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Abstract  
 
Nitric oxide (NO) is a molecule that has pleiotropic effects in brain 
and vascular system. Physiologically, NO induces the translation of 
the GluN2B subunit of N-methyl D-aspartate receptor (NMDARc) 
by derepressing it 5’untranslated region (5’UTR) effect. This 
pathway is due to the activation of the heme regulated eIF2α (HRI) 
kinase and prevents an excess of GluN2B levels, especially at the 
extrasynaptic areas, where it can trigger excitotoxicity. 
Pathologically, NO in a pro-oxidant environment such as in 
Alzheimer’s Disease (AD) reacts with superoxide anion producing 
peroxynitrite, which can nitrotyrosinates proteins. There are other 
concomitant oxidative processes that affect AD patient like protein 
glycation. Therefore the albumin, the most abundant plasmatic 
protein, in AD patients is more nitrotyrosinated and glycated, which 
affects its structure. Modified albumin has a reduced ability as an 
osmolarity buffer and it is hardly uptaken by hepatoma cells. 
Moreover, modified albumin binds more Aβ, contributing to 
maintain higher amount of amyloid in brain and plasma. 
 

Resumen  

El óxido nítrico (NO) es una molécula con efectos pleyotrópicos en 
cerebro y sistema vascular. Fisiológicamente, induce la traducción 
de la subunidad GluN2B del N-methyl D-aspartate receptor 
(NMDARc) al revertir la represión de su 5’untranslated region 
(5’UTR). Este efecto se debe a la activación de la heme regulated 

eIF2α kinase (HRI) y previene el exceso de GluN2B, especialmente 
en regiones extrasinápticas, donde desencadena excitotoxicidad. 
Patológicamente, el NO en un ambiente pro-oxidatvio como el dado 
en la enfermedad de Alzheimer (AD) reacciona con el anión 
superóxido produciendo peroxinitrito, y causando entre otros 
efectos la nitrotirosinación de proteínas. Simultaneamente, las 
proteínas de pacientes con AD padecen otros procesos oxidativos 
como la glicación. Por tanto, la albúmina, la proteína plasmática 
más abundante, en estos pacientes está más nitrotirosinada y 
glicada, afectando su estructura. La albúmina modificada presenta 
menos capacidad para tamponar la osmolaridad y apenas es digerida 
por las células de hepatoma. Además, une más Aβ, contribuyendo a 
mantener más alta la carga amiloidogénica en cerebro y plasma.
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Prologue 
 
Nitric oxide (NO) is the main retrograde neurotransmitter as well as 

the major vasodilatant agent. In the glutamatergic synapses it is 

well-known that NO stimulates the soluble guanylate cyclase (sGC) 

increasing cyclic guanosine-3’,5’-monophosphate (cGMP), which 

yields to a glutamate (Glut) release from the presynaptic ending 

forming an activation loop termed long term potentiation 

(LTP).This is the main mechanism for plasticity processes like 

memory and learning and it allows to store information and to 

recovery it. N-methyl D-Aspartate Receptors (NMDARc) are key 

players in memory processes. NMDARc are coincident detectors 

that need two different stimuli to get actived: the depolarization of 

the cell by sodium (Na+) entry and the binding of the Glut and the 

coagonist glycine (Gly). These allow the magnesium (Mg2+) release 

from the channels’ pore and the entry of calcium ions (Ca2+) 

through it. Ca2+ is a second messenger that triggers many 

intracellular pathways. By binding to calmodulin (CaM) it 

stimulates the neuronal nitric oxide synthase (nNOS), producing 

NO that will stimulate the Glut release by the presynaptic ending. In 

this thesis we report another effect of NO in the glutamatergic 

signalling but focused in the postsynaptic endings. The NO binds to 

the heme group of the heme-regulated eukaryotic initiation factor 

2α (eIF2α) kinase (HRI) producing its activation. Then HRI 

phosphorylates the eIF2α.  The phosphorylation of eIF2α is a 

mechanism to avoid the translation of normal messenger ribonucleic 

acid (mRNAs) in situations of stress. But in proteins with a long 5’ 

untranslated region (5’UTR) containing more than one upstream 
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AUG (uAUG) p-eIF2α enhances the translation of its mRNA. This 

system of regulation evade an excessive consume of energy in stress 

conditions, translating only the essential proteins. GluN2B belongs 

to these kinds of proteins and its mRNA is present in the synaptic 

spines waiting to be translated when its expression is necessary. 

GluN2B subunit is abundant in immature neurons where the 

synaptic spines are growing and plasticity events are predominant 

but when they mature is chiefly exchanged to GluN2A. However in 

mature neurons GluN2B is also present in the synapses and in the 

extrasynaptic areas where it can form active channels associated 

with GluN1 subunit. These active channels are functional and allow 

the Ca2+ entry and NO production, maintaining the neuronal 

communication.  

Despite the effect described previously, NO can also be involved in 

a pathological process when it is produced in a pro-oxidant 

environment, like in Alzheimer disease (AD). AD is the most 

common dementia in elderly, and its prevalence increases with life 

expectancy. Nowadays it has turned into a capital problem due to 

the higher presence of aging people in developed countries. For this 

reason we need to understand the pathological processes occurring 

in AD. The beta-amyloid peptide (Aβ) has been described as the 

main effector in AD. Aβ is produced physiologically but in AD it is 

overproduced and less degradated. In this situation, Aβ is 

misfolded and aggregates extraneuronally producing superoxide 

anion (O2
·-). When this O2

·- is combined with NO it triggers the 

peroxynitrite (ONOO-) production. ONOO- damages proteins by 

nitrating the tyrosine residues, impairing its physiological 
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functions. AD is characterized by an increase of reactive oxygen 

species (ROS), exacerbating nitrotyrosination and glycation 

reactions. Albumin is a key protein in both the cerebrospinal fluid 

(CSF) and the plasma where it plays different functions as a 

buffering agent for osmolarity and free radicals, transport and 

trophic activities. The modification of albumin in both 

compartments, brain and blood, will affect dramatically to its 

functions and we have found that albumin is highly nitrotyrosinated 

and glycated in the brain and the blood of AD patients. 
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Abbreviations 

 

AD- Alzheimer’s disease 

ADAM- a disintegrin and metalloprotease 

AGE- advanced glycation end-products 

AMPARc- α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid 

receptors 

APH-1-anterior pharynx defective 1  

APLP1 or 2- APP-like protein 1 or 2  

ApoE- apolipoprotein E 

APP- amyloid precursor protein 

Aβ- amyloid β protein 

BACE-1- β -site APP cleaving enzyme 1 

BBB-blood brain barrier  

BSA- bovine serum albumin 

CAA- cerebral amyloid angiopathy  

CaM-calmodulin 

CaMKII – Ca2+/calmodulin-dependent protein kinase II 

C83- C-terminal fragment 83 

C99- C-terminal fragment 99 

cAMP- cyclic adenosine monophosphate  

cGMP- cyclic guanosine-3’,5’-monophosphate 

CNS- central nervous system  

CREB- cAMP response element-binding 

CSF-cerebral spinal fluid  

DAHK- copper-chelating tetrapeptide aspartate-alanine-histidine-

lysine 
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eIF2α- eukaryotic initiation factor 2 alpha 

EPSP- excitatory postsynaptic potential 

ERK- extracellular signal-regulated kinases 

FAD- familial Alzheimer’s disease 

GABA-γ-aminobutyric acid 

GC- guanylate cyclase 

GCN2- general control non-derepressible 2 kinase 

GluN2BRc - receptors bearing GluN2B subunits 

GSH-glutathione 

GTP- guanosine-5’-triphosphate 

HSA-human serum albumin 

HRI- heme-regulated eIF2α kinase 

ICH-intracerebral hemorrhage  

iNOS- inducible NOS 

JNK- c-Jun N-terminal kinases 

KO-knock out  

LRP-1-low-density lipoprotein receptor-related protein-1  

LTD- long term depression 

LTP- long term potentiation 

MAPK-mitogen activated protein kinases 

MEK- MAPK of extracellular signal-regulated kinases 

mGluR- metabotropic glutamate receptors  

MG-methylglyoxal 

mRNA- messenger ribonucleic acid 

NADPH-nicotinamide-adenin-dinucleotide-phosphate 

NFT-Neurofibrillary tangles 

NMDA-N-methyl D-aspartate  
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NMDARc- NMDA receptor 

NO-nitric oxide 

NOS-nitric oxide synthases  

nNOS- neuronal NOS 

NT-HBD- N-terminal heme-binding domain 

PEN2-presenilin enhancer 2  

PERK-double-stranded RNA-activated protein kinase-like 

endoplasmic reticulum kinase  

PI3K- phosphatidylinositol 3-kinase 

PKC-protein kinase C 

PKR-double stranded RNA-activated protein kinase  

PP1-protein phosphatase1 

PS- presenilin 

PSD- postsynaptic density 

RAGE-Receptor for Advanced Glycation End-products  

ROS- reactive oxygen species 

SAD- sporadic Alzheimer’s disease 

SAP-102 - synapse associated protein-102 

sAPPα/β- soluble APPα/β  

sGC- soluble guanylate cyclase 

SOD-superoxide dismutase  

STEP- Striatal -enriched protein Tyr phosphatase 

TPI- triosephosphate isomerase 

uAUG- upstream AUG 

5’UTR- 5’ untranslated region 

VSMC- vascular smooth muscle cell
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1O2- singlet oxygen 

Ca2+-calcium 

Cu2+-copper 

Fe2+/3+- iron 

H2O2- hydrogen peroxide 

K+-potassium 

Mg2+ - magnesium 

Na+-sodium 

NO+- nitrosonium ion 

NO2
- - nitrites 

NO2 –nitro group 

NO2
· -nitrite radical 

NO3
- - nitrates 

O- atomic oxygen 

O2
·-- superoxide anion 

O2-oxygen 

O3- ozone 

OH·-hydroxyl radical 

ONOO- - peroxynitrite 

ONOOCO2
- -nitrosoperoxycarbonat
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1. AD and Aβ  

In 1907 Alois Alzheimer published an article termed “Über eine 

eigenartige Erkankung der Hirnrinde” 1, 2 describing a 51-year-old 

woman case who developed a rapid loss of memory combined with 

temporal and spatial disorientation, cognitive impairment, delirious 

and auditory hallucinations. The post-mortem autopsy revealed an 

atrophic brain with intracellular fibrils and thick bundles at the 

surface of the cells, distributed all over the cortex. This brain had 

neuron disintegration affecting also the glia and the endothelium. 

The increasing number of similar cases made necessary its 

classification as a specific illness, and in 1910, at the suggestion of 

Kraeplin, Alzheimer’s mentor, this pre-senile dementia was named 

Alzheimer’s Disease (AD) 3. Despite Auguste D, Alzheimer’s 

patient, did not have a classical AD, nowadays AD is still diagnosed 

by the presence of two histopathological hallmarks: senile plaques 

and neurofibrillary tangles (NFT).  

Senile plaques are formed by insoluble aggregates of Aβ 4, 5, a 

peptide released by the cleavage of the amyloid precursor protein 

(APP). These aggregates are flanked by morphologically altered 

neurons bearing NFT, which consists of abnormally aggregates of 

the tau microtubule-associated protein in a hyperphosphorylated 

state 6. Aβ also aggregate in the brain vessel producing cerebral 

amyloid angiopathy (CAA) in more than 80% of the AD cases7. 

At present, AD is recognized like the most common dementia in the 

elderly, affecting more than 30 million individuals worldwide. In 

previous stages, patient shows severe memory deficits and a 

cognitive decline due to the neuronal damage at the hippocampal 



                                                                               Introduction 

 2

formation. These stages are diagnosed as Middle Cognitive 

Impairment. As the disease progresses, neuronal death extends to 

the prefrontal cortex affecting severely the speech and the analytic 

abilities. Therefore the symptoms get progressively worse over 5 to 

10 years. 

AD can be classified as familiar (FAD) or sporadic (SAD), 

depending on the onset time of the symptoms. FAD appears before 

65 years and accounts for less than 3% of all AD cases. The causes 

leading of FAD are unknown except for a 5% of the patients that 

shows mutations in APP or in presenilin (PS1, PS2) genes 8. 

Despite these AD form, the most common form is SAD and occurs 

after 65 years old. The underlying cause of SAD is still to be 

determined. The principal risk factor for developing SAD is age, 

which doubles the incidence of the disease every 5 years after 65 

years of age 9. But even though aging is a risk factor, it can not 

explain the cognitive impairment and the appearance of SAD by 

itself. It is known that there are some factors associated to an 

increase in AD susceptibility, as the ε4 allele of the apolipoprotein 

E (ApoE)10, 11, the second major risk factor for AD, or some 

polymorphisms such as P86L in CALHM1 12.   

 

1.1. The origin of Aβ deposition  

The deposition of Aβ in brain and vessels could be due to an Aβ 

increase because of a higher production or a defective degradation. 

Neurons and vascular cells can produce Aβ, but they are not the 

only ones, and almost all cells in the body can do it 13-15. In 

addition, there is an Aβ flux from the brain to the systemic 
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circulation but also in the opposite direction through the blood brain 

barrier (BBB) being the former enhanced under pathological 

conditions. Due to its amphipatic nature, to cross the BBB, Aβ 

needs specialized carriers and receptor transport mechanisms. These 

mechanisms control the uptake of circulating Aβ into the brain 16-22 

and regulate it clearance 23-28. The receptors involved, are the 

receptor for advanced glycation end-products (RAGE) and low-

density lipoprotein receptor-related protein-1 (LRP1). RAGE 

receptors participates in brain uptake of free Aβ from the plasma 29, 

and, LRP1 mediates the Aβ clearance from brain to circulation 30 

(Fig. 1). Opposite to the theory of the contribution of soluble 

plasmatic Aβ to brain deposition there is the fact that transgenic 

models with increased concentration of soluble Aβ in plasma have 

no brain lesions31. Furthermore, there is no evidence of increased 

Aβ production in sporadic CAA, so the defective Aβ degradation 

should be playing a key role. Neprilysin, acylpeptide hydrolase, 

endothelin-converting enzyme, insulin-degrading enzyme, beta-

amyloid-converting enzyme 1, plasmin and matrix metalloproteases 

are the main enzymes involved in Aβ catabolic pathways 32-35. 

Consistently, murine models with deletion of the genes codifying 

for these enzymes cause an increase of Aβ deposition36, 37. 
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Figure 1.  Aβ crossing through BBB 

Aβ is transported through BBB (in purple) by RAGE from blood to brain, 

and by LRP1 from brain to blood. The FcRn is also able to transport Aβ 

from brain when it is bound to IgG. (Figure extracted from Deane et al. 

2009
38
) 

 

1.2. CAA and Aβ 

CAA is a disorder characterized by the deposition of different types 

of amyloidogenic proteins. It occurs in the walls of leptomeningeal 

and cortical arteries, arterioles and less often in capillaries and veins 

of the central nervous system (CNS), and it induces the 

degeneration of the brain vessels 39. Vascular Aβ deposition in CNS 

was first described by Gustav Oppenheim in 1909 40, but it was not 

until 1938 that cerebral vascular abnormalities were recognized as 

CAA41. In 1954 Stefanos Pantelakis described their main 
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pathological features: preferential involvement of the small arteries 

and capillaries of the meninges, cerebral and cerebellar cortex, 

topographical distribution favouring the posterior brain regions, 

lack of staining in the white matter vessels, association with 

increased age and dementia and lack of association with 

hypertension, arteriosclerosis or the amyloidosis of the other 

organs42.  

CAA is a frequent clinical entity in aging people, being present in 

10% to 40% of elderly brains and 80% or more of AD patients 43. 

The classification depends on the type of amyloidogenic proteins 

implied: Aβ, amyloid-British protein, amyloid-Danish protein, 

cystain C, gelsolin, prion protein or transthyretin (TTR). The most 

common type is caused by Aβ and occurs in hereditary and sporadic 

forms. The familial forms are rare and occur in younger patients. 

This form that is associated to more severe clinical manifestations, 

appears due to mutations in the amyloid sequence as the Dutch, 

Flemish and Italian variants 44-50. 

The risk of developing sporadic CAA is associated with ApoE ε4 

and ε2 alleles 51. Interestingly ApoE ε2, which exerts a protective 

effect on AD risk, in CAA increases the risk of intracerebral 

haemorrhage (ICH) 52, 53, probably related with the involvement of 

ApoE ε2 in the cardiovascular disease 54. 

The main amyloid specie in the artery walls in CAA is the Aβ1-40, 

which is also the most soluble form55, 56. The origin of this Aβ1-40 is 

controversial: originally it was proposed to be produced by the 

smooth muscle cells of the vascular tunica media57 but the existence 

of CAA in AD brain capillaries, that do not have vascular smooth 
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muscle cells, and in brain vessels from transgenic mouse 

overexpressing neuronal human-APP 58-61 indicates that the major 

source for vascular deposits are neurons. The Aβ produced by 

neurons is drained along the perivascular interstitial fluid pathways 

of the brain parenchyma and leptomeninges, depositing it along the 

vessels under specific pathologic conditions 62, 63. However, a 

contribution to CAA by vascular smooth muscle cells 64 or other 

vascular cells 65 can not be discarded since they can produce Aβ1-40 

and Aβ1-42. The Aβ uptake from plasma due to RAGE binding 
66 

could be also contributing to CAA development. 

CAA can be completely asymptomatic, but amyloid deposition can 

weaken cerebral blood vessels walls, causing rupture and therefore 

leading to both asymptomatic microbleeds and ICH. CAA-related 

ICH accounts for 5-20% of all spontaneous ICH in elderly subjects.  

Amyloid deposits can also obliterate the vessel lumen, leading to 

ischemia and related clinical manifestations such as cerebral 

infarction, incomplete infarction and leukoaraisosis. It can produce 

neurological deficits, disturbances of consciousness, progressive 

cognitive decline dementia, and neuronal death as a consequence of 

the degeneration of cells in the walls of blood vessels 67. It also 

causes the impairment of vasoactivity and the stimulation of 

proteolytic mechanisms, such as fibrinolysis, anticoagulation, and 

degradation of the extracellular matrix 68.  
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1.3. The APP metabolism 

 

1.3.1. The APP physiological role 

APP is a type-I transmembrane protein codified by a gene located 

on chromosome 21 in humans. Three isoforms have been described: 

those having 751 and 770 aminoacids, which are present in non 

neuronal cells and low expressed in neurons, and the isoform with 

695 aminoacids, which is highly expressed in neurons 69. 

APP belongs to a family of proteins that includes APP-like protein 

1 (APLP1) and 2 (APLP2). All of they are processed in a similar 

way, although Aβ domain is unique to the APP protein. The APP 

knock out (KO) mouse is viable and fertile, showing a relatively 

subtle abnormal phenotype, including reduced body and brain size, 

impaired learning and LTP, reduced grip strength, hypersensitivity 

to seizures and increased frequency of corpus callous digenesis. 

These deleterious effects were mostly observed in early postnatal 

development 70. Several studies suggest that APP homologues have 

some functional redundancy; only the APP/APLP1 double null 

mouse is viable 71, having APLP2 a crucial role when either APP or 

APLP1 is absent. 

Roles for APP have been suggested in neurite outgrowth and 

synaptogenesis, neuronal protein trafficking along the axon, 

transmembrane signal transduction, cell adhesion and Ca2+ 

metabolism. Due to the similarity in topology and proteolytic 

processing between APP and Notch, a transmembrane receptor, it is 

suggested that APP may function as a membrane receptor, although 

the signalling events triggered by binding with some identified 
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ligands (Aβ, F-spondin and nectrin-1) 72-74 remains to be clarified. 

Moreover it is difficult to discern if all these effects were performed 

by the full length APP or its cleavage products. 

 

1.3.2 APP cleavage: the secretases 

APP is cleaved by different enzymes called secretases. There are 

three identified secretases: α, β and γ (Fig. 2). 

 

1.3.2.1. The α secretase activity 

The α-secretase is the only one not involved in the amyloidogenic 

pathway of the APP cleavage, and its activity is generally attributed 

to a disintegrin and metalloprotease (ADAM) family of proteases. 

Among this family ADAM 9, 10, 17 and even the 19 have shown to 

exert α-secretase activity 75-77. Despite this fact ADAM 10 is the 

most active in brain 78-81.                   

 

Figure 2. APP cleavage by secretases 
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The cleavage of APP by α-secretase produces the release of the 

soluble APPα (sAPPα) and the C-terminal fragment 83 (C83). The 

former fragment can be processed by the γ-secretase generating the 

p3 product, whose physiological role has not yet been established. 

The α-cleavage is the main cut of the APP located in plasma 

membrane 82 but there is also α-secretase activity over the APP in 

the trans-Golgi network, location where it competes with the β-

secretase 83. 

The APP processing by α-secretases is thought to be 

neuroprotective, since the sAPPα has demonstrated to protect 

cultured neurons against oxygen-glucose deprivation and 

excitotoxicity 84, 85. A role to promote outgrowth and 

synaptogenesis 86, 87 has been proposed since in vitro studies 

demonstrated that its administration intracerebroventricularly 

enhanced learning and memory in mice and rats 88, 89. Moreover, a 

study performed in an AD mouse model, showed that the 

overexpression of ADAM10 reduced Aβ production and plaque 

deposition in addition to present less cognitive deficits90. This 

would be due to the fact that an increase in APP processing by α-

secretase, reduced the consequent β-cleavage and the Aβ 

production.  

  

1.3.2.2. The β secretase activity 

The β cleavage of APP produces sAPPβ and the C-terminal 

fragment 99 (C99), from which γ-secretase renders Aβ. β-site APP 

cleaving enzyme 1 (BACE1), although it is not the only β-secretase 

in the brain, it is the most relevant one 91. In fact, deficient BACE1 
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mice show a lack of β-secretase activity and Aβ formation in 

neurons 92-94. Many studies have demonstrated the BACE1 

contribution to AD since its expression and activity is increased in 

brains of AD patients 95, 96. Despite its pathological role, BACE1 

also has a physiological function since BACE1 KO shows severe 

hypo-myelination of peripheral nerves, modest in the CNS 97, 

reduction in spine density in hippocampal pyramidal neurons and 

alteration in behaviour tests related with schizophrenia, as well as 

impairments in cognition and social recognition 98. 

The APP cutting by BACE1, which mainly occurs in endocytic 

vesicles, has been proposed to take place during neuronal 

depolarization, relocalizing APP to the BACE1-containing 

membrane microdomains 99. The sAPPβ produced, do not share the 

neuroprotective properties of sAPPα 100, and is critically involved in 

the pruning of synapses during development of central and 

peripheral neurons and acts as a ligand for death receptor 6, which 

produces axonal disintegration 101. 

 

1.3.2.3. The γ-secretase activity 

The γ-secretase enzymes cuts the C-terminal fragments C83 and 

C99 produced in the previous cleavages by α- or β-secretases, 

respectively. In order to be active, the γ-secretase needs the 

formation of a four protein complex containing:  PS1 and 2, 

Nicastrin, anterior pharynx defective 1 (APH-1) and presenilin 

enhancer 2 (PEN2) 102. PS are the catalytic subunits responsible for 

the intramembrane aspartyl protease activity 103. They can produce 

different Aβ species, being Aβ1-40 and Aβ1-42 the predominant. The 
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higher production is for Aβ1-40 but Aβ1-42 is more prone to aggregate 

and can act as a seed for Aβ1-40 aggregation 
104, 105. Therefore PS 

function determines Aβ1-42/1-40 ratio influencing the deposition of 

Aβ 106.  In addition, the mutation in PS genes is associated with 

FAD, determining the functional importance of the γ-secretase 

complex in AD. However, results obtained in conditional KO 

studies suggest that reduced activity of γ-secretase is associated 

with detrimental side effects in the brain, especially in older animals 
107, 108. Regarding these observations and considering that the γ-

secretase also has other substrates such as N-cadherin, Notch or 

LRP, discards its inhibition as a therapeutic approach in AD for its 

important implication in surface receptor-linked signalling 

pathways. 

 

1.3.3. Aβ and its toxicity 

Aβ is the most relevant protein in the amyloid hypothesis of AD. 

Aβ is generated in the endosomal compartment by the concerted 

action of β- and γ-secretases 109-112, and is subsequently secreted to 

the extracellular space through exocytosis, where its aggregation is 

observed by the change to a β-sheet structure. Intracellular Aβ has 

been observed as well, both in animal models of AD and human 

patients 113, 114, but this could be due to the normal trafficking of Aβ 

or to an abnormal uptake from the extracellular space. 

There are some reasons to support that the amyloid accumulation 

triggers AD. One of them is that the trisomy of the chromosome 21, 

where APP is located, causes AD type dementia 115. Furthermore, 

Aβ production is either increased in most hereditary cases and 
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animal models of AD or the ratio of Aβ1-42 to Aβ1-40 is higher. This 

fact is related with the causative AD mutations in PS genes, because 

it can shift the Aβ processing to Aβ1-42, the more aggregogenic 

form. There are also APP mutations that make Aβ more prone to 

aggregate such as the Dutch and Artic mutations116-118, and others 

that enhance the β-secretase cleavage, increasing the Aβ production 

such as the Swedish mutation119.  

Aβ can assembly forming oligomers (from two to eight Aβ units), 

protofibrils and fibrils, the biggest aggregates. Although fibrils are 

found in the senile plaques, it has been reported that oligomers are 

the most toxic form 120-125. In a variety of cell culture models, Aβ 

has shown to cause toxicity to neurons or inducing dendritic spine 

loss and LTP impairment 126-132. The mechanism involved in these 

effects seems to be related to the oxidative stress133-135.  

Aβ fibrils induce free radical production 136, 137 mediating Aβ 

cytotoxicity. In agreement there are evidences that show that 

micromolar concentrations of Aβ increase hydrogen peroxide 

(H2O2) in culture. Besides treatments with antioxidants like catalase 

and superoxide dismutase (SOD) prevents its toxicity 138. 

Furthermore intracellular ROS are increased in Down’s syndrome 

patients who per se overexpress APP 139. 

On the other hand soluble oligomers can inhibit N-methyl D-

aspartate (NMDA)-mediated synaptic transmission causing spine 

and synapse loss 140. Studies using extracts from brains of AD 

patients and hippocampal slice cultures show that Aβ dimers are the 

most potent form of Aβ oligomers, and they are able to inhibit 

NMDA mediated synaptic transmission 141. Higher molecular 
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weight oligomers and insoluble aggregates are also able to release 

Aβ dimers 142. Moreover Aβ dimers isolated from AD brains can 

induce tau hyperphosphorilation in hippocampal cultures 

correlating with neurite cytoskeleton disruption. 

Despite Aβ aggregates was thought to be the main toxic form of Aβ, 

it is currently known that the soluble oligomers are the most 

noxious components, suggesting that the invariant accumulation of 

insoluble Aβ in plaques may be a protective mechanism by storing 

Aβ 143, 144. 

 

2. The NO 

NO is a gaseous molecule extraordinarily labile, with a half-life of 

only about 3-5 seconds 145. Albeit its production is mainly due to 

NO synthases (NOS) it can also be synthesized by the reaction of 

H2O2 and D-or L-Arg in a non-enzymatic way 
146 and by the 

reduction of nitrites (NO2
-) in acid and reducing conditions, as 

occurs in the ischemic process 147. There are four NOS: nNOS, 

endothelial NOS, inducible (iNOS) and mitochondrial NOS. All of 

them, except the iNOS are Ca2+-CaM dependent enzymes that 

generates NO that only lasts a few minutes. Instead of this, the 

iNOS regulation depends on the novo synthesis 148 under 

immunological or inflammatory stimuli, and produces NO that lasts 

hours or days 149.  

To produce NO, NOS uses L-Arg as a substrate in the presence of 

nicotinamide-adenin-dinucleotide-phosphate (NADPH) and oxygen 

(O2) (Fig 3). L-Arg can be synthesized from Glut 
150 or by recycling 

citrulline 151, the other product of NOS. 
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                         Figure 3. NO synthesis by NOS 

 

NO is a molecule with an unpaired electron (Fig.4), making it a free 

radical, that can also exist as a nitrosonium ion (NO+) depending on 

the cellular redox status 152. Thus, NO is thermodynamically 

unstable and tends to react with other molecules producing NO2
-, 

nitrates (NO3
-), and ONOO-.  

 

Figure 4. Molecular structure of NO 

Red dots are valence electrons; green dotted line represent molecular 

bonds; sp
2
: orbitals of linear combination from atomic orbitals 2s, 2px 

and 2py. 
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2.1. Reactive nitrogen species  

The final product molecules of the NO reactions have different 

effects: ONOO- can trigger protein nitrotyrosination 153, 154; 

ONOOH, hydroxyl anion (OH·) and nitrite radical (NO2
·) act as 

oxidant agents, and its NO+ form produces protein nitrosylation. 

Nitrotyrosination, the addition of a nitro (NO2) group into a Tyr, 

may alters the normal protein activity leading to a loss of function 

of proteins such are the mitochondrial MnSOD  155, 156, actin 157, 

glutamine synthase 158, heme oxygenases 159, iron regulatory 

protein-1 160, histone deacetylase 2 161, mammal aldolase A 162, p53 
163 and prostacyclin synthase 164. 

S-nitrosylation, which consists in the incorporation of a NO moiety 

into a thiol group, can decrease the activity of the target enzymes, 

and may lead to activate matrix metalloproteases, which 

pathological process is reported in stroke and neurodegenerative 

disease 165, 166. Despite these effects S-nitrosylation has been also 

proposed as a mechanism to store NO as producing s-nitrosothiols 

in albumin 167. This effect can act as neural protector because of the 

formation of the antioxidant S-nitroso-L-glutathione 168 at the same 

time that it prevents ONOO- production by substrate competition169.  

 

2.2. NO signalling pathways 

NO is involved in several signalling pathways. Among them its 

implication in the activation of guanylate cyclase (GC) is the best 

well-known due to its relevance in vascular smooth muscle cell 

(VSMC) relaxation. GC catalyzes the change of guanosine-5’-

triphosphate (GTP) into cGMP 170. The cGMP is a second 
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messenger that activates protein kinases responsibles of the 

intracellular Ca2+ and anions flux control 171, 172. cGMP can also 

increase the cyclic adenosine monophosphate (cAMP) intracellular 

levels through the inhibition of the phosphodiesterase III 173 or 

decreasing them by stimulating the  phosphodiesterase II 174.  

In relation with the mitochondrial respiratory chain, NO competes 

with oxygen for the cytochrome c oxidase. NO inhibits this enzyme 

reversibly and decreases oxygen consumption 175, 176. Likewise, it 

promotes the mitochondrial biogenesis, regulating the cellular 

energetic metabolism177, 178.  

NO has an inhibitory role regarding cell proliferation 179, 180. At first 

the increase in the activity of the NOS would produce a shift of L-

Arg metabolism to NO generation, decreasing the production of L-

ornitine 181, a substrate for polyamine biogenesis. On the other hand 

NO activates Ras signalling pathway 182, S-nitrosylates several 

transcription factors 183, inhibits cyclin A, and activates the cyclin-

dependent kinase inhibitor p21Cip1 184. Since differentiation is 

closely coupled with cessation of proliferation, these mechanisms 

would be involved in neuronal differentiation promoted by NO185.  

NO can also affect the mitogen activated protein kinases (MAPK) 

intracellular signalling. It activates the MAPK of extracellular 

signal-regulated kinases (ERK) (MEK), ERK and c-Jun N terminal 

kinase (JNK) 186, and it also inhibits the platelet aggregation due to 

the prevention of phosphatidylinositol 3-kinase (PI3K) activation187.   

NO has a dual effect in apoptosis therefore it can be a pro-apoptotic 

o an anti-apoptotic molecule. In physiological conditions NO is 

considered anti-apoptotic due to its S-nitrosylation hability, its 
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inhibition of caspases 188, 189 and the release of Bax 190. NO also 

induces cytoprotective genes as HSP70 191 and inhibits cytochrome 

c release 192, 193, it maintains the anti-apoptotic Bcl-2 levels and 

inactivates the pro-apoptotic Bad and procaspase-9 by 

phosphorylation 194. In pathophysiological processes, though, it 

action depends on the NO location, concentration and the co-

existence with other agents. The pro-apoptotic role of NO is 

meditated by its binding to cytochrome c oxidase, inducing the 

formation of O2
·- and generating ONOO- in the mitochondria 195. 

NO may also induce apoptosis by activating the MAPK pathway, 

involved in stress response 196, 197. Under this stress situation, NO 

will activate the caspase cascades by its effect in the increase of 

ceramide 198. 

 

2.3. NO physiological functions 

NO also plays fundamental roles in important physiological 

functions (Fig.5). Among them, NO is crucial in vasodilatation, 

immune response and neurotransmission in neurons. These 

functions are reviewed in the following paragraphs. 

It is important to highlight that NO levels have to be tightly 

regulated as under physiological concentrations it modulates the 

previously mentioned responses; but at higher concentrations and 

oxidative stress conditions, NO can be harmful and contribute to 

ageing-associated diseases 199. 
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Figure 5. NO signalling pathways and effects 

 

2.3.1 Vascular effects 

Endothelial cells produce NO that lead to VSMC relaxation via the 

generation of cGMP. It activates protein kinase G (PKG)-dependent 

ion channels inducing hyperpolarization 200, 201 or a direct activation 

of Ca2+-dependent potassium (K+) channels 202-207. Moreover NO 

activates sarcoplasmic-endoplasmic reticulum Ca2+ATPases, that 

deplete the Ca2+ levels of the cytosol 208. On the other hand NO may 

also have another protective vascular role mediating the inhibition 

of VSMC proliferation and platelet aggregation 209. 
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2.3.2 Immune role 

In leukocytes iNOS is expressed after immune or inflammatory 

stimulation, producing a large amount of NO lasting a long time, up 

to several days. Its role in the immune response 210 is due to the 

ONOO- formation, which is a powerful anti-microbial and anti-

tumoral agent 211. Besides, it has been reported that NO activates 

cyclooxygenase-II producing pro-inflammatory molecules in glial 

cells 212 and it is also a well-known regulator of leukocyte adhesion 

to vessels 213. 

 

2.3.3. NO neuronal function 

In the brain, Garthwaite was the first to observe that the activation 

of NMDARc leaded to a release of NO 214, playing a key role in 

synaptic plasticity 215. NO has been also associated to pain 

perception 216, sleep control, appetite, thermoregulation 217 and 

neural development 218. 

Hippocampus, striatum, hypothalamus and locus coeruleus are brain 

regions where it has been demonstrated that NMDARc stimulation 

activates nNOS219-221 with a peak at 5-15 min, returning to basal 

levels after 60 min, most probably due to substrate exhaustion 222. 

This mechanism is due to the quality of NO as a retrograde 

neurotransmitter, stimulating Glut release by the presynaptic 

terminal 223. It also plays a key role in LTP, which is, as mentioned 

before, the main mechanism of information storage. 

LTP consists in the continuous synaptic activation of specific routes 

of the brain. The postsynaptic activation is maintained by the NO-

mediated Glut release in a cGMP-dependent pathway in the 
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presynaptic terminal 224. Moreover NO has a protective role by 

blocking caspases 225 and regulating an excessive NMDARc 

activation by S-nitrosylation, thereby avoiding its toxic effects 226. 

Nevertheless, NO also mediates NMDARc-dependent neurotoxicity 
227 and inhibits the glutamine synthetase, a brain ammonia 

detoxifying enzyme, by nitration and nitrosylation 228. 

On the other hand, NO produced by NMDARc, increase the release 

of acetylcholine 229, 230, noradrenaline 231, 232, serotonin 233, 234 and 

adenosine, a neuroprotectant neurotransmitter 235. On its role on the 

γ-aminobutiric acid (GABA), NO has different effects depending on 

its concentrations. It inhibits GABA release at low basal levels, but 

it increases it release at high concentrations 236. NO has the same 

dual effect regarding histamine. When NO leads to acetylcholine 

liberation it activates muscarinic receptors M1 inhibiting histamine 

release, but when M1 are blocked, the Glut released by NO produce 

the contrary effect237.  

 

2.3.4. NO and the translational control 

2.3.4.1. The HRI 

NO is an activator of the HRI238. HRI is a kinase that has been 

isolated from rabbit reticulocytes and also cloned from rat brain and 

presents two heme-binding sites: His119/120 in the N-terminal and 

Cys409 in the catalytic domain. NO is able to bind to the N-

terminal heme-binding domain (NT-HBD), disrupting the inhibitory 

interaction between the NT-HBD and the catalytic domain, thus 

activating HRI 239. Specifically, NO can reduce heme-Fe(III) to 

heme-Fe(II) 240, which binds NO forming a 5-coordinate heme-
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Fe(II) NO complex, changing the HRI kinase conformation 241, 242. 

This model might potentially be affected by the phosphorylation 

states of HRI and the allosteric effect of eIF2 binding, which can 

modify the heme-binding affinity and HRI conformation 243, 244. 

 

2.3.4.2. The eIF2α 

Four kinases are involved in the phosphorylation of the eIF2α: the 

HRI, the protein kinase RNA activated (PKR), the general control 

non-derepressible 2 kinase (GCN2) and the double-stranded RNA-

activated protein kinase-like ER kinase (PERK) 245-247.  

The eIF2α phosphorylation regulates the initiation step of mRNA 

translation 248-252 (Fig.6). This eIF2α factor is a G protein composed 

by three subunits: α, β and γ. The dephosphorylated form binds a 

transference mRNA coupled to methionine (Met-tRNA) and a GTP 

molecule. This molecular complex is known as the ternary complex 

that loads the initiating Met-tRNA to the 40S ribosome-mRNA 

complex. The ternary complex plus the ribosome conform the 

initiation machinery of translation and scans the 5’ UTR of the 

mRNA looking for the main AUG 253. Once the machinery reaches 

this AUG the translation begins. This process will consum the 

energy obtained from the conversion of a GTP molecule to a GDP. 

Only the complexes bound to GTP can perform the scanning, so the 

system needs to replace the consumed GDP for a new GTP in order 

to continue the other rounds of initiation. The guanine exchange 

factor eIF2B is responsible of doing it by interacting with eIF2α 254-

256. 
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When the eIF2α is phosphorylated at the amino acid Ser51, it 

increases its affinity for eIF2B, thus, sequestering the latter in an 

inactive complex. This will lead to a lower or stopped translation 

initiation due to the lack of eIF2-GTP 257. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Normal and uAUG 5’UTR translation 

In normal conditions the ternary complex scans the 5’UTR looking for the 

main AUG. When a transcript has a 5’UTR with several AUG, the 

initiation translational machinery does not find the main AUG. Under 

stress conditions, the eIF2α is phosphorylated and the exchanger eIF2B 

binds to it, inhibiting the conversion of eIF2α-GDP to GTP by competitive 

binding. Then the eIF2α phosphorylation produces a reduced availability 

of active initiation complex and represses the translation of normal 

proteins. However this situation changes in proteins with several AUG in 

its 5’UTR, because the eIF2α phosphorylation makes more efficient its 

translation. 
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Physiologically, the arrest of protein synthesis by eIF2α 

phosphorylation is a compensatory mechanism to save energy under 

stress conditions, such as oxidative stress, nutrient deprivation, 

missfolded proteins, ER stress or viral infection. The above 

mentioned kinases that phosphorylate eIF2α are responsible for 

detecting these stimuli. Specifically, HRI detects the oxidative 

stress, the heme deficiency and the NO presence 258-261. 

Nevertheless, there are proteins needed in stressful conditions and 

they will need to be translated during the global translation arrest. 

To ensure their synthesis under conditions of eIF2α 

phosphorylation, these genes have a specific system of translational 

regulation that allows its translation. This is mediated by the 

presence of AUG codons and GC rich content sequences within 

their long 5’UTR. When there are several uAUG in 5’UTR, the 

ribosome with the ternary complex can bind to uAUG and does not 

reach the main one 262, 263. But when eIF2α is phosphorylated there 

is less amount of initiation complex in the active form, and the 

scanning of the ribosome is more effective, skipping inhibitory 

uAUGs and beginning the translation. Less of 10% of the 

eukaryotic mRNAs contain AUG codons within their 5’UTR, but it 

is not uncommon in genes with critical cellular roles, as in 

oncogenes and another genes involved in growth and differentiation 
264-266. Interestingly, the uAUG 5’UTR repression system was 

described for BACE1 267-270 and it is reverted by eIF2α 

phosphorylation 271. 

All NMDA subunits except for GluN2C can be included in this 

group of genes since they have several uAUG 272. Specifically, 
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human GluN2B contains 3 uAUG in its 179 bp 5’UTR and the 

study of its regulation in physiological conditions, may help us 

understand what happens in pathologic situations like excitotoxicity 

in AD.  

 

3. The glutamatergic transmission in brain 

Most excitatory synapses use the neurotransmitter Glut, which can 

act through two types of Glut receptors (Fig.7), the ionotropic and 

the metabotropic receptors. 

There are three ionotropic receptors: the NMDARc, the α-amino-3-

hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARc) 

and the kaynate receptor. On the other hand the metabotropic Glut 

receptors (mGluR) are members of the Family C of G-protein-

coupled receptors and are formed by eight subtypes, mGluR1 to 

mGluR8. The AMPARc and NMDARc are located in the region of 

the postsynaptic density where they respond to the Glut released in 

the synaptic cleft. However the mGluR tend to lie outside the 

synaptic cleft, thus responding to Glut that spills out of the cleft. 

The NMDARc is a constant feature of the synapses but the 

AMPARc expression and insertion in the synaptic membrane is 

much more variable 273, 274. This is thought to be due to the large 

cytosolic tail present in NMDARc (600 aminoacids or more) that 

could lead to multiple and stronger scaffold interactions than the 

AMPARc 275. Nevertheless AMPARc trafficking and translocation 

into the postsynaptic membrane is a hallmark of synaptic plasticity 

and it is regulated by several proteins 276. 

 



                                                                               Introduction 

 25

 

 

 

 

 

 

 

 

 

 

 

 

   

Figure 7. Glutamatergic transmission 

Representation of a synapse between a presynaptic and a postsynaptic 

neuron. An astrocyte surrounds it. The Glut released at the synaptic cleft 

stimulates the ionic receptors NMDA and AMPA, and the metrabotopic 

receptor mGluR. In contrast to AMPA or NMDA which are always in 

postsynaptical, mGluR are also present in astrocytes and in the 

presinaptic neurons. Adapted from Weinberger, 2007
277

. 

 

3.1. LTP and Glut 

Neuron communication starts when the presynaptic neuron fires an 

action potential that propagates down the axon up to the synaptic 

ending. There, it provides the depolarizing signal to activate 

voltage-operated channels producing an inward current due to the 

entry of the Ca2+. This will trigger the release of neurotransmitters 

by exocytosis. In the postsynaptic ending Glut activates different 
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receptors, such as the AMPARc allowing an inward flow of Na+ 

and Ca2+. As a result, an excitatory postsynaptic potential (EPSP) is 

generated. The EPSP facilitates the opening of NMDARc that 

enhances the depolarization by allowing a massive entry of Na+ and 

Ca2+ into the dendrites. Every individual EPSP are summed to 

produce the global depolarization that fires an action potential in the 

postsynaptic neuron completing the flow of information between 

both neurons 278, 279. 

Memory and learning are based on the modulation of neuronal 

connections by synaptic plasticity. The store of information and its 

recovery are produced as a balance between the reinforcement and 

depression of neuronal connections. It is achieved by either an 

intense stimulation or the integration of several stimuli by a 

coincident detector 280, 281 that triggers the LTP or the long-term 

depression (LTD). Such modifications can be long-lasting or 

changing along the time, therefore contributing to the different 

plastic events. NMDARc are thought to be a coincident detector 

since they respond to postsynaptic depolarization and to Glut from 

the presynaptic ending 282. Thus NMDARc are playing a key role in 

LTP and LTD, hence in memory and learning.  

 

3.2. The NMDARc 

 

3.2.1. NMDARc structure 

NMDARc are composed by different subunits: the ubiquitously 

expressed GluN1 subunit; a family of four distinct GluN2 subunits 

(A, B, C and D); and two GluN3 subunits 283-286. Each subunit is 
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formed by 3 transmembrane segments and a re-entrant loop, with an 

N-terminal extracellular domain and a C-terminal intracellular 

domain. To be functional, the NMDARc assemblies in a tetramer 

complex composed by two GluN1 subunits and two GluN2. 

Occasionally also one GluN3 subunit may form part of the 

complex287-291. Both the GluN1 and GluN2 subunits contribute to 

the formation of the ion channel. The NMDARc is unique since the 

opening of the channels’ pore requires the binding of two different 

agonists: Glut and Gly 292. The Glut-binding site is on the GluN2 

subunits, and the Gly-binding site is located on the GluN1 subunits.  

The NMDARc is permeable to monovalent cations, including Na+ 

and K+, and divalent cations, most notably Ca2+. However, there is a 

binding site within the channel pore for Mg2+ that blocks ion flow 

through the channel at resting membrane potential (Fig. 8). Mg2+ is 

expelled when membranes are depolarised. Therefore, both 

depolarisation of the postsynaptic neuron and presynaptic release of 

Glut are required for maximum current flow through the NMDARc.  
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Figure 8. Structure of NMDARc 

Tetrameric NMDARc at the postsynaptic membrane. The GluN1 subunit 

has the binding site for Gly and the GluN2 the Glut binding site. The pore 

formed by the GluN1 and GluN2 is permeable to cations, especially Ca 
2+

. 

In the pore there is the Mg 
2+

 binding site, which blocks the ionic flow 

until a depolarizating stimuli arrives. 

 

3.2.2. NMDARc function 

NMDARc allows the Ca2+ entry inside the cell and may activate 

beneficial or deleterious neuronal pathways. This ambiguous role of 

NMDARc is called the NMDA paradox. It is thought that the 

location of the NMDARc influences whether it is coupled to pro-

death or pro-survival signals. According to this model, synaptic 

NMDARc are neuroprotective, whereas extrasynaptic NMDARc 

preferentially initiate cell death pathways 293.  

During the brain development, synaptic NMDARc suffer a switch: 

the early expressed receptors bearing GluN2B subunits 
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(GluN2BRc) are replaced by GluN2A-containing receptors, which 

eventually predominates at the synapse 294-304. In mature neurons, 

extrasynaptic domains are more often enriched inGluN2BRc, 

although they can also be found in synaptic areas 305-313. GluN2 

location is related to its preference to bind postsynaptic density 

(PSD) scaffold proteins. GluN2B has demonstrated to have a high 

affinity for synapse associated protein-102 (SAP-102) and it targets 

this subunit to the extrasynaptic zones, while PSD-93 and PSD-95 

display higher affinities for the GluN2A subunit in enriched active 

sites 314. Nevertheless they can move to synaptic areas from 

extrasynaptic locations 315 and it has been characterized that 

NMDARc with GluN2B subunits have a higher mobility in synaptic 

and extrasynatic compartments than those with GluN2A316, 317. 

GluN2BRc in extra-synaptic zones mediate apoptosis. It decreases 

GluN1/GluN2A active channels 318 and reduces the pro-survival 

gene transcription. Consequently, Glut excytotoxicity correlates 

more closely with increased levels of GluN2B rather than GluN2A 

subunits 319, 320. The reason why GluN2B is thought to mediate 

excytotoxicity is because GluN1/GluN2B complex have longer 

current-decay times, which allows a greater Ca2+ influx 321.  

Despite of its predominant expression in extrasynapses, GluN2B is 

also present in the synaptic zones where it interacts indirectly with 

the the nNOS via the scaffold protein PSD-95 322. The importance 

of GluN2B comes also from the fact that it is the most abundant 

GluN2 subunit in the hippocampus, an area that degenerates 

markedly in AD. Moreover, the distribution of both GluN2B and 
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GluN2A in brain correlates with the regional pattern affected in AD 
323. 

 

3.2.3. NMDARc in AD 

Synaptic dysfunction and nerve-ending loss are more accurate 

predictors of the cognitive impairment than Aβ plaque load or NFT 

presence. These neurodegenerative hallmarks could be directly 

related with the over-stimulation of NMDARc inducing 

excytotoxicity 324. Thus NMDA expression could be playing an 

important role in AD 325-327. This is actually the rationale for the 

treatment with memantine, an uncompetitive NMDARc inhibitor 
328, which slows the disease progression in subjects with moderate 

to severe AD 329-331. 

Aβ, especially the oligomeric forms, could mediate its toxic effects 

through NMDARc inducing LTP disruption, correlating it with AD 

memory deficits. In fact Aβ oligomers increase intracellular Ca2+ 

levels through its effect on the GluN1 NMDARc subunit, leading a 

synaptic mitochondrial dysfunction and an excessive ROS 

formation 332. Furthermore Aβ impairs both the early and the late 

phase of LTP. In the early phase, Aβ can stimulate the protein 

phosphatase 1 (PP1) 333 which may dephosphorylate 

Ca2+/calmodulin-dependent protein kinase II (CaMKII) 334, 

impairing the phosphorylation of the GluR1 of the AMPARc 335, 

that normally occurs under LTP-inducing stimulus. In the late 

phase, Aβ enhances the dephosphorylation of cAMP response 

element-binding (CREB) through calcineurin 336, leading to a 

reduction of protein synthesis necessary in late phase of LTP 337. 
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The triggering of calcineurin pathway by Aβ oligomers, such as 

dimmers and trimers, can stimulate LTD instead of LTP 338, 

suggesting that the inhibition of LTP by Aβ oligomers reflects a 

shift in the LTP/LTD balance rather than a direct blockade of the 

LTP-inducing pathways 339.  

Furthermore Aβ may increase the amount of Glut in synapses by 

inhibiting Glut re-uptake 340 and this spillover can activate 

extrasynaptic GluN2BRc 341-343. 

 

3.2.3.1 GluN2B in Aβ toxicity 

In the scenario of Aβ toxicity through NMDARc, GluN2BRc has 

been reported to play an essential role. The absence of GluN2BRc 

in KO mice lead to perinatal death whereas mice lacking GluN2A, 

GluN2C and GluN2D subtypes are viable 344-346- and actually some 

studies propose that both increased and decreased GluNR2B 

activity may have deleterious effects. Hu in 2009 demonstrate that 

injection of selective GluN2B inhibitors, ifenprodil and Ro 25-

6981, in rats, prevented the inhibition of LTP by soluble Aβ1-42 
347. 

This study demonstrates that Aβ renders an increase of tumor 

necrosis factor-α stimulating a higher availability of extracellular 

Glut that can acts on GluN2BRc. In addition, works ablating 

GluN2B in mice’s principal neurons show moderate deficits in LTP 
348 and the injection of Aβ1-42 was unable to induce further 

deficits349. Nevertheless, the heterozygous GluN2B mice showed 

normal LTP and no Aβ1-42 induced deficits 
350. However, the 

transfection of GluN1/GluN2A and GluN1/GluN2B in Xenopus 
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oocytes shows that Aβ activate particularly GluN2A receptors 

instead of GluN2B 351.  

The phosphorylation of GluN2B subunits allows its expression on 

the cell surface, but the application of Aβ1-42 in cortical neurons 

yield to GluN2B dephosphorylation and endocytosis. This effect 

was mediated through an α-7 nicotinic receptor. That activates 

PP2B leading to a dephosphorylation of the Striatal-enriched protein 

Tyr phosphatase (STEP); STEP61, which is the brain isoform 

increased in AD 352 is then active and dephosphorylates GluN2B 353. 

Other studies demonstrate that there is a significantly lower 

expression of GluN2A and GluN2B in susceptible regions of the 

AD brain compared with the controls 354. However, there are no 

differences in the reduction between the expression of GluN2A and 

GluN2B. This effect could be explained by the glutamatergic 

neurons death 355. Taken all these evidences together, one can 

conclude that NMDA expression, and especially GluN2BRc, has to 

be tightly regulated because an overcome or a deficit of its 

expression can produce LTP impairment. 

 

4. Nitro-oxidative stress in AD 

The nitro-oxidative stress is the main toxic mechanism mediated by 

Aβ. In the following paragraphs the agents responsible for this 

toxicity are described as well as its dual physiopathological 

function.  
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4.1. Oxidative stress 

4.1.1 Free radicals 

A free radical is a molecule, neutral or with charge, which contains 

one or more unpaired electrons. The production of free radicals 

occurs by the addition or the loss of electrons by redox reactions 

during cellular metabolism. The reactivity of this chemical species 

comes from these electrons that tend to pair with electrons from 

other molecules.  

Although free radicals are mostly harmful, at low concentrations 

they may play a role in different cellular functions such as 

activation of transcriptional factors, signal transduction or even 

triggering an immune response, since activated phagocytes produce 

O2
·- by NADPH oxidase complex to kill bacteria. They can also act 

as messenger molecules in LTP and synaptic signalling, like O2
·- 

which increase after NMDARc activation 356 or H2O2, which at low 

micromolar concentrations potentiates LTP induced by high 

frequency stimuli 357, 358.  

 

4.1.2 ROS 

Oxygen is an essential element for life but it can be toxic when it 

produces ROS. ROS are the products of disaggregation or excitation 

of O2 like the atomic oxygen (O), ozone (O3) and singlet oxygen 

(1O2). Other ROS are partially reduced like the H2O2, the O2
·- and 

the OH· 359. 1O2 is very reactive and can react with most of the 

cellular molecules 360. O2 and H2O2 are poor reactors but may 

generate 1O2 and OH
·, which are very toxic. When H2O2 accepts an 

unpaired electron from a reduced transition metal like iron (Fe2+) or 
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copper (Cu2+) it produces OH· and HO by a Fenton reaction (Fe2+ + 

H2O2�Fe
3+ + OH·+HO). Therefore the toxicity of O2 and H2O2 will 

depend on the availability and distribution of these transition 

metals361, 362.  

 

4.1.2.1 ROS production 

ROS are produced by various enzymatic systems, including the 

mitochondrial electron transport chain, cytochrome P450, 

lipoxygenase, cyclooxygenase, the nitrogen oxides, xanthine 

oxidase and peroxisomes 363. 

Approximately 1 or 2% of the O2 molecules consumed in electron 

transport generate species such as O2
·- and H2O2 

364, 365 mainly 

through side reactions catalyzed by the mitochondrial respiratory 

complexes I 366 and III 367-369.  

ROS production is balanced by the antioxidant molecules. This 

balance is essential considering that an unbalance will produce 

oxidative stress 370 damaging DNA, proteins and lipids. Oxidative 

stress may cause a dysfunction of Na+/K+ and Ca2+-ATPases, 

alteration of glucose and Glut transport, excessive Ca2+ influx, ATP 

depletion, membrane depolarization and translocation of 

cytochrome c to the cytoplasm 371. These deleterious effects can be 

reversible if they are repaired or by exchanging the damaged 

molecules. However, when the ROS are overproduced or the 

antioxidant systems are overcome, cells can die 372.  
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4.1.3. Antioxidant defences 

The most important protective systems against the ROS effect are 

the SOD, catalase and glutathione (GSH) enzymes 373, 374.  

4.1.3.1 SOD 

SOD is a mitochondrial enzyme that catalyzes the conversion of O2
·- 

to H2O2. There are three major families of SOD, depending on the 

metal cofactor: Cu/Zn (which bind both copper and zinc), Fe and 

Mn types (which bind either iron or manganese), and the Ni type, 

which binds nickel. 

M(n+1)+-SOD + O2
− → Mn+-SOD + O2 

Mn+-SOD + O2
− + 2H+ → M(n+1)+-SOD + H2O2. 

Reactions catalyzed by SOD 

M = Cu (n=1); Mn (n=2); Fe (n=2); Ni (n=2). In this reaction the 

oxidation state of the metal cation oscillates between n and n+1. 

 

4.1.3.2 GSH 

GSH peroxidase and GSH reductase works together. GSH 

peroxidase is a cytosolic enzyme that degrades H2O2 generating two 

reduced GSH. These two GSH, form a disulphide bridge between 

them producing the GSSG and releasing two H+ atoms that will 

eventually form a water molecule. In the presence of NADPH, GSH 

are quickly formed by the GSH reductase. 
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2 GSH + H2O2 �GSSG + 2 H2O 

Reactions catalyzed by GSH peroxidase 

                                 

                            GSSG + NADPH + H+ � 2 GSH 

Reactions catalyzed by GSH reductase 

 

4.1.3.3 Catalase 

The catalase, an enzyme located in peroxisomes, destroys the H2O2 

by dismutation. 

 
H2O2 + Fe(III)-E → H2O + O=Fe(IV)-E(.+) 

 
H2O2 + O=Fe(IV)-E(.+) → H2O + Fe(III)-E + O2 

Reactions catalyzed by SOD 

Fe()-E represents the iron center of the heme group attached to 

the enzyme. Fe(IV)-E(.+) is a mesomeric form of Fe(V)-E, meaning that 

iron is not completely oxidized to +V but receives some "supporting 

electron" from the heme ligand. This heme has to be drawn then as 

radical cation (.+). 

 

4.1.3.4. Thioredoxins 

Thioredoxins are proteins that act as antioxidants by facilitating the 

reduction of other proteins by cysteine thiol-disulfide exchange. 

This small redox protein is kept in the reduced state by the 

flavoenzyme thioredoxin reductase, in a NADPH-dependent 
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reaction; and acts as an electron donor to peroxidases and 

ribonucleotide reductases 375, 376. 

There are also other physiological systems that scavenge free 

radicals like uric acid, bilirrubine or albumin. Moreover vitamins C 

and E, flavonoids and other compounds derived from plants are 

powerful antioxidants . 

 

4.2. Nitrative stress 

NO undergoes different reactions in biological fluids resulting in 

the formation of NO2
-, NO3

- and ONOO-.  

 

2NO + O2 �N2O4 +H2O�NO2
- + NO3

-+ 2H+                     (1) 

NO+NO2
-
�N2O3 + H2O�2NO2

- + 2H+                                         (2) 

NO+O2
·-
�ONOO-�ONOOH�[NO2

·/OH·]�NO3
-+H+       (3) 

 

During the formation of NO3
- (3) highly reactive intermediate 

products such as NO2
· and OH· are generated 377. NO also reacts 

with O2
·- to produce ONOO- 378, which mediates the major NO 

neurotoxic effects 379. The affinity of O2
·- is higher for NO than for 

SOD 380-382 avoiding the action of antioxidant systems; therefore the 

amount of NO and its diffusion coefficient are the limiting factors 

in the production of ONOO-. Under physiological conditions 

ONOO- has a half life of 1-2s and an action radius of 100 µm, being 

sufficiently stable to diffuse through a cell to react with a target. It 

is degraded into multiple toxic products 383 or scavenged by the 

reaction with bicarbonate to produce nitrosoperoxycarbonate 

(ONOOCO2
-) 384. ONOO- is a powerful oxidant and is particularly 
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efficient at oxidizing iron-sulfur clusters, zinc-fingers, and protein 

thiols. This reaction contributes to cellular energy depletion. 

Moreover, ONOO- is one of the main protein-nitrating molecules 
385, 386. This nitration consists in the addition of a NO2 to proteins, 

mainly with Tyr residues generating a 3-nitrotyrosine (Fig.9) The 

local environment of the Tyr is important in order to be nitrated, 

since the proximity of negatively charged residues increases the 

susceptibility of nitration 387. This though, is not a massive process 

since the nitration under inflammatory conditions affects 1 to 5 of 

every 10,000 Tyr 388. 

 

 

 

 

 

 

 

                               Figure 9. Nitrotyrosination process 

 

ONOO- mediated nitration depends on its secondary products 

(NO2
·) when is protonated to the acidic ONOOH (3 and 4) 389: 

 

ONOO- + H+�ONOOH+NO�NO2
·+NO2 (4) 

 

Nitrotyrosination of proteins alter its normal activity as was already 

discussed in the section 2.1. In the presence of high amounts of 

ONOO- apoptosis occurs but this process is not observed at 
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physiological concentrations. This is at least applicable in 

endothelial and mononuclear cells 390. ONOOH and its intermediate 

products (NO2
· and OH·) act also as oxidant agents. NO2

· oxidizes 

certain amino acids such as Lys, His, Cys or Met. 

 

4.3 Glycative stress 

Glycation, also called non-enzymatic glycosylation, is a process that 

contributes to the post-translational modification of proteins 391. 

This chemical reaction is a covalent interaction between an amino 

group and a carbonyl group of reducing sugar. Glycation occurs in 

the N-terminus of all amino acids, not only on the side chains of 

Lys and Arg, but also on Cys and His. As a result of glycation, 

advanced glycation end-products (AGE) are produced. AGE 

formation in proteins is irreversible and causes protease resistant 

cross-linking of peptides and proteins, often leading to protein 

deposition and amyloidosis 392, 393. The carbonyl stress results from 

an impaired balance between the generation of carbonyl 

intermediates and the efficiency of the scavenger pathway. 

 

4.3.1 Glycative agents 

Among physiologically relevant sugars involved in glycation, 

glucose is the less reactive. The order of reactivity for the other 

monosacharides increases from hexoses to trioses and dicarbonyl 

compounds by several orders of magnitude. Only glucose in its 

aliphatic form (accounting only for the 0.001% of total glucose 

concentration) is involved in glycation reaction whereas α-

oxoaldehydes are characterized by extremely high chemical activity 
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(up to 20.000-fold more reactive than glucose). The α-oxoaldehydes 

are intermediary metabolites of α-β-dicarbonyl structure, being 

endogenous potent glycating agents that produce the carbonyl 

stress.  

 

4.3.1.1 Dicarbonyls and α-oxoaldehydes 

Dicarbonyls are formed as glycolytic intermediates in the metabolic 

conversion of glucose, via a Maillard reaction by the degradation of 

glycated proteins 394 and lipid peroxidation. In a Maillard reaction 

(Fig.10), the first formed Schiff base adduct is converted to a more 

stable Amadori rearrangement product. In a further cascade of 

chemical reactions these Amadori products undergo several 

rearrangements to form irreversibly bound AGEs. The intermediate 

stage of the Maillard reaction is characterized by the formation of 

numerous secondary products. The sugar moiety of an early 

glycation product can undergo different chemical reactions, 

consequently producing low molecular weight carbonyls, α-

oxoaldehydes, such as methylglyoxal (MG), glyoxal and 3-

deoxyglucosone. 
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Figure 10. Maillard reaction 

 

The α-oxoaldehydes are generated intracellularly through both 

enzymatic and non-enzymatc pathways. Then they cross the cellular 

membrane, probably by passive diffusion. The concentrations of α-

oxoaldehydes in human tissues and body fluids are usually low. 

Glyoxal and MG in human blood samples were 211 and 80 pmol/g 

respectively 395. Increases production of MG arises mainly from 

hyperglycemia 396 when cells accumulates high level of glucose. 

This might be additionally exacerbated or by low glyceraldehyde-3-

phosphate dehydrogenase activity 397 or as a consequence of 

decreased clearance by detoxification pathways. Several enzymes 

are involved in the detoxification of MG and make a network of 

four recognized catabolism pathways: the glyoxalase system, aldose 

reductase, betaine aldehyde dehydrogenase, and 2-oxoaldehyde 

dehydrogenase 398. 

 

4.3.2 Effects of AGE-modifications 

Through their effects on the functional properties of extracellular 

matrix, intracellular signal transduction and protein function, AGEs 

may contribute to the pathogenesis of diabetic retinopathy 399, 
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neuropathy 400, renal failure 401-403 and macrovascular disease 404. 

The effects of α-oxoaldehydes can modify irreversibly also DNA 

and RNA and these derivative nucleic acids may promote cell 

apoptosis as they are associated with mutagenesis. 

A mechanism by which AGE-modified proteins may exert their 

effect is by binding to RAGE 405. This has been identified on a 

variety of cells including endothelial and smooth muscle cells. Also 

AGE-modified proteins can be internalizated and degradated via 

monocyte/macrophage RAGE. In fact, increased RAGE expression 

has been found on endothelial cells, vascular smooth muscle cells 

and cardiac myocytes of diabetic patients406. It has been reported 

that ligation of AGE and RAGE causes activation of intracellular 

signalling, gene expression, and production of proinflammatory 

cytokines and free radicals, thus playing an important role in the 

development and progression of diabetic micro- and 

macroangiopathy 407. 

Inside the cells, the impact of glycation is countered by the high 

turnover and short half-life of many cellular proteins. Long-lived 

extracellular proteins, however accumulate glycation adducts with 

age 408, 409. Some of these adducts may be removed by enzymatic 

repair mechanisms, whilst all are removed by degradation of the 

glycated protein. Degradation of extracellular glycated proteins also 

requires specific recognition and internalization by RAGE 410 and 

posterior proteolytic processing.  
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4.4. Nitro-oxidative stress in brain 

The brain has the highest oxygen metabolic rate of any organ in the 

body, consuming approximately 20% of the total amount of 

available oxygen 411. This enhanced metabolic rate leads to an 

increased probability of ROS production and makes the brain more 

vulnerable to oxidative stress 412. Brain also shows high 

concentrations of polyunsaturated fatty acids, which can be 

peroxidated. It also presents many enzymatic activities related with 

transition metals, which can catalyze the free radical production413. 

 

 

4.5 Nitro-oxidative stress in AD 

 

The free radical toxicity is evident in AD patients, who show 

dramatic evidences of oxidative, glycative and nitrative stress in 

hippocampus, cortex 414-417, and in CSF 418. In the context of AD, 

the Aβ fibrils induce ROS formation 137, 419. Similarly, chronic Aβ1-

40 intracerebroventricular infusion causes ONOO
- formation 420, 

which correlates with the increased nitrotyrosination observed in 

AD. This is explained by the fact that Aβ stimulates the reactive 

microglia surrounding the senile plaques to produce ONOO- 

through the induction of iNOS expression 421-423. Actually, iNOS 

and endothelial NOS are more expressed in astrocytes associated 

with neuritic plaques 424-426 while nNOS is strongly related with 

NFT and plaques 427. Indeed, some of the deleterious outcomes 

observed in AD patients may be explained by the effects of 

nitrotyrosination on glucose metabolism, cytoskeletal integrity, 

antioxidant defense or protein turnover 428, 429.  
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The effect of ROS in the limitation of glucose flux provokes high 

concentrations of MG in AD 430-432. To worsen this situation MG 

detoxification by glyoxilase is decreased because GSH is needed as 

a cofactor, and there is increasing evidence supporting that GSH is 

depleted in AD 433, 434. Likewise, AGE with unchelated transition 

metals contribute to AD pathology inducing cross-linking and 

fostering the aggregation of Aβ 435. For this reason and for the 

impairment of lysosomal proteases activity in AGE modified 

proteins 436, 437, AGE could aggravate the inability of phagocytes 

like microglia to clear plaques. This increase in AGE might 

contribute to the inflammatory activation of the microglia. It can 

also mediate cytotoxicity by free radical formation 438, 439 or through 

ATP depletion 440-442. AGE is a biomarker of AD and CAA, being 

present in NFT 443, in early stages of amyloid plaques 444 and in 

CSF 445. 

 

 

5. Albumin 

 

Human serum albumin (HSA) is the most abundant plasma 

protein446 being about 60% of the total plasmatic proteins 447. It is 

also the major protein of CSF, which is in part an ultrafiltrate of 

plasmatic proteins 448. 

 

5.1. Biochemistry of albumin 

 HSA is a single peptide chain of 585 amino acids, without 

prosthetic or carbohydrate group and characterized by the presence 

of 35 Cys residues which forms seventeen disulphide bridges with 

the exception of Cys 34 that has a free sulphydryl group 449. The 
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disulphide bridges confer the necessary stability to the protein in the 

blood to avoid dissolution. Moreover, albumin contains a high 

amount of ionic amino acids, especially Glut (20 residues) and Lys 

(60 residues), confering a relatively high solubility to the protein. 

HSA has a secondary structure with 67% of α-helix, 23% of 

extended chain and 10% of β-sheet 446, 450, 451. Albumin is a flexible 

molecule, with the ability of changing its shape depending on the 

environmental conditions such are temperature, pH or ionic strength 
452-454.  

HSA consists of a monomeric globular protein with three domains 

I, II and III 446, 455, 456. The wide range of compounds that bind 

albumin can be accommodated in the domains II and III because 

both have a pocket formed mostly of hydrophobic and positively 

charged residues. This is the explanation of the higher affinity of 

albumin for hydrophobic anionic compounds 453, 457. 

 

5.2. Physiological properties 

HSA is synthesized by the liver and circulates in blood (3.5-5g/dL) 

during 21 days 458 until it is degraded by the liver and kidneys 459, 

460. In brain microglia is able to produce albumin, explaining the 

high proportion of albumin in CSF 461. 

Albumin is working in the maintenance of oncotic or colloid 

osmotic pressure 462, 463 and in the transport of different molecules 

such are hormones 453, free fatty acids 464, 465, bilirrubin 466, NO467, 

Ca2+ and other ions 468-474, or some drugs as penicillines453, 

warfarin475 and ibuprofen 476.  
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A neuroprotective role is also among the functions described for 

HSA. It has been involved in neuronal survival477 by increasing the 

synthesis and release of Glut 478, also in the prevention of neuronal 

death479-481 and apoptosis through a reduction of excessive cytosolic 

Ca2+ concentrations 482. It can also act by scavenging oxidative 

stress. To perform its antioxidant properties, HSA quenches metal 

ions, ROS and NO 453, 467 through its free Cys 483-487. Accordingly, 

the homolog protein in bovine, bovine serum albumin (BSA), 

exhibits SOD-like activity by inhibiting O2
·- formation, reducing 

lipid peroxidation 488, 489, leading to a decrease in the cellular 

oxidative stress. Together with its antioxidant properties, BSA 

exhibits an antimutagenic effect against certain genotoxic 

compounds 490. Otherwise, HSA has an N-terminal region, the 

copper-chelating tetrapeptide aspartate-alanine-histidine-lysine 

(DAHK), that attenuates DNA strand breaks and telomere 

shortening 491.  

As well, in stroke HSA has a positive effect: it decreases edema and 

infarct size 492, increases local perfusion and maintains 

microvascular integrity 493. 

 

5.3. Albumin and Aβ 

 Albumin binds almost all of the Aβ1-40 and Aβ1-42 present in the 

circulation 494-497. This places HSA as a relevant player in AD, since 

it is proposed that by binding to Aβ it inhibits its aggregation498-502.  

The equilibrium between the cerebral and plasmatic Aβ is critical 

for AD onset and it is controlled by two receptors. The LRP 

releases Aβ from the brain to the blood 503, 504 and the RAGE moves 
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the systemic Aβ to the brain 505-507. Interestingly, the injection of 

antibodies in the CNS produces an increased Aβ efflux to the 

plasma as a result of the resolubilization of the Aβ aggregates 508, 

509. This finding could have important implications for Aβ-albumin 

interaction and Aβ clearance 461, 510.  

 

5.4. Pathologies related with albumin dysfunction 

The main diseases related with albumin are due to changes in its 

concentration. Hypoalbuminemia is a reduction of albumin 

concentration (1-2.5 g/dL) that can be caused by several pathologic 

situations such are: a) liver disease, being cirrhosis the most 

common 511, 512, b) an excess of excretion by kidneys, as occurs in 

nephrotic syndrome 513, c) an excess of loss by bowel, in a protein-

losing enteropathy like Ménétrier’s disease 514, 515, d) by its loss in 

the absence of the skin barrier in burns patients 516), e) hemodilution 

in pregnancy 517, f) increased vascular permeability 518, g) decreased 

lymphatic clearance, h) acute diseases states as negative acute-

phase protein 519 or i) rare mutation causing analbuminemia 520, 521. 

On the other hand, the increase in albumin concentration, or 

hyperalbuminemia, is a sign of severe or chronic dehydration 522 or 

high protein diets 523.  

Different physiological or pathological factors like age, diseases, 

genetic aspects or the binding to endogenous ligands and 

xenobiotics, change HSA binding site properties contributing to its 

intra- and interindividual variability 524.  

In normal conditions HSA suffers nitro-oxidative modifications, 

such as glycation 525, but these are enhanced by aging. Albumin has 
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many Lys and Arg (23 residues) that make it an excellent target for 

glycation 526 and the Tyr (18) that makes it susceptible for 

nitrotyrosination 527. Due to its relevance in diabetes mellitus528, 

HSA glycation has been widely studied demonstrating dramatic 

changes in its structure and function 529-531. In fact it is known that 

glycation induces refolding of albumin into β-sheet 532 being toxic 

for neurons, leukocytes, pericytes and endothelial cells533-538. 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

II. HYPOTHESIS AND OBJECTIVES
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2.1  Hypothesis 

 
NO is an important molecule playing a key role in the physiology of 

memory processes in the brain as well as in the regulation of 

vascular tone. During memory consolidation, its function 

contributes to the synaptic strengthening produced in LTP. How NO 

participates in the LTP process is explained by its activity as a 

retrograde messenger from postsynaptic to presynaptic endings, 

facilitating the bidirectional communication between neurons and 

enhancing its interaction during synapses. Regarding this situation, 

we propose NO as a candidate to regulate the expression of one of 

the key proteins in synaptic events: the NMDARc.  

In pathological situations, under a pro-oxidant environment like that 

happening in AD, NO can interact with O2
·-, forming the ONOO-, 

which modifies proteins. All together contributes to the oxidative, 

nitrative and glycative stress in AD. The alteration of proteins under 

this stressful condition can tell us about the state of the disease 

progression at both sides of the BBB: brain parenchyma and blood.  

 

2.2  Objectives 

The work embraced in this thesis addresses the issue of the role of  

NO in synapses and in nitro-oxidative stress in AD. The main goals 

are the following ones:  

 

2.2.1 The study of the NO effect in NMDARc expression in 

neurons: NMDARc are the most relevant receptors in LTP in 

glutamatergic neurons. The differential expression of its subunits 

can affect Ca2+ entry triggering survival or pro-apoptotic pathways. 
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GluN2B translation has to be tightly controlled due to its dual role 

in synapses and extrasynapses. We attempt to link the effect of NO 

in the GluN2B translational activation through the neuronal eIF2α 

phosphorylation. 

 

2.2.2 The study of the effects of oxidative, nitrative and 

glycative stress in albumin: Albumin is the main protein in blood 

circulation and CSF. Modification by nitrotyrosination and 

glycation can impair its physiological function converting it in 

cytotoxic. These posttranslational modifications may turn albumin 

to an ineffective or even to a harmful protein. Herein we deal with 

the study of the effects of albumin nitration and glycation in AD.  
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Nitric Oxide Induces the Expression of the 

Glutama tergic GluN2B subunit by Reverting the 

mRNA 5’UTR Translational Repression 
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Abstract  

 

Glutamate (Glut), the main neurotransmitter of the excitatory 

synapses, activates the N-methyl D-aspartate Receptor (NMDARc) 

producing long term-potentiation (LTP) in cortex and hippocampus 

to consolidate memory and learning process.   

This channel is formed by a heterotretamer composed mainly by 

two GluN1 and two GluN2 subunits. The subunit GluN2B is 

playing a key role in NMDARc synaptic function and its 

dysregulation is associated to cognitive impairment and 

neurodegenerative diseases. GluN2B mRNAs has a 5’untranslated 

region (5’UTR) with three upstream AUG (uAUG) which act as 

repressor of its translation. Under determined stimulus, the de-

repression occurs through the eukaryotic initiation factor 2 α 

(eIF2α) phosphorylation mediated by several kinases. Here we 

demonstrate by immunofluorescence (IF) and westernblotting (WB) 

that Glut produces an increase of GluN2B expression. Nitric oxide 

(NO), as well as a NMDA agonist and an eIF2α phosphatases 

inhibitor, produces an increase in the GluN2B expression and eIF2α 

phosphorylation. Consistently luciferase experiments show that 

these treatments prevented the UTR repression of GluN2B. We 

identified the heme regulated eIF2α kinase (HRI) as the kinase 

activated by NO that phosphorylates eIF2α, and this effect as well 

as the GluN2B expression was blocked by a HRI inhibitor used in 

cortical mouse neurons and in mice. The function of this receptor 

was assayed by electrophysiological techniques in cortical mouse 

neurons and synaptosomes showing a high Ca
2+
 entry when treated 
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with NO. In conclusion, our data suggest that Glut activates 

GluN2B translation, through the NO production. It activates HRI, 

which phosphorylates eIF2α reverting the 5’UTR GluN2B 

repression. 

 

Nonstandard abbreviations used: 5’UTR: 5’untraslated region; 7-

NI: 7-nitroindazole; Abs: antibodies, AUC: area under the curve; 

BIC: bicuculline; BSA: bovine serum albumin; Ca
2+
: calcium; 

CHX: cycloheximide; eIF2α: eukaryotic initiation factor 2 α; Glut: 

glutamate; HRI: heme regulated eIF2α kinase; IF: 

immunofluorescence, iHRI: inhibitor of HRI;  ISO: isotonic 

solution; LTP: long term potentiation; NMDARc: N-Methyl D-

Aspartate Receptor; nNOS: neuronal NOS; NO: nitric oxide; NOS: 

NO synthase; PSD-95: postsynaptic density -95; Sal: salubrinal; 

Ser: serine; SAP-102: synapse associated protein 102; SN: 

supernatant; SNP: NO donor; uAUG: upstream AUG; uORF: 

upstream open reading frame; WB: western blot; WT: wild type.  
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Introduction 

 

N-Methyl D-Aspartate receptor (NMDARc) is an excitatory 

receptor activated by ligand and voltage (Engberg et al., 1978; 

MacDonald and Wojtowicz, 1982; Mayer et al., 1984; Nowak et al., 

1984) that allows mainly the calcium (Ca
2+
) entry in neurons 

(Dingledine, 1983; Mayer and Westbrook, 1987). This 

glutamatergic neurotransmission plays a key role in synaptic 

plasticity and memory due to its implication in long term 

potentiation (LTP) in cortex and hippocampus (Collingridge et al., 

1983; Harris et al., 1984). It produces the activation of intracellular 

pathways with short-term effects, such as the activation of 

calmodulin and nitric oxide (NO) production and long-term effects 

like the gene expression through of cAMP response binding-

element phosphorylation (Ghosh et al., 1994).  

NMDARc has three subunits: GluN1, GluN2 and GluN3 

(Moriyoshi et al., 1991; Constantine-Paton and Cline, 1998; Das et 

al., 1998). The functional receptor is composed of multiple GluN1 

subunits in combination of at least one type of GluN2 (Monyer et 

al., 1994). The subunit GluN2B is highly expressed in the early 

stages of development when synapses are growing (Loftis and 

Janowsky, 2003) interacting directly with the postsynaptic density -

95 (PSD-95) scaffold protein and through PSD-95 with other key 

proteins in glutamatergic transmission such as neuronal NO 

synthase (nNOS) (Brenman et al., 1996).   

The expression of GluN2B in the synapses is regulated at the 

translational level. GluN2B mRNA has a long 5’untraslated region 
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(UTR) with 179 pb, containing three upstream AUG (uAUG). 

Under normal conditions the translation of mRNAs with long 

5’UTR, GC rich content, extensive secondary structure, uAUG and 

more than one upstream open reading frame is repressed (Kozak, 

1987). This regulatory system was described for GCN4 in yeast 

(Mueller and Hinnebusch, 1986; Qiu et al., 2000) and it is shared 

with different 5’UTR transcripts that are translationally activated by 

particular situations like cellular stress. During the initiation of the 

translation, the small subunit of the ribosome with the ternary 

complex formed by tRNA coupled to methionine, eukaryotic 

initiation factor 2 (eIF2) and GTP scans the 5’UTR of mRNA to 

detect the main AUG. Under particular situations directed to avoid 

the general protein translation, eIF2α subunit is phosphorylated in 

serine (Ser) 51 binding eIF2B. Then eIF2B is mostly bound to p-

eIF2α and it cannot exchange the GDP for GTP and it reduces the 

inhibition of the translation because just the ternary complex 

coupled to GTP is active (de Haro et al., 1996). But in proteins with 

5’UTR that contains more than one uAUG, the phosporylation of 

eIF2α produces a less availability of active ternary complex making 

more efficient the scanning process, reaching more easily the main 

open reading frame, thus derepressing the 5’UTR translational 

inhibition. 

There are four main kinases involved in the eIF2α phosphorylation 

but we focus our research in heme regulated eIF2α kinase (HRI). 

HRI is activated by NO due to its interaction with the heme group 

(Yun et al., 2005). In this work, we have studied the role of the NO 
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in NR2B translational derepression through HRI activation and 

eIF2α phosphorylation in glutamatergic signalling. 

 

Matherials and methods 

 

Mouse embryo cortical cell cultures  

Cortical cells were isolated from 18 day-old CB1 mouse embryos. 

The procedure was approved by the Ethics Committee of the Institut 

Municipal d’Investigacions Mediques-Universitat Pompeu Fabra. 

Hippocampus and cortex were aseptically dissected and trypsinized. 

Cells were seeded in DMEM (Gibco, USA) plus 10% horse serum 

(Gibco) into 1% poly-L-Lysine (Sigma-Aldrich, USA) coated 

coverslips (5x10
4
cells/cover). After 2 h, medium was removed and 

neurobasal medium was added containing 1% B27 supplement 

(Gibco) plus antibiotics. Cultured hippocampal cells were used for 

the experiments on day 7 for the Ca
2+
 experiments and 10 for WB 

and IF (Kaech and Banker 2006). 

 

Human brain samples 

Human brain tissue samples were supplied by the Banc de Teixits 

Neurològics (Serveis Científico-Tècnics, Hospital Clínic, 

Universitat de Barcelona), the Unitat d’Anatomia Patològica 

(Hospital del Mar) and the Unitat de Neuropatología y Banco de 

Cerebros (Fundación Hospital Alcorcón). The procedure was 

approved by the ethics committee of the Institut Municipal 

d’Investigacions Mèdiques-Universitat Pompeu Fabra. Brain 

sample was obtained from the frontal cortex of a healthy aged 
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individual. Brain sample was lysated with a cocktail containing 

NP40 lysis buffer (150 mM NaCl, 5 mM EDTA, 1% Nonidet P-40, 

1 mM sodium orthovanadate, 1 mM phenylmethylsulphonyl 

fluoride, 0.05% aprotinin, 1mM dithioltreitol) and a 1x of protease 

inhibitors (Complete mini-EDTA free, Roche Diagnostics GmbH, 

Switzerland). The mix was mechanically disaggregated with plastic 

micropistilles in a 1 mL eppendorf and 1mL syringe. The brain 

solution was centrifugued at 17,500 x g for 10 min. The supernatant 

(SN) was quantified by the Bicinchoninic Acid (BCA; Pierce® 

BCA Protein assay kit, Thermo Scientific, USA) assay. 

 

Mice treatments 

The inhibitor of HRI (iHRI; Janssen Research & Development, 

Belgium) used at  50 mg/kg, the inhibitor of nNOS, 7-nitroindazole 

(7-NI) (Sigma-Aldrich),  used at 50 mg/kg, and dimethyl sulfoxide 

(DMSO; Sigma-Aldrich), as vehicle control were administered after 

the training session intraperitoneally (i.p.) in a volume of 2 mL/Kg. 

Synaptosomes were isolated from mouse hippocampus. 

Preparation of cortical and hippocampal synaptosomes 

Cortical and hippocampal synaptosomes were obtained as described 

by Myhre and Fonnum, 2001 with minor modifications. Two mice 

were decapitated, their brains were rapidly removed, and the cortex 

and hippocampus were dissected and homogenized in cold 

homogenization buffer (5 mM Tris–HCl and 320 mM sucrose; 

Sigma-Aldrich), using a borosilicate glass homogenizing tube fitted 

with a Teflon pestle and filtered through two layers of surgical 

gauze. The homogenate was centrifuged at 1,000 × g at 4 °C for 10 
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min. The SN was recovered, and sucrose buffer was added to a final 

sucrose concentration of 0.8 M. Samples were then centrifuged at 

13,000 x g for 30 min at 4 Cº. The SN was discarded and the 

synaptosomes layer was separated from mitochondria by carefully 

adding 1 mL of ice-cold 320 mM sucrose buffer and gently shaking. 

Finally, the synaptosomes fraction was diluted in Hank’s balanced 

saline solution (HBSS) buffer (Gibco) to a final protein 

concentration of about 0.1 mg/mL. Protein concentration was 

determined using Bio-Rad protein reagent (Bio-Rad, USA). The 

final synaptosomes suspension was distributed in 1 mL aliquots to 

perform the experiments. Synaptosomes integrity was assessed by 

electron microscopy (Fig. 1B). 

 

Cloning of GluN2B 5’-untranslated region (UTR) 

Total RNA was extracted from hippocampus of brain tissue, and 

one-step RT-PCR was carried out using kit (Qiagen, Germany) with 

primers designed to amplify GluN2B 5’UTR: 5’-

CATTTATCCTTCGTCTTTCTTATGTG-3’,5’-

CAACACCAACCAGAACTTG- 3’.  PCR product, a single band 

matching the molecular weight of GluN2B 5’UTR (~180 nt), was 

isolated and purified from an agarose gel using the Ilustra™ GFX™ 

PCR DNA and Gel Band Purification kit (GE Helthcare, UK) and 

stored at -20ºC for further uses. The 5’UTR DNA fragment was 

then inserted into the HindIII site of a modified pGL4.10 [luc2] 

vector (Promega, USA) containing the CMV promoter cloned at 

BglII and HindIII sites. 
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Generation of GluN2B 5’UTR mutants  

5’UTR mutations were generated by site-directed mutagenesis 

(QuikChange® II XL site-directed mutagenesis kit, Stratagene). 

The A from the first and second ATG were substituted for a T with 

the primers: 5’-

CCTTCGTCTTTCTTTTGTGGATTTGCAAGCGAGAAGAAGG

G-3’ and 5’-

CCCTTCTTCTCGCTTGCAAATCCACAAAAGAAAGACGAAG

G-3’. This construct was used like a template for exchange the A 

from the third ATG for a T with the following primers: 5’-

CTGGACATTCCCAACTTGCTCACTCCCTTAATCTG-3’ and 

5’-CAGATTAAGGGAGTGAGCAAGTTGGGAATGTCCAG-3’. 

The incorporation of the mutations was verified by sequentation. 

 

Transient DNA transfection of SH-SY5Y cells and luciferase assay 

SH-SY5Y neuroblastoma cells were seeded in 96-well plates at a 

density of 15,000 cells per well and grown for 12 h with DMEM 

plus 10% fetal bovine serum (Gibco). Afterwards, a total of 250 ng 

of DNA was transfected into each well, adjusting to the following 

conditions: 250 ng of pcDNA3 plasmid as blanks, 25 ng of renilla 

plus 25 ng of CMV-luciferase Vector plus 200 ng of pcDNA3 as 

controls, and finally 25 ng of renilla + 25 ng of GluN2B-5’UTR 

CMV-luciferase construct plus 200 ng of pcDNA3 as problem 

samples. Cells were transfected using JetPEI transfection reagent 

(PolyPlus, Korea) for 4h. Afterwards, medium was changed and 

cells were incubated for 24 h to allow sufficient gene expression. 

After 1h treatments with Sodium Nitroprusside (SNP; Sigma-
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Aldrich), NMDA plus glycine (Gly) (Tocris, UK) and salubrinal 

(Sal; Calbiochem, USA) cells were lysed and luciferase and renilla 

activities were measured by using the Dual-Glo™ Luciferase Assay 

System (Promega) following manufacturer’s instructions. The 

luminescence was read using the plate luminescence reader 

(Fluostar OPTIMA, BMG labtech, Germany). 

Cellular and synaptosome treatment 

SNP (Sigma), NMDA plus Gly, -(-)Bicuculine methiodide (BIC; 

Tocris), BIC plus 4-Aminopyrimidine (4-AP; Sigma) were diluted 

in neurobasal medium and incubated at indicated concentration (100 

nM SNP, 100 µM NMDA plus 100 µM Glycine, 50 µM BIC 2.5 

mM 4-AP) with cortical neurons and synaptosomes (diluted in 

HBSS instead neurobasal medium) for 1h at 37ºC. Sal and dybutyril 

GMP cyclic (dbGMPc; Sigma-Aldrich) were dissolved in DMSO, 

and then it was diluted in neurobasal medium to treat cells at 100 

µM for 1h at 37ºC. L-Glutamic acid (Glut; Sigma-Aldrich) was 

dissolved in HCl 1 M and then diluted in HBSS at 10 µM to treat 

synaptosomes and mouse cortical neurons for 1h. The 7-NI, 

cycloheximide (CHX), iHRI, BAPTA·AM and threo ifenprodil 

hemitartrate (If; Tocris) were diluted in DMSO and these stock 

solutions were rediluted in neurobasal medium. The NMDA 

blocker, MK-801 (Tocris), was diluted in neurobasal medium and 

incubated in cells at 10 µM. Cortical cells with 10 µM 7-NI, 10 µM 

MK-801, 10 µM If, 10 µM BAPTA·AM and 1µM iHRI were pre-

incubated for 30 min and then the inhibitors were incubated plus the 
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stimulators SNP, NMDA plus Gly, Glut or BIC plus 4-AP for 1h at 

37ºC.  

 

RT-PCR and PCR to amplify the HRI through mRNA levels 

RNA extraction (Nucleospin RNA II kit, Macherey-Nagel) from 

human cortex and mouse cortical neuron was carried out and RT–

PCR was performed using SuperScrip-RT system (Invitrogen). 

Aliquots of 1 µg cDNA were used as template for PCR.  The 

primers used to amplify HRI from human were:  5’-

CCCCGAATATGACGAATCTG-3’ and 5’-

CAGATTCGTCATATTCGGGC-3’; the primers used to amplify 

HRI from mouse were: 5’-GAAGTGGGTTTGGTTCATGC-3’ and 

5’-GCATGAACCAAACCCACTTC-3’.  PCR conditions for all 

transcripts were: 95°C for 3 min; 95°C for 30 s; 60° for 30 s, 72°C 

for 30 s; 72°C for 7 min; with 35 cycles of amplification. The 

amplified HRI was resolved in a 2% agarose gel. 

 

Protein levels detection by western blot (WB) 

After treatment, cortical cells were washed twice with PBS and they 

were detached mechanically with a scrapper and lysed with NP40 

buffer (150 mM NaCl, 5 mM EDTA, 1% Nonidet P-40, 1 mM 

sodium orthovanadate, 1 mM phenylmethylsulphonyl fluoride, 

0.05% aprotinin, 1 mM dithioltreitol) and a 1x of protease inhibitors 

(Complete mini-EDTA free from Roche Diagnostics GmbH). The 

lysate was centrifuged at 17,500 x g for 10 min and the protein 

concentration was measured by BCA assay. Protein (100 µg) was 

mixed with loading buffer 5x and boiled 5 min at 100ºC. Samples 
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were resolved in 8% polyacrilamide gels. Gels were transferred in 

polyvinylidene fluoride membranes (ImmobilonP, Millipore, USA). 

Blocking solution, tween-tris buffer saline (TTBS)-5% milk, was 

added in membrane for 1h. Membranes were incubated overnight 

(o.n.) at 4ºC with the primary antibodies (Abs). Primary Abs were 

incubated with the following dilutions: mouse GluN2B Ab 

(Neuromab, USA) 1:5 in TTBS; rabbit phospho-eIF2α (p-eIF2α 

Ab) (Abcam, UK) 1:500 in TTBS-5% bovine serum albumin 

(BSA); mouse eIF2α total Ab (Abcam) 1:500 in TTBS-5% milk; 

mouse actin Ab (Sigma-Aldrich) 1:4000 in TTBS-5% milk. 

Membranes were washed thrice with TTBS to release the excess of 

antibody. Anti- mouse and anti-rabbit secondary Abs (GE-

Healthcare) at 1:4000 dilutions with TTBS-5% milk were 

respectively added in membranes and stirred for 1h. Three washes 

with TTBS were performed. Membranes were revealed with 

Supersingal West Pico and Femto Chemiluminiscent substrate 

(Thermo Scientific Pierce). Blotting quantification was done with 

Quantity One software. GluN2B and p-eIF2α band intensity were 

normalized by actin and eIF2α total levels, respectively.  

 

Immunofluorescence (IF) experiments 

Cortical cells were seeded at 75,000 cells/well in poly-L-lysine 

(Sigma-Aldrich) coated coverslips. Coverslips were washed twice 

with PBS Ca
2+
 Mg

2+
 after being treated. Cells were fixed with 4% 

paraformaldehyde (PFA) for 10 min, and three washes with PBS 

Ca
2+
 Mg

2+
 for 10 min each one, were done to remove PFA traces. 

Afterwards, cells were permeabilized with 0.1% Triton X-100 and 
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they were washed thrice with PBS Ca
2+
 Mg

2+
. Coverslips were 

incubated with blocking solution (5% fetal bovine serum, 1% BSA 

and 0.02% sodium azide) o.n. at 4ºC. Subsequently, cells were 

incubated for 2 h at room temperature (RT) in a hydration chamber 

with 1:10 mouse anti-GluN2B Ab. After primary Ab incubation, 

cells were incubated with 1:1000 Alexa Fluor 488 goat anti-mouse 

Ab (Invitrogen) for 1 h at RT. Digital images were taken with a 

Leica TCS SP confocal microscope and analysed with Leica 

confocal software (Heidelberg, Germany). 

 

Dendritic spine morphogenesis studied 

Rat cortical neurons were treated with PBS (control) and 100 nM 

SNP in the absence/presence of iHRI for 1 h. Cells were fixed and 

incubated with anti-GluN2B Ab as previously explained and actin 

was detected by phaloidin in red. Images were obtained with a Zeiss 

Axiovert 200M LSM PASCAL Confocal Laser Scanning 

Microscope. High-resolution (2,048 × 2,048 pixel) fluorescence 

images were acquired with a LP530 emission filter and excitation at 

488 nm.  

 

Measurement of intracellular [Ca
2+

] in cortical mouse neurons 

Cytosolic Ca
2+
 signal was determined at RT in cells loaded with

 
4.5 

µM FURA-2·AM (30 min) as previously described (Fernandes et 

al., 2008). Cytosolic Ca
2+
 increases are represented as the 

normalized ratio
 
of emitted fluorescence (510 nm) after excitation at 

340 and
 
380 nm, relative to the ratio measured prior to cell 

stimulation
 
(FURA-2 ratio 340/380). All experiments were carried 
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out at RT
 
and cells were bathed in an isotonic solution (ISO) 

containing (mM): 140 NaCl, 5 KCl, 1.2 CaCl2, 0.5 MgCl2, 5 

glucose, 10 HEPES
  
(300 mosmol/L, pH 7.4 with Tris). Cells were 

stimulated with BIC, NMDA plus Gly, and blocked with If plus 

BIC and 4-AP, as it showed in Fig 6. 

 

HRI immunoprecipitation (IP) from human brains and cortical 

neurons 

200 µg of homogenated brain and 200 µg of protein from cortical 

neurons were used for the IP. The samples were pre-incubated half 

an hour at 4ºC with protein G (GE Healthcare), which is previously 

washed with PBS. This step is needed to avoid unspecific protein 

binding with protein G. Then, the samples were centrifuged at 

10,000 x g for 10 min. The SN was incubated o.n. with 5 µg of anti-

HRI Ab (Abcam). Following the addition of protein G immobilized 

on sepharose (GE Healthcare), samples were shaken for 2 h at RT. 

HRI was pulled down by centrifugation at 14,000 x g for 10 min 

and washed thrice. 60 µl of loading buffer x5 was added to pellet 

and it was boiled for 6 min at 100ºC. HRI IP was recovered by 

centrifugation at 14,000 x g for 10 min. 30 µL of this sample was 

resolved in 8 % polyacrilamide gel. Gels were transferred to 

polyvinylidene fluoride membranes (Immobilon-P, Millipore). 

Membranes were blocked with TTBS-5% milk solution for 1h. HRI 

detection was performed incubating with HRI Ab diluted 1:1000 in 

TTBS-5% milk o.n. at 4ºC. Afterwards, three washes with TTBS 

for 5 minutes were done. 1:4000 rabbit anti-mouse Ab were used as 

secondary Abs at RT for 2 h to detect the primary Abs. Three 
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washes with TTBS for 5 min were performed and membranes were 

developed with the Supersignal West Femto Chemiluminiscent 

substrate.  

 

Results 

 

Glutamatergic signalling upregulates GluN2B subunit expression 

due to eIF2-α phosphorylation 

Cortical neurons treated with Glut for 1h shown an increase of 

GluN2B expression as we obtained by IF and WB (Fig.1A and 1C), 

and this expression was prevented by BAPTA·AM, a Ca
2+
 chelator, 

suggesting that GluN2B expression was dependent on the Ca
2+
 

downstream signalling. Since Ca
2+
 is activating nNOS, we treated 

mouse synaptosomes with Glut plus 7-NI, a nNOS inhibitor (Fig.1C 

and 1D). Consequently we obtained that nNOS inhibition prevented 

GluN2B expression suggesting that NO was directly involved. Then 

cortical neurons were treated with the NO donor, SNP, which 

yielded an increase in GluN2B expression (Fig. 1G and 1H). The 

increased GluN2B expression was produced in a SNP concentration 

dependent manner as we assayed in synaptosomes (Fig. 1E and 1F). 

The specific agonist NMDA also triggers the same effect (Fig. 1G 

and 1H) supporting that the observed effect was mediated by 

NMDARc activation. Interestingly the GluN2B mRNA has a 

5’UTR with 179 bp and three ATG (acces number in NCBI: 

NM_000834) that would allow its translation just when eIF2α is 

phosphorylated. Then we studied the phosphorylation of this factor 

regarding GluN2B expression (Fig. 1E and 1G), demonstrating that 
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p-eIF2α levels are increased by SNP and NMDA treatment. 

Moreover similar results were obtained when cortical neurons were 

incubated with Sal (Fig. 1G, 1H), an inhibitor of the phosphatase 

PP1 that dephosphorylates p-eIF2α, raising the levels of p-eIF2α.  

We asses the regulation of GluN2B mRNA translation by a 

luciferase reporter assay. We cloned GluN2B 5’UTR sequence 

under the control of a CMV promoter (Fig. 2A). GluN2B wild type 

(WT) 5’UTR produced a repression in the luciferase expression 

regarding to cells transfected with the vector that does not contain 

the GluN2B 5’UTR (Fig. 2B). To demonstrate the responsibility of 

the three uATG in the UTR luciferase repression, we developed a 

triple mutant (3x Mut) exchanging A for T. The triple mutant was 

able to recover the UTR repression significantly (Fig. 2B). Then 

cells transfected with the WT 5’UTR vector were treated with SNP 

and NMDA promoting a significant increase in luciferase 

expression (Fig. 2C). Treatment with SNP and Sal in cells 

transfected with the 3 x Mut 5’UTR vector produced a significant 

repression in luciferase expression (Fig. 2C) demonstrating that 

when the uATG are no present the p-eIF2α repress the general 

translation. 

  

Role of HRI kinase in GluN2B increasing by NO 

It is known that NO is able to activate HRI kinase in erythrocytes 

by the binding to the N-terminal heme binding domain (Yun et al., 

2005). This interaction disrupts the inhibitory interactions between 

the heme binding domain and the catalytic domain, activating HRI 

that could phosphorylates eIF2α stimulating GluN2B expression.  
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HRI was firstly isolated in rabbit reticulocytes (Ranu and London, 

1976), but is also present in other kind of cells. Here we probe that 

HRI mRNA and protein are expressed in mouse cortical primary 

neurons and human cortex (Fig. 3A and 3B).  

To study the involvement of HRI kinase in the phosphorylation of 

eIF2α and the consequent GluN2B expression we treated mice with 

an inhibitor of HRI, iHRI (Fig. 3C, 3D).  Mice treated with iHRI 

showed lower levels of GluN2B and p-eIF2α compared to controls 

treated with DMSO, the vehicle. The expression of GluN2B and the 

phosphorylation of eIF2α were also reduced when mice were 

treated with a nNOS inhibitor, 7-NI (Fig. 3C, 3D), avoiding the 

normal production of NO by neurons and its downstream effects. 

The iHRI also reduced the GluN2B increase and p-eIF2α in the 

cortical neurons treated with SNP or NMDA (Fig. 4A). Consistently 

with a translational regulation, the treatment with the translation 

inhibitor CHX impaired GluN2B expression when cells were 

incubated with SNP or NMDA (Fig. 4A).  Moreover the dbGMPc, a 

GMPc analogue, was unable to produce a GluN2B increase (Fig. 

4A), discarding that the obtained NO effects would be mediated by 

the classic activation of guanylate cyclase. The specific 

involvement of GluN2B in this glutamatergic signalling cascasde 

was assayed with If, a GluN2B blocker, which avoided the effect of 

NMDA in GluN2B expression produced by NMDA (Fig. 4A). 

GluN2B expression by Glut and NO would have a main role in the 

maintenance of LTP. For this reason we also studied if this pathway 

was producing its effect in the synaptic spines (Fig. 4B). We found 
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that SNP induced an increased expression of GluN2B in rat cortical 

spines and this effect can be prevented by inhibiting HRI. 

 

SNP treatment produces an increase in the Ca
2+

 entry 

NO increases GluN2B translation but it is necessary to demonstrate 

that these receptors are functional (Fig. 5). We stimulate cells with 

100 µM NMDA plus 100 µM Gly (Fig. 5A and B). Cells treated 

with SNP showed a higher Ca
2+ 
entry when we compared the area 

under the curve (AUC) from the treated cells vs controls. This 

increase was avoided when we pre-incubated the cells with CHX 

(Fig.5A and B). Moreover the Ca
2+ 

response was specific for 

GluN2B containing channels because the selective antagonist If was 

able to block it (Fig.5A and B).  

To study the involvement of GluN2B increased translation by NO 

in synapses, we enhanced synaptic activity of cortical cells with a 

blocker of the inhibitory γ-aminobutyric acid receptors, BIC and 4-

AP, a weak blocker of K
+
 channels (Fig. 5 E and F). They stimulate 

synaptic activity by blocking inhibitory elements and depolarizing 

the cell, respectively. Cells treated with SNP, stimulated with BIC 

plus 4-AP shows more peaks each minute and a higher maximum 

peak that control ones (Fig. 5E, F, Table 1). This increase was 

mainly due to GluN2B subunit, since the application of If reduced 

the number of peaks each minute as the maximum peak in control 

and SNP treated neurons (Fig. 5E, F, Table 1).  

GluN2B expression and p-eIF2α levels were higher when cortical 

cells were stimulated with BIC or BIC plus 4-AP for 1h (Fig. 5E, 

F). The MK-801, a blocker of NMDARc (Fig. 5C), and If, a 
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specific blocker of receptors containing GluN2B subunit, avoided 

the increase in GluN2B expression and p-eIF2α levels (Fig. 5D). 

 

Discussion 

 

NMDARc are important players in synapses and neuronal 

communication. It expression has to be tightly controlled since an 

excess in its activity can trigger neuronal excitotoxicity and 

neurodegeneration (Mody and MacDonald, 1995; Kemp and 

McKernan, 2002), and a lower activity can produce neuronal 

pathologies, which include cognition and memory deficits 

(Newcomer and Krystal, 2001; Rison, 1998). In addition, an 

abnormal low expression of NMDARc is related with schizophrenia 

(Duncan et al., 1999; Jentsch and Roth, 1999).  

We focused in the study of GluN2B subunit because is involved in 

neuronal growth and would have a role in synaptic plasticity. 

GluN2B expression is highly regulated at the translational level 

(Gray and Wickens, 1998) since its mRNA has a long 5’UTRs 

containing three uAUGs that is highly conserved between species. 

To consolidate memory and learning is needed the protein 

synthesis. Firstly there is an activation of the transcription of genes 

regulated by the cAMP response binding-element transcription 

factor to promote the growth of the dendrites and the synaptic 

spines (Ghosh et al., 1994). But transcription is a process that 

spends too much time, and in neuronal plasticity protein synthesis is 

needed quickly specially in LTP. For this reason, several mRNA are 

transported into dendrites waiting to be translated after synaptic 
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activity (Mayford et al., 1996; Bagni et al., 2000; Richter and 

Lorenz, 2002). In dendrites there are polyribosomes, ready to 

produce the translation of new proteins needed in short times. It has 

been reported that mRNA of GluN2A but overall GluN2B is located 

in neurites (Miyashiro et al., 1994; Quinlan et al., 1999). Then, the 

glutamatergic signalling will induce the rapid expression of 

GluN2B subunits in dendrites just activating its translation. Once 

expressed the GluN2B subunit it can assembly with the GluN1 

subunit, which is synthesized in excess (estimated to be ≈ 10-fold) 

compared with GluN2 (Huh and Wenthold, 1999; Wenthold et al., 

2003) forming active receptors. GluN2B mRNA 5’UTR contains 3 

uAUG that represses the normal translation of GluN2B, as we 

showed by the uAUG reversion in the triple mutant.  

NO is able to increase GluN2B expression and induces the 

phosphorylation of eIF2α by HRI. It links HRI to memory 

consolidation and learning processes in brain. But not only HRI is 

able to phosphorylate the eIF2α, so protein kinase RNA activated, 

double-stranded RNA-activated protein -like ER kinase,  and  

general control non-derepressible 2 kinase can do it also. However, 

these kinases are related with stressful conditions and they would 

contribute to an increased GluN2B expression that would trigger 

glutamatergic excitotoxicity.  

The functional assays by the measurement of Ca
2+
 showed that 

neurons treated with NO allowed a greater Ca
2+
 entry under NMDA 

plus Gly stimulation. This effect was prevented by the translational 

inhibitor, CHX, and for If, the specific GluN2B blocker. At synaptic 

level, NO increased the spontaneous response of the neurons and If, 
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blocked this increase, demonstrating the effect of GluN2B in 

synaptic response. The specific synaptic response was measured by 

BIC plus 4-AP, which blocks the γ-aminobutyric acid inhibitory 

response and depolarizes the neuron, enhancing its spontaneous 

activity in culture.  

Summarizing, this work reports a novel regulation mechanism for 

GluN2B subunit expression in glutamatergic signalling, which can 

have important physiological implications in LTP and so, in 

memory and learning process.  
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FIGURE 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Glut increases GluN2B expression. (A) IF showing the 

increase of GluN2B subunit detection (green) in cultured mouse 

cortical neurons treated with 10 µM Glut for 1h in the absence and 

the presence of 10µM BAPTA·AM. (B) Electron microscopy image 

of a synaptosome prepared from mouse cortex; mit: mitochondria, 

sv: synaptic vesicles, syn: synapse, pm: post-synaptic membrane. 

(C) WB from cortical mouse synaptosomes treated with 10 µM Glut 

for 1h in the absence and the presence of 10 µM 7-NI. (D) WB band 

quantification regarding actin. Data are the mean ± SEM of 3 

independent experiments.* p<0.05 and **p<0.005 by Student T test. 

(E) WB of synaptosomes treated with increasing concentrations of 

SNP.  (F) WB band quantification. Data are the mean ± SEM of 3 

independent experiments. *p<0.05, **p<0.005 by Student T test. 

(G) WB from cortical mouse synaptosomes treated with 100 nM 

SNP, 100 µM NMDA and 100 µM Sal. (H) WB band 

quantification. Data are the mean ± SEM of 5-20 independent 

experiments.* p<0.05 and **p<0.005 by Student T test.  
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FIGURE 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. GluN2B translational repression by 5’UTR. (A) 

Scheme of the genomic structure of GluN2B showing the 5’UTR 

and the clonation of the 5’UTR in the pGL4.1 vector. The GluN2B 

5’UTR is placed before the reporter gene luciferase and under the 

CMV promoter control. (B) Neuroblastoma cells were transfected 

with 25 ng of pGL4.1 vector with CMV, with the vector with the 

WT 5’UTR of GluN2B and with the vector with the mutation of the 

3 ATGs 5’UTR of GluN2B. Data are the mean ± SEM of 3 

independent experiments. * p <0.0005 by Student T test. (C) 

Luciferase expression in neuroblastoma cells transfected with the 

vector with the WT 5’UTR and the 3x mut 5’UTR and treated with 

PBS (control), 100 nM SNP, 100 µM NMDA plus 100 µM Gly and 

100 µM Sal for 1h. Data are the mean ± SEM of 3-4 independent 

experiments. * p < 0.05 ** p< 0.005 by Student T test. 
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FIGURE 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. HRI kinase involvement in p-eIF2α and GluN2B 

translation. (A) PCR performed into 2% agarose gel. L: molecular 

weight ladder; 1: human HRI primers without cDNA template; 2: 

HRI amplification from cDNA of human cortex; 3: mouse HRI 

primers without cDNA template; 4: HRI amplification from cDNA 

of mouse cortical neurons. (B) HRI immunoprecipitated from 

human cortex and mouse cortical neurons. (C) WB of synaptosomes 

from mice trated with DMSO (control), 50 mg/Kg iHRI and 50 

mg/Kg 7-NI. (D) WB band quantification. Data are the mean ± 

SEM of 4 independent experiments. *p<0.05, **p<0.005, 

***p<0.0005 by Student T test.  
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FIGURE 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. GluN2B expression on mouse cortical neurons and 

synaptic spines of rat cortical neurons. (A) Images of mouse 

cortical neurons treated with 100 nM SNP, 100 µM NMDA plus 

100 µM Gly, 100µM CHX, 10 µM If, 1µM iHRI and 100µM 

dbGMPc for 1 h. GluN2B expression is shown in green. (B) 

Representative image obtained by immunofluorescence showing 

GluN2B expression (green) and phaloidin staining of actin (red) in 

synaptic spines. Synaptic spines were treated with SNP in the 

absence and the presence of iHRI. 
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FIGURE 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Effect of SNP in GluN2B mediated extrasynaptic and 

synaptic activity. (A) Measurement of Ca
2+
 entry in cortical 

neurons after stimulation with 100 µM NMDA plus 100 µM Gly 

and the 10 µM If plus 100 µM NMDA plus 100µM Gly for 2 min. 

Neurons were untreated (white circles) or treated with 100nM SNP 

(black triangles) and 100 µM CHX plus 100nM SNP (grey squares) 

for 1h. (B) Quantification of the AUC of each plot showed in A. 

Data are mean ± SEM of 288-353 cells from 6-7 independent 

experiments 
*
p<0.005 **p<0.0005 by Student T test.  (C, D) 

Representative WB showing the effect of 50 µM BIC and 50µM 

BIC plus 2.5 mM 4-AP for 1h. NMDA inhibitors MK-801 (C) and 

If (D) were also tested. (E) Representative plots showing the 

intracellular Ca
2+
 entry after BIC plus 4-AP and BIC, 4-AP plus If 

stimulation in cortical neurons untreated (F). Representative plots 

showing the intracellular Ca
2+
 entry after BIC plus 4-AP and BIC , 

4-AP plus If stimulation in cortical neurons treated with SNP for 1h. 
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I. Addendum- figure 1. 

       The study of the nitrotyrosination (Ntyr) of NR2B subunit was 

performed in controls and AD patients demonstrating a higher Ntyr 

of the subunit in patients versus non-demented controls.  

Addendum figure1. Study of the differential Ntyr of NR2B in 

cortex from controls and AD patients. (A) Western blot from 

immunoprecipitated NR2B from cortex of controls and AD patients. 

(B) WB band quantification. The Ntyr levels were corrected by the 

levels of the immunoprecipitated NR2B. Data are the mean ± SEM 

of 3 independent experiments 
*
p<0.05 by Student T test. 

 

Matherials and methods addendum figure 1 

Immunoprecipitation of NR2B from human brains 

400 µg of homogenated brain were used for the 

immunoprecipitation. The samples were pre-incubated half an hour 

at 4ºC with protein G (GE Healthcare UL limited) which is 

previously washed with PBS. This step is needed to avoid 

unspecific protein binding with protein G. Then, the samples were 

centrifuged at 10,000 x g for 10 min. The SN was incubated 
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overnight (o.n.) with 5 µg of anti-NR2B Ab (Neuromab Abs). 

Following the addition of protein G immobilized on sepharose, 

samples were shaken for 2 h at room temperature (RT). NR2B was 

pulled down by centrifugation at 12,500 x g for 10 min and washed 

thrice. 60 µl of loading buffer x5 was added to pellet and it was 

boiling for 6 min at 100ºC. Immunoprecipitated NR2B was 

recovered by centrifugation at 12,500 x g for 10 min. 30 µL of this 

sample was resolved in 8 % polyacrilamide gel. Gels were 

transferred to polyvinylidene fluoride membranes (Immobilon-P 

transfer membranes). Membranes were blocked with 5%-tween Tris 

buffer saline (TTBS) 1x- 5% milk solution for 1h. Ntyr of NR2B 

was detected by incubating the membranes with 1:1000 mouse Ntyr 

antibody (Ab; Cayman) and NR2B Ab o.n. at 4ºC. Afterwards, 

three washes with TTBS 1x for 5 min were done.  1:4000 rabbit 

anti-mouse Ab (GE Healthcare UK) were used as secondary Abs at 

RT for 2 h to detect the primary Abs. Three washes with TTBS 1x 

for 5 min were performed and membranes were developed with the 

Supersignal West Femto Chemiluminiscent substrate 

(ThermoScientific). Band quantification was made with Quantity 

One. Ntyr detection was normalized by the amount of NR2B 

immunoprecipitated in each sample. 

 

 



 

 

 

 

CHAPTER II:  

 

 

Physiopathology of nitro-glycative modification of 

albumin  in Alzheimer's disease 



 

 

 
 



                                               Results and Methods. Chapter II 

93 

 

 Physiopathology of nitro-glycative modifications of albumin in 

Alzheimer’s Disease 

 

Eva Ramos-Fernández
1
, Ernest Palomer

1
, Gerard ILL-Raga

1
, Marta 

Tajes
1
, Mònica Bosch-Morató

1
, Biuse Guivernau

1
, Irene Román-

Dégano
2
, Laura Nuñez

3
, Antonio Paez

3
, Francesc Alameda

4
, 

Roberto Elosúa
2
, Mercé Boada

5,6
, Miguel A. Valverde

1
, and 

Francisco J. Muñoz
1
 * 

 

1
Laboratory of Molecular Physiology and Channelopathies, 

Department of Experimental and Health Sciences, Universitat 

Pompeu Fabra (UPF), Barcelona, Catalonia, Spain; 
2
Group of 

Cardiovascular Epidemiology and Genetics, Hospital del Mar 

Research Institute (IMIM), Barcelona; 
3
Instituto Grifols, Barcelona; 

4
Servei d’Anatomia Patològica, Universitat Autónoma de Barcelona 

(UAB) Hospital del Mar Research Institute (IMIM), Barcelona;
 

5
Memory Clinic of Fundació ACE. Institut Català de Neurociències 

Aplicades, Barcelona; 
6
Neurology Department, Hospital G. 

Universitari Vall d’Hebron, Barcelona. 

 

Running Title: Albumin nitro-oxidative modifications 

 

Corresponding author: * Dr. Francisco J. Muñoz, Laboratori de 

Fisiologia Molecular i Canalopaties, Universitat Pompeu Fabra, C/ 

Dr. Aiguader, 88, Barcelona 08003, Spain 

Fax: +34 93 316 09 01; Phone: +34 93 316 08 52; e-mail: 

paco.munoz@upf.edu 



                                               Results and Methods. Chapter II 

94 

 

Summary 

 

Alzheimer’s disease (AD) is characterized by increased oxidative 

stress, which induces protein glycation. Furthermore, superoxide 

anion and nitric oxide can react to form peroxynitrite anion that 

damages proteins through tyrosine nitration, a process termed 

nitrotyrosination. All these protein modifications make them prone 

to losing their physiological properties. Albumin is the most 

abundant protein in blood and cerebrospinal fluid, where it carries 

out essential functions such as being a molecular carrier, 

maintaining oncotic pressure, scavenging harmful compounds, 

providing nutrients and, of particular relevance to our work, binding 

amyloid ß-peptide (Aß). In the present study we have analyzed 

albumin modification and function under the pro-nitro-oxidant 

conditions present in AD brains. We found that plasma and brain 

levels of nitrated and glycated albumins were significantly higher in 

AD patients than in controls. Turbidometry and electron 

microscopy analyses demonstrated that albumin nitrotyrosination 

and glycation promote changes in albumin structure affecting to its 

biochemistry. Glycated albumin, unlike nitrotyrosinated albumin, 

was more resistant to proteolysis with trypsin and its uptake by cells 

was reduced. Albumin glycation also caused a reduction in the 

osmolarity expected for a solution containing unmodified albumin. 

Moreover, modified albumin was cytotoxic in a cell type-dependent 

manner for cerebral and vascular cells. Furthermore, modified 

albumin binds more Aß than the native protein. In summary, 

nitrotyrosination and, more especially, glycation of albumin alter its 
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structural and physiological properties and these modifications 

could be relevant for the progression of AD. 

 

Key Words: Albumin; Alzheimer’s disease; amyloid ß-peptide; 

glycation; nitrotyrosination; oxidative stress. 

 

Nonstandard abbreviations used : Alzheimer’s disease (AD); 

Amyloid ß-peptide (Aß); antibody (Ab); Bicinchoninic Acid 

(BCA); Blood Brain Barrier (BBB); cerebral spinal fluid (CSF); 

fetal bovine serum (FBS); human aortic vascular smooth muscle 

cell line (HA-VSMC); human hepatocellular carcinoma cell line 

(HepG2); human neuroblastoma cell line (SH-SY5Y); human 

umbilical vein endothelial cell line (HUVEC); immunoprecipitation 

(IP); low-density lipoprotein receptor-related protein 1 (LRP-1); 

methylglyoxal (MG); Methylthiazolyldiphenyl-tetrazolium bromide 

(MTT); peroxynitrite donor (SIN-1); murine microglial cell line 

(BV2); nitrotyrosine (NT-3); overnight (o.n.); peroxynitrite 

(ONOO
-
); phosphate buffered saline (PBS); Reactive Oxidative 

Species (ROS); room temperature (RT); supernatant (SN); Tween-

tris buffer saline (TTBS); western blot (WB). 
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Introduction 

 

Alzheimer’s disease (AD) is the most common neurodegenerative 

disease in aging people. It is characterized by increased oxidative 

stress in the brain as a result of the accumulation of extracellular 

amyloid beta-peptide (Aß). Aß aggregates produce cytotoxic 

oligomers and fibrils (Lambert et al., 1998; Ill-Raga et al., 2010) 

and finally forms the senile plaques found in brain parenchyma. Aß 

can also form vascular amyloid deposits, leading to cerebral 

amyloid angiopathy, which mainly involves small arteries and 

capillaries of the meninges, cerebral and cerebellar cortex in over 

80% of the AD brains (Jellinger, 2002).  

Aß aggregates produce reactive oxygen species (ROS) (Huang et 

al., 1999) which, due to their gaseous nature can diffuse into the 

surrounding tissues, including vessels. This diffusion process is also 

favored by the subsequent amplification of free radical cascades 

(Zhou et al., 2010). The superoxide anion reacts with nitric oxide, 

mainly produced by glial and endothelium cells (Boje & Arora, 

1992; Coma et al., 2005), to render peroxynitrite (ONOO
-
). This 

peroxynitrite nitrates the tyrosine residues in proteins, a process 

termed nitrotyrosination, and dramatically affects their function 

(Crow & Beckman, 1995; Guix et al., 2009). Glycation is another 

mechanism of oxidative modification of proteins that can be 

mediated directly by methylglyoxal (MG), a toxic compound 

overproduced by dysregulation of the glycolytic flow (Vitek et al., 

1994; Guix et al., 2009), or indirectly produced through a Maillard 

reaction. This non-enzymatic reaction consists of the binding of 
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sugars to proteins, forming Amadori products, which facilitate the 

crosslink between glycated proteins (Monnier & Cerami, 1981).  

Albumin is the most abundant protein in both blood and 

cerebrospinal fluid (CSF). The albumin present in the plasma is 

produced by the liver and a small fraction of plasmatic albumin 

enters the brain (Prajapati et al., 2011) although most of the 

albumin found there is produced endogenously by the glia (Ahn et 

al., 2008). It participates in the regulation of blood and CSF volume 

by maintaining the oncotic pressure. Albumin also transports 

different molecules like hormones, free fatty acids, calcium, other 

ions  and some drugs. Albumin can also buffer oxidative damage 

due to the presence of free cysteine that is not forming disulfide 

bridges (Era et al., 1995). Interestingly, albumin has been 

previously reported to bind Aß  (Biere et al., 1996) that could be 

favor amyloidogenic clearance by the liver. Aß40 is the most 

abundant form of Aß circulating in plasma (Smith & Betteridge, 

2004) so it could have more importance in albumin binding than 

Aß42. In addition, albumin has a potential role as a molecular 

chaperone, preventing the misfolding and aggregation of proteins 

(Marini et al., 2005) and specifically inhibiting Aß fibril formation 

(Bohrmann et al., 1999). 

Albumin has 19 tyrosines susceptible to modification by 

peroxynitrite (Ghesquiere et al., 2006) as well as a high number of 

lysines, which are also quite prone to glycation (Ledesma-Osuna et 

al., 2008). Both circulating and endogenous albumin can be affected 

by the increased nitro-oxidative and glycative stress present in 

ageing and age-associated diseases like AD (Smith et al., 1991; 
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Golubev, 1996). Nitrotyrosination and glycation have been 

previously reported to induce protein aggregation (Guix et al., 

2009; Panza et al., 2010). Under normal conditions, the low-density 

lipoprotein receptor-related protein-1 (LRP-1) releases Aß from the 

brain into the bloodstream through the blood brain barrier (BBB) 

(Shibata et al., 2000). Albumin interacts directly with the neurons 

and endothelium, vascular smooth muscle and glia cells on both 

sides of the BBB (Prajapati et al., 2011; Zoellner et al., 2009; Lau 

et al., 2011; Karmakar, 2001). However, systemic Aß circulating in 

plasma may also enter the brain in AD patients via the receptor for 

advanced glycation end products (Mackic et al., 1998). This means 

that the hepatic clearance of albumin-bound Aß should reduce the 

level of circulating Aß and its presence in the brain (Ahn et al., 

2008; Carro et al., 2002). In addition, some groups report that 

albumin inhibits Aß fibril formation (Bohrmann et al., 1999), highly 

relevant to preventing Aß misfolding and aggregation. 

This study analyses the albumin modifications caused by nitro-

glycative stress. It also evaluates the presence of these 

modifications in the brain and plasma of AD patients, how these 

modifications affect albumin function, and their impact on different 

cell types present on both sides of the BBB.  

Experimental Procedures 

Cell lines 

The HUVEC was cultured in M-199 medium supplemented 

with 10% fetal bovine serum (FBS; Sigma-Aldrich), 2 mM of L-

Glutamine (Sigma-Aldrich), 100 UI/mL of penicillin and 100 
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µg/mL of streptomycin (Sigma-Aldrich). The HA-VSMC was 

cultured with MCDB 131 medium (Gibco BRL, Invitrogen), 

supplemented with 5% FBS, 0.5 ng/mL of epidermal growth factor 

(Sigma-Aldrich), 2 ng/mL of basic fibroblast growth factor (bFGF; 

Invitrogen), 5 µg/mL of insulin (Gibco BRL, Invitrogen), 2 mM of 

L-Glutamine and antibiotics. The BV2 cell line was cultured with 

RPMI 1640 medium (Gibco BRL, Invitrogen) supplemented with 

10% FBS and antibiotics. The SH-SY5Y was cultured in 

Dulbecco’s modified Eagle medium (Gibco BRL, Invitrogen) 

supplemented with 15% FBS and antibiotics. The human 

hepatocellular carcinoma cell line (HepG2) was cultured in 

Dulbecco’s modified Eagle medium supplemented with 10% FBS 

and antibiotics. 

Human brain samples 

Human brain tissue samples were supplied by the 

Neurological Tissue Bank (Serveis Científico-Tècnics, Hospital 

Clínic, Universitat de Barcelona), the Department of Pathology 

(Hospital del Mar, Barcelona) and the Neuropathology Unit and 

Brain Bank (Fundación Hospital Alcorcón, Madrid). The procedure 

was approved by the ethics committee of the Institut Municipal 

d’Investigacions Mèdiques-Universitat Pompeu Fabra. Brain 

samples were obtained from the frontal cortex of 13 healthy aged 

male and female individuals (mean ± SEM of 71±2 years) and 18 

male and female AD patients at stage IV-VI (mean ± SEM of 78±3 

years). The samples were lysated with a cocktail containing NP40 

lysis buffer (150 mM NaCl, 5 mM EDTA, 1% Nonidet P-40, 1 mM 

sodium orthovanadate, 1 mM phenylmethylsulfonyl fluoride, 0.05% 
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aprotinin, 1 mM dithiothreitol) and protease inhibitors (Complete 

mini-EDTA free) from Roche Diagnostics GmbH. Lysates were 

mechanically disaggregated using plastic micropestles (Eppendorf) 

and 1 mL syringes and the obtained brain tissue solution was 

centrifuged at 12,500 rpm for 10 min. The supernatant (SN) was 

quantified by the Bicinchoninic Acid assay (BCA; Pierce® BCA 

Protein assay kit, Thermo Scientific). 

Human plasma samples 

Plasma samples were obtained from 14 healthy elderly 

males and females (mean ± SEM of 70±1 years) participating in a 

population-based survey (Grau et al., 2007), and from 19 male and 

female AD patients (mean ± SEM of 74±2 years) diagnosed with 

mild to moderate AD (NINCDS-ADRDA criterion) and an Mini 

Mental State Examination score between 20 and 24. All the 

procedures were approved by the ethics committee of the Institut 

Municipal d’Investigacions Mèdiques-Universitat Pompeu Fabra. 

All individuals, close relatives or legal representatives signed the 

corresponding informed consent before participation. Plasma 

samples were stored at -80 ºC. 

Albumin nitrotyrosination and glycation 

Unless indicated otherwise, 1.25 µg/µL of human albumin 

(Grifols) was incubated with increasing concentrations (100 µM to 

50 mM) of the peroxynitrite donor SIN-1 (Sigma-Aldrich) and the 

glycative agent MG (CosmoBio Co., LTD) in a phosphate buffer 

solution (PBS). The solutions were stirred (300 rpm) for 3 hours at 
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room temperature (RT). After treatment, the albumin was filtrated 

by centrifugation at 11,000 rpm for 10 min in 30 KDa desalting 

filters (Vivacon 500 and Ultrafree-MC microcentrifuge filters, 

Sigma-Aldrich). Protein was recovered by revert spinning at 2,500 

rpm for 2.5 min and quantified using the BCA.  

Albumin immunoprecipitation (IP) 

IP used 200 µL of plasma sample and 400 µg of 

homogenized brain. Samples were pre-incubated for half an hour at 

4 ºC with G protein (GE Healthcare UK limited) previously washed 

with PBS. This step is required to avoid unspecific G protein 

binding. The samples were then centrifuged at 10,000 rpm for 10 

min. The SN was incubated overnight (o.n.) with 5 µg of anti-

albumin antibody (Ab; Acris Antibodies). Following the addition of 

sepharose-immobilized G protein (GE Healthcare UK limited), 

samples were shaken for 2 hours at RT. Albumin was precipitated 

by centrifugation at 10,000 rpm for 10 min and washed three times. 

60 µl of loading buffer x5 were added to the pellet and the mix was 

boiled for 6 min at 100 ºC. The boiled samples were centrifuged at 

10,000 rpm for 10 min and 30 µL of this SN was resolved in 8% 

polyacrylamide gel. Gels were transferred to polyvinylidene 

fluoride membranes (Immobilon-P transfer membranes) and the 

nitrotyrosination and glycation detection was performed as 

described below. A stripping solution was applied to membranes to 

wash the previous Abs (three washes with PBS-0.05% Tween; 

incubation for 30 min at 80 ºC with Glycine 0.2 M at pH 2.5; and 

three more washes with PBS-Tween).Membranes were then 

incubated with anti-albumin Ab in a 1:1000 dilution with tween tris 
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buffer saline (TTBS)-5% milk o.n. at 4 ºC and they were developed 

for MG and nitrotyrosine (NT-3) detection as explained below. 

Band quantification was performed using Quantity One from 

BioRad and the MG and NT-3 detection normalized by the amount 

of albumin in each sample. 

Nitrotyrosination and glycation detection by WB  

18.75 µg of unmodified, glycated or nitrated albumin were resolved 

in 8% polyacrylamide gels. Gels were transferred to polyvinylidene 

fluoride membranes. Membranes were boiled for 5 min before the 

glycation study and then blocked with TTBS-5% milk solution for 1 

hour. Nitration and glycation were detected by incubating the 

membranes with 1:1000 mouse NT-3 Ab (Cayman) and 1:1000 

mouse anti-argpyrimidine Ab (CosmoBio Co, LTD) o.n. at 4ºC, 

followed by three washes with TTBS for 5 min. Rabbit anti-mouse 

secondary Ab (1:4000, GE Healthcare UK limited) was used at RT 

for 1 hour. The membranes were washed three times with TTBS for 

5 min and developed with the SuperSignal West Pico 

Chemiluminescent Substrate (ThermoScientific) in the ChemiDoc 

MP imaging system (Bio-Rad). Blotting quantification was 

performed with the ImageJ (NIH) program. 

Aggregation assays 

Turbidimetric assays were performed with 10 µg/µL of albumin in 

PBS (control) and plus 25 mM SIN-1 for nitrative assays or with 25 

mM MG for glycative assays. The assays were carried out in Nunc 

96-well plates stirred (300 rpm) at RT for up to 24 hours. 
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Absorbances were measured at 405 nm in the Tecan Infinite M200 

spectrophotometer. 

Osmolarity assays 

30 µg/µL of albumin were incubated with 100 µM, 12.5 mM or 25 

mM of SIN-1 or MG and stirred (300 rpm) at RT for 48 hours. 

Sample osmolarity was measured with an osmometer (Fiske One-

ten osmometer).  

Transmission electron microscopy images 

1.25 µg/µL albumin were treated with 12.5 mM SIN-1 or 50 mM 

MG for 4 weeks with continuous stirring (300 rpm) at RT. Nickel 

mesh grids were charged with ultraviolet light for 5 min and set on 

a drop of sample (with 0.625 µg/µL of albumin) for 1 min. They 

were then washed three times with milliQ water (1 min in total). 

Finally the grid was set on a drop of 2% uranyl acetate solution for 

1 min and dried. Samples were observed with a Jeol 1010 electron 

microscope. 

Albumin degradation by trypsin 

Unmodified, nitro- and glyco-albumin were incubated with 0.05% 

Trypsin-EDTA (Gibco BRL, Invitrogen) for 24 hours. A soy trypsin 

inhibitor (STI; Sigma-Aldrich) was used at 1 mg/mL to stop trypsin 

activity. Albumin samples were resolved in 8% polyacrylamide 

gels. Protein detection used Coomassie protein staining techniques. 

 

Albumin uptake by HepG2 cells 

HepG2 cells were seeded in 6-well plates at a density of 7.5 x 10
5
 

cells/mL/well. Unmodified, nitro- and glyco-albumin at 30 µg/µL 
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were then added. The medium was withdrawn after 24 hours and 

the albumin concentration was measured by BCA and Bradford 

protein quantification method (Bio-Rad protein assay).  

 

Cell viability assays 

HUVEC, HAVSMC, BV2 and SH-SY5Y cells were seeded in 96-

well plates in their respective media at a density of 10
4 

cells/100µL/well. Cells were incubated with PBS (controls), 

untreated, nitrotyrosinated, and glycated albumin at 1 µM (0.068 

µg/ µL, in the physiological concentration range present in CSF), 

500 µM (34.5 µg/µL, the physiological concentration in plasma), 

and SIN-1 and MG in PBS at the respective concentrations used for 

albumin treatments. Cells were treated for 24 hours at 37ºC. Cell 

viability was measured by methylthiazolyldiphenyl-tetrazolium 

bromide (MTT) reduction. Briefly, 10 µL of MTT (Sigma-Aldrich) 

stock solution (5 mg/mL) were added and after 2 hours the reaction 

was stopped with 100 µL of dymethylsulfoxide. MTT was 

determined in a plate reader spectrophotometer (FLUOstar optima, 

BMG labtech) at 540 and 650 nm. Control cells were taken as 

100%. 

 

Aß aggregation assays 

0.1 mg of human Aß40 (Sigma-Aldrich) was diluted in 67 µL of 

dymethylsulfoxide. 33.5 µL of soluble Aß were taken to 750 µL 

with PBS and stirred (300 rpm) at RT for 3 days in order to produce 

Aß fibrils and 1 hour to produce oligomers. 
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Aß binding assays 

30 µg/µL of unmodified, nitro- and glyco-albumin were incubated 

with 180 pg/µL of soluble and aggregated Aß40 for 24 hours. These 

samples were incubated with 5 µg of anti-albumin monoclonal Ab 

(Acris Antibodies) o.n. at 4 ºC. Following the addition of sepharose 

immobilized protein G (GE Healthcare UK limited), samples were 

shaken for 2 hours at RT. Aggregates were precipitated by 

centrifugation at 10,000 rpm for 10 min and washed three times. 

Protein G and Ab were removed from the immunoprecipitated 

proteins by boiling the samples for 6 min at 100 ºC. The SN 

containing the immunoprecipitated albumin together with the 

bonded Aß, were added in the Human Amyloid ß assay kit 

(Immuno-Biological Laboratories Co., LTD) and the amount of Aß 

measured. 

Statistical analysis 

Data are expressed as the mean ± SEM of the values from the 

number of experiments as indicated in the corresponding figures. 

Data was statistically evaluated using Student’s t-test. 

 

Results 

 

Albumin is nitrotyrosinated and glycated in human samples from 

AD patients 

The presence of nitro- and glyco-albumin in the plasma and brains 

of AD patients and aged non-demented controls is shown in Fig. 1. 

Increased albumin nitrotyrosination (Fig. 1A) was found in both 
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plasma (p<0.01) and brain samples (p<0.05) from AD patients. 

Similar results were found regarding albumin glycation (Fig. 1B). 

Significant increases in glycated albumin were also detected in both 

plasma (p<0.05) and brain samples (p<0.05) from AD patients (Fig. 

1B).  

 

Albumin is nitrotyrosinated and glycated in a concentration-

dependent manner by peroxynitrite and methylglyoxal 

The ability of albumin to be nitrated by SIN-1, a peroxynitrite 

donor, and glycated by MG, a glycative agent, measured by western 

blot (WB) analysis, is shown in Fig. S1. Albumin nitration 

augmented with increasing doses of SIN-1 up to 12.5 mM. A SIN-1 

concentration of more than 12.5 mM did not produce greater 

nitration probably due to complete nitration of all the tyrosine at 

this concentration (Fig. S1 A and B). Albumin glycation shows a 

different kinetic pattern, it augmented with increasing MG 

concentration up to 7.5 mM whereas higher doses of MG triggered 

“an apparent decrease” of albumin glycation (Fig. S1 C and D). 

This effect at concentrations above 7.5 mM MG could be due to 

cross-linking of glycated albumin to form large aggregates unable 

to enter the polyacrylamide gels and, therefore, not be detected at 

the molecular weight of monomeric albumin. 

 

ONOO
-
 and MG induce albumin aggregation in vitro 

Nitrotyrosination and glycation have been previously reported to 

induce protein aggregation. Turbidimetric assays consistently 

showed aggregation of nitro- and glyco- albumin compared to 
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untreated albumin (Fig. 2A and C). The aggregation of nitro-

albumin showed higher turbidimetry absorbance values than glyco-

albumin. Not only are the aggregation kinetics between nitrated and 

glycated albumin different, but the appearance of the aggregates 

differ as well. Structural differences between nitrotyrosinated and 

glycated albumin aggregates were evident under electron 

microscopy after 4 weeks of treatment (Fig. 2B and D). Nitro-

albumin aggregates were more condensed that untreated and 

glycated albumin aggregates. In addition, glyco-albumin aggregates 

showed globular structures different to those present in untreated or 

nitrated albumin aggregates. The turbidimetry pattern observed for 

glyco-albumin could be due to the formation of larger and more 

expanded aggregates as this would explain the results obtained by 

WB and electron microscopy. 

 

Trypsin digestion and cell uptake of nitro- and glyco-albumin 

Albumin turnover, taking approximately 21 days in humans 

(Bennhold & Kallee, 1959)  involves its degradation and uptake by 

liver cells, a process that may be affected by its nitration and 

glycation. To address this point, an evaluation was made of the 

digestion of modified and unmodified albumin. Untreated, nitro- 

and glyco-albumin samples incubated with trypsin are shown in Fig. 

3A. As expected, higher degradation (fragments <50 kD molecular 

weight) was observed in untreated albumin compared to nitro- and 

glyco-albumin. Digestion of nitro-albumin produced less low 

molecular weight fragments. Glyco-albumin was the most resistant 

to trypsin digestion. Next, an assessment was made of the cellular 
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uptake of modified and unmodified albumin by hepatoma cells (Fig. 

3B). In cells incubated with unmodified, nitro- and glyco-albumin 

in a serum-free medium, there was significantly glyco-albumin 

uptake (0.415 ± 0.331; p<0.05) by cells compared to untreated 

albumin (6.899 ± 3.315) whereas nitrotyrosinated albumin uptake 

was not affected (6.048 ± 4.038). 

 

Albumin glycation reduces osmolarity 

Since nitrotyrosination and glycation produce albumin aggregates, 

these modifications were studied to determine whether they could 

also be affecting osmotic pressure. Measurements were made of the 

osmolarity of solutions containing the same concentrations of 

untreated albumin, nitro-albumin and glyco-albumin (Fig. 4). 

Nitrotyrosination of albumin with SIN-1 did not affect osmolarity 

(Fig. 4A) whereas albumin glycation with increasing concentrations 

of MG (Fig. 4B) showed significant (p<0.05) reduction in 

osmolarity compared to control albumin. This reduction in 

osmolarity is probably due to trapping of the ions dissolved in the 

medium. 

 

Effect of albumin nitrotyrosination and glycation on cell viability 

Albumin interacts directly with the neurons, endothelium, vascular 

smooth muscle and glia cells on both sides of the BBB (Prajapati et 

al., 2011; Zoellner et al., 2009; Lau et al., 2011; Karmakar, 2001). 

The effect of albumin glycation and nitration on cell viability was 

tested using endothelial (HUVEC), vascular smooth muscle (HA-

VSMC), glial (BV2) and neuronal (SH-SY5Y) cell lines. The 
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results for cells incubated with the physiological concentration of 

albumin in plasma (500 µM) and the albumin concentration range 

present in CSF (1µM), nitro-albumin, and glyco-albumin are shown 

in Fig. 5A and Fig. 5B, respectively. Deleterious effects of glyco-

albumin are observed in glial and neuronal cell lines while the most 

toxic effect of nitro-albumin is on glial and smooth muscle cells. 

HUVEC are the most resistant cells to either the nitrotyrosinating 

and glycating agents alone or the modified albumins.  

 

Increased Aß binding to nitro- and glyco-albumin 

The results of Aß binding experiments carried out with soluble and 

fibrillar Aß40 are shown in Fig. 6. The binding assay showed that 

nitro-albumin and glyco-albumin bind more Aß40 in soluble form 

than control albumin (p<0.005; p<0.05). Furthermore, glyco-

albumin binds more Aß40 in aggregated form than control albumin 

(p<0.05). 

 

Discussion 

 

High nitro-oxidative stress is associated with the AD brain (Smith et 

al., 1991; Thorns et al., 1998; Huang et al., 1999; Kuhla et al., 

2005; Guix et al., 2009) and this could affect the proteins on both 

sides of the BBB because of the gaseous nature of ROS and the 

chain reactions induced by these species in surrounding tissues. 

Albumin is the most abundant protein in both blood and CSF, in 

addition to its physiological functions, albumin may also play a 

major role as a scavenger of ROS, favored by its high turnover with 
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a life of 21 days  (Bennhold & Kallee, 1959). This process involves 

its degradation and uptake by liver cells and may be affected by 

albumin nitration and glycation. However, this ability might have 

consequences for albumin when the buffering threshold for 

oxidative stress is exceeded, as occurs in AD. This study focused on 

albumin nitrotyrosination and glycation, and how these 

modifications affect its properties. 

Both nitrotyrosination and glycation make albumin more prone to 

aggregation. In the case of nitrotyrosination, the interaction of 

nitrated tyrosines from several molecules of albumin-producing 

dityrosine bridges could lead to its aggregation (Foerder & Shapiro, 

1977). Albumin glycation could also induce aggregation probably 

due to cross-linking between ketone groups from Schiff bases, the 

intermediate products after protein glycation (Cerami et al., 1987). 

The observed “apparent decrease” effect at concentrations higher 

than 7.5 mM MG could be due to the cross-linking of glycated 

albumin forming large aggregates unable to enter the 

polyacrylamide gels and, therefore, not being detected at the 

molecular weight of monomeric albumin. The changes in modified 

albumin observed under the transmission electron microscopy 

showed denser aggregates in nitrotyrosinated albumin and more 

globular aggregates in glycated albumin than those observed in 

unaltered albumin. These results are consistent with increased 

albumin aggregation.  

The data suggest that these stable aggregates of modified albumin 

are not easily broken down, and therefore additional, accessory 

proteins may be required for their degradation (Friguet et al., 2000; 
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Shringarpure & Davies, 2002). Glyco-albumin was the most 

resistant to trypsin digestion, and this is consistent with previous 

reports showing that protein glycation reduces their normal 

degradation (Brownlee et al., 1983). Besides, as proteolysis of large 

aggregates is more difficult, modified albumin will be circulating 

for longer periods of time, affecting its turnover and reducing its 

protective role. Another consequence of albumin modification 

affects maintenance of osmotic pressure. Compared to unmodified 

albumin, the presence of glycated, but not nitrotyrosinated albumin, 

significantly decreases the osmolarity of the solution it is dissolved 

in. This effect might have deleterious consequences, especially for 

small brain vessels where it will favor plasma extravasation (Fleck 

et al., 1985) and homeostasis of abnormal tissue. 

We also found that nitro- and glyco-albumin decrease the viability 

of vascular myocytes, glia cells and neurons, while endothelial cells 

appear to better tolerate the presence of modified albumin. HUVEC 

cells were the most resistant to nitrotyrosinating and glycating 

agents alone or modified albumins. This difference may indicate 

that a particular albumin modification will mainly affect a particular 

set of cell types. Since both nitrative and glycative modifications 

are additive in vivo, their deleterious effects would preferentially 

affect neurons, glia cells and vascular myocytes. Another interesting 

observation is that albumin may act as a buffer for the nitro-

oxidative and glycative stress since the presence of albumin reduced 

the toxic effect of equimolar concentrations of SIN-1 and MG 

alone. The reduction in cell viability could be due to a lack of the 

nutritive properties of albumin (Kirsch et al., 1968) or other 
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mechanisms derived from its aggregated structure. Interestingly, 

nitrating and glycating agents are always more toxic to cells than 

the corresponding concentration of modified albumin, reinforcing 

the idea that albumin protects against these reactive species by 

buffering them (Bar-Or et al., 2001).  

Our results show that nitro- and glyco- albumin binds more Aß40 

than native albumin does and this could be related to the ability of 

nitro- and glyco-albumin to interact with highly hydrophobic Aß 

(Bouma et al., 2003; Du & Murphy, 2010). In the first instance, 

higher Aß binding to modified albumin could be beneficial for AD 

patients, since it would remove Aß from the brain through low-

density LRP-1 (Shibata et al., 2000). But considering that modified 

albumin may have a longer plasma life than normal albumin due to 

its resistance to degradation, in the long run, the ability to bind Aß 

would be decreased after saturation of the existing modified 

albumin, thus allowing systemic Aß to enter the brain through 

receptor for advanced glycation end products (Mackic et al., 1998). 

Therefore, modified albumin cannot buffer more pro-oxidant 

challenges, and consequently, also fails in protecting the brain 

against nitro-oxidative stress. In fact, some studies demonstrate that 

peripherally derived Aß in circulating plasma represents an 

important precursor pool for brain Aß (Eisele et al., 2010) since it 

can cross the BBB in both directions depending on the Aß 

concentrations in brain and blood. It is possible that improvements 

in the cognitive scores of AD patients treated by albumin 

replacement  described in a previous report (Boada et al., 2009) is 

related to the removal of nitro- and glyco-albumin.  
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In conclusion, nitrotyrosination and glycation favors albumin 

aggregation. These processes, especially glycation, affect albumin 

physiological functions, including increased Aß40 binding capacity. 

Further studies should be carried out to evaluate the possibility of 

this phenomenon being related to the beneficial effect of albumin 

replacement therapy in AD patients.  
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FIGURE 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Nitrotyrosinated and glycated albumin in human samples 

from AD patients. Nitrotyrosinated (A) and glycated (B) albumin 

was quantified by WB after obtaining albumin by IP from plasma 

(18 controls and 19 AD) and brain samples (13 controls and 18 

AD). Data are mean ± SEM of the number of experiments indicated 

between brackets. *p<0.05 for all experiments except the 

nitrotyrosination in albumin from plasma (**p<0.01). 
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FIGURE 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. ONOO
-
 and MG induce albumin aggregation. 

Turbidimetric assays showed increased nitro- (A) and glyco-

albumin (C) aggregation compared to untreated control albumin. 

Transmission electron microscopy images of untreated albumin (B, 

D), nitro- (B) and glyco-albumin (D). Data are the mean ± SEM of 

3 independent experiments. 
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FIGURE 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Trypsin digestion and uptake of nitro- and glyco-albumin 

into HepG2 cells. Unmodified, nitro- and glyco-albumin were 

incubated with trypsin at different times. The pattern of degradation 

was detected by Coomassie staining (n=4) (A). Unmodified, nitro- 

and glyco-albumin uptake in HepG2 cells was studied after 

incubation for 24 hours (B). Data are the mean ± SEM of 3-5 

independent experiments. * p <0.05. 
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FIGURE 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Impact of albumin glycation in osmolarity. The effect of 

nitrotyrosination (A) and glycation (B) of albumin on the 

osmolarity of solutions was studied in vitro. Data are the mean ± 

SEM of 3-6 independent experiments. * p <0.05. 
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FIGURE 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Effect of nitro-albumin  and glyco-albumin on cell 

viability. Vascular (HUVEC and HA-VSMC), glial (BV2) and 

neuronal (SH-SY5Y) cells were treated with nitro-albumin (A) or 

glycol-albumin (B) for 24 hours. Cell viability was measured by 

MTT reduction. Data are the mean ± SEM of 4-6 independent 

experiments performed in triplicate. 
a
 p<0.05 (treated vs. control); 

b
 

p<0.05 (N-Alb or G-Alb and SIN-1 or MG vs. Alb). 
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FIGURE 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Binding of Aß to nitro- and glyco-albumin. Synthetic 

aggregated and soluble Aß40 were incubated with unmodified, 

nitro- and glyco-albumin for 24 hours. The Aß binding was 

measured by an ELISA kit. Data are the mean ± SEM of 4 

independent experiments. * p <0.05. 
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SUPPLEMENTARY FIGURE  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1. Concentration dependent albumin nitrotyrosination and 

glycation by ONOO- and MG. 
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II. Addendum –figure 1. 

Measurement by ThT fluorescense of the differential Aβ40 

aggregation in presence of albumin or modified albumin. Albumin 

is able to abolish completely Aβ40 aggregation, but nitro- and 

glyco-albumin reduces the albumin capability of inhibits Aβ40 fibril 

aggregation.   

 

Addendum figure1. Study of the differential Aβ40 fibril 

aggregation with the co-incubation of albumin, nitro-albumin 

and glyco-albumin by ThT fluorescence measure. Data are the 

mean ± SEM of 3-4 independent experiments. 
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Matherials and methods addendum figure 1 

 

ThT assay 

ThT assay is based on the ThT property to bind β sheet rich 

structures, such as those amyloid aggregates, and display enhanced 

fluorescence and a characteristic red shift of its emission spectrum 

(exitation 440nm; emission 470-700 nm). Albumin, nitro- albumin 

and glyco-albumin were co-incubated with Aβ40 (Anaspect) and 

ThT (0.125µg) in a black 96-well plate for 22h. Aβ40 was co-

incubated with albumin and modified albumin in a 1:2 molar ratio. 

The measurements were made with the plate reader 

spectrophotometer (FLUOstar optima, BMG labtech). 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV. DISCUSSION
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NO is a Janus molecule. It works as the major vasorelaxant agent in 

the systemic circulation as well as the main retrograde 

neurotransmitter, therefore allowing the process of memory and 

learning in the brain. These physiological regulatory effects are 

associated to health and the well-functioning of vessels and brain. 

But aging and neurodegenerative processes, especially AD, affect 

dramatically NO’s physiology turning it into a strong pathological 

agent. NO becomes harmful when it is produced in a pro-oxidant 

environment because it produces peroxynitrite that modifiy 

irreversibly Tyr residues from proteins and it disrupts the normal 

function of NO downstream signalling 539-541.  

AD affects mainly memory although the damage spreads to other 

cognitive function as it advances. Despite more than 100 years of 

research in AD field, its pathological mechanisms are not well 

understood. Many investigation lines have proposed different 

mechanisms to be playing a key role in AD onset, but the 

hypothesis termed “The amyloid cascade” seams the most feasible. 

This suggests that Aβ aggregation triggers oxidative stress and 

excitotoxicity due to a maintained activation of the pathway 

Glu/NMDARc/nNOS 542, 543. 

 

1. Physiology of memory and AD 

Memory is a cognitive function to store and recover information. It 

is produced as a result of a repetitive stimulation of neuronal 

synaptic connections producing long-lasting changes by LTP or 

LTD, enhancing or depressing some neuronal nets. The anatomical 

regions involved in memory formation are mainly the hippocampus 
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and the cortex. While in the hippocampus recent memory (specially 

working memory) is stored, cortex takes the storage of long time 

memories. In AD, these regions are damaged due to the high 

presence of senile plaques, NFT and neuronal death. 

The current Western societies have increasing life expectancies and 

AD will represent one of the most prevalent diseases in the near 

future. To discover the pathways involved in this pathology is 

necessary to understand the physiological mechanisms of memory. 

Therefore we focused in the study of the glutamatergic signalling, 

in particular in the signalling via NMDARc. It acts as a coincident 

detector, that is, it can integrate two stimuli to produce and 

reinforce the response enhancing the potentiation of one impulse. 

To be completely activated, NMDARc have to sense the 

depolarization provoked by AMPARc, release the Mg2+, which is 

blocking its pore, and binding Glut and Gly. Then, when NMDARc 

are activated they allow the Ca2+ entry inside the cell, triggering 

different pathways depending on where they are located. When 

NMDARc is located in the synaptic zone, the intracellular Ca2+ 

activates the CaM, activating directly the nNOS 544, 545. The nNOS 

is bound to the cytoplasmatic portion of GluN2B subunit through 

PSD-95 322. Once it is activated it produces NO postsynaptically, 

which spreads to the presynaptic terminal where it is sensed by the 

heme group of the GC. The activation of GC produces cGMP 546, 

547, causing the Glut release in the synaptic cleft and magnifying the 

response by its binding to NMDARc. Therefore, a continuous loop 

of activation is maintained. It is important to highlight the role of 

NO in this situation, having an active part in the bidirectional 
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communication between the presynaptic and postsynaptic neuron. 

In the present work we propose that NO is also contributing in 

another way to the synaptic function, mainly regulating the 

expression of different synaptic proteins.  

 

2. Protein synthesis in LTP  

To consolidate synapses protein synthesis is needed. Synthesis is 

started by transcription through the CREB transcription factor that 

is in turn activated by NMDA signalling. The effects triggered by 

CREB are long-lasting because it enhances the synthesis of proteins 

related to dendritic growth and synaptic spines. But gene 

transcription is a process that requires a lot of time, while protein 

synthesis is needed quickly in neuronal plasticity especially to 

initiate and maintain LTP. To solve this time-conflict, several 

mRNAs are previously transported into dendrites waiting to be 

translated after synaptic activity 548-550. In dendrites, there are also 

the polyribosomes necessary to produce the translation. This 

process will allow the availability of new proteins in very short 

time. In fact it has been reported that the mRNA of GluN2A but 

overall GluN2B is located in neurites 551, 552. The rapid expression 

of GluN2B subunits in dendrites could be explained by its quick 

translation. Once expressed, the GluN2B subunit assemblies with 

the GluN1 subunit, which is synthesized in excess compared with 

GluN2 (estimated to be ≈ 10-fold) 553(Huh and Wenthold, 1999; 

Wenthold et al 1993) and form active receptors. 
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3. NO regulates mRNA translation through HRI activation 

Following the theory of quick availability of GluN2B subunit by 

translation in dendrites, we tested the system of the 5’UTR 

repression. GluN2B has a 5’UTR with 179 bp, which contains three 

uAUG. When we tested the repression activity of the 5’UTR by a 

reporter assay, we found that the 5’UTR is able to repress 80% of 

the luciferase (reporter gen) expression. However, this repression is 

reverted in a 60% with the triple mutant of the three uAUG. This 

supports the idea that the repression of the GluN2B translation is 

mainly due to its uATG. Interestingly, we found that the treatments 

with NO, as well as with NMDA or Sal, an inhibitor of PP1 which 

dephosphorylates eIF2α, were able to de-repress the luciferase 

expression. This was indicating a key role of NO in the regulation 

of eIF2α phosphorylation, and the only possible candidate had to be 

via the HRI kinase.  

HRI belongs to the group of eIF2α kinases, cellular stress sensors 

that after being activated by any source of cellular stress 

phosphorylate eIF2α to arrest global protein synthesis. This is the 

biological cost of using a stress activated effector such as eIF2α for 

the fine regulation of translation initiation in the synapse. The role 

of eIF2α in memory has been previously related with mRNA 

translation during synaptic plasticity through its phosphorylation by 

the activation of GCN2 554-557. The activation of eIF2α kinases 

produces the eIF2α-phosphorylation and the inhibition of the 

general mRNA translation except those ones having a 5’UTR with 

several AUG. 
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In the glutamatergic signalling GluN2B would be translated in the 

presence of eIF2α phosphorylated, because the scanning process 

would be more efficient, reaching the main AUG. We found that 

this effect is dependent on HRI activation by NO (Fig.11). To 

demonstrate this we have used cortical neuronal cultures and 

synaptosomes. The laters are highly important for our hypothesis 

since synaptosomes have all the translational machinery but not the 

transcriptional one. Consequently we found that the treatment with 

NO increases the levels of p-eIF2α correlating with an increased 

expression of GluN2B. The specificity of this pathway was 

demonstrated by using a HRI inhibitor that prevented these 

increases as well as the inhibitor of nNOS, 7-NI. NMDARc 

stimulation by its pharmacological ligand NMDA also triggered the 

production of NO by the activation of nNOS through Ca2+/CaM. 

Hence, NMDA also induces GluN2B expression supporting the idea 

that NO is the main responsible of this mechanism. Other approach 

to demonstrate that GluN2B expression depends on eIF2α 

phosphorylation was performed by using Sal. As expected, Sal also 

increased GluN2B expression. We also demonstrated that this 

increase correlated with a higher entry of Ca2+ due to GluN2BRc. 

We consider that understanding the physiology of this mechanism is 

crucial to comprehend the deleterious misregulation in AD 

pathology. 
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Figure 11. GluN2B translation mediated by HRI activation and eIF2α 

phosphorylation. Postsynaptic ending showing how NO activates HRI 

and stimulates eIF2α phosphorylation. The phosphorylation enhances the 

GluN2B translation. 

 

4. The misregulation of NMDARc 

The regulation of NMDARc subunits is crucial since an 

overexpression or a decrease can produce LTP impairment. It has 

been also reported that an overstimulation of NMDARc produces 

excitotoxicity and neuronal death 558, processes in where 

GluN2BRc would be playing a key function. The GluN2BRc 

correlates with pro-death pathways due to its predominant location 

in extrasynaptic places and its ability to allow greater Ca2+ influx 
559. Thus, an increase of extrasynaptic glutamatergic activity instead 

of the synaptic one would be happening in AD. In fact, the effect of 

memantine to slows the disease progression in subjects with 
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moderate to severe AD 331, 560, 561, is thought to be by the blockage 

of NMDARc opening due to prolonged exposure to extrasynaptic 

Glut without blocking the physiological activation 562. 

On the other hand there are studies reporting a GluN2BRc decrease 

in AD by endocytosis 352, 353 or even a lower expression in brains563. 

These findings fit with a decrease of NO bioavailability. In AD 

most of the synthesised NO would be scavenged by O2
·-. 

Consistently we found a significant increase of GluN2B 

nitrotyrosination in AD brains supporting a high nitro-oxidative 

stress. GluN2B subunit contains 55 Tyr able to be modified by 

ONOO-. Some Tyr have key roles as those in the ligand binding 

domain 564, and Tyr231 565 and Tyr282 566 placed in the amino 

terminal domain, whose nitrotyrosination can affect the deactivation 

or the channel’s open probability. Further work is needed to clarify 

the consequences of these modifications in the activity of the 

channel. In any case, it would fit with a less amount of GluN2BRc 

expression upregulated by NO. Under these stressful conditions the 

phosphorylation of eIF2α instead of being mediated by HRI would 

be carried out by PERK, PKR or GNC2, increasing the GluN2B 

subunit by other pathological and unregulated pathways. Then the 

reported decrease of GluN2BRc in AD brains would be related to 

massive Ca2+ entries and death of the glutamatergic neurons 324, 567. 

 

5. Aging and oxidative stress 

Aging is a progressive, endogenous, irreversible and deleterious 

process characterized by a gradual functional decline of all the body 

systems. Concretely, CNS aging produces intellectual and memory 
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deterioration by the structural neuronal changes and the loss of 

neurons in some brain areas.  

Among the many theories about the molecular causes of aging, the 

free radicals theory due to mitochondrial failings, proposed by 

Harman 568, is the most accepted. Supporting this idea it has been 

reported increased levels of oxidizing species with age. The 

increase of ROS by mitochondria metabolism can have many 

deleterious effects and albeit the antioxidant system tries to 

counteract oxidative damage, free radicals can accumulate during 

the life cycle, overcoming the defense mechanism. In fact there is a 

correlation between mitochondrial ROS production and longevity, 

observed at least for a few species 569, 570.  

Oxidative stress could explain the modifications during brain’s 

aging, which would happen more pronouncedly in 

neurodegenerative diseases like AD 571. 

 

6. AD and oxidative, nitrative and glycative stress 

Since the brain is the organ with the major consume of oxygen 

(20% of the total glucose) it is subjected to a high oxidative stress. 

The ROS increase during aging can be the result of an unbalance 

between the production and its destruction. In the case of AD 

patients, the oxidative stress 572, 573 is magnified by the Aβ 

extracellular deposition. Aβ produces ROS through the release of 

H2O2 by metal ion reduction 
137, 574, 575. Oxidative stress is 

considered to be the cause of amyloid toxicity. In this scenario, the 

NO synthesized after NMDARc activation is mostly scavenged by 

the O2
·- producing ONOO-. It decreases the bioavailability of NO in 
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detriment of the reactive and toxic specie ONOO-. ONOO- nitrates 

tyrosines changing the protein’s normal properties by decreasing 

their activity. Several proteins are described to be nitrotyrosinated 

in AD 576, 577 like the triosephosphate isomerase (TPI) 578. The 

effects of TPI nitrotyrosination has been widely studied by our 

group. Mainly, it generates a bigger aperture of its catalytic center, 

producing a major production of the metabolite MG. MG acts as a 

highly reactive species, which glycates proteins, modifying and 

altering their structure and function. This goes in agreement with 

studies reporting an increase of glycative and nitrative stress in 

AD579-582. 

 

7. Albumin as a scavenger of oxidative damage 

Albumin, the most abundant protein in blood, is considered to be a 

protective molecule since it has an antioxidant function by 

quenching metal ions, ROS and NO 453, 583 through its free Cys 487, 

584-587 and its DAHK domain in it N-terminal region 588, 589. 

Likewise, the bovine homolog protein, BSA, exhibits SOD-like 

activity by inhibiting O2
·- formation and reducing lipid peroxidation 

590, leading to a decreased oxidative stress in the cell. 

 

8. Albumin modifications in nitro-oxidative conditions 

Albumin can be modified by nitrative and glycative stress during 

AD. Some works have previously demonstrated that albumin can be 

altered by glycation and nitration and that both process change its 

structure 467, 532, 591. These modifications would be impairing its 
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function, avoiding its scavenging properties or affecting the binding 

of molecules such as Aβ.  

In our studies we have obtained that albumin is significantly 

nitrated and glycated in brain parenchyma and in blood from AD 

patients compared to healthy controls. The relevance of these 

findings was studied by the nitration and glycation of albumin in 

vitro. We performed assays with ONOO- and MG demonstrating 

that both compounds produce the nitration and the glycation of 

albumin, inducing its aggregation. This should be due to the 

formation of dityrosine bridges between the nitrotyrosines in the 

case of ONOO- treatment, or the crosslinking between glycated 

residues in the case of MG treatment. Although it aggregated faster, 

nitroalbumin was not able to produce the big aggregates as 

glycoalbumin does. Actually the biggest aggregates formed by 

glycoalbumin were not able to pass through the acrylamide pore 

(8% of acrylamide) of the gel in the WB assay. The structure of the 

albumin aggregates was studied by electron microscopy and the 

nitroalbumin showed different and denser aggregates regarding 

glycoalbumin or the normal albumin. This is due to the differential 

mechanism involved in its aggregation (dityrosine bridges vs cross-

linking).  

One of the pathophysiological effects of the albumin aggregation 

was a decrease in the osmotic pressure by the binding of ions, 

resulting in a decrease of 20% in the osmolarity of the solution. The 

effect on the oncotic pressure is assumed since the number of 

albumin monomers is decreased when albumin aggregates. 

Physiologically, this effect can have serious consequences 
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producing liquid extravasations through small brain vessels 518, 592, 

593 avoiding the normal exchange through the BBB. 

Likewise, these aggregates formed by nitrotyrosination or glycation 

would make albumin more resistant to be degraded. In fact it has 

been reported that crosslinked proteins are less susceptible to 

proteolysis having harmful implications in age and disease-related 

impairment of cellular function 594, 595.  This critical point was 

assayed with hepatoma cells since liver is responsible of albumin 

degradation and production. We obtained a less uptake by these 

hepatic cells when albumin was nitrotyrosinated or glycated. This 

would mean a higher systemic circulating time of the modified and 

non-functional albumin.  

On the other hand, nitrated and glycated albumin could have 

harmful effects on the cells of the vessels and brain parenchyma. To 

assess this issue, we tested how the modified albumin affects 

endothelium, vascular smooth muscle cells, glial cells and neurons.  

We obtained that modified albumin was toxic for all cells but 

endothelium. Interestingly the proportional amount of pure ONOO- 

or MG, which was used to nitrate and glycate albumin, was highly 

toxic for all cells. This suggests that nitration and glycation of 

albumin can be a first line of defense to scavenge these species to 

avoid their harmful effects. 

In AD, albumin is playing a key role by binding Aβ that has to be 

degraded in the liver. Albumin is responsible for the 95% of Aβ 

transport in blood 596-599 regulating the amount of soluble Aβ in the 

circulation. The availability of soluble Aβ in blood can determine 

the Aβ entrance in brain through RAGE, being important in the 
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brain amyloid deposition and AD progression. Therefore we studied 

albumin binding ability to soluble and aggregated forms of Aβ1-40, 

the most abundant form of Aβ. Nitro- and glycoalbumin bound 

more soluble Aβ1-40 than unmodified albumin. Besides, 

glycoalbumin also bound more aggregated Aβ1-40 than the 

unmodified albumin. The modified albumin bound to Aβ1-40 would 

remain more time in the circulation due to its difficulty to be 

degraded by the liver. This will affect its Aβ binding ability because 

there will be no free albumin to bind more Aβ. Consequently, the 

flux of Aβ from brain to vessels will be impaired, increasing the Aβ 

concentration inside the brain.  

The pathophysiological importance of these results is highlighted by 

our findings demonstrating that in brain as in plasma samples from 

AD patients there are more nitro- and glycoalbumin. This postulates 

albumin not only as a marker of the AD progression, but also an 

active part of the deleterious mechanisms happening during the 

development of AD. 

 

9. Final considerations 

The results obtained with this thesis pretend to put a little bit of 

light on the effects of NO in the synaptic activity and in the 

mechanisms involved in AD onset and progression. The study of 

the dual role of NO highlights the need of a tight regulation of the 

biological process. NO effects are an example of how an 

unbalanced system may increase the molecule concentration 

resulting in a pathological state. An abnormal environment 

produces a tendency to lose its physiological function shifting to the 
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pathological effects. Initially, this tendency would act as a 

compensatory mechanism when physiological mechanism are not 

working properly, but if the same condition persists it can activate 

permanently the pathways that mediates protein and cell damage. 

Consequently, it is important to understand the biochemical 

mechanisms of NO signalling to distinguish the fine line that 

separates health from disease. Only in that way we will be able to 

take in account all the factors contributing to the disease’s cause 

and see the whole picture of AD.   



 

 

 

 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

V. CONCLUSIONS
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1. NO activates HRI kinase, phosphorylating the eIF2α factor and 

producing the GluN2B subunit translation. 

 

2. The three uAUG codons in the 5’UTR repress the physiological 

translation of GluN2B. 

 

3. The increase in GluN2B translation produces functional 

channels. 

 

4. The Glut-NO-HRI-GluN2B pathway would be playing an 

important role in synaptic processes like memory and learning 

due to its synaptic location. 

 

5. GluN2B location in extrasynapses areas can modulate 

excitotoxicity in neurons.  

 

6. GluN2B subunit is more nitrotyrosinated in AD patients 

compared to controls due to the higher nitrooxidative stress 

environment. 

 

7. Albumin is more glycated and nitrotyrosinated in brain and 

blood samples from AD patients compared to controls. 

 

8. The nitrotyrosination and glycation of albumin changes its 

properties promoting its aggregation, decreasing its ability to 

buffer the osmolarity and making it toxic.  

 



                                                                               Conclusions 

 148

9. The glycated and nitrotyrosinated albumin binds more Aβ in the 

soluble form and glycated albumin also binds more aggregated 

Aβ than the unmodified one. 

 

10. The modified albumin remains more time in blood bound to Aβ, 

worsening the progression of the disease. 
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