . Thus, Lw decreases, and

so does LPw, thereby requiring a lower Sw to satisfy condition b). Figure 8.21 shows

the output rates for the notification queue and the presentities that notify the watcher

domain. When θw < 2, condition c) cannot be met with this rate. The algorithm

therefore sets the minimum θwn that meets this condition, which is θwn = 2. In this

case, source-throttling is not performed in order to keep meeting condition c), and hence

θws = 0. When θw ≥ 2, notifications can be throttled with θw satisfying condition c).

Thus, θwn = θw and source-throttling is applied. The publication rate θws decreases as

the notification rate θwn increases. This is because Ww decreases, and hence presentities

can hold publications back for longer while satisfying condition c).

Figure 8.22 compares the average waiting times of PUBLISH messages at the pre-

sentities (i.e., source queues) and the publication queue, and NOTIFY messages at

the notification queue. With θw < 2, Ww and Ws are constant because θwn = 2 and

θws = 0. When θw ≥ 2, θwn = θw, and hence Ww decreases with θw. Thus, Ws increases

with θw. In Figure 8.22, the stepped increases and decreases are due to the decrease in

Sw (the lower Sw, the lower Ww).

Figure 8.23 shows the effect of the preferred maximum notification rate on LPP and

LPw. LPw is constant when θw < 2 because θwn = 2. When θw ≥ 2, θwn = θw, and

214

8.5 Adaptive Control Algorithm

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
0

2

4

6

8

10

θ
w

Q
ue

ue
 s

iz
es

Publication queue (SP)

Notification queue (Sw)

max(Sw)=10

max(SP)=100

Figure 8.20: Minimum queue sizes over preferred notification rate

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
0

1

2

3

4

5

6

7

8

θ
w

T
hr

ot
tli

ng
 r

at
es

Preferred rate θw

Output notification rate θwn

Output source rate θws

Figure 8.21: Output throttling rates over preferred notification rate

hence LPw decreases as θw increases. The stepped increases are due to the decrease in

Sw. For instance, when 2 ≤ θw ≤ 3, Sw = 9. As θw increases, there are fewer NOTIFY

messages in the queue, and hence LPw decreases. When θw = 3.5, Sw is decreased by

one, which increases LPw. As Sw becomes smaller, more increments in θw are necessary

to decrease Sw by one while meeting condition b).

Figure 8.24 compares the average waiting times when the watcher domain sets

θwmax = 0, which means that traffic optimization is given priority. In this case, the

algorithm always sets θwn to θw, rather than increasing θwn for meeting condition c).

It can be seen that when θw < 2, condition c) cannot be met. The total average time

is lower than maxDelayw when θw ≥ 2. From this value, Figures 8.22 and 8.24 are the

same.

Figures 8.25 and 8.26 show the notification rates and the average waiting times,

respectively, with different values of maxDelayw. We assume the above-mentioned

215

8. QUEUEING SYSTEM AND ADAPTIVE QOS MECHANISM FOR
CONTROLLING THE RATE OF PRESENCE PUBLICATIONS AND
NOTIFICATIONS

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

θ
w

A
ve

ra
ge

 w
ai

tin
g

tim
e

maxDelayw

Source queue (Ws)

Publication queue (WP)

Notification queue (Ww)

Total notification time (NTw)

Figure 8.22: Waiting times over preferred notification rate

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

θ
w

Lo
ss

 p
ro

ba
bi

lit
ie

s

Threshold
Publication queue (LPP)

Notification queue (LPw)

Figure 8.23: Queue loss probabilities over preferred notification rate

input parameters with the exception of θw = 2 and θwmax = 5. When maxDelayw ≤

2.5, no notification rate lower than or equal to θwmax meeting condition c) can be

found. Thus, θwn is set to the maximum θwmax. When maxDelayw > 2.5, θwn can

be decreased towards θw while satisfying condition c), as shown in Figure 8.25. The

preferred notification rate θw = 2 can only be satisfied when maxDelayw reaches the

value 5. In this case, presence publication can be throttled (θws 6= 0). In Figure 8.26,

one may observe that Ww increases when maxDelayw ≥ 3. This is due to the decrease

in θwn. In this Figure, the stepped increase at maxDelayw = 4 results from the increase

in Sw, whichf is equal to 8 when maxDelayw < 4 and 9 when maxDelayw ≥ 4. This

phenomenon is explained as follows. The increase in maxDelayw results in the decrease

216

8.5 Adaptive Control Algorithm

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
0

5

10

15

20

θ
w

A
ve

ra
ge

 w
ai

tin
g

tim
e

maxDelayw

Source queue (Ws)

Publication queue (WP)

Notification queue (Ww)

Total notification time (NTw)

Figure 8.24: Waiting times over preferred notification rate with θwmax = 0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

maxDelay
w

T
hr

ot
tli

ng
 r

at
es

Preferred rate θw

Output notification rate θwn

Output source rate θws

Figure 8.25: Output rates over preferred maximum notification delay

in θwn for traffic optimization. In turn, decreasing θwn involves a higher number of

NOTIFY messages in the queue, and hence LPw increases. Thus, Sw is increased at

maxDelayw = 4 in order to meet condition b), thereby increasing Ww.

Figures 8.27 and 8.28 show the effect of λp on the average queue waiting times

and the output rates, respectively. We set maxDelay = 5, θw = 3 and θwmax = 4.

When λp < 2, θw can be applied to meet condition c), and hence θwn = θw. Thus,

source-throttling is applied and Ws is therefore higher than its service time, that is,

1. Ww increases with λp, and hence Ws decreases (i.e., θws increases) to keep meeting

condition c). When λp ≥ 2, θwn is increased above θw in order to meet condition c).

Thus, source-throttling can not be applied and Ws is equal to the service time, that is,

217

8. QUEUEING SYSTEM AND ADAPTIVE QOS MECHANISM FOR
CONTROLLING THE RATE OF PRESENCE PUBLICATIONS AND
NOTIFICATIONS

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

maxDelay
w

A
ve

ra
ge

 w
ai

tin
g

tim
e

maxDelayw

Source queue (Ws)

Publication queue (WP)

Notification queue (Ww)

Total notification time (NTw)

Figure 8.26: Waiting times over preferred maximum notification delay

1. WP increases with λp because more messages are put into the queue.

Figure 8.29 compares the average waiting times without the proposed adaptive

algorithm. In this case, θwn is always equal to 3 and source-throttling is not performed.

One may observe that with low arrival rates, the average total notification time is much

lower than the preferred maximum delay. However, network access link traffic is not

saved by controlling the rate of presence publications. When the arrival rate increases,

WP and Ww increase and condition c) is not satisfied. Moreover, in Figure 8.29, we

assume the queues to be lossless (i.e., Sw = 10 and SP = 100). Otherwise, since the

system does not change the queue sizes dynamically, LPP and LPw may become too

high as λp increases.

8.6 Use of Sojourn-Based Intervals

The adaptive control algorithm presented in Section 8.5 sets the minimum publication

and notification rates that ensure that the average notification time for a watcher

domain is shorter than a maximum delay set by this domain. This algorithm does not

consider how frequently the presentities’ presence information changes. If the maximum

rate of publication is much lower than the rate at which the presence information

changes, publishing this information becomes inefficient; the time during which the

watchers see valid information is too short. As described in Section 4.3, sojourn-based

218

8.7 Conclusions

0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

λ
p

A
ve

ra
ge

 w
ai

tin
g

tim
e

maxDelayw

Source queue (Ws)

Publication queue (WP)

Notification queue (Ww)

Total notification time (NTw)

Figure 8.27: Waiting times over PUBLISH arrival rate of each presentity

intervals (SBIs) are calculated according to the change frequency of the presentities’

presence information, which is modeled through the Markov theory. SBIs may be

combined with the adaptive algorithm for preventing the PS from setting publication

rates that are too low or too high. When the control algorithm finds that source-

throttling can be performed, it compares the calculated throttling rate θws with the

presence information transition probability Φ (see Section 4.3). If θws << Φ, the

algorithm sets θws to the presence information’s SBR (see Section 4.3). If θws >> Φ,

presence changes occur at such a low rate that throttling publications with θws is not

likely to aggregate any presence change. Since θws is the minimum throttling rate

ensuring that publications are not delayed too long, this rate cannot be decreased.

Thus, source-throttling with θws is inefficient and the algorithm decides not to apply

it.

8.7 Conclusions

We tackled the need to optimize presence traffic on the network access link as well as

on the network core. We proposed a queuing system for optimizing presence traffic in

presence federation scenarios. This system is designed to be scalable and adapt itself to

the QoS needs of both the PS and watcher domains. To this end, the system requires

that the PS only sends a presence notification to each watcher domain per presentity.

219

8. QUEUEING SYSTEM AND ADAPTIVE QOS MECHANISM FOR
CONTROLLING THE RATE OF PRESENCE PUBLICATIONS AND
NOTIFICATIONS

0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

λ
p

T
hr

ot
tli

ng
 r

at
es

Preferred rate θw

Output notification θwn

Output source rate θws

Figure 8.28: Output rates over PUBLISH arrival rate of each presentity

0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

λ
p

A
ve

ra
ge

 w
ai

tin
g

tim
e

maxDelayw

Source queue (Ws)

Publication queue (WP)

Notification queue (Ww)

Total notification time (NTw)

Figure 8.29: Waiting times over PUBLISH arrival rate of each presentity without the

adaptive algorithm

We proposed an adaptive algorithm for changing publication and notification rates

based on the watcher domains’ needs as regards traffic optimization and information

consistency. This algorithm ensures certain maximum message loss probabilities at the

PS and a maximum delay in notifying each watcher domain, while limiting the rate

of presence publications and notifications. We mathematically modeled the proposed

queuing system and obtained its main probability features. Based on this mathematical

model, we studied the performance of the proposed adaptive algorithm with different

QoS parameters. This algorithm effectively adapts the notification rate for a watcher

domain and the publication rates of the users to which the domain is subscribed with

220

8.7 Conclusions

the aim of ensuring that presence change notifications are not delayed longer than a

maximum delay set by the domain. We also discussed how this algorithm can use

sojourn-based intervals (SBIs) for ensuring that presence publications are not throttled

inefficiently.

221

8. QUEUEING SYSTEM AND ADAPTIVE QOS MECHANISM FOR
CONTROLLING THE RATE OF PRESENCE PUBLICATIONS AND
NOTIFICATIONS

222

9

Personal Proxy

To deploy large-scale, intelligent presence-enabled applications, platforms for collect-

ing, processing and disseminating presence information in a scalable and efficient way

are necessary, as explained in Section 2.8. Such platforms should comply a standard

presence protocol for the sake of interoperability. As well, user-centric personalization,

privacy and extensibility are key aspects of the future presence-enabled ubiquitous ap-

plications, as described in Sections 2.3.2 and 2.9.3. The flexibility in these aspects

offered by the underlying presence platform is key to the success of these applica-

tions. To date, no presence platform with these characteristics has emerged. The IMS

presence service involves serious scalability issues as described in Section 2.9.4. Many

authors have worked on platforms for handling context information. However, they

do not consider presence information or are not concern about scalability and traffic

optimization. Section 2.8 mentions some of these works. The authors of [150] propose

a RESTful web service for providing a lighter-weight presence service. However, HTTP

is not suitable for subscriptions and presents a number of limitations difficult to over-

come. Subscriptions are simulated with persistent connections and chunked encoding.

No resource list subscriptions are defined and the mapping between addresses of the

form ”user@domain” and URLs is not evident.

We propose a decentralized architecture for presence management in which each

user owns a Personal Proxy (PP) that handles her presence information. The nature

of this architecture provides a great flexibility to converge multimedia protocols in a

single point and tightly personalize user communications and privacy. This is a logical

functionality that may be included in a home gateway or even a femtocell as a value-

223

9. PERSONAL PROXY

Figure 9.1: PP scenario

added service for managing presence information and optimizing user communications

in a distributed way. Figure 9.1 depicts the common scenario for PP, which is the user’s

home or office. PP however may be applied to other scenarios where a third-party, such

as an operator, provides the user with its PP and administrates it.

Section 9.1 discusses the design of the proposed solution while Section 9.2 addresses

its software architecture. Sections 9.3 and 9.4 describe the PP techniques for optimizing

presence and HTTP traffic, respectively. These sections also present some insights

into these techniques’ efficiency at reducing traffic. Lastly, Section 9.2.4 explains the

implementation and current state of PP and Section 9.5 gives some conclusions.

9.1 Design

PP is a SIMPLE-based presence service that applies user-created fine-grained rules

about the content of presence documents according to the users’ preferences on privacy

and communication means. PP is capable to optimize presence traffic if necessary, as

for example when the network access link’s bandwidth is low. Apart from presence

handling, the proposed solution allows centralizing the user access to certain Internet

services, such as HTTP or VoIP, in a single point. Merging presence handling with

some Internet services in distributed point brings out scalability and flexibility in user-

224

9.1 Design

based customization of these services. Sections 9.1.1 and 9.1.2 describe the PP presence

functionality and multimedia aspects, respectively.

9.1.1 Presence PP

Contrary to centralized PSs, the proposed approach is fully distributed, and hence its

performance does not degrade with the number of users. A user’s PP will interact with

other users’ PPs as well as other SIMPLE-compliant presence services, as depicted in

Figure 9.2. A user’s PP recollects the presence information that comes from all of

the user’s terminal devices, aggregates this information and provides a single point

to accessing this information. This provides device-independent, always-on presence

information as well as a greater security and flexibility. The PP can let other users

know about the user’s presence at any moment, even when the user is not available on

any device. Since PP is a fully distributed solution, it allows implementing context-

aware fine-grained rules about privacy and presence handling for each user. Presence

handling should be done in a user-centric manner since users have different preferences

on privacy and communications, and these preferences may change over time based

on situational or temporal context. Users may need different behaviors from presence-

based applications based on their circumstances. Some users might be interested in

knowing as much as possible about the presence of all of their buddies. Other users

however might be more concerned about announcing their presence while the accuracy

level of their buddies’ presence is less important to them. The distributed nature of PP

makes user-centric personalization scalable and therefore possible. PP is designed to

reduce the presence traffic between the end user and the network as much as possible. It

is specially useful when the user is connected to an access link with limited bandwidth.

Section 9.3 describes how PP reduces presence traffic.

PP is a SIP/SIMPLE-compliant PS and RLS that offers a high-level API to applica-

tions for accessing its functionality. This agnostic-operator, standard and user-centric

solution achieves interoperability and may motivate users to use presence applications.

Presence information may include private information such as appointments, buddies,

schedule, activities and so on; thus, users may not trust service providers to keep this

information undisclosed. PP stores the user’s presence information at his or her place,

and ensures user-defined privacy rules about what information is sent out. This may

225

9. PERSONAL PROXY

Figure 9.2: Interaction between PPs

make the user feel the presence service more familiar to her, thereby giving more infor-

mation in to it. PP is a middleware composed of a client software installed on the user’s

devices and a server part, that is, a proxy at the user’s place, as described in Section

9.2. Most of the provided functionality is carried out by the proxy for keeping user

devices as simple and resource-efficient as possible. The proxy retrieves a minimum

set of presence from the user’s devices (i.e., that most dynamic and personal to the

user such as status, nickname and mood) and enriches this presence before notifying

it. This approach allows lighter terminal devices because they do not need to store and

process the majority of presence information. To date, the user’s presence information

is enriched with end devices’ hardware and service capabilities, which are discovered

by means of a detection mechanism [208].

9.1.2 Multimedia PP

The distributed nature of PP allows the synthesis of SIP and other Internet protocols,

such as HTTP and RTSP, on a single and scalable point. As described in Section

2.4.1, such a synthesis is necessary for the success of FMC. PP may implement a SIP

Registrar and Proxy for managing multimedia sessions. User devices would register

their addresses in the Registrar and use their PPs as gateways to initiate any SIP

session. If a PP received a request to initiate a session from the outside, it would link

this session with the most suitable device on which the user is available. PP would

therefore act as a bridge between the user and any communication requester.

PP provides the user with a single invariable address and hides the real user device’s

physical address. This offers the benefit of security and mobility privacy, as well as the

opportunity to build improved services. A PP may be connected to the PSTN network

226

9.2 Software Architecture: a Middleware-Based Approach

and act as a gateway between IP-connected and PSTN users. Mobile IP integration is

other advantageous possibility, which would allow the user to change network domain

without incurring connection losses. Integrating a Home Agent (HA) into PP allows

knowing the user’s Care-of-Address (CoA) at any moment. This saves the user from

unregistering the old IP address and registering the new one at any time when he or she

changes network. When an IP address change occurs, presence applications normally

unsubscribe and subscribe back to the events of interest. This generates unnecessary

traffic if the user only changes the network interface rather than the device. The proxy

would prevent this inefficient behavior because it could deregister the user’s old address

and resend any message to the user’s CoA automatically.

9.2 Software Architecture: a Middleware-Based Approach

The proposed platform for handling presence consists in a middleware that acts as

a dedicated proxy for each user. This middleware has been designed to reduce the

complexity of user devices and optimize the use of access networks. This optimization

is achieved because of the collaboration between the client and server parts of the

middleware. The client part needs to be installed on the user’s devices and the server

part is the user’s proxy that acts as his or her SIMPLE-based presence service. We

refer the reader to Section 2.7 for a detailed description of SIMPLE. A middleware

approach allows implementing non-standard solutions between the users’ devices and

the proxy for minimizing the traffic between them. This middleware makes it possible

to decrease the amount of presence information exchanged with user devices as far as

possible. Since some traffic optimizations consume processing resources at user devices,

a tradeoff between traffic optimization and the costs of reducing traffic (in terms of

processing resources and battery life) should be found. To this end, the knowledge

about the user devices’ characteristics is crucial. The middleware handles the following

kinds of presence information:

• Personal information that is closely related to the user such as mood, activities,

willingness to communicate, ambient conditions, profiles, personal addresses, lo-

calization, and so on.

227

9. PERSONAL PROXY

• Information about the services on which the user is available, and the end devices

that support these services. For example, information about a service may in-

clude content types accepted by the service as well as the hardware and software

characteristics of the devices on which the service is running.

• Resource list information, which includes presence information about all the con-

tacts (i.e., resources in the SIMPLE terminology) in which the user is interested.

• User presence rules that allow the user to build her model about data privacy

and communications. These rules are split into several groups: request admission

rules determine the communication types that the user is willing to establish with

other users. Presence publication rules determine the presence information that

will be given in to watchers. Lastly, white and black list rules automatically

accept or reject, respectively, unknown entities that are requesting to watch the

user’s presence.

Figure 9.3 shows a layered architecture of the presence middleware. This is com-

posed of two logical layers: the Management layer and the SIP/SIMPLE layer. The

former contains the intelligence needed to process and manage presence information

and the latter is in charge of receiving and sending SIP/SIMPLE messages. The mod-

ules of both layers are explained briefly in Sections 9.2.1 and 9.2.2. Figure 9.4 shows

the communication flows between the client and server parts of the middleware. The

client middleware, which we refer to as Client Presence Middleware (CPM) is more

minimalist than the server part and therefore suitable for mobile client devices with

scarce processing and memory resources. This middleware offers an API (the two-color

rhombus in Figure 9.4) for any application on the user device to access the PP func-

tionality in a transparent way. The server middleware, which we refer to as Server

Presence Middleware (SPM), is the proxy placed in the user’s place. This stores all the

user’s presence in a context repository named Context Manager in Figure 9.4.

9.2.1 Management Layer

In the SPM, the HTTP Dispatcher receives HTTP requests that contain user infor-

mation such as configuration data, preferences or rules. This information is entered

into the user device by some GUI and is sent to this module, which communicates

228

9.2 Software Architecture: a Middleware-Based Approach

Figure 9.3: Logical modules of PP

Figure 9.4: Interaction flows of the PP modules

229

9. PERSONAL PROXY

with other modules at the same layer based on the type of information. The Presence

Manager processes and aggregates the presence information published by the CPM

and generates the presence documents that are sent to the user’s watchers. This mod-

ule communicates with the Request Admission Police and Presence Publication Police

modules for generating the documents that each watcher is authorized to see based on

request admission and presence publication rules, respectively. The presence informa-

tion associated with the user’s resource list is managed by the Resource List Manager.

This module is responsible for processing and aggregating presence notifications from

the contacts on the resource list in a single RLMI document. The complexity of the

CPM is much lower than that of the SPM. The Presence Manager is in charge of

controlling and updating presence information about the user. Thus, when the user’s

presence changes, this module is responsible for sending the change to the SPM through

the Presence Agent. The Resource List Manager stores presence about the user’s re-

source list and offers it to the applications. The optimization handlers of the SPM and

CPM collaborate for performing the optimizations described in Section 9.3. The SPM

optimization handler will contain the intelligence needed to decide what optimizations

to apply based on the user’s circumstances, the characteristics of the device on which

the user is available and the access link congestion, for example.

9.2.2 SIP/SIMPLE Layer

This layer implements the SIMPLE framework. In the CPM, there is only one module,

the Presence Agent, that carries out simple tasks related to the storage of the user’s and

her resource list’s presence information. This module also registers the physical address

of the user’s devices in the SPM by means of REGISTER messages. Whenever the

user’s presence information changes, the Presence Agent publishes this information by

sending a PUBLISH message to the SPM. Moreover, this module is notified by the SPM

about the resource list’s information. In the SPM, the Presence Dispatcher receives

the SIP/SIMPLE requests sent by the CPM and forwards them to the corresponding

module based on the type of request. The Register stores the user devices’ physical

addresses contained in REGISTER requests. This allows other modules in the SPM

and external applications to send messages to the user. The Resource List Server is

responsible for sending and receiving all SIMPLE messages related to the management

and maintenance of the user’s resource list. This module subscribes to each resource

230

9.2 Software Architecture: a Middleware-Based Approach

by sending a SUBSCRIBE message and receives NOTIFY messages that update the

resources’ presence. The Presence Server module receives the PUBLISH requests that

contain the user presence, and notify the user’s watchers of this presence by means of

NOTIFY messages. This module updates the state of each watcher subscription to the

user according to its lifetime and the SUBSCRIBE messages received for refreshing its

lifetime. Lastly, the Watcher Info Server notifies the user of the arrivals of new requests

to watch his or her presence. This module waits the user’s decision about whether or

not to permit them to watch his or her presence. The Presence Manager interacts with

the Watcher Info Server when it receives a SUBSCRIBE message from an unknown

watcher. An unknown watcher is one that is not included in a black or white list. The

Watcher Info Server, therefore, sends a NOTIFY message to the CPM for requesting

for authorization. The CPM will indicate the user’s decision by sending a PUBLISH

message.

9.2.3 Presence Filtering

The user is capable to set policies about presence privacy and communication pref-

erences via HTTP. These policies are determined by request admission and presence

publication rules, as described in Section 9.2. These rules are managed by the Request

Admission Police and Presence Publication Police modules, and are used at any time

when the SPM is going to notify watchers of the user’s presence information. The

presence documents for watchers are created according to these rules.

Request admission rules restrict the communication types that other users can es-

tablish with the user. These rules internally determine what presence about services

is going to be included in the user’s presence documents sent to watchers. When a

watcher receives the user’s presence document, it communicates with the user by the

services included in this document. Thus, notifying suitable presence documents per-

mits to make watchers communicate with the user by certain means. Request admission

rules are determined by a watcher (that is the future requester), and the user’s circum-

stances. Some high-level example rules are “do not accept instant messages from team

mates”, “only accept video when I have leisure state”, and “only accept audio from my

boss when I am using my PDA7865 device”. Figure 9.5 shows an example in which

a user, Alfred, has two devices, a personal phone identified by nokia6280 and a work

PDA identified by acerc510. At the top of this figure, Alfred’s presence tree is shown,

231

9. PERSONAL PROXY

Figure 9.5: Outline of the the presence documents for different watchers

which indicates that his devices support instant messaging (IM) and video services.

However, Alfred does not want to communicate with any person in his resource list by

the same means. When he is working, he is willing to accept any type of call from his

wife, Theresa, to his personal phone. Regarding school friends, he is only willing to

accept instant messages sent to his personal phone. Work mates are only allowed to

send instant messages and video to Alfred’s acerc510 device. Figure 9.5 shows the sub-

set of Alfred’s presence tree sent to Theresa, school friends and work mates. Presence

publication rules allow the user to indicate the privacy level of personal information in

presence documents based on the watchers and his circumstances. Some examples are:

“Not publish my personal presence to my work mates”, “Not publish my vCard to my

partners” and “Not publish my personal presence to any contact when I am connected

to PDA987 and my activity is working”.

9.2.4 Implementation and Stage

The developed presence middleware is fully based on the Java Platform: The SPM

has been programmed using Java Platform Standard Edition (J2SE) and the CPM

using the Java Platform Micro Edition (J2ME) with CLCD (Connected Limited Device

Configuration) and MIDP (Mobile Information Device Profile) for mobile phones. The

CPM has been developed on top of a SIPMethod Application Server (AS) that is a

SIP AS runtime engine complaint with JSR-116 and JSR-289, which are SIP Servlet

APIs. SIP Servlet API is a Java extension for SIP servers, which is similar in spirit

232

9.3 Presence Traffic Optimization

to the HTTP servlet API and offers many benefits such as performance, platform

independence and high level abstractions. The JSR 180 (SIP API for J2ME) has been

used to implement the SIP communication between CMP and SPM. This is a generic

library that implements SIP. To date, the software layers described in Section 9.2

except those related to privacy and communication rules (see Section 9.2.3) have been

implemented. The HTTP and presence optimization techniques described in Sections

9.4 and 9.3 except Inhibitor Subscribe have also been implemented. The PP APIs have

not been provided yet.

9.3 Presence Traffic Optimization

PP is designed to decrease the complexity of user devices and utilize wireless links

efficiently. The proxy decreases the amount of presence information sent and received

by user devices as far as possible. It should be intelligent enough to use different op-

timization techniques based on the user’s context. Traffic optimization is maximized

due to the collaboration between the CPM installed on user devices and the SPM,

that is, the proxy. Section 9.2 describes the PP architecture. This collaboration allows

implementing non-standard solutions between user devices and the proxy in order to

obtain a higher efficiency than that given by the SIMPLE framework by itself. Such

non-standard solutions do not entail interoperability problems because all the traffic ex-

changed with external entities is fully standard. PP implements the following standard

SIMPLE optimizations: RLS, partial notification, partial publication and event notifi-

cation filtering. Section 2.7.4 describe these techniques, and we summarize them here

for convenience. An RLS allows the user to subscribe to her contacts by sending a single

subscription request. In turn, the RLS subscribes to each of the user’s contacts and

notify the user of RLMI documents when her contacts’ presence has changed. Partial

publication allows end devices to publish only the presence changes that have occurred

from the last publication rather than the complete presence information. Likewise,

partial notification allows notifiers to only include the resource’s state information that

has changed from the last notification rather than the user’s complete state informa-

tion. Thus, the proxy can send partial-state RLMI documents (i.e., only the resources

whose presence information has changed are included into the list) and partial-state

presence documents (i.e., only the resource’s presence attributes that have changed are

233

9. PERSONAL PROXY

notified). Event notification filtering allows filtering the content of RLMI documents.

Event throttling limits the number of RLMI notifications sent by the PP by setting

a minimum time interval between two consecutive notifications. PP aggregates any

change in the presence information of the user’s contacts that occurs during this inter-

val. Once this interval has expired, all the changes are notified to the user by sending

a single NOTIFY message. Moreover, PP encodes presence information by WBXml4

[209] for reducing the size of presence documents. WBXml is a compact binary repre-

sentation of XML that reduces the transmission size of XML documents by encoding

XML tags as hexadecimal values. Below, the proposed non-standard techniques to be

applied on the channel between the CMP and the proxy are listed:

• Presence Extension. End devices only handle the information that depends on

the user’s circumstances, such as location and mood. When an end device reg-

isters in its PP for first time, the proxy launches a procedure for detecting as

much context information as possible. This procedure detects the device’s hard-

ware capabilities and the services that this device is capable to run. The proxy,

therefore, aggregates this information to the user’s presence document when it is

going to be sent out.

• Empty NOTIFY 5. The SIMPLE event notification process states that any sub-

scription refresh triggers a full-state notification. Empty NOTIFY is a simple

variation that consists in sending an empty NOTIFY message if no change is

pending to be notified when a subscription is refreshed.

• Inhibitor Subscribe. Presence applications running on mobile devices often are

placed into the background while the user is engaged in other activities such

as voice calls. During these inactive periods, these applications are consuming

battery and bandwidth because of the constant signaling traffic for updating

presence and keeping presence subscriptions alive. To save such unnecessary

traffic, the CPM sends a SUBSCRIBE message with its Expires header set to

a negative number, which we refer to as Inhibitor SUBSCRIBE, when the user

stops using its presence application. Then, the PP stops notifying the end device

4Since PP was developed in 2007, the 3WC has proposed a binary data format for XML, Efficient

XML Interchange (EXI) [210]. Thus, in the future, PP will possibly be enhanced for using EXI rather

than WBXml.

234

9.3 Presence Traffic Optimization

of the user’s resource list. When the user returns to the application, the CPM

sends a standard SUBSCRIBE message (i.e, one with an Expires header set to a

positive number) to the proxy in order to restart the notification process.

• Source throttling. This technique limits the number of publications by setting the

CPM with a minimum time interval that has to elapse between two consecutive

publications. The CPM aggregates any change in the user’s presence information

that occurs during this interval. Once this interval has expired, all the changes

are published by sending a single PUBLISH message. Section 4 discusses the

benefits and applicability of this mechanism.

9.3.1 Analytical Estimation

This section presents an approximation of the PP efficiency at reducing presence traffic

on the access network. Let us assume a user that is available on his mobile phone and

has 10 contacts in his resource list. Let us assume that this user’s contacts change their

presence 5 times during the session, and change times follow a uniform distribution. The

presence document associated with each contact is assumed to be of medium size (750

bytes). This document contains personal information (i.e., activity, place type, mood,

state, display name and home page) and information about an available service (i.e.,

state and capabilities for audio, text, video and applications). Presence subscriptions’

lifetime is 1 hour and the session is active from 8 a.m. to 10 p.m. Figure 9.6 shows the

presence traffic sent over the wireless uplink and downlink due to the user’s presence

subscriptions. This traffic is exchanged between the user and the proxy throughout the

day. This figure compares standard and proxy-based optimization techniques, which

were described previously. The first group of columns from left (Without RLS) shows

the case when the user does not use an RLS (i.e., she subscribes to each contact

directly). The second group of columns from left (Basic RLS) shows the traffic when

the user uses a standard non-optimized RLS. The third and forth groups of columns

from left represent an standard RLS optimized by only partial RLMI notifications (RLS

with PRLMI) and both partial RLMI and presence notifications (RLS with PRLN and

5Since PP was developed in 2007, the IETF have standardized conditional notifications through

the RFC 5839 [147], which completely prevent notifiers from sending unnecessary NOTIFY messages.

We will therefore integrate conditional notifications into PP in the future.

235

9. PERSONAL PROXY

0.00E+00	

1.00E+05	

2.00E+05	

3.00E+05	

4.00E+05	

5.00E+05	

6.00E+05	

7.00E+05	

8.00E+05	

9.00E+05	

1.00E+06	

Without	

RLS	

Basic	
 RLS	
 RLS	
 with	

PRLMI	

RLS	
 with	

PRLMI	
 and	

PN	

RLS	
 with	

PRLMI,	
 PN	

and	
 EN	

RLS	
 with	

PRLMI,PN,	

EN	
 and	
 IS	

Pr
es
en

ce
	
 tr
affi

c	

(b
yt
es
)	

uplink	
 downlink	
 total	

Figure 9.6: Presence traffic over the wireless link when a user uses a PP

PN), respectively. The last two groups of columns represent a PP that, in addition to

the partial RLMI and presence notifications, uses the Empty NOTIFY technique (RLS

with PRLMI, PN and EN), and the Inhibitor Subscribe technique (RLS with PRLMI,

PN, EN and IS). For the Inhibitor Subscribe technique, we assume that the user uses a

presence application on his mobile phone at different intervals throughout the day: from

8 to 9 a.m., from 11 a.m. to 1 p.m., from 6 to 7 p.m., and from 8 to 10 p.m. It can be

seen that, although the use of an RLS reduces the traffic over the uplink, it increases the

bytes sent over the downlink significantly. A non-optimized RLS increases the overall

load on the communication channel drastically and therefore is not recommended. The

majority of the RLS load is due to the full-state RLMI notifications sent at any time

when a contact changes its presence state. Thus, partial-state RLMI notifications (i.e.,

RLS with PRLMI) reduce the RLS presence traffic by approximately 65%. In addition,

when an RLS is combined with partial-state presence and RLMI documents (i.e., RLS

with PRLMI and PN), the total presence traffic generated when no optimization is used

(i.e., Without RLS) is reduced by about 25%. Although this reduction is relevant, it

may not be enough in highly restricted networks or devices. The first two groups of

columns from right show that the Empty NOTIFY and Inhibitor Subscribe techniques

reduce the presence traffic generated when no optimization is used by approximately

74%. Proxy-based solutions can therefore optimize the presence traffic on wireless

links significantly. The performance of Inhibitor Subscribe depends on the number and

duration of intervals for which the user’s presence application is active.

To calculate the presence traffic due to presence publications, we assume a user who

publishes presence changes 15 times a day. We assume the presence document previ-

ously described, whose size is 750 bytes. We estimate presence traffic in the following

scenarios: the user is connected to a standard PS without optimization strategies, the

236

9.3 Presence Traffic Optimization

Figure 9.7: Size of presence documents encoded by XML and WBXML

user is connected to a PS that can process partial publications, and finally the user

is connected to a PP that extends her presence. From the calculations done, we can

conclude that partial publications reduce the total presence traffic generated by a stan-

dard PS by approximately 34%. When the PP applies presence extension, it reduces the

presence traffic by approximately 20%. Since partial publications significantly reduce

the uplink traffic caused by presence changes, it is highly recommended. Nevertheless,

if the user device does not have enough processing resources, presence extension is a

reasonable alternative because it does not require extra processing on the user devices.

We assume that presence documents are encoded by WBXml. Although WBXml is

simple and not particularly flexible, it achieves a high performance when the larger part

of the XML document consists of XML tags and attributes rather than textual content.

As SIMPLE presence documents are rich in XML tags, WBXml may substantially

reduce the size of presence documents. Figure 9.7 shows the size of several presence

documents encoded by XML and WBXml. Each document has a certain complexity

level according to its number of XML tags. The simple document contains the activity

that the user is doing, the place type where the user is and his state, display name and

mood, as well as basic information on a service on which he is available. The medium

document contains the aforementioned information in addition to the user’s home page

and capabilities of the service available. Lastly, the complex document includes all

the aforementioned information plus the SIP event packages supported, the available

communication methods and the characteristics of the user device.

237

9. PERSONAL PROXY

9.4 HTTP Traffic Optimization

Concentrating multimedia traffic in a single point that is close to the user provides much

flexibility for applying techniques that improve the user’s QoE. These techniques may

be applied based on the user’s preferences, his or her context or traffic optimization

policies. To date, PP implements various techniques for reducing HTTP traffic and

therefore decreasing the response time perceived by users while browsing. To this end,

the user’s devices need to be configured with the user’s PP as HTTP proxy. HTTP

optimization is specially useful when billing for data services is carried out by volume

or the access link has limited bandwidth and is shared by many users. The server part

of PP, which is the proxy as described in Section 9.2, implements an HTTP and DNS

cache. An HTTP cache at the proxy may be very effective, since some HTTP requests

sent by the user may be replied by the proxy locally, without querying the remote web

server. DNS caching may also be efficient when the network capacity is restricted and

shared by many users. In this case, the download time of web pages may increase due

to name server resolutions. Caching DNS responses at the proxy allows replying some

of the user’s DNS requests locally without forwarding these requests to the original

DNS servers. Moreover, the proxy compresses the textual content of HTTP responses

for saving bandwidth on the user’s downlink.

In addition to the above-mentioned techniques, the proxy and the client part of

PP, which is called CPM as described in Section 9.2, implement a technique called

HTTP header reduction collaboratively. This technique optimizes the size of HTTP

requests on the user’s uplink by removing the most static content negotiation headers

of HTTP requests at the user side, and afterwards reconstructing them at the network

side. This technique is based on the assumption that the proxy maintains a database

of device profiles, which contains the characteristics of the user’s devices. PP uses a

sophisticated device capabilities detection and user profiling system [208]. This detec-

tion mechanisms basically executes some applets on the user device for automatically

detecting its characteristics when the device registers in its PP for first time. Based on

the detected characteristics, the proxy creates a local profile for the user device. If the

device had an external UAProf profile, it would be compared with its local profile for

enhancing the latter. To perform HTTP header reduction, the CPM needs intercept

HTTP requests and collaborate with the proxy. When an HTTP request is to be sent,

238

9.4 HTTP Traffic Optimization

the CPM removes any HTTP header that is dispensable for web browsing from the

request (i.e., headers other than Host and dynamic headers such as those for cook-

ies). In addition, the CPM modifies the User-Agent header to be the identifier of the

end device’s profile. Then, the CPM forwards the HTTP requests to the proxy, which

regenerates the missing HTTP headers before forwarding this request to the original

server. The headers of the HTTP requests sent to the original web servers have to be

restored for letting these servers know about browser capabilities (i.e., content negotia-

tion headers) and navigation information (i.e., cookies, referrer, host, etc.). Otherwise,

web navigation, content negotiation or content adaptation may be degraded. A web

server with minimal intelligence is capable to adapt an HTTP response’s content ac-

cording to its HTTP request’s headers. Thus, the proxy may modify HTTP headers

according to its privileged vision of the requester device’s capabilities and access link

congestion. Different HTTP header regeneration policies may therefore be applied. For

example, some HTTP headers may be changed based on the cellular link’s available

bandwidth for making remote web servers deliver lighter contents, thereby mitigating

the link congestion and the delay perceived by users.

9.4.1 Experimental Results

This section discusses the PP efficiency at reducing HTTP traffic. The PP functionality

related to HTTP traffic optimization described previosly was transferred to the corpo-

rations Vodafone R&D and Fundació I2Cat through a research project. This project

was aimed to optimize mesh networks connected to Internet via UMTS or GPRS. This

allowed us to experimentally measure the response time of HTTP requests when a user

browses the Web through his or her PP in a real scenario. This scenario is depicted by

Figure 9.8 and described as follows. Mesh, ad hoc or local area networks without wired

Internet connection may connect to Internet via UMTS. These kinds of network may

also work as a means of indoor coverage for UMTS operators. In these scenarios, the

cellular link is shared by all the users connected to the mesh network and may provide

low bandwidth (e.g., GPRS). Thus, optimizing the access to some Internet services

may decrease the response time perceived by end users. The collaboration between

a user-side gateway and a network-side proxy server may allow optimizing the traffic

sent and received by users in the mesh network. Consequently, the PP functionality for

239

9. PERSONAL PROXY

Figure 9.8: Scenario where some PP functionality is placed into a proxy server for HTTP

optimization

HTTP traffic optimization described previously was integrated into the scenario in Fig-

ure 9.8. The CPM and SPM functionality for HTTP header reduction was placed into

the client-side gateway and the network-side proxy server in Figure 9.8, respectively.

The SPM functionality for HTTP content compression was placed into the network-side

proxy server in Figure 9.8. DNS and HTTP caching was performed at the client-side

network for reducing the traffic sent on the UMTS link. On the contrary, PP performs

caching at the network-side, which reduces traffic on the network core rather than the

access link. Although PP is mainly designed to be at the network-side, it may be pos-

sible to have PP working for users in a mesh network locally. In this case, multiple

personal proxies would interact locally and act as user-side gateways for a UMTS net-

work. Only in this particular scenario, the experimental results about HTTP and DNS

caching reported below are applicable to the PP caching.

We tested the download time of various web pages when the PP techniques for

optimizing HTTP traffic were performed in the above-mentioned scenario. To this end,

a user was connected to a gateway for accessing to a UMTS network. For the tests

performed, the user requested web pages through the gateway, which in turn forwarded

the user’s requests to the network-side proxy. In order to avoid the effect of public

server congestion, we deployed a virtual web hosting system at the laboratory network

that mirrored popular web pages. This system had the same hardware and software

characteristics as the network-side proxy server. Thus, the user still accessed these web

pages through the Internet but the servers’ work load was kept under control. Tests

240

9.4 HTTP Traffic Optimization

were executed with the equipment listed below:

• Gateway: Linux-based laptop (Debian 4.0 distribution with 2.6.18 kernel version)

with Intel ipw3945 802.11a/b/g chips.

• Cellular link: HSDPA link, approximately 1 Mbps downlink and 384 Kbps uplink.

• Access Network: 802.11.b.

• End device: Windows-XP-based UltraMobilePC using Mozilla 1.7.12 for web

browsing.

• Network-side proxy server: PC Intel P4 3GHz dual core processor and 2 GB

of Random-Access Memory (RAM) with Linux Operating System (OS) (Debian

4.0 distribution with 2.6.18 kernel version). Proxy functionality is given by a

Java-based HTTP server.

Each web page was requested 10 times, with optimizations disabled both on the

gateway and the network-side proxy. Afterwards, the same experiment was repeated

applying each optimization technique. A Gzip compressor was used to reduce the size

of the textual content of the HTTP responses sent to the user. Textual content com-

pression achieved an average decrease of 8% download time. We used a tool called

pdnsd, which is a simple, lightweight DNS cache for linux. This cache decreased the

download time by 7% on average. We used the HTTP cache Squid [211]. The im-

provement achieved by an HTTP cache obviously depends on the user’s web browsing

behavior. When the entire web page is saved in the cache the download time is reduced

by about 90%, since the proxy responds locally. The methodology for testing HTTP

header reduction is summarized below:

1. The user-side gateway and network-side proxy used a detection mechanism [208]

that allows the latter to know the HTTP headers that are dispensable on the link

between these two nodes and therefore will be removed by the former. The proxy

stored these HTTP headers in a database.

2. Whenever the user sent a GET request, the gateway removed the dispensable

HTTP headers of this request and forwarded the request to the network-side

proxy.

241

9. PERSONAL PROXY

Figure 9.9: Average size of HTTP requests on uplink

3. Whenever the network-side proxy received a GET request, it added the removed

HTTP headers back to the request and forwarded it to the web server.

4. The first time the user requested a page, the network-side proxy retrieved the

headers from the database, but in subsequent requests the header values were

cached and the database was not accessed.

5. The gateway calculated the size of the original and the reduced GET request for

each web page request. Thus, we calculated the average number of bytes over the

access link saved by applying HTTP header reduction.

Figure 9.9 shows the average size of GET requests for each tested web page, with

and without HTTP header reduction. The different amounts of bytes saved by HTTP

header reduction are due to the existence of cookies and similar dynamic headers.

HTTP header reduction reduces the size of GET requests by removing only content

negotiation headers, which are static. These headers obviously vary between different

browsers and may even vary between two browsers of the same family and version

because of different plug-ins installed.

Figure 9.10 shows the average improvement in response time for the tested web

pages, which is about 10%. The differences in response time mainly depend on the

number of objects rather than the type of these objects. The number of GET requests

increases with the number of objects. Thus, the improvement achieved increases with

the number of objects because more requests are optimized. In addition, it is demon-

strated [212] that the downloading order of the objects of a web page affects the overall

242

9.5 Conclusions

Figure 9.10: Average improvement in Response Time (%)

response time and that it is better to interleave small objects with large objects to

keep the server transmitting rather than waiting. Differences in web document struc-

ture therefore affect the downloading order. Thus, the size of consecutive objects also

affects the response time in conjunction with the number of objects that make up the

web page.

9.5 Conclusions

We addressed the need to deploy intelligent, user-centric applications that require scal-

able and efficient platforms for collecting, processing and disseminating presence in-

formation in a user-personalized way. Thus, we proposed a decentralized proxy-based

solution for handling fine-grained rules about presence information management, which

we refer to as Personal Proxy (PP). This is a logical functionality that may be included

in a home gateway or even a femtocell as a value-added service for managing the users’

presence and communications in a distributed way. The nature of this architecture pro-

vides a great flexibility to converge multimedia protocols in a single point and tightly

personalize user communications and privacy. PP also would ease the impact of the

presence service on network operators since it does not require a centralized PS shared

by numerous users. Although advanced users may have total control of their PPs,

other use case is some network operator providing users with their PPs and there-

fore administrating it. We analytically estimated the performance of some techniques

implemented by PP for reducing presence traffic. The reported results showed that

these techniques help in reducing presence traffic. We performed some experiments for

243

9. PERSONAL PROXY

testing the HTTP traffic optimizations implemented by PP. These experiments showed

that PP decreases the response time perceived by users when browsing the Web.

244

	6 Capacity Demands of Inter-domain Traffic Optimizations on the IMS Network Servers
	6.1 IMS Signaling Flows
	6.1.1 Common Notify
	6.1.2 View Sharing
	6.1.3 Common Subscribe
	6.1.4 Federated Common Subscribe

	6.2 Impact of Traffic Optimization on the IMS CSCF
	6.2.1 Privacy Filtering
	6.2.2 Impact of an Application Server for Traffic Optimization on the IMS

	6.3 Conclusions

	Chapter_7.pdf
	7 SIP/SIMPLE Resource List Server: Optimization or Burden for Presence Systems?
	7.1 Calculation of RLS Traffic on the Access Link
	7.2 Estimation of RLS Traffic on the Access Link
	7.3 Conclusions

	Chapter_8.pdf
	8 Queueing System and Adaptive QoS Mechanism for Controlling the Rate of Presence Publications and Notifications
	8.1 Design
	8.2 Analytical Modeling of Publication Receiver
	8.2.1 Loss Probability of PUBLISH Messages
	8.2.2 Average Length of the Publication Queue
	8.2.3 Average Waiting Time of PUBLISH Messages
	8.2.4 Mathematical Analysis

	8.3 Analytical Modeling of Notification Throttling
	8.3.1 Loss Probability of NOTIFY Messages
	8.3.2 Average Length of the Notification Queue
	8.3.3 Average Waiting Time of NOTIFY Messages
	8.3.4 Mathematical Analysis

	8.4 Analytical Modeling of Publication Throttling
	8.5 Adaptive Control Algorithm
	8.5.1 Performance Evaluation

	8.6 Use of Sojourn-Based Intervals
	8.7 Conclusions

	Chapter_9.pdf
	9 Personal Proxy
	9.1 Design
	9.1.1 Presence PP
	9.1.2 Multimedia PP

	9.2 Software Architecture: a Middleware-Based Approach
	9.2.1 Management Layer
	9.2.2 SIP/SIMPLE Layer
	9.2.3 Presence Filtering
	9.2.4 Implementation and Stage

	9.3 Presence Traffic Optimization
	9.3.1 Analytical Estimation

	9.4 HTTP Traffic Optimization
	9.4.1 Experimental Results

	9.5 Conclusions

	Chapter_10.pdf
	10 Context-Aware Rule-Based Service Composition Platform: Sense Everything, Control Everything
	10.1 Overview
	10.2 The SECE Language
	10.2.1 Time-Based Rules
	10.2.1.1 Single-Event rules
	10.2.1.2 Recurrent-Event Rules
	10.2.1.3 Hourly, Minutely, and Secondly Recurrent-Event Rules

	10.2.2 Calendar-Based Rules
	10.2.3 Location-Based Rules
	10.2.3.1 Operation

	10.2.4 Request-Based Rules
	10.2.5 Context-Based Rules
	10.2.5.1 States vs. Events

	10.2.6 Error Detection and Handling

	10.3 Architecture
	10.3.1 The Software Components of SECE

	10.4 Enhancing SECE Toward Ontology-Based User-Defined Rules for Automatic Service Discovery
	10.4.1 Design
	10.4.2 Implementation
	10.4.3 SECE Ontology-Based Sublanguage
	10.4.4 Future Work Towards Automation
	10.4.4.1 Automatic Learning of SECE Rules
	10.4.4.2 Event-Based Context-aware Web Service Composition

	10.5 Conclusions

