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Abstract

This thesis studies protein allosteric sites from a structural and evolutionary perspective. Al-
lostery is a fundamental aspect of life at the molecular level, the most common and powerful
mechanism of protein activity regulation: through binding of a ligand to a site which is not the
active site. This phenomenon was first described more than 50 years ago and it still captures
the attention of researchers, while fully understanding its mechanisms remains a grand scientific
challenge. Furthermore, allosteric sites have been increasingly calling the attention of medici-
nal chemists and pharmaceutical companies, given their potential for the development of novel
therapeutics.

The thesis is presented as a ‘compendium of published articles’. The first article was published
at the beginning of 2010 describing the first stage of the thesis, a series of large-scale compu-
tational analyses to characterize putative small-molecule binding sites by integrating publicly
available information on protein sequences, structures and active sites for more than a thou-
sand protein families. By identifying common pockets across different structures of the same
protein family a method was developed to measure the pocket’s structural conservation. Char-
acterization of putative ligand-binding sites followed using different measures such as sequence
conservation, structural flexibility, electrostatic potential and structural conservation. The most
relevant finding was the unexpected lack of correlation between the two conservation measures,
of sequence and structure, for many of the predicted cavities. This general finding was also ob-
served in specific cases of allosteric proteins, where the active site was conserved both in terms of
structure and sequence but the allosteric site was conserved only from the structural perspective
and did not show conservation at the sequence level.

The second article was published at the end of 2012, it explores the relationship between
protein flexibility and allosteric effects defining a computational methodology to predict the
presence and location of allosteric sites on protein structures. Besides the dynamical aspects
assessed through normal mode analysis, the method also incorporates the structural conservation
measure defined in the first article. The predictive approach was benchmarked against a large
data set of allosteric proteins of known structure obtaining 65% positive predictive value.

After the second publication, the method has been implemented in the form of a freely
available web-server aimed to support the work of researchers in the field of allosterism, both to
improve the understanding of this fundamental form of protein function regulation and to serve
applied purposes in the area of drug design and discovery.





Resumen

La presente tesis estudia los sitios alostéricos desde una perspectiva estructural y evolutiva.
La regulación alostérica es un aspecto fundamental de la vida a nivel molecular, ya que es el
mecanismo más potente y frecuente en la regulación de la actividad proteica: mediante la unión
de un ligando a un sitio que no es el sitio activo. Este fenómeno fue descrito por primera vez hace
más de 50 años y desde entonces no ha dejado de captar la atención de la comunidad cient́ıfica,
llegando incluso a ser calificado como ‘el segundo secreto de la vida’, después del código genético.
Sin embargo, la comprensión cabal de los mecanismos involucrados continúa siendo un gran
desaf́ıo cient́ıfico. Actualmente, los sitios alostéricos han despertado un creciente interés por
parte de expertos en qúımica medicinal y compañ́ıas farmacéuticas, dado su potencial para el
desarrollo de nuevos fármacos.

La tesis se presenta como un ‘compendio de publicaciones’. El primer art́ıculo fue publicado
a principios del año 2010 y describe la primera etapa del proyecto, una serie de análisis com-
putacionales a gran escala para caracterizar sitios de unión a ligando integrando información
referente a secuencia, sitios activos y estructura para más de mil familias proteicas. Mediante la
identificación de sitios de unión comunes en distintas estructuras de la misma familia proteica, se
desarrolló un método para medir la conservación estructural de dichos sitios. Esta metodoloǵıa
permitió realizar una caracterización de sitios de unión considerando distintos aspectos, como
la conservación evolutiva a nivel de secuencia, flexibilidad estructural, potencial electrostático
y conservación estructural. El descubrimiento más significativo fue la inesperada falta de cor-
relación entre las medidas de conservación de secuencia y estructura para muchos de los sitios de
unión predichos. Este hallazgo es válido también para casos espećıficos de protéınas alostéricas,
donde el sitio activo está conservado tanto a nivel de secuencia como de estructura, pero el sitio
alostérico sólo presenta conservación a nivel estructural y no de secuencia.

El segundo art́ıculo fue publicado a fines del año 2012 y explora la relación entre la flexibilidad
proteica y la regulación alostérica, definiendo una metodoloǵıa computacional para la predicción
de sitios alostéricos en estructuras proteicas. Más allá de los aspectos dinámicos que fueron
estudiados mediante el análisis de modos normales, el método también incorpora la medida de
conservación estructural desarrollada en el primer art́ıculo. El sistema predictivo fue puesto a
prueba utilizando un extenso conjunto de protéınas alostéricas de estructura conocida, obteniendo
un valor predictivo positivo de 65%.

Después de la segunda publicación, el método se ha implementado como servidor web para
brindar apoyo a la investigación de la regulación alostérica, tanto para extender el conocimiento
de esta forma fundamental de regulación de la actividad proteica, como para ayudar en la apli-
cación de dichos conocimientos al desarrollo de nuevos fármacos con objetivos terapéuticos.
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Chapter 1

Objectives

The main objective of this thesis was to study allostery from a structural and evolutionary
perspective. This serves a dual-purpose, on one hand we can extend the academic understanding
of allosteric phenomena and, on the other, such understanding may pave the way for the discovery
and further development of novel therapeutics. The scientific objectives of this endeavour were
to:

• Characterize putative ligand-binding sites in terms of structural and evolutionary aspects.

• Explore the relationship between allosteric ligand binding and protein flexibility.

• Design and implement a computational method to predict allosteric sites.

The first objective was addressed in the first part of the project and is elaborated in Article
I, where in order to study a particular ligand-binding site or pocket across different structures of
the same protein family it was necessary to develop a special measure of structural conservation.

The second and third objectives were approached in the second part of the project and are
elaborated in Article II. The methodology was developed to support the first step of a drug-
design pipeline by selecting targets for further experimental characterization. In that context,
it was important to implement a method that was fast in execution, meaning that large sets of
protein structures could be analyzed in a reasonable amount of time.

9
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Chapter 2

Introduction

Life can be regarded as a highly complex and organized molecular phenomenon. The prime image
of self-organized life, which also illustrates the relationship between function and structure at the
molecular level, is DNA (deoxyribonucleic acid). The elucidation of its self-replicating structural
features was crucial for understanding the molecular basis of inheritance and evolution 60 years
ago (Watson and Crick, 1953). However, even if genes as units of biological information are coded
into DNA, it is their translation into protein molecules what transforms abstract information into
chemical action. One may say that gene is substantive and protein is verb. Thus, proteins can
be considered the functional units of life as they carry out and coordinate almost all biological
processes. In fact, a myriad of chemical reactions and physical rearrangements take place within
a single living organism every day. Not only is their number large, these processes are highly
intertwined. As such, and contributing to their overall intricacy, physicochemical processes
related to life are characterized by implicit regulation, which is a fundamental part of their
self-organizing nature.

2.1 Allostery

In this thesis, I have studied the most common, direct and powerful means of protein function
regulation, allostery. A protein is under allosteric regulation when an effector molecule alters
its function by binding at a site which is not the active site. Usually key proteins in signalling-
cascades and/or metabolic pathways are regulated allosterically, allowing immediate responses
to changes in their chemical environment.

11
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2.1.1 Historical background

The first findings related to the regulation of protein activity can be dated back to the discovery of
the sigmoidal binding curve of Oxygen to hemoglobin by Christian Bohr in 1904 (Christian Bohr
and Krogh, 1904) and the formulation of the Hill equation to describe it (Hill, 1910). The key
aspect is that the affinity of hemoglobin for O2 changes according to its concentration and other
environmental aspects such as pH and [CO2] (Perutz, 1970). Decades later, Cori and coworkes de-
scribed the regulatory effect of adenosine monophosphate on glycogen phosphorylation (Cori GT
and CF., 1938). During the years that followed researchers were busy drawing metabolic path-
ways without much concern on how the involved reactions were kept under control by the cell,
until the discovery of feedback inhibition (Yates and Pardee, 1956; Kresge et al., 2005). Until
then, inhibitors were generally thought to bind the enzyme’s active site and compete with the
substrate. However, these new discoveries included inhibitors that could differ from substrates in
terms of shape, size and charge. Scientist were puzzled, if the inhibitor was chemically distinct
from the substrate, how could it compete for binding to the active site?

The answer came through the concept of allostery developed by Jacques Monod et al. half
a century ago, as they described how regulation could take place at a binding-site distinct from
the active site (Monod and Jacob, 1961; Monod et al., 1963; Monod et al., 1965).

2.1.2 Etymology and definition

Nussinov and coworkers state that “allostery is regulation at a distance” in a recent review
(Nussinov and Tsai, 2013). They go on to explain that allostery “is a universal phenomenon
whereby a perturbation by an effector at one site of the molecule leads to a functional change at
another through alteration of shape and/or dynamics.”

This definition matches the explanation one commonly finds for the word’s etymology, which
comes from the Greek allos, “other”, and stereos, “solid / object”, in reference to the fact that
the regulatory site of an allosteric protein is located in a different (non-overlapping) position
respect to its active site (Helmstaedt et al., 2001; Changeux, 2011).

However, a slightly different definition can be found on other sources, for example a classic
textbook on molecular biology (Alberts et al., 2002):

“One feature of feedback inhibition was initially puzzling to those who discovered
it: the regulatory molecule often has a shape totally different from the shape of the
substrate of the enzyme. This is why this form of regulation is termed allostery
(from the Greek words allos, meaning ‘other,’ and stereos, meaning ‘solid’ or ‘three-
dimensional’). As more was learned about feedback inhibition, it was recognized
that many enzymes must have at least two different binding sites on their surface,
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an active site that recognizes the substrates, and a regulatory site that recognizes
a regulatory molecule. These two sites must somehow communicate in a way that
allows the catalytic events at the active site to be influenced by the binding of the
regulatory molecule at its separate site on the protein’s surface.”

So, does the steric component of allosteric refer to the shape of the effector molecule or to
its binding site on the protein? Of course these are equivalent to some degree, since a differently
shaped effector molecule would in principle bind a different protein pocket. However, it is inter-
esting to see how these slightly diverse definitions evolved by looking at the original publications.
This rather historical exercise will help in understanding the protein-centered focus of the work
presented in this thesis. Jacques Monod and François Jacob coined the allosteric term more than
50 years ago when they wrote the summary article of the 26th Cold Spring Harbor Symposium
on Quantitative Biology titled “cellular regulatory mechanisms” (Monod and Jacob, 1961). We
can look at their exact wording to understand the evolution of the terminology in its context:

“As the reports have shown, endproduct inhibition is extremely widespread in
bacteria, insuring immediate and sensitive control of the rate of metabolite biosyn-
thesis in most, if not all, pathways. From the point of view of mechanisms, the most
remarkable feature of the Novick-Szilard-Umbarger effect is that the inhibitor is not
a steric analogue of the substrate. We propose therefore to designate this mechanism
as ‘allosteric inhibition.’ Since it is well known that competitive behavior toward
an enzyme is, as a rule, restricted to steric analogues, it might be argued that an
enzyme’s concept of steric analogy need not be the same as ours, and that proteins
may see analogies where we cannot discern any.”

The concept was developed and more precisely defined two years later in a following article
by Monod et al. (Monod et al., 1963). Most notably, the term’s focus shifts from the effector
molecule towards the protein molecule as we read:

“The specificity of any allosteric effect and its actual manifestation is therefore
considered to result exclusively from the specific construction of the protein molecule
itself, allowing it to undergo a particular, discrete, reversible conformational alter-
ation, triggered by the binding of the allosteric effector.”

This idea is then further emphasized in the same publication:

“Finally, the coexistence in E. coli of two different aspartokinases catalysing iden-
tical reactions, respectively inhibited by threonine and by lysine (Stadtman et al.,
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1961), offers a striking illustration of the fact that the nature and structure of the
inhibitor is, in a sense, irrelevant to the interpretation of the effect. Clearly, such an
interpretation must be sought exclusively in the functional structure of the regulatory
protein itself.”

The crucial observation for rationalizing allosteric effects was the fact that proteins could
be desensitized to allosteric regulation through mutations while keeping their catalytic function
intact. Beyond mutations simply altering the regulatory binding site, the authors observed that
regulation mechanisms were more sensitive to mutations than the catalytic function, meaning
that allosteric transitions involved not only the regulatory site but also relied on residues spread
over the protein structure.

2.1.3 Classic models

Monod, Wyman and Changeux published the first model of allosteric regulation in 1965, it is
normally referred to as the MWC model (following the authors initials) and also known as the
concerted model (Monod et al., 1965). A year later an alternative model was presented by
Koshland, Némethy and Filmer, dubbed KNF or sequential model (Koshland et al., 1966).

Both phenomenological models were designed to explain the now classic example of allosteric
regulation and cooperative binding where a ligand bound to one subunit alters ligand affinity on
the rest of the subunits composing the protein assembly as observed in the case of hemoglobin
(Pauling, 1935). The models assume that each subunit has at least one ligand binding site and
can adopt either a relaxed (R) or tense (T) state, with a large difference in ligand affinity between
states.

The MWC model further postulates that subunits in the protein complex are identical and
change conformation in a concerted manner, defining the conservation of symmetry as a fun-
damental requirement. Thus, according to this model, all subunits in each oligomer are either
in the R or T state. In solution, the different conformational states of the allosteric protein
oligomer coexist in equilibrium and are explored independently of the presence of the allosteric
ligand. The cooperativity effect occurs because, upon ligand binding to a single subunit, the
rest of subunits and unbound binding sites on the oligomer are stabilized in the higher affinity
R state, effectively shifting the equilibrium of conformational states and, in turn, overall ligand
affinity. The authors of this model also distinguish between homotropic regulation where the
effector ligand is identical to the substrate and heterotropic interactions where the effector is a
different molecule. The MWC model has been applied on multiple cases ranging from hemoglobin
to membrane receptors (Changeux and Edelstein, 2005).

While the MWC model is close to what today is referred to as conformational selection,
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because the population of conformations explored by the protein is shifted upon ligand binding,
the KNF model is based on the concept of induced-fit, where the ligand induces a conformational
change upon binding. Contrary to the MWC model, the KNF model considers that subunits
may undergo conformational change independently of the other subunits upon ligand binding.
However, ligand binding to one of the subunits in the oligomer induces a conformational change
that facilitates neighboring subunits to switch conformation to the high-affinity state explaining
in this way the cooperativity effect.

The point of apparent disagreement between both models is whether the conformational
change occurs prior or after ligand binding, which was conciliated through a general physical
framework by Weber (Weber, 1972) and further developments that are described in the next
section. For an insightful analysis and comparison of these classic models I refer the reader to
the review by Cui and Karplus (Cui and Karplus, 2008).

2.1.4 Modern perspective

Years after the classic models were published and applied to describe multiple systems (Changeux,
2012), allosteric properties were discovered in monomeric proteins leading to the realization that
quaternary structure was not a fundamental for allostery (Cardenas et al., 1978; Kamata et al.,
2004; Ascenzi et al., 2005). These findings, combined with more developed notions about protein
dynamics (McCammon et al., 1977; Frauenfelder et al., 1991) gave rise to a new view on allosteric
regulation (Kern and Zuiderweg, 2003; Cui and Karplus, 2008; Hilser, 2010). Briefly, the MWC
model treats protein subunits as rigid-bodies, while the present understanding considers proteins
as dynamic entities which explore distinct conformations in solution forming a population of
conformers including active, inactive and intermediate states (i.e. the protein may explore the
bound conformation in the absence of the ligand). The new view considers that binding of
regulatory ligands simply alters this distribution of conformers effectively creating a population
shift. As indicated by Cui and Karplus (2008) this definition is not necessarily new, given that
conformational selection is part of the MWC model, even though the original model restrains
conformational rearrangements to the level of quaternary structure. The current perspective
is that these limitations were embraced to enable the construction of the mathematical models
needed at the time since intuitively, the concepts behind the new view were already present in
Monod’s 1965 article:

“By their very nature, allosteric effects cannot be interpreted in terms of the
classical theories of enzyme action. It must be assumed that these interactions are
mediated by some kind of molecular transition (allosteric transition) which is induced
or stabilized in the protein when it binds an allosteric ligand.”
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This return to a more fundamental definition is remarkable given that allostery pioneers did
not have access to the vast amount of information on protein structures and dynamics, genomic
sequences and others which the last decades have brought, but they were still able to foresee
what today we considered the main principles behind allosteric mechanisms. Laskowski et al.
distinguish between allosteric effectors that produce a population shift and those that directly
change the flexibility of a protein, thus altering its activity (Laskowski et al., 2009). Even
though thermodynamic and kinetic factors can be treated separately, they are related given that
the amount of distinct conformations a protein explores will depend on its intrinsic flexibility,
i.e the height of the barriers between these conformations. At present we understand that if a
protein’s flexibility is affected by the binding of a ligand, this may indeed affect its activity rate
as stated by Peracchi and Mozzarelli:

“In a generalized way, any event that perturbs a protein at an allosteric site
generates an allosteric signal leading ultimately to an allosteric transition that af-
fects function(s) at distant site(s). Thus, a key requirement for allostery is protein
flexibility.”

Moreover, this has led to the idea that all (nonfibrous) proteins may be regulated allosterically
(Gunasekaran et al., 2004). Furthermore, allosteric signals may also propagate solely by altering
protein dynamics, without a detectable conformational change (Cooper and Dryden, 1984; Tsai
et al., 2008). As we see, losing the restrictions imposed by the initial models expands the reach
of the allosteric phenomenon while at the same time increases its complexity and diversity, which
is the topic of the next section.

2.2 Complexity, diversity and classification of allosteric systems

Human hemoglobin (Hb) was the first allosteric protein to be crystallized and it represents
an iconic example of allosteric regulation and cooperativity. Briefly, the binding of O2 to one
subunit (human Hb is a tetramer) increases O2 affinity on the other monomers. A structural
explanation for this phenomenon was delivered in 1970 by Perutz, describing how O2 binding to
one monomer’s heme iron resulted in a conformational change on the proximal side (opposite of
the heme), which, communicated through the dimer-dimer interface, weakened the T (tense or
inactive) state relative to the R (relaxed or active) state (Perutz, 1970). Perutz’s interpretation
followed the concerted model (MWC) rather than the sequential model from Koshland (KNF),
both mentioned above, and his interpretation was considered solid enough at the time. However,
in the light of recent experimental data, specialists consider that cooperativity and allostery in
Hb follow a more complex mechanism which has not been fully understood yet (Ackers and Holt,
2006).
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If the details concerning the mechanism of one of the most studied allosteric systems are
not completely clear after decades of work, what is the current understanding of other, less
studied systems? Moreover, allosteric systems and mechanisms tend to differ considerably, as
Monod noted initially “their physiological diversity is extreme” (Monod et al., 1963). Among this
variety, a typical case of conformational change upon ligand-binding is exemplified by glucose-
induced glucokinase, where the ligand triggers a conformational change which in turn renders
the active site functional (Heredia et al., 2006). In other cases protein monomers are not active
until assembled into a larger complex and the allosteric ligand may act by stabilizing the protein-
protein interfaces, as seen in the case of GTP cyclohydrolase stimulatory complex (Maita et al.,
2002). A protein which helps illustrating how varied and complex allosteric mechanisms may be
is ribonucleotide reductase. This protein displays two different allosteric sites: one affects the
enzyme catalytic rate and the other alters its specificity allowing the enzyme to switch substrates
(Reichard, 2010).

Furthermore, allosteric regulation traditionally referred to enzymes where the allosteric ef-
fector is a small-molecule ligand. However, the term has been expanded and currently authors
may use the term allosteric to describe regulation events triggered by binding of another protein
molecule, phosphorylation, modification of disulfide bonds or other post-translational modifica-
tions on proteins which are not necessarily catalytic enzymes. This extension in the use of the
terminology has further increased the complexity of the field.

Recent articles review how protein activity can be affected allosterically through varied mech-
anisms and classify them following different criteria. For example, Tsai et al. classify allosteric
effects according to the presence or absence of conformational change at the substrate site and
they also distinguish if the effect is enthalpy- or entropy-driven among other criteria (Tsai et al.,
2009). With a different perspective and focusing on enzymes, Zorn and collaborators separate
cases where the allosteric effector binds directly to the catalytic domain or to a distinct regulatory
domain (Zorn and Wells, 2010). Laskowski et al. provide a classification scheme which groups
cases into different categories according to the nature of the allosteric effect: (1) open/close ac-
tive site, (2) change active site conformation, (3) change active site electrostatic properties (4)
affect protein-protein complex formation, (5) change protein flexibility and (6) population shift
in ensemble of conformers (Laskowski et al., 2009). Depending on which protein is studied, these
classification schemes may overlap while in other cases probably complement each other, more
even so if we consider that population shift has been postulated as a general explanation for
allosteric transitions.

At the moment of writing there seems to be no estimation on how populated each of these
mechanisms are, meaning that we do not know which mechanism is most or least common in
nature. Actually, the total number of allosteric proteins that exist is not known and has not
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been even estimated. The AlloSteric Database (Huang et al., 2011) contains to date 283 allosteric
sites at different levels of characterization. However, this number is smaller when redundancy
filters are applied. The scarcity of data regarding identification and characterization of allosteric
systems is probably related to the different technological breakthroughs which have taken place in
the last decades, biasing research to other fields such as DNA sequencing instead of biochemical
characterization. The point is that, potentially, many allosteric systems remain to be discovered.
Furthermore, researchers have reported the discovery of serendipitous allosteric sites: ligand-
binding sites that, despite lacking natural ligands, may become allosteric given the presence of
an appropriate ‘opportunistic’ ligand (Hardy and Wells, 2004; Hardy et al., 2004). In a similar
line, Bowman et al. describe ‘cryptic’ allosteric sites which may not be detectable through
conventional experiments because of their transient nature (Bowman and Geissler, 2012). These
findings support the idea that the vast majority of proteins are in principle prone to allosteric
regulation (Gunasekaran et al., 2004). In summary, allosteric systems are complex and varied
in nature, remaining far from being fully characterized or understood at present time. A large
territory is open for scientific exploration, which is increasingly calling the attention of both
academic and applied research as we will see in the next section.

2.3 Pharmacological and therapeutical implications

Unveiling common molecular patterns beneath the variety and complexity of allosteric systems
poses a grand scientific challenge which has fascinated researchers since the initial discoveries
more than 50 years ago. Besides the long-standing academic interest, during the past decade
allosteric systems have been increasingly becoming the focus of applied research by medicinal
chemists and pharmaceutical companies. This is fueled mainly by their potential in biomedical
applications. In this context, allosteric mechanisms present interesting advantages as targets
for the design of novel therapeutics (Nussinov and Tsai, 2013). One of the key factors is that
allosteric sites tend to be under lower evolutionary pressure than active sites, facilitating the
design of highly specific drugs and reducing the risks of toxicity or side-effects (Moehler et al.,
2002; Raddatz et al., 2007; Nussinov et al., 2011). Furthermore, while traditional orthosteric
drugs usually bind to the active site and inhibit protein activity, allosteric drugs may not only
inhibit but also increase protein activity, enabling novel therapeutic possibilites. An example is
the case of Benzodiazepines, which are positive allosteric modulators of GABA receptors used in
the treatment of anxiety and sleep disorders without the potentially lethal effects of directly act-
ing GABA receptor agonists (Conn et al., 2009). Traditional drugs may also be complemented
by allosteric effectors, as observed in the case of aminoglycoside phosphotransferase where a
previously unknown binding site could be exploited to allosterically counteract antibiotic resis-
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tance (Kohl et al., 2005). Similarly and as observed in G-protein-coupled receptors (GPCRs),
allosteric modulators lacking agonism will not exert their effect in the absence of the orthosteric
ligand, meaning that the allosteric drug would be able to maintain the dependence of its effect
on endogenous physiological signalling (Conn et al., 2009). In summary, allostery is unveiling a
novel territory for drug-design beyond what has been already covered by the classic, active-site
oriented drug-development approach (DeDecker, 2000). It is important to mention that some-
times authors describe allosteric events where the allosteric effector is not a small-molecule but a
large protein, peptide, DNA, etc. However, as mentioned above, in this work we have chosen to
focus on small-molecule binding sites since these are the most common and probably the most
appropriate for drug-discovery efforts (Peracchi and Mozzarelli, 2011).

2.4 Previous theoretical work

Understanding allosteric mechanisms from a theoretical perspective has motivated a wide range
of approaches, which we will briefly review in this section. The motivation for pursuing such
understanding is common across computational or theoretical biology: ideally, if we fully un-
derstand a system we can predict its behaviour without (or at least with reduced) experimental
work, saving time and valuable resources. Ultimately, possessing such knowledge would enable
the design of modification strategies which can be applied on the biological system or living or-
ganism with a particular aim, such as biotechnological or therapeutical applications. At the same
time, computational approaches help accessing and integrating large quantities of information,
a clear advantage when trying to unveil common patterns behind complex phenomena such as
protein activity regulation.

Across the field and in this case as well, common data sources for analysis are sequence-level
information (corresponding to the residue-sequence or primary structure of proteins) and struc-
tural information referring to the atomic three-dimensional arrangement of protein molecules.
As we will see below, structural studies may focus on static images of conformational changes
or in contrast be more inclined to understand the dynamical component beneath the allosteric
transition.

Sequence-level information is usually queried to retrieve evolutionary traits (Schneider, 2000).
At its most basic level it allows for positions (amino-acids or residues) in the protein polymer
to be distinguished according to their biological relevance in relation to their level of conser-
vation across a protein family. One of the most relevant approaches exploiting evolutionary or
sequence-level information in the context of allostery is the work of Rama Ranganathan and col-
laborators, published in Science in 1999 (Lockless and Ranganathan, 1999). They studied a few
allosteric systems from an evolutionary perspective based on the analysis of multiple sequence
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alignments (MSA). Briefly, they developed an approach named Statistical Coupling Analysis
(SCA) which measures the tendency of certain residues (positions in the MSA) to display corre-
lated substitution patterns. SCA displays significant analogies to other approaches implemented
previously to study protein-protein interactions (Lichtarge et al., 1996; Pazos et al., 1997). The
work of Ranganathan is particularly interesting because their computational method allowed the
identification of pathways of thermodynamically linked residues within the PDZ domain, which
would be responsible of signal transmission within the protein structure as confirmed through
mutational analysis. Even though their approach succeeds at identifying couplings in the protein
folds studied, they explain that

“it does not reveal the physical mechanism of the energetic coupling. Nevertheless,
the arrangement of coupled residues into ordered pathways through the core of the
PDZ and POZ protein folds suggests that one mechanism may be simple mechanical
deformation of the structure along couple pathways.”

Following this thought, it is understandable that many researchers focus their attention on the
structural level, which may very well complement evolutionary studies based on sequence analysis.
A good example of such complementation can be seen in the work of Olivier Lichtarge and
collaborators as they map evolutionary information obtained through sequence analysis onto 3D
protein structures allowing the identification and even ‘recoding’ of positions responsible for the
determination of specificity in psychoactive bioamine receptors (Rodriguez et al., 2010).

The main repository of protein structural data is the Protein Data Bank (Berman et al., 2000)
and most of its entries consist of ‘static’ three-dimensional images of protein conformations solved
by X-ray crystallography. Clues on the dynamics involved in allosteric transition are scarce in
this kind of data, however useful information can be extracted by comparing the conformations
of active and inactive proteins. Following this line of thought, Michael Daily and Jeffrey Gray
performed an ample study on the conformational changes induced by allosteric signals (Daily
and Gray, 2007). They analyzed a set of 51 pairs of known inactive and active allosteric protein
structures and concluded that in average 20% of the protein changes local structure during
allosteric transition. The number is considerably higher than the 10% average observed for
nonallosteric proteins (or so classified) displaying significant motion upon ligand binding. Besides
the detailed comparison of structural rearrangements between active and inactive conformations,
this work represents the first attempt to compile a structural data set of allosteric proteins. Two
years later the same authors published a follow-up article studying both tertiary (residue-scale)
and quaternary (domain- and subunit-scale) structural changes on 18 allosteric proteins (Daily
and Gray, 2009). In this study they quantified the contribution of tertiary and quaternary
rearrangements to the allosteric signal, modelling the geometric change at different levels of each
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allosteric protein complex in the form of a ‘global communication network’. Their model allowed
them to map substrate-effector pathways for 15 out of the 18 proteins analyzed while illustrating
how allostery may depend on the connection between small- and large-scale motions. The same
year Daily and co-authors published a study aimed at identifying the key residues transmitting
the allosteric signal (Demerdash et al., 2009). They tested a set of dynamical and structural, as
well as network- and informatic-related features to predict allosteric hot-spots (i.e. residues that
alter the allosteric response upon mutation) and proceeded to implement these features into a
machine-learning approach testing their predictive power on five allosteric proteins. The study
shows that the performance of such a predictor is better than the sequence-based SCA method
mentioned earlier (Lockless and Ranganathan, 1999) and they propose that one reason may be
that evolutionary co-conservation of residues is not necessarily a property specific of allosterically
coupled residues. They also comment on the limitiations of other studies mentioned above which
do not incorporate dynamical features.

Inherently following the famous quote from Richard Feynman “everything that living things
do can be understood in terms of the jigglings and wigglings of atoms” many different research
groups agree on the dynamical nature of proteins playing a fundamental role in allosteric phenom-
ena (Freire, 2000; Goodey and Benkovic, 2008; Liu and Nussinov, 2008; Kidd et al., 2009; Rader
and Brown, 2011; Nussinov and Tsai, 2013). However, one does not necessarily need to go to the
level of atomic detail to study the dynamical features of allosteric systems. In this regard, an
extremely simplified approach based solely on dynamical aspects was used to model Escherichia
coli lac repressor proteins as two plates connected by springs representing the structural domains
(Hawkins and McLeish, 2004). In that study, Hawkins and McLeish illustrate how the inducer
ligand may affect the intramolecular vibrational entropy thereby altering protein activity. They
emphasize the distinction between ‘static’ conformational changes and changes related to protein
dynamics. However, a static structure can be used as a starting point for computational explo-
ration of the protein’s conformational space (Freire, 2000). Actually, as Cui and Karplus state
“there is a complementarity between structure and dynamics in that the conformational changes
that play a functional role in allostery are coded into the structure” (Cui and Karplus, 2008).
Nevertheless, this coding of allosteric properties in the protein structure appears to be subtle and
fragile when compared for example to a catalytic site. Monod observed this when he described
allosteric desensitation, explaining that proteins were more prone to loose allosteric properties
than catalytic capacity upon mutation (Monod et al., 1963). This may explain the difficulties in
predicting or even understanding allosteric properties when compared to catalytic activity, which
at present can be predicted systematically with reasonable accuracy (Mistry et al., 2007; Porter
et al., 2004). The studies mentioned above have broaden the perspective on how to approach
allosteric systems, however at the time none of them provided a readily applicable answer to
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basic questions such as “Can protein X be regulated allosterically?” or “Where is the allosteric
site located in protein X?” This is due in part to different goals, for example many researchers
try to model and understand a particular allosteric system, while others attempt to reach a more
general perspective to map the ‘pathway’ through which the allosteric signal travels within the
protein macromolecule from the allosteric to the active site (Lockless and Ranganathan, 1999;
Flynn et al., 2003; Ota and Agard, 2005). However, this is questioned by work suggesting that in
vivo there may be multiple effector sites and multiple signalling paths within a single allosteric
protein (del Sol et al., 2009). Furthermore, Hilser considers that precise understanding of the
‘signalling pathway’ may not be required to exploit allosteric phenomena in an applied scenario,
whereas an understanding of the stabilities of native states in the ensemble of conformers may
be sufficient (Hilser, 2010). This idea is emphasized by recent findings on intrinsically disordered
proteins transmiting an allosteric signal (Hilser, 2013; Ferreon et al., 2013).

One of the first approaches to exploit protein dynamics with a predictive insight was developed
by Ming and Wall in 2005 (Ming and Wall, 2005). They studied allosteric effects on protein-
ligand pairs by comparing the predicted dynamics of bound and unbound structures. On a
second article, they tested their methodology for the prediction of functional ligand-binding sites
on a set of 305 protein-ligand complexes, which were not necessarily allosteric (Ming and Wall,
2006). A similar approach has been followed by Mitternacht and Berezovsky that describes
a measure called binding leverage, which is used to locate biologically relevant binding sites,
including allosteric sites. The calculation of binding leverage is explained as follows in their
article (Mitternacht and Berezovsky, 2011):

“To find potential binding sites we will employ a minimalistic docking procedure
to probe the surface of a protein and generate a list of possible binding sites. For
each site we estimate the strain on the ligand-protein contacts under the deformations
described by low frequency normal modes. The strain is high when the ligand has
many contacts with residues that are moving in opposite directions.”

They continue to explain that such a site would have a high binding leverage and that
ligands binding such sites present a large potential to affect which states are available to the
protein. They applied this analysis on a total of 15 allosteric proteins and observed varied
results for specific proteins, concluding that regulatory sites may be identified without previous
experimental knowledge on conformational changes. Both the work of Mitternacht and that
of Ming and Wall postulate that allosteric sites may be detected by estimating the protein’s
dynamical perturbation upon ligand-binding to a particular site. This principle is common to
our own approach as we will see below.

It is important to mention that during the preparation of this text, a few web-servers have
been published, which may be used to predict the location of allosteric sites on protein struc-
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tures. The first one published was SPACER (Goncearenco et al., 2013), a web-server based on
the binding leverage measure and other parameters previously described by Mitternacht et.al.
(Mitternacht and Berezovsky, 2011) to study allosteric communication across residues in a given
protein structure. A slightly different approach but a similar purpose are features of MCPath, a
web-server based on Monte Carlo path generation approach and an atomistic potential function
to identify residues that have the highest probability of being involved in the allosteric communi-
cation pathway (Kaya et al., 2013). A third web-server, in this case aimed directly at predicting
the location of allosteric sites, is Allosite (Huang et al., 2013). Allosite has been implemented by
the group that built ASD (Huang et al., 2011). The prediction in this case is based on a support
vector machine method that has been trained with a non-redundant set of 90 allosteric protein
structures.

2.5 Work presented in this thesis

The two articles that represent the fundamental part of this thesis follow the same purpose, the
understanding of common patterns underlying allosteric mechanisms. The first article consists
of a large-scale characterization of protein pockets and the development of a novel measure of
structural conservation (Panjkovich and Daura, 2010), which was then incorporated in the second
article as part of a predictive approach. The second article explores how allosteric ligands may
perturb protein flexibility upon binding and combines the analysis with structural conservation
into a methodolody for predicting the location of allosteric sites on protein structures (Panjkovich
and Daura, 2012). The predictive approach was benchmarked on a large set of structurally known
allosteric proteins obtaining 65% positive predictive value. Further details are provided in the
corresponding articles.

Besides the two published articles that build the fundamental part of this thesis, a shorter
manuscript is included as an Annex describing PARS, a web-server implementation of our al-
losteric sites prediction methodology. The web-server is freely accessible at http://bioinf.uab.cat/pars
making the method readily available for the scientific community. This manuscript was not in-
cluded in the fundamental body of the thesis because at the time of writing it is under review
for publication.

The same applies to the second Annex included, it describes antibacTR: another web-based
tool designed to prioritize antibacterial drug targets to aid in the design of novel antibacterials.
It describes how the methodology developed in this thesis was applied already on the analysis
of full bacterial proteomes, involving thousands of protein structures/models, as part of the
AntiPathoGN project (Seventh Research Framework Programme of the European Union. ref.
HEALTH-F3-2009-223101).
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Chapter 3

Results and discussion

Here, I will briefly summarize the results and discussion which are presented in full in the
published articles that represent the fundamental body of this thesis (Panjkovich and Daura,
2010; Panjkovich and Daura, 2012).

3.1 Large-scale study of protein pockets and measure of struc-

tural conservation

My initial attempts to study the conservation levels of ligand-binding sites across protein families
was of limited success, mainly because of the lack of a unified description of protein ligand-binding
sites. Characterization values computed for a predicted cavity on one protein structure could
not be compared among proteins of the same family if the correspondence to equivalent cavities
was not known. Thus, in order to perform a large-scale study, we needed to identify common
cavities among different protein structures of the same family. Ideally, we wanted to relate
a cavity found in one protein of a given family to the equivalent cavity detected in another
protein of the same family. This was the main motivation behind the structural conservation
measure implemented in the first article (Panjkovich and Daura, 2010) included in this thesis.
Once we could relate pockets across protein families (using structural superimposition (Ortiz
et al., 2002) and a specially developed clustering algorithm) we proceeded to characterize protein
cavities according to different criteria such as sequence and structural conservation, flexibility
and electrostatic potential. After analyzing a filtered total of 22,321 protein structures (involving
4,258 distinct protein families according to Pfam (Finn et al., 2008)) we settled on a total of 1,128
protein families for which we had at least 5 representative structures. We used known active
sites as a reference when analyzing the distributions of values (electrostatic potential, flexibility,
etc) for the large-scale predicted pockets. The most relevant and unexpected observation was
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the lack of correlation between sequence and structural conservation for many of the predicted
pockets, this was in hard contrast with active sites where both measures correlated as expected.
Close inspection of a few particular cases showed correspondence to allosteric sites.
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Research articleAssessing the structural conservation of protein 
pockets to study functional and allosteric sites: 
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Abstract
Background: With the classical, active-site oriented drug-development approach reaching its limits, protein ligand-
binding sites in general and allosteric sites in particular are increasingly attracting the interest of medicinal chemists in 
the search for new types of targets and strategies to drug development. Given that allostery represents one of the most 
common and powerful means to regulate protein function, the traditional drug discovery approach of targeting active 
sites can be extended by targeting allosteric or regulatory protein pockets that may allow the discovery of not only 
novel drug-like inhibitors, but activators as well. The wealth of available protein structural data can be exploited to 
further increase our understanding of allosterism, which in turn may have therapeutic applications. A first step in this 
direction is to identify and characterize putative effector sites that may be present in already available structural data.

Results: We performed a large-scale study of protein cavities as potential allosteric and functional sites, by integrating 
publicly available information on protein sequences, structures and active sites for more than a thousand protein 
families. By identifying common pockets across different structures of the same protein family we developed a method 
to measure the pocket's structural conservation. The method was first parameterized using known active sites. We 
characterized the predicted pockets in terms of sequence and structural conservation, backbone flexibility and 
electrostatic potential. Although these different measures do not tend to correlate, their combination is useful in 
selecting functional and regulatory sites, as a detailed analysis of a handful of protein families shows. We finally 
estimated the numbers of potential allosteric or regulatory pockets that may be present in the data set, finding that 
pockets with putative functional and effector characteristics are widespread across protein families.

Conclusions: Our results show that structurally conserved pockets are a common feature of protein families. The 
structural conservation of protein pockets, combined with other characteristics, can be exploited in drug discovery 
procedures, in particular for the selection of the most appropriate target protein and pocket for the design of drugs 
against entire protein families or subfamilies (e.g. for the development of broad-spectrum antimicrobials) or against a 
specific protein (e.g. in attempting to reduce side effects).

Background
Molecular processes in the living cell are coordinated and
executed under tight regulation. Proteins play a funda-
mental role in almost all biological processes, and their
overall activity is regulated at different levels [1]. At a first
level, the concentration of a particular protein in the cell
is regulated through its synthesis rate (gene expression)
and its degradation rate. At another level, mechanisms

act on the protein molecule itself through covalent modi-
fications or non-covalent binding of small ligands or
other molecules. These regulatory mechanisms are not
only essential for the proper functioning of the molecular
processes that maintain life, but are also responsible for
cross-signaling and regulation processes between an
organism and its environment.

Many metabolic enzymes, signalling proteins and tran-
scription factors, among others, are regulated allosteri-
cally. Allosteric regulation has been studied for more than
50 years and it is considered the most powerful and com-
mon way to regulate protein activity [2]. However, for
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most known cases of allosterism, the atomic details that
explain the functional relationship between distant sites
on the same protein molecule have not been elucidated
[3,4].

Many pharmaceutical compounds act through allos-
teric regulation, as seen in the case of paclitaxel (Paxol), a
cancer therapeutic drug that regulates tubulin polymer-
ization allosterically [5,6]. Even though active sites repre-
sent the classic drug-target pocket (e.g. Aspirin and
cyclooxygenase), allosteric sites present advantages over
active sites in the context of drug design. Enzymatic
activity usually involves charged transition states and the
substrates are not always drug-like. Thus, orally active
inhibitors that complement these sites can be very diffi-
cult to obtain. Moreover, allosteric sites may allow the
discovery of not only novel drug-like inhibitors, but acti-
vators as well [2,3].

In this context, predicting allosteric sites computation-
ally is of great interest. Allosteric sites have been pre-
dicted using structural information [7] and phylogeny [8].
Recently, methods have been developed in order to model
or predict the relationship between allosteric and active
sites [9-11]. These methods represent an important step
forward in the understanding of allosterism. However,
these studies are limited by the low quantity of readily
available data on allosteric sites. As stated by Thornton
and collaborators in their recent review [4], this is due in
part to the lack of a formal database that organizes and
stores knowledge on allosteric proteins and the corre-
sponding mechanisms.

To unveil common patterns underlying allosterism,
given that these exist, a large-scale study using structural
and sequence data would be necessary. However, given
the present scenario of scarce allosteric-site data, we
decided to perform a large-scale analysis of protein
ligand-binding pockets, as these represent potential loca-
tions of functional and allosteric or regulatory sites. Our
approach is supported by the concept that besides natu-
rally ocurring allosteric sites, serendipitous sites -having
no natural ligand but effectively being an allosteric site
given an appropriate ligand- may be of great pharmaco-
logical interest [2]. Examples of previously unknown
allosteric sites discovered on already solved protein struc-
tures [12,13] support the idea that orphan or serendipi-
tous allosteric sites exist which may lack a known natural
effector, but provide an excellent opportunity for drug
discovery approches such as virtual screening. Hardy and
Wells also suggest that the large amount of 'crystallization
artifacts' present in the Protein Data Bank (PDB) [14],
such as ligands co-crystallized in unexpected binding
sites, could hint the presence of previously unknown
allosteric sites [2].

A large database of protein structures and associated
small-molecule ligands is available [15] and has been used

to predict ligand-binding sites by homology [16]. How-
ever, small-molecule ligands are not always easy to co-
crystallize and we did not want to limit our study to only
such cases. In this context, ligand-binding sites can be
computationally predicted from structure alone with rea-
sonable accuracy [17-20]. To our knowledge, ligand-bind-
ing pockets as predicted directly from structure [19] have
not been studied or characterized at large-scale yet, even
though they represent the potential location of yet
unknown effectors [2].

Functional pockets in proteins have been previously
characterized in terms of their flexibility [21,22], evolu-
tionary conservation [21,23] and electrostatic potential
[24] and these characteristics have been used to predict
their presence and location in the protein structure [23].
Evolutionary conservation is a common characteristic of
biologically functional sites. However, until now it has
been exploited solely at the sequence level [23]. Although
sequence and structural conservation correlate, structure
is closer to function and may be conserved even in the
lack of a sequence-level signal [25]. Despite this, to our
knowledge, an approach based on the structural conser-
vation of protein pockets has not been previously used.
Here, we introduce a simple methodology to study pock-
ets at the protein family level, consisting in the identifica-
tion of pockets present in equivalent positions across
different structures of the same protein family. To param-
eterize the method, we used protein pockets that
matched known active sites, as these are well annotated
[26,27]. Once parameterized, we applied the method to
all protein structures available in the PDB [14], leading to
the identification of protein pockets for thousands of dif-
ferent protein families [26]. Next, we compared the levels
of structural conservation with other pocket characteris-
tics estimated on the same protein families, such as
sequence level conservation, backbone flexibility and
electrostatic potential.

In the following sections we also discuss the results of
this analysis for a small set of biological examples which
illustrate the relevance of structural conservation in
studying protein functional and regulatory sites. Finally,
we perform an estimation of the amount of potentially
paired regulatory and functional sites that may exist in
the entire data set.

Results and Discussion
Initial structural data set
To acquire a large-scale perspective on the conservation
of protein pockets, we gathered all available protein
structures from the Protein Data Bank (PDB) [14]. We
applied a set of filtering criteria to ensure the quality and
relevance of the structural data before grouping the
structures by protein families, as defined by the Protein
families database (Pfam) [26]. To partially cope with the
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inherent bias present in the PDB, where proteins tend to
be over- or under-represented [28], we selected a set of
representative structures for each protein family (see
Methods). The final data set covered 4,258 different Pfam
protein families and was composed of a total of 22,312
distinct protein structures (maximum 95% sequence
identity), on which we predicted the location of 167,648
putative ligand-binding pockets by means of the LIG-
SITEcs program [19].

Identifying equivalent pockets across different protein 
structures
The first step to estimate the structural conservation of
protein pockets was to identify those that appeared at
equivalent positions in different structures of the same
family. Briefly, for each protein family the pockets pre-
dicted for a representative set of structurally aligned pro-
teins [29] were clustered following the approach
described in the Methods section. The clustering method
requires a threshold distance to select equivalent pockets
across superimposed structures. After visual inspection
of preliminary results, we observed that this parameter
would be related to the structural fluctuation present in
each protein family. We decided to use known active sites
as a reference to define this parameter, as we were able to
map a total of 8,046 pockets (covering 319 distinct pro-
tein families) to Pfam-annotated or predicted active-site
residues unambiguously (see Methods). If the active site
is well conserved across the whole protein family, an ideal
clustering method would include all active sites of the dif-
ferent structures in the same cluster (true positives),
without including any non-active site pockets (false posi-
tives). After benchmarking a range of different values (see
Table 1), we defined the family-specific distance thresh-
old to be 2.0 Å plus the average RMSD observed when
superimposing the representative structures of the pro-

tein family. This approach showed a good compromise
between true positives (including an average of 76.5% of
all active sites) and false positives (including 8.95% of
non-active site pockets), as shown in Table 1. For the
families included in this study, the average value observed
for the family-specific threshold was 4.5 Å.

Assessing the structural conservation of pockets on protein 
families
After parameterizing the clustering method using active
sites as reference, we applied it to all protein families hav-
ing at least 5 representative structures in the data set (a
total of 1,128 protein families satisfied this requisite). We
then analyzed the resulting clusters of pockets in terms of
the percentage of representative structures covered by
each cluster. A very well conserved pocket would be
expected to appear in all representative structures of the
protein family, i.e. 100% coverage. Thus, this coverage can
be taken (and will be taken throughout this study) as a
measure of the pocket's structural conservation within
the protein family. This analysis was performed, for each
family, for the first three clusters and for the cluster con-
taining the largest amount of active sites (active-site clus-
ter). The results are illustrated in Figure 1. Note that
cluster ranking is based on average pocket size and cover-
age as described in the Methods, and that the active site
cluster overlaps with the 1st, 2nd and 3rd clusters in 117,
38 and 13 families, respectively.

According to the histograms in this figure, the higher
the coverage of the active site cluster the higher its fre-
quency in the ensemble of families. This, which should be
expected for pockets that are functionally relevant at the
family level, is also applicable to the distribution of clus-
ter 1 but not to those of clusters 2 and 3. Yet, the coverage
distributions of clusters 2 and 3 suggest that they could be
important at a sub-family level, remaining compatible

Table 1: Parameterization. Performance of the clustering algorithm when grouping known active sites.

Fixed distance value (Å) % total active sites % non active sites

0.0 59.60 4.46

1.0 69.89 5.31

2.0 76.47 8.95

3.0 79.13 13.67

4.0 82.78 17.30

5.0 83.50 23.04

6.0 86.71 27.90

7.0 87.43 34.68

8.0 87.62 41.97

9.0 88.24 49.59

10.0 89.29 56.87
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with an allosteric function which may have different faces
within the same protein family. In global terms, the aver-
age coverage of the first cluster or most conserved pocket
of the 1,128 protein families analyzed is 85%. Of these
1,128 protein families, 398 (35%) show at least one pocket
cluster that covers 100% of the protein-family representa-
tives, while 884 (78%) present a pocket cluster that covers
at least 75% of the protein family.

These results show that for the majority of the protein
families analyzed there is at least one pocket with high
levels of structural conservation. We expected a high fre-
quency of conserved pockets among enzymes, but not all
protein families in the data set have been annotated with
a biological activity that is related to a pocket in the pro-
tein structure. A structurally conserved pocket whose
biological function has not been described is an optimal
candidate for further computational and experimental
analysis. For example, in the context of drug design and
discovery, the information on whether a pocket on the
target protein is structurally conserved or not may be
useful when designing a wide-spectrum or a specific
drug, respectively, and in choosing the appropriate
ligand-binding site for virtual screening. Clearly a pocket
that is very well conserved at the structural level may not
necessarily have functional properties but be the conse-
quence of structural restraints common across the pro-
tein family. Nevertheless, it may still be of interest to
explore its possible exploitation as a serendipitous allos-
teric site for a therapeutic application [2].

Before further exploring these possibilies, we analyzed
the degree of correlation between structural conservation
and other properties often used for the characterization
of protein pockets, such as evolutionary conservation at
the sequence level [18,21,23], protein flexibility [21,22]

and electrostatic potential [24]. These parameters may be
useful in distinguishing pockets that are conserved
because of their biological function from pockets that are
conserved because of structural restraints.

Comparison with other pocket characteristics
Sequence conservation
Biologically relevant residues tend to be conserved at the
sequence level [30]. In this context, the degree of conser-
vation of the residues defining a protein cavity may be
taken as a measure of the cavity's conservation [18-20].
The statistical significance of this measure can be then
tested by comparing the levels of sequence conservation
in the pocket and in the rest of the protein (see Methods).

Although structure is in general more conserved than
sequence [25], the two characteristics are related. To ana-
lyze the relationship between sequence and structural
conservation for pocket clusters across protein families,
we quantified sequence conservation as the percentage of
pockets in the cluster that are significantly conserved at
the sequence level. The structural and sequence conser-
vation values for clusters 1 to 3 of all protein families with
at least five representative structures are compared in the
left panel of Figure 2. It is shown that there is a relatively
small correlation between sequence conservation and
structural conservation of the pockets, with the highest
density (62% of the population) at the 0-5% sequence-
conservation end of the distribution. Yet sequence con-
servation is clearly peaked also at the 95-100% end (12%
of the population), indicating that in general structurally
conserved pockets (pocket clusters) may be well con-
served at the sequence level, or not at all, leaving few
cases in between.

One may argue that pocket clusters displaying high
sequence and structural conservation may match biologi-
cally functional pockets across the protein family, while
clusters displaying only structural conservation may
often play a purely structural role. In relation to this, and
giving the conservation percentages the right context, it
should be noted that a large proportion of the protein
families included in this analysis may not present a bio-
logical activity that is related to a particular pocket in the
structure. Nevertheless, some pockets may be biologi-
cally relevant, despite a lack of sequence conservation. An
example of this is given by L-lactate dehy-drogenase
(LDH), for which the allosteric site [31] is very well con-
served at the structural level (89.8%), but shows no signal
of sequence conservation (0.0%) in this analysis. We
describe the LDH case in further detail below.

As discussed above, pockets that are conserved at the
structural level but have not been previously described as
ligand-binding sites may be evaluated as potential orphan
or serendipitous allosteric sites and targeted for drug dis-
covery and design. The low sequence conservation we

Figure 1 Structural conservation. Histograms displaying protein 
family coverage of different pocket clusters, for a total of 1,128 protein 
families with five or more representatives in the data set.
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observed in many of the structurally conserved pockets
indicates that even though the pocket is detected in the
same location, the residues defining the pocket are not
under direct evolutionary pressure and may vary in type.
This variation in residue composition could aid the
design of highly specific drugs that would bind only cer-
tain members of the protein family.

We performed the same distribution analysis for pocket
clusters that included the largest amount of active sites in
the corresponding protein families, with results displayed
in the right panel of Figure 2. In this case, the largest pop-
ulation corresponds to high levels of both sequence and
structural conservation, as expected, although numerous
exceptions appear in this set as well. Some exceptions rise
because not all members of a given Pfam protein family
may be enzymatically active (e.g. Globin).

Note that the level of sequence conservation of each
cluster is estimated from its member pockets and is inde-
pendent of the weight of the cluster in the set of family-
representative structures. A sequence conservation of
100% means that every single pocket in the cluster is sig-
nificantly conserved at the sequence level, although the
cluster may only cover half of the protein family, i.e. 50%
structural conservation. This is also valid for the flexibil-
ity and electrostatic-potential analyses described below.
Flexibility
Protein function is fundamentally linked to dynamics. In
this context, the properties of a protein's ligand-binding
site are to an important extent a function of the site's flex-
ibility, entropy being an essential component of the free
energy of binding. Thus, relatively small changes in flexi-
bility often have a large effect on ligand-binding affinites

[32]. Moreover, some allosteric sites regulate protein
function by modifying the protein's flexibility upon ligand
binding [2,9,33].

Flexibility may be estimated on a residue basis from
structural B factors. This has been previously used, for
example, to show that active sites tend to be more rigid
than the rest of the enzyme structure [21,22].

We analyzed the flexibility of residues forming part of
pockets and determined if they showed significantly
higher or lower values of flexibility than the rest of the
protein's backbone, classifying them as 'flexible' or 'rigid',
respectively, as described in the Methods section. We
then compared the percentage of significantly rigid or
flexible pockets found in the different pocket clusters
with their structural conservation. The results are illus-
trated in Figure 3. These results show very few cases
where pockets are significantly more flexible than the rest
of the protein, and these few cases (clusters 1-3, left
panel) tend to be poorly conserved in terms of structure.
However, the structural conservation of a very flexible
pocket would be probably hard to quantify by our
method, given that a large degree of structural variation
would to some extent impede its detection across differ-
ent proteins of the same family. Even in average cases,
member pockets of the same cluster can display large dif-
ferences in shape and volume, as seen in the case of LDH
described below.

The lower panels of Figure 3 show a wide distribution
of significantly rigid pockets. This means that within a
family, the levels of flexibility for the same pocket may
differ from structure to structure considerably. These
results were expected to a certain level, since flexibility

Figure 2 Sequence conservation. Two-dimensional histograms comparing structural and sequence conservation for pocket clusters of the different 
families in our data set. The left panel displays the values for pocket clusters 1 to 3 of 1,128 distinct protein families and the right panel shows the 
distribution for clusters containing the majority of active sites for 229 protein families. Only families with at least five representative structures are in-
cluded in the analysis.
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may vary under different experimental conditions of
structure determination and it may as well be modified by
the presence of bound ligands or other proteins [32]. In
the case of active site pocket clusters, the lower-right
panel of Figure 3 displays a stronger signal for structural
conservation than for rigidity.

Protein flexibility is a major issue for ligand virtual
screening and design [34]. Although key residues in
active sites, such as those involved in catalysis, tend to be
rigid [21,22], they coexist with regions of high flexibility,
which are necessary to allow for ligand exchange. When
searching for other possible ligand-binding sites for the
screening and design of effector molecules, one will usu-
ally target pockets that are sufficently flexible that bind-

ing will not be blocked by high free-energy barriers
(involving conformational rearrangements) but at the
same time sufficiently rigid that computational docking
will be reliable and that there will not be a sizable
entropic penalty due to a potentialy large loss of flexibility
upon ligand binding (which would need to be compen-
sated enthalpically for effective binding). The analysis
shown here might provide a basis to select structurally
conserved pockets with specific flexibility properties.
Electrostatic potential
The electrostatic potential, as estimated by solving the
Poisson-Boltzmann equation for protein structures with
force-field-based charge distributions [35] has been pre-
viously used to characterize and predict enzymatic active

Figure 3 Flexibility. Two-dimensional histograms comparing structural conservation and flexibility for pocket clusters of the different families in the 
data set. The panels on the left display the values for pocket clusters 1 to 3 of 1,128 distinct protein families and the right panels show the distribution 
for clusters containing the majority of active sites for 229 protein families. The top panels show the percentage of pockets that were significantly flex-
ible when compared to the rest of the structure, while the bottom panels show the percentage of pockets found to be significantly rigid (less flexible) 
than the rest of the corresponding protein structure. These plots only include protein families with at least five representative structures.
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sites [24]. For each pocket in the data set we estimated the
electrostatic potential at the pocket's center of mass as
described in the Methods section and computed the aver-
age value over the pockets for each of the first three
pocket clusters in every protein family. The combined
distribution of average electrostatic potential and struc-
tural conservation of pocket clusters is shown in Figure 4.
Clearly, this property does not correlate either with struc-
tural conservation. Most values cluster between -5 and
2.5 kT/e, even for active site pockets. However, this mea-
sure is probably the least conserved across the different
pockets of a given cluster. In fact, for 42.4% of the pocket
clusters included in the left panel of Figure 4, the stan-
dard deviation is larger than the average absolute value. It
appears that the pocket's electrostatic potential, as esti-
mated here, is largely protein specific, and that this mea-
sure is hard to extrapolate across the different proteins in
a family. Nevertheless, the values of electrostatic poten-
tial can still be used in refining the selection of pockets
for drug-screening procedures, given that drug-like
ligands may be easier to find for more neutral sites than
for strongly charged or polarized pockets [2]. These val-
ues could also be used to distinguish putative active sites
from allosteric sites in the lack of proper annotation (see
PIG-L below).

Biological examples
To complement the large-scale perspective presented
above we analyzed a few protein families in more detail.
The examples described below emphasize the relevance
of structural conservation in the study of allosteric and
functional protein pockets.

L-lactate dehydrogenase
L-lactate dehydrogenase (LDH) catalyzes the reduction of
pyruvate by NADH to L-lactate in the last step of glycoly-
sis. Certain bacterial LDHs, in contrast to their mamma-
lian counterparts, display allosteric regulation by fructose
1,6-bisphosphate (FBP) [36]. Iwata and co-workers solved
the structure of LDH ([PDB:1LTH]) in both active (R) and
inactive (T) states, co-crystallized with the allosteric acti-
vator [31]. The Ldh_1_C domain in the R state (relaxed or
active) of LDH is displayed in Figure 5A with the bound
allosteric activator and pocket clusters 1, 2 and 4, as cal-
culated for this family. Figures 5B-F show examples of
distinct member pockets matching cluster 1 in the LDH
protein family.

The active site in this protein matches pocket clusters 2
and 4. Both clusters are very well conserved at the
sequence level with, respectively, 92.1% and 77.8% of the
included pockets being significantly conserved. These
active-site pockets are also well conserved at the struc-
tural level: cluster 2 appears on 75.5% of the representa-
tive structures while cluster 4 appears on 65.3% and,
when considered together, at least one of them appears
on 94% of the protein family. Interestingly, the pocket
cluster with the highest structural conservation (cluster
1), corresponds to the allosteric site (Figure 5). In this
case the allosteric cluster covers the majority of represen-
tative structures for this family (89.8%). However, the
average sequence conservation signal is very low (-0.12)
and we found none of the 51 pockets included in this
cluster to be significantly conserved at the sequence level.
This means that an evolutionary analysis based purely on
sequence information would not find this site to be signif-

Figure 4 Electrostatic potential. Two-dimensional histograms comparing structural conservation and electrostatic potential for pocket clusters of 
the different families in the data set. The panels on the left display the values for pocket clusters 1 to 3 of 1,128 distinct protein families and the right 
panels show the distribution for clusters containing the majority of active sites for 229 protein families. These plots only include protein families with 
at least five representative structures.
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ically conserved, while the structure-based approach
points it out as the most conserved pocket in this protein
family.

The allosteric site cluster is remarkable in terms of flex-
ibility as well, with 81.2% of included pockets being sig-
nificantly rigid (see Methods). In the case of PDB entry
[PDB:1LTH], there is a clear difference in the global flexi-
bility values we calculated for the R (0.43) and T (-0.56)
structures of the protein, corresponding to the active and
inactive states, respectively. However, the allosteric site
pocket shows consistently low values, -0.52 and -0.93 for
R and T, respectively, with both pockets being signifi-
cantly rigid according to the statistical test (p-values of
0.0008 and 0.0012, respectively). The active site in
[PDB:1LTH] shows no significant differences in terms of
flexibility when compared to the rest of the structure,
although as expected, differences between the T and R
states are also observed. The rigidity of the active site
pockets through the whole family is not clear from the
data, as 69.4% and 25.7% of the pockets are significantly
rigid for clusters 2 and 4, respectively.

In the [PDB:1LTH] entry, the estimated electrostatic
potential for the allosteric and active site have different
values, with 1.22 and -8.09 kT/e, respectively, for the R
state and similar values for the T state (1.36 and -5.73 kT/

e respectively). This case matches the concept that active
sites may bind more polar or charged molecules, while
the allosteric site may bind more drug-like ligands [2].
When averaging these values over the corresponding
member pockets, the standard deviation is close in mag-
nitude to the values obtained, being 2.04 kT/e for the
allosteric site cluster and -3.73 kT/e for the active site
cluster 2. As discussed above, the electrostatic potential
estimations tend to vary largely from structure to struc-
ture and thus are hard to extrapolate across the different
proteins in a family.

Briefly, in this protein family we found the active site to
match expected characteristics of biologically relevant
pockets, being very well conserved both in terms of
sequence and structure. The allosteric site, despite being
very well conserved in terms of structure, does not
appear to be conserved at the sequence level.
ADP Ribosylation factor 1
ADP-ribosylation factors (ARFs) are essential and ubiqui-
tous in eukaryotes, being involved in vesicular transport
and functioning as activators of phospholipase D and
cholera toxin [37]. ARF activity is regulated by the bind-
ing and hydrolysis of GTP. The atomic structure
[PDB:1HUR] shows the allosteric regulator bound to the
protein [37], matching the position of cavity clusters 1

Figure 5 LDH pocket clusters. A) LDH structure ([PDB:1LTH], chain R, residues 150-317 which correspond to Pfam Ldh_1_C domain). Pocket clusters 
are displayed as the centers of mass of member pockets in 'spheres' representation (cluster 1: red, 2: green, 4: blue). The allosteric effector fructose 1,6-
bisphosphate is displayed in 'sticks' representation next to cluster 1. Clusters 2 and 4 match the active site of LDH, while cluster 1 matches the allosteric 
site. B) Member pocket of cluster 1, found in structure [PDB:1SOV]. The center of mass of the pocket is displayed in 'spheres' representation while the 
volume of the actual cavity is shown in 'mesh' representation, both in orange color. C) The member pocket displayed in 'B' is shown in its relative 
position to the allosteric site cluster 1. Cluster 1 is shown in semi-transparent red 'surface' representation, similar as in A). D) The cluster 1 member 
pocket of [PDB:1SOV] displayed in orange in its relative position to other member pockets of the same cluster 1. The member pocket in purple was 
predicted on structure [PDB:1MLD], while the blue 'sphere' represents the center of mass of the member pocket found in yet another structure 
([PDB:2A92]). F) Detail on the shape of the member pocket found in structure [PDB:2A92]. Structural orientations were kept constant (after protein 
backbone superimposition) to illustrate the varied shapes and volumes that member pockets of a single pocket cluster may display.
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and 3 as displayed in Figure 6. Both clusters matching the
allosteric site show high levels of structural and sequence
conservation as summarized in Table 2. These clusters
also tend to be rigid, with clusters 1 and 3 having 63.6%
and 76.9% of their pockets significantly rigid, respectively.

Cluster 1 matches the pyrophosphate group of GDP
and the Mg ion as displayed in Figure 6. This cluster cov-
ers 62.5% of the representative structures of this protein
family and we found all of the included pockets to be sig-
nificantly conserved at the sequence level. The numbers
for cluster 3 are similar, as 100% of its pockets are signifi-

cantly conserved at the sequence level and are detected
on 81.3% of the representative structures of this protein
family. This cluster matches the pyrimidine-imidazole
part of GDP as displayed in Figure 6.

We do not know the biological function, if any, of the
pockets represented by the rest of the clusters displayed
in Figure 6. Although cluster 2 shows a high level of struc-
tural conservation covering 87.5% of the family, the
pocket is not significantly conserved at the sequence
level. Another interesting cluster is number 5, which
appears on 93.8% of the structures and has a sequence
conservation of 100%. This cluster is also rigid, with 60%
of its pockets being significantly rigid, similarly to the
clusters matching the allosteric site. It is interesting that
cluster 4 shows almost half of its pockets to be signifi-
cantly rigid and the other half to be significantly flexible
as indicated by the values in Table 2. Initially we thought
that this could be related to co-crystallized ligands affect-
ing the flexibility of particular pockets through binding,
but none of the analyzed structures presented a ligand in
this position. We compared two structures correspond-
ing to this family, namely PDB entry [PDB:1Z6X] (where
the corresponding pocket is significantly flexible) and
[PDB:1FZQ] (where the pocket was found to be sig-nifi-
cantly rigid). The rigid pocket in [PDB:1FZQ] was located
next to an α-helix, while the same region in [PDB:1Z6X]
lacked secondary structure presenting a loop-like confor-
mation. It is remarkable that a pocket may be consistently
found in two structures of the same family in a region
with diverse secondary structure arrangements and levels
of local backbone flexibility. Given that flexibility plays an
important role in binding affinity [32], structurally con-
served pockets may present distinct binding dynamics
that can be exploited in the design of highly specific
drugs.

Prediction of allosteric sites
The idea that yet undiscovered allosteric sites may be
found in already solved structures has been mentioned in

Table 2: Arf pocket clusters. 

Cluster structural
conservation (%)

sequence
conservation (%)

% flexible % rigid

1 62.5 100.0 0.0 63.6

2 87.5 0.0 14.3 14.3

3 81.3 100.0 0.0 76.9

4 43.8 14.3 42.9 42.9

5 93.8 100.0 0.0 60.0

Properties of the principal pocket clusters of the Arf protein family. The structural conservation corresponds to the percentage of 
representative structures where a pocket of this cluster is present, the sequence conservation represents the percentage of pockets that are 
significantly conserved at the sequence level. The last two columns correspond to the percentages of significantly flexible or rigid pockets 
detected in the corresponding cluster.

Figure 6 Arf pocket clusters. Human ADP-Ribosylation factor 1 struc-
ture ([PDB:1HUR], chain A which corresponds to Pfam Arf domain). The 
first five pocket clusters of this protein family are displayed by showing 
the centers of mass of the member pockets in 'spheres' representation 
(cluster 1: red, 2: green, 3: orange, 4: blue, 5: purple). The allosteric acti-
vator GDP is displayed in 'sticks' representation next to cluster 1, the 
Mg ion is colored yellow. Cluster 1 matches the pyrophosphate group 
of GDP and cluster 3 matches the pyrimidine-imidazole region of the 
allosteric ligand.
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a review by Hardy and Wells [2], in which they show vari-
ous examples of previously undescribed allosteric sites
found by serendipity. This concept, along with the few
cases we examined in detail, prompted us to estimate the
number of putative allosteric sites that may be found in
the structural data set. We defined a simple estimator
that consisted in scanning the data set for pairs of pocket
clusters that are conserved at the structural level and are
at least 8 Å appart (centroids distance). We performed
this analysis on 1,128 protein families for which we had at
least 5 representative structures. The results are pre-
sented in Table 3. A surprisingly large percentage of pro-
tein families (90.6%) presents at least one pair of pocket
clusters that are both structurally conserved and at least 8
Å apart. A smaller fraction (54%) of protein families dis-
plays also a sequence conservation signal. If we also
require one of the pockets to match active site annota-
tions [38], the numbers are smaller but relatively large, i.e.
for the total of 258 protein families in the database with
an active site annotation, 207 (80.2%) present another
structurally conserved pocket that is located at a distance
of at least 8 Å.

For example, we found such a pair of pocket clusters on
the structures corresponding to the PIG-L Pfam family.
One of theses structures ([PDB:1Q7T]) corresponds to
MshB from Mycobacterium tuberculosis and is consid-
ered a potential therapeutic target [39]. This protein lacks
active site annotation in Pfam [38] or in the Catalytic Site
Atlas [27]. However, the group of Baker et al. localized
the active site when determining the protein's structure
[39]. The active site predicted by Baker and co-workers
matches cluster 2 in our predictions and is highly con-
served both at the structure (100%) and sequence (80%)
levels. Cluster 1 in this family is represented in all struc-
tures, although it shows no sign of sequence conserva-
tion. In the solved structure, it appears close to the
location of a ligand referred to as a crystallization artifact

[39]. Moreover, while the active-site-matching cluster
shows a strong average electrostatic potential of -7.89 kT/
e, cluster 1 presents a much more neutral average value of
-1.23 kT/e. Cluster 3 presents also high levels of struc-
tural conservation (80%) and, in addition, of sequence
level conservation (75%). Both clusters 1 and 3 would be
interesting candidates for virtual screening in the search
for an allosteric effector ligand.

On the large-scale perspective, the large amounts of
putative allosteric sites we have counted may be an over-
estimation. Many of these cases may represent pockets
that are merely the consequence of structural or func-
tional requirements in other regions of the protein. It
would be interesting to test for functional links between
these regions [8,11]. However, many protein families do
not necessarily perform functions that are associated to a
certain pocket, such as the ADP Ribosylation factor dis-
cussed above. In these cases, it would not be necessary to
find a pair of conserved pockets at a certain distance,
since the regulatory site may be a pocket while the pro-
tein activity itself may not take place via such a structural
feature.

Conclusions
We have developed a simple methodology to estimate the
structural conservation of protein pockets, based on their
position and size, and have applied it to the large amount
of publicly available structural data, covering 4,258 dis-
tinct protein families and 22,312 protein structures. The
analysis reported here indicates that the presence of
structurally conserved pockets is a common feature
across protein families and, in some cases, is accompa-
nied by distinctive pocket characteristics in terms of
sequence conservation, flexibility or electrostatic poten-
tial. Although correlations between the latter properties
and structural conservation appear to be low in general,
there is, as expected, a higher correlation between pocket

Table 3: Pairs of conserved distant pocket clusters, allosteric sites prediction. 

Conservation thresholds (%) # protein
families

structural sequence total sequence
conserved*

active site match both

50 50 1,022 614 207 165

50 75 1,022 484 207 136

75 50 434 264 93 76

75 75 434 207 93 61

Protein families for which we found a pair of structurally conserved pocket clusters at least 8 Å appart of each other. We used 50% and 75% 
as the structural conservation thresholds for each pocket cluster in each pair combined as shown in the first column with the sequence 
conservation threshold. *At least one of the pocket clusters was found to have at least 50% or 75% of its pockets significantly conserved at 
the sequence level. These results cover 1,128 protein families for which we had at least 5 representative structures.
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structure and sequence conservation for active sites than
for other types of annotated or putative ligand-binding
pockets. Conserved pockets that lack annotation may
represent new opportunities for drug discovery
approaches such as virtual screening. In antimicrobial-
discovery projects, for example, knowledge of the extent
to which a putative ligand-binding site is present across a
given protein family (i.e. orthologous proteins in a range
of species or genuses) can be applied to the design of
broad-spectrum drugs, as well as in dealing with drug
toxicity, given that an ideal binding site for an antimicro-
bial would be present in proteins across many pathogenic
species but not in a human homolog. In turn, additional
pocket properties such as those considered here may be
used for fine selection among pockets with the required
level of structural conservation. Thus, we have shown
specific examples illustrating that sequence conservation
and electrostatic potential may be in some instances used
to distinguish active sites from allosteric sites, the latter
having a lower sequence-conservation signal and a more
neutral potential in these examples. The data generated
in this study is available upon request.

Methods
Structural data set
We organized the large number of structures available at
the Protein Data Bank (PDB) [14] in protein families by
querying all protein sequences, derived from the atomic
coordinates of PDB entries, against the Pfam database
(release 23.0) [26]. We performed all sequence-based
queries by means of the HMMER software suite [40].

To ensure the quality of the structural data and its rele-
vance to our study, we applied a set of filtering criteria.
We evaluated the stereochemistry of protein structures
using the PROCHECK program [41] and removed from
our data set entries with a G-Factor value lower than -
1.00. In the case of structures solved by crystallographic
techniques, we also required a resolution of at least 3.0 Å.
Entries not solved by Nuclear Magnetic Resonance
(NMR) lacking a resolution value were discarded, inde-
pendently of the technique used. We also discarded Pfam
entries of type 'Motif ' or 'Repeat', keeping only types
'Family' and 'Domain' that were assigned to structural
regions spanning at least 30 residues.

All structures in our data set were parsed and organized
according to the Pfam entry they were assigned to. How-
ever, given the bias present in the PDB [28], a protein
family would be poorly represented by a redundant set
containing all related structures. To partially remediate
this, we clustered the structures in each Pfam entry
according to sequence identity (95%) using complete-
linkage hierarchical clustering. For each of the obtained
clusters, the structure with the best resolution was cho-
sen as the group representative.

Predicting ligand-binding pockets at the protein-family 
level
To compare the spatial positions of potential ligand-bind-
ing pockets in different structures of the same protein
family, we first superimposed the representative struc-
tures to a common reference by means of the MAM-
MOTH program [29]. The protein with the longest
sequence in the family was taken as reference for the
structural fit. If length alone failed to select a single refer-
ence structure, we used resolution as the second selection
parameter.

We proceeded to predict putative ligand-binding pock-
ets on the fitted structures using the LIGSITEcs program
[19]. Residues were assigned to pockets according to a
common distance criterion, which includes all residues
within 8 Å of the pre-calculated pocket's center of mass
[19]. Note that the standalone version of the LIGSITEcs
program we used is different from the LIGSITEcsc ver-
sion also mentioned in [19], as the former does not incor-
porate residue conservation as a parameter.

At this point, for each protein family we had a group of
superimposed representative protein structures for which
the location of putative ligand-binding pockets had been
predicted. We then grouped together pockets found con-
sistently in the same position in different representative
structures of the same protein family using the clustering
method described below. The calculated clusters were
finally ranked according to the average size of their mem-
ber pockets and the percentage number of family repre-
sentatives featuring the pocket (coverage).

Clustering of pockets
We clustered putative ligand-binding pockets found in
different representative structures, previously superim-
posed, of a protein family using a modified version of a
previously described clustering algorithm [42]. In this
case, the elements to cluster are the centers of mass of
pockets and the metric used to define distances between
elements is the Euclidean distance. The clustering algo-
rithm makes no distinction between pockets belonging to
different, superimposed structures or to the same struc-
ture. Given that the degree of structural diversity among
representatives of a protein family varies across protein
families, the threshold to the metric for the definition of
neighbor elements was chosen to be family specific, as
described in the Results section. Unlike the previous
implementation of the algorithm, cluster selection is not
made by straight neighbor counting but by the sum of
neighbor pocket sizes, as predicted by LIGSITEcs [19].

The algorithm outline is as follows: (1) the center of
mass of each predicted pocket (element) in the set of rep-
resentative structures of a protein family is assigned a
parameter corresponding to the size of the pocket; (2) the
Euclidean distance between every pair of elements is cal-



Panjkovich and Daura BMC Structural Biology 2010, 10:9
http://www.biomedcentral.com/1472-6807/10/9

Page 12 of 14

culated; (3) a threshold distance is applied to identify the
neighbors of each element in the family; (4) each element
is scored by the sum of its size parameter with those of all
its neighbors; (5) the element with the highest score is
chosen as the center of a cluster, which is formed by all its
neighbors; (6) the members of the selected cluster are
removed from the pool of elements and the procedure is
repeated until the pool is empty; (7) clusters are ranked
according to their score, calculated as

where Scorec is the cluster's score, nc is the number of
pockets in the cluster, sizei is the size of member pocket i
and Strc is the cluster's coverage of the protein family or
structural conservation, as described in Results. Strc is
computed by

where m is the total number of representative struc-
tures for the corresponding protein family and nr is the
number of representative structures with at least one
pocket present in the cluster.

Sequence conservation
There are multiple methods to estimate sequence conser-
vation starting from a multiple sequence alignment
(MSA) [30]. We estimated the degree of positional con-
servation for every residue in our structure data set by the
following procedure: (1) We aligned all sequences in the
Pfam 'full' MSA [26] using the HMMALIGN program
[40] and the corresponding HMM profile. (2) We com-
puted the entropy of each position of the alignment by
means of the AL2CO program [30], activating the pro-
gram option that weights each sequence to partially com-
pensate MSA composition bias [43]. (3) The entropy
values for each position in the MSA were inverted (higher
score means higher degree of conservation) and normal-
ized by the observed standard deviation. (4) For each
Pfam entry we stored the conservation scores obtained
using the HMM profile positions as a reference. (5) We
aligned each of our structures to the corresponding
HMM profile and assigned the previously computed con-
servation scores to each residue.

To test if a pocket was significantly conserved at the
sequence level, we compared the sequence conservation
values obtained for all the residues within 8 Å of the cen-
ter of mass of the pocket with those for all residues in the

structure by applying the Wilcoxon-Mann-Whitney non-
parametric test. We defined as significant those cases
where the p-value <= 0.05.

Electrostatic potential
We estimated the electrostatic protential at the center of
mass of the protein ligand-binding pockets by means of
the DELPHI software suite [35], which provides finite-
difference solutions to the Poisson-Boltzmann equation.
First, we added hydrogen atoms to each structure in our
data set using the REDUCE program [44], then pro-
ceeded to estimate the electrostatic potential by means of
the DELPHI program, with default parameters.

Protein backbone flexibility
We estimated protein backbone flexibility from normal-
ized B factors as previously described [21,22,45]. For each
Cα atom in the structure, the flexibility is equivalent to its
B factor after normalization by equation 3.

where < B >is the average over all Cα atoms in the
structure and σ (B) is the standard deviation. We then
define a residue's relative backbone flexibility as the B'
value of its Cα.

For NMR entries, which lack B factors, we calculated
the root-mean-square fluctuation (RMSF) of each Cα
atom over the ensemble of NMR models [46]. RMSF val-
ues may be in turn converted to pseudo B factors [47], by

We tested for pockets that differed significantly from
the complete structures in terms of their flexibility. For
each pocket in each structure, we compared the values
obtained for residues within 8 Å of the center of mass of
the pocket to those for all residues in the structure by
applying the Wilcoxon-Mann-Whitney non-parametric
test. If the values for the pocket were significantly higher,
we marked the pocket as 'flexible' and if they were signifi-
cantly lower, we marked the pocket as 'rigid'. We defined
as significant those cases where the p-value <= 0.05.

Mapping active site residues to pockets
Active-site residue predictions by Pfam [38] usually
involve between one and three residues. We combined
this sequence level information with the structural pre-
diction of pockets on protein structures by mapping
active sites to predicted pockets. For each structure, we
marked as active site the pocket that included the major-
ity of predicted active site residues.
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In many cases, more than a single pocket contained one
or more active site residues. We marked these cases as
ambiguous, to distinguish them from cases where the
mapping was unambiguous, i.e. all active site residues
contained in a single pocket.
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3.3 Exploiting protein flexibility to predict allosteric sites

Once we finished the large-scale study, we started to compile a data-set of structurally known
allosteric proteins. This task was not trivial because the allosteric term is used quite freely across
the literature (particularly in crystallographic articles) and we decided to skip protein structures
for which there was no experimental proof or measure of a significant change in activity upon
ligand binding. Moreover, authors may refer to protein-protein interactions, peptides and DNA
as allosteric ligands and the definition is further extended to include phosphorylation and other
post-translational modifications as allosteric effectors. During this work we preferred to focus
on small-molecule ligands, given that these should be more straighforward to mimick using
drug-like molecules. Following the same reasoning, we also skipped single atom effectors such
as Calcium and other ions. After spending months parsing the literature we built a database
containing structurally known allosteric proteins. However, our database was denied publication
because a few weeks after submission, the AlloSteric Database (ASD) (Huang et al., 2011) was
published. We continued to work by parsing and incorporating the data available at ASD. In
total we gathered 91 distinct allosteric protein structures for which the location and nature of
the allosteric ligand was known.

As explained in the introduction, changes in protein flexibility caused by the binding of
the allosteric effector is considered one of the most common mechanisms behind allostery. We
attempted to capture such phenomena by utilizing normal mode analysis (NMA), which is a
simplified approach to study protein dynamics. The work described in this second article (Pan-
jkovich and Daura, 2012) consists in two major experiments. In the first one, we assessed the
relevance of allosteric effector presence on the overall protein dynamics. For 70% of our data
set, the presence of the allosteric ligand exerted a significant difference on the overall protein
flexibility according to our analysis. We were surprised that a simplified computational approach
could detect an allosteric effect on the majority of the cases. It is important to note that not
all allosteric mechanisms are necessarily expected to function through a shift in overall protein
dynamics. For example, the allosteric ligand may enhance the connecting interfaces of monomers
to allow the formation of a higher order active complex as in the case of GTP cyclohydrolase
stimulatory complex (Maita et al., 2002).

The second part of the article describes how we combined our previous findings into a more
applied goal. We tested the possibility of predicting the location and presence of allosteric sites
by querying the putative ligand-binding sites on the protein structure through NMA. Basically,
if a simplified representation of the ligand in that particular pocket exerted an overall effect on
the flexibility of the protein (as compared to the unbounded or apo state) this would indicate
a high chance of the pocket being an allosteric site, in a similar way as it was done previously
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by others (Ming and Wall, 2006; Mitternacht and Berezovsky, 2011). We conducted this test
on 58 proteins (we skipped those where the initial binding pocket prediction done by LIGSITE
(Huang and Schroeder, 2006) did not match the allosteric site) obtaining 0.76 accuracy and
doubling the positive predictive value (PPV) of a random approach. The performance increased
when we combined this approach with our previously described structural conservation measure.
When we used a stricter set of parameters (limiting the order of pockets analyzed) we obtained
0.65 PPV and 0.89 accuracy; however, the method is far from being a perfect predictor since
sensitivity fell to 0.22. The detailed statistics of the predictions are displayed in Table 1 of the
second article (Panjkovich and Daura, 2012).

Following the pattern established in the first article, we analyzed the application of the
approach on a few proteins in more detail. HIV reverse transcriptase illustrates an intuitive case
of correct allosteric-site prediction. Our method succeeds at locating the allosteric site in the
hinge of the structure. Such a location is ideal to understand the underlying principle of the
approach. The hinge connects two globular domains under fluctuation. A ligand able to bind
this region will most probably perturb the dynamics of this protein by creating new interactions
between the domains, thus affecting their rate of movement and in turn the activity rate. The
details about the prediction on this structure can be seen in Figure 5 of the second included
article (Panjkovich and Daura, 2012).

Out of the four cases analyzed in detail in the article, L-lactate dehydrogenase (LDH) is
particulary interesting. The protein analyzed belongs to Bifidobacterium longum and illustrates
previously mentioned advantages of allosteric drug-design over classic orthosteric approaches.
This protein is known to be allosterically regulated in Gram-positive organisms at the predicted
site. However, the homolog protein present in higher order organisms, including human, is
not sensitive to allosteric regulation. Furthermore, this protein was used as an example in the
previous article as well (Panjkovich and Daura, 2010) because the allosteric site shows a high
degree of structural conservation but lacks any signal of conservation at the sequence level. As
such, this allosteric site poses an ideal target for antibacterial development. A drug targeting
this site would not bind the human homolog protein because the actual residues forming it
differ significantly, which would drastically diminish any toxic or side effects on the patient.
Moreover, even if the drug would bind the same site on the human protein, it would hardly
exert any regulatory effect since the human homolog is not sensible to allosteric regulation. In
line with this, our method predicted that binding the same pocket on the human LDH would
not have a significant effect. Further details are available in the second article and the protein
structure is displayed in its Figure 6 (Panjkovich and Daura, 2012). Overall, it is remarkable
that a method based on a coarse-grained approximation to protein dynamics and a measure of
structural conservation achieved such precise results. Furthermore, the method is quick in its
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execution, a standard run on a monomeric protein of 300 residues will take around 2 minutes,
while a large protein (500 residues) will be done in 6 minutes. Even though calculation times
increase exponentially with the number of residues, considerably larger systems can be processed
within reasonable time; for example, a protein of 1000 residues will be analyzed within 45 minutes.
This makes the approach ideal for scanning large sets of protein structures, particularly in the
case of structural genomics projects where protein structures are solved for which function and
other biological information is unknown (Laskowski and Thornton, 2008).
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Exploiting protein flexibility to predict the
location of allosteric sites
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Abstract
Background: Allostery is one of the most powerful and common ways of regulation of protein activity. However, for
most allosteric proteins identified to date the mechanistic details of allosteric modulation are not yet well understood.
Uncovering commonmechanistic patterns underlying allostery would allow not only a better academic understanding
of the phenomena, but it would also streamline the design of novel therapeutic solutions. This relatively unexplored
therapeutic potential and the putative advantages of allosteric drugs over classical active-site inhibitors fuel the
attention allosteric-drug research is receiving at present. A first step to harness the regulatory potential and versatility
of allosteric sites, in the context of drug-discovery and design, would be to detect or predict their presence and
location. In this article, we describe a simple computational approach, based on the effect allosteric ligands exert on
protein flexibility upon binding, to predict the existence and position of allosteric sites on a given protein structure.

Results: By querying the literature and a recently available database of allosteric sites, we gathered 213 allosteric
proteins with structural information that we further filtered into a non-redundant set of 91 proteins. We performed
normal-mode analysis and observed significant changes in protein flexibility upon allosteric-ligand binding in 70% of
the cases. These results agree with the current view that allosteric mechanisms are in many cases governed by changes
in protein dynamics caused by ligand binding. Furthermore, we implemented an approach that achieves 65% positive
predictive value in identifying allosteric sites within the set of predicted cavities of a protein (stricter parameters set,
0.22 sensitivity), by combining the current analysis on dynamics with previous results on structural conservation of
allosteric sites. We also analyzed four biological examples in detail, revealing that this simple coarse-grained
methodology is able to capture the effects triggered by allosteric ligands already described in the literature.

Conclusions: We introduce a simple computational approach to predict the presence and position of allosteric sites
in a protein based on the analysis of changes in protein normal modes upon the binding of a coarse-grained ligand at
predicted cavities. Its performance has been demonstrated using a newly curated non-redundant set of 91 proteins
with reported allosteric properties. The software developed in this work is available upon request from the authors.

Background
Proteins can be regarded as the functional building blocks
of life, carrying out and coordinating almost all biological
processes. Tight regulation of these processes is funda-
mental in all kingdoms of life and allostery represents one
of the most commmon and powerful means of modulat-
ing protein activity [1]. Allostery can be defined as the
regulation of a protein’s function by binding of an effector
molecule at a site which is not the active site. Its relevance

*Correspondence: xavier.daura@uab.cat
1Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de
Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
2Catalan Institution for Research and Advanced Studies (ICREA), 08010
Barcelona, Spain

was emphasized decades ago by Jacques Monod, when
he referred to allosteric regulation as the ‘second secret
of life’, second only to the genetic code [2]. Even though
allostery and its often intrincate nature have captured
the interest of researchers since the initial discoveries
more than half a century ago (for a review see [3]), most
allosteric mechanisms are still not completely understood
[1]. At present, allosteric phenomena are being intensively
studied for their potential as target mechanisms for the
development of new classes of therapeutics [4].
Expanding drug-design through allostery opens up an

unexplored territory of novel potential therapeutic solu-
tions, beyond what has been already covered by the
classic, active-site oriented drug-development approach.

© 2012 Panjkovich and Daura; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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An important factor fueling interest in allosteric drugs
consists in their characteristic advantages compared to
traditional active-site inhibitors. For example, allosteric
sites tend to be under lower sequence-conservation pres-
sure than active sites, facilitating the design of highly
specific drugs and reducing the risks of toxicity or side-
effects [5-7]. To explain this briefly, if the pathogen’s
active site is very well conserved in nature it may share
important structural features with the human homo-
logue, which could be then bound and inhibited as well
by the antimicrobial drug causing toxic side-effects on
the patient. Thus, lower levels of evolutionary conser-
vation at ligand-binding sites may allow for more selec-
tive drugs. Furthermore, allosteric drugs may not only
inhibit but also increase target-protein activity, enabling
novel therapeutic possibilites as seen for example in the
activation of glucokinase by allosteric drugs, a potential
treatment for type 2 diabetes mellitus [8,9]. On the same
line, traditional drugs may be complemented by allosteric
effectors, as observed in the case of aminoglycoside phos-
photransferase where a previously unknown binding site
could be exploited to allosterically counteract antibiotic
resistance [10].
However, the field of allosteric-drug design is rather

young and the amount of allosteric drugs known today is
still marginal [7]. For example, at the time of this writing
a query in DrugBank [11] for the term ‘allosteric’ returns
7 results, while ‘inhibition’ returns 483 entries. This may
be in part due to the intrinsic difficulties in understand-
ing allosteric mechanisms and to the lack of systematic
studies on the topic [12]. Only recently the first initia-
tive to store and organize information on allosteric cases
has surfaced in the form of the AlloSteric Database (ASD)
[13]. By browsing ASD it becomes apparent that part of
the difficulty in studying allosteric systems lies in the large
degree of variety found among them, as there are many
ways in which protein activity can be affected alloster-
ically [12,14]. A textbook example is the one provided
by glucose-induced glucokinase, in which the ligand trig-
gers a conformational change allowing the active site to
become functional [15]. In other cases the presence of
the allosteric ligand triggers the formation of the bio-
logically active protein complex (e.g. GTP cyclohydrolase
stimulatory complex [16]). A protein illustrating the vari-
ety and complexity allosteric mechanisms may reach is
ribonucleotide reductase. This protein presents two dif-
ferent allosteric sites: one affects the enzyme catalytic rate
and the other alters its specificity allowing the enzyme
to switch substrates [17]. Furthermore, allosteric signals
may also propagate solely by altering protein dynamics,
without a detectable conformational change [18,19].
In the context of such diversity, unveiling common

patterns beneath allosteric phenomena could increase
their potential for therapeutic exploitation, stimulating

the design of allosteric drugs. We postulate that the first
step in such a procedure would be to computationally
detect or predict the presence and location of protein
allosteric sites, to allow further focusing of drug-screening
processes on selected protein targets down the pipeline.
The algorithm should be able to pinpoint which proteins
are sensible to allosteric regulation. However, if as already
suggested any dynamic protein has the potential to be
regulated allosterically [20], then the method should indi-
cate the location of putative allosteric sites on the protein.
Based solely on sequence, it would be very hard to pre-
dict the location of allosteric sites as it has been done
by homology on active sites [21,22], because the evolu-
tionary pressure for sequence conservation on allosteric
sites is generally much lower and harder to detect, if at all
present [3,23].
Until now, much of the research in the field has

been focusing on the conformational changes induced
by allosteric signals. The group of Jeffrey Gray studied
conformational changes upon allosteric activation [24]
and expanded this research by analysing the networks of
quaternary and tertiary motions on which allosteric com-
munication relies [25]. Following a similar line, a very
interesting and thorough study was published where dif-
ferent parameters were interrogated in terms of their
potential to indicate which protein residues are involved
in transmitting the allosteric signal, on the basis of experi-
mental mutation data [26]. The results from these analyses
aim at defining the particular pathway of residues that
mediate the allosteric communication. However, other
authors have argued that this may not be the case in vivo,
where multiple effector sites may be present on the pro-
tein acting through multiple signaling pathways [27]. In
general, recent studies aggree in the idea that allostery is
mainly a thermodynamic process and among the different
protein properties that are involved in allosteric phenom-
ena, flexibility (i.e. protein dynamics) stands out as the
most significant one [3,28-31].
Following this line of thought, Ming and Wall devel-

oped a theoretical framework to study allosteric effects by
comparing the dynamics of bound and unbound protein-
ligand pairs [32]. They further refined their methodology
and tested its ability to predict functional ligand-binding
sites (not necessarily linked to allosterism) on a set of 305
protein-ligand complexes of known structure [33]. Very
recently, two other approaches partially aiming at predict-
ing allosteric sites have been published by Mitternacht
and coworkers. In a first article they describe a geomet-
ric measure that helps at locating biologically functional
ligand-binding sites, while a second one describes a more
elaborate measure called ‘binding leverage’, related to
protein dynamics, which appears useful at locating bio-
logically relevant binding sites including allosteric sites.
They tested this last feature on 15 allosteric proteins
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[34,35], observing different results for specific proteins
and concluding that regulatory sites may be identified
without previous experimental knowledge on conforma-
tional changes. However, these studies were not com-
pletely focused on allosteric sites and did not benefit from
the larger data set now available at ASD [13].
Even though the previously cited articles represent an

important step forward in the understanding of allostery,
we consider that further research is needed if allosteric
sites are to be predicted with the same coverage and pre-
cision as active sites [21,22]. The first thing we did in
this direction was to integrate more than one hundred
allosteric entries available at ASD. Among the multiple
allosteric mechanisms known and the different effectors
(other proteins, small-molecules, phosphorylation, etc),
we chose to focus on small-molecule ligands, as these are
the best candidates to be mimicked by therapeutic drugs
[4,14]. Moreover, the approach presented here is based
on the idea that changes in protein flexibility upon ligand
binding can be related to allosteric and regulatory effects
[1,24,36-38]. A simple computational way to estimate pro-
tein structural flexibility is the use of Normal Mode Anal-
ysis (NMA) [32,35,38,39]. In this case, however, we were
not interested in measuring absolute flexibility values but
the change in flexibility that occurs when a ligand binds
to the protein structure in a particular location, in a sim-
ilar fashion to the approach developed by Ming and Wall
[32]. Once we had gathered and filtered allosteric pro-
teins of known structure, we tested if changes in flexibility
could be linked to the presence of the allosteric ligand.
Experiments were performed using different molecular
representations of the small-molecule ligands, and across
different ranges of normal modes. Moreover, as a con-
trol we simulated the presence of ligands in alternative
binding sites. This helped in parameterizing the method-
ology and made it applicable to cases where there is no a
priori knowledge on the allostery the protein may present.
Besides evaluating the overall results on a set of allosteric
proteins, we took a closer look into particularly interesting
cases.

Results and discussion
Gathering structural data on allosteric sites
To study allosteric sites from a structural perspective we
first gathered the available data. We started by integrat-
ing the 146 allosteric site entries that were, at the time of
this writing, annotated in the AlloSteric Database (ASD)
[13] with another 72 allostery examples we had previously
found in the literature. We proceeded to filter and clus-
ter the data set as described in the Methods section to
avoid overrepresentation [40] and low quality structures,
turning the inital 213 cases into a total of 91 representa-
tive proteins where both the structure and location of the
allosteric ligand are known.

Allosteric-ligand presence affects protein flexibility
Our first experiment aimed at quantifying the number of
proteins in our data set that undergo a significant change
in flexibility when the allosteric ligand is bound. However,
known allostery cases show large diversity in their mech-
anisms [12] and we did not expect a positive result on the
complete data set, since in many cases the allosteric effect
may not be primarily driven by changes in local or overall
flexibility but specific conformational changes, oligomer-
ization or other mechanisms may be more relevant [41].
As explained in the Background section, we have cho-

sen to estimate flexibility using Normal Mode Analysis
(NMA). When applying NMA, calculated low-frequency
modes reflect large collective oscillations of the pro-
tein structure and high-frequency modes reflect small
local fluctuations [39]. Even though for most cases it has
been shown that low-frequency normal modes are better
descriptors of allosteric effects [42], we made no a priori
assumption on the set of normal modes that would be
more appropriate to detect an allosteric effect upon lig-
and binding for the ample protein set studied here. Thus,
we decided to explore this parameter by using different
ranges of normal modes, as described in the Methods
section.
We used the calculated normal modes to predict

B-factors [39], as this is a standard quantity for the esti-
mation of protein flexibility [38]. Briefly, NMA calcula-
tions were performed for proteins in our data set both
in the presence and absence of the allosteric ligand. For
each protein, Cα B-factors derived from both conditions
were compared and considered to be significantly dif-
ferent if the Wilcoxon-Mann-Whitney test returned a
p-value < 0.05.
The results are displayed in Figure 1 and show that for

the majority of the data set protein flexibility is signif-
icantly affected by the presence of the allosteric ligand.
For most cases the effect was only observed when low-
frequency normal modes were considered, as expected
[35]. However, there are exceptions like the ribonucleotide
reductase from Thermotoga maritima ([PDB:1XJF]), for
which the allosteric effect has been described to be related
to the local stabilization of three loops in the structure
[4,17] and was captured only by high-frequency normal
modes in our calculations.

Effect of ligand representation on the NMA results
We performed a second experiment to measure how dif-
ferent the results from this approach would be if we used
a simplified molecular representation instead of the full-
atom ligand, given the fact that knowledge on the ligand
structure may not always be available. Moreover, a pre-
dictive approach that does not require information on
the ligand molecule has a much larger field of application
(e.g. structural genomics) paving the way for the discovery
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Figure 1 Ligand simulation. Identification of changes in flexibility upon ligand binding when using different ligand representations. Normal-mode
range X-Y corresponds to the initial X modes being skipped and the next Y modes being taken into account.

of novel and pharmacologically interesting allosteric sites.
Another interesting possibility that would open up is the
detection of serendipitous allosteric sites, which despite
having no natural ligand effectively become an allosteric
site given the presence of an appropriate ‘opportunistic’
ligand [1].
We tested two representations of ligands: a single

dummy atom located at the ligand geometric center and a
set of 6 dummy atoms located at the vertices of an octa-
hedron around the geometric center, as explained in the
Methods section.
Figure 1 shows that for most cases the single dummy

atom at the ligand geometric center is not able to trigger
a significant change in flexibility during the simulations,
while the octahedron exerts an effect much closer to that
of the full-atom ligand. From a methodological point of
view, simulating ligands in a simplified form allowed us to
perform control experiments which are described below.

Predicting ligand-binding pockets and selection of normal
mode range
To further develop a predictive approach, we used the
LIGSITEcs program [43] to predict the putative ligand-
binding sites on the protein structure. Different programs
are available for this task with very good performance
in general as shown in recent reviews [44-46]. We chose
LIGSITEcs because pockets are predicted based only on
the shape of the protein surface; programs incorporating
more parameters (e.g. evolutionary conservation, drugga-
bility) could have improved but also biased our results.
We predicted the location of up to 8 ligand-binding

pockets per protein and performed NMA to check if any
of the predicted pockets had a significant effect upon pro-
tein flexibility when occupied by a small-molecule ligand,
as described in the Methods section.
A pocket that presents no ligand (i.e. appears empty

in the original structure) may nevertheless display a

significant change in overall flexibility if occupied by a lig-
and representation when performing the normal-modes
calculation. It would be wrong to consider this directly an
error, since native ligands may exist that bind this pocket
even if there is none present in the particular experimental
structure under study. A few examples are mentioned in
the next section, where we found pockets that affect pro-
tein flexibility and, although they are indeed not allosteric
sites, they are active sites or other biologically relevant
sites. Nevertheless, to guide the definition of the model
we needed an error propensity estimate for the different
parameters tested, i.e. range of normal modes and ligand
molecular representation. If all pockets predicted on the
protein surface would be found to affect significantly the
flexibility, the corresponding parameters would be render-
ing the method too sensitive (low specificity) and prone
to present false positives. Based on this argument, we
estimated error propensity (ep) for each range of nor-
mal modes and the two ligand representations using the
following ad hoc equation:

ep = p7 + p8 + 1
p1 + p2 + 1 (1)

where px is the number of cases in which x pockets were
predicted to be significantly affecting the overall protein
flexibility. Note that this equation does not formally stand
for an error but simply gives an idea of the likelihood of
having false positives. The results are displayed in Figure 2
and show that the octahedron representation, combined
with the lowest frequency normal modes, leads to a higher
specificity (lower number of pockets significantly affect-
ing overall dynamics) than the single dummy atom at the
geometric center. We then decided to continue our work
using the octahedron representation of ligands together
with normal modes in the range 6-20.
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Figure 2 Error propensity estimation. Ratios between the number of cases with 1 or 2 significant pockets and the number of cases with 7 or 8
significant pockets. Normal-mode range X-Y corresponds to the initial X modes being skipped and the next Y modes being taken into account.

Overall performance when predicting allosteric sites
At the time of this writing, no large-scale study attempt-
ing the prediction of the allosteric-site location in known
allosteric proteins has been published. Recent work
by Demerdash and coworkers aimed at predicting the
residues involved in the propagation of allosteric sig-
nals within a protein structure for a set of 16 different
proteins [26]. Quite distinctly, our method follows a drug-
discovery oriented approach where the intention is to pin-
point specific protein pockets that present a high potential
for affecting biological function. From that perspective
our method is comparable to the one developed by Ming
and Wall for finding functional sites, as it exploits NMA
to assess the differences in flexibility between ligand-
bound and unbound states of a protein [33,47]. However,
their approach differs from ours in multiple major points,
including the sampling of protein sites, the parametriza-
tion of probes and of their interaction with the protein and
the approach by which the perturbation of protein dynam-
ics is assessed. The method described in this paper is also
similar to the approach recently published by Mitternacht
and coworkers, where they measured the ‘binding lever-
age’, or ability of a binding site to couple to the intrinsic
motions of a protein, on a set of 15 allosteric proteins [35].
In this context, any pocket with a biological regulatory

role would be suited for the analysis, but we chose to
focus on allosteric sites since these are possibly the most
interesting, albeit complex, regulatory sites to approach.
Starting from a data set containing 91 proteins, we mea-
sured the rate of success of our approach to identify
allosteric sites as follows. First, we discarded a total of 33
proteins for which no single LIGSITEcs predicted pocket
matched the allosteric site, leaving a total of 58 cases to
work with (63,7%). The rational for discarding these pro-
teins is that the present analysis is not concerned with
the ability of a specific program to detect a cavity but

with the ability of our approach to identify the cavity,
among those detected, that corresponds to the allosteric
site. Indeed, it has been previously observed that not all
allosteric sites are predicted to be potential ligand-binding
cavities by common algorithms [35]. There can be differ-
ent reasons for this, for example the allosteric site may be
deeply buried in the protein, may display a planar shape or
be located at the interface of subunits, making it difficult
for the pocket-prediction algorithm to detect its presence.
A total of 464 pockets were predicted on the surface of

the 58 proteins (8 per protein). The chance of randomly
selecting an allosteric site is low, given that only 13% of
these pockets (one per protein) matched the location of
an allosteric site (i.e. its center less than 5 Å away from
the allosteric ligand; if more than one pocket matched the
ligand position within this cut-off, the closest was cho-
sen). After performing the analysis of normal modes, 117
pockets display a significant effect on the overall pro-
tein flexilibity upon ligand binding (set F in Table 1). The
chance of success (positive predictive value) more than
doubles with the incorporation of this analysis, with 27%
of these 117 pockets matching an allosteric site. Further-
more, we integrated these results with our previous work
on protein-pocket conservation by selecting pockets that
display at least 50% structural conservation, as defined
previously [23]. Interestingly, considering protein conser-
vation alone (set S in Table 1) results in a slightly lower
positive predictive value than considering only flexibil-
ity. While the two measures show the same specificity,
using the effect on flexibility as criterion leads to a slightly
higher sensitivity than using the structural-conservation
feature. The double-filtered set, combining the effect on
flexibility with a high structural conservation (set FS),
contains only 36 pockets, of which 15 (42%) match an
allosteric site (Table 1). This represents a nearly four times
larger positive predictive value than ‘random’ selection
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Table 1 Prediction results on protein allosteric sites

Set TP+FP TP FP FN Sensitivity Specificity Accuracy PPV

Total 464 58 406 0 1.00 0.00 0.13 0.13

F 117 32 85 26 0.55 0.79 0.76 0.27

S 108 24 84 34 0.41 0.79 0.75 0.22

FS 36 15 21 43 0.26 0.95 0.86 0.42

c123 174 44 130 14 0.76 0.68 0.69 0.25

c123F 74 29 45 29 0.50 0.89 0.84 0.39

c123S 55 22 33 36 0.38 0.92 0.85 0.40

c123FS 30 14 16 44 0.24 0.96 0.87 0.47

c1 58 26 32 32 0.45 0.92 0.86 0.45

c1F 42 22 20 36 0.38 0.95 0.88 0.52

c1S 25 15 10 43 0.26 0.98 0.89 0.60

c1FS 20 13 7 45 0.22 0.98 0.89 0.65

Results on this table refer to the subset of 58 proteins for which LIGSITEcs was able to predict a ligand-binding pocket in the position of the allosteric site. TP: true
positive; TN: true negative; FP: false positive; FN: false negative; PPV: positive predictive value. Sensitivity: TP/(TP+FN); specificity: TN/(TN+FP); accuracy:
(TP+TN)/(TP+FN+TN+FP); PPV or precision: TP/(TP+FP). The total number of pockets considered, predicted by LIGSITEcs , is 464 (8 per protein). F corresponds to sets
including a change in flexibility as selection criterion; S corresponds to sets including high structural conservation as selection criterion; c123 refers to sets considering
only the three largest pockets predicted by LIGSITEcs ; c1 refers to sets considering only the largest predicted pocket.

within the 464 identified cavities, at the expense of reduc-
ing further the sensitivity of the approach, i.e. decreasing
drastically the number of false positives but increasing
also the number of false negatives.
However, it will not be common to select up to

eight pockets per protein as potential allosteric sites. A
researcher working on a particular protein without a
priori knowledge on its regulatory mechanism will proba-
bly keep the first three largest pockets predicted by default
[43] or, as Thornton and coworkers explain for the case of
active sites [21], the largest pocket will usually be the best
bet. In those two scenarios, the tendency shown for the
complete set of predicted pockets is conserved (Table 1).
When keeping the first 3 pockets (set c123), the chance
to match an allosteric site (positive predictive value) goes
from 25% to 39% when using the flexibility criterion and
up to 47% when incorporating structural conservation as
well. Out of the 58 allosteric sites, however, 14 are not
found within the c123 set. Likewise, when selecting only
the first and largest pocket, the inital success rate goes
from 45% to 52% when considering the effect on flexibility
upon binding (set c1F) and to 65% when structural con-
servation is also required. Note that between sets FS and
c1FS the number of false positives decreases by three-fold,
while only two additional false negatives are added.
We considered only allosteric sites as desirable matches.

However, other pockets with biological functions were
matched by our criteria, as described further below
on a few particular examples. The performance of this
approach might be improvable using other pocket pre-
diction programs or a combination of them. However,
performance of pocket prediction methods does not vary

largely, as shown by a recent large-scale comparison [45].
Our study represents the largest test to date (58 non-
redundant proteins in complex with their corresponding
small-molecule allosteric ligands) proving the concept
that changes in overall flexibility upon ligand binding are
relevant identifiers for some allosteric sites, and these
effects can be captured in many cases with the simple
approach described here. In addition, we further show
(see also [23]) that evaluation of the structural conserva-
tion of the candidate pockets may contribute as much to
the identification of the allosteric site.

Biological examples
As mentioned in the Background section, allostery can
work through many different mechanisms. Thus, we con-
sider it important, besides the overall results presented
above, to explain the results for a few proteins in more
detail. The following section should help to better illus-
trate the relevance of incorporating a flexibility measure
when studying allosteric systems and predicting the loca-
tion of allosteric sites.

Glyceraldehyde 3-phosphate dehydrogenase
Aldehyde dehydrogenases (ALDH) are found across all
kingdoms of life. They play a vital role in multiple cel-
lular processes, including glycolysis, detoxification and
embryogenic development. A distinct family within the
ALDH superfamily consists of the non-phosphorylating
glyceraldehyde-3-phosphate dehydrogenases (GAPN),
which catalyze the phosphate-independent irreversible
oxidation of glyceraldehyde 3-phosphate (GAP) to 3-
phosphoglycerate using NAD(P) as a cosubstrate. Unlike
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other proteins in the GAPN family, the enzyme of the
hyperthermophilic Archaeum Thermoproteus tenax
(Tt-GAPN) is regulated by a set of inhibitors (NADH,
NADP(H) and ATP) and activators (AMP, ADP, glucose
1-phosphate and fructose 6-phosphate (F6P)) which
decrease or increase, respectively, the affinity for NAD.
This suggests that Tt-GAPN plays a crucial role in
regulating the carbohydrate catabolism in T. tenax [48].
All different activators bind to the same allosteric site,

which is locatedmore than 20 Å away from both the active
site and the cosubstrate-binding site of any monomer of
the tetramer [49]. The activator binding site is located at
the interface between the tetramerization domain and the
cosubstrate binding/catalytic domains. It is also observed
that the allosteric ligands are in direct contact with 3
or even four monomers in the protein complex, indicat-
ing a role in the stabilization of the complex. This role
probably combines with the detected effect on flexibility
to influence enzyme kinetics, as no large conformational
change is observed when comparing the ligand-bound
and ligand-free structures besides a rearrangement of the
tetramerization domain with respect to the cosubstrate
binding/catalytic domain [49].
In our analysis, PKT5 (the fifth largest pocket predicted)

matched the location of the allosteric effector F6P, as
shown in Figure 3. When a ligand was simulated occupy-
ing this pocket, using the octahedron representation, the

Figure 3 Glyceraldehyde 3-phosphate dehydrogenase. Predicted
pockets and ligands on Thermoproteus tenax glyceraldehyde
3-phosphate dehydrogenase (TtGAPN). Only a single protein
monomer is shown ([PDB:1UXR]). NADPH at the active site and
activator fructose-6-phosphate (F6P) at the allosteric site are shown in
‘sticks’ representation, while residues in red correspond to the CSA
[21] active site annotations. Predicted pockets (geometric centers) are
shown in ‘spheres’ representation, the pocket in orange color
affected protein flexibility significantly according to our simulations,
while yellow did not.

overall flexibility of the protein was significantly affected
on all ranges including the lowest frequency modes
(p-value <= 0.001). No other pocket presented the same
behaviour (Figure 3), not even the largest pocket (PKT1),
which matches the position of cofactor NADP. Given the
‘hinge-like’ position of the activator binding site and the
variety of ligands that it can accomodate, we consider this
case a good example to speculate that the actual posi-
tion of the ligand in the structure plays a major role in its
effect on the protein activity, beyond the particular chem-
ical properties of the ligand itself that may be important
for binding.

PDK1 kinase
PDK1 kinase is a key regulator of AGC kinases, which
play crucial roles in physiological processes relevant to
metabolism, growth, proliferation and survival [50]. This
protein is regulated allosterically by the binding of a
phosphopeptide which Biondi and coworkers managed to
mimic with a low-molecular-weight activator [51] and fur-
ther solved the structure of the complex [52]. As shown in
Figure 4, the largest pocket (PKT1) matches the binding
site of ATP. In our analysis, PKT1 affected protein flexibil-
ity significantly onmost normal-mode ranges. The second
largest pocket predicted (PKT2) matches the location of
the allosteric activator (PS48) at the HM/PIF binding site.
According to the analysis, based on the lowest-frequency
normal modes (6-5 range) PKT2 significantly affects over-
all protein flexibility if occupied by a ligand.
Another predicted pocket (PKT7), appears to signif-

icantly affect protein flexibility on most normal-mode
ranges when occupied during the NMA. This pocket

Figure 4 PDK1 kinase. Predicted pockets and ligands on PDK1
kinase ([PDB:3HRF]). Ligands (ATP, allosteric effector PS48) and the
modified residue phosphoserine (SEP) are shown in ‘sticks’
representation, residues in red correspond to the CSA [21] active site
annotations. Predicted pockets (geometric centers) are shown in
‘spheres’ representation, orange pockets affected protein flexibility
significantly according to our simulations, but yellow did not.
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is not occupied by any ligand in the original structure
([PDB:3HRF]), but it does match the position of a phos-
phoserine (SEP) in the activation loop of PDK1, as shown
in Figure 4. Also in this pocket, residue THR226 is con-
sidered a crucial element of the allosteric mechanism of
this protein, given that mutation of this residue inhibits
activation without inhibiting binding [52]. These results
indicate that stabilization of this protein region would
have an effect on the overall flexibility of the protein,
linking it to a regulatory function which correlates with
what has been observed previously based on deuterium
exchange and other experimental procedures [52]. The
other 5 pockets predicted on this structure were not found
to significantly affect protein flexibility.

HIV reverse transcriptase
Non-nucleoside reverse transcriptase inhibitors (NNR-
TIs) are key elements of the so-called HAART (Highly
Active Antiretroviral Therapy) multi-drug treatments
against HIV-1 infection. However, rapid mutation of HIV-
1 compromises the efficacy and durability of HAART.
This high mutation rate fuels the need to discover novel
agents with better activity profiles against HIV-1 reverse
transcriptase (RT) and its most common mutants. In this
context, Anthony and coworkers have developed sub-
stituted tetrahydroquinolines which are potent allosteric
inhibitors of HIV-1 RT and some of its key mutants [53].
In our normal-mode analysis the two significant pockets

matched the position of the allosteric ligands, as dis-
played in Figure 5. The allosteric site is located in a
‘hinge-like’ position between domains, a position which
has even been exploited for the engineering of regula-
tory sites as well [54]. A ligand bound in this position

Figure 5 HIV reverse transcriptase. Predicted pockets and ligands
on HIV reverse transcriptase ([PDB:3I0R]). Compound RT3 at the
allosteric site is shown in ‘sticks’ representation, while residues in red
correspond to the CSA [21] active site annotations. Predicted pockets
(geometric centers) are shown in ‘spheres’ representation, the pocket
in orange color affected protein flexibility significantly according to
our simulations, while yellow did not.

would easily perturb the low frequency modes of vibra-
tion of the protein, thus affecting its overall flexibility and
subsequently altering protein function. All other pock-
ets predicted on this structure were found not to affect
protein flexibility significantly, meaning that a hypotheti-
cal blind drug-design approach focused on the significant
pockets from the NMA would have been successful. This
is an excellent example showing that the combination of
pocket prediction and NMA may pinpoint the location
of the allosteric/regulatory site based solely on structural
data.

L-lactate dehydrogenase
When glycolysis takes place under anaerobic conditions,
pyruvate is reduced to L-lactate, a reaction that is cat-
alyzed by L-lactate dehydrogenase (LDH). In contrast
to their mammalian counterparts, some bacterial LDHs
display allosteric regulation by fructose 1,6-bisphosphate
(FBP) [55]. Iwata and co-workers solved the structure of
Bifidobacterium longum LDH in both active (R) and inac-
tive (T) states, co-crystallized with the allosteric activator
[56]. A significant difference can be observed between the
B-factors of both structures, suggesting an overall change
in flexibility being part of the allosteric mechanism.
We mentioned this protein in our previous work [23],

where we found the allosteric site to be structurally con-
served although no signal of sequence conservation was
found. In the current analysis, the only pocket that per-
turbed the overall flexibility of LDH when we simulated
the presence of a ligand was the second largest pocket
(PKT2), which is also the one closest to the allosteric site,
as displayed in Figure 6. We did not consider this case
as a ‘match’ in the large-scale results shown in Table 1
because the pocket geometric center is 6.6 Å away from
the allosteric ligand, thus failing the pre-defined thresh-
old of 5 Å. However, after visual inspection we considered
this case relevant because the ligand is occupying the same
large pocket, even if it is not located precisely at the pocket
center defined by LIGSITEcs.
No other pocket on this protein displayed an effect

related to flexibility according to our calculations when
considering the normal mode range 6-20, not even those
pockets matching the location of the active site or other
ligands.
Given that animal LDHs are not regulated allosteri-

cally, this protein/pocket could be an excellent target for
antimicrobial compounds. To further explore this idea,
we analyzed the human LDH homolog ([PDB:1I10]) as
well, which shows a sequence identity of 37.7% and a local
RMSD of 1.04 Å according to the SUPERPOSE web server
[57] when compared to Bifidobacterium longum LDH.
On the human protein, which is not regulated alloster-
ically, the pocket equivalent to the allosteric site in the
bacterial homolog did not produce a significant effect on
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Figure 6 L-lactate dehydrogenase. Predicted pockets and ligands
on L-lactate dehydrogenase ([PDB:1LTH]). Fructose-1,6-bisphosphate
(FBP) at the allosteric site is shown in ‘sticks’ representation as well as
NAD which is colored blue, while residues in red correspond to the
CSA [21] active site annotations. Predicted pockets (geometric
centers) are shown in ‘spheres’ representation, the pocket in orange
color affected protein flexibility significantly according to our
simulations, while yellow did not.

flexibility according to our calculations. It is remarkable
that a coarse approximation such as this (based on Cαs
and NMA) is able to distinguish that the presence of the
allosteric ligand has a significant effect on the bacterial
protein flexibility but not on its human homolog.

Conclusions
In this article we have proposed a very simple approach
exploiting changes in protein flexibility upon ligand bind-
ing to predict the presence and location of allosteric sites.
We tested the methodology on a non-redundant set of 58
proteins achieving in the best case a success rate (positive
predictive value) of 65%, with a sensitivity of 0.22. Further-
more, we analyzed four cases inmore detail, revealing how
the coarse-grained approach described here is able to cap-
ture the effect triggered by the allosteric ligand, matching
the current literature. The structural analysis proposed
here could help medicinal chemists and other researchers
on their way through the promising field of allosteric-drug
design.

Methods
To ensure that the quality and nature of the selected struc-
tural data was appropriate to our study, we discarded
structures with a resolution lower than 3 Å or with a
G-Factor lower than -1, as calculated by PROCHECK
[58]. We conservatively defined a non-redundant data set
to avoid possible bias in the results that may arise from

overrepresentation of any protein family [40]. Cluster-
ing was performed with the BLASTCLUST program [59]
using a threshold of 30% sequence identity, which grouped
the 213 initial entries into 91 groups. We then selected
the highest resolution structure of each group as its rep-
resentative and defined a non-redundant data set which
contained a total of 91 distinct allosteric proteins, for
which the structure and location of both the allosteric site
and ligand were known.
Normal mode analysis (NMA) was performed on the

protein crystallographic structures with and without a
probe ligand, in its three different representations (full
atom, octahedron and geometric center, see below). The
simplified ligand representations (octahedron and geo-
metric center) were alternatively placed in each of the
eight predicted pockets. The NMA was based on the
implementation of Sanejouand and coworkers [39,60]
using the programs PDBMAT and DIAGRTB. The calcu-
lation involves the diagonalization of the mass-weighted
Hessian (H) of the potential energy function V . Following
Tirion’s Elastic Network Model [61], the potential energy
V is simply described as a set of harmonic springs of equal
strength k linking every pair of Cα atoms with a distance
smaller than Rc in the crystallographic structure:

V =
∑

r0ij<Rc
i<j

k(rij − r0ij)2 (2)

where r0ij is the Euclidean distance between atoms i and j
in the crystallographic structure and Rc and k were given
in this study the values 10 Å and 1 Kcal mol−1 Å−2,
respectively. Note that this energy function was designed
in such a way that it does not require energy minimization
of the X-ray structure prior to the normal-mode calcu-
lation since the X-ray structure is the minimum of the
function. Although this method uses very gross approxi-
mations (reduction to Cα atoms, extremely simple energy
function, no solvent), it has proven to perform surpris-
ingly well in front of both more complex approximations
and experimental data (B-factors) [39,60,62].
The eigenvectors and eigenvalues of H correspond

to the normal modes, characterizing the direction and
amplitude of the vibrational motion, and frequencies of
vibration, respectively. They can be used to calculate
mean-square displacements of the atomic cartesian coor-
dinates x (

〈
x2

〉
) as:

〈
x2i

〉
= KBT

mi

nv∑

j=1

a2ij
w2
j

(3)

where xi is the coordinate i, mi the corresponding mass,
KB Boltzmann’s constant, T the temperature, nv the num-
ber of modes considered, wj/2π the frequency of normal
mode j and aij the coordinate i of normal mode j. The
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resulting mean-square radial displacements of atom posi-
tions

〈
r2

〉
can in turn be used to estimate atomic B-factors

as:

B = 8π2

3
〈
r2

〉
(4)

Low-frequency modes reflect large collective or delo-
calized motions in the protein structure, while high-
frequency modes reflect small vibrations in localized
regions. We estimated B-factors for the ligand-bound and
unbound protein structures using different ranges of nor-
mal modes to explore this variable. Ranges were named
using two numbers X-Y: Starting from the low frequency
modes, X is the number of modes that are skipped and Y is
the number of normal modes that are taken into account.
The first six normal modes, with zero frequency, are of no
interest as they represent rigid-body translation and rota-
tion. The ranges tested were: 6-5, 6-10, 6-20, 6-50, 6-94,
11-10, 16-10, 26-10, 56-10, 90-10, 16-84, 26-74, 56-44 and
96-4.
We prepared protein coordinate files for NMA as

follows: (1) Protein chains in direct contact with the
allosteric ligand (i.e. multiple residues within 3.0 Å) were
selected and atoms belonging to other chains ormolecules
in the structure were removed. (2) The LIGSITEcs pro-
gram [43] was used to predict up to 8 pockets per struc-
ture. (3) After pocket prediction, protein structures were
parsed to keep Cα atoms only.
We took the first 100 normalmodes for each protein and

ligand representation: apo, the Cα only ‘apo’ protein crys-
tallographic structure (allosteric ligand is not present);
ligand, same protein structure as in ‘apo’ but including the
allosteric ligand (or a simplified molecular representation)
in the allosteric site; PKTX, same protein structure as in
‘apo’ plus a simplified molecular representation of a ligand
occupying the predicted pocket number X (1 to 8).
In the last case, the molecular representation of the

ligand was located at the pocket geometric center, as
predicted by LIGSITEcs.
The ligand molecule during NMA was simulated in dif-

ferent ways: full atom, all atoms in the ligand molecule
are included in the calculation; geometric center, a sin-
gle dummy atom located at the ligand-pocket geometric
center is considered; octahedron, the ligand’s presence is
simulated by a dummy atom positioned at the geometric
center and six extra dummy atoms located at 4 Å distance
from the center on both sides of each axis (i.e. forming the
vertices of a regular octahedron).
For each protein-ligand pair, calculated B-factors for the

Cα protein atoms of the apo structure were compared to
those obtained for the same atoms in the configurations
including real or simulated ligands to test for significant
changes in flexibility using the Wilcoxon-Mann-Whitney

test. Differences with a p-value < 0.05 were considered
significant.
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Chapter 4

Concluding remarks and perspectives

Allosteric sites, and the allosteric phenomenon as a whole, represent a promising territory for
the development of novel therapeutics. Computational and theoretical studies have helped to
further understand these systems. However, previous studies mentioned above did not benefit
from the larger data set now available at ASD (Huang et al., 2011) and they did not implement
a structural conservation measure as explained in the first article (Panjkovich and Daura, 2010).
In our first article we found that allosteric sites could be conserved at the structural level, but not
necessarily so at the level of sequence or primary structure. By then we had no large data set of
structurally known allosteric sites, but recent work carried out during my visit to the laboratory
of Dr. Mallur Srivatsan Madhusudhan in Singapore is confirming those findings, which until now
have not been backed up with significant data.

In principle, a feature that provides a biological advantage will be conserved through evolution
and this conservation should be measurable in terms of sequence conservation, so one would
expect allosteric sites to display such signal. However, there may be an explanation for this
curious lack of evolutionary conservation in allosteric sites. In the work of Wendell Lim (Good
et al., 2011) scaffold proteins were found out to be exploited by evolution to harness allosteric
regulation. In a similar way, we found that in many cases allosteric binding pockets are common
across the protein family. However, they do not always fulfill regulatory tasks, as seen in the case
of L-lactate dehydrogenase. Although we did not mention this in the published articles, the fact
that protein pockets which serve as allosteric sites are conserved at the structural level point to
the same characteristic of the evolutionary process mentioned by Lim: allosteric properties arise
through pre-existing features.

In our second article we estimated on a large set of allosteric proteins the degree to which
allosteric properties may be related to changes in protein flexibility and we exploited these
findings by implementing a predictive methodology.
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Given the short calculation times, the predictive method has been integrated in genomic scale
pipelines (see Annex II) and it could be used on systematic annotation of protein structures, a
task which would be particular useful in the context of structural genomics (Laskowski and
Thornton, 2008).

One of the greatest lessons learned during this work was about the large degree of variety
found among allosteric proteins and their mechanisms. Nature seems to exploit particular fea-
tures on each protein or complex to build up allosteric regulation, generating an extremely wide
scenario of mechanisms and peculiarities, which renders large-scale approaches aimed at find-
ing common patterns very difficult. Future work will focus on the study of particular protein
families, such as GPCRs, given their pharmacological relevance.

As explained in the introduction, we centered our studies on protein structures and did not
include details about ligand molecules and their particular properties. This means that the
method could be improved by further exploring such ligand-related features. Furthermore, the
method could also incorporate detailed molecular dynamics simulations even at the expense of
considerably larger calculation times.

In summary, the objectives layed out at the beginning of this thesis have been accomplished,
we hope that the results that have been published, as well as the prediction method which is
now available through a web-server, will help researchers in gaining a deeper understanding of
allosteric systems and exploiting this knowledge to develop novel therapeutics.
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PARS: a web-server for the prediction of Protein Allosteric and
Regulatory Sites
Alejandro Panjkovich, Xavier Daura

Abstract

Protein activity regulation is a key aspect of life. Unveiling its details at the atomic level is
key to understanding signalling and metabolic pathways among other fundamental processes.
The most common and powerful way of regulating protein function is allostery. It has been
increasingly calling the attention of medicinal chemists given the potential it possesses for the
discovery of novel therapeutics. In this context, PARS is a simple and quick method that queries
protein dynamics and structural conservation to readily identify pockets on a protein structure
which may exert a regulatory effect upon the binding of a small-molecule ligand. PARS is freely
available as a web-server at http://bioinf.uab.cat/pars

Introduction

Tight regulation of protein function is fundamental to life. Proteins involved in metabolic
pathways, signalling cascades and genomic transcription among other processes within the living
cell are commonly under allosteric regulation, i.e. their activity is modified through the binding
of a ligand molecule to the protein in a site different from the active site. In fact, allostery is
one of the most powerful protein-function regulation mechanisms as it allows proteins to sense
and immediately respond to changes in their environment (Monod and Jacob, 1961; Fenton,
2008). Accordingly, the traditional drug-design approach focused on active or primary binding
sites can be extended by exploiting allosteric sites, as shown by current efforts on GPCRs
(Melancon et al., 2012) or farnesyl pyrophosphate synthase (Jahnke et al., 2010). An advantage
of targeting allosteric sites therapeutically is a reduced risk of secondary adverse effects. This is
because allosteric sites appear to be significantly less conserved than active sites across homolog
proteins (Waelbroeck, 2003), enabling the design of allosteric drugs with high specificity for
a single protein within a family. This observation has motivated the development of allosteric
drugs for the regulation of phosphodiesterase 4D (PDE4D), for which active-site inhibitors cause
emesis, a dose-limiting side effect (Burgin et al., 2010). Moreover, a drug-discovery approach
based on allosteric sites may result in the development of not only novel drug-like inhibitors,
but activators as well (Peracchi and Mozzarelli, 2011). Other concepts such as the notion of
serendipitous allosteric sites, which have no known ligand in nature but can become functional in
the presence of an “opportunistic” ligand (Hardy and Wells, 2004) or the idea that any dynamic
protein has the potential to be regulated allosterically (Gunasekaran et al., 2004) also contribute
to the current level of attention to allosteric sites. In this context, it is to be expected that a
deeper understanding of the properties of allosteric sites and their identification would help
streamlining the design and discovery of novel therapeutic drugs (Nussinov and Tsai, 2013).

Despite growing efforts, the atomic-level details that explain the functional relationship be-
tween distant sites in the same protein molecule have not been elucidated for most of the known
cases of allostery (Peracchi and Mozzarelli, 2011). This has motivated several studies aimed
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at modelling or computationally predicting the relationship between allosteric and active sites
(Lockless and Ranganathan, 1999; Ming and Wall, 2005; Balabin et al., 2009; Demerdash et al.,
2009; Kidd et al., 2009; Daily and Gray, 2009; Mitternacht and Berezovsky, 2011; England, 2011;
Reynolds et al., 2011; Weinkam et al., 2012), each of these studies representing a substantial
step forward in the understanding of allostery. Studying allostery at a larger scale has been
however difficult until the publication in 2011 of the AlloSteric Database (ASD), the first public
initiative to organize knowledge on allosteric sites (Huang et al., 2011). We have used ASD data
to benchmark a novel method that integrates protein structural conservation and flexibility to
predict the location of allosteric and/or regulatory sites, obtaining a positive predictive value
of 65% when using strict parameters (Panjkovich and Daura, 2012). In this applications note
we describe an easy-to-use web-server that makes the methodology available to the scientific
community at “http://bioinf.uab.cat/pars”.

Description

The current perspective on allosteric transitions and associated regulatory events relies on the
“population shift” concept (Cui and Karplus, 2008). Briefly, the protein or protein complex
explores different conformations (both active and inactive) in solution and the allosteric ligand
“shifts” the population or ensemble of conformations upon binding, effectively modulating the
protein’s activity rate (Kar et al., 2010). The conformational space explored by the protein
can be sampled using computational methods such as molecular dynamics (Chiappori et al.,
2012; Pandini et al., 2012) or normal mode analysis (NMA) (Dykeman and Twarock, 2010). In
our approach, protein dynamics are queried through NMA allowing fast large-scale (potentially
genome-wide) analyses. The method developed previously (Panjkovich and Daura, 2012) is
now implemented as a web-server working as follows: (1) Initially the user uploads a protein-
structure file (PDB format) and selects which chains and ligands should be considered for the
calculations. (2) Once the job is submitted, the protein surface is analyzed to predict putative
ligand-binding sites, where a simplified representation of a small-molecule is placed to simulate
the presence of a ligand. The prediction of putative ligand-binding sites can be turned off if the
user is interested in scanning only sites which are already occupied by a ligand in the protein
structure. (3) NMA is carried out for the apo structure (without ligands). (4) For each of the
ligands, both native or simplified representation, and each of the potential binding sites, a NMA
is executed for the protein-ligand complex. (5) If a significant difference is found between the
normal modes of the apo and ligand-bound states of the protein, the binding site is marked as
potentially allosteric.

Complementarily, if enough structural data is available for the protein family, the structural
conservation of each pocket is also measured. We have previously shown that allosteric sites
tend to be structurally conserved within a protein family (Panjkovich and Daura, 2010) and
that the incorporation of this measure improves the capacity of the method based on dynamics
to correctly identify allosteric sites (Panjkovich and Daura, 2012). Immediately after submis-
sion the user is provided with a link where results can be accessed once the calculation has
finished. Optionally, the user can choose to be notified by e-mail when results are available. A
standard run on a 300 residues protein will take around 2 minutes. Even though calculation
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times increase exponentially with the number of residues, larger systems can be processed within

reasonable time (e.g. 500 residues ≈ 6 minutes and 1000 residues ≈ 45 minutes). The results

are delivered as a table and, if the browser allows it, the binding-sites can be explored on-line on

the three-dimensional protein structure by means of the Jmol package (http://www.jmol.org/).

Binding sites and ligands are color-coded according to given thresholds for the level of structural

conservation (> 50%) and the predicted effect on protein dynamics (p-value < 0.05). Both a

protein structure file including the position of identified sites and a table can be downloaded as

well for further processing.

We expect that this easy-to-use and relatively fast web-server will prove useful for medicinal

chemists and other researchers studying the regulation of protein function for biochemical char-

acterization and other applied tasks such as binding-site prioritization for virtual drug screening.
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antibacTR: dynamic antibacterial-drug-target ranking
integrating comparative genomics, structural analysis and
experimental annotation
Alejandro Panjkovich, Isidre Gibert, Xavier Daura

Abstract

Development of novel antibacterial drugs is both an urgent healthcare necessity and a partially

neglected field. The last decades have seen a substantial decrease in the discovery of novel

antibiotics, which combined with the recent thrive of multi-drug-resistant pathogens have gen-

erated a scenario of general concern. The procedures involved in the discovery and development

of novel antibiotics are economically challenging, time consuming and lack any warranty of suc-

cess. Furthermore, the return-on-investment for an antibacterial drug is usually marginal when

compared to other therapeutics, which in part explains the decrease of private investment. In

this work we present antibacTR, a computational pipeline designed to aid researchers in the

selection of potential drug targets, one of the initial steps in antibacterial-drug discovery. The

approach was designed and implemented as part of two publicly funded initiatives aimed at dis-

covering novel antibacterial targets, mechanisms and drugs for a priority list of Gram-negative

pathogens: Acinetobacter baumannii, Escherichia coli, Helicobacter pylori, Pseudomonas aerug-

inosa and Stenotrophomonas maltophilia. Future releases will extend this list to additional

multi-drug resistant Gram-negative pathogens of clinical relevance. antibacTR is based on se-

quence comparisons and queries to multiple databases (e.g. gene essentiality, virulence factors)

to rank proteins according to their potential as antibacterial targets. The dynamic ranking of

potential drug targets can easily be executed, customized and accessed by the user through a

web interface which also integrates computational analyses performed in-house and visualizable

on-site. These include three-dimensional modeling of protein structures and prediction of active

sites among other functionally relevant ligand-binding sites. Versatility and ease-of-use have

been emphasized so that this tool may effectively assist microbiologists, medicinal-chemists and

other researchers working in the field of antibacterial drug-discovery. The public web-interface

for antibacTR is available at ‘http://bioinf.uab.cat/antibactr’.

Introduction

Since their initial discovery and application during the early 20th century, antibiotics have

been playing a key role in public health worldwide. These ‘miracle drugs’ have contributed

significantly to the increase in life expectancy since the end of World War II. Besides curing

infections, they also prevent amputations and blindness and are involved in multiple healthcare

procedures such as joint-replacement, surgery, new cancer treatments, etc (Arias and Murray,

2009). However, after peaking during the 1960’s, the discovery of new antibiotics has fallen off
dramatically. The present scarcity of novel antibiotics becomes a major health concern in light

of the remarkable ability of bacteria to rapidly evolve resistance mechanisms which erode the

therapeutic effect of known antibiotics (Baquero et al., 2009). Nowadays multi-drug-resistant

bacterial infections are increasing in both developing and developed countries and in both com-
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munity and nosocomial settings (Boucher et al., 2009). It has been reported that a number of

pathogens, including Staphylococcus aureus, Mycobacterium tuberculosis, Pseudomonas aerug-
inosa, Acinetobacter baumannii and some Enterobacteriaceae have developed resistance to a

wide range of antimicrobial agents at an alarming rise, with some strains becoming truly pan-

resistant (Council, 2007; Souli et al., 2008). However, pharmaceutical companies have not been

investing on the development of new antibacterial drugs with corresponding efforts, mainly due

to economic criteria that favour other therapeutic areas with better return-on-investment ratios

(Talbot et al., 2006; Payne et al., 2007). The few antibacterial agents that have been launched

during the last decade (e.g. linezolid, daptomycin) have a good activity against Gram-positive

bacteria such as methicillin-resistant S. aureus (MRSA) and vancomycin-resistant enterococci

(Tally and DeBruin, 2000). However, cases of resistance for these new Gram-positive antibiotics

have been reported recently as well (van Hal and Paterson, 2011).

The situation is worse for Gram-negative bacteria, such as P. aeruginosa and A. baumannii,
which are common among nosocomial infections (Bereket et al., 2012) and for which no new

antibiotics have reached advanced stages of development (Arias and Murray, 2009). In addi-

tion, with the increase in the prevalence of extended spectrum β-lactamase (ESBL)-producing

Enterobacteriaceae, the use of carbapenems, a potential alternative to treat infections caused

by these microorganisms, is leading to the emergence of multi-drug-resistant Enterobacteriaceae

including resistance to carbapenems (Akova et al., 2012).

This scenario emphasizes the relevance of initiatives focused on the discovery of novel targets

and antibacterials for combating Gram-negative pathogens. Here, we describe a tool (antibacTR:

antibacterial Target Ranking) to support the initial stages of selection of potential antibacterial-

drug targets, developed within the context of two such initiatives. antibacTR integrates a

database with a pipeline that ranks and filters proteins according to a set of criteria commonly

associated to antibacterial targets. The approach is based on protein sequence comparisons, for

which we developed an unbiased measure described in the methods section.

The interface used to interrogate the database and access the results has the form of a web-

based tool, which has been developed following the suggestions of the experimentalists involved in

the two target-discovery initiatives. It includes access to thousands of three-dimensional protein-

structure models that can be visualized and downloaded for further analysis through the web-

interface. To further exploit the structural models, we incorporated a predictive approach that

evaluates putative ligand-binding pockets in terms of their potential to affect protein function

upon ligand binding (Panjkovich and Daura, 2010; Panjkovich and Daura, 2012). Links to

DrugBank (Wishart et al., 2008) and the Virulence Factors DataBase (VFDB) (Yang et al.,
2008), as well as predictions of active-site residues are provided as well. It should be noted that

the final aim of the tool is both to rank proteins according to the chosen set of criteria (with

weights defined by the user) and to provide for each protein in the ranked list information that

could be relevant to antibacterial-drug-target selection. Clearly, the drug-target property is the

result of a complex combination of a variable number of non-universal factors, some of which

having opposite sign for different types of targets or mechanisms. Thus, this is a tool to support

target discovery efforts, not a target-prediction tool. In other words, it will not safe the user

from scanning and evaluating a large number of proteins, it will simply provide him/her with

additional means to do it.

All measurements and predictions are pre-computed, which allows the application to return
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full rankings and links to the relevant information within seconds. This characteristic distin-

guishes our tool from similar ones such as the UniDrug-Target (UDT) database, which can be

used to perform comparative analyses online with computation at time of request (Chanumolu

et al., 2012). Besides execution speed, our approach differs from UDT and related ones such

as the Prokaryotic-genome Analysis Tool (PGAT) (Brittnacher et al., 2011) in its focus. While

these tools succeed at providing comparative-analysis means that can be used through a web-

interface, our dynamic approach focuses on speed, ease of use and an integrative solution that

allows the user to quickly scan putative antibacterial targets and relevant information such as

three-dimensional structural models and other predictions, while the comparative analysis is

just one of the underlying features.

This methodology was originally developed for two specific projects and their target bacte-

ria, including three of the big four Gram-negative pathogens in relation to systemic infections,

i.e. Escherichia coli, Klebsiella pneumoniae, A. baumannii and P. aeruginosa (Council, 2007).

However, we have now expanded the coverage to include all sequenced Gram-negative pathogens

(i.e. at present, a total of 74 species), this should make the system useful to many more re-

searchers in the field. Through this article, we describe the approach and make the web-based

tool publicly available.

Results

Computational target-ranking pipeline

Typically, one of the first steps in a target-discovery project is to readily select, among thousands

of proteins composing the pathogens’ proteomes, those with the highest chance of becoming use-

ful therapeutic targets. Following the lines defined by previous studies (White and Kell, 2004),

we developed an algorithm to score and rank potential drug targets in pathogenic organisms

by evaluating a modular set of criteria that are commonplace in antimicrobial-development ef-

forts (Payne et al., 2007): 1) the presence of the protein in different pathogens, 2) evolutionary

conservation, 3) essentiality, 4) presence of isoforms and paralogs in the proteome, 5) similarity

to human proteins. We implemented a set of five weighted scores that cover these criteria and

defined a scoring function combining them.

The first two concepts were incorporated as two independent scores, measuring the conser-

vation of the protein among Gram-negative organisms and among different strains of the same

species, respectively. Conservation among strains is a basic requirement for target consideration.

Conservation among Gram-negative species is highly desirable as it enables the development of

broad-spectrum solutions and increases economic viability. In addition, well conserved targets

will presumably have low tolerance to mutations, decreasing the chance of resistance to emerge

by this type of mechanism.

Essential proteins, which inhibition compromises bacterial viability, are potential antibac-

terial targets by definition. We implemented a binary score by marking genes known to be

essential from previous experimental work (Zhang and Zhang, 2008).

The remaining two scores are given negative weights. If the protein under consideration has

isoforms and/or paralogs the pathogen may readily develop resistance by functional substitution,

and the effect of the antibacterial may be also reduced by competitive binding to non-essential



76

forms. We considered similarity to human proteins negative as well, since close human homologs
to the target may interact with the drug, giving rise to unwanted side-effects.

The scoring and ranking scheme, partially following the work of White and Kell (White
and Kell, 2004) provides an advantage when compared to static selection or filtering approaches
(Sakharkar et al., 2004; Chanumolu et al., 2012). In our case, if further experimental analysis
reveals that a given protein is not suitable as a drug target, work can continue with the next
protein in the ranking. Moreover, it would be straightforward to incorporate new criteria into
the ranking scheme if needed.

The pipeline to which each proteome of interest was subjected is illustrated in Figure 1,
which summarizes the approach.

Sequence-based analysis

Currently, the database covers 74 Gram-negative pathogens, including 224 distinct strains. For
pathogens distinguished by their prevalence in community and/or nosocomial infections and the
incidence of drug-resistant isolates (Boucher et al., 2009; Bereket et al., 2012): Acinetobacter bau-

mannii, Escherichia coli, Helicobacter pylori, Pseudomonas aeruginosa and Stenotrophomonas

maltophilia we included all fully sequenced available strains (82 strains, which conform a ‘priority
set’). For the rest of the species, we included all strains that were marked as ‘human pathogens’
in HAMAP (142 strains) (Pedruzzi et al., 2013). This query data set was compared against the
human proteome and a reference set of 770 Gram-negative proteomes (494 distinct species), by
means of the BLAST program (Altschul et al., 1997) using default parameters. BLAST searches
are very fast, however resulting E-values depend on the alignment itself and on other parameters
such as the size of the database scanned. We needed unbiased similarity scores between proteins
matched during the sequence-based search to keep results valid in case of further increasing the
size of the data sets. To attain this objective, we further aligned BLAST matches (E-value <=
0.0001) using the Smith-Waterman algorithm and calculated ‘normalized sequence similarity
scores’ (NS). NS values were then used to pre-compute toxicity, presence of isoforms or paralogs
and the two conservation scores for each protein in the query data set, as described in further
detail in the Methods section.

Queries to external databases

Besides comparative analysis, a round of database queries was also performed to integrate ad-
ditional information. Thus, protein sequences were compared to the list of known drug-targets
available at the DrugBank database (Wishart et al., 2008) and sequence-based searches were
also performed against virulence factors available at the Virulence Factors DataBase (VFDB)
(Yang et al., 2008). Out of the total 777,585 proteins in the query data set, 375,016 matched
a known target in DrugBank (38%) and 193,135 proteins matched a known virulence factor
at VFDB (25%). This information was not incorporated as ranking scores, but it is available
through the web-interface described below for researchers to evaluate themselves the relevance
of such matches in each particular case.
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Three-dimensional homology modeling

Researchers evaluating prospective drug targets may benefit from the availability of protein
structural data. For the organisms in the priority set, we performed a large-scale homology
modeling of all protein sequences for which we found valid structural templates as explained
in the Methods section. In total, we generated three-dimensional homology models for 136,141
proteins (covering 47% of the priority set). This number was obtained after discarding models
presenting less than 30% sequence identity (target-template) or G-factors below -1.00 (Laskowski
et al., 1996). All models were generated by means of the MODELLER program (Eswar et al.,
2008) using default parameters.

To save computational power, proteins belonging to other strains were not modeled auto-
matically. However, if the user is interested in obtaining one of such homology models, we have
implemented an option at the web-interface for automatic submission of the selected modeling
task.

Active-site prediction

To further add relevant information on putative targets, we applied a sequence-based approach
(Mistry et al., 2007) to predict the location of active-site residues. The method is based on com-
paring query sequences to homologs for which the position of the active site has been annotated.
After analyzing the whole query set (777,585 proteins), this procedure predicted the location of
active-site residues for 90,482 proteins (11.6%). Proteins with a predicted active site display a
link to the details of the prediction in the web interface described below.

Pocket analysis

For proteins for which we could build a three-dimensional homology model, we predicted the
location of ligand-binding sites on the structure by means of the LIGSITEcs program (Huang
and Schroeder, 2006). We further analyzed the ligand-binding sites using two previously devel-
oped methodologies which estimate the regulatory potential of particular ligand-binding pockets.
When possible, the structural conservation of predicted pockets was measured considering the
evolutionary record of the protein family, given that conserved pockets may have a relevant
biological role (Panjkovich and Daura, 2010). Furthermore, using Normal Mode Analysis we
estimated the effect of ligand binding upon overall protein flexibility, a measure which has been
used in combination with structural conservation to predict the location of allosteric sites (Pan-
jkovich and Daura, 2012). As described below, the user can visualize the protein structure and
predictions online.

Interface and access to results

Interactive access to results is available through the web-interface at ‘http://bioinf.uab.cat/antibactr’.
This interface allows the user to select the organisms and strain of interest, set custom

weights to the different scores and then proceed to calculate the corresponding ranking. If the
user wishes to ignore a specific ranking parameter, a weight of 0 (zero) can be applied. The
system has been built in such a way that normalization of scores is performed only among the
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selected set of strains and parameters. To further facilitate the analysis of results, the user may
also limit the amount of top-ranked entries that are displayed. Once the ranking procedure is
finished (it takes a few seconds), the ranking is printed to the browser. An option is available
for downloading the ranking to the local computer in tab-delimited text format, useful for
researchers interested in further processing the data. Targets are displayed in ranked order and
individual scores are shown for each protein after normalization but prior to weighting. A brief
description of the biological function is displayed for each protein but, to facilitate immediate
access to full annotation and other relevant data, a link to the related Uniprot entry is provided
as well (Consortium, 2009). In cases where the target shows sequence similarity to an already
known drug target or virulence factor, the corresponding links are also provided. In addition,
specific links with details on predicted active sites and homology models are given. If a homology
model is supplied, the user may download model coordinates in PDB format and target-template
alignments generated during the modeling process, along with sequence identity, DOPE score
and other relevant modeling data (Eswar et al., 2008). Furthermore, available protein structures
can be visualized using Jmol (http://www.jmol.org) along with the results of the pocket analysis
previously described (Panjkovich and Daura, 2012).

User query sequences

Besides the ranking of complete proteomes, researchers may want to look at the ranking of a
few selected proteins of their particular interest. To achieve this functionality, we added the
possibility to include the user’s own query sequences in an optional field. These sequences
are then compared by means of the BLAST program against our query data set (224 strains).
Scoring and ranking proceed as normally, but results are then displayed only for significant hits
within our data set. Details of this BLAST search are also available to the user.

Discussion

Large-scale comparison of organisms at the genome level is a technique common to many fields
of biology and medicine. In the past years complex approaches involving phylogenetic and
metabolic studies have been published (Fournier et al., 2006; Lee et al., 2009). However, com-
parative genomics initiatives in drug discovery have been criticized for their limited success in
finding new active compounds (Mills, 2006; Coates and Hu, 2007). Yet, comparative genomics
and proteomics continue to shed light on the workings of bacterial drug-resistance and virulence
(Kos et al., 2012; Piras et al., 2012).

Far from attempting to solve the problem of target identification in one strike, our motivation
was to implement a straightforward computational approach that would prove useful as an initial
filtering and ranking step, aiding researchers in the quest for novel drug targets.

At the time of this writing no equivalent tool to the one presented here is available, however
a few servers provide slightly related functionalities and could be used in a complementary
fashion. For example the Prokaryotic-genome Analysis Tool (PGAT), developed by Brittnacher
and collaborators is a general comparative genomics tool focused particularly in comparing
different strains of the same species (Brittnacher et al., 2011). PGAT allows the user to carry
out a series of interesting analyses including information on metabolic pathways, but it does not
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provide specific drug-target related information, unlike the UniDrug-Target (UDT) database
which clearly focuses on that aspect (Chanumolu et al., 2012). The latter presents candidate
targets as proteins which are present in pathogenic bacteria but absent in commensal strains.
This is a reasonable approach which in our tool can be achieved by setting a negative value for the
strain conservation score and it is also one of the functions available at PGAT. However, given
its focus on pathogen-specific proteins UDT’s approach tends to discard evolutionary conserved
proteins, such as many well known broad-spectrum targets (Imming et al., 2006).

The amount of well known and characterized protein drug targets is currently in the order
of hundreds (Imming et al., 2006). To illustrate the potential of the tool presented here, we
provide a few examples of already known antibacterial targets. Certain proteins involved in
the replication of DNA are targeted by fluoroquinolones such as Ciprofloxacin (Lee et al., 2005;
Imming et al., 2006). For example, Ciprofloxacin targets DNA topoisomerase 4 subunit B
and DNA gyrase subunit A. Even though resistance to fluoroquinolones has been observed
in pathogens with mutations in these proteins, new compounds with antibacterial activity on
the resistant strains are being developed by studying these targets (Bax et al., 2010). These
proteins appear on the top 3% of the full proteome ranking for Escherichia coli K12 (positions
68 and 158, respectively) when we build the ranking using default parameters. This is because
both proteins are essential, show high levels of evolutionary conservation but low similarity to
human proteins (minimal potential toxicity) and present no isoforms or paralogs according to
our pipeline parameters.

Beyond filtering and ranking targets, researchers can also gain insight into potential tar-
gets through the structural analysis methods we have implemented into the tool. For example,
peptide deformylase [Swiss-Prot:Q9I7A8] from Pseudomonas aeruginosa is an essential protein
targeted by the antibiotic Actinonin (Guilloteau et al., 2002). This protein is ranked in position
81 among the complete Pseudomonas aeruginosa proteome (top 2%) when using default param-
eters. Our pipeline automatically builds three-dimensional homology models when possible, it
then predicts putative ligand-binding sites and evaluates their potential to regulate protein ac-
tivity as described previously (Panjkovich and Daura, 2012). In this case, the structural analysis
(which is pre-calculated and available through the web-interface) predicts one of the putative
ligand-binding sites to significantly affect protein flexibility as shown in Figure 2. When we su-
perimpose the automatically generated homology model with the known structure of the protein
bound to the antibiotic ([PDB:1LRY] RMSD 0.5) the position of the cavity predicted to be sig-
nificant matches precisely the location of the antibiotic molecule. This cavity is also considered
relevant from an evolutionary perspective, as it shows 100% of structural conservation within
its domain family according to the corresponding automatic analysis (Panjkovich and Daura,
2010). The structural conservation of this pocket was to be expected, since it is the protein’s
active site. Briefly, this case illustrates how in the situation of a poorly characterized protein,
our automatic structural analysis may pinpoint not only the potential of the protein as a drug
target, but the precise location of the drug-binding pocket.

Another interesting example is 3-oxoacyl-[acyl-carrier-protein] synthase III, which is involved
in fatty-acid synthesis. This protein is targeted by Cerulenin, with antifungal effects, and it is a
potential antibacterial target as well (Khandekar et al., 2003; Nie et al., 2005; Zhang et al., 2012).
It is ranked by our pipeline at position 49 (top 2%) among the full proteome of Escherichia coli
K12 because it is essential and well conserved, showing in principle no toxicity (similarity to
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human proteins). Furthermore, structural analysis reveals one single pocket that could affect
the protein’s function by perturbing its overall flexibility, as shown in Figure 3. When we
evaluate the structural prediction performed on the homology model by superimposing the
known structure of the inhibitor-bound protein, we observe that in this case the match of the
cavity’s geometric center is not as precise as in the previous example of peptide deformylase.
Nevertheless, visual inspection shows that the large cavity indicated by the pocket structural
analysis is indeed occupied by the inhibitor, so that the automatic procedure would again be
pointing the researcher in the right direction, even if no inhibition information would have been
available a priori.

Of course, multiple other factors beyond the reach of a mere computational approach par-
ticipate in defining a protein as a good antibacterial target. Indeed the final outcome of clinical
trials can hardly be predicted (Mills, 2006). However, we considered relevant to infer how well
the pipeline presented in this work ranks already known targets. We gathered all known targets
of ‘approved’ drugs, as annotated in DrugBank (Wishart et al., 2008), that belonged to any
of the strains analyzed in this work. We found a total of 57 proteins identified through their
Uniprot ID (Consortium, 2009). Out of those 57, a majority (48) belong to Escherichia coli
K12. When we proceed to rank this organism’s proteome, half of the known drug targets appear
at the top 10% of the ranking. The full distribution is displayed in Figure 4. It is interesting to
note that this first half or top 10% correspond to essential proteins. Since essentiality is a binary
score (i.e. genes may be essential or not), it divides the ranking in two sections as can be seen in
the histogram (Figure 4). This clearly illustrates the difficulty of a priori ranking antibacterial
targets, since even though essentiality is considered a very desirable property for any candidate
target (Coates and Hu, 2007; Juhas et al., 2012; Umland et al., 2012), it only represents half of
the known targets in this organism. Moreover, assessing gene essentiality is not a trivial task,
given that in vitro results do not always correlate with gene essentiality determined in vivo
(Umland et al., 2012).

Because the equation that would unequivocally assign target scores to proteins is highly
complex and full of unknowns, the pipeline presented here has been developed with the sole aim
to assist the selection of prospective candidates, it is not meant to provide a final or complete
list of antibacterial targets. Very often, it will not be used as a ranking tool but to retrieve
target-relevant information for a specific protein and evaluate its pros and cons with respect
to other potential candidates. The versatility of the tool, with dynamic features such as the
assignation of relative weights at the user’s criterion, and the availability of original information,
such as predicted, functionally relevant ligand-binding sites, may prove valuable arguments for
the microbiologist or medicinal chemist researching on new antibacterial targets.

Methods

Normalized sequence-similarity score (NS)

We used the BLAST program (Altschul et al., 1997) with default parameters to scan complete
proteomes. Since BLAST E-values may vary depending on the size of the queried database,
we aligned all matched pairs and calculated their Smith-Waterman similarity score (Smith and
Waterman, 1981). We ignored alignments with scores lower than 100, as previously described
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(Aoki and Kanehisa, 2005).

Given that the Smith-Waterman similarity score is related to the size of the alignment, we

divided the score by the length of the alignment to obtain a normalized sequence-similarity score

(NS). The Smith-Waterman algorithm computes an optimal local alignment, meaning that the

NS measure of similarity between two proteins is equivalent to the similarity between their most

closely related pair of domains or regions.

Essentiality

Experimental information regarding gene essentiality is available for a few organisms at the

database of essential genes (DEG) (Zhang and Zhang, 2008). If a particular strain was not

available at DEG, we mapped query proteins to essential genes by using BLAST. For each

annotated essential gene in a related strain, we scanned the proteome of interest and marked

the best hit as an essential gene. Only E-values of 1e-10 or better were considered acceptable

for this task. At the time of this writing, we were only able to gather large-scale essential gene

information for: Acinetobacter baumannii, Escherichia coli, Helicobacter pylori, Pseudomonas

aeruginosa and Vibrio cholerae.

Toxicity

An antibacterial drug acting on protein targets which are similar to human proteins may also

bind these causing adverse effects and/or toxicity. We estimated the potential toxicity of each

putative target proportional to the largest NS value obtained after pairwise alignment against

the whole human proteome.

Isoforms and paralogs

If a given drug target presents multiple isoforms or paralogs (‘variants’), the pathogen may

readily develop resistance by functional substitution mechanisms. It is also possible that the

drug may bind both the target and its variants, thus decreasing the antibiotic effect. To assess

this parameter for each potential drug target, we counted the amount of variants present in the

same proteome. We considered as variants of a protein all similar proteins with a NS value equal

or larger than 2.

Evolutionary conservation among Gram-negative organisms

We defined a score to estimate the evolutionary conservation of potential targets across Gram-

negative (GN) organisms as shown in Equation 1.

GNCp =

i=n−1�

i=1

max(NSp) (1)

Where GNCp is the Gram-negative conservation score for protein p, computed by adding the

highest NS value (max(NSp)) obtained against each of the different GN species (i) in the data

set, with n being the total number of GN species.
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Conservation among strains

We estimated the evolutionary conservation of proteins among different strains of the same
species using the following score:

SCp =
�j=m−1

j=1 max(NSp)
m

(2)

where SCp is the strain conservation score for protein p, computed by adding the highest NS
value (max(NSp)) obtained against each other strain (j) of the selected species in the data set,
with m the total number of distinct strains of the particular species.

Scoring function and ranking of potential drug targets

Each of the different scores is normalized by the largest value obtained across the selected
organisms. Normalized values are then multiplied by 100 to obtain percentages, i.e. final scores
range between 0 and 100.

Each independent score has an associated weight, which can be negative or positive. These
weighting values can be set by the user. However, default values are provided as follows. A priori
negative features of a putative target (i.e. Toxicity and Paralogs) are given a default weight of
-1, while positive features (e.g. Evolutionary conservation, Essentiality) have a corresponding
default weight of 1.

For each protein in the selected data set, normalized scores are multiplied by their respective
weights. The final score for each protein is obtained by summing up all weighted scores. Finally,
all proteins in the selected data set are ranked according to their final score in terms of drug-
target potential.

Comparative-genomics reference data set

Sequence data on Gram-negative (GN) organisms was gathered for a total of 770 fully sequenced
GN proteomes covering 494 distinct species. GN bacteria species were identified at
‘http://bacterialphylogeny.info/bacteria.html’ and listed fully sequenced bacterial proteomes
from ‘http://www.uniprot.org/taxonomy’ using the query string: ‘bacteria AND complete:yes’.
A total of 770 bacterial strains were common to both listings. We downloaded sequence data
from ‘ftp://ftp.expasy.org/databases/complete proteomes/fasta/bacteria/’.

Known drug targets and virulence factors

Each proteome of interest was compared by means of the BLAST program (Altschul et al.,
1997), with default parameters, against known drug targets available at DrugBank (Wishart
et al., 2008) and virulence factors available at VFDB (Yang et al., 2008). Proteins showing a
match with a BLAST E-value <= 1e-2 display a link to the related hits in the output table.

Three-dimensional homology models

An automated homology-modeling pipeline was implemented based on the program MOD-
ELLER v9.5 (Eswar et al., 2008). Briefly, for a given protein sequence the system scans a
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database of structural templates. It then proceeds to generate homology models using the best
possible set of divers templates that display at least 30% sequence identity. Finally, the best
resulting models are selected using a combination of DOPE and GA341 scores (Eswar et al.,
2008).
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Figures

Figure 1: Each genome of interest was subjected to the computational pipeline de-
picted in the flowchart.
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Figure 2: Automatic modelling and structural pocket analysis performed on Pseu-
domonas aeruginosa deformylase [Swiss-Prot:Q9I7A8]. The spheres displayed on the
homology model (based on template PDB:1N5N) represent putative ligand-binding sites as pre-
dicted by the automatic pocket analysis. The orange sphere marks the only cavity predicted to
significantly affect overall protein flexibility. To illustrate the relevance of this prediction, we
show the location of the antibiotic ligand (in ‘sticks’ representation) after superimposing the
homology model to the known structure of the antibiotic-bound protein [PDB:1LRY] (RMSD
0.5 Å). The position of antibiotic Actinonin matches precisely the cavity marked by the proce-
dure. The same cavity is also estimated to be very well conserved at the structural level (100%
presence in the protein family).
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Figure 3: Automatic modeling and structural pocket analysis performed on Es-
cherichia coli 3-oxoacyl-[acyl-carrier-protein] synthase 3 [Swiss-Prot:P0A6R0]. The
spheres displayed on the homology model (based on template PDB:1UB7) represent putative
ligand-binding sites as predicted by the automatic pocket analysis. The orange sphere marks the
only cavity predicted to significantly affect overall protein flexibility. To illustrate the relevance
of this prediction, we show the location of the inhibitor molecule (in ‘sticks’ representation)
after superimposing the homology model to the known structure of the inhibitor-bound protein
[PDB:1MZS] (RMSD 1.1 Å).

Figure 4: The histogram displays the distribution of ranks for 48 known targets in
Escherichia coli strain K12 within a ranking using default parameters.



Bibliography

Akova,M., Daikos,G.L., Tzouvelekis,L. and Carmeli,Y. (2012) Interventional strategies and current clin-
ical experience with carbapenemase-producing gram-negative bacteria. Clin Microbiol Infect, 18
(5), 439–448.

Altschul,S.F., Madden,T.L., Schaeffer,A.A., Zhang,J., Zhang,Z., Miller,W. and Lipman,D.J. (1997)
Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids

Res, 25 (17), 3389–3402.

Aoki,K.F. and Kanehisa,M. (2005) Using the kegg database resource. Curr Protoc Bioinformatics, Chap-
ter 1, Unit 1.12.

Arias,C.A. and Murray,B.E. (2009) Antibiotic-resistant bugs in the 21st century–a clinical super-
challenge. N Engl J Med, 360 (5), 439–443.

Baquero,F., Alvarez-Ortega,C. and Martinez,J.L. (2009) Ecology and evolution of antibiotic resistance.
Environmental Microbiology Reports, 1 (6), 469–476.

Bax,B.D., Chan,P.F., Eggleston,D.S., Fosberry,A., Gentry,D.R., Gorrec,F., Giordano,I., Hann,M.M.,
Hennessy,A., Hibbs,M., Huang,J., Jones,E., Jones,J., Brown,K.K., Lewis,C.J., May,E.W., Saun-
ders,M.R., Singh,O., Spitzfaden,C.E., Shen,C., Shillings,A., Theobald,A.J., Wohlkonig,A., Pear-
son,N.D. and Gwynn,M.N. (2010) Type iia topoisomerase inhibition by a new class of antibacterial
agents. Nature, 466 (7309), 935–940.

Bereket,W., Hemalatha,K., Getenet,B., Wondwossen,T., Solomon,A., Zeynudin,A. and Kannan,S. (2012)
Update on bacterial nosocomial infections. Eur Rev Med Pharmacol Sci, 16 (8), 1039–1044.

Boucher,H.W., Talbot,G.H., Bradley,J.S., Edwards,J.E., Gilbert,D., Rice,L.B., Scheld,M., Spellberg,B.
and Bartlett,J. (2009) Bad bugs, no drugs: no eskape! an update from the infectious diseases society
of america. Clin Infect Dis, 48 (1), 1–12.

Brittnacher,M.J., Fong,C., Hayden,H.S., Jacobs,M.A., Radey,M. and Rohmer,L. (2011) Pgat: a multi-
strain analysis resource for microbial genomes. Bioinformatics, 27 (17), 2429–2430.

Chanumolu,S.K., Rout,C. and Chauhan,R.S. (2012) Unidrug-target: a computational tool to identify
unique drug targets in pathogenic bacteria. PLoS One, 7 (3), e32833.

Coates,A.R.M. and Hu,Y. (2007) Novel approaches to developing new antibiotics for bacterial infections.
Br J Pharmacol, 152 (8), 1147–1154.

Consortium,U. (2009) The universal protein resource (uniprot) 2009. Nucleic Acids Res, 37 (Database
issue), D169–D174.

Council,E.A.S.A. (2007). Tackling antibacterial resistance in europe. Technical report EASAC.

Eswar,N., Eramian,D., Webb,B., Shen,M.Y. and Sali,A. (2008) Protein structure modeling with modeller.
Methods Mol Biol, 426, 145–159.

87



88 BIBLIOGRAPHY

Fournier,P.E., Vallenet,D., Barbe,V., Audic,S., Ogata,H., Poirel,L., Richet,H., Robert,C., Mangenot,S.,
Abergel,C., Nordmann,P., Weissenbach,J., Raoult,D. and Claverie,J.M. (2006) Comparative ge-
nomics of multidrug resistance in acinetobacter baumannii. PLoS Genet, 2 (1), e7.

Guilloteau,J.P., Mathieu,M., Giglione,C., Blanc,V., Dupuy,A., Chevrier,M., Gil,P., Famechon,A., Mein-
nel,T. and Mikol,V. (2002) The crystal structures of four peptide deformylases bound to the antibi-
otic actinonin reveal two distinct types: a platform for the structure-based design of antibacterial
agents. J Mol Biol, 320 (5), 951–962.

Huang,B. and Schroeder,M. (2006) Ligsitecsc: predicting ligand binding sites using the connolly surface
and degree of conservation. BMC Struct Biol, 6, 19.

Imming,P., Sinning,C. and Meyer,A. (2006) Drugs, their targets and the nature and number of drug
targets. Nat Rev Drug Discov, 5 (10), 821–834.

Juhas,M., Stark,M., von Mering,C., Lumjiaktase,P., Crook,D.W., Valvano,M.A. and Eberl,L. (2012) High
confidence prediction of essential genes in burkholderia cenocepacia. PLoS One, 7 (6), e40064.

Khandekar,S.S., Daines,R.A. and Lonsdale,J.T. (2003) Bacterial beta-ketoacyl-acyl carrier protein syn-
thases as targets for antibacterial agents. Curr Protein Pept Sci, 4 (1), 21–29.

Kos,V.N., Desjardins,C.A., Griggs,A., Cerqueira,G., Tonder,A.V., Holden,M.T.G., Godfrey,P.,
Palmer,K.L., Bodi,K., Mongodin,E.F., Wortman,J., Feldgarden,M., Lawley,T., Gill,S.R., Haas,B.J.,
Birren,B. and Gilmore,M.S. (2012) Comparative genomics of vancomycin-resistant staphylococcus
aureus strains and their positions within the clade most commonly associated with methicillin-
resistant s. aureus hospital-acquired infection in the united states. MBio, 3 (3).

Laskowski,R.A., Rullmannn,J.A., MacArthur,M.W., Kaptein,R. and Thornton,J.M. (1996) Aqua and
procheck-nmr: programs for checking the quality of protein structures solved by nmr. J Biomol

NMR, 8 (4), 477–486.

Lee,D.S., Burd,H., Liu,J., Almaas,E., Wiest,O., Barabsi,A.L., Oltvai,Z.N. and Kapatral,V. (2009) Com-
parative genome-scale metabolic reconstruction and flux balance analysis of multiple staphylococcus
aureus genomes identify novel anti-microbial drug targets. J Bacteriol, E, Epub.

Lee,J.K., Lee,Y.S., Park,Y.K. and Kim,B.S. (2005) Mutations in the gyra and parc genes in ciprofloxacin-
resistant clinical isolates of acinetobacter baumannii in korea. Microbiol Immunol, 49 (7), 647–653.

Mills,S.D. (2006) When will the genomics investment pay off for antibacterial discovery? Biochem

Pharmacol, 71 (7), 1096–1102.

Mistry,J., Bateman,A. and Finn,R.D. (2007) Predicting active site residue annotations in the pfam
database. BMC Bioinformatics, 8, 298.

Nie,Z., Perretta,C., Lu,J., Su,Y., Margosiak,S., Gajiwala,K.S., Cortez,J., Nikulin,V., Yager,K.M., Ap-
pelt,K. and Chu,S. (2005) Structure-based design, synthesis, and study of potent inhibitors of beta-
ketoacyl-acyl carrier protein synthase iii as potential antimicrobial agents. J Med Chem, 48 (5),
1596–1609.

Panjkovich,A. and Daura,X. (2010) Assessing the structural conservation of protein pockets to study
functional and allosteric sites: implications for drug discovery. BMC Struct Biol, 10, 9.

Panjkovich,A. and Daura,X. (2012) Exploiting protein flexibility to predict the location of allosteric sites.
BMC Bioinformatics, 13 (1), 273.

Payne,D.J., Gwynn,M.N., Holmes,D.J. and Pompliano,D.L. (2007) Drugs for bad bugs: confronting the
challenges of antibacterial discovery. Nat Rev Drug Discov, 6 (1), 29–40.



BIBLIOGRAPHY 89

Pedruzzi,I., Rivoire,C., Auchincloss,A.H., Coudert,E., Keller,G., de Castro,E., Baratin,D., Cuche,B.A.,
Bougueleret,L., Poux,S., Redaschi,N., Xenarios,I., Bridge,A. and Consortium,U. (2013) Hamap in
2013, new developments in the protein family classification and annotation system. Nucleic Acids

Res, 41 (Database issue), D584–D589.

Piras,C., Soggiu,A., Bonizzi,L., Gaviraghi,A., Deriu,F., Martino,L.D., Iovane,G., Amoresano,A. and Ron-
cada,P. (2012) Comparative proteomics to evaluate multi drug resistance in escherichia coli. Mol

Biosyst, 8 (4), 1060–1067.

Sakharkar,K.R., Sakharkar,M.K. and Chow,V.T.K. (2004) A novel genomics approach for the identifica-
tion of drug targets in pathogens, with special reference to pseudomonas aeruginosa. In Silico Biol,

4 (3), 355–360.

Smith,T.F. and Waterman,M.S. (1981) Identification of common molecular subsequences. J Mol Biol,

147 (1), 195–197.

Souli,M., Galani,I. and Giamarellou,H. (2008) Emergence of extensively drug-resistant and pandrug-
resistant gram-negative bacilli in europe. Euro Surveill, 13 (47).

Talbot,G.H., Bradley,J., Edwards,J.E., Gilbert,D., Scheld,M., Bartlett,J.G. and of the Infectious Diseases
Society of America,A.A.T.F. (2006) Bad bugs need drugs: an update on the development pipeline
from the antimicrobial availability task force of the infectious diseases society of america. Clin Infect

Dis, 42 (5), 657–668.

Tally,F.P. and DeBruin,M.F. (2000) Development of daptomycin for gram-positive infections. J Antimi-

crob Chemother, 46 (4), 523–526.

Umland,T.C., Schultz,L.W., MacDonald,U., Beanan,J.M., Olson,R. and Russo,T.A. (2012) In vivo-
validated essential genes identified in acinetobacter baumannii by using human ascites overlap poorly
with essential genes detected on laboratory media. MBio, 3 (4).

van Hal,S.J. and Paterson,D.L. (2011) New gram-positive antibiotics: better than vancomycin? Curr

Opin Infect Dis, 24 (6), 515–520.

White,T.A. and Kell,D.B. (2004) Comparative genomic assessment of novel broad-spectrum targets for
antibacterial drugs. Comp Funct Genomics, 5 (4), 304–327.

Wishart,D.S., Knox,C., Guo,A.C., Cheng,D., Shrivastava,S., Tzur,D., Gautam,B. and Hassanali,M.
(2008) Drugbank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res,

36 (Database issue), D901–D906.

Yang,J., Chen,L., Sun,L., Yu,J. and Jin,Q. (2008) Vfdb 2008 release: an enhanced web-based resource
for comparative pathogenomics. Nucleic Acids Res, 36 (Database issue), D539–D542.

Zhang,C.T. and Zhang,R. (2008) Gene essentiality analysis based on deg, a database of essential genes.
Methods Mol Biol, 416, 391–400.

Zhang,H.J., Li,Z.L. and Zhu,H.L. (2012) Advances in the research of beta-ketoacyl-acp synthase iii (fabh)
inhibitors. Curr Med Chem, 19 (8), 1225–1237.




