
Toward Lightweight and

High-Performance Hardware

Transactional Memory

Saša Tomić

Department of Computer Architecture

Universitat Politècnica de Catalunya

A dissertation submitted in partial fulfillment

of the requirements for the

Doctor of Philosophy in Computer Architecture

4th of June, 2011

mailto:sasa.tomic@bsc.es
http://docencia.ac.upc.edu/
http://www.upc.edu

Acta de calificación de tesis doctoral
Curso académico:

Nombre y apellidos

DNI / NIE / Pasaporte

Programa de doctorado

Unidad estructural responsable del programa

Resolución del Tribunal

Reunido el Tribunal designado a tal efecto, el doctorand / la doctoranda expone el tema de la su tesis doctoral

titulada __

__.

Acabada la lectura y después de dar respuesta a las cuestiones formuladas por los miembros titulares del

tribunal, éste otorga la calificación:

APTA/O NO APTA/O

(Nombre, apellidos y firma)

Presidente/a

(Nombre, apellidos y firma)

Secretario/a

(Nombre, apellidos y firma)

Vocal

(Nombre, apellidos y firma)

Vocal

(Nombre, apellidos y firma)

Vocal

______________________, _______ de __________________ de _______________

El resultado del escrutinio de los votos emitidos por los miembros titulares del tribunal, efectuado por la Escuela

de Doctorado, a instancia de la Comisión de Doctorado de la UPC, otorga la MENCIÓN CUM LAUDE:

SI NO

(Nombre, apellidos y firma)

Presidenta de la Comisió de Doctorado

(Nombre, apellidos y firma)

Secretaria de la Comisión de Doctorado

Barcelona, _______ de __________________ de _______________

This dissertation is dedicated to my wife, Jasmina.

Without you, this would not have been possible.

Acknowledgements

I would like to acknowledge my advisors Mateo Valero, Adrián Cristal,

and Osman Unsal for giving me the opportunity to attend PhD studies,

and for their guidance, confidence, and patient demeanor later during

the studies. They are the reason for my success on the professional

plan, but also the reason for all the good time I had with my friends and

my family in this beautiful city. Without Mateo’s impressive ability to

find new projects and fundings, my PhD studies would never happen.

I have been fortunate to be advised by Adrián Cristal and Osman Unsal.

The last five years have been an incredible journey, during which I have

benefited greatly from Adrián’s and Osman’s professional knowledge

and leadership. In addition, Adrian and Osman are incredibly generous

and supportive people, guiding me through both my professional and

the personal quests.

My internship in Microsoft Research Cambridge was an unexpectedly

enriching experience, that helped me to understand what research re-

ally is. I would like to thank Tim Harris for inviting me to the unfor-

gettable three month internship and for providing me with his invalu-

able support and help, both during my stay in Cambridge and after

I returned to Barcelona. Tim Harris showed me how hard work can

and does pay off, how hard work provides huge satisfaction if you are

building something useful, and how team work is the key for being

successful.

I would also like to acknowledge all my great friends and colleagues

from Barcelona Supercomputing Center (BSC) that supported me dur-

ing my PhD studies and that shared with me their insight and their

expertise. Many thanks go to Srd̄an Stipić, Cristian Perfumo, Chinmay

Kulkarni, Adrià Armejach, Ferad Zyulkyarov, Vladimir Subotić, Nehir

Sonmez, Marco Galuzzi, Paul Carpenter, Nehir Sonmez, Ege Akpinar,

Vladimir Marjanović, Vesna Smiljković, Vladimir Gajinov, Vasilis Kara-

kostas, Nikola Marković, Otto Pflucker, Vladimir Čakarević, Petar Rado-

jković, and many many others that I missed adding. I sincerely thank

all you guys for your company during my PhD and for all the great time

we had together.

My deepest thanks go to my wife, Jasmina. This dissertation would

not have been possible without her love and support. She is both the

source of my success and the reason that this success has meaning. I

also thank Novak for the joy and happiness that he has brought to my

life. Jasmina and Novak are my inspiration and my motivation, both in

good times and bad times. They are, without any doubt, the best thing

that ever happened to me.

My graduate work has been financially supported by the cooperation

agreement between the BSC and Microsoft Research, by the Ministry of

Science and Technology of Spain and the European Union, by the Eu-

ropean Network of Excellence on High-Performance Embedded Archi-

tecture and Compilation (HiPEAC) and by the European Commission

FP7 project VELOX (216852).

Abstract

Conventional lock-based synchronization serializes accesses to critical

sections guarded by the same lock. Using multiple locks brings the

possibility of a deadlock or a livelock in the program, making par-

allel programming a difficult task. Transactional Memory (TM) is a

promising paradigm for parallel programming, offering an alternative

to lock-based synchronization. TM eliminates the risk of deadlocks and

livelocks, while it provides the desirable semantics of Atomicity, Con-

sistency, and Isolation of critical sections. TM speculatively executes a

series of memory accesses as a single, atomic, transaction. The spec-

ulative changes of a transaction are kept private until the transaction

commits. If a transaction can break the atomicity or cause a deadlock

or livelock, the TM system aborts the transaction and rolls back the

speculative changes.

To be effective, a TM implementation should provide high performance

and scalability. While implementations of TM in pure software (STM)

do not provide desirable performance, Hardware TM (HTM) imple-

mentations introduce much smaller overhead and have relatively good

scalability, due to their better control of hardware resources. However,

many HTM systems support only the transactions that fit limited hard-

ware resources (for example, private caches), and fall back to software

mechanisms if hardware limits are reached. These HTM systems, called

best-effort HTMs, are not desirable since they force a programmer to

think in terms of hardware limits, to use both HTM and STM, and to

manage concurrent transactions in HTM and STM. In contrast with

best-effort HTMs, unbounded HTM systems support overflowed trans-

actions, that do not fit into private caches. Unbounded HTM systems

often require complex protocols or expensive hardware mechanisms

for conflict detection between overflowed transactions. In addition, an

execution with overflowed transactions is often much slower than an

execution that has only regular transactions. This is typically due to

restrictive or approximative conflict management mechanism used for

overflowed transactions.

In this thesis, we study hardware implementations of transactional

memory, and make three main contributions. First, we improve the

general performance of HTM systems by proposing a scalable protocol

for conflict management. The protocol has precise conflict detection, in

contrast with often-employed inexact Bloom-filter-based conflict detec-

tion, which often falsely report conflicts between transactions. Second,

we propose a best-effort HTM that utilizes the new scalable conflict de-

tection protocol, termed EazyHTM. EazyHTM allows parallel commits

for all non-conflicting transactions, and generally simplifies transaction

commits. Finally, we propose an unbounded HTM that extends and

improves the initial protocol for conflict management, and we name

it EcoTM. EcoTM features precise conflict detection, and it efficiently

supports large as well as small and short transactions. The key idea of

EcoTM is to leverage an observation that very few locations are actu-

ally conflicting, even if applications have high contention. In EcoTM,

each core locally detects if a cache line is non-conflicting, and conflict

detection mechanism is invoked only for the few potentially conflicting

cache lines.

Contents

Contents vii

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Parallel programming challenge . 2

1.2 Problems with parallel programming . 3

1.3 Transactional Memory for simpler parallel programming 5

1.3.1 Software vs. Hardware TM . 6

1.4 Dissertation Research Path . 7

1.5 Contributions of this Dissertation . 9

2 Background on Transactional Memory 11

2.1 Lock-based thread synchronization . 11

2.2 TM-based thread synchronization . 14

2.2.1 Conflict detection . 17

2.2.2 Conflict resolution . 18

2.2.3 Version management . 19

2.3 Eager TM . 20

2.4 Lazy TM . 20

2.5 Lazy versus eager TM . 21

2.6 Mixing the transactional and non-transactional accesses 23

vii

CONTENTS

3 Evaluation Environment 25

3.1 STAMP benchmark suite . 27

4 Dynamic Runtime Testing for Error-Free Cycle-Accurate Simulators 35

4.1 Introduction . 35

4.2 Detecting Bugs Using Dynamic Testing 38

4.2.1 Use Case: Coherent Multi-level Caches 42

4.2.2 Use Case: Hardware Transactional Memory 44

4.2.3 Use Case: Out-of-Order Simulator 48

4.2.4 Other Use Cases . 49

4.3 Non-functional Bugs in a Simulator . 50

4.4 Finding and Fixing Simulator Bugs . 50

4.4.1 An Example of a Debugging Session 52

4.5 Evaluation . 54

4.6 Our Experience With Dynamic Runtime Testing 56

4.7 Related Work . 57

4.8 Conclusions . 59

5 EazyHTM 61

5.1 EazyHTM: Basic Protocol . 62

5.1.1 Conflict Detection . 63

5.1.2 Tracking Possible Conflicts . 65

5.1.3 Committing a Transaction . 66

5.1.4 Aborting a Transaction . 67

5.1.5 State-Message Table of the EazyHTM protocol 68

5.1.6 Proofs of protocol correctness . 71

5.2 EazyHTM: Optimizations . 73

5.2.1 Commit: Write-Back Publishing of Speculative Changes 74

5.2.2 Commit: Publishing Critical-Cache-Lines First 74

5.2.3 Conflict Detection: Core-Local Filtering of Exclusive Lines . . 75

5.2.4 Conflict Detection: Directory-Level Filtering of Read-Only Lines 76

5.2.5 Conflict Detection: Core-Local Filtering of Read-Only Lines . . 77

5.3 Micro-architectural changes . 77

5.4 Evaluation . 78

viii

CONTENTS

5.4.1 Simulation environment . 79

5.4.2 EazyHTM Evaluation Results . 80

5.5 Conclusions . 87

6 EcoTM: Economical Conflict-Driven Hardware Transactional Memory 89

6.1 Introduction . 89

6.2 Basic EcoTM Architecture . 92

6.2.1 Core-local transactions . 94

6.2.2 Identifying Conflicting Cache Lines 95

6.2.3 Conflict detection and resolution 99

6.2.4 Example of conflict management 101

6.3 Overflowed transactions . 102

6.3.1 Conflict management for overflowed transactions 102

6.3.2 Logging QCC changes . 103

6.3.3 Data management for overflowed transactions 103

6.3.4 Support for context switching and interrupts 104

6.3.5 EcoTM on Systems with Limited Directory Size 104

6.4 Evaluation . 105

6.5 Conclusions . 112

7 Related Work in Hardware Transactional Memory 115

7.1 Related work in bounded HTMs . 115

7.2 Related work in unbounded HTMs . 118

8 Conclusions and the Future of TM 121

8.1 The future of TM . 122

8.1.1 The perspective of hardware developers 123

8.1.2 The interface to the TM hardware 125

8.1.3 New uses of HTM in sequential code 126

8.1.4 New uses of HTM: migrating from sequential to parallel code 129

8.1.5 New uses of HTM in parallel code 130

9 Publications 133

References 135

ix

List of Figures

2.1 Why lazy conflict resolution performs better under contention? 21

4.1 An overview of dynamic testing . 39

4.2 Dynamic runtime testing applied to coherent multi-level caches . . . 41

4.3 The time diagram for coherent multi-level caches 43

4.4 Pseudocode for coherent multi-level caches 43

4.5 Applying Dynamic Testing to HTMs . 45

4.6 The time diagram of dynamic testing for HTMs 46

4.7 Pseudocode of dynamic testing for HTMs 47

4.8 Dynamic runtime testing applied to the entire Out-of-Order simulator. 49

4.9 An example of Dynamic Testing: the simulator reports a potential bug 52

4.10 An Example of Dynamic Testing: potential bug found in the log . . . 53

4.11 An Example of Dynamic Testing: a potential cause of the bug found . 53

4.12 Performance impact on simulator performance during OS boot 54

4.13 Performance impact on simulator performance during app. execution 55

5.1 Conflict management overview in EazyHTM 62

5.2 Messages for conflict management in EazyHTM 63

5.3 Racers- and killers-list in EazyHTM . 65

5.4 Parallel commits in EazyHTM . 67

5.5 EazyHTM optimization: critical cache line first 75

5.6 An overview of the EazyHTM hardware modifications 77

5.7 The breakdown of the EazyHTM execution time. We consider the

EazyHTM configuration with all optimizations activated. 81

xi

LIST OF FIGURES

5.8 The speedup of the STAMP applications 84

5.9 Absolute number of off-core messages in EazyHTM variations. 86

6.1 Very few cache lines create conflicts in existing TM workloads 91

6.2 An overview of the conflict detection in EcoTM 93

6.3 The baseline Chip-Multi-Processor (CMP) architecture for EcoTM . . 94

6.4 State-transition diagram of Quick Conflict Check (QCC) 96

6.5 Core-local execution of non-conflicting transactions in EcoTM 98

6.6 Lazy cleaning of QCC states . 98

6.7 Conflict management hardware in EcoTM 100

6.8 Execution of conflicting bounded transactions 101

6.9 A breakdown of the execution time in STAMP applications 106

6.10 The speedup of the STAMP applications 108

6.11 Sensitivity of EcoTM to the size of the conflict-detection table 111

6.12 Sensitivity of EcoTM to the latency of the Overflow Buffer 112

xii

List of Tables

3.1 The applications in the STAMP suite . 28

3.2 An overview of STAMP, TM benchmark suite 29

3.3 STAMP parameters used in our evaluation 33

5.1 Protocol State Table for EazyHTM . 69

5.2 Baseline EazyHTM Simulator Configuration 79

5.3 EazyHTM Execution Statistics . 83

6.1 The hardware configuration . 107

7.1 An overview of related HTM mechanisms 116

xiii

Listings

2.1 Simplified bank-transfer example: sequential version 13

2.2 Potentially incorrect lock-based parallel code for bank-transfer. If

balance_get or balance_set acquire locks, a deadlock might arise. . . 14

2.3 Correct TM-based parallel code for bank-transfer 17

xv

1
Introduction

After 50 years of exponential improvement in the performance of sequential ex-

ecution, it becomes increasingly difficult to continue improving the performance

of sequential processors [57]. By simply increasing the clock frequency, the dis-

sipated energy becomes a serious issue, and the performance improvements are

insufficient [47]. All computing vendors have now changed their strategy. Instead

of improving the performance of single-core processors, they are increasing the

number of processor cores, and thus started moving towards multi-core or many-

core processors. Currently, vendor roadmaps promise the doubling of the number

of cores per chip in the following years. These chips are variously called chip mul-

tiprocessors, multicore chips, and many-core chips. Sources as varied as Intel and

Berkeley predict a hundred [37] if not a thousand cores [7] on a single chip.

Unfortunately, software developers were not prepared for the shift to multi-

core processors. While improving the single-threaded programming methodolo-

gies for more than 50 years, they have done little on multi-threaded programming

methodologies. Suddenly, software developers are faced with a challenge. They

1

1. INTRODUCTION

have powerful processors, but they cannot use this processing power to improve

the performance of their programs. They are not able to easily distribute the work-

load across all processor cores, to synchronize the calculations, and to collect the

results. Current lock-based synchronization is very difficult to program, although

it can provide good performance if a program is well written.

Transactional memory (TM) is an alternative synchronization method, which

promises to help programmers write (1) efficient parallel programs with (2) safety

and (3) ease. The underlying TM mechanism provides an Atomicity, Consistency,

and Isolation (ACI) of a critical section, thus freeing the programmer from having

to manually ensure them. At the moment, TM fulfils only a part of its promises.

TM-based parallel programs are apparently easier to write and more often correct

than lock-based parallel programs [58]. However, the performance and scalability

of TM programs in not as good as of lock-based parallel programs.

TM is an optimistic concurrency control mechanism. TM is based on the idea of

executing critical sections speculatively and atomically. If speculation was success-

ful, all changes are made public, otherwise the changes are automatically undone,

and the system returns to its state before the speculative execution started. Each

execution of a critical section is called a transaction. The transaction are executed

in parallel, while guaranteeing exactly-once semantics as if the transactions were

run in a serial order. If conflicts are detected during the execution, some of these

transactions are aborted to maintain consistency. When a transaction is aborted, all

its speculative changes are reverted and the system is returned to the state before

the transaction started execution.

In section 1.1, we outline the general challenge of synchronization in shared-

memory parallel programs. Section 1.3 describes the promises of transactional

memory and the challenges that this dissertation addresses.

1.1 Parallel programming challenge

After more than 40 years of parallel programming, writing parallel applications

is still more difficult than writing sequential applications. It is more difficult to

design, write, debug, and prove the correctness of a parallel algorithm than the

equivalent sequential algorithm.

2

As Harris et al. [34] conclude, parallel programming is difficult because it lacks

the support for abstraction and composition.

An abstraction is a simplified view of an entity, which captures the features that

are essential to understand and manipulate it for a particular purpose. Abstraction

hides irrelevant detail and complexity, and it allows humans (and computers) to

focus on the aspects of a problem relevant to a specific task.

Composition is the ability to put together two entities to form a larger, more

complex entity, which, in turn, is abstracted into a single, composite entity. Com-

position and abstraction are closely related since details of the underlying entities

can be suppressed when manipulating the composite product.

Modern programming languages support powerful abstraction mechanisms, as

well as rich libraries of abstractions for sequential programming. Procedures offer

a way to encapsulate and name a sequence of operations. Abstract data types and

objects offer a way to encapsulate and name data structures as well. Libraries,

frameworks, and design patterns collect and organize reusable abstractions that

are the building blocks of software. Stepping up a level of abstraction, complex

software systems, such as operating systems, databases or middleware, provide

the powerful, generally useful abstractions, such as virtual memory, file systems,

or relational databases used by most software. These abstraction mechanisms and

abstractions are fundamental to modern software development which increasingly

builds and reuses software components, rather than writing them from scratch.

Parallel programming lacks comparable abstraction mechanisms. Low-level

parallel programming models, such as threads and explicit synchronization, are

unsuitable for constructing abstractions because explicit synchronization is not

composable. A program component that contains explicit synchronization cannot

be abstracted with black-box that has certain functionality. A program developer

must be aware of the implementation details for the entire program, in order to

avoid causing races or deadlocks.

1.2 Problems with parallel programming

Parallel applications are difficult to develop, due to various reasons. We name here

two important reasons, that stand out from the rest. First, it is difficult to break

3

1. INTRODUCTION

the functionality of a sequential program into equal-sized units of work, that can

execute in parallel. Second, it is difficult to synchronize the parallel execution of

the units of work, in a way that provides identical results as the original sequential

execution.

Incorrect synchronization may result in unreliable execution because of:

• Data races. Parallel applications may have non-deterministic bugs, where an

execution of parallel application produces results different from the equiva-

lent sequential application.

• Deadlocks. It is very easy to lose track of locks and introduce deadlocks. For

a deadlock, two or more threads create circular requests for locks. All threads

in the circle block, and the execution of the deadlocked threads stops.

• Livelocks. In contrast with deadlocks, where the threads block, a thread

here requests re-execution from other threads. No thread makes forward

progress, while all threads in livelock perform work.

There are several levels of forward progress guarantees for parallel applica-

tions. The following three are commonly studied, and guarantee deadlock-free

execution.

• Wait-freedom is the strongest of the three. It guarantees that a thread will

make forward progress on its own work if the thread continues executing [38,

39]. This guarantee is very strong and, although desirable, typically results

in poor overall performance.

• Lock-freedom guarantees that, if any given thread continues executing, then

some thread will make forward progress with its work. Lock-freedom is suf-

ficient guarantee for preventing livelocks in the system.

• Obstruction-freedom guarantees that a thread will be able to make progress

with its own work, if other threads do not run concurrently (at the same

time). Obstruction-free algorithms do not guarantee livelock-free execution.

Even a correctly synchronized parallel application may behave poorly, because:

4

• Cache line bouncing. Changing the same data from different processors

causes cache-lines to bounce between private caches. This can limit the sys-

tem throughput, as Larson et al. [46] observe.

• Contention on critical sections. Mutual exclusion guards of critical sections

can needlessly restrict parallelism, by preventing non-conflicting accesses to

critical sections. While finer-grain locks partly mitigate the problem, lock

convoying and poorer cache performance can become a problem in this case,

again reducing the performance.

A true solution for parallel programming must provide good performance (or a

way to improve the performance), without risking the correctness of execution.

1.3 Transactional Memory for simpler parallel pro-

gramming

Transactional Memory (TM) promises an elegant solution for many problems with

parallel programming. With TM, a critical section is executed atomically, with an

all-or-nothing semantics. That is, either a complete code of a critical section is

executed, or none of it. No partial results of an execution may be visible at any

moment. We call an execution of a critical section a “transaction”.

The most important advantages of TM over locks are:

• Improved parallelism. A transactions may execute independently (in paral-

lel) if it does not conflict with concurrent transactions. We say a transaction

conflicts with concurrent transactions if it writes to locations that other con-

current transactions read or write. For example, read-only transactions can

always execute in parallel. Read-write transactions are also non-conflicting

if they access disjoint memory locations, or if they access memory locations

at different time (not concurrently).

• Deadlock and livelock freedom. The underlying TM mechanism can ensure

that the execution does not result in a deadlock or livelock. In this sense, TM

mechanisms provide “lock-freedom” forward progress guarantee.

5

1. INTRODUCTION

• Composability. Composition is the ability to put together two entities to

form a larger, more complex entity, which, in turn, is abstracted into a single,

composite entity. Achieving composability using locks requires from the pro-

grammer to get familiar with a specific implementation, introduce new locks

and risk new deadlocks. In contrast, composing transactions [33] can be as

simple as executing sub-transactions in the scope of a surrounding transac-

tion.

A conflict between transactions can be detected either (1) during transactions

execution, in which case we talk about eager conflict detection, or (2) when trans-

actions commit, in which case we talk about lazy conflict detection.

After it detects a conflict between transactions, a TM mechanism performs a

conflict resolution by, for example, aborting or stalling one of the conflicting trans-

actions. Conflict resolution can again be either (1) eager, at the moment when a

conflict is detected, or (2) lazy, at the moment it becomes necessary or appropriate.

1.3.1 Software vs. Hardware TM

Existing TM implementations are written purely in software (Software TM, or

STM), with no particular hardware support or requirements, except compare-and-

swap operations. This reflects in the performance of current TM implementa-

tions, since conflict detection requires intensive communication between software

threads. The performance of STMs will improve in time, when STMs evolve and

mature. However, it is unlikely that the performance of STMs will ever be close

to the regular sequential execution, especially in high-performance programming

languages like C or C++.

The evolution of STMs has already made a significant progress, from being

completely unusable in practice, as analyzed by Cascaval et al. [21], to the current

STM implementations which can actually reduce the execution time compared to

the sequential execution, given enough processor cores [26]. The STM code is

typically 4 or more times slower than the sequential execution. With 8 or more

cores, the STM parallel application can execute faster than the original sequential

application.

Without dedicated hardware support, the performance of single-threaded STM

6

executions will likely be much worse than the performance of the original sequen-

tial application. The appropriate question here is: which is the minimal hard-

ware support that would provide the best TM performance and scalability? Pure-

hardware TM (Hardware TM, or HTM) proposals, on the other end, have signifi-

cantly lower overheads, with performance of single-threaded HTM executions very

close to the performance of the original sequential application.

1.4 Dissertation Research Path

This dissertation brings us one step closer to a lightweight and high-performance

TM alternative to locks. The proposed TM support should result multi-threaded

synchronization mechanism that: (1) imposes minimal overhead to the execution,

and (2) scales well with the number of cores. That is, the main goal of the pre-

sented TM support is to avoid any limits in parallel execution of independent trans-

actions.

In this dissertation, I present several contributions I made to an already well-

researched area of hardware support for TM. I see these contributions as being a

competitive foundation for a real product, a processor with hardware support for

TM that can be used ubiquitously instead for locks.

This is the research path I took towards writing this thesis:

1. Choose a baseline HTM. We first analyzed the high-level performance bot-

tlenecks of HTMs, and tried to select a baseline HTM for my further research.

I implemented an eager HTM, and another colleague from the group imple-

mented a lazy HTM. According to our evaluations, lazy HTMs overall perform

better from eager HTMs. The results of our evaluation align with the results

of other researcher groups (for example [16]).

The research we had gave us the knowledge that is very hard to extract

from research papers – eager HTMs suffer from the same problems as lock-

based synchronization mechanisms. Because of this, it is much more difficult

to design an eager HTM protocol such that it efficiently works-around the

associated problems (deadlocks, livelocks, etc.). It is even difficult to design

an eager HTM that is obstruction-free (Section 1.2). The work-arounds in

7

1. INTRODUCTION

eager HTMs become particularly visible when a workload has medium to

high contention (rate of conflicts between transactions). These observations

pushed us towards lazy HTMs.

2. Simplify simulator development. Analyzing several HTMs, together with

their variations, required many changes in the simulators and often led to

broken and non-working simulators. The simulators were sometimes break-

ing with all executions and sometimes only with particular executions. Find-

ing bugs in simulators was very difficult and often required analyzing tens

or hundreds of gigabytes of trace files – a task hardly possible for a human.

The automation of the simulator testing functionality lead to a new method-

ology for continuous testing of simulators, which significantly simplifies and

accelerates the simulator development.

3. Analyze the performance of lazy HTMs. After analyzing in details the func-

tionality of lazy HTMs, it was obvious that its commit operation is very com-

plex. The commit operation in lazy HTMs is composed of (1) transaction

validation, and (2) publishing speculatively modified values. We observed

that it is possible to decompose and simplify this complex operation, by (1)

performing validation eagerly (during execution of transactions), and (2) re-

solving conflicts lazily (when necessary, at commit). This makes commits

much simpler, faster, and with less overhead, and allows all non-conflicting

transactions to commit completely in parallel. We name the resulting HTM

an “Eager-Lazy”, or EazyHTM. We show more details on EazyHTM in Sec-

tion 5.

4. Eliminate other important problems with eager-lazy HTMs. Other impor-

tant disadvantage of lazy and eager-lazy HTMs is their lack of support for

large transactions. EazyHTM stores all transactional data in private caches,

and detects conflicts using metadata in private caches. If private caches are

small, we have to fallback to software TM. This can be avoided by detecting

conflicts in directory. This allows us to increase the transaction size to the

size of memory directory, which is sufficient for current workloads. However,

directly moving the conflict detection metadata from private caches to the

8

directory would require a significant amount of metadata (2 bits per proces-

sor core, per directory entry, or 64 bits for 32-core system). To address this,

we came up with a mechanism for reducing the amount of metadata to the

constant 2 additional bits per directory entry. The mechanism is based on

classifying the lines between conflicting and non-conflicting. The classifica-

tion is done automatically, in runtime. We discovered that conflicting lines

are very uncommon, counted in tens of lines, while the non-conflicting are

counted in hundreds and thousands. For the common non-conflicting lines

we can use only 2 bit metadata. At the moment a line becomes conflicting,

we can approach other mechanisms for conflict detection. The mechanism

allows us to achieve the performance comparable with EazyHTM, with sim-

ilar hardware cost, while supporting much larger transactions. We named

this an Economical HTM, or EcoTM, and we present it in more details in

Section 6.

1.5 Contributions of this Dissertation

The most important contributions of this dissertations are the following:

• A methodology for continuous testing of cycle-accurate simulators. Cycle-

accurate simulators frequently have bugs or incorrectly designed protocols.

To accelerate the development, and to improve the reliability of simulators,

we developed a methodology for dynamic runtime testing of cycle-accurate

simulators (Section 4). The methodology dramatically reduced the testing

and debugging time of the simulators, by continuously testing the simulators

and, in case of an incorrect simulator execution, providing the exact moment

a bug appears.

• Separation of the conflict detection and resolution, in order to simplify

and accelerate transaction commit operation. While EazyHTM and EcoTM

detect transactional conflicts eagerly, they defer the resolution of these con-

flicts until commit time. Besides having the advantage of knowing the con-

flicts during the transaction execution, the underlying system can be simpler,

9

1. INTRODUCTION

as finding conflicts is not on the critical path of commit operation. Addition-

ally, the whole mechanism is very flexible. For example, it is not necessary

(although it is acceptable) to have split directories, and it is not necessary to

use a specific interconnection topology.

• A mechanism for allowing non-conflicting transactions to commit in

parallel. With EazyHTM and EcoTM, commits appear to be instantaneous

to other running transactions. Furthermore, these improvements are pro-

vided while guaranteeing that pathological behavior [16] such as livelocks

(“friendly fire”), starvation for writing transactions (“starving writer”), seri-

alized commit or cascaded waits never occur.

• A mechanism for efficiently reducing the transactional metadata storage

requirements. We propose the first HTM for large transactions that supports

eager, lazy, and eager-lazy conflict management, providing efficiency and

flexibility, while needing only 2 bits metadata per cache line. In compari-

son, a state-of-the-art HTM that supports only eager conflict management,

TokenTM, requires 16 bits metadata per cache line.

• An efficient unbounded, lazy-conflict-resolution HTM, that does not rely

on Bloom-filter signatures. Our conflict-detection protocol avoids false con-

flicts introduced in many other unbounded HTMs by Bloom-filter signatures.

False conflicts in these signatures are much more likely with larger transac-

tions, which we anticipate in future TM workloads. The evaluation indicates

that our design has better performance with large transactions than the state-

of-the-art HTMs.

10

2
Background on Transactional Memory

In this chapter, we introduce the concept of Transactional Memory (TM) in more

details. We will first start with an introduction to the lock-based synchronization

in Section 2.1, together with the problems with this kind of synchronization. In

Section 2.2 we will discuss the main motivation for introducing TM-based syn-

chronization as an alternative to locks. We will present the Software TM (STM)

techniques, and then present the HTMs and their advantages over STMs.

2.1 Lock-based thread synchronization

Mutual-exclusion locks (or mutex locks, or simply locks) are one of the simplest

and most commonly used thread synchronization constructs. Being a low-level

synchronization mechanism, locks are (1) well performing, (2) flexible, and (3)

complex to use correctly.

Physically, a lock is associated with a critical section of code. Lock allows only

a single thread to enter the protected critical section. Ideally, each critical section

11

2. BACKGROUND ON TRANSACTIONAL MEMORY

should have one associated lock. This lock needs to be acquired (or locked) by a

thread before entering the critical section. Similarly, the thread needs to release (or

unlock) the lock, before it leaves the critical section. If a lock is already acquired

by another thread, a thread needs to wait until the lock is released. We call this

lock contention.

Logically, a lock is associated with some shared data. A programmer has to keep

track of logical and physical association of each lock, during entire development.

To reduce the number of locks in the program, he can use one lock to synchronize

access to multiple units of data. In this case we have larger granularity of locking,

however, we might achieve less parallelism since we are more likely to have lock

contention.

A bigger difficulty with locks are deadlocks. Deadlocks may occur if a thread

holds some locks and tries to acquire a new lock. If it fails to acquire the new

lock, the thread execution is suspended without releasing already acquired locks.

This opens the door for a deadlock. For example, if a thread T1 acquires lock A

and suspends while trying to acquire lock B, and thread T2 acquires lock B and

suspends while trying to acquire lock A, we have a deadlock. Real-world scenarios

of deadlocks can be far more complex.

As Herlihy et al. [39] define, a good lock-based synchronization algorithm

should satisfy the following properties:

• Mutual Exclusion. This is a safety property and is clearly essential. To

provide this property, the critical sections of different threads should not

overlap. Each and all accesses to one shared data unit need to use the same

lock.

• Freedom from Deadlock. The system should never “freeze”. Individual

threads may be stuck forever (starve), waiting on a lock, but some thread

must make progress. To provide this property, a programmer should create

an order between locks, and always acquire locks in the same order. Acquir-

ing locks in the same order is error-prone. Unfortunately, an error can be

unnoticed and appear non-deterministically, after program deployment.

• Freedom from Starvation. Every thread must eventually make progress.

This property, while clearly desirable, is the least compelling of the three.

12

void do_ t rans f e r (in t account1 , in t account2 , in t amount)

{

in t temp ;

temp = balance_get (account1) ; // g e t c u r r e n t ba lance
ba lance_se t (account1 , temp − amount) ; // withdraw money
temp = balance_get (account2) ; // g e t c u r r e n t ba lance
ba lance_se t (account2 , temp + amount) ; // put money

}

Listing 2.1: Simplified bank-transfer example: sequential version

There are some practical mutual exclusion algorithms that fail to be star-

vation free. These algorithms are usually deployed in circumstances where

starvation is a theoretical possibility, but is unlikely to occur in practice. The

starvation-freedom property is also weak in the sense that there is no guar-

antee for how long a thread waits before it enters the critical section.

A programmer needs to be consistent in lock usage. He needs to precisely

define in which order, where, and for which data units is each lock acquired and

released. Failure to do so may cause an application to block, without any obvious

reason, and non-deterministically.

A particular complication arises when we manage (acquire and release) locks

in different functions. Listing 2.1 presents a simplified sequential version example

of a function that transfers money from account1 to account2. Current balance

of an account is retrieved by calling a function “balance_get”. A newly calculated

amount of money is stored into the account by calling “balance_set”.

Now, consider a lock-based parallel version, illustrated in Listing 2.2. It is dif-

ficult to know if the code will execute correctly. We need to know the details of

the implementation of the functions balance_get and balance_set. Do they call

some other functions? Are some locks acquired while they execute? Are deadlocks

possible?

We cannot answer these questions without analyzing the complete code in de-

tails.

Developing correct and high-performance parallel programs using locks is a

challenging task. The primary reasons are that (1) locks synchronize conserva-

tively, and (2) while locks logically synchronize data accesses, they physically syn-

13

2. BACKGROUND ON TRANSACTIONAL MEMORY

void do_ t rans f e r (in t account1 , in t account2 , in t amount)

{

acquire(lock_balance);
in t temp ;

temp = balance_get (account1) ; // g e t c u r r e n t ba lance
ba lance_se t (account1 , temp − amount) ; // withdraw money
temp = balance_get (account2) ; // g e t c u r r e n t ba lance
ba lance_se t (account2 , temp + amount) ; // put money

release(lock_balance);
}

Listing 2.2: Potentially incorrect lock-based parallel code for bank-transfer. If bal-

ance_get or balance_set acquire locks, a deadlock might arise.

chronize code accesses; the programmer has to maintain the correlation between

the data and the code.

2.2 TM-based thread synchronization

Compared to the lock-based synchronization, transactional memory provides much

simpler interface for synchronizing parallel threads. With TM, a programmer sim-

ply defines the borders of the critical section, and the TM engine makes sure that

execution of that critical section does not result in any pathology commonly associ-

ated with lock-based synchronization. The focus of TM is not the performance, it is

the elimination of the complexity associated with lock-based synchronization. TM

eliminates the two primary reasons that make lock-based thread synchronization

difficult – it eliminates the occurrence of deadlocks and simplifies the physical-

logical association between the locks and the data. In addition, it adds some ap-

pealing properties to TM programs, such as composability of functions.

With TM synchronization, multiple threads can concurrently and speculatively

enter the same critical section. A thread has an illusion that it is the only one en-

tering the critical section at that moment. All the speculative updates of the thread

are buffered in some private space and published if the speculation succeeds. We

therefore say that a thread executes a critical section “in a transaction”. If the

TM engine detects that the speculative execution of a transaction resulted in some

anomaly (e.g., no equivalent serialization, a deadlock or a livelock), it rolls back

14

the changes and then restarts the affected transactions. All transactions are logi-

cally serialized in some order, although they may physically execute concurrently.

The execution of a transaction appears to be indivisible and instantaneous to an

external observer.

The origin of TM is in database theory. However, TM transactions have less

properties than database transactions, since TM does not guarantee that the result

of transaction execution will be visible after a program terminates. That is, TM

transactions do not provide durability, which database transactions provide. The

other properties of TM transactions are:

Atomicity requires that all constituent actions in a transaction complete success-

fully, or that none of these actions appear to start executing. It is not acceptable

for a constituent action to fail and for the transaction to finish successfully. Nor

is it acceptable for a failed action to leave behind evidence that it executed. A

transaction that completes successfully commits and one that fails aborts.

Consistency is entirely application dependent, and it typically consists of a col-

lection of invariants on data structures. If a transaction modifies the state of the

world, then its changes should start from one consistent state and leave the data

structures in another consistent state. Later transactions may have no knowledge

of which transactions executed earlier, so it is unrealistic to expect them to execute

properly if the invariants that they expect are not satisfied. Maintaining consis-

tency is trivially satisfied if a transaction aborts, since it then does not perturb the

consistent state that it started in.

Isolation requires that transactions do not interfere with each other while they

are running – regardless of whether or not they are executing in parallel.

Relational Databases Management Systems (RDBMS) have been evolving for

the last 50 years. Over time, they have been improving the performance while

adding new functionalities. Some ideas that work very well in RDBMSs can also

be applied to the TM systems. However, there are crucial differences between

RDBMS and TM systems, and these differences prevent a direct application of the

knowledge accumulated in RDBMS systems to TM:

• Traditional relational databases execute transactions for much longer time.

The transactions in relational databases frequently make hard disk (perma-

nent storage) accesses. Each hard disk access can last for millions of pro-

15

2. BACKGROUND ON TRANSACTIONAL MEMORY

cessor cycles. In contrast, TM transactions cannot make I/O (that is, hard

disk accesses), which makes them much shorter in time. Because of this, the

speed of calculations affects the performance of TM transactions much more

than database transactions. This has many direct consequences to the TM

techniques.

A transaction in RDBMS can acquire its read and/or write when it starts the

execution. If any conflicts occur with other RDBMS transactions, it is often

more efficient in RDBMSs to make an order between transactions than to

rollback some of them. If a suspended transaction becomes ready to commit,

resuming it takes a relatively small percentage of time. In contrast, if a TM

(and especially HTM) transaction should be suspended, it is instead typically

more efficient to abort it and restart later, than to suspend it and resume it

later.

• The RDBMS operations are given in a declarative SQL language, while TM in-

structions are typically from imperative languages. Declarative languages de-

scribe what the program should accomplish, instead of describing how should

it be accomplished. This is in contrast with imperative programming, which

requires an explicitly provided algorithm. In result, the same RDBMS query

can typically be executed in a large number of ways, which can have a widely

varying performance.

• Reads and writes in TM transactions are interleaved, where in RDBMS trans-

actions discovering, reorganizing, and regrouping of reads and writes can

take an insignificant percentage of the total execution time of a transaction.

In RDBMS, the planning and optimizing a transaction execution can be much

longer than in TM, without reducing the overall system performance. This

allows various optimizations. For example, transaction commits can be made

more common by moving all reads to the beginning of a transaction execu-

tion, and immediately taking locks for the writes. The data modifications

can be performed at the end of transaction. This, and similar optimizations

are not possible in TM transactions, since: (1) TM transactions have to finish

their execution in much shorter time, and (2) some transactional accesses

may be unknown until they actually happen, since some addresses may be

16

void do_ t rans f e r (in t account1 , in t account2 , in t amount)

{

t x_begin();
in t temp ;

temp = balance_get (account1) ; // g e t c u r r e n t ba lance
ba lance_se t (account1 , temp − amount) ; // withdraw money
temp = balance_get (account2) ; // g e t c u r r e n t ba lance
ba lance_se t (account2 , temp + amount) ; // put money

t x_commit();
}

Listing 2.3: Correct TM-based parallel code for bank-transfer

calculated on-the-fly, during transaction execution.

• TM transactions may have some non-transactional operations in parallel with

transactional operations, while databases do not have the same problem.

TM-based synchronization provides much higher level of abstraction than lock-

based synchronization. Using TM, the programmer does not need to indicate where

to acquire or release locks, and does not have to worry about deadlocks or livelocks.

The previous example of a bank transfer can be converted to a TM-version by

making only trivial changes, shown in Listing 2.3.

We can distinguish three design choices in a TM implementation, which will be

explained in more details in separate sections: conflict detection, conflict resolu-

tion, and version management.

2.2.1 Conflict detection

A TM system must mediate concurrent accesses to the same data. If some of the

transactions that access data also modify it, we say that there is a conflict between

transactions. For correctness, a TM system must detect and resolve all conflicts

before the modifications are made public.

A conflict is detected when the underlying TM system determines that a conflict

has occurred. Most HTMs use the cache coherence protocol to detect conflicts

between transactions. A TM system may identify possible conflicts:

• Eagerly, during transaction execution [15, 17, 24, 55, 79], or

17

2. BACKGROUND ON TRANSACTIONAL MEMORY

• Lazily, when a transaction tries to commit [19, 25, 30].

False conflicts. In HTM systems, for simplicity, conflicts are usually detected at

the level of cache lines. If two transactions modify different parts of the same cache

line, HTM systems typically mark a conflict between transactions, even though

there is no actual conflict. We call this a false conflict. Another, much more impor-

tant and common source of false conflicts is the approximative conflict detection,

using some sort of signatures instead of the exact read and write set. A common

example of such signature is Bloom-filter signature [12]. This is typically done to

decouple the transactional subsystem from the rest of the processor. In this ap-

proach, a conflict is marked if a signature responds that a potential conflict with

other transaction(s) exists [79]. However, the quality of Bloom-filter signatures is

defined by the probability of “false positives”, that is, a probability that a signature

will claim that an entry has been added although it has not been.

There are many approaches to counter false conflicts. Reducing false conflicts

may improve performance to some extent, since we reduce the number of unnec-

essary aborts. However, in order to reduce the number of false conflicts, we may

have to introduce other performance overheads, or increase the hardware require-

ments. To counter false conflicts that are due to false sharing of a cache-line, we

may use smaller granularity of conflict detection (word instead of cache line) [31],

or value-based instead of address based conflict detection [59, 75]. To reduce the

number of false conflicts in Bloom-filter signatures we can use larger signatures

or use better hash functions [61, 65, 80]. However, both approaches are only a

partial solution, that is, they only partly reduce the probability of false conflicts.

2.2.2 Conflict resolution

A TM system needs to resolve a detected conflict, in order to ensure isolation be-

tween concurrent transactions. Conflicts between transactions can be resolved

either:

• Eagerly, as soon as they are detected [15, 17, 24, 55, 79], or

• Lazily, when a transactions is ready to commit [19, 25, 30].

18

A common eager resolution policy is to stall conflicting transactions and, if

stalling introduces a risk of a deadlock, then to abort some of the conflicting

transactions. Both stalling and aborting have their advantages and disadvantages.

Stalling may result in less wasted work than directly aborting a transaction, but it

risks deadlocks. On the other hand, aborting may result in more wasted work, but

does not introduce deadlocks.

Conflicts need to be resolved if they impact the correctness, or if they prevent

serializability of transactions. Serializability states that the result of a concurrent

transaction execution must be identical to a result in which these transactions are

executed in some serial order. Serializability simplifies reasoning of an execution,

since it allows a programmer to write a transaction in isolation, as if no other

transactions is executing in the system concurrently. The TM system is free to re-

order, or to interleave transactions, but it must ensure the result of their execution

remains serializable. Although serializability requires that transactions appear to

run in some sequential order, the transactions may actually run in parallel, as long

as the assumed sequential order is respected.

2.2.3 Version management

A TM implementation needs to track and manage transaction updates, that is, the

tentative work of a transaction. If a transaction aborts, the version management

mechanism needs to revert the changes made during transaction execution. In

our example, a TM implementation needs to track the updates to the balances of

account1 and account2.

TM systems typically manage updates by either using:

• Eager versioning, in which case the memory is directly updated, as soon as

possible, and a copy of the original values is created [15, 17, 55, 79], or

• Lazy versioning, in which case the updates are buffered until a transaction

commits successfully [19, 25, 30].

Initial HTM proposals were keeping speculatively accessed lines in private caches.

If these lines could not fit into private caches, a transaction was aborted. More re-

19

2. BACKGROUND ON TRANSACTIONAL MEMORY

cent HTM proposals also store speculative lines in: (1) load-store queue, (2) higher

levels of the memory hierarchy, or (3) software-managed storage.

Most HTM are either monolithically eager or monolithically lazy. That is, they

either perform conflict detection, resolution, and version management all eagerly,

during transaction execution, or they delay all these operations until transaction

tries to commit. We will now describe the operation of purely or monolithically

eager and lazy HTMs.

2.3 Eager TM

Eager TM is also known as pessimistic concurrency-control TM, or an pessimistic

TM.

Eager TM performs conflict detection, resolution, and version management to-

gether, on each instruction execution. When a transaction is about to access a

location, an eager TM system: (1) detects a conflict, (2) resolves it, and (3) up-

dates the memory location. This type of concurrency control allows a transaction

to claim exclusive ownership of data prior to proceeding, preventing other trans-

actions from accessing it.

In result, a transaction has very simple commit operation, since there is very

little work to do for commit [15, 17, 55, 79]. This type of TM targets workloads

with very low probability of conflicts.

2.4 Lazy TM

Lazy TM is also known as an optimistic concurrency-control TM, or an optimistic

TM.

A Lazy TM detects and resolve a conflict lazily, when a transaction tries to com-

mit. Lazy concurrency control allows multiple transactions to access and modify

the same data concurrently, and to continue running even if they conflict. How-

ever, the TM must detect and resolve all conflicts before a transaction wants to

commit.

In result, a transaction in lazy TM needs to perform significant work when it

20

Figure 2.1: Why lazy conflict resolution performs better under contention?

wants to commit. However, the overall system performance can be higher than in

eager TM, since the transactions do not have to communicate during their execu-

tion (in order to resolve conflicts) until some of them wants to commit.

2.5 Lazy versus eager TM

To see how conflict management can affect the performance of a TM system, con-

sider the example shown in Figure 2.1, inspired by the work of Spear et al. [73].

Eager conflict detection (Figure 2.1a) attempts to minimize the amount of

wasted work performed in the system. Here, transaction T1 conflicts with T2, and

is stalled. After this, T2 conflicts with T3, and gets stalled too. Note that though

T1 does not conflict with T3, it must stall until T3 (and then T2) either aborts or

commits. Most eager HTM implementations suffer from these so-called cascading

waits [16].

With lazy conflict detection (Figure 2.1b), all transactions execute until a trans-

action attempts to commit. In the example, when T1 attempts to commit, it only

aborts T2. Once T2 aborts, T3 can also commit without conflicts.

In the above example, we make two observations. First, lazy conflict resolution

allows two transactions to commit, while eager resolution allows only one. This

difference is due to a fundamental facet of eager conflict resolution: it must address

21

2. BACKGROUND ON TRANSACTIONAL MEMORY

potential conflicts (caused by an offending access to a shared location), while lazy

resolution deals with conflicts that are unavoidable in order to allow a transaction

to commit. Second, attempts by eager systems to reduce “wasted” work are not

always successful. In Figure 2.1a, for instance, the eager system stalls T1. Since T1

does not eventually abort, the work that was avoided had not been wasteful. Even

if T1 did abort, the amount to work saved would be minimal, due to the small size

of transactions.

In summary, eager HTM systems can suffer from the following problems:

1. Must speculate which transaction is more likely to commit (and which should

be aborted) when an offending access is attempted. At this time, the system

has little information, but needs to speculate, which is inherently suboptimal.

Solving this problem accurately is a complex problem algorithms similar to

the one presented by Smith et al. [70].

2. Even if they make a successful prediction, a chain of waiting transactions

still cause a cascading wait and the system needs to avoid deadlocks that

may arise out of such (cascaded) stalls. Alternatively, if conflicts result in

aborts, performance degrades due to unnecessary aborts.

Bobba et al. [16] and Shiraman et al. [68] illustrate how lazy conflict reso-

lution can allow more parallelism than eager conflict resolution, especially under

high-contention workloads. In high-contention workloads the contention manage-

ment mechanism frequently has to make a difficult decision of which is the best

transaction to abort or stall. Making a good decision in eager systems can require

complex algorithms, which translate to complex hardware. In contrast, lazy sys-

tems have a simple policy that generally works well: the committer wins. Beside

guaranteeing forward progress (since some transaction has to commit), the policy

avoids deadlocks and livelocks. Furthermore, lazy conflict detection can result in

higher performance than eager conflict resolution if the amount of “wasted work”

in lazy systems is offset by the “wasted time” in eager systems.

22

2.6 Mixing the transactional and non-transactional

accesses

Transactional memory execution may have non-transactional accesses together

with transactional accesses. The TM implementation may behave differently when

transactional and regular code try to access the data of another transaction. Blun-

dell et al. [13] explored the problem and described the two common behaviors of

TM systems.

Weak isolation (also known as “weak atomicity”) guarantees transactional se-

mantics only among transactions. Non-transactional accesses to transactional data

may create various types of problems. For example: (1) unambiguous data races

between transactional and non-transactional code, (2) granularity problems that

occur when the data managed by the TM implementation is coarser than the pro-

gram variables being accessed, (3) accesses by aborted transactions in TMs that do

not order transaction aborts, or (4) when the programmer attempts to use transac-

tional accesses to one piece of data to control whether or not another piece of data

is shared.

Strong isolation (also known as “strong atomicity”) guarantees transactional

semantics not only between transactions, but with non-transactional code as well.

Providing strong isolation with software transactional memory can greatly affect

the overheads of the TM implementation [2, 66]. To provide strong isolation,

HTMs have natural advantage over STMs. Since HTMs operate at a low level

of instruction execution, they can track both transactional and non-transactional

accesses without significant additional complexity.

23

3
Evaluation Environment

The best kind of evaluation for hardware proposals would be to measure the perfor-

mance using real-world applications, on a real-world operating system and other

commonly present factors of the typical execution environment. Unfortunately,

with the current hardware technology it is not possible to modify the processors,

and we have to approach alternative evaluation methods.

To simulate a processor, we use a modern and stable architectural simulator,

M5, from the Advanced Computer Architecture Laboratory of the University of

Michigan [11]. The simulator code is split into several functional modules and

provides a flexible basis for simulating different computer system architectures.

It features pervasive object-oriented orientation, with major simulation structures

(CPUs, busses, caches, etc.) represented as objects, both externally and internally.

M5 simulator directly supports two interchangeable CPU models: (1) a simple,

functional, one-CPI CPU, and (2) a detailed model of an out-of-order SMT-capable

CPU. Both models use a common high-level ISA description. Other models could

also be created, if it becomes necessary. In this research, we used the CPU model

25

3. EVALUATION ENVIRONMENT

with the simple one-CPI CPU.

M5 simulator supports full-system simulation, and system-call emulation. In

full-system simulation, it executes a real Operating System from a disk image. In

system-call emulation, M5 emulates the functionality of the Operating System, and

the time spent in the OS functions is typically ignored. In this work, we used the

full-system version of M5 and the Linux kernel version 2.6.18.

The M5 simulator features a detailed, event-driven memory system including

non-blocking caches and split-transaction buses. These components can be ar-

ranged flexibly, e.g., to model complex multi-level cache hierarchies.

The M5 simulator decouples ISA semantics from its timing CPU models. This

enables support for multiple ISAs, and M5 currently supports: Alpha, ARM, SPARC,

MIPS, POWER and x86 ISAs.

The M5 simulator runs on most operating systems (Linux, MacOS X, Solaris,

OpenBSD, Cygwin) and architectures (x86, x86-64, SPARC, Alpha, and PPC). It

is readily portable to other hosts and other Unix-like operating systems that are

supported by GCC. Alpha binaries to run on M5 (including the full Linux kernel)

can be built on x86 systems using gcc-based cross-compilation tools, so no Alpha

hardware is needed to make full use of M5.

M5 simulator provides full-system simulation support for:

• Alpha: The M5 simulator models a DEC Tsunami system in sufficient detail

to boot unmodified Linux 2.4/2.6, FreeBSD, or L4Ka::Pistachio.

• ARM: The M5 simulator can model up to four cores of a Realview ARM devel-

opment board with sufficient detail to boot unmodified Linux 2.6.35+ with

a simple or out-of-order CPU.

• SPARC: The M5 simulator models a single core of a UltraSPARC T1 processor

with sufficient detail to boot Solaris in a similar manner as the Sun T1 Ar-

chitecture simulator tools (building the hypervisor with specific defines and

using the HSMID virtual disk driver).

• x86: The M5 simulator supports a standard PC platform.

We started using M5 while its support was only stable for Alpha architecture.

Therefore, all our evaluations are based on DEC Alpha Tsunami system. Since

26

M5 simulator matured in the meantime, it should be possible to port our imple-

mentations to other architectures without any major difficulties.

Unmodified M5 simulator supports a snooping bus-based coherence protocol

for modeling symmetric multiprocessor (SMP) systems. Because a complete system

is just a collection of objects (CPUs, caches, memory, etc.), multiple systems can be

instantiated within a single simulation process.

For the purpose of this research, we extended the original M5 cache-coherence

from a simple bus-based to a more elaborate directory-based cache coherence. We

have also implemented a 2D mesh core-to-core interconnection network (ICN).

The simulator has a sequential consistency memory model.

The HTM modules for EazyHTM and EcoTM connect with the rest of the M5

simulator using clear and strictly defined interface. This allows using different

HTM implementations with almost no changes in the rest of the simulator. The

LogTM-SE and Scalable-TCC HTMs, which our group developed in order to com-

pare their performance with EazyHTM and EcoTM, all use virtually identical base

simulator.

Selecting an appropriate evaluation workload is of particular importance. Since

we simulate processor, the program execution takes much more time. Our simula-

tor provides around 2 Million Instructions Per Second (MIPS) on a high-end server.

This speed is very high compared to other architectural simulators, but the simula-

tor is much slower than real processors. For example, Intel 486DX provides around

54 MIPS, and recent desktop machines provide more than 10,000 MIPS.

3.1 STAMP benchmark suite

To provide TM researchers with larger transactions, Cao Minh et al. [20] proposed

a Stanford Transactional Applications for Multi-Processing (STAMP). STAMP quickly

became a de facto standard for evaluating TM proposals. STAMP is written in C,

and it can execute workloads with various TM back-ends, software, hardware, or

hybrid TM. The TM back-ends can be selected and configured by changing TM

macros in one header file.

STAMP strives to be a TM benchmark suite with: (1) breadth – having a variety

of algorithms and application domains, (2) depth – covering a wide range of ap-

27

3. EVALUATION ENVIRONMENT

Application Domain Description

Bayes machine learning Learns structure of a Bayesian network

Genome bioinformatics Performs gene sequencing

Intruder security Detects network intrusions

Kmeans data mining Implements K-means clustering

Labyrinth engineering Routes paths in maze

SSCA2 scientific Creates efficient graph representation

Vacation online transaction processing Emulates travel reservation system

Yada scientific Refines a Delaunay mesh

Table 3.1: The applications in the STAMP suite

plication behaviour: high and low contention, short and long transactions, small

and large transactions, and (3) portability – supporting software, hardware and

hybrid TMs. Table 3.1 summarizes applications from the suite, and the Table 3.2

summarizes their characteristics: transaction length, read and write set size, and

the contention.

We will now present a summary of each application from the suite.

Bayes. This application implements an algorithm for learning the structure of

Bayesian networks from observed data. The main data structure is adtree, used to

estimate the probability distributions. The Bayesian network itself is represented

as a directed acyclic graph, with a node for each variable and an edge for each

conditional dependence between variables. On each iteration, each thread is given

a variable to analyze, and as more dependencies are added to the network, con-

nected subgraphs of dependent variables are formed.

A transaction is used to protect: (1) the calculation and (2) addition of a new

dependency. The calculation result depends on the extent of the subgraph that

contains the variable being analyzed. Bayes spends almost all its execution time

in long transactions with large read and write sets. This benchmark has a high

amount of contention as the subgraphs change frequently.

Genome. Genome assembly is the process of taking a large number of DNA

segments and matching them to reconstruct the original source genome. This pro-

gram has two phases to accomplish this task: (1) creating a hash-set of unique

segments, and (2) each thread tries to remove a segment from a global pool of

unmatched segments and add it to its partition of currently matched segments.

28

Read set Write set Transaction Transaction

Application min average max min average max Length Time Contention

Bayes 1 203.9 3377 0 91.9 2578 Long High High

Genome 1 35.6 198 0 4.8 42 Medium High Low

Intruder 0 25.2 58 0 6.9 23 Short Medium High

Kmeans 2 6.4 8 0 1.7 2 Short Low Low

Labyrinth 4 590.5 893 1 367.3 476 Long High High

SSCA2 1 3.99 4 0 1.99 2 Short Low Low

Vacation 23 75.3 102 1 9.8 18 Medium High Low/Medium

Yada 1 82.7 457 0 29.7 192 Long High Medium

Table 3.2: The characteristics of the evaluated applications from the STAMP TM benchmark suite, with the number of cache lines of read and

write sets, evaluated with 16 simulated processors. While many applications have less than 50 cache lines in the write set, bayes for example,

at some point of the execution has more than 2500 lines.

2
9

3. EVALUATION ENVIRONMENT

Transactions are used in each phase of the benchmark. The transactions are

of moderate length and have moderate read and write set sizes. Almost all of the

execution time is transactional, and there is little contention.

Intruder. Signature-based network intrusion detection systems (NIDS) scan

network packets for matches against a known set of intrusion signatures. Network

packets are processed in parallel and go through three phases: capture, reassembly,

and detection. The main data structures are: (1) a simple FIFO queue for the

capture phase, and (2) dictionary (self-balancing tree) in the reassembly phase.

The dictionary contains lists of packets that belong to the same session.

Transactions are used in the capture and reassembly phases. This benchmark

has relatively short transactions. It also has moderate to high levels of contention

depending on how often the reassembly phase rebalances its tree. Overall, since

two of the three phases are spent in transactions, this benchmark has a moderate

amount of total transactional execution time.

KMeans. The K-means algorithm groups objects in an N-dimensional space into

K clusters. This algorithm is commonly used to partition data items into related

subsets. Each thread processes a partition of the objects iteratively and inside a

transaction. The amount of contention among threads depends on the value of

K, with larger values resulting in less frequent conflicts as it is less likely that two

threads are concurrently operating on the same cluster center.

The contention is low, since threads only occasionally update the same center

concurrently. The transactions are small, since their size is proportional to D, the

dimensionality of the space. Overall, the majority of execution time for KMeans is

spent calculating the new cluster centers, in a non-transactional code.

Labyrinth. This benchmark routes paths in a maze. The main data structure is

a three-dimensional uniform grid that represents the maze. In the parallel version,

each thread grabs a start and end point that it must connect by a path of adjacent

maze grid points. The calculation of the path and its addition to the global maze

grid are enclosed by a single transaction. A conflict occurs when two threads pick

paths that overlap. Each transaction initially creates a private copy of the grid,

and uses this copy for calculating a path. To add the path to the global grid, the

transaction revalidates by re-reading all the grid points along the new path. If

validation fails, the transaction aborts and the process is repeated, starting with a

30

new, updated copy of the global grid.

Creating the private grid copy adds the entire grid to the read set of the transac-

tion. To reduce the probability of conflicts, a TM needs to early-release the global

grid. Early-release allows a transaction to remove a data address from its trans-

actional read set so that it does not generate conflicts. However, the programmer

or compiler must guarantee that removing the address from the read set does not

violate the atomicity of the program. Path calculation takes almost all execution

time, and this creates very long transactions with very large read and write sets.

Virtually all of the code is executed transactionally, and the amount of contention

is very high because of the large number of transactional accesses to memory.

SSCA2. Scalable Synthetic Compact Applications 2 (SSCA2) is comprised of

four kernels that operate on a large, directed, weighted multi-graph. These four

graph kernels are commonly used in applications ranging from computational bi-

ology to security. For STAMP, we focus on Kernel 1, which constructs an efficient

graph data structure using adjacency arrays and auxiliary arrays. This part of the

code is well suited for TM as it benefits greatly from optimistic concurrency. The

transactional version of SSCA2 has threads adding nodes to the graph in parallel

and uses transactions to protect accesses to the adjacency arrays. Since this oper-

ation is relatively small, not much time is spent in transactions. Additionally, the

length of the transactions and the sizes of their read and write sets is also small.

The amount of contention is the application is relatively low as the large number

of graph nodes leads to infrequent concurrent updates of the same adjacency list.

Vacation. This application implements an online transaction processing sys-

tem, serving the task of emulating a travel reservation system. The system is im-

plemented as a set of trees that keep track of customers and their reservations for

various travel items. During the execution of the workload, several client threads

perform a number of sessions that interact with the travel system’s database. In

particular, there are three distinct types of sessions: reservations, cancellations,

and updates.

Each of these client sessions is enclosed in a coarse-grain transaction to ensure

validity of the database. Consequently, vacation spends a lot of time in transactions

and its transactions are of medium length with moderate read and write set sizes.

Low to moderate levels of contention among threads can be created by increasing

31

3. EVALUATION ENVIRONMENT

the fraction of sessions that modify large portions of the database. Finally, using

transactions greatly simplified the parallelization as designing an efficient locking

strategy for all the data structures in vacation is non-trivial.

Yada. Yet Another Delaunay Application (YADA) benchmark implements De-

launay mesh refinement. The basic data structures are: (1) a graph that stores

all the mesh triangles, (2) a set that contains the mesh boundary segments, and

(3) a task queue that holds the triangles that need to be refined. The goal of the

algorithm is to produce a mesh without skinny triangles, that is, maximizing the

minimum angle of all the angles of the triangles in the triangulation. In each it-

eration of the algorithm, a skinny triangle is removed from the work queue, its

retriangulation is performed on the mesh, and any new skinny triangles that result

from the retriangulation are added to the work queue.

Transactions enclose accesses to the work queue, as well as the entire refine-

ment of a skinny triangle. As almost all the execution time is spent calculating

the retriangulation of a skinny triangle, this benchmark has relatively long transac-

tions and spends almost all of its execution time in transactions. While performing

the retriangulation, several triangles in the mesh are visited and later modified,

leading to large read and write sets and a moderate amount of contention.

In our evaluations we have used the parameters proposed for HTM systems,

presented in Table 3.3 on Page 33.

32

Application Arguments Description

Bayes -v32 -r1024 -n2 -p20 -s0 -i2 -e2 -t NUMPROC
Dependencies for v variables are learned from r records, which

have n× p parents per variable on average. Edge insertion has

a penalty of i, and up to e edges are learned per variable.

Genome -g256 -s16 -n16384 -t NUMPROC
Gene segments of s nucleotides are sampled from a gene with g
nucleotides. A total of n segments are analyzed to reconstruct

the original gene.

Intruder -a10 -l4 -n2048 -s1 -t NUMPROC
n traffic flows are analyzed, a of which have attacks injected.

Each flow has a max of l packets, and the random seed s is

used.

KMeans-Hi -m15 -n15 -t0.05 -i random2048-d16-c16.txt -p NUMPROC
The number of cluster centers used is varied from m to n. A

convergence threshold of t is used, and analysis is performed

on input i. The input consists of n points of d dimensions

generated about c centers.KMeans-Low -m40 -n40 -t0.05 -i random2048-d16-c16.txt -p NUMPROC

Labyrinth -i random-x32-y32-z3-n96.txt -t NUMPROC The input i consists of a maze of dimensions x× y×z. n paths

are routed.

Vacation-Hi -n4 -q60 -u90 -r16384 -t4096 -c NUMPROC
The database has r records of each reservation item, and

clients perform t sessions. Of these sessions, u% reserve or

cancel items and the remainder create or destroy items. Ses-

sions operate on up to n items and on q% records.Vacation-Low -n2 -q90 -u98 -r16384 -t4096 -c NUMPROC

Yada -a20 -i 633.2 -t NUMPROC The input mesh i is refined so that it has a minimum angle of

a. The input 633.2 consists of 1264 elements.

Table 3.3: STAMP parameters used in our evaluation3
3

4
Dynamic Runtime Testing for

Error-Free Cycle-Accurate Simulators

4.1 Introduction

The proposals for hardware changes are typically first implemented and evaluated

on architectural cycle-accurate simulators. These simulators aim to accurately rep-

resent the functionality, the interaction, and the timing of all functional compo-

nents of the real hardware. As such, architectural simulators are typically very

complex and prone to errors. A simulator with errors can unnecessarily delay the

evaluations of architectural proposals. Incorrect simulator evaluations can take

future product development in a wrong direction, or create other unnecessary de-

velopment costs. Simulator developers often invest significant effort in thoroughly

testing and verifying the simulators, attempting to confront the errors.

Verification and debugging are often seen as the most difficult problems in to-

day’s complex hardware and software systems. This is especially the case with

35

4. DYNAMIC RUNTIME TESTING FOR ERROR-FREE CYCLE-ACCURATE

SIMULATORS

the products that require continuous modifications. It is commonly estimated by

many hardware and software companies that verification will take between 50

and 70 percent of the total cost of a product [36, 43]. For large or mission-critical

projects, verification can take as much as 90 percent of the total cost. Traditional

testing methods (for example, unit testing [63]) require a significant amount of

programming effort to provide good confidence in simulator correctness. However,

architectural simulators are often changed rapidly and extensively, used to evalu-

ate a certain idea or approach, and after that the changes are discarded. Thus, the

testing of architectural simulators is often performed irregularly and unsystemati-

cally.

In contrast with simulators, architectural emulators (for example, QEMU [9])

model far fewer details of the target hardware architecture. The functionality of

the emulators typically consists only of: (1) decoding instructions, (2) executing

them, and (3) updating the simulated memory. The objective of an emulator is

to provide a functional equivalent of the target architecture, without estimating

its performance. Emulators are typically used to make virtual machines and to

do cross-platform software development. Since emulators are far simpler than

simulators, they are generally much more stable, much easier to debug, and to

validate. Still, executions on an architectural simulator and an emulator have to

produce identical final results.

This work presents dynamic runtime testing, a development methodology that

verifies the functional correctness of a cycle-accurate simulator during its entire de-

velopment cycle. Dynamic runtime testing discovers the unintentional functional

errors (bugs) in a simulator by comparing its execution with an execution of the

integrated simple emulator. The emulator serves as a golden-reference for a func-

tional verification of the simulator. In dynamic runtime testing, we execute both

the simulator and the emulator sequentially and in the same environment. We

compare their execution as often as possible, preferably after every operation, and

any difference in the executions of the simulator and the emulator indicates a pos-

sible bug in the simulator and needs to be carefully examined. Dynamic runtime

testing aims to be a “write and forget” methodology for continuous testing, where

developer creates the testing environment and then continues to freely change the

simulator. The developer can be relaxed, knowing that the simulator will report

36

any bugs, even during rapid simulator prototyping.

The functional correctness of the simulator is dynamically verified during the

entire execution of a simulator, in every simulator execution, and during the entire

lifetime of a simulator. In Section 4.2, we explain a procedure for applying dynamic

testing to almost any architectural simulator, either to the simulator as a whole, or

to a specific component (module) of the simulator. Then we show several use cases

of the methodology: coherent multi-level caches, Hardware Transactional Memory

(HTM), and Out-Of-Order (OOO) processors.

Dynamic runtime testing can detect only functional bugs. This is a trade-off be-

tween the effort needed for implementing the technique and the achieved function-

ality. To detect other types of bugs, we still have to complement dynamic testing

with other testing methods. Dynamic runtime testing can be complemented with

a variety of testing and debugging techniques. In Section 4.3 we explain our moti-

vation for detecting only functional bugs, and we mention some other techniques

that we used for testing the simulators.

In Section 4.4, we explain how a developer can use dynamic runtime testing to

find and fix bugs in a simulator. We describe our preferred debugging methods –

execution tracing and an interactive debugger tool. We also present an example of

a debugging session of a simulator that has dynamic runtime testing. If it detects

a potential bug, dynamic testing provides a direct path for finding the bug, and

for verifying that the bug has been eliminated. We show a simple and efficient

procedure that can help to locate the section of code with a bug. The procedure is

much faster and has much less room for errors than a typical debugging procedure.

In Section 4.5, we evaluate the impact of dynamic runtime testing on the per-

formance of two cycle-accurate simulators: coherent multi-level caches and Hard-

ware Transactional Memory (HTM). The overhead of dynamic testing is modest

(10-20%) in our implementations, since the baseline simulators are much more

complex than the simple emulators added for dynamic runtime testing. The over-

head of dynamic testing could be even smaller in other implementations, for ex-

ample, if we test a full-system cycle-accurate simulator of a pipelined out-of-order

architectural processor. In this case we can use a highly optimized architectural

emulator, which can provide speed close to the native execution [9]. In contrast,

the fastest full-system cycle-accurate simulators can simulate only around 2 MIPS

37

4. DYNAMIC RUNTIME TESTING FOR ERROR-FREE CYCLE-ACCURATE

SIMULATORS

(million instructions per second). Even if we assume that an architectural emu-

lator induces a 10 times slowdown, this is more than 1000 MIPS on a modern

machine, which is about 500 times faster than the 2 MIPS of the complex archi-

tectural simulator. Thus, the overhead of such a configuration could be less than

1%.

In Section 4.6, we share our experiences with dynamic testing. Dynamic testing

helped us to rapidly develop, test, and verify several architectural cycle-accurate

simulators. Consequently, our simulator development became more productive

and more efficient. In particular, dynamic testing provides us the following advan-

tages over other simulator testing methods:

1. Faster simulator testing, since we do not need to create a complex and ex-

tensive test suite,

2. Faster simulator debugging, since we can pinpoint a precise moment and

the circumstances that lead to a bug, instead of only discovering that a bug

appeared, and

3. Faster simulator development, since we have more confidence and freedom

to develop the simulator, knowing that any introduced bug will immediately

appear.

In addition, dynamic runtime testing could help to recover the simulator from a

certain type of bugs. If simulator execution is different from the emulator, it is

possible to fallback to the execution results of the emulator. This can improve the

overall reliability of the simulator, although admittedly not its correctness.

4.2 Detecting Bugs Using Dynamic Testing

In this section, we present the dynamic simulator testing methodology. We start

with a high-level overview of the methodology and then present several use cases,

simultaneously showing more details on the implementation of the methodology.

Dynamic testing can be applied both to individual components of a simulator

(examples in Sections 4.2.1 and 4.2.2), or to the entire simulator (example in

Section 4.2.3). In the further text, we will use a generic term “simulator” even for

38

Figure 4.1: An overview of dynamic testing. The tested simulator (black) and the functionally

identical emulator (red) have to be produced the same output during entire simulator execution.

Any difference indicates a likely bug.

39

4. DYNAMIC RUNTIME TESTING FOR ERROR-FREE CYCLE-ACCURATE

SIMULATORS

individual simulator components, since the individual simulator components can

usually be transformed to independent simulators.

An overview of dynamic runtime testing is illustrated in Figure 4.1. Dynamic

testing consists of comparing (1) the outputs of a functional simulator, with (2) the

outputs of its functionally equivalent emulator. The comparison is done after every

executed operation, and all outputs have to be identical. Although any type of

output could be compared, we found it sufficient to compare the values of memory

locations.

A high-level overview of the procedure for implementing dynamic testing can

be represented as:

1. Emulator integration. We make a functionally-equivalent emulator and in-

tegrate its code with the baseline simulator. The emulator should not provide

any timing estimations, and it should focus on being simple, well performing,

and functionally correct.

2. Emulator validation. We disable the code of the baseline simulator and

redirect its input (e.g., operations and memory values) to the emulator. We

have to confirm that all applications terminate correctly and do not give any

errors or warnings.

3. Simulator-emulator comparison. Finally, we re-enable the code of the base-

line simulator giving it the same input as to the emulator. We execute an

operation in the simulator, after that in the emulator, and then compare the

outputs. Any difference in the outputs of the simulator and the emulator

indicates a possible bug in either the simulator or the emulator.

Although we did not do so, it is possible to execute the simulator and the emulator

in parallel (multi-threaded), and to synchronize their execution in order to verify

the correctness. In our view, the added complexity of synchronization would not

compensate for the added value of potentially faster execution. In that approach,

we would check and synchronize the progress of the simulator and the emulator

after each executed operation, get the results (outputs) of the two executions, and

compare them. The overhead of synchronization can easily exceed the overheads

40

Figure 4.2: Dynamic runtime testing applied to coherent multi-level caches. The cache lines fetched

and evicted by the (1) the cache emulator (STL map) and (2) the cycle-accurate coherent caches,

must have the same value.

of the sequential execution of the emulator, especially in the case when the execu-

tion of the emulator is short.

The simulator notifies a developer, and provides an exact point of execution at

which the difference from the emulator appeared. In case there is no difference

between the outputs between the simulator and the emulator, we can be highly

confident that the simulator-based evaluations are functionally correct, but still not

certain. Dynamic simulator testing cannot guarantee that no bugs have remained

in the simulator. However, assuming that the simulator executes a wide set of

applications, the majority of bugs are likely to be discovered.

In the following sections, we demonstrate dynamic testing with several real-

world use cases.

41

4. DYNAMIC RUNTIME TESTING FOR ERROR-FREE CYCLE-ACCURATE

SIMULATORS

4.2.1 Use Case: Coherent Multi-level Caches

Coherent multi-level caches are functionally simple, although their implementation

can be very complex. Our cycle-accurate simulator for the coherent multi-level

caches is a collection of objects (one object per cache structure) that: (1) uses a

coherence protocol and state machines to track the ownership of cache lines, (2)

tracks the values (data) of the cache lines, and (3) calculates the access latency of

each access.

Bugs in coherent multi-level caches usually appear in the coherence protocol,

which can lead to multiple “modified” copies of the same location at different in-

stances or levels of cache, resulting to incorrect values of some locations. Our goal

was to eliminate the frequently-buggy coherence protocol and to avoid multiple

copies of cache lines. This can be achieved with a cache emulator that has only

one level and that is directly accessible by any part of the simulator. Such emula-

tor obviously cannot estimate an access latency, but this is not the objective of the

emulator.

A single level of caches allows us to further simplify the code. By analyzing

the requirements, we can conclude that the same functionality can be provided

by a generic data container for key-value pairs. The data container stores the

pairs of (1) an address of a cache line and (2) the data stored in the cache line.

Beside the data container, we wrote simple functions for extracting sequences of

bytes from a cache line. Most modern programming languages provide such data

containers, typically with a name map, or a dictionary. For example, C++ has

a Standard Template Library (STL) map, which supports adding a new key-value

pair, updating the value stored at a certain key, and removing some or all entries.

Dynamic runtime testing checks the following functionalities of multi level

caches: (1) every read from a location needs to return the last value written by

any processor to the same location, and (2) every write-back from the caches to

the simulator memory needs to return the last written value. These functionalities

must be satisfied at all times, by all types of coherent caches: bus-based, directory-

based, broadcast-based or other, with any cache-interconnection topology and in-

terconnection type.

Figure 4.2 illustrates the resulting configuration of coherent multi-level caches

42

Figure 4.3: The time diagram of dynamic testing for the coherent multi-level caches. The cache-

simulator and the cache-emulator execute sequentially, and have to return the same values.

Figure 4.4: Pseudocode of dynamic runtime testing for the coherent multi-level caches

43

4. DYNAMIC RUNTIME TESTING FOR ERROR-FREE CYCLE-ACCURATE

SIMULATORS

that includes dynamic runtime testing. When program reads the a value, the pro-

cessor requests the value from the multi-level cache simulator, which may have to

fetch the value from the main memory of the simulator, since the main memory

always has all cache lines. The objects in the cache simulator communicate by

exchanging messages, and each communication between cache objects increments

the total latency of a cache access. In the end, when the processor receives the

value from the multi-level cache simulator, it also receives the estimated latency of

the access, and uses this latency to schedule the execution of the thread.

Figure 4.3 presents a time diagram of the dynamic testing of caches. When a

processor requests a value from its L1 cache, the request may propagate to L2 cache

or higher memory levels. After the request is completed, and the cache simulator

returns the value and the latency of the access, the processor gets the value of

the same location from the cache emulator. A code in the processor then confirms

that the two values (from the simulator and the emulator) are the same. The

same process is performed by all processors in the system, and with all their cache

accesses. When a location is evicted from the top-level cache, the same location

is also evicted from the cache emulator, and the code in the simulator memory

confirms that the two evicted values are the same.

In Figure 4.4, we show the pseudo-code of our implementation of dynamic

testing for the cache simulator. A read returns the requested value and checks that

the value is the same in both the simulator and the emulator. A write updates the

values in two caches without doing any checks. If the cache simulator needs to

evict a line, the same location is also removed from the cache emulator, and the

data in the two cache lines are checked to be identical. If the data is identical, it is

stored in the simulated main memory. Otherwise, the difference is reported to the

developer since it indicates a probable bug in the implementation of the coherent

multi-level caches. Having the exact point of the execution where the difference

appeared, the debugging of the cache-coherence protocol is much simpler.

4.2.2 Use Case: Hardware Transactional Memory

In our past work, we implemented and evaluated several proposals of Hardware

Transactional Memory (HTM). Transactional Memory [34] is an optimistic con-

44

Figure 4.5: Dynamic runtime testing applied to HTMs. All reads are compared between the HTM

simulator and the HTM emulator, and must return the same value. Optionally, writes/commits

could be compared as well.

currency mechanism, which allows different threads to execute speculatively the

same critical section, in a “transaction”. The assumption is that the speculative

execution of the transaction will not write over the data used by other concurrent

transactions. In case the assumption was correct, we say that the speculation is

successful, the transaction “commits” and publishes the speculative writes made

during its execution. Otherwise, we say that a transaction has a conflict with some

other transaction(s), and the HTM system decides which of the conflicting transac-

tions are aborted. If a transaction is aborted, the speculative writes made by this

transaction are rolled back, and the execution of this transaction is restarted.

The actual HTM protocol for publishing and rolling back speculative writes can

be very complex, often leading to bugs in commits and aborts of transactions. To

improve performance, a designer of an HTM protocol may decide to partially clear

the transactional metadata during transaction commit [55], or to group-change

the permissions of all speculatively written lines [30].

To design a reference HTM emulator, we tried to eliminate complex commit and

abort procedures, providing only the basic functionalities universal to all HTMs.

45

4. DYNAMIC RUNTIME TESTING FOR ERROR-FREE CYCLE-ACCURATE

SIMULATORS

Figure 4.6: The time diagram of dynamic testing of an HTM. The HTM-simulator and the HTM-

emulator execute sequentially, and have to return the same values.

The first necessary functionality of an HTM emulator is to buffer the speculative

writes until a transaction successfully commits. We can keep the speculatively

writes in an STL map (similar to the cache emulator). The second necessary func-

tionality of an HTM emulator is the detection of conflicts with other transactions. A

transaction needs to check the speculative reads and the writes with all other active

transactions. Since we already track the speculative writes in the STL map, we only

need to track the speculative reads in another STL set. Since STL map and set have

theoretically unlimited capacity, the reference HTM emulator can also successfully

detect the problems usually caused by limited hardware resources in HTMs.

Figure 4.5 shows a graphical overview of the presented approach for dynamic

testing of an HTM. The same HTM emulator can be used to test HTMs with eager

and lazy version management and can verify the values of both speculative reads

and writes. In case a transaction already speculatively wrote to the location, a read

from the same transaction has to return this speculatively written value. Otherwise,

a read has to return the last non-speculative value of the location in the system.

A transaction has to commit all values speculatively written during its execution,

and it has to commit the last written values of these locations.

Figure 4.6 presents a time diagram of dynamic runtime testing of an HTM.

During execution, a simulated processor sends the memory accesses and the trans-

actional events, first to an HTM simulator and after that to the HTM emulator. The

46

Figure 4.7: Pseudocode of the implementation of dynamic runtime testing for an HTM

47

4. DYNAMIC RUNTIME TESTING FOR ERROR-FREE CYCLE-ACCURATE

SIMULATORS

values that transactions read, and the committed values, are compared between

the two HTMs. Any difference from the HTM emulator indicates a likely bug in the

HTM simulator. The simulator logs the difference together with more details on

the simulator state (for example, simulator clock). Based on the log, a developer

can start debugging precisely at simulator state where the potential bug appeared.

Figure 4.7 shows the pseudo-code of our implementation of dynamic testing for

HTMs. To simplify the code of the HTM emulator and at the same time make it less

dependent on the particular implementation of the HTM simulator, we decided to

slightly relax our implementations of dynamic testing of HTMs. Our implementa-

tions do not verify the committed values. Instead, a transaction in a single cycles

publishes all its speculative writes, by updating the values in the cache emulator

(the STL map) described in Section 4.2.1. On the other side, the cycle-accurate

HTM simulator publishes the speculatively writes by interacting with the multi-

level cache simulator, in a process that may take many cycles, and may require

many changes of the permissions of the cache lines.

4.2.3 Use Case: Out-of-Order Simulator

Dynamic testing can also be applied to an entire cycle-accurate Out-Of-Order (OOO)

processor simulator. The biggest problem with OOO processor simulators are their

hard-to-find bugs which appear only with certain values or certain interleaving

of instructions, which may appear only in very long simulations. Many bugs are

related to incorrect implementations of some instructions or their parts (micro-

operations). These bugs may eventually cause some memory location to have

incorrect values, which may change the execution after millions or billions of in-

structions, making debugging almost impossible.

Dynamic runtime testing can significantly improve the stability of OOO simula-

tors since it detects these bugs instantly, as they happen. In Figure 4.8, we present

a schematic overview of a possible implementation of dynamic runtime testing for

OOO simulators. This use case is slightly different from previous examples of dy-

namic testing, since a reference emulator has only one input (from simulator mem-

ory) and one output (to simulator memory). However, this does not significantly

change the implementation of dynamic runtime testing, compared to the previous

48

Figure 4.8: Dynamic runtime testing applied to the entire Out-of-Order simulator.

examples. To dynamically test an OOO simulator, we can compare its writes to the

simulator memory with the writes made by a simple processor emulator. Having

identical memory writes during the entire simulation provides a strong confidence

that the cycle-accurate OOO processor simulator is functionally correct.

Since processor emulators are much faster than cycle-accurate OOO simulators

(two or more orders of magnitude), the dynamic testing should not significantly

affect the speed of the simulator. Cycle-accurate OOO simulators are inherently

slower from the emulators since they simulate the functionality and the interaction

of all hardware elements physically present in OOO processors, while processor

emulators typically only decode instructions, execute them, and then update the

simulated memory.

4.2.4 Other Use Cases

Similarly to the given examples of dynamic testing, the same principle could be

used to improve the functional correctness of other cycle-accurate hardware sim-

ulators, and to simplify their debugging without significantly reducing their per-

formance. In general, a tested hardware simulator should evaluate an extension

or a modification representable by a simple, functional emulator. Among other

49

4. DYNAMIC RUNTIME TESTING FOR ERROR-FREE CYCLE-ACCURATE

SIMULATORS

examples, dynamic runtime testing can be used for: single-processor multi-level

memory hierarchy, incoherent multi-level memory hierarchy, system-on-chip simu-

lators, network models, on-chip routing protocols, or pipelined processors.

4.3 Non-functional Bugs in a Simulator

Dynamic Runtime Testing only guarantees that a simulator completed the simula-

tion without any functional errors. That is, the presented development methodol-

ogy cannot guarantee that a simulator will give a correct or accurate estimation of

the execution time, although it can help to eliminate many bugs. An example of an

error that dynamic runtime testing does not see is an incorrect calculation of the

execution time (as long as the execution is otherwise correct).

While it is possible to extend dynamic runtime testing with a basic testing of

various other estimations provided by a simulator, we decided not to do that. In-

stead, we aimed for the simplicity of the methodology instead of generality.

As Dijkstra commented, testing shows the presence, not the absence of bugs.

Therefore, to have higher confidence in our evaluations, we have given our best

in making an extensive set of tests for correct evaluations of execution time. To

test and validate our timing estimations, we have used the following methods in

addition to dynamic runtime testing: manual testing, code review, unit testing, re-

gression testing, and asserting invariants during execution. These testing methods

are described elsewhere in the literature, for example in [3].

4.4 Finding and Fixing Simulator Bugs

After dynamic testing reports a potential bug in the simulator, a developer needs

to approach the conventional debugging methods in order to find the source of the

bug in the simulator. We describe here two common debugging methods: (1) a

conventional debugging tool, or a debugger, for example gdb [74], and (2) execu-

tion traces.

Debugger allows a developer to stop the execution of the simulator at the

moment he finds the most appropriate, and to examine the state of the simulator

50

memory and the architectural registers. This allows the developer to examine in

details the complete state of the simulator, and even it even allows him to test

the output of particular simulator functions, or to manually set the values of some

memory locations. Debuggers generally have good performance and support for

advancing the execution “forward in time”. Unfortunately, going “back in time”

is very difficult in a debugger. This means that if a developer misses the point of

failure, he generally has to stop the simulator execution, restart the simulator, and

then wait until the execution comes to the same point.

Trace-based debugging does not require a specific tool, since it consists of

instrumenting the simulator code, for print the important part of simulator context

to a trace file. Having a static trace file allows a developer to explore the execution

not only by advancing “forward in time” (as with typical debuggers), but also “back

in time”, with no added complexity. By analyzing the static trace file, a developer

can reason about the state of the simulator and expect that a bug appeared in a

certain section of simulator code.

However, in certain aspects, trace-based debugging may be more complicated

from a debugger. First, a developer needs to instrument the code for tracing, while

developing the simulator. If the trace files do not contain all the information that a

developer needs, he needs to re-instrument the simulator code, make more verbose

trace files, and to re-execute the complete simulation. He similarly needs to remove

some tracing instrumentation if the trace files are too verbose, which makes them

unreadable and unnecessarily large.

Our approach to a trace-based debugging is to turn off tracing by default. This

improves the execution speed of a simulation and reduces the storage require-

ments. In essence, this eliminates the trace files for all executions without bugs.

We enable tracing after dynamic runtime testing reports a potential bug. Our im-

plementation of tracing also has several levels of verbosity. While more verbose

trace files provide more information on the simulator states, they slow down the

execution more, and are slower or more difficult to analyze later.

51

4. DYNAMIC RUNTIME TESTING FOR ERROR-FREE CYCLE-ACCURATE

SIMULATORS

Figure 4.9: An example of Dynamic Testing: the simulator reports a potential bug

4.4.1 An Example of a Debugging Session

In this section, we show an example of how dynamic runtime testing can simplify

simulator debugging.

In our simulator development, we prefer using the trace-based debugging and

we use a debugger only if necessary. Trace-based debugging provides an easy way

to analyze the execution of the simulator both forward and back in time, starting

from any position in the simulator execution.

If dynamic runtime testing detects a possible bug, it reports the bug on the

“standard error” stream, and then stops the execution of the simulator. We show

an output of the described execution scenario in Figure 4.9.

After we turn on tracing, we re-run the execution that uncovered a bug. Dy-

namic runtime testing now generates not only the address and the value of the

location with the incorrect value, but also a complete trace of all memory accesses

(addresses and values of reads and writes) that preceded the bug. From our experi-

ence, a bug is most often created in the last operation performed over the location.

Less frequently a bug is 2-3 operations before, and rarely earlier than that. To find

the previous uses of the location that has an incorrect value, we analyze the traces

using standard text-processing tools, for example, grep, sed, and awk.

Figure 4.10 shows an example of a trace file. The last line in the trace file holds

the address of the location with an incorrect value. In this particular case, the

address of the variable is 0xfb4b5c8, and the address of the cache line holding the

variable is 0xfb4b5c0.

In the next step, we “grep” the trace file to find the most recent occurrences

52

Figure 4.10: An Example of Dynamic Testing: potential bug found in the log

Figure 4.11: An Example of Dynamic Testing: a potential cause of the bug found. The overflow

buffer in lazy HTM does not have the value that it should have.

of our cache line. The filtered trace for the cache line is shown in Figure 4.11.

Reading the final operations over the cache line, we see the following. The cache

line 0xfb4b5c0 had to be evicted from the L1 cache, and moved to an “overflow

buffer” (sort of a victim cache for transactional data). However, the next time we

accessed the overflow buffer, our cache line was not in it. This means that the bug

could be in the code for moving the value to the overflow buffer, or in the code for

the retrieving a value from the overflow buffer.

We now have an exact segment of simulator code that has a bug, and we can

see the interleaving of accesses that lead to the incorrect behavior. After we analyze

the functionality of the simulator code with a bug, we can very quickly identify and

fix the problem.

A problem may arise if the trace files do not hold enough information. For

example, imagine that in our case we did not log the operations with the overflow

buffer. In this case, we have to increase the verbosity of trace files and to repeat the

simulator executions. Verbose tracing provides more details on the simulator state

during execution, and this often results in easier debugging. Since all simulator

53

4. DYNAMIC RUNTIME TESTING FOR ERROR-FREE CYCLE-ACCURATE

SIMULATORS

1 2 4 8 16 32
Simulated Processor Cores

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
o
rm

a
liz

e
d
 E

x
e
cu

ti
o
n
 T

im
e

With cache testing
With HTM and cache testing

Figure 4.12: Dynamic testing impact to the simulator speed during Operating System (OS) booting.

The average simulator speed is normalized to the one without dynamic testing.

executions are deterministic, changing the verbosity of traces and re-executing

the simulator will produce the same bug, even if we execute a multi-threaded

application inside the simulator.

In this example, finding and fixing a bug was easy. In some other cases, a

bug can be more difficult to find and we have to use a debugger, or some other

debugging method. In all cases, it is very important to re-execute the complete

benchmark suite after we verify that a bug has been eliminated in a single bench-

mark configuration, since fixing one bug might uncover or create other bugs in

different benchmark configurations.

4.5 Evaluation

In this section, we evaluate the performance impact of dynamic testing on simula-

tor performance (execution time). We have used the M5 full-system simulator [11]

as a base architectural simulator, and extended it to implemented MESI-directory

coherent multi-level caches, and several HTM proposals.

We carried out all simulations on modern Intel Xeon X86_64 processors, taking

care of minimizing the I/O and other system calls, which may non-deterministically

affect the simulator performance. As a result, all simulator executions have more

54

ba
ye

s

ge
no

m
e

in
tru

de
r

km
ea

ns
-h

i

km
ea

ns
-lo

w

la
by

rin
th

ss
ca

2

va
ca

tio
n-

hi

va
ca

tio
n-

lo
w

ya
da

Simulated Processor Cores

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
o
rm

a
liz

e
d
 E

x
e
cu

ti
o
n
 T

im
e

With cache testing
With HTM and cache testing

Figure 4.13: Dynamic testing impact to the simulator speed during application execution. The

average simulator speed is normalized to the one without dynamic testing.

than 98% CPU utilization on average. We have measured the execution time of the

simulator for all applications from the STAMP transactional benchmark suite [20],

and for 1, 2, 4, 8, 16, and 32 simulated processor cores. The simulator is single-

threaded, and to simulate multi-core processors, the simulator sequentially pro-

cesses events of each simulated processor core or device. We have repeated each

execution three times to reduce the effect of wrong measurements in single exe-

cutions caused by random, uncontrollable events, and then calculated an average

execution time.

Figure 4.12 shows the impact to the time needed to simulate the booting of

the Operating System. We have grouped the simulator executions by the simulated

number of processor cores, normalized the execution time to the simulator without

dynamic testing, and then calculated the geometric mean. The results indicate that

dynamic testing reduces the simulator speed by 20% on average, with a very small

standard deviation. Since there are no transactions during the booting of the OS,

there is almost no penalty for doing the empty calls to the HTM testing code.

Figure 4.13 shows the performance impact of dynamic testing during applica-

tion execution. We have grouped the simulator executions by the simulated appli-

cation, normalized the execution time to the simulator without dynamic testing,

55

4. DYNAMIC RUNTIME TESTING FOR ERROR-FREE CYCLE-ACCURATE

SIMULATORS

and then calculated the geometric mean. According to the evaluation, dynamic

testing reduces the execution time between 10% and 20%, which is relatively less

than during the OS booting. The reason is that the basic simulator is now more

complex and simulates an HTM protocol. We can see that, while dynamic HTM

testing does introduce some overhead, the total increase in the simulator execu-

tion time is generally below 20%.

In both testing examples, dynamic runtime testing would extend a 10 hour

simulation to less than 12 hours on average. Taking into account that writing the

simulator and the simulator test suite may take many person-months, we consider

the performance impact of dynamic testing to be more than acceptable.

4.6 Our Experience With Dynamic Runtime Testing

It is commonly believed that the earlier a defect is found, the cheaper it is to fix

it [45]. Our experience is certainly in accordance with this popular belief. We

have developed the dynamic testing methodology out of necessity. Making a cycle-

accurate architectural simulator is certainly not easy and, as any other software

development, it is very prone to errors.

The original cache coherence protocol in M5 simulator is bus-based, which

does not scale well beyond 8 cores (or 16 cores as a maximum). We have replaced

the base M5 cache coherence with MESI directory-coherence protocol, known to

scale well even with more than 64 processor cores. Our directory-based coherent

caches hold both line addresses and data, which means that a bug in the cache-

coherence protocol would cause wrong data to be provided by caches. Thanks to

using dynamic testing, we were able to complete the implementation of caches in

under 3 months, and to have much stronger confidence in the correctness of our

implementation.

Our first two HTM simulators did not implement the dynamic testing method-

ology. These two simulators were supposed to be used for validating the results

presented by LogTM [55] and TCC [30]. After more than 12 man-months spent

on simulator development we had to cancel the development, since some simula-

tions were still not terminating correctly, or were giving wrong results. This would

jeopardize the objectiveness and the correctness of our measurements. To find

56

and eliminate bugs, we would have to analyze the execution traces of hundreds of

gigabytes, and this task is nearly impossible to be done manually.

Dynamic testing methodology in our following simulators allowed us to signif-

icantly reduce the time needed to transition from an idea to getting the evaluation

results. The benefits from dynamic testing are two-fold. First, since we knew ex-

actly where a bug appeared in the simulator execution, we could quickly detect and

eliminate all obvious simulator bugs. This reduced the simulator development time

from 12-18 man-months to 3-4 man-months. Second, dynamic testing methodol-

ogy improved our confidence in the results of our evaluations, since we had a proof

that all our HTM simulations were functionally correct.

Three of our HTM simulators have lazy version management and one has eager

version management. Although the functionality of these HTMs is different, they

all have similar functional equivalents. A fundamental difference between the ea-

ger and the lazy HTM is the decision on when to abort a conflicting transaction. In

all implementations, a transaction can keep its speculatively modified values pri-

vate, in a per-transaction buffer, since the speculative values become public after a

transaction commits.

4.7 Related Work

Dynamic runtime testing is related to several testing and debugging methodologies

of software and hardware. These section describes several related testing and

development methodologies.

Conventional debugging methods help discover how and why a bug occurred,

but they offer very little help for discovering whether and where a bug occurred. It

is also possible that there is a logical flaw in the simulated protocol. These flaws

cannot be detected easily using conventional debugging methods.

To detect bugs, a developer may add assertions to a program [40], to check

for illegal values of some variables. However, a developer needs to add assertions

manually. This means that assertions detect only the bugs that a developer can

anticipate, for example, this value should never be zero. However, some bugs

produce values that are valid but incorrect. For example, if an assertion checks if a

value is non-zero, that assertion would not detect an incorrect value 2 instead of 3.

57

4. DYNAMIC RUNTIME TESTING FOR ERROR-FREE CYCLE-ACCURATE

SIMULATORS

In result, beside polluting the source code, the assertions detect only a small subset

of bugs. Finally, even if an assertion fails (after detecting an illegal value), the bug

that caused the illegal value could be millions of cycles before the assertion fails.

Discovering where in the execution a bug appeared is a difficult problem. Being

“efficient in debugging” is directly related to the previous experience in debugging

and programming, causing debugging to be closer to an art than to a science. A

bug may cause an execution to: (1) fail, (2) terminate with an incorrect result, or

(3) terminate with correct result. We cannot underestimate the final case, where a

program terminates with correct result even though it has bugs. These bugs values

might cause an execution to be shorter or longer than it should be, for example, by

causing a wrong number of loop iterations.

In contrast with assertions, which often check values against constant illegal

boundary values, dynamic runtime testing provides precise reference values to

compare an execution with. In that sense, we can see dynamic runtime testing

as assertions with dynamic precise conditions, where the conditions for assertion

checks are strict and calculated in runtime, based on the history and the current

state of the simulator execution.

Back-to-back testing methodology [77] consists of comparing the execution of

two independent and functionally equivalent programs. The programs are com-

pared: (1) statically (for example, by reading the source code), (2) with specially

designed functional test cases, and (3) with random test cases. However, in back-

to-back testing methodology the developers need to dedicate significant time to

creating a large collection of test cases. In contrast, dynamic runtime testing is a

small, “write and forget” one-time development effort that autonomously performs

tests during entire life cycle of the simulator.

“Co-Simulation” (co-operative simulation) [8] was proposed as a way to ac-

celerate the simulations in Hardware Description Language (HDL). Co-simulation

consists of partitioning the simulator into modules and simulating some modules in

hardware simulators (HDL) and the rest in software (e.g., C code). The hardware

and software modules exchange information in a collaborative manner, using a

well defined interface. Since modules simulated in software are much faster than

the modules written in a low-level HDL, the simulation can be completed much

faster. Co-simulation is sometimes extended for verification, but the problem of

58

interfacing modules in a heterogeneous simulation platform presents a major issue

both in performance and programmability. In contrast, dynamic runtime testing

was developed with an objective to provide functional verification and has all sim-

ulator components written in the same language, on a homogeneous simulation

platform. Having a homogeneous simulation platform allows easier development

and testing, stronger integration of simulator modules, and faster execution.

4.8 Conclusions

Dynamic runtime testing can be used for improving stability and reliability of cycle-

accurate architectural simulators. With dynamic runtime testing, we verify func-

tional correctness of the simulator automatically, with every simulator execution.

This allows us to change the simulator rapidly, and still be able to find bugs

quickly and be confident that the simulator executes correctly. The simulator re-

ports us any potential functional bug, together with the exact time and the circum-

stances that lead to the bug. The testing method imposes only a minor reduction

in simulator performance and, in our case, we have managed to reduce the to-

tal time for development and evaluation time for a single simulator from 12-18

person-months to 3-4 person-months.

59

5
EazyHTM

EazyHTM separates the tasks of conflict detection and conflict resolution. It performs

conflict detection concurrently with a transaction’s execution, but defers conflict

resolution until either: (1) a transaction tries to commit, or (2) until a conflicting

transaction commits (at which point the tentative conflict becomes unavoidable).

Unlike traditional eager conflict detection and resolution this means there is no

need to anticipate which transaction is more likely to commit. Unlike traditional

lazy conflict detection this means we can avoid commit-time validation, and in turn

can have simpler and faster commits.

In the following section we introduce the basic EazyHTM protocol. After that,

we explain further optimizations and extensions in Section 5.2. We overview the

micro-architectural modifications in Section 5.3, and discuss the experimental re-

sults in Section 5.4.

61

5. EAZYHTM

Figure 5.1: EazyHTM conflict detection and resolution: conflicts are detected eagerly, but transac-

tions continue “racing” until one of them commits. The first to commit aborts the racing transaction.

5.1 EazyHTM: Basic Protocol

The EazyHTM protocol operates by cores sharing information within each other on

every possible conflict, but not immediately aborting or stalling a transaction.

In Figure 5.1, a transaction T1 reads a cache line that has been speculatively

modified by transaction T2. The transactions detect this situation, and note the

conflict until they terminate their execution. Conflicts are always in one direction,

i.e. the transaction that modifies a cache line has a conflict with, and can abort,

the one that reads the same line.

Since all conflicts are detected while a transaction is running, once a trans-

action (say T2) is ready to commit, it knows exactly which transactions need to

be aborted to maintain the system consistency. Therefore, an abort message is

sent to all the conflicting transactions and once all conflicting transactions confirm

their abort, speculatively written values are published. Both the abort request and

the acknowledge are sent over the core-to-core interconnect to the corresponding

core. The messages do not have to pass through a centralized router, instead they

hop from one core to another until they get to the destination. Conflict resolution

only requires the participation of processors involved in the conflict and does not

involve the directory.

62

Figure 5.2: Messages for conflict detection and resolution – three memory accesses, one commit

and one abort message: (a) Concurrent conflicting transactional executions on processors P0 and

P1; (b) Messages exchanged between two conflicting transactions; messages are numbered in the

order they are sent; (c) Time diagram of the message exchange, with time going from left to right.

Thick horizontal line segments on P0 line mark a single executed instruction.

5.1.1 Conflict Detection

EazyHTM bases its conflict detection on the existing cache coherency functionality,

currently used for non-transactional code to ensure that no races occur on shared

accesses. Concretely, in a directory based implementation of cache coherence, this

extension of the functionality only requires that the directory responds to one new

message corresponding to a transactional access. Like any other directory protocol,

this protocol is completely transparent to running code.

When a transaction accesses a line, it sends the directory a special request

t x Mark(addr), regardless of the access being a read or a write. The directory

handles this request almost like a read request in an ordinary directory protocol. It

marks the read for the line, and after allocating the line in shared mode, responds

with an acknowledgement indicating how many other sharers the line has.

63

5. EAZYHTM

We illustrate message flow and conflict detection through an example of two

transactions running on the processors P0 and P1 (Figure 5.2). In this example,

the transaction in P0 starts, and performs a read which does not conflict with the

read in P1. It then does a write which conflicts with the transaction in P1. Finally

the transaction in P0 commits while aborting the transaction running in P1.

When P0 speculatively reads line X, a t x Mark(X) message is sent to the di-

rectory ③1. As with typical MESI protocols, a processor only sends t x Mark(addr)

on the first access to the line in the current mode (read or write). For subsequent

transactional access to the same line, the processor uses values in its private cache.

If the core has previously sent a t x Mark due to a transactional read and now

requires to write a value, it resends the message to detect potential new races.

The directory first acknowledges P0 with a t x MarkAck(1) message, where the

parameter “1” indicates the current number of accessors for that cache line ③2 and

then sends a t xAccess(#0, X) message ③3 to all the other accessors, in this case P1.

This is possible since the directory keeps track of all speculative (transactional) or

non-speculative accesses to all cache lines. As P1 previously accessed the cache

line X , the directory knows the list and the count of all cache line sharers. In

the following text we are going to use term “accessor” instead of a “sharer”, to

represent both non-transactional and transactional cache line sharers, which might

have read and/or modified the line.

On receiving t x MarkAck(1), P0 waits until it receives the specified number

of messages from all other accessors (in this case, it waits until one message is

received).

Meanwhile, t xAccess(#0, X) initiates a point-to-point communication between

the old accessor, P1, and the new one, P0. Note that P1 knows that the new

accessor is P0 because of the first parameter in the t xAccess message. The list and

explanation of all the messages that can be interchanged between processor cores

is given in Section 5.1.5.

Continuing with the example of Figure 5.2, P1 informs P0 that it is a speculative

reader of the line X by sending the SR(X)message ③4. When P0 receives a message,

it sends a response message SR(X) to P1 ③5. Now both transactions know the exact

access mode of both transactions for the line, and both of them know whether

there is a conflict between them or not. In this specific case, since both accesses

64

Figure 5.3: Racers-list (RL) and killers-list (KL). The racers-list records transactions that need to be

aborted when this transaction commits. The killers-list records transactions that have the permis-

sion to abort this transaction.

are reads, there is no conflict between transactions.

In the example, a conflict occurs when P0 speculatively writes to the line X. P0

sends a t x Mark message ③6 to the directory, which causes the directory to send

exactly the same messages as in the non-conflicting situation, ③7 and ③8. At this

moment, a point-to-point communication starts again, with P1 sending a SR(X)

message to P0 ③9. P0 responds with its access mode to the line, and sends a SW (X)

message to P1 ③10.

5.1.2 Tracking Possible Conflicts

The racers-list on processor Pi maintains a list of other processors that run trans-

actions which conflict with Pi’s current transaction. This over-approximates the

set of transactions that need to be aborted when Pi’s transaction commits (e.g. a

conflicting transaction on another processor Pj may have aborted, and a different

non-conflicting transaction started in its place).

To avoid false-aborts in this kind of case, each processor maintains a killers-list

of processors that are allowed to abort its transaction.

Both the racers-list and the killers-list must be cleared at the start of each trans-

action.

Figure 5.3 presents an example with races. Initially, both racers-list and killers-

lists are empty on both processors. After event ③1, the lists are still empty since

both accesses were reads. When P0 executes the write instruction ③2, it receives

a SR(X) message from P1. This adds P1 to P0’s racers-list. Also, since P1 gets a

SR(X) message from P0, it adds P0 to its killers-list ③2.

After P1 commits the current transaction ③3 and starts a new transaction, the

65

5. EAZYHTM

killers-list is cleared. This prevents P0 from aborting the next transaction running

on P1 ③4, unless a new race is established.

5.1.3 Committing a Transaction

Unlike HTMs with lazy conflict management HTMs [23, 32], always has knowl-

edge which transactions are valid, and how to preserve the validity of transactions.

At commit time, the racers-list and killers-list provide the information for a transac-

tion to know which other transactions it is conflicting with it; further commit-time

validation is not required. To commit a transaction in EazyHTM, we only need to

ensure the termination of transactions from its racers-list. The transactions from

the racers-list can either abort or commit.

Commit with conflicts and aborts: When the transaction running on P0 in

Figure 5.2 reaches the commit instruction, it has to abort all the conflicting trans-

actions in order to ensure isolation. When P0 is ready to commit, it first sends an

abor t message to all processors from its racers-list (P1 in this case) ③11. P1 aborts

only if P0 is in its killers-list. However, in both cases P1 sends an acknowledge ③12

to P0’s abort request.

Once P0 has received abor tAcks from all conflicting cores, it enters the com-

mitting state where it is guaranteed to commit successfully. During this period

the transaction cannot be aborted and responds to all possible killers with an

abor tNack.

The processor writes all speculatively modified cache lines serially to the shared

memory in the usual manner: acquires exclusive access from the directory, for each

line in its write-set ③13, which in turn invalidates copies held by all other accessors.

After publishing all the cache lines, it exits the committing procedure and continues

normal execution. Also, see Section 5.2 for optimizations for this process.

Commits without conflicts: In case no conflicts are present, EazyHTM allows

all non-conflicting transactions to commit in parallel. Figure 5.4 shows the exe-

cution of two non-conflicting transactions running on P0 and P1. Since the trans-

actions datasets are disjoint, the directory does not send any t xAccess message to

processor cores during executions. Therefore, there are no core-to-core messages

between P0 and P1. Both transactions have empty racers-lists at the moment of

66

Figure 5.4: Committing without conflicts: transactions accessing different cache lines do not incur

any extra communication between them.

commit (not shown in figure).

Figure 5.4 also shows the low overhead EazyHTM imposes on non-conflicting

accesses. In particular, a non-conflicting read/write results in the same number of

messages as a normal, non-transactional read/write.

Racing commits: Though uncommon in practice, it is possible for multiple

racing transactions with mutual races to reach the commit instruction at exactly

the same time. In this case, transactions would receive an abort request from a

transaction that they just sent an abort request to (and did not receive an acknowl-

edgement from). One of the transactions must now abort to allow the other to

proceed. EazyHTM breaks ties in this case by allowing the transaction running on

a lower cpuid to win and commit. This transaction sends an abor tNack to the

transaction running on the core with the higher cpuid, which responds with an

abor tAck and aborts itself. This situation is extremely rare, so we use a simple

criterion. Note that progress is still guaranteed. Random, round robin and a num-

ber of other tie-breaking policies may be easily added to eliminate the possibility

of pathological cases leading to starvation.

5.1.4 Aborting a Transaction

With EazyHTM, a transaction may only be aborted for one of the following reasons:

1. In response to an abort request sent by another transaction.

2. On exceptions or interrupts. In general, hardware transactions are small

enough to complete between occurrences of exceptions or interrupts. Even

67

5. EAZYHTM

TLB misses, which are unavoidable, become less important as the TLB warms

up, and do not significantly affect our system.

3. When non-transactional code modifies a cache line being accessed in a trans-

action: this allows us to support strong atomicity, as defined by [14]. The

feature is provided by detecting a cache coherency invalidation message from

the directory and aborting if a part of the transaction gets invalidated by the

directory.

Aborting a transaction in EazyHTM discards all the speculatively performed

updates and restarts the transaction execution. Since we implement lazy version

management, caches can quickly invalidate all speculative changes. The racers-list

and killers-list (see Section 5.1.2) are also cleared on abort.

Once all speculative changes are discarded and the lists cleared, the register file

is restored to its previous state, saved just before the beginning of the transaction,

and the control flow is reset to the first instruction.

5.1.5 State-Message Table of the EazyHTM protocol

For completeness, we present a complete transactional state table of a processor

core (Table 5.1 on Page 69). Each cell in the table describes the actions performed

by a core upon receiving a message, depending on its current transactional state.

The rows represent current state. The columns represent the incoming message

from another processor core or from a directory. Dashes indicate impossible com-

binations. We define each CPU core state as follows:

• Active: A transaction is being executed on the core.

• Ready to commit: The transaction has executed all the code within the atomic

block and is in the process of aborting all racing transactions. Lasts be-

tween the beginning of the commit instruction and the reception of the last

abor tAck or abor tNack (if any).

• Committing: The processor core has aborted all racing transactions and is

now committing speculative changes. Once entered in this state, the trans-

action is invincible: it cannot be aborted.

68

State \Message SR(@)⋆ SW(@)⋆ SRW(@)⋆ nonTXnal(@) tryLater(@) txAccess(@) abortAck(#) abortNack(#) abort(#)

Active TX

NoTx - - - - - nonTXnal(@) - -

(1)
SR SR(@)⋆ SR(@)⋆; KLR SR⋆(@); KLR nop REDO INSTR SR(@) - -

SW SW⋆(@); RCR SW⋆(@) SW⋆(@); RCR nop REDO INSTR SW(@) - -

SRW SRW⋆(@); RCR SRW⋆(@); KLR SRW⋆(@); RCR; KLR nop REDO INSTR SW(@) - -

Ready to commit - - - - - tryLater(@) (2) (3) (4)

Committing

NoTx - - - - - NonTXnal(@) - -

(5)
SR - - - - - NonTXnal(@) - -

SW - - - - commit, nonTXnal(@) - -

SRW - - - - commit, nonTXnal(@) - -

Aborting - - - - - nonTXnal(@) - - abortAck(#)

Inactive TX - - - - - nonTXnal(@) - - abortAck(#)

Table 5.1: State-message table of a core. The current state is on the left, and incoming messages are on the top. Each cell shows the action to

be performed. Only message t xAccess comes from directory, all others come from other cores in the system. Legend:

@ cache line address and processor core id

processor core id

- error state

⋆ the response messages are marked as such, so that they do not get responded again by a receiving processor.

KL killers list

RCR set a bit in racers list

KLR set a bit in killers list

CRL clear racers list

(1) abortAck(#); if sender-core-id in KL: abort

(2) CRL; if RL == 0: enter committing

(3) wait all pending abortAck or abortNack and then abort

(4) if my-core-id > sender-core-id: {abortAck(#), abort} else: {CRL, abortNack(#)}

(5) if sender-core-id in KL: {abortNack(#)} else: {abortAck(#)}

6
9

5. EAZYHTM

• Aborting: The transaction has received an abor t message and is processing

it, i.e. flushing speculative changes.

• Inactive Tx: The core is not executing transactional code.

Some messages are related to one cache line and different actions may be taken

depending on whether this line is present in the read set, write set or neither.

Therefore, the states Active and Committing have sub-states:

• NoTx(addr): Neither SR nor SW bit are set for the line address addr,

• SR(addr): The SR bit is set for the address addr, that is, the address is in the

read set of the transaction,

• SW(addr): The SW bit is set for the address addr, that is, the address is in

the write set of the transaction,

• SRW(addr): Both SR and SW bits are set, that is, the address is in both read

and write set of the transaction.

The sub-states SR and SW are set in the private cache by the processor core

before a transaction sends the request for the line to the directory. This makes sure

that any incoming message regarding that line is handled properly.

In the following text we list and explain all messages that our approach intro-

duces.

• SR(addr, cpuid): The address “addr” is in the read set of a processor core

cpuid.

• SW (addr, cpuid): The address “addr” is in the write set of a processor core

cpuid.

• SRW (addr, cpuid): The address “addr” is in the read and write set of a

processor core cpuid.

• nonT X nal(addr, cpuid): The address “addr” is not accessed transactionally

by a processor core cpuid.

70

• t r y Later(addr, cpuid): P1 is trying to access address transactionally but P0

cannot respond at the moment.

• t xAccess(addr, cpuid): This message comes from the directory rather than

from another core. It indicates the receiver that the core cpuid is access-

ing address “addr” transactionally, and that they should communicate and

exchange their access mode.

• abor t(cpuid): Request to abort, sent from the processor core cpuid.

• abor tAck(cpuid): Abort acknowledgement (ACK), sent from the processor

core cpuid.

• abor tNack(cpuid): Abort negative acknowledgement (NACK), sent from

the processor core cpuid.

Certain state-message combinations are worth explaining since they may not

be intuitive. For example, when a transaction is in the Committing state and gets

a t xAccess(addr, cpuid) message, it replies with a nonT X nal(addr, cpuid) mes-

sage (previously committing the line if it has been speculatively modified). This

behavior is so defined by the “critical cache line first” optimization, explained in

Section 5.2.

5.1.6 Proofs of protocol correctness

Let Ti and T j be two transactions in the system. Let Ri and R j be the racers-list of

Ti and T j respectively. Let Ki and K j be the killers list of Ti and T j respectively.

Lemma 5.1.1. A transaction’s racers-list Ri does not miss any conflicts from Ti to

other transactions.

Proof. Ri is cleared only when Ti aborts, so no conflicts can be lost during the

lifetime of Ti. We now need to show that all conflicts from Ti to T j are marked in

Ri. From Table 5.1, T j sends messages SR and SW to Ti on all speculative reads

and writes. This means that Ti will be notified of all speculative accesses made by

T j. We need to show that Ri will represent all cases where Ti writes to a line, while

T j reads or writes.

71

5. EAZYHTM

Incoming SR message from T j: (1) Ti only read the line: there is no conflict

from Ti to T j and Ri is not modified, (2) Ti is a speculative writer: conflict from Ti

to T j exists, and T j is added to the Ri.

Incoming SW message from T j: (1) Ti only read the line: there is a conflict

from T j to Ti but not in the opposite direction, from Ti to T j. That is, Ti does not

have to abort T j if Ti is to commit, so Ri is not modified, (2) Ti is a speculative

writer: there is conflict from Ti to T j, and it is marked in Ri.

We have shown by exhaustion that Ri marks all write-read and write-write

conflicts between Ti and T j. Therefore, there is no case where Ti conflicts with T j,

without having the case marked in Ri.

Lemma 5.1.2. A transaction’s killers-list K j marks real conflicts.

Proof. We need to show that only real conflicts are marked in K j. Transaction T j

starts with an empty K j.

Incoming SR message from Ti: there is no real conflict from Ti to T j, and K j is

not modified.

Incoming SW message from Ti and T j speculatively read or modified the line:

there is a conflict from Ti to T j, and Ti is added to K j.

We see that T j adds Ti to K j if and only if there is a real conflict from Ti to

T j.

Lemma 5.1.3. A combination of Ri and K j (Ri ∩K j) precisely represents the conflicts

between Ti and T j.

Proof. Lemma 5.1.1 and 5.1.2 show that Ri represents all conflicts between Ti

and T j made during the lifetime of Ti. On the other hand, K j represents only the

conflicts occurred between Ti and T j made during the lifetime of T j.

Therefore, a combination of Ri and K j (Ri∩K j) represents only the real conflicts

that are created while both Ti and T j are executing.

Lemma 5.1.4. When a transaction Ti is ready-to-commit, it attempts to abort trans-

actions T ∈ Ri and no other transactions

Proof. By protocol definition.

Lemma 5.1.5. If a transaction Ti /∈ K j, Ti may not abort transaction T j.

72

Proof. From Table 5.1, if Ti /∈ K j, T j sends an Abor tAck to Ti on receiving an Abor t

request, but ignores the request, and does not abort.

Theorem 5.1.1. For all T j aborted by, or aborting, a transaction Ti, T j conflicts with

Ti.

Proof. From Lemma 5.1.4 and 5.1.5, T j ∈ (Ri ∩ Ki). By Lemma 5.1.3, Ri ∩ Ki

contains only transactions that conflict with Ti.

Theorem 5.1.2. Conflict-free transactions may commit in parallel.

Proof. From Section 5.1.3, committing a transaction Ti involves two distinct stages,

which are performed in serial order. In the first stage, the transaction aborts a

number of transactions. In the second, all modified values are committed.

The second stage is clearly independent of other transactions, and may be per-

formed in parallel if the architecture allows it. By Theorem 5.1.1, the first stage

only affects transactions that conflict with Ti, and non-conflicting transactions may

proceed in parallel.

Therefore, non-conflicting transaction can commit in parallel.

5.2 EazyHTM: Optimizations

In this section we introduce a series of optimizations to the basic EazyHTM pro-

tocol. We present several optimizations to the basic EazyHTM protocol, classified

into two groups: (1) optimizations to the commit operation, and (2) optimizations

of the conflict detection.

The first group, i.e., the optimizations of the commit operation, includes two

particular optimizations: (1) write-back publishing of speculative changes, which

accelerates the actual commit operation on a given core, and (2) publishing critical

cache-lines first, which accelerates the execution of transactions on other cores.

The second group, i.e., the optimizations of the conflict detection, reduce the

unnecessary conflict-detection traffic in the system. Here, we eliminate the conflict

detection for transactional lines that are accessed in a certain way. We present

three optimizations: (1) core-local filtering of exclusive lines, (2) directory-level

filtering of read-only lines, and (3) core-local filtering of read-only lines.

73

5. EAZYHTM

5.2.1 Commit: Write-Back Publishing of Speculative Changes

Following other lazy version management HTM proposals [19, 20, 51, 52], Eazy-

HTM also implements the write-back commit optimization. Lazy version manage-

ment HTMs have to publish (in some way) their speculatively modified lines when

transaction commits. What can be done as an optimization is to publish only the

addresses, and to leave the updated cache line contents in private caches. This is

called write-back commit.

EazyHTM implements write-back commit in the following way. During the

transaction execution lines are augmented with speculative read/write status bits.

When the transaction comes to a commit, it aborts all racing transactions, receives

confirmation of their aborts and then asynchronously (without waiting for confir-

mation of every message before sending the next one) sends the addresses of all

speculatively modified lines to the directory. The directory marks all these lines

as exclusive to the processor core. At the same time, in private caches, the line is

marked as non-speculatively modified.

A write-back of the cache line contents is performed when either: (1) another

core requests the line later in time, or (2) a line has to be modified speculatively

again, by another transaction in the same processor core. In this case, the cache

line access mode is reduced from exclusive or modified to shared, and the execu-

tion continues.

5.2.2 Commit: Publishing Critical-Cache-Lines First

Regardless of how little validation is performed at commit-time, the duration of

the commit-phase is bounded below by the time it takes to publish the speculative

modifications of a transaction.

However, EazyHTM escapes this lower-bound by using a critical-cache-line-first

transaction commit policy. After all transactions that were racing with the current

transaction have acknowledged an abort, we take this moment of time (the mo-

ment of receiving last acknowledgement) as the unique point in time when the

transaction commits.

Once the validation is complete, the transaction starts publishing all its spec-

ulatively modified lines, in some arbitrary order. If, during this phase, any other

74

Figure 5.5: Critical cache line First illustration; while P0 is committing values, P1 requests a not-

yet-written line X; this causes X to be written first, out of normal commit order

transaction wishes to access some not-yet-committed cache line from the commit-

ting transaction, the committing transaction will get notified from the directory.

The commit order now gets changed, and the critical cache line is committed first.

After this, a t r y Later(addr) response is sent to the requester. When the re-

quester receives this message, it requests the cache line again. This time it gets

the new value from the shared memory and a nonT X nal(addr) response from the

committing transaction since the line will not be in the write set anymore. We have

effectively saved the stalling time of the requester which would be spent in waiting

on the committing transaction to finish. An illustration of this situation is shown

on Figure 5.5. Since T2 receives a nonT X nal(addr) message (not t r y Later or

abor t), it appears that T1 has finished committing, and so commits seem to be

instantaneous.

5.2.3 Conflict Detection: Core-Local Filtering of Exclusive Lines

An exclusive line cannot create any conflicts between transactions, and informing

the directory of transactional accesses to exclusive lines is completely unnecessary.

When a transaction accesses an exclusive line, and sends a message to the directory,

75

5. EAZYHTM

the directory will always respond with the t x MarkAck(0)message, indicating that

there are no other sharers of the line.

One of the line states with the standard MESI protocol is “Exclusive”. If Eazy-

HTM is implemented on top of MESI (or compatible) protocol, it can leverage this

information and avoid sending unnecessary messages to the directory.

5.2.4 Conflict Detection: Directory-Level Filtering of Read-Only

Lines

If a transaction reads a line and all the other accessors are readers, then messages

exchanged between them will be informing one another about their reader-reader

status. No modifications will be done neither to the racers list nor to the killers list.

Therefore, these messages can safely be avoided.

In order to eliminate these messages, we also propose a directory-level filter-

ing of these messages. We add an extra bit per directory entry. This “Transac-

tionally Dirty” (TD) bit represents whether the cache line is in the write-set of

at least one active transaction or not. To distinguish between transactional reads

and writes, the t x Mark(P, X) message to the directory has to be split in two mes-

sages: t x MarkRead(P, X) and t x MarkW rite(P, X). The directory handles these

messages as follows.

• t x MarkRead(P, X): (1) if the TD bit is set, a message t xAccess(P, X) is sent

to every accessor, as explained in Section 5.1. (2) If the TD is zero, no

messages are sent to the other accessors, because they are all readers.

• t x MarkW rite(P, X): the directory sets the TD bit, and a t xAccess(P, X) is

sent to every accessor (if any).

The TD bit is cleared on a non-speculative write to the cache line; i.e. when

either (1) a transaction commits and thus writes all speculative values to the shared

memory, or (2) when a regular, non-transactional code writes to the line. Note that

although this modifies the directory structure, the protocol is not changed in an

extensive way.

76

Figure 5.6: An overview of the EazyHTM hardware modifications

5.2.5 Conflict Detection: Core-Local Filtering of Read-Only Lines

The previously described optimization of filtering out the conflict detection for

read-only lines can also be applied to processor cores. The goal is to, not only

eliminate the core-to-core messages, but also the core-to-directory messages for

read-only lines. In this case, the TD bit is added in L1 caches, and not on the

directory level.

We can do this in the following way. If a core speculatively writes to a shared

line, all sharers mark the line as “TD”. All future speculative accesses to such line

will invoke a regular EazyHTM conflict detection. For the lines that are not marked

as TD, the accesses do not invoke any conflict detection. The TD bit is cleared when

there is a non-speculative write to the line.

5.3 Micro-architectural changes

This section introduces the hardware changes which are required for EazyHTM.

Described hardware changes support both the basic EazyHTM protocol and the

optimizations described in the Section 5.2. A graphical representation of those

changes is shown in Figure 5.6 where:

77

5. EAZYHTM

Register file checkpoint: keeps a snapshot of the register file. The snapshot is

taken at the beginning of the transaction. It is used to restart the transaction’s

execution in case it aborts.

Racers-list: stores a list of all transactions that have to terminate execution

before this one can commit. It is implemented as a simple bit vector (bitmap),

with one bit per core. Detailed explanation of Racers-list is given in Section 5.1.2.

Killers-list: stores a list of all transactions that are allowed to abort the trans-

action executing on this core. It is also implemented as a bitmap, with one bit per

core. Detailed explanation of its functionality is given in Section 5.1.2.

Cache support: EazyHTM protocol requires tracking transactional accesses to

lines from private cache. Thus we extend the private caches with two extra bits: a

speculatively-read (SR) bit indicates that the associated cache line has been read by

the currently running transaction, and the speculatively-written (SW) bit indicates

that the cache line has been modified by the current transaction. Multiple levels

of private caches are possible, provided that they all track this information. An

optional TD bit can be added for the optimization core-local filtering of read-only

lines, described in Section 5.2.5.

Directory Support: As commented in Section 5.2.4 we add a transactionally

dirty (TD) bit per directory entry. This bit marks if a cache line has been specula-

tively modified by any transaction since its last non-speculative modification. Note

that this modification is independent of the number of processors (i.e. if the system

had more cores, the TD would still be one bit per line).

5.4 Evaluation

In this section we evaluate the performance of EazyHTM using the STAMP bench-

mark suite [20]. We describe our simulation environment in Section 5.4.1. Then,

in Section 5.4.2, we evaluate EazyHTM and each of its optimizations, and compare

them with a perfect-lazy HTM. The perfect-lazy HTM does not have any overhead

or latency for conflict detection. We also compare with a variant of perfect-lazy

HTM that has an instant commit with zero latency.

78

Processor(s) 1-32 sequential in-order cores at 2 GHz

L1 data cache writeback, private, MESI, 32 KB, 4-way, 64B line, 2 cycles hit

L2 cache writeback, private, MESI, 512 KB, 8-way, 64B line, 8 cycles hit

L3 cache writeback, shared, MESI, 16 MB, 8-way, 64B line, 16 cycles hit

Main memory MESI based directory, 200 cycle latency

ICN 2D Mesh, 3 cycles per hop

Table 5.2: Baseline EazyHTM Simulator Configuration

5.4.1 Simulation environment

To evaluate the performance of EazyHTM, we compare it with lazy (instead of ea-

ger) conflict management HTM, since there is a general agreement that lazy HTMs

have better performance than eager conflict management systems [16, 68]. We

show the baseline configuration of the EazyHTM simulator used in our evaluation

in Table 5.2.

To minimize the occurrence of overflowed transactions and the performance

penalties due to limited hardware resources, the processor cores in our simulator

have large private caches. In our configuration each processor has inclusive private

L1 and L2 caches. This resulted in few overflow-related transaction aborts. This

observation matches the one presented by other researchers, for example [23].

All instructions in our simulator have 1 cycle latency except those that access

memory, where the latency of an instruction is increased by the value returned by

the memory subsystem (caches, interconnection network, and the main memory).

The directory protocol we implemented for EazyHTM evaluation is MESI-based.

The directory in EazyHTM is logically placed one level higher than the private L1

and L2 caches. We add one more level of caches, L3, that is shared between direc-

tory cores, and memory is equally accessible from all processors and all memory

addresses have the same access latency.

The topology of our core-to-core ICN is 2D mesh. This topology has techno-

logically low cost, complexity and power consumption while it provides modest

performance [42]. More advanced interconnection topologies, such as 2D torus or

3D torus/mesh, would likely be faster and result in better EazyHTM performance,

by reducing the average latency and hop count between cores. The number of

hops between any two cores on the die is determined by the ICN, and the assumed

79

5. EAZYHTM

latency per hop is 3 cycles.

5.4.2 EazyHTM Evaluation Results

We evaluated EazyHTM proposal using nine different STAMP benchmark configu-

rations: Labyrinth, Vacation-Low, Yada, Intruder, SSCA2, KMeans-Hi, KMeans-Low,

Vacation-Hi, and Genome, with the parameters shown in Table 3.3 on Page 33. “Hi”

and “Low” workloads provide different conflict rates. Since we are only interested

in the time spent in the parallel section, all the results pertain to this section only.

The time spent in transactional execution differs significantly from benchmark to

benchmark. We show it in the Table 5.3, for all evaluated applications.

Bayes was not included in our study since it has non-deterministic behav-

ior (i.e., its execution time does not necessarily depend on the speed of execu-

tion), and it also has extremely large transaction that does not fit into private

caches. Labyrinth has an almost flat speedup curve, since every committed trans-

action in Labyrinth aborts nearly all other transactions. Consequently, Labyrinth

has an almost-serialized execution of transactions. To improve the performance

of Labyrinth, STAMP authors proposed the use of early-release. The obtainable

speedup is 3-4 times on 16-32 cores, but our current implementation of EazyHTM

does not include the support for early-release. For completeness, we still included

Labyrinth in the evaluation results.

As we can observe in Figure 5.7, Genome and SSCA2 spend significant time

without executing instructions (depicted as sleeping). During this time, the proces-

sors are put in the quiescent mode until an interrupt occurs. While this behavior

is in occasionally present in all benchmark configurations, the time becomes sig-

nificant only in Genome and SSCA2, due to extensive use of barriers as a way to

synchronize the execution of threads. As we can see from the breakdown, qui-

escent time becomes dominant with larger number of cores (70% of the time for

the 32-core execution), and thus completely limits the scalability of applications.

The complete time spent in barrier synchronization (not shown in the figures), in-

cluding the execution of the pthread library functions and associated system calls,

takes more than 90% of the execution time for the same 32-core executions.

On the same figure, beside sleeping, the execution time is split into useful and

80

1 2 4 8 16 32
Processors

0

20

40

60

80

100

%
 o

f
e
x
e
cu

ti
o
n
 t

im
e

Kmeans_low

wasted data

wasted instr

useful data

useful instr

sleeping

1 2 4 8 16 32
Processors

0

20

40

60

80

100

%
 o

f
e
x
e
cu

ti
o
n
 t

im
e

Kmeans_hi

wasted data

wasted instr

useful data

useful instr

sleeping

1 2 4 8 16 32
Processors

0

20

40

60

80

100

%
 o

f
e
x
e
cu

ti
o
n
 t

im
e

Yada

wasted data

wasted instr

useful data

useful instr

sleeping

1 2 4 8 16 32
Processors

0

20

40

60

80

100

%
 o

f
e
x
e
cu

ti
o
n
 t

im
e

Intruder
wasted data

wasted instr

useful data

useful instr

sleeping

1 2 4 8 16 32
Processors

0

20

40

60

80

100

%
 o

f
e
x
e
cu

ti
o
n
 t

im
e

Vacation_hi

wasted data

wasted instr

useful data

useful instr

sleeping

1 2 4 8 16 32
Processors

0

20

40

60

80

100

%
 o

f
e
x
e
cu

ti
o
n
 t

im
e

Vacation_low

wasted data

wasted instr

useful data

useful instr

sleeping

1 2 4 8 16 32
Processors

0

20

40

60

80

100

%
 o

f
e
x
e
cu

ti
o
n
 t

im
e

Genome

wasted data

wasted instr

useful data

useful instr

sleeping

1 2 4 8 16 32
Processors

0

20

40

60

80

100

%
 o

f
e
x
e
cu

ti
o
n
 t

im
e

Ssca2

wasted data

wasted instr

useful data

useful instr

sleeping

1 2 4 8 16 32
Processors

0

20

40

60

80

100

%
 o

f
e
x
e
cu

ti
o
n
 t

im
e

Labyrinth
wasted data

wasted instr

useful data

useful instr

sleeping

Figure 5.7: The breakdown of the EazyHTM execution time. We consider the EazyHTM configura-

tion with all optimizations activated.

81

5. EAZYHTM

wasted. If transaction commits, its execution time is assigned to useful, and if

it aborts, its execution time becomes wasted. The useful and wasted times are

further split into instruction execution (instr) and data accesses (data). From this

breakdown, we can see that Kmeans-Low, and to some extent Yada have good data

locality and their committed instructions (useful) spend significantly more time

executing instructions than accessing data. Other applications, such as Vacation

Low and Hi, do not have very good data locality and spend a significant amount of

time in data accesses.

Table 5.3 also shows some statistics: the percentage of time spent in transac-

tions (%TX), the percentage of transactions that aborted (%ABO), and the per-

centage of transactions that activated the critical-cache-line-first commit optimiza-

tion (%CLF). We can see that some applications have many invocations of critical-

cache-line-first. For example, in Intruder, the over 30% of transaction commits

invoke this optimization. While the optimization does not have a significant effect

on the execution time, the hardware requirement for the optimization is very low,

and because of this it makes sense to include the optimization.

Figure 5.8 shows the execution-time analysis for different levels of optimiza-

tions in EazyHTM. As a boundary case of EazyHTM performance, we implemented

a MESI-based Lazy-Ideal HTM without any overheads. The Lazy-Ideal HTM per-

forms both conflict detection and resolution instantaneously (in zero clock cycles),

without any extra directory or core-to-core messages. To evaluate the only re-

maining overhead in Lazy-Ideal HTM – publishing speculative modifications, we

provide a variant of Ideal-Lazy HTM which, in addition, acquires all speculative

lines in the “modified” state with 0-cycle latency, named Lazy-Ideal-CTX. While

having this idealized lazy HTM in hardware is practically impossible, it serves as a

good upper bound on the best-case lazy HTM performance and directly evaluates

all overheads present in EazyHTM.

Beside the two variants of Lazy-Ideal HTM, we present four variants of Eazy-

HTM, that we described in more details in Section 5.2:

1. EazyHTM-base is the basic variant of EazyHTM, which sends a conflict-detection

message for all transactional accesses. This increases the latency of transac-

tional operations and, consequently, reduces the performance.

82

1 core 2 core 4 core 8 core 16 core 32 core

Kmeans-Low

%TX 3.8 3.8 3.8 3.8 3.8 3.8

%ABO 0.0 0.6 2.3 3.6 5.3 11.9

%CLF 0.0 0.0 0.0 0.0 0.0 0.8

Kmeans-Hi

%TX 9.5 9.5 9.5 9.5 9.9 13.0

%ABO 0.0 1.0 3.2 8.9 26.4 72.9

%CLF 0.0 0.0 0.0 0.1 1.1 17.6

Yada

%TX 100 100 100 100 99.6 100

%ABO 0.0 5.2 9.2 15.5 23.7 35.2

%CLF 0.0 0.0 0.1 0.0 0.3 0.7

Intruder

%TX 39.1 40.6 42.5 51.5 69.6 86.8

%ABO 0.0 5.6 20.1 43.1 70.3 84.7

%CLF 0.0 0.0 0.2 1.6 12.0 33.9

Vacation-Hi

%TX 86.0 85.4 84.8 83.6 84.3 83.5

%ABO 0.0 0.0 0.5 0.7 0.9 4.1

%CLF 0.0 0.0 0.0 0.0 0.0 0.1

Vacation-Low

%TX 85.9 86.0 86.8 86.0 83.7 80.4

%ABO 0.0 0.0 0.1 0.3 0.7 1.5

%CLF 0.0 0.0 0.0 0.0 0.0 0.0

Genome

%TX 97.9 92.7 78.9 57.6 27.6 9.2

%ABO 0.0 0.6 1.6 3.4 7.7 13.5

%CLF 0.0 0.0 0.0 0.0 0.1 0.5

SSCA2

%TX 20.0 18.7 16.5 12.9 7.8 3.2

%ABO 0.0 0.0 0.2 0.4 0.6 1.2

%CLF 0.0 0.0 0.0 0.0 0.0 0.0

Labyrinth

%TX 99.9 99.9 99.7 100 100 96.1

%ABO 0.0 22.5 46.5 68.3 82.6 90.4

%CLF 0.0 0.5 0.5 1.0 0.4 6.3

Table 5.3: EazyHTM Execution Statistics. Legend: %TX — Percentage of parallel section

time spent inside transactions; %ABO — Percentage of aborts (abort rate), calculated as

aborts/(aborts+commits); %CLF — Number of critical cache line first invocations divided by the

number of commits;

83

5. EAZYHTM

1 2 4 8 16 32
Processors

0

5

10

15

20

25

30
S
p
e
e
d
u
p
 o

v
e
r

se
q
u
e
n
ti

a
l

Kmeans-low
Lazy-ideal-CTX
Lazy-ideal
EazyHTM-XTDC
EazyHTM-XTDD
EazyHTM-X
EazyHTM-base

1 2 4 8 16 32
Processors

0

5

10

15

20

25

S
p
e
e
d
u
p
 o

v
e
r

se
q
u
e
n
ti

a
l

Kmeans-hi
Lazy-ideal-CTX
Lazy-ideal
EazyHTM-XTDC
EazyHTM-XTDD
EazyHTM-X
EazyHTM-base

1 2 4 8 16 32
Processors

0

2

4

6

8

10

12

14

16

S
p
e
e
d
u
p
 o

v
e
r

se
q
u
e
n
ti

a
l

Yada
Lazy-ideal-CTX
Lazy-ideal
EazyHTM-XTDC
EazyHTM-XTDD
EazyHTM-X
EazyHTM-base

1 2 4 8 16 32
Processors

0

2

4

6

8

10

12

14

16

S
p
e
e
d
u
p
 o

v
e
r

se
q
u
e
n
ti

a
l

Intruder
Lazy-ideal-CTX
Lazy-ideal
EazyHTM-XTDC
EazyHTM-XTDD
EazyHTM-X
EazyHTM-base

1 2 4 8 16 32
Processors

0

5

10

15

20

25

S
p
e
e
d
u
p
 o

v
e
r

se
q
u
e
n
ti

a
l

Vacation-hi
Lazy-ideal-CTX
Lazy-ideal
EazyHTM-XTDC
EazyHTM-XTDD
EazyHTM-X
EazyHTM-base

1 2 4 8 16 32
Processors

0

5

10

15

20

25

S
p
e
e
d
u
p
 o

v
e
r

se
q
u
e
n
ti

a
l

Vacation-low
Lazy-ideal-CTX
Lazy-ideal
EazyHTM-XTDC
EazyHTM-XTDD
EazyHTM-X
EazyHTM-base

1 2 4 8 16 32
Processors

0

2

4

6

8

10

S
p
e
e
d
u
p
 o

v
e
r

se
q
u
e
n
ti

a
l

Genome
Lazy-ideal-CTX
Lazy-ideal
EazyHTM-XTDC
EazyHTM-XTDD
EazyHTM-X
EazyHTM-base

1 2 4 8 16 32
Processors

0

2

4

6

8

10

S
p
e
e
d
u
p
 o

v
e
r

se
q
u
e
n
ti

a
l

Ssca2
Lazy-ideal-CTX
Lazy-ideal
EazyHTM-XTDC
EazyHTM-XTDD
EazyHTM-X
EazyHTM-base

1 2 4 8 16 32
Processors

0

1

2

3

4

5

6

S
p
e
e
d
u
p
 o

v
e
r

se
q
u
e
n
ti

a
l

Labyrinth
Lazy-ideal-CTX
Lazy-ideal
EazyHTM-XTDC
EazyHTM-XTDD
EazyHTM-X
EazyHTM-base

Figure 5.8: The speedup of the STAMP TM benchmark suite applications. EazyHTM-base is the

configuration without any optimizations. EazyHTM-X does not do conflict detection for the exclu-

sive lines. EazyHTM-XTDD does a directory-level avoidance of conflict detection for the read-only

lines. EazyHTM-XTDC does the same type of filtering only at a core level.

84

2. EazyHTM-X does not send the conflict-detection messages for the lines that

are exclusive to that core.

3. EazyHTM-XTDD also has a filtering bit in the directory, which eliminates the

multi-cast conflict-detection messages for exclusive and read-only lines.

4. EazyHTM-XTDC has a similar type of filtering, but provided at the level of

a processor core. A conflict-detection message is sent from a core to the

directory (and then to other sharers) only if a line has been speculatively

modified.

In Figure 5.8, we can see that each optimization improves the performance of

at least one application. EazyHTM-X provides the least performance improvement

of all optimizations. It helps in Yada, Intruder, Vacation Low, and Labyrinth. This

means that very few transactional lines in STAMP benchmarks are exclusive.

Two other optimizations, EazyHTM-XTD and EazyHTM-XRSK reduce the over-

heads that are due to read-only lines. These optimizations provide much better

performance improvements across a wider range of applications. Both optimiza-

tions reduce the overheads for the same type of lines, but EazyHTM-XTD does it

at the level of directory while the EazyHTM-XRSK does it at the level of a proces-

sor core. Some applications especially benefit from the optimization, for example,

Yada, Vacation Hi and Low, and Labyrinth. These applications have many trans-

actional lines that are not speculatively modified by any sharer. Avoiding conflict

detection for these lines significantly reduces the number of conflict-detection mes-

sages, and therefore improves the performance. It is logical and clear from the per-

formance results that EazyHTM-XRSK provides a significantly better performance

in cases when EazyHTM-XTD also significantly improves the performance.

EazyHTM shows a performance regression over Lazy-Ideal HTM mainly with

one application from the STAMP suite — Intruder. Intruder has very high abort

rate. With 32 cores more than 85% of all started transactions get aborted after per-

forming some work (see Table 5.3). This translates to the 85% of entire execution

time being wasted, and out of this 44% represents the time spent in the core-to-

core communication, 4% spent in sending and receiving directory messages, 39%

in cache requests, and 13% in normal execution.

85

5. EAZYHTM

1 2 4 8 16 32
Processors

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

O
ff

-c
o
re

 m
e
ss

a
g
e
s

Kmeans-low
Lazy-ideal-CTX
Lazy-ideal
EazyHTM-XTDC
EazyHTM-XTDD
EazyHTM-X
EazyHTM-base

1 2 4 8 16 32
Processors

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

O
ff

-c
o
re

 m
e
ss

a
g
e
s

1e7 Kmeans-hi
Lazy-ideal-CTX
Lazy-ideal
EazyHTM-XTDC
EazyHTM-XTDD
EazyHTM-X
EazyHTM-base

1 2 4 8 16 32
Processors

0

1

2

3

4

5

6

7

8

9

O
ff

-c
o
re

 m
e
ss

a
g
e
s

1e8 Yada
Lazy-ideal-CTX
Lazy-ideal
EazyHTM-XTDC
EazyHTM-XTDD
EazyHTM-X
EazyHTM-base

1 2 4 8 16 32
Processors

0.0

0.5

1.0

1.5

2.0

2.5

O
ff

-c
o
re

 m
e
ss

a
g
e
s

1e8 Intruder
Lazy-ideal-CTX
Lazy-ideal
EazyHTM-XTDC
EazyHTM-XTDD
EazyHTM-X
EazyHTM-base

1 2 4 8 16 32
Processors

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

O
ff

-c
o
re

 m
e
ss

a
g
e
s

1e8 Vacation-hi
Lazy-ideal-CTX
Lazy-ideal
EazyHTM-XTDC
EazyHTM-XTDD
EazyHTM-X
EazyHTM-base

1 2 4 8 16 32
Processors

0.0

0.2

0.4

0.6

0.8

1.0

O
ff

-c
o
re

 m
e
ss

a
g
e
s

1e8 Vacation-low
Lazy-ideal-CTX
Lazy-ideal
EazyHTM-XTDC
EazyHTM-XTDD
EazyHTM-X
EazyHTM-base

1 2 4 8 16 32
Processors

0

1

2

3

4

5

6

7

8

O
ff

-c
o
re

 m
e
ss

a
g
e
s

1e7 Genome
Lazy-ideal-CTX
Lazy-ideal
EazyHTM-XTDC
EazyHTM-XTDD
EazyHTM-X
EazyHTM-base

1 2 4 8 16 32
Processors

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

O
ff

-c
o
re

 m
e
ss

a
g
e
s

1e7 Ssca2
Lazy-ideal-CTX
Lazy-ideal
EazyHTM-XTDC
EazyHTM-XTDD
EazyHTM-X
EazyHTM-base

1 2 4 8 16 32
Processors

0

1

2

3

4

5

O
ff

-c
o
re

 m
e
ss

a
g
e
s

1e9 Labyrinth
Lazy-ideal-CTX
Lazy-ideal
EazyHTM-XTDC
EazyHTM-XTDD
EazyHTM-X
EazyHTM-base

Figure 5.9: Absolute number of off-core messages in EazyHTM variations. Smaller is better. We can

see that each optimization significantly reduces the number of off-core messages.

86

In Figure 5.9, we show the number of messages on the interconnection net-

work, for EazyHTM with various levels of optimizations. We can see that the pre-

sented optimizations can significantly reduce the number of additional messages

on the interconnection network, introduced by EazyHTM. A particularly good op-

timization is the filtering of read-only lines. When we use the core-level filter-

ing (EazyHTM-XRSK) of read-only lines, the number of added messages on the

interconnection network is insignificant is all configurations except Intruder and

Kmeans-Hi with 32 cores.

5.5 Conclusions

EazyHTM explores the advantages of splitting the conflicting management to two

distinct actions: conflict detection and conflict resolution. This can be done with

very small modifications to the cache coherence protocol on current chip multi-

processors, and allows us to provide a well performing and highly efficient HTM

system. EazyHTM makes a good trade-off between hardware complexity, the per-

formance, and the capabilities. To reduce the overheads of the initial EazyHTM

design, we applied several optimizations. The optimizations target detecting and

eliminating the number of conflict detection messages for the read-only and exclu-

sive cache lines.

Still, even after optimizing the protocol, EazyHTM sends multi-cast conflict de-

tection messages for potentially conflicting cache lines. While multi-cast messages

are more efficient than broadcast messages, they are less efficient than point-to-

point messages. Our following work is therefore focused on transforming the

EazyHTM protocol from using a multi-cast conflict detection to a point-to-point

conflict detection protocol.

87

6
EcoTM: Economical Conflict-Driven

Hardware Transactional Memory

EcoTM presents a series of improvements to EazyHTM. We have seen that we sig-

nificantly reduce the number of conflict detections by adding one bit (TD) to di-

rectory entries in EazyHTM. The immediate question we had after that was: how

much can we achieve if we add two bits to directory entries. After some experi-

menting with the states that can be represented by these two bits, we got results

that changed our opinion about the support for large transactions by HTMs. We

have seen that we can efficiently support transactions that are larger than private

caches, without inducing false conflicts, common in comparable HTM proposals.

6.1 Introduction

We have seen two possibilities for extending and improving EazyHTM: (1) reduce

the network traffic for conflict detection, and (2) supports transactions that over-

89

6. ECOTM: ECONOMICAL CONFLICT-DRIVEN HARDWARE TRANSACTIONAL

MEMORY

flow private caches. An overflowed transaction may impair the performance of

an HTM, or complicate the conflict detection in an HTM. Overflowed transactions

are either serialized, handled by software, or have their read and write set ap-

proximated in Bloom-filter signatures of finite size, determined during hardware

design. While the serialization of transactions and software support do not seem as

high-performance solutions, Bloom-filter signatures are seen as much better, since

they never overflow. However, if more entries are inserted than its fixed size can

support, a Bloom-filter becomes saturated and starts returning false-positive hits

for conflict detections by other transactions. Because of these false-positive con-

flicts, large transactions conflict even with unrelated transactions. In result, an

HTM with Bloom filters cannot execute large transactions in parallel, which goes

against the initial motivation for using an HTM.

The current implementations of Bloom-filter signatures can be improved, but

only up to some point. The current work on improving the performance of Bloom-

filter is focused on using better hash functions and reducing the number of entries

in the signature [65], [80], [48]. However, the current work does not solve the

main issue with Bloom-filter-based HTMs: the fixed and finite size of Bloom-filters.

To truly support both large and small transactions, we need more radical methods.

The key idea of our approach is to dynamically identify the speculative cache

lines that create conflicts, and to detect conflicts using these lines only. We manage

non-conflicting lines privately to processor cores, without generating network traf-

fic. To guarantee that all conflicts are detected, we associate a very small amount

of metadata (2 bits) with non-conflicting lines. If the metadata indicates that an

access to a line may create a conflict, a simple hardware logic builds the full conflict

detection information from the list of current line sharers, and precisely detects the

conflicts.

Figure 6.1 quantifies the dominance of non-conflicting cache lines in current

TM workloads. For simulator configurations between 1 and 32 processor cores, we

executed all applications from the STAMP benchmark suite. The horizontal axis

shows the name of an application, the number of simulated processor cores, and

their number of non-conflicting lines. The vertical axis shows the maximum (not

the cumulative) number of conflicting lines during the execution of an application.

We count the number of conflicting lines when a transaction commits and aborts.

90

0

100

200

300

400

500

600

32 16 8 4 2 32 16 8 4 2 32 16 8 4 2 32 16 8 4 2 32 16 8 4 2 1

C
co

n
fl

ic
ti

n
g

 c
a

ch
e

 l
in

e
s

32 16 8 4 2 32 16 8 4 2 32 16 8 4 2 32 16 8 4 2 32 16 8 4 2 1

yada: 1,000-

5,000 lines

labyrinth: 1,000-

15,000 lines

intruder: 600

lines

genome: 800

lines

51 other

configurations: 100s

of lines

Application: Non-conflicting cache lines, and simulated processor cores

Figure 6.1: Very few cache lines create genuine conflicts in existing TM workloads, an observa-

tion weakly exploited in previous HTM proposals. The vertical axis shows the number of conflicting

lines, and the horizontal axis shows the workloads and the number of non-conflicting lines. We

show the maximum (not the cumulative) number of transactional cache lines in each application.

These results indicate that, although existing HTM proposals must support up

to 15,000 transactional lines at some points of execution (the case of labyrinth),

only 10s to 100s of lines actually determine the conflicts and need to be analyzed

to guarantee correct execution. The conflict detection using non-conflicting lines

generates only wasted work, time, and energy.

In Section 6.2, we introduce EcoTM (EconomicalTM), an HTM that leverages

the separation of conflicting from non-conflicting cache lines. EcoTM identifies the

conflicting cache lines based on run-time accesses. It works dynamically, automati-

cally, and transparently to the programmer. Even if a conflict occurs on a cache line

that was non-conflicting until that time, EcoTM recovers and detects the conflict

correctly.

After that, we explain the mechanism for identifying conflicting lines. In this

work, we assume the common notion of conflicting cache line: a line that is read

and written by two or more concurrent transactions. In other words, a cache line

is conflicting if: a transaction writes to a line, while other concurrent transactions

access the same line. On the other side, a line is non-conflicting if it is: (1) read-

only, accessed by 1 or more concurrent transactions, (2) read-write, accessed by a

single transaction, or (3) not accessed concurrently by transactions.

91

6. ECOTM: ECONOMICAL CONFLICT-DRIVEN HARDWARE TRANSACTIONAL

MEMORY

In the same section, we describe how EcoTM detects conflicts eagerly using only

the lines it identifies as conflicting, then how EcoTM marks conflicts in a dedicated

hardware structure, and finally how EcoTM resolves conflicts to provide correct

execution, by aborting only genuinely conflicting transactions.

The basic EcoTM architecture targets a Chip-Multi-Processor (CMP) system

with MESI (or similar) cache coherency protocol and with memory directory. The

basic EcoTM handles only transactions that fit into private caches (like EazyHTM).

In Section 6.3, we describe how EcoTM can be extended to support transactions

larger than private caches (overflowed transactions), and to support commodity

CMP systems that have limited size of directory (e.g., a directory only in the shared

L2 caches).

EcoTM manages non-conflicting lines locally to processor cores, and generates

conflict-detection traffic only for the few conflicting lines. This reduces the conflict

detection traffic in the system, and increases the efficiency and performance of

HTM, without impacting the correctness. We evaluate the performance of EcoTM,

and analyze the sensitivity of EcoTM performance, and we show the results of our

evaluation in Section 6.4.

6.2 Basic EcoTM Architecture

In this section, we outline the baseline CMP architecture, including the EcoTM ex-

tensions to processor cores, private caches, and directory. We start by describing

EcoTM architecture at high level, then explain how non-conflicting transactions

execute (and commit and abort) locally to processor cores, and continue by ex-

plaining the mechanism for identifying conflicting lines. After that, we illustrate

EcoTM execution with several execution scenarios.

The basic functionality of EcoTM is the same as with EazyHTM. EcoTM detects

and marks conflicts eagerly, during transaction execution, but postpones the reso-

lution of conflicts until a transaction tries to commit the speculative changes. At

this point, the committing transaction has a prepared list of conflicts and transac-

tion commit can be fast and simple. This provides high concurrency and reduces

the amount of work that needs to be done when transaction commits. In result,

eager-lazy HTMs have the benefits of both eager and lazy conflict management:

92

(Section 6.2.1) (Section 6.2.2)
(Section 6.2.3)

Figure 6.2: An overview of the conflict detection in EcoTM. Exclusive lines are handled in private L1

caches. Shared lines are forwarded to L2 cache, which identifies the conflicting lines and answers

the non-conflicting requests (Section 6.2.2). The conflict detection is done only for the genuine

conflicting lines.

(1) just as lazy, they have good scalability for high-contention workloads, and (2)

just as eager, they have simple transaction commits.

Since eager-lazy HTMs detect conflicts eagerly (during transaction execution),

their bandwidth requirements are lower than for pure-lazy HTMs, especially during

commit operation. In addition, eager-lazy HTMs have better overall performance

than pure-lazy HTMs. However, compared to pure-lazy HTMs, eager-lazy HTMs

may have higher traffic during regular transaction execution.

EcoTM focuses on optimizing and reducing the traffic in the EazyHTM proto-

col, when it executes regular (L1-bounded) transactions. We illustrate the opti-

mizations in Figure 6.2, and we will mention them individually in the following

sections. Higher traffic may (1) reduce the performance if a system has limited-

bandwidth ICN, or (2) increase the energy consumption.

Figure 6.3 shows the baseline architecture for EcoTM. To support EcoTM, pro-

cessor cores have the following extensions: (1) backup and restore mechanism for

the register file, (2) speculative flags (read, write, and conflicting) associated with

L1 cache lines, (3) logging support for overflowed transactions (explained in Sec-

tion 6.3), and (4) transaction state, which is set during execution and reset when

transaction aborts or commits. A transaction state denotes a transaction to be: (1)

active or inactive, (2) conflicting or non-conflicting, and (3) local or overflowed.

A transaction becomes active when it begins execution, and inactive when it

terminates (either commits or aborts). A transaction begins as non-conflicting, and

changes to conflicting if a conflict is detected with other transactions in the system.

Finally, a transaction begins as local, meaning that it fits and executes in L1 cache.

93

6. ECOTM: ECONOMICAL CONFLICT-DRIVEN HARDWARE TRANSACTIONAL

MEMORY

Figure 6.3: The baseline Chip-Multi-Processor (CMP) architecture for EcoTM. The architecture of

a single core is similar to the one in EazyHTM. The directory has an additional Conflict-Detection

Table, and a 2-bit metadata in directory entries to identify the conflicting cache lines.

If a cache lines touched by a transaction needs to be evicted from the L1 cache, the

transaction is marked as overflowed and continues execution. We give more details

on the execution of overflowed transactions in Section 6.3.

6.2.1 Core-local transactions

A large class of transactions can execute locally to processor cores – for exam-

ple, read-only transactions, or transactions that have all cache lines exclusive in a

processor core. Read-only and exclusive cache lines cannot create conflicts, and

they do not generate off-core traffic (outside of L1 caches). This allows EcoTM

to efficiently support the privatization idiom [49, 67, 72], and the compiler- or

programmer-defined thread-local variables [80].

To detect exclusive or read-only lines, EcoTM relies on the line state assigned

by the MESI protocol in the directory. MESI protocol already assigns exclusive

ownership to a line accessed only by one L1 cache. Similarly, MESI protocol already

assigns a shared state to a line accessed by more than one L1 cache.

If, during transaction execution, a line changes the state from exclusive or read-

94

only to read-write, EcoTM protocol notifies current line sharers, resulting in correct

conflict detection. After that, line is marked as conflicting, which forces conflict

detection for future line accesses.

An access to a cache line that is neither exclusive nor read-only generates an

off-core traffic (traffic outside of L1 cache). If the access does not result in a con-

flict, a transaction can abort or commit core-locally, without communicating with

other concurrent transactions. A non-conflicting transaction terminates by first

clearing the speculative flags in L1 cache, and then restoring (for abort) or flush-

ing (for commit) the checkpoint of the register file, created when transaction began

execution.

6.2.2 Identifying Conflicting Cache Lines

In this section, we describe how EcoTM identifies conflicting cache lines, without

explaining the mechanism for conflict detection and resolution. The majority of

cache lines never create conflicts between transactions, but it is not easy keep track

of this, due to the volatile nature of conflicts. A cache line may become conflicting

during the execution of some transaction, and after that a line may again become

non-conflicting.

The design of EcoTM allows rapid changes between the conflicting and the non-

conflicting states of cache lines. The directory identifies a conflicting line based on

the list of sharers (already existing in directory-based systems) and the state of a

(EcoTM-specific) metadata associated with a cache line.

The metadata associated with cache lines has only 2-bits, and we name it a

Quick Conflict Check (QCC) state. The list of line sharers and the QCC state are

logically associated with a cache line while, physically, they are a part of the tag of

a directory entry. We assume that directory entries are distributed, and accessible

through the banked L2 cache.

The two bits of QCC encode the following states:

1. NonTX: non-transactional line (not accessed by any transaction)

2. TReadonly: read-only by one or more transactions,

3. TExclusive: exclusive to a transaction (may be written), and

95

6. ECOTM: ECONOMICAL CONFLICT-DRIVEN HARDWARE TRANSACTIONAL

MEMORY

Figure 6.4: State-transition diagram of Quick Conflict Check (QCC), which identifies the conflicting

lines (directory entries).

4. TConflicting: conflicting line (read and write by more than one transaction).

We show the state diagram of the QCC states in Figure 6.4. A cache line is

initially non-transactional (QCC:NonTX). After a first transactional load (TLoad),

QCC state transitions to QCC:TReadonly, and after transactional store (TStore)

to QCC:TExclusive. A line becomes conflicting (QCC:TConflicting) if it has both

TLoad(s) and TStore(s) from different processor cores. The QCC state is reset if

there is a regular (non-speculative) write to a line.

If a line is exclusive to the L1 cache, it cannot create conflicts between transac-

tions. Therefore, for lines in exclusive mode (i.e., Exclusive, Owned, or Modified)

neither TLoad nor TStore are sent. If a line is shared between L1 caches (processor

cores), transactions detect conflicts by sending TLoad and TStore requests to the

L2 cache.

TStore is sent instead of a regular Store request, if a line is not exclusive to

the L1 cache. If a directory receives a TStore, it always executes a TXPure action.

Conversely, TLoad is sent lazily, as a response to a TXPure action. In case L1

cache does not already have the line when it should transactionally read a location,

it issues a regular Load request. If the requested line is in QCC:TConflicting or

QCC:TExclusive state, the directory initiates the TXPure action.

L2 cache executes a TXPure action when a line may become conflicting, or

when a new conflict may be marked. This happens, for example, when a line is

shared and there has been a previous TStore to the line. TXPure evicts a line from

96

all non-transactional sharers of the line, which may avoid some spurious changes

to QCC:TConflicting. For example, after a TXPure action a line may become exclu-

sive to a transaction, resulting in QCC:TExclusive instead of QCC:TConflicting. If

line state changes to QCC:TConflicting, EcoTM protocol initiates conflict detection

described in Section 6.2.3.

Lazy QCC updates. L2 cache (the directory) may have stale information,

since it is not informed of the TLoads in L1 cache. Therefore, L2 always consults

L1 cache before marking a declaring a line as conflicting (QCC:TConflicting), or

before marking a conflict between transactions.

L2 cache executes a TXPure action, which invalidates all non-transactional line

sharers. TXPure invalidates the line copies in L1 caches which are not a part of a

transaction (speculative flags set for the line). The TXPure invalidations are similar

to the invalidations in a regular “Store” request. After updating the list of line

sharers, the directory updates the QCC state. If there is more than one transactional

sharer after the TXPure action, a line is marked as conflicting (QCC:TConflicting).

When a transaction terminates (aborts or commits), QCC state is cleaned lazily.

This makes commits fast, and leaves the task of cleaning stale QCC state to future

transactions. Lazy updating of QCC reduces the amount of L1-L2 traffic, the latency

of operations, and the number of QCC state changes, while it still guarantees that

no conflicts will be missed.

Running examples of core-local transactions. Figure 6.5a demonstrates a

running example of two read-only transactions executing on processor cores P1

and P2. A processor communicates with the directory for the first speculative read,

by sending a regular Load request. For subsequent reads from the same variable,

a processor would access only the L1 cache. After committing, the processor cores

do not clear the QCC state.

Figure 6.5b demonstrates a different scenario, in which two cores acquire ex-

clusive access to two different cache lines. In this case, a processor speculatively

writes to the L1 cache without notifying the directory. To commit, a processor

core locally (in L1 cache) upgrades the speculatively modified lines to the regular

Modified state, and continues the execution.

In the two previous examples, the EcoTM protocol does not increase the traffic

on the interconnects, compared to a regular non-transactional execution.

97

6. ECOTM: ECONOMICAL CONFLICT-DRIVEN HARDWARE TRANSACTIONAL

MEMORY

(a) Speculative reads generate regular Load re-

quests.

(b) TStore requests are not sent, if L1

cache has the exclusive access to a line.

Figure 6.5: Core-local execution of the most common, non-conflicting transactions in EcoTM. The

off-core traffic (bold font) is not increased by executing these transactions.

(a) Lazy update of the QCC:TReadonly state. (b) Lazy QCC:TExclusive update.

Figure 6.6: Lazy updating of QCC states permits fast core-local commits and aborts, without intro-

ducing false conflicts.

Running examples of lazy QCC updating. Figure 6.6a illustrates the lazy

updating of a stale QCC:TReadonly state, left after P1 committed a transaction

(step 1). P2 issues a Load request (step 2), and after that a potentially-conflicting

TStore request (step 3). Before marking a line as conflicting (QCC:TConflicting),

L2 cache invokes a TXPure action. TXPure invalidates a copy in P1, since P1 does

not access the line speculatively, and this makes P2 an exclusive owner of the

line. Therefore, instead of become conflicting, the line changes to QCC:TExclusive.

The QCC state is left unchanged when transaction commits (step 4). Later in

execution, P1 makes a regular Store to the line (step 5), which resets the QCC

state to QCC:NonTX.

Figure 6.6b shows an example of a stale QCC:TExclusive state, left after P1

commits (step 1). Incoming Load from P2 (step 2) initiates a TXPure action, which

invalidates a copy in P1, since P1 does speculatively access the line. This makes

P2 an exclusive sharer of the line (step 3). The QCC state is reset to QCC:NonTX

when P1 makes a regular Store to the line (step 5).

98

6.2.3 Conflict detection and resolution

If QCC gets into the conflicting state (QCC:TConflicting), a line is forwarded to

a dedicated hardware logic, which precisely detects conflicts, and arbitrates the

commits of the conflicting transactions. The dedicated hardware logic is simple,

with complexity comparable with a “get commit sequence number”, often proposed

for lazy HTMs. This section describes this mechanism for conflict detection and

management.

When QCC identifies a conflicting cache line, it informs the requesting pro-

cessor core that its current transaction is conflicting. The processor core locally

changes the transaction state from non-conflicting to conflicting, and the conflict

is marked in the directory, in a structure called conflict bitmap.

A transaction with a conflicting execution cannot commit locally any more. It

has to requests a commit permission from the conflict bitmap, and has to wait for a

response before it proceeds with the commit. Conflict bitmap has simple function-

ality and responds fast and in constant time. On a commit request, conflict bitmap

checks if the requesting transaction is still valid. If it is not, the commit request is

rejected. If the committing transaction is valid, the conflict bitmap invalidates all

conflicting transactions of the committing transaction by sending them an aborts

request. The cores cannot reject the abort request from the conflict bitmap, so

the bitmap immediately sends an acknowledgement to the core that asked for the

commit permission.

In processor core, commit behaves similarly to a memory fence [41, 50, 78].

That is, a commit allows the memory operations to be reordered before the commit,

but forces all loads and stores before the commit to be ordered with respect to the

loads and stores after the commit. The processor core stops writing-back (retiring)

instructions [71] that follow the commit, until the commit operation is complete.

After commit, an L1 cache lazily write backs the committed data when: (1) it

evicts the line (due to the capacity constraint), (2) it reduces the access mode to

shared or invalid (for example, other core requests line access), or (3) it specula-

tively modifies the line in a new transaction.

If a transaction with a conflicting execution aborts, it informs the conflict bitmap.

The conflict bitmap clears all existing conflicts with the aborted transaction.

99

6. ECOTM: ECONOMICAL CONFLICT-DRIVEN HARDWARE TRANSACTIONAL

MEMORY

Figure 6.7: Conflict management hardware in EcoTM. Conflict detection table handles only con-

flicting lines. It detects conflicts precisely, and marks them in the Conflict bitmap.

Conflict-Detection Table. Figure 6.7 outlines the hardware extensions for con-

flict management. Conflict detection table has a limited number of entries, and

handles only conflicting lines. An entry in the table has a bitmap of speculative

accesses: 1 bit to mark a Speculative Read (SR) and 1 to mark a Speculative Write

(SW) of each processor core. In a 32-core system, each entry in the table has 64

bits. Since a table entry has a complete list of speculative accesses, conflicts can

be detected precisely, just as a naive lazy HTM would do: a speculative write bit

marks a conflict with all other line accessors with SR or SW bit set.

QCC forwards all accesses to a conflicting line to the conflict-detection table. A

new entry in the table is initialized from the existing list of line sharers. The L2

cache executes a TXPure action, which leaves only speculative accessors in the list

of sharers, and the L1 caches also return the type of their speculative access (read

or write).

Since conflict-detection table has limited number of entries, an entry may be

invalidated at any time. When a conflicting line is re-accessed, the entry in the

table is re-built the same way as the first time, by executing the TXPure action.

A TXPure action sends a multi-cast message to all line sharers (processor cores),

just as a regular Store request. To reduce the number of the multi-cast request, it

is important to have a sufficient number entries in the conflict-detection table.

Conflict bitmap. A conflict detected by the conflict-detection table is marked

in the conflict bitmap. Conflict bitmap is a (N − 1)2 bit-matrix (N is the number

of processor cores) of conflicts between transactions. In it, each core has one bit-

vector, which presents the transactional conflicts between this core and all other

100

Figure 6.8: Execution of conflicting bounded transactions. The conflicts from P1 to P2 and from

P2 to P1 are precisely detected in the conflict-detection table, and marked in the conflict bitmap.

When P1 requests to commit, conflict bitmap aborts the transaction in P2.

cores. For example, if a bit-vector of core 1 has set bit 2, this means that if trans-

action 1 wants to commit, it needs to abort the transaction 2.

When conflicting transaction commits or aborts, it informs the conflict bitmap.

This flash-clears the transaction column in the conflict-detection table, and all en-

tries for the transaction in conflict bitmap.

6.2.4 Example of conflict management

Figure 6.8 illustrates an example of a conflicting execution of transactions on pro-

cessor cores P1 and P2. The two transactions speculatively modify the same cache

line. QCC state identifies a line as conflicting (step 4), when P1 speculatively writes

to the line. An entry in the conflict-detection table is initialized, a conflict from P1

to P2 is detected and marked in the conflict bitmap.

A second conflict (step 5) occurs when P2 also speculatively writes to the line.

An entry in the conflict-detection table is updated, and a conflict from P2 to P1 is

marked in the conflict bitmap. When P1 commits (step 6), conflict bitmap requests

an abort from P2, and flash-clears the P1 and P2 columns in the conflict-detection

table. The cache line is no longer transactional, and the line state is updates to

QCC:NonTX. After that, P2 re-executes the transaction (steps 7-10), this time with-

out any conflicts.

101

6. ECOTM: ECONOMICAL CONFLICT-DRIVEN HARDWARE TRANSACTIONAL

MEMORY

6.3 Overflowed transactions

In this Section, we describe the handling of overflowed transactions, and the ex-

tending of the EcoTM mechanism to the commodity CMP systems with limited

directories (for example, to a CMP with a directory only in L2 caches).

6.3.1 Conflict management for overflowed transactions

The conflict management in EcoTM is generally similar between the core-local and

the overflowed transactions. In this section we explain the subtle changes in the

coherence protocol, that enable correct conflict detection, even with overflowed

transaction.

Silent L1 evictions. Even if a speculative line is evicted from L1 cache, the

directory should not delete the information about the line access. That is, the di-

rectory should believe that the L1 cache still has the line. For this, the EcoTM

protocol relies on silent evictions for transactional lines [55]. Silent evictions are

already performed by conventional MESI protocols to reduce the bandwidth over-

head, by silently evicting exclusive and shared lines. Thus, if a speculative line

gets evicted from L1 cache, the directory information is not updated to reflect the

eviction.

Conservative line sharing. For the core-local transactions, the QCC changes

states based on the speculative flags in L1 caches. For the overflowed transac-

tions, we have to be conservative and to always assume that a core marked as line

sharer also speculatively accessed it. In particular, for QCC:TReadonly state we

assume that all line sharers transactionally read the line. For QCC:TExclusive or

QCC:TConflicting state, we assume that all line sharers transactionally read and

modified the line.

This obviously introduces some false conflicts, but the probability of these false

conflicts is low, with a sufficient number of entries in the conflict-detection table.

If a related entry in the table does not get evicted, no false conflicts are introduced

even if a line is evicted from the L1 cache. In Section 6.4 we sensitivity of EcoTM

performance to the number of entries in conflict-detection table.

102

6.3.2 Logging QCC changes

Most QCC changes converge to the accurate state, when regular Store requests re-

set the QCC state or when TXPure actions update the QCC state. However, if a line

has overflowed sharers, stale QCC:TExclusive or QCC:TConflicting may indicate a

conflict that does not actually exist. Conflict-detection table offers a solution, but

the entries in this table can be silently evicted.

To address this, a processor core creates a QCC undo-log for the overflowed

lines with QCC:TExclusive or QCC:TConflicting state. To facilitate the processing

of the entries from the logs, each QCC state has a separate log. The logs are

organized as stacks and are stored in a cacheable thread-private memory. The

hardware pushes the addresses, and a software handler removes the entries and

resizes the log if necessary. Note that the logs contain only overflowed lines, which

makes it unlikely to repeat entries.

EcoTM logs have the hardware and software requirements similar to the LogTM

[55] logs. The advantages over LogTM-style logs are that: (1) EcoTM logs only for

overflowed lines, and (2) EcoTM does not log any data. EcoTM logs only addresses,

and this significantly increases the efficiency of logs. EcoTM needs only 8 bytes

per entry (for line address), whereas a LogTM-style log needs 64+8 bytes (line

data+address) per entry. LogTM needs to log the data as well, since it restores

the original, non-speculative values when a transaction aborts. In contrast, in

EcoTM the non-speculative values are already in shared memory, and to abort a

transaction EcoTM only flushes the private speculative data of the transaction.

6.3.3 Data management for overflowed transactions

EcoTM mechanism generally supports any overflowed-data-management mecha-

nism used by either lazy, or eager-lazy HTMs. Therefore, this work assumes the

that other mechanisms for managing overflowed data exist. We name such sup-

port an Overflow Buffer (OB), and assume that it is organized similarly to the one

proposed by Shiraman et al. [69]. The OB is organized as a simple per-thread

hash table in virtual memory, and accessed by the OB controller that sits on the

private cache miss path. On private cache misses, the request is redirected to the

OB and handled in hardware. The commit-time write-backs are performed by the

103

6. ECOTM: ECONOMICAL CONFLICT-DRIVEN HARDWARE TRANSACTIONAL

MEMORY

OB controller, and occur in parallel with other useful work by the processor.

In Section 6.4 we analyze the dependence of EcoTM performance from the

OB latency, and show that the OB latency does not significantly affect the EcoTM

execution time.

6.3.4 Support for context switching and interrupts

The transactions are usually much shorter from the time between interrupts, which

commonly trigger contexts switches. The transactions in existing workloads do

not execute longer than several thousand cycles, and the context switches happen

every tens to hundreds of millions of cycles on the mainstream microprocessors

(the default interval for context switches is 10ms).

Eager HTMs generally have slow transaction aborts, and the abort overheads

can easily exceed the overheads of a transaction migration, even if the migration

process is complex. In contrast, EcoTM has fast aborts. When an aborted trans-

action starts executing again on a different processor core, it will likely finish in

several thousand cycles. The complete execution can be faster from many pro-

posed transaction migration mechanisms.

While future workloads might call for a different approach, enabling migra-

tion of long-running transactions is likely to be extremely complex, particularly in

systems combining the use of operating systems and virtual machine monitors.

Despite our position on supporting context switches and the transaction migra-

tion, EcoTM can relatively simply be extended to support them. One way could be

by saving the speculative state before a context switch, and re-applying it after the

context switch, on a different processor core.

6.3.5 EcoTM on Systems with Limited Directory Size

On multiprocessor systems with a limited directory size, for example, with a direc-

tory only in L2 or L3 caches and not in the entire physical memory, the history of

speculative accesses could be lost once a line is evicted from the top-level cache.

This could cause future speculative accesses to the line to miss real conflicts.

To prevent this from happening, some amount of directory data can be saved

104

in physical memory together with an evicted cache block. We show two configu-

rations: (1) saving a complete list of cache line sharers together with QCC, or (2)

saving only the QCC (2 bits per cache block). Saving less metadata in memory

reduces the storage requirements, but risks false conflicts in future execution.

The conflict-detection metadata can be preserved either in the ECC area (by

switching to SECDEC code), as has been proposed by TokenTM [17], or by in-

creasing the number of bits in DRAM rows. The DRAM row size already increases

between different generations. The saved EcoTM metadata can be stored as regu-

lar data in DRAM, since it does not require any additional logic.

6.4 Evaluation

We evaluated EcoTM using M5, a full-system simulator of the Alpha architec-

ture [11]. We replaced the default bus based cache coherency with a MESI based

directory cache coherency.

Beside EcoTM, we implemented (i) LogTM-SE [79], (ii) an unbounded eager

HTM with perfect signatures, and (iii) an ideal-lazy HTM. We ported the LogTM-

SE code to M5, from its original publicly available source code (implemented with

Simics and GEMS), and verified that the performance is comparable with the origi-

nal. LogTM-SE is a state-of-the-art unbounded HTM proposal, widely used by other

unbounded HTM proposals as the base HTM. It is therefore an excellent reference

point for comparing EcoTM with other proposals.

In all HTM configurations, we use in-order cores with a fixed 1 CPI for non-

memory related instructions. The memory operations take 1 cycle plus a variable

latency returned by the memory subsystem. An overview of the underlying hard-

ware and the latencies is given in Table 6.1.

We evaluate the proposals using STAMP TM benchmark suite. Detailed bench-

mark characteristics are given in [20].

Execution time breakdown. In Figure 6.9, we show the breakdown of the total

execution time for EcoTM executing all STAMP applications over 1–32 processor

cores. The total execution time is split into four categories: (1) Thread start/end

– the time spent in thread synchronization during entering and leaving parallel

sections, (2) Quiescent – the time spent in quiescent state, which usually occurs

105

6. ECOTM: ECONOMICAL CONFLICT-DRIVEN HARDWARE TRANSACTIONAL

MEMORY

1 2 4 8 16 32
Processors

0

20

40

60

80

100

%
 o

f
e
x
e
cu

ti
o
n
 t

im
e

Kmeans_low

wasted data

wasted instr

useful data

useful instr

sleeping

1 2 4 8 16 32
Processors

0

20

40

60

80

100

%
 o

f
e
x
e
cu

ti
o
n
 t

im
e

Kmeans_hi

wasted data

wasted instr

useful data

useful instr

sleeping

1 2 4 8 16 32
Processors

0

20

40

60

80

100

%
 o

f
e
x
e
cu

ti
o
n
 t

im
e

Yada

wasted data

wasted instr

useful data

useful instr

sleeping

1 2 4 8 16 32
Processors

0

20

40

60

80

100

%
 o

f
e
x
e
cu

ti
o
n
 t

im
e

Intruder

wasted data

wasted instr

useful data

useful instr

sleeping

1 2 4 8 16 32
Processors

0

20

40

60

80

100

%
 o

f
e
x
e
cu

ti
o
n
 t

im
e

Vacation_hi

wasted data

wasted instr

useful data

useful instr

sleeping

1 2 4 8 16 32
Processors

0

20

40

60

80

100

%
 o

f
e
x
e
cu

ti
o
n
 t

im
e

Vacation_low

wasted data

wasted instr

useful data

useful instr

sleeping

1 2 4 8 16 32
Processors

0

20

40

60

80

100

%
 o

f
e
x
e
cu

ti
o
n
 t

im
e

Genome

wasted data

wasted instr

useful data

useful instr

sleeping

1 2 4 8 16 32
Processors

0

20

40

60

80

100

%
 o

f
e
x
e
cu

ti
o
n
 t

im
e

Ssca2

wasted data

wasted instr

useful data

useful instr

sleeping

1 2 4 8 16 32
Processors

0

20

40

60

80

100

%
 o

f
e
x
e
cu

ti
o
n
 t

im
e

Bayes

wasted data

wasted instr

useful data

useful instr

sleeping

Figure 6.9: A breakdown of the total execution time in STAMP applications, for 1-32 processor

cores

106

Processor 1-32 cores, single-issue, single-threaded, 1 CPI

L1 Cache 32KB private, 2-way, 64-byte blocks, 2 cycles, write-back

L2 Cache 8MB banked NUCA, 8-way, 64-byte blocks, 32 cycles, write-back

Directory Bit-vector of sharers, 8-cycle access latency

Memory 4GB, 500 cycles latency

Interconnect 2D Mesh, 4-cycle latency

Conflict-detection table 256 directly mapped entries (unless otherwise noted)

Conflict bitmap 40-cycle access latency

Log latency 8-cycle latency for removing one entry

Table 6.1: The hardware configuration

after being unable to enter a barrier after several successive retries, (3) Useful –

the time spent outside of transactions, and in transactional code that successfully

commits, and (4) Wasted – the time spent in transactional code that is rolled back

due to abort.

The breakdown indicates problems with the parallelization of several STAMP

applications. First, Bayes has unbalanced work between threads, since it spends

significant time synchronizing the threads the start and the end of the workload ex-

ecution. Kmeans and Vacation have a similar problem, but to a smaller extension.

Second, Genome and SSCA2 rely on barriers for synchronizing thread progress,

which is seen by the significant time in the quiescent (idle) processor state during

the execution. The mentioned non-executing time in these applications consumes

over 50% of the execution time with 32 cores, and therefore the application per-

formance does not correctly reflect the HTM performance.

Wasted work becomes a significant factor for applications with medium and

high contention, Bayes, Intruder, Labyrinth, and Yada, especially with higher num-

ber of execution threads.

Performance and Scalability. Figure 6.10 presents an evaluation of speedup

over the sequential execution of the same application (that does not use threads or

locks).

Our evaluation includes four HTMs. The first HTM is the ideal-lazy unbounded

HTM, a lazy conflict resolution HTM with no latencies (all operations are instant

and without overheads). All speculative reads and writes are simple cache reads,

and no transactional messages are sent during execution. When transaction com-

mits, it magically detects and resolve conflicts with other transactions and then

107

6. ECOTM: ECONOMICAL CONFLICT-DRIVEN HARDWARE TRANSACTIONAL

MEMORY

1 2 4 8 16 32
Processors

0

5

10

15

20

25

30

S
p
e
e
d
u
p
 o

v
e
r

se
q
u
e
n
ti

a
l

Kmeans_low
Ideal Lazy
EcoTM
LogTM-SE
LogTM-SE perfectsig

1 2 4 8 16 32
Processors

0

5

10

15

20

25

30

S
p
e
e
d
u
p
 o

v
e
r

se
q
u
e
n
ti

a
l

Kmeans_hi
Ideal Lazy
EcoTM
LogTM-SE
LogTM-SE perfectsig

1 2 4 8 16 32
Processors

0

2

4

6

8

10

12

14

16

S
p
e
e
d
u
p
 o

v
e
r

se
q
u
e
n
ti

a
l

Yada
Ideal Lazy
EcoTM
LogTM-SE
LogTM-SE perfectsig

1 2 4 8 16 32
Processors

0

2

4

6

8

10

12

14

16

S
p
e
e
d
u
p
 o

v
e
r

se
q
u
e
n
ti

a
l

Intruder
Ideal Lazy
EcoTM
LogTM-SE
LogTM-SE perfectsig

1 2 4 8 16 32
Processors

0

5

10

15

20

25

30

S
p
e
e
d
u
p
 o

v
e
r

se
q
u
e
n
ti

a
l

Vacation_hi
Ideal Lazy
EcoTM
LogTM-SE
LogTM-SE perfectsig

1 2 4 8 16 32
Processors

0

5

10

15

20

25

30

S
p
e
e
d
u
p
 o

v
e
r

se
q
u
e
n
ti

a
l

Vacation_low
Ideal Lazy
EcoTM
LogTM-SE
LogTM-SE perfectsig

1 2 4 8 16 32
Processors

0

2

4

6

8

10

S
p
e
e
d
u
p
 o

v
e
r

se
q
u
e
n
ti

a
l

Genome
Ideal Lazy
EcoTM
LogTM-SE
LogTM-SE perfectsig

1 2 4 8 16 32
Processors

0

2

4

6

8

10

S
p
e
e
d
u
p
 o

v
e
r

se
q
u
e
n
ti

a
l

Ssca2
Ideal Lazy
EcoTM
LogTM-SE
LogTM-SE perfectsig

1 2 4 8 16 32
Processors

0

1

2

3

4

5

6

S
p
e
e
d
u
p
 o

v
e
r

se
q
u
e
n
ti

a
l

Bayes
Ideal Lazy
EcoTM
LogTM-SE
LogTM-SE perfectsig

Figure 6.10: The speedup of the STAMP TM benchmark suite applications normalized to the se-

quential execution (no threads or locks). The overflow buffer latency is fixed to 100 cycles for

EcoTM, and 0 cycles for the ideal-lazy HTM.

108

publishes the speculative changes. There are no false conflicts except due to false

line sharing. No data moves during publishing modified lines. All speculatively-

modified lines are magically converted into modified state, even if they got evicted

from private caches. The overflow buffer has zero latency and infinite capacity.

Second is EcoTM, and the third is LogTM-SE, which we configure with exponen-

tial backoff and 2-Kbit Bloom-filter signatures with two parallel hash functions, as

proposed by the LogTM-SE authors. The last is the eager-perfect unbounded HTM,

based on LogTM-SE. It has perfect signatures, that do not create any false conflicts.

TokenTM authors report a performance comparable with this HTM.

In our evaluation, lazy conflict management has better performance than ea-

ger if: (1) the contention is high, or (2) the transactions are large. With small

transactions, eager and lazy conflict management have similar performance. Eager

would likely have better performance with large transactions and low contention.

However, STAMP does not include such application.

Overall, EcoTM performance is close to the performance of ideal-lazy HTM,

which bounds the performance of unbounded HTM. EcoTM has better performance

in all sets of executions from both LogTM-SE and eager-perfect HTM. The geomet-

ric mean of the performance improvement of EcoTM for all STAMP applications is

35.7% over LogTM-SE with realistic Bloom filter signatures, and 8.8% over eager-

perfect HTM.

Genome and SSCA2 almost do not scale in any of the implemented HTMs. This

happens because of the inefficient implementation of barriers on this architecture.

Since these applications have small transactions, and as can be seen in Figure 6.9,

that the amount of wasted work (transaction aborts) is minimal in these applica-

tions, the reason for bad scalability is not in HTMs.

Especially important in our evaluation are Bayes, Labyrinth, and Yada, which

have large transactions, that frequently overflow the small L1 caches from our

simulator.

Bayes in our evaluation shows similar behavior to the one presented by the

STAMP authors. Since the work is not well balanced between threads, the execu-

tion time of Bayes does not necessarily represent the HTM performance. Labyrinth

was excluded from this figure, since it depends on early release [20], which our

LogTM-SE implementation does not support.

109

6. ECOTM: ECONOMICAL CONFLICT-DRIVEN HARDWARE TRANSACTIONAL

MEMORY

Yada has very large transactions and moderate contention, which makes it

a good application for evaluating the deficiencies of unbounded HTMs. A 1-32

thread geometric mean of the EcoTM performance is 5% from the ideal-lazy HTM,

and 24% better than the eager-perfect HTM. With 32 threads in particular, EcoTM

finishes 10.66 times faster than the sequential code, which is only 11.4% slower

than the ideal-lazy HTM. With the same configuration, eager-perfect HTMs finishes

5.3 times faster than the sequential code, but 2 times slower than the ideal-lazy

HTM. Similar performance difference between eager and lazy HTMs for this appli-

cation was also reported by the STAMP authors.

Over all STAMP configurations, a geometric mean of the difference between

EcoTM and ideal-lazy HTM is 7.1%.

A weak implementation of Bloom-filter signatures in our LogTM-SE introduces

many false conflicts, and significantly hurts its performance. Note that, while a bet-

ter signature implementation (for example, using H3 or PBX hash functions) would

improve the performance of LogTM-SE, the performance of such HTM would still

be below the ideal-perfect HTM.

EcoTM overheads. EcoTM overheads come from: (1) logging, and (2) conflict

management. We evaluate the EcoTM overheads by comparing the execution with

a no-overhead, ideal implementation. EcoTM overall stands very close to the ideal-

lazy HTM. The biggest difference is observed for the Intruder, where the 32-core

ideal-lazy HTM is approximately 40% faster than EcoTM. Where ideal-lazy HTM

has instantaneous aborts, EcoTM needs to manage logs and negotiate the commit

or abort with the conflict bitmap. Excluding Intruder, EcoTM is within 5.2% from

the ideal-lazy HTM on average for all configurations, and within 5.6% and 4.2,

respectively, for 32-core executions.

Sensitivity to the size of the conflict-detection table. Adding more entries to,

and increasing the associativity of conflict-detection table: (1) reduces the number

of false conflicts introduced by overflowed transactions, and (2) reduces the traffic

on the interconnects. While the former directly affects the execution time, the

latter affects the power consumption. Figure 6.11 shows the sensitivity of the

EcoTM performance to the number of entries in the table. All STAMP applications

except Yada have the same performance even with only 8 directly mapped entries.

Yada is more sensitive than the rest. However, only 256 directly mapped entries

110

al
l S

TA
M
P

ex
ce

pt
 y

ad
a

ya
da

 2
 c
or

e

ya
da

 4
 c
or

e

ya
da

 8
 c
or

e

ya
da

 1
6

co
re

ya
da

 3
2

co
re

Application and the number of cores

0.0

0.5

1.0

1.5

2.0

2.5

3.0
N

o
rm

a
liz

e
d
 E

x
e
cu

ti
o
n
 T

im
e

256x1
128x1
64x1

16x1
8x1

Figure 6.11: Even small conflict-detection table works well in almost all configurations. The execu-

tion time is normalized to the unbounded fully-associative table. Even a directly mapped 16-entry

(1-way) conflict-detection table provides good results for current workloads.

are enough for avoiding false conflicts.

Impact of the overflow buffer (OB) latency. The OB stores the speculatively-

modified lines that overflow the private cache. In Figure 6.12, we show how the

speed of the OB affects the performance of EcoTM. The presented results are for

the OB latencies of 10 and 100 cycles per access. The execution times of EcoTM is

normalized to the configuration with the 0 cycles per OB access, which would be

the ideal OB. We see that Bayes has slightly better performance when OB access

has some latency. Since Bayes has non-deterministic (work-stealing) execution,

we cannot conclude anything with these results. One more result is interesting,

Intruder, where performance also improves when OB has some latency. Since In-

truder has a highly-conflicting execution, reducing the speed of transaction exe-

cution results in less wasted work and the overall performance of the application

reduces. We can conclude that, with the current workloads, the speed of the OB

does not influence the execution time as much as the choice of the policy for con-

flict management.

111

6. ECOTM: ECONOMICAL CONFLICT-DRIVEN HARDWARE TRANSACTIONAL

MEMORY

ba
ye

s

ge
no

m
e

in
tru

de
r

km
ea

ns
_h

i

km
ea

ns
_lo

w
ss

ca
2

va
ca

tio
n_

hi

va
ca

tio
n_

lo
w

ya
da

Processors

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 E

x
e
cu

ti
o
n
 T

im
e

10 cycles/access
100 cycles/access

Figure 6.12: The latency of the Overflow Buffer (OB) barely affects the EcoTM performance. The

execution time is normalized to the configuration with a 0 cycles per overflow buffer access. We

show the results for the 32-core configuration.

6.5 Conclusions

In this chapter, we present an extension of our previous work in EazyHTM. We

present EcoTM, that provides support for unbounded transactions and reduces the

conflict-detection traffic on interconnects. EcoTM provides precise conflict detec-

tion, while using a minimal amount of conflict-detection metadata. EcoTM reduces

the amount of metadata by classifying cache lines to the common non-conflicting

and the very uncommon conflicting. The non-conflicting cache lines need only the

minimal amount of metadata. EcoTM does the classification automatically, without

requiring any annotations from the programmer, and dynamically, during program

execution.

EcoTM’s base hardware mechanisms support all current conflict management

strategies: eager, lazy, and eager-lazy. This gives EcoTM both a performance and a

cost-effectiveness advantage over the alternative unbounded-HTM proposals. Our

evaluation indicates that EcoTM needs less metadata, and provides significantly

better performance than the state-of-the-art unbounded HTMs.

Since EcoTM features precise (instead of approximative) conflict detection,

112

EcoTM does not suffer from false conflicts as many other unbounded HTMs do.

Typical unbounded HTMs detect conflicts using Bloom-filter signatures, which some-

times report false conflicts, and this may result in aborting non-conflicting transac-

tions. The probability of false conflicts in Bloom-filter rapidly increases with larger

transactions, which becomes particularly important if we want to support large

transactions of the future workloads.

113

7
Related Work in Hardware

Transactional Memory

The sudden shift from single-core to multi-core processors caused an intensive

research in transactional memory, as well as in other synchronization mechanisms.

As a result, the TM and HTM topic in particular presents many of interesting and

useful techniques.

In this section, we will present the most related work with this dissertation. We

summarize the previous unbounded HTM proposals in Table 7.1, and explain each

of them in more details in the following text.

7.1 Related work in bounded HTMs

Moore et al. [55] propose LogTM and describe a taxonomy of TM systems based on

version management and conflict detection. They place Log-TM and Unbounded

TM [6] into eager HTMs. They also classify Large TM [6] and Virtual TM [62]

115

7
.

R
E
L
A
T

E
D

W
O

R
K

IN
H

A
R
D

W
A

R
E

T
R
A

N
S
A
C
T

IO
N

A
L

M
E
M

O
R
Y

Unbounded? Conflict management Conflict detection metadata

TCC [32] No lazy private cache: 2 bits per line

UTM/LTM [6] Yes eager software + acceleration

VTM [62] Yes eager fixed size Bloom filter

PTM [24] Yes eager software + acceleration

XTM [25] Yes lazy none, compares all data values

Scalable-TCC [23] No lazy private cache: 2 bits per line

LogTM-SE [79] Yes eager fixed size Bloom filter

OneTM [15] Yes eager all caches: 16 bits per line

FlexTM [69] Yes eager-lazy fixed size Bloom filter

TokenTM [17] Yes eager all caches: 16+ bits per line

LiteTM [5] Yes eager
all caches: 2 bit per line +

software support

DynTM [48] Yes
eager-lazy for core-local,

eager for overflowed TXs
fixed size Bloom filter

Pi-TM [56] No eager-lazy private cache: 3 bits per line

EazyHTM No eager-lazy private cache: 2 bits per line

EcoTM Yes eager-lazy all caches: 2 bits per line

Table 7.1: An overview of related HTM mechanisms. A desired HTM is unbounded, has eager-lazy conflict management, and has small conflict

detection metadata (up to 2-3 bits per cache line)

1
1
6

as eager HTMs that do lazy version management, and TCC [32] as a purely lazy

HTM.

TCC [32] was the first hardware transactional memory with lazy conflict de-

tection and lazy conflict resolution. However, it incurs two bottlenecks. First, TCC

utilizes a single common bus between processors. Second, all commits in TCC

are serialized with a commit token, which has to be acquired by a transaction at

commit time.

Scalable TCC [23] enhances the original TCC proposal. Scalable TCC is also a

lazy HTM, with both lazy conflict and version management. Scalable TCC improves

upon TCC by supporting a more scalable directory protocol, and partially concur-

rent transaction commits. The transactions which commit to different directories

may commit in parallel. Scalable TCC also introduces a new coherence protocol, as

an alternative to the common MESI/MOESI cache coherence protocols. Scalable

TCC assumes that execution is always transactional, and non-transactional code

is converted to implicit transactions. This adds pressure to the importance of be-

ing able to perform commits in parallel. However, Scalable TCC is limited in its

scalability by the number of directories, and with a small number of directories,

commits may be often serialized. Typical existing chip-multiprocessor implemen-

tations have one, or a few directories. Unlike Scalable TCC, EazyHTM is designed

to work as an extension to a traditional directory protocol. EazyHTM allows truly-

parallel commits, rather than being limited by the number of directories present

in the system. Lastly, unlike Scalable TCC, EazyHTM has explicit transactional and

non-transactional modes that do not require implicit transactions.

Shiraman et al. [69] proposed FlexTM, which was the first to provide both

eager and lazy conflict management. FlexTM manages conflicts either eagerly or

lazily depending on their type. Write-write conflicts are always resolved eagerly,

and read-write conflicts are left to the programmer to resolve. The programmer

can decide to resolve read-write conflicts lazily. FlexTM detects conflicts eagerly

and resolves write-write conflicts eagerly, it also uses Bloom-filter signatures for

conflict detection. In contrast, EazyHTM and EcoTM detect conflicts precisely and

eagerly, and resolve all conflicts lazily, which reduces or eliminates false conflicts

and provides better overall scalability.

Our intention with EazyHTM was to spur the advancements and innovation in

117

7. RELATED WORK IN HARDWARE TRANSACTIONAL MEMORY

hardware support for TM. We can see that the protocol presented in EazyHTM was

generally well accepted. The work has been cited by many researchers since its

publication, and there are also some improvements to the original protocol.

For example, Titos, Negi et al. [28, 56] recently proposed Pi-TM, that reduces

the conflict-detection traffic on the interconnection network. Pi-TM adds an addi-

tional Pi (Pessimistic Invalidation) state to private caches. The authors of Pi-TM

came to a similar conclusion as we did in EcoTM – that the number of conflicting

lines is far smaller than the number of non-conflicting lines. For non-conflicting

lines, Pi-TM has core-local transactional reads, while for conflicting lines, Pi-TM

performs full conflict detection. Pi-TM authors evaluated that the change reduces

the number of messages on the network by about 20% compared to the baseline

EazyHTM. Similarly to the optimizations we present for EazyHTM, ZEBRA ?? iden-

tifies the contended lines and handles them differently. ZEBRA puts contended

lines to a special buffer, while the non-contending lines are stored in shared cache.

The old values for the non-contended lines are maintained on the side. We expect

that future brings us more improvements to the current EazyHTM protocol, and

that Eager-Lazy HTMs become the standard conflict-management approach.

7.2 Related work in unbounded HTMs

While the area of best-effort HTMs is well studied, the unbounded HTMs still have

to catch up in some segments. Almost all of unbounded HTMs use eager conflict

resolution for overflowed transactions, which restricts the scalability. Some propos-

als approach Bloom-filter signatures for conflict detection, but this sometimes give

false conflicts, resulting in the aborts of non-conflicting transactions. The probabil-

ity of false conflicts in Bloom-filter rapidly increases with larger transactions.

This makes the usage of Bloom-filters undesirable for the tentative future trans-

actional workloads, which can have much larger transaction from the ones in cur-

rent synthetic TM benchmarks.

UTM [6] is one of the first unbounded HTM proposals. UTM stores the conflict-

detection metadata in software and accesses it using hardware extensions. Al-

though it is an eager HTM, it keeps the speculative data private, as lazy HTMs do.

It focuses on capabilities like closed transaction nesting and context switches at the

118

expense of performance and complexity.

VTM [62] is the first unbounded HTM with eager conflict resolution and lazy

version management. VTM proposes using a counting Bloom filter (XADT filter)

for conflict detection. Counting Bloom filter is known to be complex and expen-

sive to implement in hardware, in addition to creating false conflicts. Similarly to

UTM, VTM assumes that overflowed transactions are rare and focuses on correct

execution rather than high performance, as EcoTM does.

PTM [24] is an eager HTM that stores the overflown data in dedicated physical

pages called Shadow Page Tables (SPTs). PTM tracks all transactional metadata

in software-managed double-linked lists (TAVs) that have to be iterated for every

conflict detection with overflown transactions. As iterating SPTs and TAVs entails

potentially slow memory access (and potentially multiple line evictions), a dedi-

cated hardware accelerator is proposed to buffer SPT and TAV search results. The

hardware accelerator includes a 512 entry and 2048 entry CAMs for SPT and TAV

cache, respectively. In contrast with EcoTM, PTM’s hardware accelerators are used

for all transactional cache lines and are much more likely to be overflowed.

XTM [25] avoids most of the transactional metadata by detecting conflicts us-

ing data comparison. When overflowed transactions want to commit, XTM com-

pares the contents of all the pages touched during transactional execution with the

current page contents. If the contents are the same, the commit is allowed. For

large transactions, this imposes a significant execution time overhead. In contrast,

EcoTM detects all conflicts during transaction execution and therefore its conflict

detection becomes a much simpler bit-check.

LogTM-SE [79] is an eager HTM that detects conflicts using Bloom-filter signa-

tures. The main motivation of LogTM-SE is separating the transactional metadata

from caches. This simplifies the support for context switching, migration and pag-

ing. However, the use of Bloom-filters hurts the performance with large transac-

tions, while the eager conflict resolution does not perform well under medium and

high contention workloads.

OneTM [15] separates the conflict detection metadata into a separate hard-

ware structure in order to support having transactions larger from caches. How-

ever, OneTM is an eager HTM, and furthermore it allows only one transaction that

overflows the private cache to execute at a time.

119

7. RELATED WORK IN HARDWARE TRANSACTIONAL MEMORY

FlexTM [69] provides Bloom-filter-based hardware support for STMs. The

Bloom-filters are used for conflict detection, and this decision significantly affects

the execution time, as we show in Section 6.4. While this can simplify and accel-

erate STMs, using Bloom filters for conflict detection is far from ideal, as we show

in this paper.

TokenTM [17] is an eager HTM that eliminates the false conflicts present in

LogTM-SE by adding a significant amount of metadata to each cache block. While

TokenTM needs at least 16 bits per cache block, EcoTM needs only 2 bits per cache

block. The performance of TokenTM is close to the eager-perfect HTM, which we

compare to EcoTM in Section 6.4.

LiteTM [5] improves on TokenTM by reducing the large amount of metadata

required by TokenTM, and uses software functions to infer related information.

It is on average 4% slower from TokenTM (and eager-perfect HTM), and 10% in

the worst case. In contrast, EcoTM does not require any software support and has

better performance than eager-perfect HTM.

DynTM [48] adds to the Bloom-filter signature only the lines evicted from the

L1 cache. This reduces the number of entries in the Bloom-filter signatures, and

therefore reduces the probability of false conflicts by the signatures. The core-local

transactions can dynamically switch between eager or lazy conflict management,

but overflowed transactions are forced to eager conflict management.

A lot of recent work focuses on optimizing the Bloom-filter signatures. For

example, Quislant et al. [61] propose using location-sensitive hash functions that

map the nearby memory locations to the same bits of a signature. Yen et al. [80]

provide more efficient hash functions for the signatures, and allow a programmer

to define locations that might create conflicts, and insert only these locations into

the signature. In contrast with these proposals, EcoTM provides an automatic

mechanism that does not need any effort from a programmer, and that will perform

well with any future TM workload, even for extremely large transactions, for as

long as the transactions have few real conflicts.

120

8
Conclusions and the Future of TM

This dissertation demonstrates how small modifications of cache coherence proto-

cols on chip multiprocessors allows us to implement a well performing and efficient

unbounded HTM system.

We proposed a novel HTM system, EazyHTM, which detects conflicts eagerly

and resolves them lazily. EazyHTM makes a good trade-off between hardware

complexity, the HTM performance, and its capabilities. After applying several op-

timizations to the initial EazyHTM design, we obtained a significant reduction in

the total number of conflict detection messages by ignoring those for read-only

cache lines. The EazyHTM protocol provides a complete and exact snapshot of all

conflicts during transaction execution. Having this snapshot presents a wealth of

useful information which could be leveraged for further research into transaction

prioritization, performance optimizations and power management.

We further improve EazyHTM by including support for unbounded transac-

tions, and by reducing the conflict-detection traffic on interconnects. We name this

improved implementation EcoTM. EcoTM provides precise conflict detection, while

121

8. CONCLUSIONS AND THE FUTURE OF TM

using a minimal amount of conflict-detection metadata. EcoTM achieves this by

distinguishing the uncommon conflicting from the common non-conflicting cache

lines automatically, without requiring any annotations from the programmer, and

dynamically, during program execution. EcoTM’s base hardware mechanisms sup-

port all current conflict management strategies: eager, lazy, and eager-lazy. This

gives EcoTM both a performance and a cost-effectiveness advantage over the alter-

native unbounded-HTM proposals. We evaluate EcoTM and conclude that EcoTM

needs less metadata, and provides significantly better performance than the state-

of-the-art unbounded HTMs.

8.1 The future of TM

TM initially made a lot of hype in the community, by promising to bring parallel

programming to the engineering masses. In theory, TM provides a simple way to

write well-performing and correct multi-threaded programs, optimal for execution

on multi-core processors. A software developer creates some threads, add “atomic”

constructs in some places, and the TM system ensures the correctness and the

performance of a multi-threaded program.

Recent research pointed out several problems with TM-based parallel program-

ming. Most of all, TM (as it is today) does not eliminate many important problems

associated with parallel programming. Since existing TM implementations are in

software, the overheads of the implementations take the performance of TM far be-

low the performance of locks. While hardware TM implementations provide good

performance, they either depend on complex hardware logic or provide limited

functionality. For example, many HTMs do not efficiently support large transac-

tions, input/output (IO), interrupts, or context switches.

The adoption of transactional memory was always limited by poor performance

of software implementations, and by complexity of hardware support. This led

some researchers to start giving up on TM. I believe that TM will be used in the

future. Maybe not in a way, or where it was initially envisioned, but it will very

likely be used in some way.

The research on transactional memory appears to have achieved something.

IBM recently announced [18] that the processors in their new supercomputer Blue-

122

Gene/Q will include hardware support for transactional memory. BlueGene/Q will

power the 20 petaflops Sequoia supercomputer in Lawrence Livermore National

Labs. This will be the ultimate test for transactional memory. Although the pre-

liminary evaluations are highly positive, practical applications will show if TM is a

versatile solution to many of the issues that currently make highly scalable parallel

programming a difficult task.

BlueGene/Q is a 64-bit PowerPC-based system-on-chip that has 18 processor

cores, and each core is a 4-way multi-threaded PowerPC A2 design. The processor

chips have 1.47 billion transistors. Sixteen processor cores will be used for running

actual computations, one will be used for running the operating system, and one

core is spare and will be used to improve the reliability of the chip. The processors

will run at 1.6GHz, making each chip capable of a executing 204.8 GFLOPS within

a 55 W power envelope. The processor chips also include memory controllers and

I/O connectivity.

BlueGene/Q is the first commercial processor to include hardware support for

transactional memory, although Sun’s Rock processor was supposed to do the same

but was canceled when the company was purchased by Oracle. The HTM in Blue-

Gene/Q has little or no performance penalty, meaning that we will soon see if TM

is useful in practice as it is in theory. The HTM hardware can alternatively be

used for speculative execution, providing IBM with a fallback functionality for the

hardware.

As we will show here, hardware support for TM might be reused in many other

places. By analyzing the problems faced by modern computer science, we can

reason about such possible applications of the TM hardware.

8.1.1 The perspective of hardware developers

Finding the optimal synchronization constructs for multi-threaded applications is

not easy, and will require strong collaboration of software and hardware industry.

Software developers are always on a lookout for better synchronization constructs,

being constantly faced with difficult programming and/or with poor performance

of parallel programs. On the other side, hardware developers face a lack of focus

and dedication of software developers, and therefore hesitate to provide stronger

123

8. CONCLUSIONS AND THE FUTURE OF TM

hardware support for a particular synchronization construct, including TM.

For any hardware extension (including TM), hardware developers are con-

strained by the following requirements:

• Optimally dedicate hardware resources (both transistors and area) –

give more resources to the frequently used functionality, give less resources

to the rarely used functionalities

• Avoid supporting legacy ISA – avoid adding instructions that will be used

rarely in future applications (but will still have to be supported for compati-

bility)

• Minimize power consumption – and to keep the overall power consumption

below the power envelope

• Minimize verification effort – avoid adding hardware that is too complex

to verify

To satisfy these requirements, a TM acceleration hardware should:

1. occupy small chip area,

2. be fairly simple to verify and easy to implement in hardware,

3. be flexible enough to provide advantages to both for current and future soft-

ware,

4. have good performance with few threads, that is, have low overhead over

non-TM execution, and

5. have good performance with many threads, that is, have good scalability.

Since it is difficult to satisfy all the requirements, it would be ideal if the TM ac-

celeration could be used for general (non-TM) purposes as well. The possibility

of improving the performance, simplicity, or reliability of a wider range of com-

puter applications would make the processor manufacturers more determined in

including this hardware support in future processors.

124

Some previous proposals for hardware acceleration for TM satisfy many of the

requirements. For example, Saha et al. [64] proposed HASTM, which associates

tags with the lines in private caches. The tags associated with a line are deleted if

the line is evicted from the private cache. If no tagged line is evicted during trans-

action execution, the transaction does not have to validate, and thus can avoid this

time-consuming procedure. As another example, Harris et al. [35] proposed dy-

namic multi-purpose hardware filter, which can reduce redundant work in: STMs,

garbage collectors, memory protection mechanisms, and possibly other software

mechanisms. For example, a line logged once by an STM does not have to be logged

again in the same transaction. Unfortunately, these TM accelerations fail to deliver

sufficiently good performance, and this drives the research on pure-hardware TM.

One way to classify the possible future usages of TM hardware could be based

on the parallelism. The TM hardware could be used for: (1) sequential code, which

we explore in Section 8.1.3, (2) converting the sequential code to parallel, explored

in Section 8.1.4, or (3) optimizing the parallel code, explored in Section 8.1.5.

8.1.2 The interface to the TM hardware

TM hardware is typically hidden from software, providing only a high-level inter-

face for beginning, committing, or aborting a transaction. Exposing a lower-level

interface to the TM hardware could create new and interesting applications of TM.

However, the exposed HTM interface should be high enough to allow future mod-

ifications of the TM hardware without having to change the interface.

The following functionalities could be exposed to software:

• Conflict detection,

• Conflict resolution,

• Writes (that is, creating the write set),

• Reads (that is, creating the read set).

The following text tries to present the motivations for exposing certain func-

tionalities of TM.

125

8. CONCLUSIONS AND THE FUTURE OF TM

8.1.3 New uses of HTM in sequential code

In this section, we present several examples where sequential applications could

benefit from certain HTM functionalities.

Garbage collection

Garbage collection (GC) simplifies the life of a programmer by eliminating a com-

mon source of bugs in programs, where a program keeps allocating, without re-

leasing unused memory. GC automatically discovers and releases (frees) unused

variables and objects. The downside of the GC is that the discovery of unused

variables is a difficult task, and may significantly increase the execution time of an

application.

There have been many hardware proposals for hardware accelerations of GC

mechanisms. Many of these proposals are based on tagged memory [44, 53, 54,

76]. In tagged memory, each memory block (for example, cache line) has an asso-

ciated tag. A tag is a special number assigned to a particular memory block, and

the number/tag value is determined by a specific GC implementation.

Generational GCs are one type of GCs that exploits the empirical observation

that the most recently allocated objects are more likely to become unreachable

first. A generational GC separates the memory locations into an “old” and “young”

generation. If a variable from the old generation references a variable from the

young generation, the young variable becomes a candidate for promoting into the

old generation.

The old-to-young references in generational GCs are detected using write barri-

ers, which can be replaced with conflict detection hardware of an HTM. The detec-

tion initializes by adding an old generation to the read set of a transaction. After

that, the HTM detects writes to the old generation as conflicts. For this, an HTM

should provide the conflicting addresses to the software, and to allow software to

resolve the detected conflicts.

The approach does not use the version management or the conflict resolution

support of an HTM. In fact, automatic conflict resolution is counter-productive,

since a detected write to the old generation should be ignored after GC checks

it. Ignoring the conflict allows the GC to continue executing without having to

126

re-initialize.

Memory protection

Memory protection is motivated by increased concern on the privacy, which made

it an important research area. Memory protection can be applied to: (1) memory

reads, (2) memory writes, (3) control flow, or (4) a combination of the previous.

Memory protection typically restricts a code segment to a predetermined “safe”

memory area. Memory protection aims to improve the stability (providing better

resistance to software bugs), and also the security (preventing malicious software

attacks).

There are various methods for providing memory protection. For example, CFI

by Abadi et al. [1] checks that a program’s control flow graph is consistent with a

statically-computed safe control flow graph. XFI by [27] extends CFI with checks

on data accesses. DFI by Castro et al. [22] and WIT by Akritidis et al. [4] propose

instrumenting the source code with dynamic checks to verify that data accesses are

in accordance with the static analysis of a program’s correct behavior.

There are many ways to accelerate memory protection mechanisms. One way

would be by hardware checking of memory accesses against the (predetermined

or runtime generated) “safe” addresses. Another way could be by eliminating or

reducing the repeating checks, that is, the checks for re-accessing the addresses.

Since read and write sets of a transaction ideally contain unique addresses, they

can provide the addresses accessed by a block of code. The software memory

protection mechanism can analyze these accesses, and if all memory accesses are

clean, it can commit the transaction. In case of an illegal memory access, it can

abort the transaction and raise an exception.

A possible TM hardware could allow the software to inspect and modify the

read and write set of a transaction. A transaction validation could be a dedicated

hardware functionality, for example, detect when a transaction accesses addresses

addresses outside of the software-configured write set. For additional flexibility, it

would be good to support transaction validation in software.

127

8. CONCLUSIONS AND THE FUTURE OF TM

Reliability

Hardware reliability becomes increasingly important with new chip manufactur-

ing technologies. Beside providing higher efficiency, smaller transistors and lower

operating voltages result in higher probability of errors.

Errors can be one-time (transient), or permanent. One-time errors can occur

if, for example, a cosmic or ambient radiation excites a single transistor. Since the

transistor size decreases with new technological processes, they also have higher

probability of exciting a transistor, that is, changing its state from off to on. Perma-

nent errors occur if a certain part of the processor hardware fails.

TM can detect both one-time and permanent errors. A simple approach can

be to re-execute the same code, with the same input, on different processor cores,

and to compare the output. The outputs can be compared entirely in software,

or with help of some other hardware support. For example, additional hardware

support could calculate hashes from the outputs of different executions, and then

the software can compare only hashes instead of the complete outputs.

A possible TM hardware could allow the software to inspect the read and write

set of a transaction. A transaction validation could be a dedicated hardware func-

tionality, for example, detect two transactions have different write sets. However,

for additional flexibility, it would be good to support transaction validation in soft-

ware.

Increasing the size of basic blocks

Basic blocks are sequences of instructions that do not contain any jump (branch)

instructions, and that are not a target of jump instructions. As an exception, the

first instruction of a basic block may be a target of a jump, or the last instruction

may be a jump instruction. Every instruction in a basic block always executes

before all those in later positions.

Bigger basic blocks are desirable for many reasons. For example, they can

reduce the pressure on hardware branch predictors, and they allow better overall

compiler optimizations. The size of some basic blocks could be increased by joining

the neighbouring basic blocks. The joining can be done if we can guarantee that a

jump between the neighbouring basic blocks will always have the same outcome.

128

This is obvious for unconditional jumps, however, some conditional jumps can also

be optimized out. The conditional jumps will have the same outcome as long as

the conditional value is unchanged.

We can employ TM in at least two ways. First way is to speculatively (in a

transaction) execute the code after the conditional jump, assuming that the jump

will have a certain outcome. If the prediction was correct, the transaction is com-

mitted. In case of a mis-prediction, the outcome of the jump is recalculated, and

the transaction is aborted and re-executed. The whole mechanism is similar to the

speculative execution of code in modern out-of-order processors, only the TM can

have much larger transactions and therefore the ouf-of-order logic can be simpler.

Another way to employ TM is to use it for monitoring the conditional vari-

ables. A conditional variable determines the outcome of (one or more) conditional

jumps, and the conditional jumps will have the same outcome until the value of

the conditional variable changes.

The conflict detection in HTM hardware could be used to efficiently monitor the

changes in conditional variables. All conditional variables can be added to the read

set of a transaction. If an HTM detects a change of a conditional variable, it “alerts”

the dynamic recompiler, which then re-evaluates the affected conditional jump(s).

The transaction that holds the conditional variables can continue executing after

the code had been recompiled. By relying on (H)TM instead of instrumenting all

memory writes, we lower the overhead of extending the basic blocks.

A possible TM hardware could allow the software (the dynamic recompiler)

to inspect the read and write set of a transaction. The software should get noti-

fications when a transaction gets a conflict, and it should be possible to resolve

conflicts in software.

8.1.4 New uses of HTM: migrating from sequential to parallel

code

One way to make a parallel application is by basing it on the sequential implemen-

tation of the same functionality. The approach consists of two steps:

1. Profiling the execution, that is, finding the computation-intensive code seg-

ments, and

129

8. CONCLUSIONS AND THE FUTURE OF TM

2. Analyzing data dependencies between code segments.

Execution profiling can be efficiently done with existing tools, since some pro-

filing tools statistically analyze the execution, and this increases the execution time

only minimally. One such profiling tool is GNU gprof [29].

Analyzing of data dependencies between code segments is a more difficult prob-

lem. A parallel execution of code segments is possible only if they have a small

amount of data dependencies. At the moment, a developer needs to supply supply

the information on the data dependencies of each code segment to the runtime.

This requires that a developer becomes familiar with the algorithms and the archi-

tecture of the application. To counter this, a lot of recent work tries to analyze the

program execution and to find the data dependencies automatically. Current tech-

niques use binary instrumentation, or processor emulators, which can significantly

increase the execution time of an application.

A possible TM hardware could allow the software to inspect the read and write

set of a transaction. By allowing the software to inspect the read and write set, an-

alyzing the data dependencies can be done almost without any effort or overheads.

8.1.5 New uses of HTM in parallel code

Data race detection

Due to data races, successive reads of the same variable may (unexpectedly) return

different values. This can lead to bugs that are very difficult to discover in a parallel

multi-threaded program. A more complex case of a data race may also exist in

an object, or in a group of objects. In this case, an object or a group of objects

can contain an inconsistent state at some point of execution. The consistent and

inconsistent states are entirely defined by software.

Data races can occur only when a variable is used by more than one thread,

while at least one of the threads writes to it. Coincidentally, this execution scenario

is identical to a conflict in TM terminology. This means that we could use the TM

conflict detection, for detecting data races. Since the execution of entire thread

(parallel section) would need to be executed in a transaction, the TM needs to

support very large transaction.

130

A possible TM hardware should support very large transactions. It should also

provide the software with the conflicting addresses. Since there are no active trans-

actions, the conflicting addresses are, at the same time, the addresses that have

potential data races.

Optimizing parallel applications

A parallelized application may have much worse performance compared to the

initial sequential application. The performance overheads specific to parallel ap-

plications are:

• Code synchronization (for example: contention on critical sections, barriers)

• Implicit data synchronization (for example, cache coherence)

• Explicit data synchronization (for example, message passing)

In case these overheads exceed the advantages of parallel execution, a parallel

application will likely execute longer than the sequential version of the same ap-

plication.

Quantifying the overheads often requires ad-hoc methods, which in general do

not give exact results. For example, a developer may add a counter before trying

to take a lock, in order to count how many times a lock was taken.

Recent processors include hardware counters that can be used by software de-

velopers to minimize cache misses, TLB misses, branch miss-prediction, etc. Some

recent compilers with dynamic recompilation even use these hardware counters to

re-optimize the code while the program is executing.

However, hardware support for optimizing parallel execution is still in its early

stages. It is clear that, to improve the efficiency of parallel applications, some

kind of hardware support is absolutely necessary. Adding hardware support for

profiling parallel applications would be a great help in this. Examples of such

support include:

• Find variables or cache lines that exhibit a ping-pong effect (frequently bounce

between processor-local caches)

131

8. CONCLUSIONS AND THE FUTURE OF TM

• Find variables or cache lines evicted due to the coherence requests (potential

data races)

• Find code locations that create conflicts between transactions

• Hardware counters for the number of transactions started, committed, and

aborted (split to causes: insufficient hardware resources, conflicts, and inter-

rupts)

Task-based programming

Task-based programming [10, 60] is becoming increasingly popular. In task-based

programming, developer splits a program into tasks. Each task defines the loca-

tions it requires (the input) and the locations it produces (the output). Based on

the input and output, the runtime determines an order in which the tasks can be

executes, and determines the tasks that can execute in parallel.

In contrast with regular parallel programs, the results of task-based programs

are deterministic. A task-based parallel program can be created by annotating a

sequential application, and the execution of the initial sequential and the resulting

task-based parallel application has to be identical.

However, the inputs and the outputs of the tasks have to be defined in advance,

for the runtime to be able to schedule the tasks. A failure to correctly define the

inputs or the outputs can lead to non-deterministic or incorrect execution. Unfor-

tunately, this is the main source of problems with task-based programming, since

some inputs or outputs of a task may be hidden, or difficult to understand from the

source code.

TM hardware could simplify a development of task-based programs, by help-

ing the discovery of data dependencies between tasks. A developer provides all

known task dependencies to the runtime, and the runtime can schedule tasks us-

ing provided dependencies. Each task can be executed in a transaction, and the TM

hardware tracks all memory accesses of the task. When the task completes, the TM

hardware should allow the developer to inspect the read and write set of a trans-

action. This information allows a developer to improve the task dependencies, and

to repeat the process until he gets a complete list of dependencies.

132

9
Publications

Saša Tomić, Ege Akpinar, Tim Harris, Adrián Cristal, Osman Unsal, Mateo Valero.

EcoTM: Economical Conflict-Driven Unbounded Hardware Transactional Mem-

ory. Under submission

Srd̄an Stipić, Saša Tomić, Ferad Zyulkyarov, Adrián Cristal, Osman Unsal, Mateo

Valero.

TagTM - Accelerating STMs with hardware tags for fast meta-data access .

Proceedings of the Design, Automation and Test in Europe Conference (DATE), March

2012

Saša Tomić, Adrián Cristal, Osman Unsal, Mateo Valero.

Rapid Development of Error-Free Architectural Simulators using Dynamic Run-

time Testing. 23rd International Symposium on Computer Architecture and High

Performance Computing (SBAC-PAD), October 2011

133

9. PUBLICATIONS

Ege Akpinar, Saša Tomić, Adrián Cristal, Osman Unsal, Mateo Valero.

A Comprehensive Study of Conflict Resolution Policies in Hardware Trans-

actional Memory. 6th ACM SIGPLAN Workshop on Transactional Computing

(TRANSACT), June 2011

Y. Afek, U. Drepper, P. Felber, C. Fetzer, V. Gramoli, M. Hohmuth, E. Riviere, P. Sten-

strom, O. Unsal, W.M. Moreira, D. Harmanci, P. Marlier, S. Diestelhorst, M. Pohlack,

A. Cristal, I. Hur, A. Dragojevic, R. Guerraoui, M. Kapalka, S. Tomić, G. Korland, N.

Shavit, M. Nowack, and T. Riegel.

The Velox Transactional Memory Stack. IEEE Micro 30, September 2010

Tim Harris, Saša Tomić, Adrián Cristal, Osman Unsal.

Dynamic Filtering: Multi-Purpose Architecture Support for Language Runtime

Systems. 15th International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS), Mar 2010

Saša Tomić, Cristian Perfumo, Chinmay Kulkarni, Adria Armejach, Adrián Cristal,

Osman Unsal, Tim Harris, Mateo Valero.

EazyHTM, Eager-Lazy Hardware Transactional Memory. 42nd International

Symposium on Microarchitecture (MICRO), Dec 2009

Saša Tomić, Adrián Cristal, Osman Unsal, Mateo Valero.

Hardware Transactional Memory with Operating System Support, HTMOS.

Workshop on Highly Parallel Processing on a Chip in conjunction with Euro-Par

(HPPC), Aug 2007

134

References

[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow

integrity. In Proceedings of the 12th ACM conference on Computer and com-

munications security, CCS ’05, pages 340–353, New York, NY, USA, 2005.

ACM. ISBN 1-59593-226-7. DOI: 10.1145/1102120.1102165. Cited on page:

127

[2] Martín Abadi, Tim Harris, and Mojtaba Mehrara. Transactional mem-

ory with strong atomicity using off-the-shelf memory protection hardware.

In PPoPP ’09: Proc. 14th ACM SIGPLAN symposium on Principles and

practice of parallel programming, pages 185–196, February 2009. DOI:

10.1145/1504176.1504203. PDF: http://research.microsoft.com/

en-us/um/people/tharris/papers/2009-ppopp.pdf. Cited on page:

23

[3] Alain Abran, James W Moore, Robert Dupuis, RL Dupuis, and L L Tripp. Guide

to the software engineering body of knowledge (swebok). 2004 ed P Bourque

R Dupuis A Abran and JW Moore Eds IEEE Press, page 204, 2001. Cited on

page: 50

[4] Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, and Miguel

Castro. Preventing memory error exploits with wit. In Proceedings of the

2008 IEEE Symposium on Security and Privacy, pages 263–277, Washing-

ton, DC, USA, 2008. IEEE Computer Society. ISBN 978-0-7695-3168-7. DOI:

10.1109/SP.2008.30. Cited on page: 127

[5] Syed Ali Raza Jafri, Mithuna Thottethodi, and T. N. Vijaykumar. LiteTM: Reduc-

135

http://dx.doi.org/10.1145/1102120.1102165
http://dx.doi.org/10.1145/1504176.1504203
http://dx.doi.org/10.1145/1504176.1504203
http://research.microsoft.com/en-us/um/people/tharris/papers/2009-ppopp.pdf
http://research.microsoft.com/en-us/um/people/tharris/papers/2009-ppopp.pdf
http://dx.doi.org/10.1109/SP.2008.30
http://dx.doi.org/10.1109/SP.2008.30

REFERENCES

ing transactional state overhead. In Proceedings of the 17th IEEE International

Symposium on High-Performance Computer Architecture (HPCA-17), Jan-

uary 2010. PDF: http://cobweb.ecn.purdue.edu/~vijay/papers/

2010/litetm.pdf. Cited on page: 116, 120

[6] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E. Leiserson,

and Sean Lie. Unbounded transactional memory. In International Sympo-

sium on High-Performance Computer Architecture, pages 316–327, February

2005. DOI: 10.1109/HPCA.2005.41. PDF: http://www.cag.csail.mit.

edu/scale/papers/utm-hpca2005.pdf. Cited on page: 115, 116, 118

[7] Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, Kurt Keutzer,

John Kubiatowicz, Nelson Morgan, David Patterson, Koushik Sen, John

Wawrzynek, David Wessel, and Katherine Yelick. A view of the parallel com-

puting landscape. Commun. ACM, 52:56–67, October 2009. ISSN 0001-0782.

DOI: 10.1145/1562764.1562783. Cited on page: 1

[8] David Becker, Raj K. Singh, and Stephen G. Tell. Readings in hardware/software

co-design. pages 550–555, 2002. Cited on page: 58

[9] F. Bellard. Qemu, a fast and portable dynamic translator. In Proceedings of the

USENIX Annual Technical Conference, FREENIX Track, pages 41–46, 2005.

Cited on page: 36, 37

[10] Saniya Ben Hassen, Henri E. Bal, and Ceriel J. H. Jacobs. A task- and data-

parallel programming language based on shared objects. ACM Trans. Pro-

gram. Lang. Syst., 20:1131–1170, November 1998. ISSN 0164-0925. DOI:

10.1145/295656.295658. Cited on page: 132

[11] Nathan Binkert, Ronald Dreslinski, Lisa Hsu, Kevin Lim, Ali Saidi, and Steven

Reinhardt. The M5 simulator: Modeling networked systems. IEEE Micro, 26

(4):52–60, 2006. DOI: 10.1109/MM.2006.82. Cited on page: 25, 54, 105

[12] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.

Communications of the ACM, 13(7):422–426, 1970. ISSN 0001-0782. DOI:

10.1145/362686.362692. Cited on page: 18

136

http://cobweb.ecn.purdue.edu/~vijay/papers/2010/litetm.pdf
http://cobweb.ecn.purdue.edu/~vijay/papers/2010/litetm.pdf
http://dx.doi.org/10.1109/HPCA.2005.41
http://www.cag.csail.mit.edu/scale/papers/utm-hpca2005.pdf
http://www.cag.csail.mit.edu/scale/papers/utm-hpca2005.pdf
http://dx.doi.org/10.1145/1562764.1562783
http://dx.doi.org/10.1145/295656.295658
http://dx.doi.org/10.1145/295656.295658
http://dx.doi.org/10.1109/MM.2006.82
http://dx.doi.org/10.1145/362686.362692
http://dx.doi.org/10.1145/362686.362692

REFERENCES

[13] Colin Blundell, E. Christopher Lewis, and Milo M. K. Martin. Deconstructing

transactions: The subtleties of atomicity. In Fourth Annual Workshop on Du-

plicating, Deconstructing, and Debunking, June 2005. PDF: http://www.

cis.upenn.edu/acg/papers/wddd05_atomic_semantics.pdf. Cited

on page: 23

[14] Colin Blundell, E. Christopher Lewis, and Milo M. K. Martin. Subtleties

of transactional memory atomicity semantics. Computer Architecture Let-

ters, 5(2), November 2006. DOI: 10.1109/L-CA.2006.18. PDF: http:

//www.cis.upenn.edu/acg/papers/cal06_atomic_semantics.pdf.

Cited on page: 68

[15] Colin Blundell, Joe Devietti, E. Christopher Lewis, and Milo M. K. Martin. Mak-

ing the fast case common and the uncommon case simple in unbounded transac-

tional memory. In Proceedings of the 34th Annual International Symposium

on Computer Architecture, June 2007. DOI: 10.1145/1273440.1250667.

Cited on page: 17, 18, 19, 20, 116, 119

[16] Jayaram Bobba, Kevin E. Moore, Luke Yen, Haris Volos, Mark D.

Hill, Michael M. Swift, and David A. Wood. Performance pathologies

in hardware transactional memory. In Proceedings of the 34th An-

nual International Symposium on Computer Architecture, June 2007.

DOI: 10.1145/1250662.1250674. PDF: http://www.cs.wisc.edu/

multifacet/papers/isca07_pathologies.pdf. Cited on page: 7, 10,

21, 22, 79

[17] Jayaram Bobba, Neelam Goyal, Mark D. Hill, Michael M. Swift, and

David A. Wood. TokenTM: Efficient execution of large transactions with

hardware transactional memory. In Proceedings of the 35th Annual In-

ternational Symposium on Computer Architecture, June 2008. DOI:

10.1109/ISCA.2008.24. PDF: http://www.cs.wisc.edu/multifacet/

papers/isca08_tokentm.pdf. Cited on page: 17, 18, 19, 20, 105, 116,

120

[18] Luigi Brocher. Innovative technologies for power management based on

power architecture, 2011. PDF: https://www.power.org/events/

137

http://www.cis.upenn.edu/acg/papers/wddd05_atomic_semantics.pdf
http://www.cis.upenn.edu/acg/papers/wddd05_atomic_semantics.pdf
http://dx.doi.org/10.1109/L-CA.2006.18
http://www.cis.upenn.edu/acg/papers/cal06_atomic_semantics.pdf
http://www.cis.upenn.edu/acg/papers/cal06_atomic_semantics.pdf
http://dx.doi.org/10.1145/1273440.1250667
http://dx.doi.org/10.1145/1250662.1250674
http://www.cs.wisc.edu/multifacet/papers/isca07_pathologies.pdf
http://www.cs.wisc.edu/multifacet/papers/isca07_pathologies.pdf
http://dx.doi.org/10.1109/ISCA.2008.24
http://dx.doi.org/10.1109/ISCA.2008.24
http://www.cs.wisc.edu/multifacet/papers/isca08_tokentm.pdf
http://www.cs.wisc.edu/multifacet/papers/isca08_tokentm.pdf
https://www.power.org/events/PowerWebinar-03-29-11/IBM_March_29_Webinar_-_Dr._Luigi.pdf
https://www.power.org/events/PowerWebinar-03-29-11/IBM_March_29_Webinar_-_Dr._Luigi.pdf
https://www.power.org/events/PowerWebinar-03-29-11/IBM_March_29_Webinar_-_Dr._Luigi.pdf

REFERENCES

PowerWebinar-03-29-11/IBM_March_29_Webinar_-_Dr._Luigi.

pdf. Cited on page: 122

[19] Chi Cao Minh, Martin Trautmann, JaeWoong Chung, Austen McDonald,

Nathan Bronson, Jared Casper, Christos Kozyrakis, and Kunle Olukotun. An

effective hybrid transactional memory system with strong isolation guaran-

tees. In Proceedings of the 34th Annual International Symposium on Com-

puter Architecture, June 2007. DOI: 10.1145/1250662.1250673. PDF:

http://tcc.stanford.edu/publications/tcc_isca2007.pdf. Cited

on page: 18, 19, 74

[20] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun.

STAMP: Stanford transactional applications for multi-processing. In IISWC ’08:

Proceedings of The IEEE International Symposium on Workload Characteri-

zation, September 2008. DOI: 10.1109/IISWC.2008.4636089. PDF: http:

//tcc.stanford.edu/publications/tcc_iiswc2008.pdf. Cited on

page: 27, 55, 74, 78, 105, 109

[21] Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain, Peng Wu,

Stefanie Chiras, and Siddhartha Chatterjee. Software transactional mem-

ory: why is it only a research toy? Communications of the ACM, 51(11):

40–46, November 2008. DOI: 10.1145/1400214.1400228. PDF: http:

//www.cis.upenn.edu/~blundell/stm-cacm2008.pdf. Cited on page:

6

[22] Miguel Castro, Manuel Costa, and Tim Harris. Securing software by enforcing

data-flow integrity. In Proceedings of the 7th USENIX Symposium on Operat-

ing Systems Design and Implementation - Volume 7, OSDI ’06, pages 11–11,

Berkeley, CA, USA, 2006. USENIX Association. Cited on page: 127

[23] Hassan Chafi, Jared Casper, Brian D. Carlstrom, Austen McDonald, Chi Cao

Minh, Woongki Baek, Christos Kozyrakis, and Kunle Olukotun. A scalable, non-

blocking approach to transactional memory. In HPCA, pages 97–108, 2007.

DOI: 10.1109/HPCA.2007.346189. Cited on page: 66, 79, 116, 117

138

https://www.power.org/events/PowerWebinar-03-29-11/IBM_March_29_Webinar_-_Dr._Luigi.pdf
https://www.power.org/events/PowerWebinar-03-29-11/IBM_March_29_Webinar_-_Dr._Luigi.pdf
https://www.power.org/events/PowerWebinar-03-29-11/IBM_March_29_Webinar_-_Dr._Luigi.pdf
https://www.power.org/events/PowerWebinar-03-29-11/IBM_March_29_Webinar_-_Dr._Luigi.pdf
http://dx.doi.org/10.1145/1250662.1250673
http://tcc.stanford.edu/publications/tcc_isca2007.pdf
http://dx.doi.org/10.1109/IISWC.2008.4636089
http://tcc.stanford.edu/publications/tcc_iiswc2008.pdf
http://tcc.stanford.edu/publications/tcc_iiswc2008.pdf
http://dx.doi.org/10.1145/1400214.1400228
http://www.cis.upenn.edu/~blundell/stm-cacm2008.pdf
http://www.cis.upenn.edu/~blundell/stm-cacm2008.pdf
http://dx.doi.org/10.1109/HPCA.2007.346189

REFERENCES

[24] Weihaw Chuang, Satish Narayanasamy, Ganesh Venkatesh, Jack Sampson,

Michael Van Biesbrouck, Gilles Pokam, Brad Calder, and Osvaldo Colavin.

Unbounded page-based transactional memory. In ASPLOS-XII: Proceedings

of the 12th international conference on Architectural support for program-

ming languages and operating systems, pages 347–358. ACM, 2006. DOI:

10.1145/1168857.1168901. Cited on page: 17, 18, 116, 119

[25] JaeWoong Chung, Chi Cao Minh, Austen McDonald, Travis Skare, Has-

san Chafi, Brian D. Carlstrom, Christos Kozyrakis, and Kunle Olukotun.

Tradeoffs in transactional memory virtualization. In ASPLOS-XII: Pro-

ceedings of the 12th international conference on Architectural support

for programming languages and operating systems. ACM Press, October

2006. DOI: 10.1145/1168857.1168903. PDF: http://tcc.stanford.

edu/publications/tcc_asplos2006.pdf. Cited on page: 18, 19, 116,

119

[26] Aleksandar Dragojevíc, Pascal Felber, Vincent Gramoli, and Rachid Guerraoui.

Why stm can be more than a research toy. Commun. ACM, 54:70–77, April

2011. ISSN 0001-0782. DOI: 10.1145/1924421.1924440. Cited on page: 6

[27] Úlfar Erlingsson, Martín Abadi, Michael Vrable, Mihai Budiu, and George C.

Necula. Xfi: software guards for system address spaces. In Proceedings of the

7th symposium on Operating systems design and implementation, OSDI ’06,

pages 75–88, Berkeley, CA, USA, 2006. USENIX Association. ISBN 1-931971-

47-1. Cited on page: 127

[28] José Rubén Titos Gil. Hardware Techniques for High-Performance Transac-

tional Memory in Many-Core Chip Multiprocessors. PhD thesis, Universidad

de Murcia, 2011. Cited on page: 118

[29] S.L. Graham, P.B. Kessler, and M.K. Mckusick. Gprof: A call graph execution

profiler. In Proceedings of the 1982 SIGPLAN symposium on Compiler con-

struction, pages 120–126. ACM, 1982. Cited on page: 130

[30] Lance Hammond, Brian D. Carlstrom, Vicky Wong, Mike Chen, Christos

Kozyrakis, and Kunle Olukotun. Transactional coherence and consistency:

139

http://dx.doi.org/10.1145/1168857.1168901
http://dx.doi.org/10.1145/1168857.1168901
http://dx.doi.org/10.1145/1168857.1168903
http://tcc.stanford.edu/publications/tcc_asplos2006.pdf
http://tcc.stanford.edu/publications/tcc_asplos2006.pdf
http://dx.doi.org/10.1145/1924421.1924440

REFERENCES

Simplifying parallel hardware and software. IEEE Micro, 24(6), Nov-Dec

2004. DOI: 10.1109/MM.2004.91. PDF: http://tcc.stanford.edu/

publications/tcc_micro2004.pdf. Cited on page: 18, 19, 45, 56

[31] Lance Hammond, Brian D. Carlstrom, Vicky Wong, Ben Hertzberg, Mike

Chen, Christos Kozyrakis, and Kunle Olukotun. Programming with trans-

actional coherence and consistency (TCC). In ASPLOS-XI: Proceedings of

the 11th international conference on Architectural support for program-

ming languages and operating systems, pages 1–13. ACM Press, October

2004. DOI: 10.1145/1024393.1024395. PDF: http://tcc.stanford.

edu/publications/tcc_asplos2004.pdf. Cited on page: 18

[32] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D.

Davis, Ben Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Christos

Kozyrakis, and Kunle Olukotun. Transactional memory coherence and con-

sistency. In Proceedings of the 31st Annual International Symposium

on Computer Architecture, page 102. IEEE Computer Society, June 2004.

DOI: 10.1145/1028176.1006711. PDF: http://tcc.stanford.edu/

publications/tcc_isca2004.pdf. Cited on page: 66, 116, 117

[33] Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy. Com-

posable memory transactions. Communications of the ACM, 51(8):91–100,

August 2008. DOI: 10.1145/1378704.1378725. An earlier version appeared

at PPoPP ’06. Cited on page: 6

[34] Tim Harris, James Larus, and Ravi Rajwar. Transactional Memory, 2nd Edi-

tion. Morgan and Claypool Publishers, 2nd edition, 2010. ISBN 1608452352,

9781608452354. Cited on page: 3, 44

[35] Tim Harris, Saša Tomíc, Adrián Cristal, and Osman Unsal. Dynamic filter-

ing: multi-purpose architecture support for language runtime systems. In

Proceedings of the fifteenth edition of ASPLOS on Architectural support

for programming languages and operating systems, ASPLOS ’10, pages 39–

52, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-839-1. DOI:

10.1145/1736020.1736027. Cited on page: 125

140

http://dx.doi.org/10.1109/MM.2004.91
http://tcc.stanford.edu/publications/tcc_micro2004.pdf
http://tcc.stanford.edu/publications/tcc_micro2004.pdf
http://dx.doi.org/10.1145/1024393.1024395
http://tcc.stanford.edu/publications/tcc_asplos2004.pdf
http://tcc.stanford.edu/publications/tcc_asplos2004.pdf
http://dx.doi.org/10.1145/1028176.1006711
http://tcc.stanford.edu/publications/tcc_isca2004.pdf
http://tcc.stanford.edu/publications/tcc_isca2004.pdf
http://dx.doi.org/10.1145/1378704.1378725
http://dx.doi.org/10.1145/1736020.1736027
http://dx.doi.org/10.1145/1736020.1736027

REFERENCES

[36] Mary Jean Harrold. Testing: a roadmap. In Proceedings of the Conference

on The Future of Software Engineering, ICSE ’00, pages 61–72, New York, NY,

USA, 2000. ACM. ISBN 1-58113-253-0. DOI: 10.1145/336512.336532. Cited

on page: 36

[37] J. Held. From a few cores to many: A tera-scale computing research overview.

Intel White Paper, 2006. Cited on page: 1

[38] M. Herlihy and N. Shavit. On the nature of progress. Unpublished work,

2008. PDF: http://www.cs.tau.ac.il/~shanir/progress.pdf. Cited

on page: 4

[39] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2008. ISBN

0123705916, 9780123705914. Cited on page: 4, 12

[40] C.A.R. Hoare. An axiomatic basis for computer programming. Communications

of the ACM, 12(10):576–580, 1969. Cited on page: 57

[41] Corp. Intel. Intel IA-64 Architecture Software Developer’s Manual. Itanium Pro-

cessor Microarchitecture Reference for Software Optimization, August 2000.

Cited on page: 99

[42] D.N. Jayasimha, Bilal Zafar, and Yatin Hoskote. On-die interconnection net-

works: Why they are different and how to compare them. In Technical Report

at http://blogs.intel.com/research/terascale/ODI_why-different.pdf, Micro-

processor Technology Lab, Corporate Technology Group, Intel Corp., 2006.

Cited on page: 79

[43] R. Jindal and K. Jain. Verification of transaction-level systemc models using

rtl testbenches. In Formal Methods and Models for Co-Design, 2003. MEM-

OCODE’03. Proceedings. First ACM and IEEE International Conference on,

pages 199–203. IEEE, 2003. Cited on page: 36

[44] Robert H. Halstead Jr. and Tetsuya Fujita. Masa: A multithreaded processor

architecture for parallel symbolic computing. In ISCA, pages 443–451, 1988.

Cited on page: 126

141

http://dx.doi.org/10.1145/336512.336532
http://www.cs.tau.ac.il/~shanir/progress.pdf

REFERENCES

[45] C. Kaner, J. Bach, and B. Pettichord. Lessons learned in software testing: a

context-driven approach. Wiley, 2002. Cited on page: 56

[46] Per-Åke Larson and Murali Krishnan. Memory allocation for long-running

server applications. In Proceedings of the 1st international symposium on

Memory management, ISMM ’98, pages 176–185, New York, NY, USA, 1998.

ACM. ISBN 1-58113-114-3. DOI: 10.1145/286860.286880. Cited on page: 5

[47] Jian Li and José F. Martínez. Power-performance implications of thread-level

parallelism on chip multiprocessors. In International Symposium on Per-

formance Analysis of Systems and Software, pages 124–134, 2005. DOI:

10.1109/ISPASS.2005.1430567. Cited on page: 1

[48] Marc Lupon, Grigorios Magklis, and Antonio González. A dynamically adapt-

able hardware transactional memory. In MICRO 43: Proceedings of the 43nd

Annual IEEE/ACM International Symposium on Microarchitecture, 2010.

Cited on page: 90, 116, 120

[49] Virendra J. Marathe, Michael F. Spear, and Michael L. Scott. Scalable tech-

niques for transparent privatization in software transactional memory. In

ICPP ’08: Proc. 37th International Conference on Parallel Processing, Septem-

ber 2008. DOI: 10.1109/ICPP.2008.69. PDF: http://www.cs.rochester.

edu/~vmarathe/research/papers/2008_ICPP.pdf. Cited on page: 94

[50] C. May, E. Silha, R. Simpson, and H. Warren. The PowerPC Architecture: A

specification for a new family of RISC processors. Morgan Kaufmann Pub-

lishers Inc. San Francisco, CA, USA, 1994. ISBN 1558603166. Cited on page:

99

[51] Austen McDonald, JaeWoong Chung, Hassan Chafi, Chi Cao Minh, Brian D.

Carlstrom, Lance Hammond, Christos Kozyrakis, and Kunle Olukotun. Char-

acterization of TCC on chip-multiprocessors. In Proceedings of the 14th

International Conference on Parallel Architectures and Compilation Tech-

niques, Sept 2005. PDF: http://tcc.stanford.edu/publications/

tcc_pact2005.pdf. Cited on page: 74

142

http://dx.doi.org/10.1145/286860.286880
http://dx.doi.org/10.1109/ISPASS.2005.1430567
http://dx.doi.org/10.1109/ISPASS.2005.1430567
http://dx.doi.org/10.1109/ICPP.2008.69
http://www.cs.rochester.edu/~vmarathe/research/papers/2008_ICPP.pdf
http://www.cs.rochester.edu/~vmarathe/research/papers/2008_ICPP.pdf
http://tcc.stanford.edu/publications/tcc_pact2005.pdf
http://tcc.stanford.edu/publications/tcc_pact2005.pdf

REFERENCES

[52] Austen McDonald, JaeWoong Chung, Brian D. Carlstrom, Chi Cao Minh, Has-

san Chafi, Christos Kozyrakis, and Kunle Olukotun. Architectural semantics for

practical transactional memory. In Proceedings of the 33rd Annual Interna-

tional Symposium on Computer Architecture, pages 53–65, June 2006. Cited

on page: 74

[53] Matthias Meyer. A true hardware read barrier. In Proceedings of the

5th international symposium on Memory management, ISMM ’06, pages

3–16, New York, NY, USA, 2006. ACM. ISBN 1-59593-221-6. DOI:

10.1145/1133956.1133959. Cited on page: 126

[54] David A. Moon. Garbage collection in a large lisp system. In Proceedings of

the 1984 ACM Symposium on LISP and functional programming, LFP ’84,

pages 235–246, New York, NY, USA, 1984. ACM. ISBN 0-89791-142-3. DOI:

10.1145/800055.802040. Cited on page: 126

[55] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and

David A. Wood. LogTM: Log-based transactional memory. In In proceedings of

the HPCA-12, pages 254–265, February 2006. PDF: http://www.cs.wisc.

edu/multifacet/papers/hpca06_logtm.pdf. Cited on page: 17, 18, 19,

20, 45, 56, 102, 103, 115

[56] Anurag Negi, Rubén Titos-Gil, Manuel E. Acacio, Jose M. Garcia, and Per Sten-

strom. Pi-tm: Pessimistic invalidation for scalable lazy hardware transactional

memory. In 18th International Symposium on High Performance Computer

Architecture (HPCA’2012). IEEE Conference Publishing Services, 2012. Cited

on page: 116, 118

[57] Kunle Olukotun and Lance Hammond. The future of microprocessors. Queue, 3:

26–29, September 2005. ISSN 1542-7730. DOI: 10.1145/1095408.1095418.

Cited on page: 1

[58] V. Pankratius, A.R. Adl-Tabatabai, and F. Otto. Does Transactional Memory

Keep Its Promises?: Results from an Empirical Study. Technical Report Technical

Report 2009-12, Universität Karlsruhe, Fakultät für Informatik, 2009. Cited on

page: 2

143

http://dx.doi.org/10.1145/1133956.1133959
http://dx.doi.org/10.1145/1133956.1133959
http://dx.doi.org/10.1145/800055.802040
http://dx.doi.org/10.1145/800055.802040
http://www.cs.wisc.edu/multifacet/papers/hpca06_logtm.pdf
http://www.cs.wisc.edu/multifacet/papers/hpca06_logtm.pdf
http://dx.doi.org/10.1145/1095408.1095418

REFERENCES

[59] Salil Pant and Greg Byrd. A case for using value prediction to improve per-

formance of transactional memory. In TRANSACT ’09: 4th Workshop on

Transactional Computing, February 2009. PDF: http://transact09.cs.

washington.edu/35_paper.pdf. Cited on page: 18

[60] Judit Planas, Rosa M. Badia, Eduard Ayguadé, and Jesus Labarta. Hi-

erarchical task-based programming with StarSs. Int. J. High Perform.

Comput. Appl., 23:284–299, August 2009. ISSN 1094-3420. DOI:

10.1177/1094342009106195. Cited on page: 132

[61] Ricardo Quislant, Eladio Gutierrez, Oscar Plata, and Emilio L. Zapata. Improv-

ing signatures by locality exploitation for transactional memory. In Proceed-

ings of the 2009 18th International Conference on Parallel Architectures and

Compilation Techniques, pages 303–312, Washington, DC, USA, 2009. IEEE

Computer Society. ISBN 978-0-7695-3771-9. DOI: 10.1109/PACT.2009.25.

Cited on page: 18, 120

[62] Ravi Rajwar, Maurice Herlihy, and Konrad Lai. Virtualizing transactional mem-

ory. In Proceedings of the 32nd Annual International Symposium on Com-

puter Architecture, pages 494–505. IEEE Computer Society, June 2005. PDF:

http://www.cs.wisc.edu/~isca2005/papers/08A-02.PDF. Cited on

page: 115, 116, 119

[63] Per Runeson. A survey of unit testing practices. IEEE Softw., 23:22–29, July

2006. ISSN 0740-7459. DOI: 10.1109/MS.2006.91. Cited on page: 36

[64] Bratin Saha, Ali-Reza Adl-Tabatabai, and Quinn Jacobson. Architectural sup-

port for software transactional memory. In MICRO 39: Proceedings of the 39th

Annual IEEE/ACM International Symposium on Microarchitecture, pages

185–196. IEEE Computer Society, 2006. DOI: 10.1109/MICRO.2006.9. Cited

on page: 125

[65] Daniel Sanchez, Luke Yen, Mark D. Hill, and Karthikeyan Sankaralingam. Im-

plementing signatures for transactional memory. In MICRO ’07: Proceedings of

the 40th Annual IEEE/ACM International Symposium on Microarchitecture,

144

http://transact09.cs.washington.edu/35_paper.pdf
http://transact09.cs.washington.edu/35_paper.pdf
http://dx.doi.org/10.1177/1094342009106195
http://dx.doi.org/10.1177/1094342009106195
http://dx.doi.org/10.1109/PACT.2009.25
http://www.cs.wisc.edu/~isca2005/papers/08A-02.PDF
http://dx.doi.org/10.1109/MS.2006.91
http://dx.doi.org/10.1109/MICRO.2006.9

REFERENCES

pages 123–133. IEEE Computer Society, 2007. DOI: 10.1109/MICRO.2007.20.

Cited on page: 18, 90

[66] Florian T. Schneider, Vijay Menon, Tatiana Shpeisman, and Ali-Reza

Adl-Tabatabai. Dynamic optimization for efficient strong atomic-

ity. In OOPSLA ’08: Proc. 23rd ACM SIGPLAN conference on

Object-oriented programming systems languages and applications,

pages 181–194, September 2008. DOI: 10.1145/1449955.1449779.

PDF: http://www.lst.inf.ethz.ch/research/publications/

publications/OOPSLA_2008/OOPSLA_2008.pdf. Cited on page: 23

[67] Michael L. Scott, Michael F. Spear, Luke Dalessandro, and Virendra J. Marathe.

Transactions and privatization in Delaunay triangulation (brief announce-

ment). In PODC ’07: Proc. 26th PODC ACM Symposium on Principles

of Distributed Computing, August 2007. DOI: 10.1145/1281100.1281160.

PDF: http://www.cs.rochester.edu/u/scott/papers/2007_PODC_

mesh_BA.pdf. Cited on page: 94

[68] Arrvindh Shriraman and Sandhya Dwarkadas. Refereeing conflicts in

hardware transactional memory. In ICS ’09: Proc. 23rd international

conference on Supercomputing, pages 136–146, June 2009. DOI:

10.1145/1542275.1542299. PDF: http://www.cs.rochester.edu/

~ashriram/publications/2009_ICS_Referee.pdf. Also available as

TR 939, Department of Computer Science, University of Rochester, September

2008. Cited on page: 22, 79

[69] Arrvindh Shriraman, Sandhya Dwarkadas, and Michael L. Scott. Flex-

ible decoupled transactional memory support. In Proceedings of the

35th Annual International Symposium on Computer Architecture, June

2008. PDF: http://www.cs.rochester.edu/u/ashriram/papers/

2008_ISCA_FlexTM.pdf. Cited on page: 103, 116, 117, 120

[70] James Smith. A study of branch prediction strategies. In International Sympo-

sium on Computer Architecture, pages 202–215, 1998. Cited on page: 22

145

http://dx.doi.org/10.1109/MICRO.2007.20
http://dx.doi.org/10.1145/1449955.1449779
http://www.lst.inf.ethz.ch/research/publications/publications/OOPSLA_2008/OOPSLA_2008.pdf
http://www.lst.inf.ethz.ch/research/publications/publications/OOPSLA_2008/OOPSLA_2008.pdf
http://dx.doi.org/10.1145/1281100.1281160
http://www.cs.rochester.edu/u/scott/papers/2007_PODC_mesh_BA.pdf
http://www.cs.rochester.edu/u/scott/papers/2007_PODC_mesh_BA.pdf
http://dx.doi.org/10.1145/1542275.1542299
http://dx.doi.org/10.1145/1542275.1542299
http://www.cs.rochester.edu/~ashriram/publications/2009_ICS_Referee.pdf
http://www.cs.rochester.edu/~ashriram/publications/2009_ICS_Referee.pdf
http://www.cs.rochester.edu/u/ashriram/papers/2008_ISCA_FlexTM.pdf
http://www.cs.rochester.edu/u/ashriram/papers/2008_ISCA_FlexTM.pdf

REFERENCES

[71] James E. Smith and Andrew R. Pleszkun. Implementation of precise inter-

rupts in pipelined processors. In Proceedings of the 12th annual international

symposium on Computer architecture, ISCA ’85, pages 36–44, Los Alamitos,

CA, USA, 1985. IEEE Computer Society Press. ISBN 0-8186-0634-7. DOI:

10.1145/327010.327125. Cited on page: 99

[72] Michael F. Spear, Virendra J. Marathe, Luke Dalessandro, and Michael L. Scott.

Privatization techniques for software transactional memory (brief announce-

ment). In PODC ’07: Proc. 26th PODC ACM Symposium on Principles

of Distributed Computing, August 2007. DOI: 10.1145/1281100.1281161.

PDF: http://www.cs.rochester.edu/u/scott/papers/2007_PODC_

privatization_BA.pdf. Extended version available as TR-915, Computer

Science Department, University of Rochester, Feb. 2007, http://www.cs.

rochester.edu/u/scott/papers/2007_TR915.pdf. Cited on page: 94

[73] Michael F. Spear, Luke Dalessandro, Virendra J. Marathe, and Michael L. Scott.

A comprehensive strategy for contention management in software transactional

memory. In PPoPP ’09: Proc. 14th ACM SIGPLAN symposium on Princi-

ples and practice of parallel programming, pages 141–150, February 2009.

DOI: 10.1145/1504176.1504199. PDF: http://www.cs.rochester.edu/

u/spear/ppopp09.pdf. Cited on page: 21

[74] R.M. Stallman, R.H. Pesch, S. Shebs, et al. Debugging with GDB. Gnu Press,

2002. Cited on page: 50

[75] Fuad Tabba, Andrew W. Hay, and James R. Goodman. Transactional value

prediction. In TRANSACT ’09: 4th Workshop on Transactional Comput-

ing, February 2009. PDF: http://transact09.cs.washington.edu/4_

paper.pdf. Cited on page: 18

[76] David Michael Ungar. The design and evaluation of a high performance

Smalltalk system. MIT Press, Cambridge, MA, USA, 1987. ISBN 0-262-21010-

X. Cited on page: 126

[77] M.A. Vouk. Back-to-back testing. Information and software technology, 32

(1):34–45, 1990. Cited on page: 58

146

http://dx.doi.org/10.1145/327010.327125
http://dx.doi.org/10.1145/327010.327125
http://dx.doi.org/10.1145/1281100.1281161
http://www.cs.rochester.edu/u/scott/papers/2007_PODC_privatization_BA.pdf
http://www.cs.rochester.edu/u/scott/papers/2007_PODC_privatization_BA.pdf
http://www.cs.rochester.edu/u/scott/papers/2007_TR915.pdf
http://www.cs.rochester.edu/u/scott/papers/2007_TR915.pdf
http://dx.doi.org/10.1145/1504176.1504199
http://www.cs.rochester.edu/u/spear/ppopp09.pdf
http://www.cs.rochester.edu/u/spear/ppopp09.pdf
http://transact09.cs.washington.edu/4_paper.pdf
http://transact09.cs.washington.edu/4_paper.pdf

REFERENCES

[78] D.L. Weaver and T. Germond. The SPARC architecture manual. Citeseer, 1994.

ISBN 0130992275. Cited on page: 99

[79] Luke Yen, Jayaram Bobba, Michael M. Marty, Kevin E. Moore, Haris Volos,

Mark D. Hill, Michael M. Swift, and David A. Wood. LogTM-SE: Decoupling

hardware transactional memory from caches. In HPCA ’07: Proc. 13th In-

ternational Symposium on High-Performance Computer Architecture, Febru-

ary 2007. DOI: 10.1109/HPCA.2007.346204. PDF: http://www.cs.wisc.

edu/multifacet/papers/hpca07_logtmse.pdf. Cited on page: 17, 18,

19, 20, 105, 116, 119

[80] Luke Yen, Stark C. Draper, and Mark D. Hill. Notary: Hardware techniques to

enhance signatures. In MICRO ’08: Proceedings of the 2008 41st IEEE/ACM

International Symposium on Microarchitecture, pages 234–245. IEEE Com-

puter Society, 2008. DOI: 10.1109/MICRO.2008.4771794. Cited on page: 18,

90, 94, 120

147

http://dx.doi.org/10.1109/HPCA.2007.346204
http://www.cs.wisc.edu/multifacet/papers/hpca07_logtmse.pdf
http://www.cs.wisc.edu/multifacet/papers/hpca07_logtmse.pdf
http://dx.doi.org/10.1109/MICRO.2008.4771794

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Parallel programming challenge
	1.2 Problems with parallel programming
	1.3 Transactional Memory for simpler parallel programming
	1.3.1 Software vs. Hardware TM

	1.4 Dissertation Research Path
	1.5 Contributions of this Dissertation

	2 Background on Transactional Memory
	2.1 Lock-based thread synchronization
	2.2 TM-based thread synchronization
	2.2.1 Conflict detection
	2.2.2 Conflict resolution
	2.2.3 Version management

	2.3 Eager TM
	2.4 Lazy TM
	2.5 Lazy versus eager TM
	2.6 Mixing the transactional and non-transactional accesses

	3 Evaluation Environment
	3.1 STAMP benchmark suite

	4 Dynamic Runtime Testing for Error-Free Cycle-Accurate Simulators
	4.1 Introduction
	4.2 Detecting Bugs Using Dynamic Testing
	4.2.1 Use Case: Coherent Multi-level Caches
	4.2.2 Use Case: Hardware Transactional Memory
	4.2.3 Use Case: Out-of-Order Simulator
	4.2.4 Other Use Cases

	4.3 Non-functional Bugs in a Simulator
	4.4 Finding and Fixing Simulator Bugs
	4.4.1 An Example of a Debugging Session

	4.5 Evaluation
	4.6 Our Experience With Dynamic Runtime Testing
	4.7 Related Work
	4.8 Conclusions

	5 EazyHTM
	5.1 EazyHTM: Basic Protocol
	5.1.1 Conflict Detection
	5.1.2 Tracking Possible Conflicts
	5.1.3 Committing a Transaction
	5.1.4 Aborting a Transaction
	5.1.5 State-Message Table of the EazyHTM protocol
	5.1.6 Proofs of protocol correctness

	5.2 EazyHTM: Optimizations
	5.2.1 Commit: Write-Back Publishing of Speculative Changes
	5.2.2 Commit: Publishing Critical-Cache-Lines First
	5.2.3 Conflict Detection: Core-Local Filtering of Exclusive Lines
	5.2.4 Conflict Detection: Directory-Level Filtering of Read-Only Lines
	5.2.5 Conflict Detection: Core-Local Filtering of Read-Only Lines

	5.3 Micro-architectural changes
	5.4 Evaluation
	5.4.1 Simulation environment
	5.4.2 EazyHTM Evaluation Results

	5.5 Conclusions

	6 EcoTM: Economical Conflict-Driven Hardware Transactional Memory
	6.1 Introduction
	6.2 Basic EcoTM Architecture
	6.2.1 Core-local transactions
	6.2.2 Identifying Conflicting Cache Lines
	6.2.3 Conflict detection and resolution
	6.2.4 Example of conflict management

	6.3 Overflowed transactions
	6.3.1 Conflict management for overflowed transactions
	6.3.2 Logging QCC changes
	6.3.3 Data management for overflowed transactions
	6.3.4 Support for context switching and interrupts
	6.3.5 EcoTM on Systems with Limited Directory Size

	6.4 Evaluation
	6.5 Conclusions

	7 Related Work in Hardware Transactional Memory
	7.1 Related work in bounded HTMs
	7.2 Related work in unbounded HTMs

	8 Conclusions and the Future of TM
	8.1 The future of TM
	8.1.1 The perspective of hardware developers
	8.1.2 The interface to the TM hardware
	8.1.3 New uses of HTM in sequential code
	8.1.4 New uses of HTM: migrating from sequential to parallel code
	8.1.5 New uses of HTM in parallel code

	9 Publications
	References

