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PREFACE

Demographers study population structure and demographic 
ows. In order to

assess the magnitude and intensity of demographic phenomena in real-world popula-

tions, one must �rst remove potential distortions introduced by population structure

{ but population structure is itself an outcome of demographic phenomena. Here, de-

mographic phenomena refer to natality and mortality, and population structure refers

to classifying information such as time and sex. There are other structuring variables

whose e�ects we would also like to purge if the measurement of demographic phenom-

ena were our primary objective, and there are other kinds of phenomena that would

also need to be measured if the analysis of structure were the primary objective.

Such description is of secondary importance in this dissertation. Our objective is to

study an abstraction of population processes, namely the renewal model for closed

populations structured by sex and time.

That we are concerned with the role of both sexes in the modeling of population

renewal should be no surprise, as humans reproduce sexually. That it is a challenge

for models to incorporate information from both sexes in the modeling of fertility

(marriage, reproduction) has been �rmly established since Karmel (1947). This task

is challenging because models must produce a single result, a fertility outcome, from

two information sources (males and females), which when handled apart produce in-

congruous results. There is no obviously correct way to achieve this balancing act,

although a large number of suggestions have been made. We typically call these

suggestions \solutions," but they are not solutions in the sense of a solution to a
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math problem. A solution in the context of the present problem means simply that a

reasonable result is produced in accordance with a prede�ned set of modeling objec-

tives decided upon either by the demographer or by consensus. The problem has not

been (and may never be) solved in the sense of a necessary and best model. Instead,

solutions are weighed in terms of ful�lling desirable properties versus theoretical or

practical parsimony.

In this dissertation, we deal with only two population subgroups: males and fe-

males, each of which is structured by some notion of time. The modeling problems

that emerge when dealing simultaneously with the two sexes may be conceived of as

a minimal case of the much larger practical problems presented by modeling popula-

tions subdivided into N groups. Applied demographers often simultaneously project

populations divided into regions, races, educational groups, and a potentially large

number of other categorical distinctions. The modeling challenges presented by multi-

group plurality may in this sense be thought of as the general problem, within which

the two-sex problem is just a particular instance that must be dealt with under partic-

ular constraints. While the two-sex problem may in a sense be reduced to the notion

of the N -group problem, the sexes interact in a way, and reproduction is constrained

in a way, that does not pertain to other kinds of population subgroups { There is

namely no \race-ratio" or \state-ratio" at birth akin to the sex ratio at birth.

Later in the present work we will provide some measure of the magnitude of the

two-sex problem, and it will be concluded that the magnitude is large enough to

be worth thoughtfully accounting for in measurements and modeling. Were models

to encompass even more groups, the potential discrepancies entailed by simultaneous

modeling would be even larger. That we may arrive at insights from the more familiar

two-sex case that apply to the N -group case is a further motivation for thoughtful

exploration of the problem at hand. N -group generalizations will not be explored in

the present work, though with some additional work solutions discussed here may be
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extended in this direction.

The balancing of the sexes in models without considering age is much simpler

both conceptually and in practice, as it is just a matter of choosing some middle

ground between males and females. Most of the literature on the two-sex problem,

and the properties that demographers deem desirable in solutions, deals with the

time-structuring variable, age. That modeling decisions must be made with respect

to both the interaction between sexes and the interaction between ages makes the

problem an altogether complex one.

What is age but time passed since birth? Thus, age is time with respect to one

of the demographic phenomena that we incorporate in models of population renewal.

The reason why demographers care about age is that all demographic phenomena vary

by age in known ways, and so in order to measure the pure force of a demographic

phenomenon one does well to take age into account { the age patterns of demographic

phenomena exhibit empirical regularities that lend themselves to modeling (Coale and

Trussell , 1996). Age counts up from birth, starting at the beginning. We measure

milestones and the lifecourse in terms of age; statistics are collected by age or year

of birth, and age is in short known. We do not know when we will die, but this is

also something that demographers think on. Namely, in properly accounting for age

(time since birth), we may faithfully approximate death probabilities for each age,

and therein know something about our probable time of death. This later question

is a subject of considerable interest!

Demographers, and especially actuaries, regularly think about, estimate, a prob-

able time of death for persons of a particular ages { that were born in particular

years. Might we not also venture to take things a step further? What if age were

counted down to death instead of up from birth? Literally, what might we learn

about demographic phenomena and population structure if beyond age (and due to

the information we glean from age) we were to structure populations by sex and re-
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maining years of life? That is a big job, and we will fail to complete it, instead laying

out only the groundwork for population renewal models wherein age is exchanged for

remaining years of life.

It is my stance that population renewal models ought to account for both sexes,

and for this reason roughly equal attention is given in this dissertation to the two-sex

problem { a problem that never goes away { and population structured by remain-

ing years of life { a somewhat novel concept that must be hashed out before again

complicating things with the two-sex problem. I apologize for any lack of rigor on

both fronts. Namely, I neither reproduce formal proofs for the properties of the so-

lutions that I treat, nor do I provide proofs for the (many) claims that I make. The

�lling of this gap is left for a later day { either someone will do the favor of proving

my claims right or wrong, or I will �nd the time to learn to do so. Instead we are

led in this dissertation primarily by intuition, and I have placed a premium on the

data-grounded demonstration of the methods I propose. After all, might we not wish

to free these formal demographic musings from the vacuum and see what might be

learned? There is therefore the risk that some conceptual error or miscalculation of

mine { and all errors and miscalculations herein are mine alone { will be a setback.

This is my risk alone, but the possibility is not that distressing. Rather, it is inherent

to the business of charting new territory, and this I have every intention of doing. If

the maps I draw are no good, the territory explored may still be good.

So it is that sex and time are the structuring variables of interest in this disserta-

tion. Aside from comparing two-sex models (and often the male and female one-sex

models), we at times compare models that specify age with models that specify time

until death. We will learn that the speci�cation of time in models has a large impact

on results, and it could be said (with a pinch of jest, of course) that we herein expose

a fundamental two-age problem in demography. This was of course not our goal from

the outset of the doctoral process. The narrative of how this dissertation came to
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take the shape that it has is as follows.

The original objective for this dissertation was to hash out a survey of two-sex

\solutions" and implement them in a standard and reproducible format while applying

each to contemporary datasets. I chose the topic after completing the EDSD in the

summer of 2010 in order to force myself to improve my formal demographic skills,

which I had only begun to develop in that program. That is, I knew it would be

di�cult and possibly beyond my abilities. And so, I began at the beginning, collecting

all the materials I could locate on the two-sex problem, and reproducing methods in

no particular order. After a few successful attempts (reproducing Schoen (1981),

McFarland (1975) and Henry (1972)) on ad hoc acquired data, I came to realize

that all the methods in my scope will essentially require or the same input data{

basic exposures, and births cross-tabulated by sex and age of father and mother{ so I

diverted attention to standardizing some datasets to use throughout this dissertation{

The US and Spanish populations for about the past four decades. I decided to discard

or translate methods dealing with the two-sex problem in marital transitions in the

�rst place because Spain lacks good estimates of marital status exposures, and these

would need to have been produced artisanally (laboriously). This choice reduced

the implementation workload, but the sex balancing strategies from analytical family

demography have still been taken into consideration where possible.

When the mathematics or presentation style in a given article were over my head,

I typically took a few steps back to some earlier or less complex method, or altogether

went back to the basics in Sharpe and Lotka (1911), Kuczynski (1932), Coale (1972)

or Caswell (2001). Some methods that were beyond my grasp in the begining (e.g.,

Mitra, 1978; Das Gupta, 1978a) were �nally understood and implemented later down

the road. Others I still do not understand(e.g., Choo and Siow , 2006), despite having

reproducible code!

All along I had no vision or pretense of designing a new method, but I rather
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na•�vely assumed that gradual familiarity with the tools at hand would lead me to

some minor tweak or meaningful critique of the existing palette of methods at hand.

For two years I did not produce anything novel and managed only to reproduce

a few branches of the above-mentioned survey of methods, and my resolve waned.

A spontaneous conversation with John MacInnes sparked what was to become the

second, but dominant, axis of this thesis, our realignment of age in renewal models.

John mused about what a population pyramid would look like if it were drawn with

life expectancy on the vertical axis instead of age. We tried to imagine what shape

such a pyramid would assume, but were on the whole left guessing. I took a stab at

how one might go about transforming age-classi�ed population counts to remaining-

years classi�ed population counts, and came up with what is here Equation 4.1.

Later I realized that the central component to that formula, which says \what is the

probability of dying at age x + n given survival until age x," is fairly fundamental

and already lying around in formal demography, probably in various texts and minds

{ I spotted it in the wild in Vaupel (2009), and more prominently in Miller (2001),

but it's certainly well-known and/or easily derivable. I have never seen this formula

applied to redistribute population counts in the manner suggested here, although the

concept of remaining years until death has certainly been considered. Miller refers to

this temporal concept as thanatological age.1

Shortly thereafter, after looking at many such remaining-years pyramids and com-

ing to some exciting conclusions, I realized that one may just as well restructure any

age-classi�ed data in the same way. So I took a look at some thusly-restructured

fertility rates, explored some more, and spontaneously resolved to try to �gure out

what form the fundamental Lotka equations would obtain if reworked to be based

on remaining-years classi�ed data. From that moment I was self-obliged to bring

this family of population models to bear upon the two-sex problem. Is the problem

1This phrase does not appear in the cited paper, but Miller informs me that the phrase was
coined by Ken Wachter.
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the same? Will this transformation teach us anything? Does it make sense to simply

project remaining-years structured populations alongside age-structured populations?

That is what this dissertation is about.

As hinted before, it is the case that when one estimates population growth (or

some other interesting quantity) from a remaining-years classi�ed population, one

arrives at a di�erent result from that derived by the analogous age-structured model.

I do not undertake the worthy task of formalizing the di�erence between age and

remaining-years structured growth rates, as did Karmel (1947) for the di�erence be-

tween male and female reproduction rates (or Coale (1972), put di�erently). As for

this new discrepancy, I have managed only the less glamorous feat of pointing out

that it exists, as did Kuczynski (1932) for the male and female cases. There is plenty

of work left to do, and it is my hope herein to stimulate discussion in the discipline of

demography about whether structuring aggregate demographic data (and the models

derived from these) by remaining years of life may contribute further insights into hu-

man population dynamics. At times in this dissertation, I will posit how the nature of

remaining-years-structured populations is agreeable to stable population theory and

lends itself to population projections in general and to the sex balancing undertaken

in two-sex solutions in particular. Further, the strategies that demographers have

developed to patch the two-sex problem will provide us with insights into the new

discrepancy presented by our restructuring of age.
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ABSTRACT

The two-sex problem in populations structured by remaining years of life

by

Timothy L. M. Ri�e

Director: Dr. Albert Esteve

One of the foremost problems in formal demography has been including informa-

tion on the vital rates from both males and females in models of population renewal

and growth, the so-called two-sex problem. The two-sex problem may be conceived

as a subset of the analytical problems entailed by multigroup population modeling.

This dissertation characterizes the two-sex problem by means of decomposing the

vital rate components to the sex-gap between the male and female single-sex stable

growth rates. A suite of two-sex models for age-structured models from the literature

are presented in a standard reproducible format. A new variety of age-structure, age

based on remaining years of life, is presented. Analogous models of population growth

for the single-sex and two-sex cases are developed for populations structured by re-

maining years of life. It is found that populations structured by remaining years of life

produce less sex-divergence than age-structured models, thereby reducing some of the

trade-o�s inherent in two-sex modeling decisions. In general, populations structured

by remaining years are found to be more stable over time and closer to their ulti-

mate model stable structures than age-structured populations. Models of population
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growth based on remaining-years structure are found to diverge from like-designed

age-structured models. This divergence is characterized in terms of the two-sex prob-

lem and we call it to two-age problem.
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Chapter I

Introduction

Before using the term at length, we o�er a quick de�nition of the two-sex problem:

The two-sex problem: Separate male and female predictions of events
will di�er when 1) the events depend on both sexes, 2) the same events
form the numerators of the rates of each sex that are used in the predic-
tion, and 3) the exposures used to calculate these same rates change from
year to year (time to time). We would like a single prediction based on
information from the demographic rates of each sex.

Such events include births and heterosexual marriages. A manifestation of this

problem in formal demography is that the male and female single-sex renewal models

calculated from the data of any observed population will diverge from one another,

and therefore neither represents the population as a whole. Models that account for

the rates of both sexes so as to produce a single and consistent result or prediction are

variously referred to throughout this dissertation as two-sex methods, two-sex solu-

tions, two-sex rate balancing, two-sex adjustments, and so on with no strict distinction

between terms.

The two-sex problem in human demography has until this work been de�ned and

studied either for populations that are structured by sex only, for populations struc-

tured by both sex and age, or for populations structured by sex, age, and marital
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status. The problem enjoys a long history in formal demography, and most contem-

porary applied demographers likely have a rough idea of what the problem is, but it

is not at the forefront of the consciousness of most contemporary practicing demog-

raphers. For this reason we dedicate a sizable portion of this dissertation, Part 1,

to de�ning, describing, and decomposing (Chapter II) the two-sex problem for pop-

ulations structured by age and sex, and to describing a set of methods developed to

deal with this problem (Chapter III). The primary (and likely original) contribution

of Chapter II is the decomposition of the sex-gap in intrinsic growth rates into the

various vital rate components of the classic renewal model. This e�ort will convince

the reader that the two-sex problem is worth thinking about and accounting for, and

it justi�es a large portion of the remainder of this dissertation.

These activities are carried out formally in the context of the fundamental Lotka

equations for single-sex population renewal and empirically on the basis US and Span-

ish data from the past four decades. The choice to work with the two-sex problem

in renewal models is not an idle endeavor, as the practice of projecting population {

the bread and butter of applied demographers { is grounded in models of population

renewal. That is to say, in implementing a population projection, one always has a

renewal model in mind, and all indices of population reproductivity refer to a notion

of renewal. The methods described herein are applicable as-is to implementation in

population projections.

We suppose that part of the reason that practicing demographers often do not

account for the two-sex problem in projections (and elsewhere) is that formal de-

mographers have been unable to supply a consensus solution on how to deal with

it. Of course, the lack of consensus on demographic methods is no obstacle for de-

mographers in other tasks { there are di�erent ways to calculate lifetables, estimate

exposures, smooth or graduate demographic schedules, and so forth, but this does

not stop demographers from doing these things. Unfortunately there is no best and
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true method to account for the two-sex problem in renewal models or projections;

there are only approximations, and this is likely to remain the case. For this reason,

in Chapter III we present a suite of approaches applicable to the US and Spanish

example data used throughout this work. These methods are evaluated in situ. The

selection of two-sex methods examined is not exhaustive, but has been selected on

an ad hoc basis of convenience to the author. It is hoped that the set of two-sex

model implementations provided here will be translatable and transferible to popula-

tion projection engines. In this way, the demographer may thoughtfully select from

among the two-sex methods conscientiously, just as every maker of lifetables chooses

a method to calculate ax.

For each method separately, we begin by explaining the model of renewal. This

is followed by a step-by-step guide to estimating the intrinsic growth rate, r, for the

given model. All such estimation procedures have been developed by modifying the

fast-converging method of Coale (1957) to the renewal model at hand. At times

other parameters of the stable population are also presented on the basis of r. In all

cases, some empirical results are derived for the method in question and some model

properties are discussed. Some of these methods will be modi�ed from their original

context to suit the needs of this dissertation.

The �rst two methods presented, those of Pollard (1948) in Section 3.2.1 and Mitra

(1978) in Section 3.2.2, serve more for context and curiosity than for practical use.

These two models namely do not distribute the fertility of each sex of birth between

both sexes of parents, which either introduces instability or an unrealistic notion of

renewal. Section 3.3 presents one way of using dominance weights to decide how

to divide the information source for fertility prediction between males and females.

We �nd this method convenient, and so it is translated to the case of populations

structured by thanatological age later on.

In the following we explore three models that make use of the full joint distri-
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bution of fertility by the ages of both parents. The model of Das Gupta (1978a) is

presented in Section 3.4.1. This is followed in Section 3.4.2 by a method to balance

fertility predictions by taking a mean of male and female exposures in each age com-

bination, which we largely demonstrate on the basis of the harmonic mean, although

the mean could be of any kind. This method is attractive for di�erent reasons, and so

will also be translated to the case of remaining-years structure. Finally, Section 3.5

presents an iterative method to balance the birth counts predicted by males and fe-

males in di�erent age combinations, and this method is also implemented for the case

of remaining-years structured populations. Section 3.6 very brie
y discusses a large

number of other modeling approaches that have also been taken, or that could be

taken, with respect to two-sex population modeling, but that are beyond the scope

of this dissertation.

The two-sex problem has never been explored for the case of populations struc-

tured by remaining years of life (thanatological age). This is necessarily so because

Lotka's single-sex renewal model (Sharpe and Lotka, 1911) has never been translated

to the case of populations structured by thanatological age, and this latter endeavor

banks on structuring a population by thanatological age in the �rst place, which is

apparently itself novel. This last item, structuring populations by remaining years of

life, is done by means of a slight modi�cation to formulas that already exist, and so

most of the novelty therein owes to framing the pre-existent desire for the remaining-

years perspective in terms of population structure. These will be the �rst tasks of

Part 2 of this dissertation.

Section 4.1 provides and relates the formulas to translate age-structured data into

remaining-years structured data. The most basic demographic data amenable to such

restructuring are population counts. This we present in Section 4.2 for our two pop-

ulations. Many of the results that fall out of this activity (or consequences of it) are

of potential immediate utility, and so we brie
y discuss some aspects of thanatolog-
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ically structured populations, such as uncertainty (Section 4.2.1), the incorporation

of mortality improvements in the method (Section 4.2.2), and a couple of the more

obvious and direct measures of population aging (Section 4.2.3).

A further conceptual leap is necessary before the business of population model-

ing may be undertaken atop this new population structure { namely, the observation

that this method of population restructuring works just the same for any age-classi�ed

data. Of relevance for our population modeling objective is the restructuring of age-

classi�ed birth counts and thencefrom the production of fertility rates by remaining

years of life. Section 4.3.1 explores these fertility rates for the US and Spanish pop-

ulations. The practice of population modeling on the basis of such rates will be

palatable only if a high degree of empirical regularity is present in the data. This

we con�rm, revealing for the �rst time the characteristic shape of thanatologically-

structured fertility rates{ the thanatological analogue to ASFR, which we call eSFR.

Such rates may be presented in bulk in the form of a standard \remaining years �

year" demographic surface, but we also summarize the intensity of fertility for a given

year in Section 4.3.2 by summing rates over remaining years of life to produce the

thanatological analogue to TFR, eTFR, which enjoys the same basic interpretation

as TFR yet sums to a di�erent value. In Section 4.3.4 we demonstrate that male and

female predictions of future births based on thanatological rates will tend to di�er

by less than is the case for predictions made on the basis of age-structured rates.

Lastly, also as a brief diversion, we relate eTFR to a remaining-years reformulation

of Fisher's reproductive value.

Having demonstrated su�cient empirical regularity in the remaining-years pat-

tern to the necessary vital rates, we reconceive of the classic notion of age-structured

population renewal in Section 5.1. That description is intended to be intuitive, and

we hash out a diagram (Figure 5.1) that should serve as a visual mnemonic for the

concept of renewal in populations structured by remaining years of life. In Sec-
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tion 5.2 we undertake a broad project of de�ning the single-sex renewal equation(s)

for this perspective of population, including the provision of an iterative method to

optimize r (Section 5.2.1), formulas for the derivation of stable population struc-

ture (Section 5.2.2), and induction of the projection matrix2 that corresponds to the

remaining-years perspective (Section 5.3). After displaying some trends in remaining-

years r for the US and Spain (Section 5.4), we explore the speed of divergence between

the single-sex models in comparison with divergence for the age-structured single-sex

models (Section 5.6). Finally, in Section 5.7 we quantify the vital rate components to

the sex-gap in the thanatological r using a 
exible method of demographic decompo-

sition. This closes our treatment of single-sex renewal for populations structured by

remaining years of life, leaving much terrain unexplored.

Having developed a working single-sex model for the remaining-years perspective,

Part 3 of this dissertation translates and explores a set of the two-sex methods from

Chapter III to thanatologically structured populations. This is carried out in much

the same sequence as was done for age-strctured two-sex models, �rst describing the

fertility balancing method and deriving the renewal model, second explaining step-

by-step instructions for estimating r (and SRB it turns out) from given data, third

working out a selection of some other stable parameters, and �nally a demonstration of

(some aspect of) the method on the basis of the US and Spanish data used throughout

this dissertation.

We begin the two-sex methods translation with the dominance-weighted method

of Goodman (1967) in Chapter VI. As this is the �rst two-sex renewal model explored

for remaining-years populations, we take some extra care to compare results both with

the remaining-years single-sex models and with age-structured models. Notably, we

de�ne the two-sex dominance-weighted remaining-years structured projection matrix

(Section 6.1), and use this to explore several aspects of the stable population structure

2This product is the analogue to the well-known Leslie matrix.
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(Section 6.3).

Second, we translate the method based on a generalized mean of male and female

remaining-years speci�c exposures, also for the most part on the basis of the har-

monic mean (Chapter VII), although results do not vary much if other common (and

reasonable) means are chosen instead. The values of the intrinsic growth rate, r, that

one derives with this method are very close to those given by the dominance-weighted

method when equal weight is given to the male and female rates. For this reason we

focus the empirical demonstration of the method on other stable consequences that

do not apply in the latter case, most notably on the stable versus the initial eSFR.

Third, in Chapter IX we sketch out a novel two-sex adjustment method for this

population structure based on marginal male and female fertility rates and a �xed ra-

tio of observed birth counts to association-free expected birth counts in the joint male-

female distribution. The model is seen to give acceptable results, but we conclude

that it displays no particular advantage over the generalized mean or IPF methods,

and so we discard it in order to move on to the IPF method.

Finally, in Section VIII we translate the iterative matrix method originally pre-

sented in Section 3.5 to the two-sex remaining-years structured population. This

method indeed yields estimates of r that are distinct from any of the previous meth-

ods (for at least one of our two populations). We then examine the initial versus

stable fertility rates, and compare results with those obtained from the generalized

mean method.

That the methods and observations presented here are so out of the ordinary

invites one to re
ect rather than to conclude, although in Chapter XI we attempt

both. Namely, we consider whether there is anything to be gained by conceiving of

reproduction in terms of remaining years of life, why it is that the remaining-years

structured family of models yields a di�erent estimate of population growth than does

the age-structured family of models, and how our experience with the two-sex problem
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might yield insight on this lack of congruence. Further, we summarize any empirical

�ndings of note, though these are not central to our objectives. Finally we summarize

theoretical contributions from this work and suggest a broad and ambitious research

agenda to be grounded in it.

1.1 Data

The most important part about models is what is left out of them. The
second most important part about models is what is in them. The least
important part about models are the results{ Ken Wachter3

All calculations in this dissertation, unless otherwise cited, are original and based

on a small number of publicly available datasets that have been modi�ed and stan-

dardized according to a strict and simple protocol, as described in the following. Since

the same small number of datasets is used throughout this document, sources are not

cited in situ, but rather always refer to the same sources, as described here. Only

two populations are treated, Spain (ES) and the United States (US). Similar data for

France was also located, but was not included as it covered a shorter range of years.

Since the data used in this work are so simple, calculations presented are expected

to be replicable for a variety of other populations, though not for populations where

births by age of father are not available.

1.1.1 Birth counts

Birth counts for Spain and the US were not available in tables of the format re-

quired for this dissertation. For this reason, birth-counts were tabulated from birth

register microdata publicly available as �xed-width text �les from the Instituto Na-

cional de Estadistica (1975-2009) (INE) for Spain and the NCHS (1969-2009) for the

3Quote from April 9th, 2013.
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US. For Spain the years 1975-2009 are used and for the US the years 1969-2009 are

used consistently throughout this dissertation. At the time of this writing, further

years are available, but not included. Earlier years for the US are also available in

earlier o�cial publications, but these have not been digitized for inclusion in this

dissertation. Cross-tabulations for each year included age of mother, age of father,

and sex of birth. Resident status was not used as a selection criterion for births in

either country.

In all cases for both countries, age of mother was stated, but in some cases age of

father was missing. Births with missing age of father were redistributed proportion-

ately over births to fathers of known age separately for each age of mother. In Spain

births with unrecorded age of father tended to comprise less than 2% of all cases, and

so we do not expect this procedure to a�ect results, and no further sensitivity tests

were performed. For the US, the percent of all births where age of father was not

recorded ranged between 7% and 18%, as seen in Figure 1.1.

For the US, the degree of missingness of fathers' age varies by age of mother

(not shown). For ages greater than 25, we do not expect this to a�ect results in an

important way. Averaged over all years, ages <= 20 all had missingness of more than

20%; ages <= 16 had missingness of more than 40%, and ages <= 14 had missingness

of more than 60%. This may a�ect results if the age-pattern of males of unrecorded

age di�ers from that of males of recorded age in a non-trivial way. This uncertainty

enters into the male age-pattern of fertility, and the joint age distribution of births

(age of mother by age of father) may a�ect results for the US where these age-speci�c

data are used.

For both countries, cross-tabulated sex-speci�c birth counts were entered into

matrices of standard 111�111 dimensions, covering ages 0-110. Ages with no births

simply contain zeros. Open age groups from the original data were not redistributed

over ages beyond the bounds of the original microdata. Especially for young ages of
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Figure 1.1: Proportion of births with age of father not recorded, US, 1969-2009
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fathers and the upper ages of mothers, this will be visible in respective age patterns,

but the e�ect on overall results (TFR, growth rates) will be trivial.

Where birth counts are not required to be di�erentiated by sex of birth, for in-

stance, we sum over sex. Birth counts by age of mother are always taken from the

column margin of the birth matrix, while age of father is the row margin. This

practice helps to minimize the number of data objects used.

1.1.2 Exposures and mortality data

All other data for the US and Spain were downloaded from the Human Mortal-

ity Database (HMD)(Wilmoth et al., 2007). These data include, most importantly,

10



population exposures4 and population counts by age, sex, and year, and the deaths

distribution, dx, from the sex-speci�c lifetables. dx information was always rescaled

to sum to 1, which minimized rounding errors and simpli�ed programming. Other

items drawn from the HMD but used less consistently included mortality hazards,

�x, survival curves, lx (also rescaled so that l0 = 1), lifetable exposures, Lx, life ex-

pectancies, ex, and death counts by Lexis triangles. Each of these items is used in

single-age format, with ages 0� 110+. The open age group, 110+ is used as age 110

and is given no further treatment. The respective uses of each of these items should

be obvious from the context of the formulas being applied, and are stated explicitly

in the text or in footnotes where the use may not be obvious.

HMD data itself has come from the respective o�cial sources of these two coun-

tries, and so will inherit whatever errors were present in the original data prior to

applying the HMD methods protocol. Most relevant for this dissertation, Spanish

intercensal population estimates, which are the basis of HMD population estimates,

have been subject to an uncommon smoothing procedure over age by the INE. Where

abrupt changes in cohort size occur, such as the unusually large 1941 cohort, this pro-

cedure will have the e�ect of decreasing the size of large cohorts and increasing the size

of small neighboring cohorts. This is highly undesirable for any demographic study

and is apparently a legacy practice that will soon cease.5 In this dissertation, this

distortion will be most noticeable in the calculation of event-exposure rates, wherein

the numerator has not been subject to this exogenous smoothing, but the denomina-

tor has. It is unfortunately the case that alternative sources of population estimates

for Spain are in worse condition. These e�ects will echo through all HMD mortality

estimates for Spain, as well as our own fertility calculations.

4At the time of this writing, exposures from the Human Fertility Database (www.
humanfertility.org) may have been more appropriate for certain age groups, but since we prefer
to use all ages 0� 110+, HMD exposures were utilized instead.

5Thanks to Dr. Amand Blanes for bringing this issue to my attention. The INE has as of April
2013 released new retrospective population estimates without this defect, but these have come too
late for incorporation into the present dissertation.
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1.1.3 Empirical results in this dissertation

Data-based results in this dissertation are with few exceptions displayed graph-

ically, rather than in the form of tables. Since the original data and code used to

produce results are all available, one could with minimal e�ort and no guesswork

derive the numbers represented in each �gure. We prefer graphical representation of

results because this conveys larger amounts of information in less space and is more

intuitive for the reader. The reader should understand that data are used primarily

to illustrate the concepts under discussion, rather than in search of some empirical

truth. The two above-mentioned caveats for the data used herein (missing fathers'

age in the US, and faulty population estimates for Spain) should be borne in mind

when interpreting some �gures, such as age-speci�c fertility curves. We do not expect

either of these two data drawbacks to a�ect summary results (e.g., growth rates, r) in

a noticeable way, and we expect that any broad conclusions arrived at in the following

will be robust to these original shortcomings.

The user will also note that most results are derived deterministically. Account-

ing for uncertainty in many of the results presented here would provide the reader

with more insight into particular kinds of results, such as projected results or stable

population structures occasionally displayed in �gures. Several of the methods to be

presented in following are novel to the �eld of demography, and so we may look upon

the results derived therefrom as test results. The addition of stochasticity to these

methods, if they are deemed of worth, is left open as a branch for improvement. Here

we wish only to point out that the majority of �gures will, for this reason, not contain

con�dence or credibility bounds.

1.1.4 Some notation conventions in this dissertation

At times we will use acronyms and shorthand in the text body of this document in

order to save space and reduce repetition of long phrases. Earlier in this introduction,
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the term remaining years was used as a pre�x to words such as structure, but this

quickly becomes arduous. We often use ey as shorthand for remaining years, so

that we may speak of e.g., ey-structured populations. e is appropriate because the

value is an expectation, y is consistently (we hope) used in this thesis to index exact

remaining years of life, while a or x index chronological age, and ex is the expectation

of remaining years for persons of exact age x. ey appears in plot tiles and axes as

well as in the text. When the ages or remaining years of males and females must be

di�erentiated, we apply a0, y0 for females and a, y for males. Otherwise, a and y are

ambiguous.

Other demographic acronyms and shorthand, some common and some novel are

used throughout:

r also known as the intrinsic growth rate, Lotka's r, the instataneous rate of growth,

the Malthusian parameter. rm refers to r for males and rf for females.

T the mean length of a generation in the stable population.

R0 the net reproduction rate, also known as the net reproduction ratio or NRR; the

ratio of the average o�spring cohort size to the average parent cohort size in

the stable population.

TFR the total fertility rate for age-structured populations.

eTFR the total fertility rate for ey-structured populations.

ASFR age-speci�c fertility rates.

eSFR ey-speci�c fertility rates.

superscripts Xm, Xf , XM , XF , XM�M , XM�F , XF�F , XF�M (where X could

be any variable) always refer to males and females, and are mostly intuitive.

Where two superscripts are used, the �rst refers to sex of parent and the second
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refers to sex of o�spring. Changes in use are noted in text. I apologize for

inconsistency here, but at least these superscripts seem to present no particular

obstacle for understanding.
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Chapter II

Measuring the two-sex problem

The purpose of the present chapter is to describe and quantify the two sex problem,

both as a whole and in terms of its constituent parts. Purely mathematical treatments

of the two-sex problem have often been content to prove (or point out that it has been

proven) that males and females, if modeled separately, will obtain di�erent growth

rates, which leads to absurd and inacceptable results. A notable exception is the

early analysis in Karmel (1948b), which complements analytical work by the same

author (Karmel , 1947, 1948d) by examining many of the vital rate components to the

two-sex problem in populations of that time. For a complete historical and theoretical

motivation for why demographers in general ought be concerned with incorporating

information from both sexes in the measurement of reproduction and practice of

demography in general, one need look no further than Francisco (1996). We here

complement this brand of analysis with a further decomposition of each source of the

aggregate sex-gap.

Models that include both sexes must produce a single growth rate if they are

meant to re
ect observed human population renovation. This is true in the same way

that mathematical identities are true, and to point this out, or to reproduce one of

the proofs of the two-sex problem, may also have su�ced for the present dissertation.

Here the aim is to produce intuition about the size and nature of the two-sex problem,
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and this will be achieved by appealing to data. This intuition will tell us whether the

problem is then trivial or worth accounting for in population models. The conclusion

will be that yes, it is usually worth our while to account for the balance of sexes in

projections and in models of human population growth. In the scant instances where

the two-sex problem would have been trivial, the demographer incurs no penalty in

accounting for it nonetheless, and so it is advised to account for it.

The �rst task will be to measure the two-sex problem. This will be done in three

ways. 1) By calculating intrinsic growth rates separately for the sexes. The gap

between male and female growth rates determines the ultimate speed of divergence

between the males and females. 2) By projecting each sex separately in order to

estimate how many years would need to pass before one sex grows to twice the size

of the other sex. If the answer is a few decades, then this is grave indeed, and if it is

a few millenia, then we might not worry about the two-sex problem in modeling. 3)

By simply comparing predictions of births using male versus female rates. The size

of discordance between predictions of total birth counts also serves as a measuring

stick.

Having illustrated the magnitude of the problem, we will explore the primary

causes for the two-sex problem, namely sex-di�erences (dimorphism) in the vital

rates that determine population growth. Speci�cally, these include fertility, the sex

ratio at birth, and mortality. We present time series of these phenomena and brie
y

describe the main respects in which males and females di�er, to the extent that is

relevant in understanding the foundations of the two-sex problem. We also illustrate

how dimorphism has changed over time. The vital rates used to estimate natural

growth undergo changes, at times in di�erent ways for males and females. Outlining

these changes makes clear that the nature and composition of the two-sex problem

also changes over time.

The presentation of dimorphism is followed by an explicit decomposition of the
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gap between male and female growth rates into components due to fertility, mortality,

and the sex ratio at birth. This analytic exercise tells us the weight that each relevant

element of the sexual dimorphism in vital rates has had in the two-sex problem. We

see that the interplay between vital rates in determining the size and direction of the

sex-gap in intrinsic growth rates is complex and inconsistent. Sex ratios consistently

give males a head start in growth rates in these two populations. This is o�set slightly,

but not entirely, by female advantages in survival. The size and direction and of the

e�ect of fertility has changed dramatically over time.

Finally, further analysis and speculation is o�ered in how age-interactions may also

a�ect the size and nature of the two-sex problem. This section is more suggestive than

de�nitive in nature. However, such considerations are relevant to two-sex models to

the extent that age-interactions are allowed for or controlled for. It will be shown

that bivariate age distributions are very far from random, that these distributions

change over time, and that the degree of age-hypergamy in fertility has changed over

time. This paints a more complex picture of fertility change than is visible by looking

merely at marginal distributions of age-speci�c rates.

2.1 Magnitude of the two-sex problem

This section seeks to expose the magnitude of the two-sex problem. This is

achieved in Section 2.1.1.1 by measuring the gap between male-speci�c and female-

speci�c (canonical) intrinsic growth rates. Intrinsic growth rates are a theoretical

result { an output of the application of stable population theory to data. If our treat-

ment of the two-sex problem were limited to stable population theory, this would

su�ce. We will not, however, limit ourselves to pointing out an inconsistency in an

otherwise coherent and self-contained set of mathematical abstractions.

Applied demography is concerned with the more practical business of population

projections. Here too we brie
y expose the magnitude of the problem by summarizing
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results in two more tangible ways: 1) Section 2.1.1.2 presents the results of carrying

out simultaneous projections of male and female single-sex populations to an arbitrary

point of absurdity; 2) Section 2.1.1.3 displays the results of the even simpler task of

projecting births at �xed time intervals and measuring the size of the discrepancy

between male and female predictions.

In this way, we summarize the major discrepancy in terms of an exponential

growth parameter, a waiting time, and a relativized count.

2.1.1 Divergence

\Divergence" here refers to two or more quantities growing farther and farther

apart with the passing of time { quantities that have di�erent trajectories or speeds,

branching, say. The quantities diverging in this way are the male and female total

populations, when modeled separately. Speci�cally, we refer to the male and female

stable populations, a product of vital rates, theoretically removed from reference to

real population counts. It is therefore su�cient to speak of changes in the relative size

of the male and female populations, and further su�cient to speak of the di�erence

in the rate of change of these two populations, which is constant in the limit. The

intrinsic rate of increase in the Lotka model is r, and the rate of separation between

males and females can be captured in the di�erence between the male and female

rates, rm and rf , respectively.

2.1.1.1 Exponential separation

As mentioned, divergence in this dissertation refers to the exponentially increas-

ing distance between single-sex male and female populations that unfolds when they

are simultaneously projected into the future { or virtually projected in the case of

characteristic stable populations. The magnitude of separation increases exponen-

tially because males and females obtain di�erent intrinsic growth rates, r, that are
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extracted from Lotka's fundamental equation (Sharpe and Lotka, 1911):

1 =

1∫
0

e�rapama da (2.1)

where pa are age-speci�c survival probabilities, ma are age-speci�c single-sex fertility

probabilities,6 and r is the growth rate to be estimated.7 By \single-sex" it is meant

that ma may be speci�ed either as the fertility of girls born to mothers or of boys

born to fathers. Yellin and Samuelson (1977) prove that divergence is to be expected,

as forced agreement between the male and female versions of Equation (2.1) would

imply an overdetermined system. In any instance where single-sex r estimates di�er,

projecting separately will result in sex ratios that either grow toward in�nity in the

limit if rm > rf or decline to zero if rm < rf . If the gap between rates is large,

this happens quickly; if small, divergence is slower. This is in either case a modeling

problem of practical signi�cance, and the crux of the two-sex problem.

Single-sex intrinsic growth rates, rm and rf , can be estimated from data. In

looking at time series of growth rates (see Figure 2.1), observe that the sex-gap has

varied over time, that the male rate is typically higher than the female rate (aided

greatly by the sex ratio at birth), and that there have been crossovers in the USA:

rf > rm in 1994-1996, and again brie
y in 2001.

Perhaps even more curious are occasions when rm and rf have been on opposite

sides of zero, i.e., exponential growth and exponential decay at the same time. In the

USA, this has happened many times in the period studied: 1972-1973, 1990, 2004-

2005, and again recently in 2008. In Spain rates were brie
y on opposites of zero in

1981-1982, in the middle of a period of sharp decline in fertility. In all of these cases

6i.e., where fFa is female age-speci�c fertility, ma = fF−Fa , which is female fertility calculated
using only daughters in the numerator, of fM−Ma for males.

7In this dissertation, r (and variations of r) are always estimated by using the (modi�ed) strategy
proposed by Coale (1957). Where modi�ed, the new process is always described in full. In the present
case, we use Coale's version.
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Figure 2.1: Male and female intrinsic growth rates, Spain and US, 1969-2009
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male growth rates were positive while female growth rates were negative. Note that

this does not mean that observed year t natural growth rates were of opposite signs,

but rather the intrinsic rate that characterizes the male and female stable population

models. Figure 2.2 again displays the information of interest, the size of the gap

between rm and rf over time.

Coale (1972, p. 57) points out that when rm > rf , as was typically the case here,

multiplying male exposures at each age by a factor equal to e(r
m�rf )Tm , where Tm

is the male mean length of generation,8 will bring rm in line with rf . Alternatively,

rf can be aligned with rm by multiplying female exposures by a factor equal to

8where Tm can be estimated as
log(Rm

0 )
rm
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Figure 2.2: Gap between male and female intrinsic growth rates, Spain and US,
1969-2009
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e�(r
m�rf )T f . This works in reverse when rf > rm.
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2.1.1.2 Time until an unreasonable sex ratio

Di�erences in intrinsic growth rates are the essence of divergence in stable pop-

ulations, but these do not necessarily represent divergence in projections, per se.

Figure 2.3 gives a more intuitive idea of the magnitude of divergence implied by the

vital rates in each studied year. The following exercise is carried out: given each

year's male and female vital rates, how many years would it take for the total popu-

lation of one sex to be double the size of the other, always using the year t population

as the initial conditions?9

Clearly the run of years in the United States where rf and rm were very close

(approx. 1994-2001) imply such slow rates of divergence that we could, as a matter

of accident, safely ignore the two-sex problem in those years. These tended to be

the same years where the greater growth rate oscillated between male and females.

However, any acceptability threshold is a matter of convenience and taste: presumably

the demographer would like age-speci�c population estimates to be much closer to

truth than half or twice the ideal value. Dropping the badness threshold would of

course decrease the waiting time until it is met in any given year. These are practical

questions. More stringent are the demands of theoretical stable populations, where

sex consistency is very desirable. Not a single year of data presented here meets the

requirements of a consistent stable population, and even if this were to be observed,

it would be coincidentally rather than essentially so.

2.1.1.3 Disagreement in predicted birth counts

9These �gures were determined using projections based on the two single-sex Leslie matrices that
characterize male and female vital rates each year.
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Figure 2.3: log(Years) until one sex is twice the size of the other, given separate
single-sex projections using annual vital rates and initial conditions, US, 1969-2009
and Spain, 1975-2009
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Aside from divergence in the characteristic growth rates of the single-sex stable

models, single-sex separation is amenable to observation in the everyday practice of

demography. At the root of the two-sex problem is that the total numbers of births

predicted by male and female rates ought to, but never do, agree, aside from in

the jump-o� year from which rates are initially derived, which is a tautology. Let

us therefore design the following practical exercise: Given the fertility rates of the

present year t and known exposures for future years, both separate for males and

females, how many total births do we predict in intervals of 1, 5, 10, and 15 years
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based on male versus female inputs? Figure 2.4 displays the results of this exercise,

where the value plotted is the relative di�erence between total births predicted by

male rates versus total births predicted by female rates, divided by the average of the

two predictions.10

Figure 2.4: Relative di�erence (male - female) between predicted total birth counts
in year t + n based on year t fertility rates and year t + n exposures, US and Spain,
1969-2009.
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Predicting births in year t + 1 appears to entail a 1% discrepancy in some cases.

In the �rst years for the US, the t + 15 prediction (predicting 1984 births with 1969

rates) already entailed a 12% relative di�erence between the sexes (BM > BF ), with

separation between t + 15 predictions steadily falling over time. For Spain, t + 15

10 2(BM−BF )
BM+BF
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predictions started (predicting 1990 births with 1975 rates) with little disagreement,

but this has steadily grown to be as high as 12% in recent years.

Discrepancies illustrated here are net of observed secular changes in fertility over

time. That is to say, the relative di�erences in Figure 2.4 are not prediction errors,

but rather the di�erences entailed between hypothetically choosing female or male

dominance. The short projection horizons tested here are well within the range of

horizons that demographers typically evaluate, and the magnitude of discrepancy re-

vealed here should give pause, even to the most ardent defender of female dominance.

The divergence of single-sex models has now been demonstrated for recent years in

the US and Spain.

2.2 Primary factors contributing to the two-sex problem

2.2.1 Dimorphism

Divergence between single-sex population models has been shown to be a problem

of both theoretical and practical signi�cance for demographers, and it stems from

the fact that vital rates almost always di�er between the sexes. This characteristic

of human populations, sexual dimorphism in vital rates, is manifest in all sub�elds

of demography. In the following, we use the term sexual dimorphism, which enters

into the present discussion via evolutionary demography and biology,11 to refer to

sex di�erentiation, speci�cally with respect to demographic forces { vital rates.In

observed populations, 
uctuations in vital rates are constantly underway, and can

either magnify or diminish di�erences between single-sex intrinsic growth rates (or

predicted births). In population models, dimorphism is relevant as it pertains to

fertility and mortality rates, as well as to the sex ratio at birth.

This section is exploratory and descriptive in nature. We seek here to demonstrate

11See, e.g., Caswell and Weeks (1986) for a paper relevant to the present dissertation where the
term dimorphism is used in the same way.
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1) major di�erences between male and female rates and 2) the fact that these gaps

can and do change over time. We touch only upon rates that might be relevant to

the two-sex problem. The subsequent section 2.2.1.1 will quantify the contribution of

the vital rates treated here to the size of the two-sex problem.

2.2.1.1 Fertility rates

It will later be seen that the e�ects of di�erential survival and the sex ratio at birth

on the magnitude of the two-sex problem are rather consistent. This is not the case

with fertility, which inconsistently exerts in
uence on the direction and magnitude of

the sex gap in reproductive indices. To be explicit, fertility rates are in this section

(and previous sections) de�ned as births classi�ed by age of progenitor divided by

person-years exposure classi�ed by age of progenitor. There are myriad ways to

quantify fertility that demographers are well familiar with. This section will point

out only a few measures that are deemed by the author to be relevant to the two-sex

problem. Other factors that are known to a�ect observed fertility, such as parity

distributions and marital states, are not discussed. We brie
y explore di�erences

between males and females as they pertain to the magnitude and distribution of

fertility rates. Magnitude is summarized in terms of the total fertility rate (TFR), and

much more attention is given to the fertility distribution, which will be summarized

by characterizing di�erences in the age-pattern of male and female fertility, comparing

the e�ective age-bounds of male and female fertility, and creating a summary index

of distribution similarity between male and female fertility.

TFR is among the most well-known and understood demographic indicators, and

demographers have intuition about how it has developed in recent decades. These

two statements are more true for female TFR than for male TFR, though the study

of male fertility is said to be on the increase in recent years.

Figure 2.5 shows in parallel the trends in male and female TFR in the years studied
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Figure 2.5: Male and female total fertility rates, 1969-2009, USA and Spain
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for Spain and the US. Note that in the years of continuous decline, TFRM tended

to be higher than TFRF , and in the years of gradual increase, TFRF tended to be

higher than TFRM . In the United States, this crossover was observed around 1988,

and in Spain around 1998.

The distribution of fertility rates over age also di�ers between males and females.

Figure 2.6 displays ASFR in 1975 for both Spain and the US. The distributions have

moved over time, but some stylized observations will pertain in any year. Namely,

the steep increase in fertility rates over young ages follows a similar pattern for males

and females, but begins some 4-6 years later for males than for females in these two

populations. Peak male fertility occurs around 7 years later than peak female fertility,
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Figure 2.6: Male and female age-speci�c fertility rates, 1975, USA and Spain
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and this spread widens over the ages in which fertility declines, creating a longer and

fatter right-side tail for male ASFR than for female ASFR.

The physiological bounds to fertility { menarche and menopause for females {

spermarche and andropause for males { are well known. These may be considered

semi-rigid bounds. One might also derive bounds based on the ages where fertility

crosses some decided-upon threshold.12 Figure 2.7 displays the results of choosing

lower and upper bounds as those ages that contain 99% of all fertility, along with

the median age.13 These statistical bounds fall within the physiological bounds,

12i.e., take a strategy similar to that proposed in Coale (1971) for choosing the starting age of
marriage.

13In other words, quantiles are taken from the ASFR distribution, not observed birth counts.
Non-integer results are derived from discrete single-age ASFR by taking quantiles from ASFR after
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Figure 2.7: Male and female fertility rate quantiles, 1969-2009, USA and Spain, 1975-
2009
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necessarily.

In general, we note that the central ages of fertility have tended to shift more

over time than the upper and lower statistical bounds, particularly swiftly for both

males and females in Spain in the 1990s, though the upper bound for Spanish males

increased in parallel to the median over the same period. The statistical upper bound

applied here has been increasing in recent years for both US and Spanish females,

and by 2009 was about a half-year higher than in 1969. The upper bound for Spanish

females decreased about 2 years from 1975 to 1995, and has since increased to be just

a half-year lower than in 1975. Over the period studied, median ages of ASFR have

linear interpolation between single-age midpoints, all assumed to be mid-interval.
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increased by around 5 years for males and females in both countries. It is particularly

noteworthy that Spanish male and female median ages and upper bounds diverged

for much of the period examined, much more so than for the US.

One way to judge the overall dissimilarity of these two distributions is to calculate

a simple di�erence coe�cient, �:

� = 1�
∫ ∫

min(f1; f2) (2.2)

,where f1 is male ASFR and f2 is female ASFR, both scaled to sum to 1. � is

constrained to fall between 0 and 1, where 1 indicates that the two distributions are

separate and 0 indicates identical distributions. Figure 2.8 displays the results of

applying this indicator to each year of data for the US and Spain. 95% simulated

con�dence bands are presented, along with the direct estimate of �.

The indicator of overlap/divergence, �, is used in several times in this dissertation.

We were unable to locate an analytic solution for produce con�dence estimates of this

measure, but some idea of variability presents complementary information and may

be of interest. To approximate the level of uncertainty that might be present in the

data, the following procedure has been used. 1) Birth counts are drawn randomly

with replacement 1000 times from the poission distribution, with the parameter �

equal to the observed birth count. 2) Fertility rates are re-calculated for males and

females by dividing the simulated births by exposures extracted from the HMD. 3)

sex-speci�c ASFR is interpolated linearly in age-steps of .01. 4) The 1000 interpolated

ASFR series are each scaled to sum to 1, and then compared (male vs. female)

using Equation 2.2, producing 1000 estimates of �. 5) The represented con�dence

bands are the .025 and .975 quantiles of the simulated � distribution. This is the

procedure used to represent uncertainty in all later instances of this statistic as well,

with modi�cations noted accordingly.

In the case of the US, con�dence bands are in fact very narrow. � has followed
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a wave pattern in both the US and Spain in the years studied here, though quite

di�erently between the two countries. US male and female fertility-rate distributions

are on the whole more similar than Spanish males and females. The US underwent

overall divergence until around 1980, then rates converged until around 2003, since

which time they have slowly begun to diverge again. Spanish rates converged until

1980, then began to diverge until the early 1990s, since which time they have begun

again to converge. If simplistic visual biases are to be given any weight, and without

consulting other sources of information, one might presume that male and female

rates in both countries will begin to diverge again over the next decade. However, it

is unknown at this time whether the longer pattern in this indicator would indeed be

sinusoidal14.

To reiterate, Figures 2.8 and 2.7 say nothing of relative levels of fertility between

males and females, but rather of distributions. These marginal distributions will

exert in
uence on two-sex divergence even if all other factors, including TFR, are

equal between males and females. This is because fertility will be weighted di�erently

along the sex-speci�c survival curves. The decomposition of the sex-gap in intrinsic

growth rates presented in a later section examines fertility e�ects both with and

without the shape and level e�ects separated.

14Births by age of mother and father are indeed available for a further three or so decades before
the start of this series, but these have not been converted to useable data by this author.
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Figure 2.8: Dissimilarity between male and female ASFR, 1969-2009, USA and Spain,
1975-2009
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2.2.1.2 The sex-ratio at birth

Clearly another major factor contributing to divergence between the single sex

male and female stable population models will be non-unity sex ratios at birth. Since

sex ratios at birth are typically greater than one, ceteris paribus, males are given a

greater l0. To a certain extent, this advantage in l0 is offset by greater attrition due

to excess male mortality. In this way, effective sex ratios in reproductive ages can be

ambiguously greater than or less than 1, depending both on the sex ratio at birth and

on mortality conditions. The single-sex Lotka Equation (2.1) does not incorporate a

third variable for the sex ratio at birth, since we assume that rates can be calculated
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separately by sex of birth. Equation (2.1) could be modi�ed to incorporate such a

variable, for instance, where & is the proportion male of births, SRB
1+SRB

{ 1 � & for

females { and ma changes to either fFa or fMa to become either male or female ASFR.

For males, Equation 2.1 changes to:

1 =

1∫
0

e�rapMa &af
M
a da (2.3)

The female version is the same, with superscripts changed tp M . In Equation (2.3),

the sex ratio at birth is not assumed to be constant over age of mother or father,

since SRB is known to decrease with age, although in the stable population the total

SRB does not change. Figure 2.9 demonstrates the age pattern (i.e., age of mother

or father) for the US and Spain in 1975.

The age pattern to sex ratio at birth is susceptible to random 
uctuations. How-

ever, since the age-speci�c vector &a is summed over age in (2.3), these 
uctuations

are smoothed out, and in fact results will be identical to those from (2.1). That there

is an age pattern to the sex ratio at birth makes evident that the total sex ratio at

birth is nothing more than the birth-weighted average of the age-speci�c sex ratios

at birth. Since in any projection, or virtual projection (as in the case of the stable

population model) the initial and �nal population structure will di�er, one should not

blindly assume or force a constant SRB valid for both the initial and stable states if

more information is available.15

Aside from random 
uctuations, especially evident in the oldest and youngest

ages, the age-pattern of SRB undergoes subtle changes over time. Further, there are

interactions in SRB by age of mother and age of father (the latter two also being

marginal distributions). These are aspects that may also be considered if models rely

upon fertility rates cross-classi�ed by age of mother and father. Therefore, to the

15This latter condition was the basis of the two-sex stable population model presented in Mitra
(1982, 1978, 1976), and is in the opinion of this author an unreasonable condition.
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Figure 2.9: Sex ratio at birth by age of progenitor, Spain and US, 1975
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extent that there is a trend over time in the SRB (see Figure 2.10), part of this will

owe to changes in the age-patterns of fertility.

Note that there has been a general downward trend in the SRB in both Spain

and the United States in the period studied. Spain has had a higher16 SRB, peaking

at over 1.09 in 1981,17 but falling ever since, �rst precipitously then gradually. Since

the population of Spain is smaller, the series is much more volatile, but the trend

16The di�erence between the US and Spain is also signi�cant, not shown.
17These high �gures for Spain agree with tabulations from other sources, such as the INE itself,

or the Human Mortality Database. The spike around 1980 does not re
ect the preceding historical
trend. There is ample evidence that such peaks in the SRB are typical around wartime(James, 2009).
The elevated levels of domestic terrorism and counter-terrorism throughout Spain covary similarly
with this particular peak, and I speculate that the same mechanisms that have been hypothesized
for wartime SRB may have been behind this anomaly.
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Figure 2.10: Sex ratio at birth, US, 1969-2009 and Spain, 1975-2009
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is nonetheless clear in both countries. It is particularly relevant to note that the

assumption of a constant SRB of 1.05 in population projections in Spain would have

been, and still would be, very far from observed values, and would a�ect the resulting

population structure. This is relevant not just for two-sex models,18 but also for

standard female-dominant projections, which treat males as a residual, splitting births

based on some assumption about the SRB.

This section is about dimorphism. The sex ratio at birth falls in the domain of

fertility, but is co-determined by unobserved mortality (not treated here) because one

of the determinants of the sex ratio at birth must be sex-di�erentials in fetal mortal-

18Two-sex models are, however, especially advised to take special care with the SRB.
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ity(Hassold et al., 1983). This variety of dimorphism is especially relevant for the ul-

timate sex structure of populations, since male and female survival curves are subject

to di�ering radices (starting populations). For single-sex stable population models,

the male growth rate will necessarily be given an extra boost by SRB-in
ated fertility

rates. This e�ect is separated in the decomposition presented in Section 2.2.2.

2.2.1.3 Mortality

Sexual dimorphism in mortality is of primary signi�cance to human reproduction.

Parents must survive in order to parent, and children must survive in order to become

parents. This later element, survival until reproductive ages, enters directly into

summary indicators such as the intrinsic growth rate, NRR, or Fisher's reproductive

value. Thus, di�erences in survival will also account for part of the gap between male

and female reproductivity, and are worth summarizing in light of sex-di�erences that

may contribute to sex divergence in population models.

Life expectancy at birth, e0, is a synthetic indicator interpreted as the average

years that would be lived by the members of a cohort of individuals if the mortality

conditions of the present year were to be repeated each year until extinction of the

cohort. Sexual dimorphism in vital rates is commonly summarized using the gap in

e0, in this case eF0 � eM0 , since female life expectancy tends to be higher. For the data

used in this dissertation, the gap is as displayed in Figure 2.11

The gap in Figure 2.11 is amenable to various kinds of decomposition. Such

analyses have been done for Spain by age and cause (Blanes Llorens , 2007, pp 217-

218 and 447). Blanes shows that over the period studied, the main cause-of-death

components to the gap in Spain were roughly the same over the period studied:

cancers, heart and circulatory disease, and lung disease. The hump in the middle

of Figure 2.11 for Spain is due to male excess mortality from external causes, tra�c

accidents, \other malignant tumors", and AIDs, but it has since declined. The gap
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Figure 2.11: Gap between female and male life expectancy. USA, 1969-2010 and
Spain, 1975-2009.

Year

e0
F − e0

M

1970 1975 1980 1985 1990 1995 2000 2005 2010
4.5

5

5.5

6

6.5

7

7.5

8

gap USA

gap ES

component due to congenital conditions has also decreased steadily over the entire

period studied. Ages 40-80 account for the majority of the gap over the whole period.

For the US, the components to the sex-gap in e0 have also broken down rather

consistently over the period studied.19 Most of the sex gap over the period studied is

due to mortality di�erences between the ages 50 and 80. Until 1980 the age-pattern

was more compact and centered on ages 60-70, but this hump has since then spread

19We have done our own age-cause decomposition of the components to the di�erence in life
expectancy at birth using the method of Andreev et al. (2002), but we will not occupy too much space
with this in the dissertation. This method requires survival functions and age-speci�c remaining life
expectancies, as well as a matrix of the age-cause speci�c rates for males and females. All of these
inputs were retrieved from the Human Mortality Database (HMD) for the years 1970, 1980, 1990,
2000 and 2008. Cause of death data are at the time of this writing not yet publicly released by the
HMD. Thanks to Magali Barbieri for providing me with these data in advance for purposes of this
decomposition. These data are not provided with the dissertation, but requests may be directed to
the author.
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out over a wider age-range. The male penalty in infant mortality has decreased over

this period, but has not changed since 2000. The speci�c causes that penalize males

in comparison to females are heart disease, which explained a full three years of the

sex-gap in 1970, but which dropped steadily to 1.5 years in 2008. External causes

have fallen steadily from 1.8 years in 1970 to 1.4 years in 2008. Malignannt neoplasms

climbed from 0.8 years of the gap in 1970 to 1.2 in 1990, but have since fallen back

to around 0.9 years of penalty.

This is all to say that the sex di�erences in life expectancy at birth are due to mor-

tality di�erences over particular causes of death and age-ranges. These components

break down di�erently over time according to population health, technology, interven-

tions and other factors. The contribution of these particular causes and age-groups

to sex di�erences in overall reproductivity are complex, dynamic, and sometimes con-

siderable. In Section 2.2.2 we decompose the sex-gap in intrinsic growth rates, r,

including a mortality component, but in that instance we do not break down vital

rate components further into particular causes or age-groups.

Life expectancy at birth does not provide all of the information that would help

us break down the contribution of mortality to sex-di�erences in reproductivity. Also

relevant to reproduction is the shape of mortality, since reproduction happens in

particular ages. e0 is just the sum of the survival function when l0 = 1, where the

negative unit change in the survival function gives the death distribution, dx, and the

ratio of these gives the mortality hazard, �x. �x does not depend on what happens

in other ages, whereas lx and dx do. Thus, the most informative age-decomposition

of e0 should be based on di�erences in �x, whereas the most informative comparison

of the overall shape of survival as it might pertain to the di�erences in measures

of reproduction will be of overlap in the lx or dx distributions. We examine sex-

di�erences in the deaths distribution using dx simply because it already sums to

1, which makes for simpler use of Equation (2.2). Thus the proportion of the two
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distributions that is not in common, θ, is displayed in Figure 2.12.

Figure 2.12: Difference coefficient between male and female death distributions. USA,
1969-2010 and Spain, 1975-2009.
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From Figure 2.12 we see that for the US, as the sex-specific dx distributions

have approached each other the sex-gap in e0 from the previous Figure 2.11 has also

narrowed. Likewise, for Spain, these two trends have been roughly, but not entirely,

synchronized. The remainder of the gap, the part not explained by the trend in

Figure 2.12, will be due to the particular ages in which dx-differences were observed,

as e0 may also be conceived of as the dx-weighted average of the ages in which persons

died. We will not investigate further into the age contributions that have led to

this gap, but will be content for now to note that, in general, the contribution of
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mortality to the magnitude of the two-sex problem in the US has declined over the

period studied here, while for Spain it tended to increase into the 1990s and has since

tapered o�. In the following we conduct a proper decomposition of the gap in intrinsic

growth rates that places the present and preceding sections on dimorphism in vital

rates into context.

2.2.2 Decomposition

The main aspects of vital rates that contribute to the two-sex problem have by

now been illustrated, as has the maginitude of the problem, both in terms of intrinsic

growth rates and incongruous predictions of births. The primary factors contributing

to di�erences in r have been indicated as mortality, fertility, and the sex ratio at birth.

This section takes the extra step of segmenting and quantifying di�erences between

the intrinsic growth rates rm and rf into consituent parts for fertility, mortality, and

the sex ratio at birth. Breaking the components to the gap, a pure data exercise,

enables us to visualize how the two-sex problem (in terms of r) has evolved over time,

and lends to a better understanding of why we observe the gap in the �rst place.

The exercise carried out is as follows. Equation (2.3) has been functionalized

and applied to the US and Spanish data for males and females, with r estimated

using the method of Coale (1957). The inputs to the function are the mortality

hazard, �a, from which the survival function, pa, is derived internally using the Human

Mortality Database Methods Protocol (Wilmoth et al., 2007),20 ASFR, fa, and &a {

the proportion of fertility by age that is girls for females, boys for males. Each of

these inputs is separate for males and females, and thus Equation (2.3) is evaluated

20Indeed, it makes no di�erence how mortality is speci�ed, as the sum of the components that
contribute to the sex gap in r will always be the same. The age distribution of the mortality
component of the decomposition will, however, depend on whether the mortality input is speci�ed
as �x, dx, lx, or directly as Lx (the discretized Lotka formula requires lifetable exposures, Lx,
instead of the lifetable survival function, lx). While we do not display the age pattern of any of
the decomposition components, decomposing based on mux would be the most comparable in this
instance, since the hazards in each age are independent of other ages, which is not the case for dx,
lx, or Lx.
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twice, once for males and again for females. Each evaluation will therefore produce

estimates of the year t instrinsic growth rates rm and rf , and it is the gap between

these (rm - rf ) that we wish to decompose.

The decomposition itself is performed using the pseudo-continuous approximation

outlined in Horiuchi et al. (2008). This method allows for arbitrary reduction of

error in the decomposition, and virtually arbitarary speci�cation of the function itself

(here our Equation (2.3) but with pa a function of �a) as well as the number and

variety of parameters the function assumes (here �a, fa, and &a). This is ideal for

the present case, since the functional form of the Lotka equation decomposed here

is somewhat novel, and speci�cation of a unique decomposition formula would be

potentially tedious. Output from the decomposition is given as vectors of age-speci�c

contributions from sex-di�erences in �a, fa, and &a to the observed gap, rm - rf . The

values of these age-speci�c contributions to the observed gap may be either negative

or positive, but always sum to the observed gap, with a small arbitrary error.21 We

do not explore the age-patterns to the contributions in rm - rf , but rather sum the

age-vectors for each of the three components, yielding a total of three components

to the sex gap in r: one for mortality, another for fertility, and a third for the sex

ratio at birth itself. The exercise is repeated for each year of data and summarized

in Figures 2.13 and 2.14.

Positive values in Figures 2.13 and 2.14 re
ect component-speci�c contributions

acting in the direction of rm > rf , while negative values act in the direction of

rm < rf . The sum of the three components in each year is equal to the total observed

gap.

These results o�er lessons. The sex ratio at birth, as expected, consistently acts

in favor of rm > rf . While this e�ect varies subtly over time, decreasing on average

21In the present case, we have ensured that the error of decomposition is negligible and trivial.
This is indeed computationally intensive, but leaves no room for doubt in the interpretation of
results.
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in both countries, it is rather consistent when compared to fertility and mortality.

Just the reverse, and also as expected, mortality has consistently worked in favor of

rm < rf . This e�ect has tended to decline gradually over time in both countries

studied.22

The fertility component sheds more light on the observed gap than the other two

factors, as its direction of in
uence has been ambiguous, almost sinusoidal in nature.

One notes that in Spain, fertility contributed to rm > rf in the same years that the

secular trend in fertility dropped to its lowest levels (as measured, say, by the trend

in TFR in Figure 2.5). In the US, fertility contributed to rm > rf until 1987, and

has worked in favor of females since then. The current trend would predict a neutral

e�ect of fertility in the US by around 2020. Indeed male and female fertility rates

are calculated on the basis of the same total number of births, and thus di�erences

in rates are due primarily to the interaction between the fertility distribution and

di�erences in exposure23. One notes that the decomposition could in this way continue

ad in�nitum, since observed exposures are the result of past fertility, mortality and

sex ratios at birth. Indeed, an interactive two-sex model would also have fertility

rates themselves as a function of exposures.

One further level of complexity may with little e�ort be added to the present

excercise, by splitting the fa (ASFR) into two components: one for the shape over

age �a and another for the overall level, � . In this case, �a is the fertility pdf and �

is TFR. ��a = fa = ASFR. In this way, �a is understood as indicative of di�erences

between males and females in the distribution over age of fertility. This will include

e�ects from di�erences in the reproductive span as well as di�erences in the mean

and other parts of the distribution. � (TFR) is now independent of the shape of

22The author o�ers no prediction about whether or not we will one day observe a crossover in
the mortality component to working in favor of rm > rf , but such an observation would indeed be
consistent with the direction of change observed over the period studied in both the US and Spain.

23i.e., if one measures the level of fertility in terms of total births, necessarily shared between
males and females.
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fertility and benchmarks the overall intensity of fertilty. We then repeat the decom-

position exercise, breaking the gap in r into four components. The sex ratio at birth

and mortality e�ects will be identical to the prior decomposition, and fertility will

divide cleanly into the shape component,�a, and the level component, � . Results are

displayed in a similar fashion in Figures 2.15 and 2.16.

Figures 2.15 and 2.16 demonstrate that fertility e�ects are more complex than

meets the eye. In both countries, the e�ects of the shape of fertility and level of

fertility were at times countervailing. The e�ect due to the shape of fertility was in

several years of greater maginitude than that due to the level of fertility, especially for

the Spanish population { though TFR, the overall level of fertility, tended to be more

determinant. One notes that most of the major changes in fertility in Figure 2.13

were evidently due to TFR. For the Spanish population, fertility e�ects were more

evenly split between shape and level components, though both have changed sign.
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Figure 2.13: Components to difference in single-sex intrinsic growth rates (rm − rf ),
US, 1969-2009
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Figure 2.14: Components to difference in single-sex intrinsic growth rates (rm − rf ),
Spain, 1975-2009
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Figure 2.15: Addittional decomposition into the components to difference in single-sex
intrinsic growth rates (rm − rf ), US, 1969-2009.
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Figure 2.16: Addittional decomposition into the components to difference in single-sex
intrinsic growth rates (rm − rf ), Spain, 1975-2009.
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From these trends several things should be clear:

• There are factors that work in favor of rm > rf and vice versa, and others that

are ambiguous.

• The balance of these factors is dynamic.

• The sign of the sex gap in r is ambiguous.

• The often-observed male advantage in r is not necessary, though males have a

strong positive bias in the form of the sex ratio at birth.

• Fertility is the most volatile of the three factors represented here, and it is the

main factor that changes the sign of the gap.

• Part of the fertility e�ects is due to di�erences in the distribution of fertility

over age and part is due to the overall level. Both of these components are also

of ambiguous sign

• These two fertility components identi�ed are potentially of similar magnitude

and they do not necessarily change in sync.

This section should make clear why fertility (sometimes via marriage) functions

have been given the overwhelming amount of attention in discussions of the two-

sex problem. It is not consistently the case that fertility levels are di�erentiated from

fertility shapes, and this may perhaps be deserving of attention. In any case, a two-sex

model of population renewal must account for (balance) these three factors in some

way, so as to produce a consistent and uni�ed account of population reproductivity.

One may rightly notice that we have not considered the interaction of age in our

current treatment of the sex gap in r. Given their inconsistent behavior, fertility

data are evidently in need of more exploration in this direction than either mortality

dimorphism or the sex ratio at birth. The following section provides an empirical

47



summary and exploration of what kinds of age interactions may be present in fertility

data. The results to follow are intended to invite re
ection, and are not quanti�ed in

a further decomposition.

2.3 Secondary factors contributing to the two-sex problem

Three factors that virtually always require accounting for in two-sex models have

thus far been described and quanti�ed for the two case-studies of Spain and the

United States: fertility, mortality (survival), and the sex ratio at birth. The degree

to which these factors are pertinent also depends upon model speci�cation. The

previous decomposition exercise was based on a particular model speci�cation { the

most simple design that is consistent with established stable population theory and

that incorporates our factors of interest.

Many proposed two-sex models make assumptions about age mixing between

mates as well as inter-age competition for mates. Let us loosely label such modeling

considerations under the umbrella concept of age-heterogamy. The label is loose be-

cause the present discussion does not deal with nuptiality, but rather directly with

fertility. The author prefers to link the two concepts (fertility and nuptiality) via

the less-binding concept of mating. Nuptiality, for this author, serves as a statistical

proxy for mating, and fertility is the result of presumed mating. No statistical analysis

on the basis of marriage data or models that incorporate marriage as an intermediate

state are o�ered, per se, despite the fact that marriage and two-sex models have been

co-developed and for some are synonyms. To the extent that mating or *gamy enter

into discussion in the paragraphs that follow, it is only via inference from observed

fertility patterns or as a rhetorical aid in interpreting observed fertility patterns.

Models may incorporate patterns of heterogamy along a broad spectrum ranging

from rigid, assuming a �xed age separation between mates { as in Cabré (1993),

Karmel (1947) or Akers (1967), typically two or three years { to 
exible, which
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reaches its apogee in agent-based modeling.24 Intermediate model varieties include

those of Das Gupta (e.g. 1972) or Schoen (1981), which include either �xed matrices of

age combination distributions or a standard functional forms. Many model varieties

follow a similar strategy.

The bene�t to incorporating assumptions about age combinations of potential

mates is that one need no longer assume that the marginal distributions of male

and female fertility are constant, but rather that they adjust in some way to the

relative abundance of mates in di�erent age-classes and/or to competition from other

ages. Models can assure that male and female marginal rates are in agreement to the

extent that the same numbers of births are always predicted, but shift the compromise

(if any) between male and female rates to the less well-scrutinized arena of male-

female joint-age-speci�c rates. Note that in this case, the model still holds something

constant: either a particular age-combination pattern, an exposure-dependant mean

function between constant sex-speci�c joint-age-speci�c rates, or some other governing

rule that �nds compromise. Marginal fertility distributions under such models {

models that incorporate feedback into rates from changing population stocks { as

the weighted average of joint-age-speci�c rates, may change over time, but still be

consistent with the condition of constancy of stable populations.

Two-sex models that contain such feedback are capable of either approaching sta-

bility in the same sense as single-sex models, at which time marginal distributions

indeed become constant, or entering into a �xed cycle or a cycle that gradually di-

minishes with time (Chung , 1994). This author conceives of �xed cycles as another

form of stability, dynamic stability. The present thesis does investigate this issue,

that of feedback cycles, further, nor does it attempt to quantify the potential a�ects

of the exploratory analysis of age-matching that follows. It is hoped that the present

24The author claims this not because ABMs are more sophisticated, but because aggregate-level
patterns of mating in such models are the result of potentially simple individual-level actions, which
may not necessarily follow an easily de�nable functional form or distribution.
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section will provide occasion for empirically-based re
ection on the appropriateness

of constant age-heterogamy assumptions in two-sex models. We will see that patterns

of age heterogamy have at times undergone sharp changes, and at other times held

constant.

2.3.1 Heterogamy

The age combination of the male and female fertility schedules from any given

year varies greatly from the distribution that would be expected if age of mother and

age of father were selected randomly according to the two single-sex distributions.

The expected cross-classi�ed age distribution E(B(a; a0)), which we would observe

on average if age-mixing were random, is de�ned as:

E [Ba;a0 ] =
BaBa0∫ �

a=�

∫ �
a0�
Ba;a0 da da0

(2.4)

where a indexes age of father and a0 indexes age of mother.

Visual inspection of surfaces of the observed and expected birth counts in Fig-

ure 2.17 con�rms they are indeed quite di�erent: the observed surface (left) shows a

stronger homogamy-hypergamy pattern than the expected surface (right). How simi-

lar are the observed and association-free Ba;a0 distributions to each other? Again, we

can use a dissimilarity index, and re-apply Equation 2.2 to the present data, where

f1 is Ba;a0 and f2 is E(Ba;a0), both scaled to sum to 1. � is constrained to fall between

0 and 1, where 1 indicates that the two distributions are separate and 0 indicates

identical distributions. In 1970 USA, � was equal to 0:47, a value that could be un-

derstood to stand for the degree of residual preference. Precisely, it is the proportion

of these two distributions that is not shared. 47% is rather high { it means that

the 1970 heterogamy pattern is far from random. If we further decide that marginal

age-distributions are not to be taken for granted, then 47% is a lower limit to the

departure from randomness.
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Figure 2.17: Observed versus expected joint age distribution of parents, 1970, USA
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Note that “ age-preference” is an imprecise label for the variety of preferences that

may actually lead to observed age-combination biases. For instance, preferences may

reflect a third variable (e.g., socioeconomic in nature) that covaries with age differently

for the two sexes, so as to give the appearance of age preferences. Furthermore, as

Bergstrom and Lam (1994) demonstrate, pair matching may just as easily occur as a

function of individual preferences for event (mating, marriage) timing coupled with

relative availability, which follows partly from cohort size. This is consistent with the

argument that age preferences for mates are highly adaptive in Bhrolchain (2001).

Indeed, Esteve, Albert, Clara Cortina, and Anna Cabŕe (2009) conclude that observed

heterogramy patterns in Spain have been codetermined by changing age-preferences.

Despite this ambiguity in mechanisms behind age combination patterns, one can

create a rough index of the strength of hypergamy or homogamy, based on the matrices

51



represented in Figure 2.17. Giving equal reproductive bounds to the birth count

matrix Ba;a0 makes a square matrix, from which we can separate the upper and lower

triangles. Here, the lower triangle, L, of Ba;a0 contains births due to age-hypergamous

(father's age > mother's age) parents and the upper triangle U contains births due

to age-hypogamous parents. Thus, a simple measure of total hypergamy, Ĥ, can be

taken as a ratio of the total births in L versus U , or in shorthand
Ba>a0
Ba<a0

, excluding

single-age exact homogamy on the matrix diagonal. This is the gender asymmetry

ratio from Esteve, Albert, Clara Cortina, and Anna Cabré (2009).

Ĥ =

∑
L∑
U

(2.5)

In this case, the Ĥ will be calculated for the observed and expected birth matrices.

US data from 1970 yields an observed Ĥ of 7:37 versus an expected E(Ĥ) of 1:75.

That the later value is greater than 1 may be surprising, given that the E(Ba;a0) is

purged of association. It is due, as mentioned above, to di�erences in the shape and

span of male and female single-sex fertility. For reference, I will call this \structural"

or \latent" hypergamy, as opposed to the residual, or excess hypergamy, which is

the ratio of observed (total) hypergamy to structural hypergamy. For 1970 US data,

excess hypergamy is 4:21 times higher than structural hypergamy. While these types

of values do not enter, per se, into any of the thus-far mentioned two-sex models,

they characterize the population in a basic way, and aid in understanding macro-level

patterns.

Let us then calculate two times series, one for total di�erence, Figure 2.18, 25 and

another for our three measures of hypergamy, Figure 2.19. The joint age-distributions

for both countries were far from being association-free over the duration of the period

studied. Since around 1979, Spain has undergone a roughly constant approach toward

what would be the expected distribution of births, random with respect to age of

2595% con�dence bands are produced using the method from Figure 2.8
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Figure 2.18: Departure from association-free joint distribution. USA, 1969-2010 and
Spain, 1975-2009.
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partner. Since the decline in the departure from randomness in Spain may also be

seen as closing a gap, one could just as easily transform the data as such and view

the secular change as one of an accelerated approach toward randomness.26 The US

underwent a similar approach toward randomness from 1969 until around 1985, since

which time the trend has gradually moved upward. In recent years, the departure

from randomness in the US has been considerably higher than in Spain.

Developments with respect to our rough indicators of hypergamy have been more

consistent between the two countries, both of which have undergone nearly monotonic

declines27 in all three hypergamy indicators, save for the US since the mid 1990s,

which has held constant. The greatest drivers of the larger downward trend have

26i.e., One could see the acceleration by taking the logit of the trend in θ shown.
27Or perhaps more clearly, monotonic non-increases.
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been declines in excess hypergamy: those more imaginably a result of behavior and

preference. In both countries, excess hypergamy is greater than latent hypergamy,

though it would appear that this observation may not hold forever. The author

speculates that we may one day see a crossover, with latent hypergamy { that which

is more or less a product of sex-di�erences in fertility distributions, and which owes in

part to evolved di�erences in the reproductive span { obtaining a greater proportion

of total hypergamy than excess hypergamy. In essence, the downward trend for Spain

con�rms the observations of Esteve, Albert, Clara Cortina, and Anna Cabré (2009)

about the recent decrease in age hypergamy for Spain.28

Figure 2.19: Strength of hypergamy, Bx>y
Bx<y

, total, structural and excess. USA, 1969-

2010 and Spain, 1975-2009

1970 1975 1980 1985 1990 1995 2000 2005 2010
0

1

2

3

4

5

6

7

8

structural hypergamy

excess hypergamy

total observed hypergamy

Bx>y

Bx<y

US

US

US

ES

ES

ES

28One di�erence, however, is that Esteve, Albert, Clara Cortina, and Anna Cabré (2009) examines
marriage patterns, while we examine fertility patterns, though these two are expected to covary.
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These trends, of substantive interest in their own right, will also be of interest

to the designer of two-sex reproductive models that incorporate assumptions about

age-mixing. In order to avoid overly restrictive assumptions about male and female

marginal fertility distributions, many model varieties make use of information about

births cross-tabulated by ages of both parents, assuming that some aspect of this

distribution (rather than the single-sex marginal distributions) is constant in time.

This assumption will be valid only to the extent that bivariate age patterns in fertility

rates are not codetermined by changing population structure and preferences. For this

reason we have illustrated some aspects of the changes observed in these underlying

distributions over time.

Models have been known to make all manner of assumptions, from the simplicity

of �xed age-matching to sophisticated combinations of age-preferences interacting

with availability conditions. Even the latent hypergamy indicator of Figure 2.19 does

not contain information about how much of observed change is due to preference, say,

in the age at childbearing, or to relations between males and females with respect to

the timing of childbirth. Nonetheless, it should be clear that the joint distribution

with respect to age of progenitor is far from random and often in a state of 
ux.

This observation is a motivation behind certain non-linear (population-dependent)

extensions to two-sex solutions, as well as for separate preference functions. In this

dissertation, we do not explore solutions that involve separate preference functions,

but in this section we have to a certain extent shown why this modeling choice can be

attractive { Change is at times large enough to be worth modeling in its own right.

2.4 Conclusions on the magnitude of the two-sex problem

The purpose of this chapter was to provide intuition into the nature of the two-

sex problem by means of data-driven illustration. Males and females di�er in the

age patterns and levels of all demographic phenomena that are commonly used to
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gauge population reproductivity. These di�erences may partially re
ect di�erences

in the evolutionary optimization of the life course, such as the sex ratio at birth and

male excess mortality o�setting each other. The magnitude of the e�ect of these

two factors varies over time, but the sign has proven consistent, at least for the two

populations explored. Fertility e�ects have been shown to be far less consistent.

While di�erences in the reproductive span, the age-bounds to reproduction, may also

be attributed to the relatively slow evolution of the life course, di�erent locations

on the respective male and female marginal distributions are evidently malleable in

contemporary societies. Thus, we may observe inconsistent in
uence from the shape

of fertility on male versus female growth rates { this, we note, was especially the

case for the Spanish population. Further, di�erences in the overall level of fertility,

which are separable from shape e�ects, will owe primarily to di�erences in male and

female exposure levels, and hence will vary from year to year depending on population

structure, which is itself an outcome of all manner of past demographic phenomena.

It is for this reason that fertility (marriage) balancing has been the primary focus

of methods intended to account for the two-sex problem in demography. Fertility is

the source of new generations in iterative population models, i.e., the starting point

in a population model. One may conceivably, and will virtually always in practice,

conceive of male and female mortality as mutually exclusive forces. Therefore, once

a new cohort is produced in a population model, the rest is taken care of by the

respective sex-speci�c mortality schedules. That is to say, no balancing is necessary

for mortality schedules because we have no obligation to maintain any particular

population proportion via mortality. This leaves the sex ratio at birth and fertility to

be thoughtfully dealt with in models, and this is the topic of the following chapter.
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Chapter III

Modeling approaches to the two-sex problem

The purpose of models is not to �t data but to sharpen questions { Samuel
Karlin29

An assessment of the magnitude and vital rate components to the two-sex problem

in age-structured populations was presented in the previous chapter for the cases of

the US and Spanish populations. That a fundamental discrepancy exists between the

male and female single-sex models was already empirically demonstrated by Kuczyn-

ski (1932) in the early 1930s, and formally introduced to the discipline of demography

in the late 1940s by Karmel (1947, 1948c), although other demographers at that time

were in some sense aware of the problem (Quensel , 1941; Vincent , 1946). Since then,

interest has continued in waves. It is the case that the discrepancy thus far has no

real solution in the sense of a necessarily true solution. Instead what is meant by a

two-sex solution is a method to balance male and female vital rates so as to produce

the same estimate of births (or marriages), or else the same structured stable popula-

tion. This is perhaps part of the reason why interest has continued { there are many

ways in which this goal might be achieved. All methods proposed have incurred some

degree of trade-o� between convenience, simplicity, realistic design, and results that

29Quote from the 11th annual R. A. Fisher Memorial Lecture given at the Royal Society of London
on April 20th, 1983.
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are consistent with expectations.

The point of departure for the goal in formal demography of balancing male and

female rates is the following. For the single-sex case { the classic Lotka model captured

in Equation (2.1) { we have a coherent model that works for each sex separately

but produces undesirable results when modeled in parallel for both sexes. What

modi�cations must we introduce to the model, such that a single estimate of the

intrinsic growth rate, r, is produced while maintaining a reasonable sex ratio (both

total sex ratio and the sex ratio at birth) and maintaining constant male and female

vital rates?

An alternative formulation could be summarized in terms of producing a single

prediction of births in future projected years. Namely, what changes should we admit

to the cohort component projection method such that the model accepts both male

and female inputs but produces consistent output in the form of single estimates of

male and female births?

Classifying two-sex models into families of models that share similar qualities is

non-trivial. We present an imperfectly arranged subset of models that have thus far

appeared in the literature, focusing primarily on models related to those that we

modify later in this dissertation for the case of population structured by remaining

years of life. These include models amenable to using single-age discrete aggregate

data, which do not require a global optimization of a large number of parameters, and

which do not include marital or other states. In other words, the models presented

here exclude most recent advances in the two-sex modeling per se, which have been

in the areas of agent- based models and di�erential equations. That is to say, we

do not delve into the interior workings of mating or marriage markets or individual

interactions, or into the epidemiological or econometric interests in the two-sex prob-

lem in general. Work is kept in the domain of classical aggregate demography, and

models easily summarized in terms of uni�ed renewal equations. In this sense the
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work of this chapter is not cutting-edge, but rather one of standardizing, at times

translating models from their original context to �t ours. In all cases, we attempt to

give step-by-step instructions for how to calculate the two-sex intrinsic growth rate,

r, to ensure reproducibility of results.

We begin by classifying into a single group those two-sex models whose constituent

parts have essentially been the male and female single-sex models { i.e., those models

that have adhered to the concept of single-sex fertility. In this group we could �rst

place the exceedingly simple solution that consists in taking some mean of the male

and female single-sex intrinsic growth rates to produce a both-sex r, without digging

into the workings of the model itself (e.g., Kuczynski , 1932). We will discuss two

models that fall into this class, one parsimonious and e�ective, another intricate.

Both models yield results in line with expectations, but su�er particular drawbacks.

The �rst model, which we brie
y discuss, is that which appeared in Pollard (1948).

This is followed by a longer explanation of the less intuitive model in Mitra (1978).

Neither of these two models is later translated to the remaining-years perspective.

Next, we brie
y explain a linear model that makes use of a constant dominance

parameter { a weighted mean { to regulate the in
uence of male and female vital rates

on intrinsic growth rates. In this model, both males and females produce o�spring of

both sexes, thereby removing any additional complications in sex ratios implied by

the use of single-sex fertility rates. This model is translated to the remaining-years

perspective later in this dissertation.

Third, we present two more models, Das Gupta (1978a) and Schoen (1981) (and

mention several others) that make use of fertility rates cross-classi�ed by age of mother

and age of father. Fourth, we present an iterative model that also relies on age cross-

classi�ed fertility information, but which has some more-desirable properties, namely

the iterative proportional �tting technique �rst introduced to the two-sex problem

by McFarland (1975). Some results are compared and assessed in light of the axioms
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presented previously. Finally, a brief survey of methods not covered at length closes

the chapter.

3.1 Primary axioms

The ideal functional form of a two-sex solution cannot be empirically determined.

This is because fertility is always undergoing secular changes, to the e�ect that one

cannot simply calibrate an ideal mean function (if a mean function were the correct

choice) net of outright both-sex fertility change. This we observe above all with the

Spanish data used in this dissertation: from 1975 until the mid 1990s, fertility levels

dropped so rapidly that in most cases the year t+1 birth count fell below what would

have been predicted by either of the year t male or female rates { despite there having

been a wide the gap between male and female total fertility rates in those years.

Even in less extreme situations, where the year t + 1 birth count is intermediate

to what would have been predicted by the male and female year t rates, one is unable

to separate the e�ects of relative changes in male versus female exposure from simple

changes in rates. That is to say, if there is some push and pull between male and

female rates, this cannot be measured if rates on the whole are either rising or falling

{ just as it is di�cult to measure the net rising and falling of rates when there is

feedback and separation between male and female rates. Even if one had a very large

amount of data conformable to this problem, and an appropriate statistical technique

so as to mete out these di�erences and estimate a function that could separate and

capture the e�ects of our imagined push and pull between male and female rates,30

it would be easy to suppose that this ideal function might itself change according to

certain conditions or certain periods.

This empirical obstacle has led demographers to devise a set of axioms, necessary

or desired characteristics, by which the ideal two-sex fertility (or marriage) function

30Alho et al. (2000) come close to this ideal.
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should abide in order to conform with our expectations. Here we enumerate all such

axioms located in the literature before brie
y discussing them in turn. Here, M()

is any function that determines the both-sex rate using male, Pm, and female, P f ,

exposures as inputs. These exposures may be classi�ed by some other variable, such

as age, but subscripts are ignored here unless pertinent.

Non-negativity: M(Pm; P f ) � 0. Births (marriages) must be strictly non-negative

and de�ned for all Pm and P f (which are also non-negative).

Availability: M(Pm; P f ) = 0 if Pm = 0 or P f = 0. Members of both sexes must

be present in order for there to be a non-zero positive rate.

Homogeneity: kM(Pm; P f ) = M(kPm; kP f ). Equal changes in the supply of males

and females must lead to an equal change in the number of births (marriages).

Monotonicity: for k > 1, M(kPm; P f ) �M(Pm; P f ) (and vice versa). If the supply

of one sex increases while the other sex is held constant, the number of births

(marriages) cannot decrease.

Symmetry: for Pm = P f , M(kPm; P f ) = M(Pm; kP f ).

Competition: if exposure in age x for males is increased by some factor, but all

other male and female ages are held constant, monotonicity applies to age x of

males, but rates for male ages < x or > x can only decrease or stay the same.

Subsitution: The size of competition e�ects varies directly with age-proximity to x

among males. For instance, males of age 24 are closer substitutes for males of

age 25 than are males of age 20.

Bracketing: M(Pm; P f ) > min(Fm; F f ) and M(Pm; P f ) < max(Fm; F f ). The

both-sex rate must be intermediate to the single-sex rates.
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Proportionality in the extreme: in situations of very extreme sex-ratio imbal-

ance, changes in the amount of the minority sex should be re
ected proportion-

ately in the two-sex rate.

Some of these axioms are now be brie
y re
ected upon in turn.

Availability: This is the most elemental axiom, as it essentially states a truism: if

one sex is absent, there can be no reproduction in a species that reproduces sexually.

For the sake of philosophical completeness, we state the following: 1) assisted repro-

duction requires both sexes, so this is no retort; 2) at present, technology that would

negate this axiom, human parthenogenesis, is not fully developed, although there

have been recent advances (Revazova et al., 2007). If and when technology would

permit asexual human reproduction, there will be legal hurdles, costs, and apoption

lag. That is to say, potential anecdotes that would negate this axiom will in any case

not a�ect fertility rates in a signi�cant way within the time horizons that demogra-

phers currently project. This is not a tongue-in-cheek observation, as technology in

general is known to a�ect fertility in myriad ways. For instance, in vitro fertilization

and other forms of assisted reproduction have had noticeable e�ects in the fertility

and sex ratio at birth from particular age groups.

Homogeneity: This author �nds the axiom of homogeneity to be on the whole

harmless, but not necessarily true. Homogeneity essentially states that there are no

scaling e�ects. It is easy to imagine that population size will constrain or determine

much of what happens within populations. This is especially so when we think in

terms of social organization, contact opportunities, and the countless other structural

factors that may a�ect the practice of mating and by extension fertility. Population

size has been given more attention in non-human ecology (Donalson and Nisbet , 1999)

than in human demography, where considerations of population size have been framed
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primarily in terms of carrying-capacities (see e.g., Cohen, 1995; Hopfenberg , 2003).

This author is only aware of scaling in demographic process when studied as complex

systems via agent-based modeling (ABM) (e.g., Bruch and Narayan, 2010). While

ABMs have been used to studying fertility and marriage (Billari et al., 2002), indirect

scaling e�ects in such models have not been explicitly studied, nor have scaling e�ects

been introduced explicitly.

Monotonicity: This may seem intuitive, but if viewed from a sociological stand-

point it seems plausible that increased competition could actually lead to a decrease in

total births (marriages) via di�erent mechansisms that we brie
y hash out. Imagine

a more complex model wherein individuals must apportion time (e�ort, resources)

between mate search costs and competition. In the case of an increase in males

while holding females constant, increased competition between males in mate selec-

tion could scale non-linearly to{ and o�set{ the standard predicted increase in matings

that would result from increased male pressure on the market. In a di�erent scenario,

females faced with abundant potential mates may actually decrease their search ef-

forts and postpone the mate search until a later time, thereby acting to supress rates.

Were this later e�ect present in the model, the e�ect of increases in one sex would

be ambiguous, as it would depend on the relative forces of male pressure and female

deprioritization. In yet another model scenario, a proportion of males faced with

increased competition may indeed cease to compete, and remove themselves from the

market, thereby decreasing pressure from the side of abundant males. Other similar

e�ects may be dreamed up wherein the results of an increase in only one sex could

be complex and counterintuitive.

None of the complex model scenarios is particularly amenable to inclusion in a

practical analytic model of mating / marriage / fertility markets. However, in indi-

cating such potential countervailing forces { all reasonable in the mind of this author
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{ one might at least question the necessity of holding monotonicity as axiomatic in

the sense of a functional necessity- a criterion by which the adequacy of a model may

be judged.

Symmetry: It appears that symmetry, treated as an axiom, is also inappropriate.

Males and females di�er not only with respect to vital rates, but with respect to mate

preferences and behavior (Buss , 1989). There is also evidence for variation in these

di�erences by group size (Fisman et al., 2006), which plays into the previous axiom of

monotonicity. Clearly, if males and females have di�erent preferences and also react

di�erently to di�erences in group size, we should expect di�erent outcomes from

hypothetical sex-complementary compositional changes in the mating market. For

this reason we may also conclude that symmetry, though likely to be a characteristic

of the functional form assigned to the male-female dependant fertility (marriage)

function, ought not be given the status of an axiomatic requirement for a good and

proper model. That the functional forms often used for marriage and fertlity are

often symmetric with respect to the sexes need not be a drawback, but we ought not

grant this characteristic post hoc status as an axiom.

Competition: It seems reasonable that, holding mate supply constant, increases in

matings in age x either decrease or have no e�ect on ages close to x of the same sex.

Some two-sex models have accounted for this axiom (Henry , 1972; McFarland , 1975;

Choo and Siow , 2006), sometimes via explicit preference functions (Parlett , 1972;

Pollard and Hohn, 1993), but many have not. These models are considerably more

complex to implement than the alternatives. It is unclear to this author whether this

axiom should be treated as a requirement or simply a desirable property.

Substitution: In the case of inter-age (or inter-group) competition for mates, it is

intuitive that, since age can be thought of as continuous, competition e�ects should
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vary inversely in magnitude as a function of distance to the age that hypothetically

experiences a sudden change in e�ective population. In the case that explicit prefer-

ence functions are used, this axiom is already dealt with, and Choo and Siow (2006)

also have this characteristic. Keilman (1999) detected only small e�ects for inter-age

competition using data from Norway.

Bracketing: The interpretation of this axiom depends on context. In the �rst

instance, it states that the two-sex instrinsic growth rate, r, must fall between the

male and female single-sex intrinsic growth rates, rm, rf , respectively. Many authors

have treated this axiom as a requirement (Pollard , 1948; Coale, 1972; Das Gupta,

1976; Mitra, 1978), others have argued otherwise (Das Gupta, 1973; Schoen, 1981),

and indeed it has even been proven an unreasonable condition (Yellin and Samuelson,

1977). This author agrees that the single-sex growth parameters will not serve as

two-sex bounds because they are calculated in unreasonable isolation { namely, each

constrained by its own sex-speci�c fertility rates and without interaction between ages

of each sex. That is to say, in isolation the single-sex models may behave strangely

and not bound the true trajectory of the total population.

A second domain of bracketing could be in terms of the total births predicted by

males and females for year t + 1 using the ASFR and sex-speci�c exposures. In this

case, the main di�erence is that the o�spring of each sex is of both sexes. In this

case, bracketing appears to be a less troublesome condition, as we essentially remove

fertility sex-ratio constraints from the boundary predictions. Absent secular change

in birth rates or the age-pattern of fertility, we would expect one sex to overstimate

and the other to underestimate the birth count to be observed in future years.

Proportionality in the extreme: In other words, at some point along the con-

tinuum of potential sex ratios, the minority sex should experience saturation, in the

sense that further increases in the majority will not result in increased matings. In
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this same scenario, one may imagine that, while still within the same extreme order

of sex-ratio magnitude, a unit increase in e�ective population of the minority sex will

lead to a unit increase in predicted births (marriages). However, it is doubtful that

this situation would ever arise in a real projective scenario.

3.2 Models that maintain single-sex fertility

3.2.1 Pollard (1948)

Components to the model: De�ne two fertility functions, F F�M
a0 and FM�F

a ,

where the �rst superscript indicates the sex of progenitor, the second superscript

indicates the sex of birth, a indexes male age and a0 indexes female age. In other

words, the female births are determined by male rates and vice versa. pa and pa0 are

the male and female probabilities of surviving to age a, a0. It will be convenient to

combine these two items into net opposite-sex o�spring functions:

ma = paF
M�F
a (3.1)

ma0 = pa0F
F�M
a0 (3.2)

Note that these function names are the same as in standard single-sex models, but

that sex of progenitor and o�spring have been juxtaposed.

The renewal function(s): Given ma and ma0 , the renewal function to determine

births in yeat t is given by

BF =

1∫
0

ma da (3.3)

BM =

1∫
0

ma0 da0 (3.4)
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which can be converted such that sex of o�spring and reference progenitor are the

same by moving back one generation and combining net o�spring functions:

BF =

1∫
0

1∫
0

BF
t�a�a0mama0 da da0 (3.5)

BM =

1∫
0

1∫
0

BM
t�a�a0mama0 da da0 (3.6)

These later two functions combine into a single convenient renewal function

BT =

1∫
0

1∫
0

Bt�a�a0mama0 da da0 (3.7)

Conveniently, all of these �ve renewal functions will converge to the same ultimate

intrinsic growth rate, r, which is the real root of the following equation:

1 =

1∫
0

1∫
0

e�(a+a
0)rmama0 da da0 (3.8)

In Pollard's model the sex ratio at birth and overall sex ratio of the population

are regulated by criss-crossed sex-speci�c fertility. Pollard proves that the resulting

estimate of r will be intermediate to the male and female single-sex intrinsic growth

rates { assuming a constant sex ratio at birth { and the function remains linear.

Further, the function has the advantage of being relatively easy to understand. This

author �nds the method clever, but it has been rather ignored in the literature because

authors typically �nd the assumption of criss-crossed fertility unrealistic. This seems

like a fair criticism if the goal is to faithfully re
ect fertility dynamics. It would seem

that Pollard's goal was to approximate the value of the two-sex growth rate while

maintaining a small set of desirable model qualities (bracketing, linearity, homogeneity

simplicity), but not to approximate true reproductive dynamics. Another drawback
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is that the sex ratio at birth, if not assumed to be constant, depends on the initial

conditions.

Given an optimized value of r, one can retrieve the stable age structure and sex

ratio at birth31 and other stable parameters of interest. Empirical results of Pollard's

method will be compared later with others.

3.2.2 Mitra (1978)

Mitra (1978), like Pollard, also limited two-sex models to being based on the

building blocks of single-sex fertility. In this case, single-sex fertility is conceived of

as in the single-sex models, using male-male and female-female fertility rates. Mitra

aimed to produce a consistent method to derive a two-sex intrinsic growth rate,

r. Consistent here means that 1) a constant SRB is maintained in and along the

trajectory to stability, 2) the essential shape of fertility rates is held constant along

the path to stability and 3) the stable r is guaranteed to be bracketted by rm and rf .

Components to the model: The model requires a �xed sex ratio at birth,

S, although this need only enter into formulas explicitly if one implements Mitra's

formulas iteratively, which we will not present here. The method proposed by Mitra

(1978) works by assigning complementary scalar (uniform over age) weights, 1
v0

and

1
1�v0 , to male and female single-sex fertility rates, FM�M

a and F F�F
a0 . As elsewhere,

the model requires the male and female age-speci�c survival functions, pma and pfa0 ,

respectively. The initially weighted fertility rates are held constant and placed into a

uni�ed two-sex Lotka unity equation in order to determine r:

1 =

1∫
a=0

e�ra
FM�M
a

v0
pma da+

1∫
a0=0

F F�F
a0

1� v0
pfa0 da0 (3.9)

31Some advice is given in Pollard (1948) for arriving at the stable sex ratio, but it would be easier
to either just assume a sex ratio at birth or else iterate forward to stability and derive it empirically.
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Upon determining the combined-sex growth rate, r, however, one must readjust the

weights, v1, to correct the stable sex ratio at birth:

v1 =

1∫
0

e�ra
FM�M
a

v0
pma da (3.10)

Estimating Mitra's r: One can quickly converge upon a solution to Equa-

tion (3.9) by modifying the method proposed in Coale (1957)32:

1. Calculate a trial estimate of r, r̂ and a trial two-sex mean generation length T̂ .

For trial values, one can use simple assumptions, such as the arithmetic means

of the single-sex Lotka parameters.

2. Plug the trial r̂(1) into Equation (3.9) to calculate the residual, �(1).

3. Improve the estimate of ri+1 using:

r̂(i+1) = r̂(i) +
�(i)

T̂ � �(i)

r̂(i)

(3.11)

4. Use the new improved estimate, r(i+1), to calculate a new residual, and repeat

steps 2 and 3 until �(i) vanishes to zero.

This method converges quickly and with greater precision than most generic op-

timizers. Once r is found, one takes the extra step of calculating the stable weights,

v1 using Equation (3.10).

Summary of the method: A characteristic of Mitra's model design is that a

given starting weight, v0, will always result in a single, stable v1. Mitra's two-sex

growth rate, r, is unique for but depends upon the starting weights, v0, and thus

is not in general unique to a given set of vital rates, which is a drawback. Mitra

32Mitra (1978) alludes to this, but does not get into any speci�cs.
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suggests that a good choice for v0 would be the value that minimizes the departure

from constancy for weighted single-sex fertility rates. This is an attractive choice

because constant rates are of course the basis of stability. Once a population attains

stability, weights, and therefore rates, are constant. In practice, one chooses the v0

that minimizes the sum of the age-speci�c squared residuals (for males and females)

between Fa and Fa � v0
v�

.

Mitra's weights in the initial versus stable states: If minimizing the di�er-

ence between starting and stable rates is the criterion for choosing v0, then there is

indeed a single stable r that corresponds to a given set of vital rates. We calculate

Mitra's starting and stable weights for the US and Spanish data and display them in

Figure 3.1.

For Spain and the US throughout the period studied in this dissertation, both

v0 and v� fell in the range (:48; :6). v0 was always close to :5, entailing nearly equal

weight for male and female rates. The stable v� was consistently higher than v0 and

always higher than :5, implying greater weights for males than females in stability.

When v > :5, male rates weight more than female rates, which was typically the case

here, especially in the limit, although this declined over the decades shown here. It is

tempting to interpret this result as contrary to the notion of female dominance, which

would intuit greater in
uence of females on overall fertility than males. However, the

interpretation of v is unclear, and cannot necessarily in this case be understood as

direct evidence of male-leaning dominance. Mitra (1978) provides no guidance to

interpret v0, v1, less so a demographic meaning.
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Figure 3.1: Initial (v0) and stable (v) weights according to the OLS criterion. US,
1969-2009, and Spain, 1975-2009 Mitra (1978)
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Critique of Mitra, 1978: Initial and stable weights are attractive for purposes

of the OLS criterion and their potential for demographic interpretation, which has in

any case not been elaborated. This author considers this particular variety of weights

to be a super
uous byproduct of the model speci�cation. Namely, v0 and v1 are

needed only to maintain the SRB, and the SRB is only problematic due to use of

the single-sex fertility rates. Of course, males are not exclusively responsible for the

birth of boys and females are not responsible for the birth of girls { the same critique

applied to Pollard's fertility rates applies here too. If the model were simply changed

to allow for the both-sex fertility of males and females, one could forego the intricacies
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of balancing fertility and the SRB. As given, results are sensitive to changes in the

value of the SRB, and so this admits unwelcome instability into the model. Further,

since SRB varies by age, changes in the age-sex-structure of the population ought to

result in changes in SRB, but Mitra's model forces a constant SRB. This decision

reverberates throughout the model speci�cation.

If the model were to include the full fertility schedules of each sex (i.e. births of

both sexes to parents of each sex), then weights would not need to vary between the

initial and stable states. In this case, weights would only serve as a pure indicator

of dominance, as in Goodman (1967). The drawback, in this case would be that the

demographer is left with no endogenous criterion for choosing weights, save perhaps

for the relative size of male and female exposures (Mitra, 1976). Furthermore, in

either speci�cation, males and females are treated on the same age scale, wherein

the reproductive values of for example, 20-year old males and females are directly

combined to a single sum { i.e., the model lacks age-sex interactions and fertility

schedules are rigid.

We compare the results of this method with those from Pollard in the following

Section.

3.2.3 Comparison of Mitra (1978) and Pollard (1948)

As mentioned, models that adhere to the notion of single-sex fertility are charac-

terized by di�culty in keeping the sex ratio at birth under control. Pollard (1948)

partially resolves this issue, keeping sex-divergence at bay by swapping the generation

of birth of each sex to progenitors of the other sex. The method has the drawback of

reliance upon starting population structure (Yntema, 1952), and so cannot be said to

be 100% ergodic. This later criticism applies only to the derivation of sex-structure in

the stable state, as no sex ratio assumptions are required to arrive at Pollard's two-sex

r. Similar conclusions may be made for the model of Mitra (1978)- the demographer
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has not been liberated from making decisions, as the initial weights must be decided

upon, and the OLS criterion used earlier is just one such choice. Further, this choice

is forced upon the demographer due to the use of single-sex fertility information and

use of the sex ratio at birth as a governing parameter. To a certain extent, this is to

say that both models' major pitfalls originate in the use of single-sex fertility, carried

over more-or-less directly from the single-sex model framework.

Figure 3.2 displays the results of applying these two methods to the US and

Spanish data to arrive at estimates of the two-sex intrinsic growth rate for each

year. Detailed results for r under these two methods can be found in the tables of

Appendix A alongside those of other age-structured renewal models. We see that

Pollard's method yields a somewhat higher estimate than the Mitra (OLS criterion)

method, but that di�erences are minor. Both methods yield two-sex estimates of r

that are bracketed by rm and rf , and this property was one of the primary motives

in the design of both models. Neither of these models is seen to allow for interactions

between the sexes, or between ages.

In the following, we investigate models that allow for fertility rates to be a function

of the ages of both parents.
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Figure 3.2: r from Pollard (1948), Mitra (1978; OLS criterion), and single-sex intrinsic
growth rates. US, 1969-2009, and Spain, 1975-2009
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3.3 Dominance-weighted models

Goodman (1967), in an age-extension to Goodman (1953), provided a series of

discrete formulas for calculating the stable age-sex-structure of given a series of vital

rates similar to those treated earlier. In particular, let us define the radix-1 survival

functions, pa for males and pa′ for females, as well as four fertility functions specific

to sex of progenitor and sex of birth: FM−M
a , FM−F

a , F F−F
a′ , and F F−M

a′ , where the

first superscript indicates sex of progenitor and the second superscript indicates sex

of birth. If Pa(t) are males of age a in year t, and Pa′(t) are females, then everything
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aligns properly in a tautological way:

B(t) =

1∫
a=0

Pa(t)(F
M�M
a (t) + FM�F

a (t)) da =

1∫
a0=0

Pa0(t)(F
F�F
a0 (t) + F F�M

a0 (t)) da0

(3.12)

and so forth for each sex of birth separately. However, n years hence this will no

longer be the case. The female dominant model declares that in general for any given

year

B(t) =

1∫
a0=0

Pa0(t)(F
F�F
a0 + F F�M

a0 ) da0 (3.13)

and it is assumed that male rates will simply adjust in accordance with this such that

the model is internally consistent. If assumed to be constant, female rates in this case

could refer to any year and there will be no room for inconsistency, and so we drop

the t index. Equation (3.13) is just the same as this:

B(t) = 1 �
1∫

a0=0

Pa0(t)(F
F�F
a0 + F F�M

a0 ) da0 + 0 �
1∫

a=0

Pa(t)(F
M�M
a + FM�F

a ) da (3.14)

where the 1 before females gives them 100% of the weight in determining births, and

the 0 before the male integral gives 0% of the weight to males. The way Goodman

describes it, females in Equation 3.14 determine births 100% of the time and males

0% of the time. One could just as easily swap the 0 and the 1 to have a male-dominant

model, or in general assign two weights that sum to 1 for a mixed-dominance model.

If we de�ne the male weight as � and the female weight as 1 � �, then we have the

general weighted dominance model:

B(t) = (1��)�
1∫

a0=0

Pa0(t)(F
F�F
a0 +F F�M

a0 ) da0+� �
1∫

a=0

Pa(t)(F
M�M
a +FM�F

a ) da (3.15)
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and everything is accounted for. As per usual, we may go on to de�ne Pa as male

births from t� a years ago, BM(t� a) , discounted by the probability of surviving to

age a, Pa = BM(t� a)pa, and likewise for females. If the proportion male at birth is

captured in &, then we can rewrite the latter as Pa = &B(t � a)pa, and analogously

for females. Plugging these into Equation (3.15), we obtain year t births in terms of

past births

B(t) = (1� �) �
1∫

a0=0

(1� &)B(t� a0)p0a(F F�F
a0 + F F�M

a0 ) da0

+� �
1∫

a=0

&B(t� a)pa(F
M�M
a + FM�F

a ) da

(3.16)

which when left to evolve according to �xed rate schedules for many years will even-

tually stabilize to

B(t) = (1� �)

1∫
a0=0

(1� &)B(t)pae
�ra0(F F�F

a0 + F F�M
a0 ) da0

+�

1∫
a=0

&B(t)pa0e
�ra0(FM�M

a + FM�F
a ) da

(3.17)

where r is a constant growth rate equal for males and females, and year t births can

then be endogenously related. Dividing by B(t) we arrive at the Lotka-type unity

equation

1 = (1� �)

1∫
a0=0

(1� &)e�ra0pa(F F�F
a0 + F F�M

a0 ) da0

+�

1∫
a=0

&e�ra
0
pa0(F

M�M
a + FM�F

a ) da

(3.18)

from which we need only estimate r in order to derive the full suite of stable population
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parameters, such as two-sex mean generation length and stable population structure.

In the following, we describe the steps to estimate r iteratively.

Estimating r: Assuming some �xed proportion male at birth, one can simply use

a generic optimizer on Equation (3.18) to estimate the stable growth rate, r. However,

since males and females each have an age-pattern to the sex-ratio at birth, changes

in population structure between the initial and stable states will entail a di�erent

total SRB, as it is just a weighted average of the sex-age-speci�c sex ratios at birth.

For this reason, we calibrate the stable SRB, S, simultaneously with r. In practice,

this presents no problems, as the SRB is rather limited in its movement between the

stable and initial states, and it only subtly tweaks r compared to simply assuming

some S. The steps to estimate r and S are similar to those outlined elsewhere in this

dissertation, and are based on a modi�cation of Coale (1957), which converges very

quickly and is easy to implement. For a given � between 0 and 1, follow the these

steps to estimate r.

1. Establish a rough estimate of the net reproduction rate, R0, assuming that

r = 0 and assuming some value of SRB (such as the year t observed SRB) and

derive &̂ = SRB
1+SRB

R̂0 = (1� �)

1∫
a0=0

(1� &̂)pa0(F F�F
a0 + F F�M

a0 ) da0

+�

1∫
a=0

&̂pa(F
M�M
a + FM�F

a ) da

(3.19)

2. Establish a guess at the mean generation length, T̂ , by weighting a and a0,

respectively, into Equation (3.19) and then dividing by R̂0. With T̂ and R̂0,
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derive the starting value of r, r0, as

r0 =
log(R̂0)

T̂
(3.20)

3. Plug ri and & i into Equation (3.18), producing a residual, �i.

4. Use �i to update the estimate of r using

ri+1 = ri � �i

T̂ � �i

ri

(3.21)

5. Now update the estimate of S using

Si+1 =
(1� �)

∫1
a0=0

(1� & i)pa0e�r
i+1a0F F�M

a0 da0 + �
∫1
a=0

& ipae
�ri+1aFM�M

a da

(1� �)
∫1
a0=0

(1� & i)pa0e�ri+1a0F F�F
a0 da0 + �

∫1
a=0

& ipae�r
i+1aFM�F

a da
(3.22)

from which we derive & i+1 = Si+1

1+Si+1

6. Repeat steps 3-5 until � is reduced to 0, which takes around 20 iterations (fewer

for most practical purposes).

The method applied to the US and Spanish data: We apply the above-

described method to the US and Spanish data for each year to produce estimates of

r according to � = 0, � = 1, and � = 0:5, corresponding to female dominance, male

dominance, and mixed dominance. Detailed results for r and the stable sex ratio at

birth can be found in the tables of Appendix A alongside those of other age-structured

renewal models. The results, displayed in Figure 3.3, show the mixed-dominance case

to be intermediate to the single-sex dominant series.

Summary of the method: Female dominance in this case is identical to the

female single-sex model, and analogously for males, and so we see that Goodman's
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Figure 3.3: r according to dominance-weights, σ = 0, 0.5, 1. US, 1969-2009, and
Spain, 1975-2009
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model is bracketed. One concludes that the present model is indeed expedient – more

so than Mitra (1978) and similar in complexity to Pollard (1948). The model has

a desirable design feature that neither of the preceding models has in that births of

both sexes from each parent are accounted for, in a sense liberating the model from

limited single-sex rate dependence, but with the added cost of including a parameter

to weight the male and female radices according to a sex ratio at birth. The sex ratio

at birth, which was the complicating factor in Mitra (1978) is here made endogenous

and inherent with ease simply because rates of each sex of birth are considered. Rather

than an overdetermining obstacle, the SRB is an aid in optimizing (in our experience).
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One shortcoming, since the male and female components to the model are additive, is

that the availability axiom is not met. Homogeneity and monotonicity are indeed met,

but all axioms of an interactive nature are left unattended to. For populations within

the range of age-structures often observed, we would not expect anomalous results

in projective scenarios. The expediency of this model lends itself to encapsulation in

a two-sex Leslie matrix, which remains �xed throughout a projection. This model

is implemented in the remaining-years perspective to be explored in Chapter VI of

this dissertation, and for that case we present the corresponding projection matrix in

addition to other stable quantities.

3.4 Models that use cross-classi�ed fertility information

3.4.1 Das Gupta (1978)

Das Gupta (1978a) states\The lesson we learn from the above is that our starting

point must not be the formulation of two equations, one for BM(t) and another for

BF (t), but of a single equation for B(t) with the help of a bisexual fertility function

that can explain the occurrence of births of type (a; a0) in terms of the availability of

both males and females."33

Das Gupta introduced a series of proposals for two-sex reproduction models through-

out the 1970s (Das Gupta, 1972, 1973, 1976, 1978a), of which we present the last one.

To summarize how the model works, imagine we would like to determine a uni�ed

two-sex fertility rate, Fa;a0 . Here it is clear what to put in the numerator, as births

can be tabulated by the ages of both parents. We thus work to de�ne the idea of

two-sex exposure for each age-combination. Das Gupta's suggestion is to derive a

series of probability density functions that apply to each age of potential mother and

each age of potential father from information contained in the matrix of observed

33and this �ts nicely into the 
ow of our own presentation.
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births. De�ne these age-speci�c pdfs for males, Ua;a0 , and for females, Va;a0 as follows:

Ua;a0 =
Ba;a0∫
Ba;a0 da0

(3.23)

Va;a0 =
Ba;a0∫
Ba;a0 da

(3.24)

In discrete terms, one establishes two matrices, arranged according to our standard

in this dissertation with male age in rows and female age over columns. The row

marginal sums for Ua;a0 and the column marginal sums of Va;a0 all equal 134. We then

calculate Das Gupta's approximation of bisexual exposure, Ea;a0 , by redistributing

male and female age-speci�c exposure and summing for each combination of age

Ea;a0 = Ua;a0Ea + Va;a0Ea0 (3.25)

which is then used as the denominator to calculate Fa;a0

Fa;a0 =
Ba;a0

Ea;a0
(3.26)

which is assumed constant in the stable model. As elsewhere, de�ne the male and

female radix-1 survival functions, pa, and pa0 , and a sex ratio at birth, S, from which

we determine the proportion male at birth, & = S
1+S

. Then Das Gupta's two-sex

renewal function becomes

B(t) =

1∫
a=0

1∫
a0=0

(
&Ua;a0B(t� a)pa + (1� &)Va;a0B(t� a)pa0

)
Fa;a0 da da0 (3.27)

If Ua;a0 , Va;a0 , &, and Fa;a0 are assumed to be constant, then as t becomes large, the

intrinsic rate of growth, r, will stabilize. r is estimated from the Lotka-type unity

34Both have the exception of ages with no fertility, which are left as 0 if unde�ned.
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equation:

1 =

1∫
a=0

1∫
a0=0

(
&Ua;a0e

�rapa + (1� &)Va;a0e�ra
0
pa0
)
Fa;a0 da da0 (3.28)

Estimating Das Gupta's r: The value of r that solves Equation (3.28) can either

be found using an iterative process similar to that proposed by Coale (1957), or be

using a general optimizer. We present the iterative method because it converges very

quickly.

1. establish a starting value for r, r(0), and a trial two-sex mean generation length

T̂ . For both values, one may use simple assumptions, such as the arithmetic

means of the single-sex Lotka parameters.

2. Plug the trial r(0) into Equation (3.28) to calculate a residual, �(1).

3. Improve the estimate of ri+1 using

r(i+1) = r(i) +
�(i)

T̂ � �(i)

r(i)

(3.29)

4. Use the new improved estimate, r(i+1) to calculate a new residual, and repeat

steps 2 and 3 until �(i) vanishes to zero.

Summary of the method: Das Gupta (1978a) assumes that exposure to risk of

age a males is not evenly distributed over each age of potential female mate { i.e., that

it is not random35. Rather, the exposure to risk is partitioned over ages of potential

mates according to the distribution present in a given cross-classi�ed birth matrix. In

partitioning exposure in this way for each age of male and female, the cross-classi�ed

male and female risks are additive, and form the total exposure to risk.

35As opposed to an earlier rendition of this method (Das Gupta, 1972).
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It is attractive that this total exposure to risk sums to the total male and female

exposures, but it is unclear whether the distribution should be based on cross-classi�ed

birth tabulations, which will likely be laden with structural artifacts. For example,

as relatively large cohorts pass through reproductive ages, they will tend to produce

more births than neighboring cohorts { even if the large cohorts also su�er lower rates.

This will cause a spike along a particular age margin in the birth matrix, usually for

both males and females of the larger cohort. This birth spike will be present in the

exposure redistribution matrices, Ua;a0 and Va;a0 , and it will also remain evident in

fertility rates, Fa;a0 . This is problematic even in the �rst iteration of a projection, as

the hypothetical large cohort will have moved up one age. This artifact will become

a characteristic of the stable population even as abrupt cohort size di�erences vanish

with time. The initial structural artifacts in the supposed-constant parameters thus

enter into both exposures and rates.

The present model also removes some of the anomalies that result from single-sex

fertility assumptions { Fa;a0 is the fertility of both sexes, and & enters into Equa-

tion (3.28) as a radix weight for the male and female population structures. There

is no dominance parameter in this model, per se. Das Gupta (1978a) does not men-

tion whether the method will always produce an r that is bracketed by the single-sex

r values, although in a previous paper (Das Gupta, 1976) he appeared to give this

property axiom status.36

To the extent that exposure within the model is a function of both males and

females, this model may be said to be interactive. One may notice that since exposure

is additive the model will behave poorly in the absence of one potentially reproductive

age-sex combination in the future (births for this age would not drop to 0 as they

should). This possibility would not likely arise in practice, but it is still the most

basic and necessary of commonly stated axioms. Further, the method is not fully

36Yellin and Samuelson (1977) had since proved bracketing to be an extraneous constraint.
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age-interactive. An increase in males (females) of one age will a�ect the fertility of

all ages of females (males), but males have no e�ect on males and females have no

e�ect on females. In this way, the model lacks competition.

The method applied to the US and Spanish data: We estimate Das Gupta's

intrinsic growth rate for each year of the US and Spanish data. Detailed results for

r can be found in the tables of Appendix A alongside those of other age-structured

renewal models. In each year of data for both populations, r is bracketed by rm and

rf . The relative position between rm and rf does not appear to follow any particular

mean function { it is consistently greater than any of the mean functions that satisfy

the availability axiom, such as the geometic, harmonic, or logorithmic means (to be

explored in the following).

For purposes of prediction and ease of implementation, Das Gupta's model is close

to acceptable, though in the following we explore some models that are somewhat

more palatable and more widely studied, starting with models whose two-sex fertility

rates are derived from mean functins of the male and female rates (Schoen, 1981).
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Figure 3.4: r from Das Gupta (1978) and single-sex intrinsic growth rates. US,
1969-2009, and Spain, 1975-2009
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3.4.2 Harmonic and other means

Now of everything that is continuous and divisible, it is possible to take the
larger part, or the smaller part, or an equal part, and these parts may be
larger, smaller, and equal either with respect to the thing itself or relatively
to us; the equal part being a mean between excess and deficiency. By the
mean of the thing I denote a point equally distant from either extreme,
which is one and the same for everybody; by the mean relative to us, that
amount which is neither too much nor too little, and this is not one and
the same for everybody – Aristotle37

The most instinctual two-sex fertility (marriage) solution is to symmetrically (with

37Aristotle, Nichomachean Ethics, Book II, Chapter 6, Sections 4-5.
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respect to the sexes) utilize information from the vital rates of both sexes. Mean

functions have been compared in the past(see e.g., Keyfitz , 1972), but rated in terms

of utility with di�culty. In terms of the axioms mentioned in Section 3.1 { rather

than performance { the harmonic mean function has fared the best amongst a variety

of means. Schoen (1978, 1977, 1981) provided a rationale and derivation for using

the harmonic mean in order to balance marriage rates. Martcheva and Milner (2001)

found evidence of poor performance for the harmonic mean in projective scenarios.

The same strategy can be used to balance fertility rates, which is what we will do

here. The method requires as inputs a matrix of birth counts cross-tabulated by age

of father, a, and age of mother, a0, and male and female exposures classi�ed by age.

The harmonic mean

H(Pm
a ; P

f
a0) =

2Pm
a P

f
a0

Pm
a + P f

a0

(3.30)

is applied to male and female exposures in order to �nd an intermediate denominator

from which to calculate rates, FH
a;a0 ,

FH
a;a0 =

Ba;a0

H(Pm
a ; P

f
a0)

(3.31)

which in the stable population is assumed constant in time rather than assuming

constant male and female rates separately. In order to estimate a birth count in some

future year t + n, calculate the harmonic mean of male and female exposures and

multiply into the constant harmonic rate

B(t+ n) =

∫ ∫
FH
a;a0H

(
Pm
a (t+ n); P f

a0(t+ n)
)

da da0 (3.32)

which we can rewrite to make year t births a function of past births in the renewal
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equation

B(t) =

∫ ∫
FH
a;a0H

(
&B(t� a)pma ; (1� &)B(t� a)pfa0

)
da da0 (3.33)

where pma and pfa0 are the male and female probabilities of surviving from birth until

age a, a0, and & is the proportion male of births, here assumed constant over age

and time, though this may be relaxed. Rewriting in this way brings us to a stable

population framework. Schoen (1977) proposed his own rectangular stable population

framework, which will not be treated here. As t becomes large, the annual growth

factor approaches a constant value equal to er, which can be estimated from the

following Lotka-type unity function:

1 =

1∫
a=0

1∫
a0=0

Fa;a0H
(
&e�rapma ; (1� &)e�ra

0
pfa0
)

da0 da (3.34)

FH
a;a0 is the constant fertility rate to be applied to the harmonic mean of male and

female exposures, pma and pfa0 are the male and female radix-1 survival functions. &

serves to make the male and female radices sum to 1, and also accounts for the fact

that males and females have slightly di�erent l0 values.

Estimating r: The two-sex harmonic intrinsic growth rate, r can be estimated

in two ways, either assuming & to be constant from the start (likely based on the

initial data) and using a generic optimizer, or by modifying the iterative procedure

suggested by Coale (1957), which works best if one simultaneously estimates r and

& (i.e., allowing & to adjust to the population structure, as it is known to vary with

age). Here we describe the practical steps involved in the latter.

1. Calculate the constant harmonic fertility rates for male and female births sep-

arately, FmH
a;a0 and F fH

a;a0 .
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2. Make a �rst estimate of the stable sex ratio at birth, Ŝ; the initial observed

sex ratio at birth is a good choice. From S0 we derive a �rst estimate of the

proportion male of births, &0 (where superscripts indicate the iteration):

&0 =
S0

S0 + 1
(3.35)

3. Find a �rst rough estimate of the net reproduction rate, R̂0, assuming a growth

rate of 0 and using the both-sex harmonic fertility rate FH
a;a0 = FmH

a;a0 + F fH
a;a0 :

R̂0 =

1∫
a=o

1∫
a0=0

H(&0pma ; (1� &0)p
f
a0)F

H
a;a0 da0 da (3.36)

4. Assume a reasonable both-sex mean generation time, T̂ . Weighting a and a0

into Equation (3.36) and then dividing by R̂0 yields a good estimate of this.

Otherwise one may simply choose a reasonable age, such as 30, or some mean

of the male and female single-sex mean ages at reproduction.

5. Calculate an initial value of r, r0:

r0 =
log(R̂0)

T̂
(3.37)

6. Now that we have a starting value, r0, calculate a residual, �0, from equa-

tion (3.34):

�i = 1�
1∫

a=0

1∫
a0=0

H(& ipma e
�ria; (1� & i)pfa0e

�ria0)FH
a;a0 da0 da (3.38)
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7. Use �i to improve the estimate of r, ri+1:

ri+1 = ri � �i

T̂ � �i

ri

(3.39)

8. Use the improved estimate of r to update &:

Si+1 =

∫1
a=o

∫1
a0=0

H(& ie�r
i+1apma ; (1� & i)ie�r

i+1a0pfa0)F
mH
a;a0 da0 da∫1

a=o

∫1
a0=0

H(& ie�ri+1apma ; (1� & i)ie�r
i+1a0pfa0)F

fH
a;a0 da0 da

(3.40)

& i+1 =
Si+1

Si+1 + 1
(3.41)

9. Plug the new & and r estimates into step 5, to estimate a new residual, �,

repeating steps 6-8 until � vanishes to 0. Typicaly around 20 iterations are

needed in order to reduce � to zero (at least as close as double 
oating-point

precision can get).

This iterative procedure simultaneously produces an estimate of the stable sex

ratio at birth S and the both-sex intrinsic growth rate, r. Really, there is little

room for S to move between the initial and stable states, since boy and girl births

are in essence produced by (the harmonic mean of) both males and females in this

procedure. S will vary from the initial sex ratio at birth only to the extent that there

is both an age pattern to the sex ratio at birth and the male and female stable age

structures di�er from the initial age structures. Estimating both parameters at the

same time does not present a practical problem in the present case, and the procedure

converges faster than if S is left assumed at some constant value.

One could abandon the iterative r estimation procedure outlined above and per-

form a standard cohort component projection, for instance using a two-sex Leslie

matrix. In this case, the fertility component of the Leslie matrix would need to be

updated between each iteration using equation 3.31 for either males or females. One
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cannot easily perform standard matrix analysis of this Leslie matrix, however, as it

is not static in the standard way.

Other stable quantities: Once one has identi�ed the stable r and S, one can

move on to estimate other stable parameters of interest, such as the both-sex stable

birth rate, b:

b =
1∫1

a=0
e�ra&pma da+

∫1
a0=0

e�ra0&pfa0 da0
(3.42)

This can be used to calculate the male and female stable age structures, ca and ca0 :

ca = &e�rapma (3.43)

and analagously for females, where

1 =

∫
ca +

∫
ca0 (3.44)

and the total population sex ratio, Stot is the ratio of these:

Stot =

∫
ca∫
ca0

(3.45)

Summary of the harmonic mean method: The stable system outlined here is

not taken word-for-word from Schoen's advice, but it is consistent with the notion of

a constant force of attraction, FH
a;a0 , and non-linear balancing of fertility rates based

on the harmonic mean of male and female exposures. The method presented here is

only partially sensitive across all ages to changes in the exposure of a single age in

one sex. That is to say, an increase in males of age a will increase observed fertility

rates for all ages of females that share rates with males of age a. Further, females

with higher rates, FH
a;a0 , will typically observe greater increases, though this depends
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on the distribution within FH and on relative exposure levels. Lacking from this

implementation are decreases in rates for males whose ages are close to a, so-called

spillover e�ects (Choo and Siow , 2006). That is to say, an increase in age a males

will not a�ect rates of males age a � n or a + n, despite the fact that the pool of

potential mates, females over all ages a0, is shared. One would expect, ceteris paribus,

that males of similar ages would experience a decrease in rates, since some proportion

of the female pool will have been redirected to the increased stock of age a males.

Hence, the model lacks this sense of competition. All other axioms appear to be

satis�ed, except for that of bracketing, which we also deem super
uous. Further, the

harmonic mean is biased toward the minority sex, which is also intuitive. As stated

before, one cannot empirically establish (for humans) the ideal functional form of the

fertility (marriage) function.

One satisfying property of the present method is that the harmonic mean rates

do not respond rigidly to mismatched population sizes between males and females,

but rather the mean rate is sensitive to relative size of male and female stocks. In

this way, the function is more dynamic than a weighted mean or Das Gupta's method

presented in the previous section. Indeed, if the demographer is not satis�ed with

the elasticity of the harmonic mean, one may change the function, H(), for any mean

function, such as a generalized mean. An in�nite number of other means will also

have the same desirable properties as the harmonic mean, such as dropping to 0 in

the absence of one sex. Most means with this property that have names (harmonic,

geometric, logorithmic,. . . ) will produce almost indistinguishably similar results. All

such mean solutions will be symmetric (blind) with respect to the sexes, although

one could easily include weights.

The method applied to the US and Spanish data: In addittion to the

harmonic mean, we have produced estimates of r using the geometric and logorithmic
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means, as well as the minimum function. Detailed results for r and the stable sex ratio

at birth under these four mean functions can be found in the tables of Appendix A

alongside those of other age-structured renewal models. Figure 3.5 shows the results

of only the harmonic mean and minimum functions, as the geometric and logorithmic

r estimates would not be visually distinguishable from those of the harmonic mean.

From this lesson, we con�rm that if one is to use a mean function as a two-sex fertility

(marriage) function, it really makes little di�erence which mean function one chooses,

as long as it satis�es the availability condition. The minimum function yields the least

consistent results, sometimes greater than the harmonic mean, sometimes less than

the harmonic mean, sometimes bracketed by the single-sex r values, and sometimes

not. We note that the minimum function deviates the greatest from the single-sex

r values when the sex-gap is trivial, and in these instances it is always higher. The

harmonic mean series is here always bracketed by the single-sex r values, although

this is not a necessary result.

In terms of complexity of implementation, solutions based on mean functions

are marginally less demanding than the Das Gupta solution, but this is primarily

because mean functions are more readily understood. The mean solution is seen as

conceptually simpler, yet yielding similar results and with more desirable properties

than either of the preceding solutions. In the following, we will present two iterative

fertility functions that allow for competition between ages within the same sex.
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Figure 3.5: r according to harmonic mean and minimum fertility functions compared
with single-sex intrinsic growth rates. US, 1969-2009, and Spain, 1975-2009
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3.5 Iterative proportional fitting

McFarland (1975) introduced a well-established method called iterative propor-

tional fitting (IPF),38 often used for rescaling tables, to the two-sex problem for

marriage models. We will apply the method to fertility only, though the reader may

consult McFarland (1975) or Matthews and Garenne (2013) for details on how to

apply this method in the case of marriage matching. This method works by starting

with a known cross-tabulation of births, in our case from the base year t. First com-

pute the marginal fertility rates for males and females (ASFR). Apply the male and

38Also called matrix-raking.
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female ASFR to exposures predicted for some future year t + n to produce initially-

predicted marginal birth count distributions, the sums of which will never agree (as

was illustrated in Section 2.1.1.3). These new marginal distributions may be uni-

formly rescaled according to some mean of their respective sums. The mean function

chosen will a�ect results only when the sex-gap in predicted births is very large.39

Now that the male and female sums for year t+n agree, we iteratively rescale the

original birth matrix according to the male and female predicted margins, alternating

between male (row) and female (column) margins until the new birth matrix margins

sum exactly to the predicted margins. Of course, the resulting matrix will di�er

depending on whether one begins with rows or with column margins, and so we

adopt the recommendation of Matthews and Garenne (2013), taking the element-

wise average of the two possible outcome matrices in each iteration before advancing

to the next iteration. We continue this iterative process until it no longer makes any

di�erence whether we �rst scale rows or �rst scale columns, and accept the resulting

raked matrix as our year t + n prediction. Other algorithms exist for IPF, and IPF

is also often used internally in log-linear model implementations, but we adhere to

these easy-to-understand steps.

Using IPF, 1) male and female rates are guaranteed to agree, 2) structural zeros

are not problematic, and 3) the inter-age competition axiom is ful�lled, which has

not been the case with methods previously described. To illustrate this property, we

execute the following experiment. Taking initial birth count and exposure data from

US, 1975, we calculate male and female ASFR. We then apply the male and female

1975 ASFR to exposures from 1980, and proceed with the above-described method,

�nally settling on a predicted birth matrix for 1980, from which we calculate new

ASFR vectors for males and females (1980 predictions that agree). This is the base

prediction that we will compare with. Now we increase 1980 age-25 males (only) by

39we have compared overall results using arithmetic and harmonic means, and found no noteworthy
di�erence. All results will be in terms of the harmonic mean for this �rst rescaling.
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50% and repeat the IMP procedure, producing new ASFR predictions for males and

for females. Figure 3.6 shows the ratio of the hypothetical (age-25 male exposure

increased by 50%) 1980 ASFR to the base 1980 ASFR prediction.

Figure 3.6 illustrates the competition axiom because age-25 male rates decrease

more than neighboring ages, and rate for male ages closest to 25 decreases by more

than ages farther from 25 (in fact the ratio is monotonic in either direction from 25 {

ideal). Female rates increase as well, also as a rough function of proportional inter-

mating with age-25 males in the 1975 birth matrix. Here we see only the di�erence

in rates { in terms of birth counts, age-25 males would have a large increase, while all

other ages would experience decreases (lower rates applied to the same exposures).

Figure 3.6: ASFR after increasing 1980 male exposure by 50% compared with base
1980 ASFR prediction. Based on US 1975 ASFR and birth matrix.

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

15 20 25 30 35 40

Age

Rate Ratio

Male rate penalty

Female rate increase

95



Iterative proportional �tting in models of population growth: The formu-

las to formalize the use of IPF fertility balancing will take on a di�erent appearance

than those seen thus far. Note that the basic inputs to the IPF function to constrain

male and female fertility rates will be IPF (Ba;a0(t); F
M
a (t); F F

a0 (t); Pa(t+n); Pa0(t+n)),

where Ba;a0 is the cross-classi�ed birth matrix, FM
a and F F

a0 are male and female ASFR,

and Pa and Pa0 are future population estimates (exposures when discrete). The func-

tion produces adjusted ASFR for both males and females, FM�
a , F F�

a0 . Let us de�ne

a shorthand where the year � is the year used as the standard for the IPF method,

bearing in mind that \�" in IPF (�; pM ; pF ) indicates the �rst three arguments from

year � (births and male and female ASFR), whereas the latter two arguments, which

we would like to adjust to, may change according to our ends. F
M�(�;pM ;pF )
a will be the

IPF-adjusted male ASFR based on year � data, and F
F �(�;pM ;pF )
a0 the female ASFR

output from the same procedure. Then assuming constant mortality and continuous

functions, we can de�ne year t total births as a function of past births as:

B(t) =

1∫
a=0

&B(t� a)paF
M�(�;pM ;pF )
a da (3.46)

=

1∫
a0=0

(1� &)B(t� a0)pa0F F �(�;pM ;pF )
a0 da0 (3.47)

which works either with males or with females, since the IPF function already balances

fertility such that total births will be the same whether predicted by males or females.

& is the proportion male at birth. If mortality is held constant and IPF (�; pM ; pF ) is

always based on the same year � constant information, the population will eventually
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begin to grow at a constant rate r which can be estimated from the following equation:

1 =

1∫
a=0

&e�rapaF
M�(�;pM1;pF1)
a da (3.48)

=

1∫
a0=0

(1� &)e�ra0pa0F F �(�;pM1;pF1)
a0 da0 (3.49)

pM1 for males is just the full age pattern of &e�rapa, and pF1 is the full age pattern

from (1� &)e�ra0pa0 analogously for females.

Estimating the intrinsic growth rate: The estimation of r using this equation

is based on the same principles that have been presented earlier, but di�ers in some

details. First, note that either version of Equation (3.48) requires full information

from both males and females, so we may as well add the two right-side components

and make the equation sum to two:

2 =

1∫
a=0

1∫
a0=0

&e�rapaF
M�(�;pM1;pF1)
a + (1� &)e�ra0pa0F F �(�;pM1;pF1)

a0 da0 da (3.50)

As in some earlier iterative r-estimation instructions given in this dissertation, one

does well to allow & to be determined by the exposure-weighted average of sex

ratios that vary over age of mother and father. This information we retain in

the four sex-speci�c fertility functions: FM�M
a , FM�F

a , F F�F
a0 , F F�M

a0 , which there-

fore enter two separate IPF functions, one for boy births and one for girl births.

For notational convenience, we indicate the sex of birth with a second superscript,

where F
M�M�(�;pM1;pF1)
a and F

F�M�(�;pM1;pF1)
a0 indicate IPF-adjusted father-son and

mother-son fertility. The second superscript indicates that the same sex-speci�city

applies to the three arguments from year � : the cross-classi�ed birth matrix for boy

births, and the two sex-sex-speci�c ASFR vectors, FM�M
a and F F�M

a0 . F
M�F �(�;pM1;pF1)
a
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and F
F�F �(�;pM1;pF1)
a0 are the respective girl-birth adjusted fertility vectors. With

these components, we can now describe the iterative procedure to locate r and simul-

taneously the stable SRB.

1. Make a rough guess at R0, R̂0, assuming that r = 0

R̂0 =

1∫
a=0

&paF
M�(�;pM ;pF )
a da (3.51)

in other words, where the IPF arguments pM and pF are simply the male and

female survival functions (La discrete). One could also write this in terms of

female and obtain the same result.

2. Make a rough guess at the both-sex mean time between generations, T̂ by

weighting a and a0 into Equation (3.50), and dividing the resulting sum by 2R̂0.

3. With these two quantities, establish a �rst guess at r, r(0):

r(0) =
ln(R̂0)

T̂
(3.52)

Further, make a �rst guess at the stable SRB, S0, using the observed year t sex

ratio at birth, and derive &(0).

4. With these starting values, r(0) and &(0), we begin the iterative process by �rst

using IPF to determine the male and female both-sex fertility rates (i.e., stan-

dard ASFR) that correspond with &(0)pMa e
r(0)a and (1�&(0))pFa0er

(0)a0 , for instance,

F
M�(�;pM (0);pF (0))
a for males, and plugging these two fertility vectors, along with

r(0) and &(0) into Equation (3.50), which produces a residual, 2�(i). 40

40i.e., simply divide the residual by two to get the e�ective �(i).
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5. Next, improve the estimate of ri+1 using:

r(i+1) = r(i) +
�(i)

T̂ � �(i)

r(i)

(3.53)

6. Using the updated r(i+1), redo the sex-sex-speci�c IPF-adjusted fertility rates,

and then update the running estimate of the stable sex-ratio at birth, S

S(i+1) =

∫1
a=0

&(i)e�r
(i+1)apaF

M�M�(�;pM(i+1);pF (i+1))
a∫1

a=0
&(i)e�r(i+1)apaF

M�F �(�;pM(i+1);pF (i+1))
a

(3.54)

from which we update the proportion male for the next iteration:

&(i+1) =
S(i+1)

S(i+1) + 1
(3.55)

Note that since the IPF adjustment balances the male and female fertility rates,

we would arrive at the same value using females as the reference.

7. Use the new &(i+1) and r(i+1) to restart the process in step 4, repeating steps 4-6

until �(i) drops to zero, which in our experience typically happens in a mere 5-7

iterations.

We have been explicit in these instructions because the implementation of this

method is not obvious, and it requires more moving parts than other methods.

Nonetheless this particular method converges much faster.

Summary of IPF method applied to models of population growth: Models

of two-sex population renewal that incorporate IPF-adjustment of fertility rates41

perform well with respect to many of our axiomatic considerations. Particularly,

41Other con�gurations are surely possible, such as the substantively more complete model de-
scribed by Matthews and Garenne (2013), wherein IPF is used for marriage-balancing and fertility
rates are marital-state speci�c as well.
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ful�llment of the competition axiom is not a trivial achievement, and it also more-or-

less tops o� the list of important axioms: 1) the solution meets the availability axiom,

2) is �rst-degree homogeneous, 3) is monotonous, 4) is symmetrical with respect the

sexes, and 5) is sensitive to substitution and competition. There is no guarantee for

bracketing, although the solution will always track and typically be bracketed by the

single-sex intrinsic growth rates.

IPF fertility (marriage) balancing, properly attributed to McFarland (1975) in this

context, is regularly mentioned in reviews of possible two-sex solutions,42 but is not

typically evaluated alongside more analytical methods43 precisely due to its iterative

nature. This ought not be a drawback to us, given that our method for optimizing r

is also iterative, rather than analytic. Properties may be judged empirically (as we

have done), but have to this author's knowledge never been proven with mathematical

rigor, and this may never be accomplished. As such, the method may be categorized

as ad hoc, but apparently no more than other methods presented here.44

The method applied to the US and Spanish data: We have used the IPF

method described earlier to calculate the two-sex intrinsic growth rate for each year

of the US and Spanish data. Detailed results for r and the stable sex ratio at birth can

be found in the tables of Appendix A alongside those of other age-structured renewal

models. Within the IPF process, we have mentioned that the demographer has a

choice of mean functions for the initial balancing of the male and female marginal

sums. Both arithmetic and harmonic means were tested, and produced no visually

discernible di�erences. This is good, if we would like to minimize the e�ects of the

42See e.g., the review inside Ianelli et al. (2005).
43The two most widely cited reviews of methods are Keyfitz (1972) and Pollard (1973), both of

which precede the introduction of IPF to marriage or fertility models. Ianelli et al. (2005) mentions
but does not evaluate the method, possibly because it is not commensurable with the di�erential
equation framework employed by these authors. Individual authors proposing two-sex solutions have
rarely evaluated the method, possibly because the implementation is cumbersome.

44McFarland (1975) provides an unconvincing sociological justi�cation for IPF in marriage models.
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demographer’ s subjectivity in obtaining results. In Figure 3.7, we display results from

using the harmonic mean internally in the IPF fitting. Note that r is not bracketed

in some years for the US, but that these are years where the sex-gap itself was trivial,

and so may be due to rounding. That the result is not bracketed need not be of

any concern, as we need not guarantee it. On the whole, the method falls squarely

between rm and rf , as do most other methods presented thus far. In keeping with

common practice in two-sex modeling, the judgement of the method will rest not on

this result, but rather on the method’ s earlier-discussed properties.

Figure 3.7: IPF intrinsic growth rates, r, compared with single-sex rm and rf . US,
1969-2009 and Spain, 1975-2009.
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3.6 Other method families not investigated here

A complete survey of two-sex models would have been a gargantuan task, given

that the modeling challenge has in recent years branched into various other disciplines

and approaches. Covering all of these would have precluded the developments to be

presented in the remaining chapters of this dissertation, which we deem of higher

value. Here we attempt to summarize other avenues that work on the two-sex prob-

lem has taken, some of which could have been included in this work. Most were

excluded because they either exceeded the complexity desired in this dissertation,

exceeded data constraints, exceeded our comprehension, or exceeded our implemen-

tation ability. Nonetheless, we will give super�cial attention to the varieties of two-sex

models otherwise excluded.

3.6.1 Henry's panmictic circles

Another widely-known iterative method, most comparable with IPF, is the method

of Henry (1972). This method is based on matrix decomposition via panmictic circles,

which entails somewhat more implementation e�ort than does IPF, and is likely more

substantively appealing. McFarland (1975) compared the IPF method only with that

of Henry, and Wijewickrema (1980) used this method in his dissertation study of weak

ergodicity in the two-sex problem in the context of marriage.45 We do not implement

this method,46 though it most resembles IPF, and it has all of the same desirable

properties, yet gives di�erent results. This extension is left for future work.

45And most interestingly, was with little e�ort able to produce apparent limit cycles in the stable
population.

46There are some ambiguities in terms of implementing the method when working with unabridged
data that also contains many zeros. We did not succeed in translating the method from an abridged
table to single ages without also producing negative numbers.
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3.6.2 Combined marriage-fertility models

Karmel (1947) �rst proposed solving the male-female fertility discrepancy by shift-

ing fertility to couples as the primary unit of reproduction. This choice makes perfect

sense theoretically, but does not solve the essential modelleing challenge so much as

displace it, as this family of models must somehow balance the numbers of couples.

Balancing couple formation is the same operationally as balancing birth predictions.

It is easy enough to see that this family of models, when built well and based on

appropriate data, is superior to our own modeling of unconditional fertility. How-

ever, the obstacles are greater to operationalizing this family of model, as one must

decide what to consider a couple (marriage, cohabitation, sexual partner), how to

incorporate ruptures (divorce, separation, widowhood) and couple re-formation. The

more couple varieties in the model, the more fertility rates must be speci�ed, and

these must of course be estimable. Further complexity may be added by consider-

ing durations, such as duration since couple formation, or duration since last birth,

states such as education, or of course any of the proximate determinants of fertility

(Bongaarts , 1982, 1978; Bongaarts and Potter , 1983).

In a projective setting with some simplifying assumptions, some mix of the above

considerations is indeed possible given that the demographer is in possession of the

appropriate population stocks, couple transition probabilities, and vital rates.47 In

practice 1) there are (still) not many populations for which this endeavor is possible,

2) it is not clear whether the two-sex stable population structure or growth rate

would di�er from that produced by the simpler model, 3) one increases the possible

sources of error in that more data sources are required and 4) assumptions (or data

constraints) about what kind of couples matter for fertility will likely a�ect results.

In short, for this dissertation, these other considerations would have been more of a

distraction. We have kept e�ort to modeling the part of the model that demographers

47e.g., (Schoen, 1987) gives implementation guidance.
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have often called the marriage-function, albeit applied to fertility.

In this vein, we have in this dissertation notably neglected the work of Pollak

(1986, 1987, 1990b), who solves the two-sex problem by separating couple-formation

and birth functions into two model components in the so-called BMMR (birth matrix

mating rule) model. As mentioned above, the couple-formation component of the

model is subject to the same modeling considerations as our own fertility component

in this dissertation. This model would have been commensurate with our own line of

presentation had the requisite data been on hand.

3.6.3 Di�erential equations

Many recent advances in the two-sex problem have come from mathematicians and

epidemiologists, and much (but not all) of this e�ort has been motivated by the need

to model sexual mixing in populations for the study of disease { most prominently

HIV. Di�erential equations (ODEs, or ordinary di�erential equations) are the model

of choice in this case because transitions may ocurr in intervals of less than a year

(the standard in discrete demography), just as in life (Hoppensteadt and Hoppensteadt ,

1975). This is especially true of sexually transmitted disease, which was a motivator

mentioned by Hadeler et al. (1988), and which sparked a wide blossoming of two-sex,

multi-state model development (Dietz and Hadeler , 1988; Hadeler , 1989; Busenberg

and Castillo-Chávez , 1991; Blythe et al., 1991).

ODE formulations of the two-sex population models typically maintain the couple-

formation (marriage-function) component to the model (Fredrickson, 1971; Inaba,

1993) (see e.g., Ianelli et al., 2005, for a good overview), and they have often entered

into territory seldom formally considered by practicing demographers. For instance,

ODEs at times incorporate logistic growth functions (Castillo-Chavez and Wenzhang,

C., 1995; Yang , 2009; Yang and Milner , 2009) rather than assuming exponential

growth (Martcheva, 1999). Interdependencies in ODEs branch in more directions than
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in any demographic projection model { Maxin and Berec (2010), to take an example,

incorporates a divorce rate that depends on external pressure from the proportion still

single, rather than some constant rate for couples. Couple-formation may be speci�ed

to occur with a maturation period without loss of desirable model properties (Hadeler ,

1993). Some such models have been shown to have unique solutions (Martcheva and

Milner , 1999) and stable age structures (Inaba, 2000). While work has been done to

discretize some two-sex ODEs (Arbogast and Milner , 1989; Martcheva and Milner ,

2001; Ianelli et al., 2005), continuous-time models are regretfully absent from this

dissertation.

3.6.4 A parametric solution?

All two-sex solutions presented thus far in this dissertation have been framed in

terms of single-age data commensurable with lifetable methods. The age schedules

for the demographic phenomena underlying these methods have not been summa-

rized here in terms of a reduced set of parameters. Our end, the estimation and

measurement of population reproductivity, is primarily a non-parametric endeavor.

To summarize a two-sex version of net reproduction or the intrinsic growth rate in

terms of a reduced set of parameters is possible given the following:

1. There are several parameterizations of mortality. Heligman and Pollard (1980)

provide an especially popular parameterization, which summarizes an entire

age-pattern in terms of eight parameters. To do this separately for males would

entail a total of 16 mortality parameters, unless any of the original eight are

plausibly equal.

2. There are also several competing parameterizations of age-speci�c fertility sched-

ules. For instance, Coale and Trussell (1974) propose a fertility model wherein

marriage schedules (proportion ever married) are summarized by two parame-
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ters and marital fertility is summarized in terms of departure from a standard

natural fertility pattern with two further parameters. Presumably, something

similar could be done for males. We know of no attempt to parametrically

model the two-sex fertility surface,48 although this is apparently within reach,

as Sanderson (1981, 1983) has done this for marriage markets (described in

following).

3. The sex ratio at birth is essentially linear over ages of mothers and fathers,

entailing two parameters each for males and females, and possibly fewer if par-

simony is sought.

Insofar as each model input can be parameterized, one could plausibly parameter-

ize the entire renewal equation. Indeed, Coale and Trussell (1974) mention that their

fertility parameterization was a subset of a project at Princeton to �nd the complex

roots of the Lotka equation, which was later presented in Trussell (1977). These

models have not been adapted in the direction of two-sex reproductivity. Thus, this

is an avenue for potential further exploration in the two-sex problem.

3.6.5 The general equilibrium perspective

Sanderson (1981, 1983) made substantial headway in parameterizing a two-sex

model to predict marriages. Part of this e�ort was inspired by and based on the well-

known two-parameter Coale-McNeil model (Coale and McNeil , 1972; Coale, 1971)49

for estimating single-age female marriage schedules from sparse, noisy or grouped

data. Coale and McNeil had namely found one of demography's most enduring and

appealing empirical regularities { 1) that nearly all observed marriage schedules at

that time could be �t to a single standard parametric curve, 2) that this curve could

be �t by adjusting only three parameters, 3) that these parameters could be estimated

48e.g., as displayed in Figure 2.17.
49This marriage model is a subset of the Coale-Trussel fertility model.
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exogenously and separately from one another, and 4) that each of the three parameters

had a clear demographic interpretation { all with no reference to a standard schedule.

Sanderson's challenge was to achieve the same degree of parsimony in a two-sex setting

{ namely, where the numbers of available mates a�ects marriage rates for each sex.

Marginal distributions in this model are �t to the Coale-McNeil equations. The

model uses a large number of age-age-speci�c scarcity and demand parameters to

balance male and female rates, which are in turn summarized in terms of a smaller set

of parameters. Sanderson is able to use supply and demand notions in an exchange

economy framework, as he describes marriages as exchanges of vows, wherein the

number of vows exchanged between brides and grooms in each age combination must

match. This conceptual framework is obviously imported from economics, speci�cally

from the extended linear expenditure system of Lluch et al. (1977) in the general

equilibrium family of models, which entails solving a large number of linear equations

simultaneously. This model is not implemented in this dissertation, in part because

the conceptual and programming overhead is much higher than the other models

treated here, and in part because considerable modi�cations would be necessary to

bring the model to bear upon fertility and work it into a full two-sex reproduction

model. No posterior implementations of Sanderson's model have been located in the

literature.

Bergstrom and Lam (1994) take a similar tack from the economic literature, view-

ing the two-sex problem (from a suggestion in Becker (1973)) as a particular case of

the assignment problem in combinatorial optimization, wherein given male and female

preferences for ages at marriage50 combine with the market. One problem is that a

payo�, or cost, matrix { the penalty for not marrying at one's prefered age { must

be exogenously speci�ed in order to optimize the system. These authors were not

satis�ed with their own empirical results and attributed this to certain assumptions

50i.e., as opposed to preferences for ages of partners, these authors pose preferences in terms of
one's own age at marriage and leave the rest to the market.
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in their model. This particular modeling strategy appears not to have been followed

further in the literature.

3.6.6 Choo and Siow's econometric perspective

The line of work from Choo and Siow { (Choo and Siow , 2006; Siow , 2008; Seitz

et al., 2010) { is construed from a market-based perspective similar to the above.

These authors conceive of the marriage market as several overlapping markets{ one

for each age / characteristic combination { all of which must be optimized (cleared).

Interior to the model is a geometric mean marriage function,51 but with additional

parameters to allow for inter-age substitution via supply and demand. The model is

identi�able, and it requires a kind of global optimization of a similar order of com-

plexity to the Sanderson or Bergstrom-Lam models. Siow (2008) has been able to

test the model empirically by using a natural experiment that drastically a�ected

cohort size,52 and found the model to match some expected marriage market dy-

namics. Hypothetically, it would be possible to migrate this model framework to

the phenomena of fertility, though this has not been done yet, and the substantive

arguments would need to change. Likewise, it would be possible for the Choo-Siow

model to be an interior component to a larger fertility model wherein marital states

a�ect fertility rates. Implementing the Choo-Siow model and/or translating it into

this dissertation's focus on reproductivity is beyond our present scope.

3.6.7 Agent-based models and marriage-matching per se

Other propositions have been advanced in a similar line (Jacquemet and Robin,

2011; Dagsvik , 1998), though often in an agent-based framework, of which marriage

matching algorithms form a widely studied subset. The two-sex problem in this arena

51The geometric mean respects homogeneity, but not monotonicity. I do not �nd this problematic.
52The abrupt cohort size change at the start and end of China's Great Leap Forward from the

province of Sichuan.
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is not necessarily viewed as a problem of population modeling but as an optimization

or algorithmic assignment problem. Dagsvik (2000) shows how such micro-level mod-

els can yield macro-level results of interest for demography (and other disciplines),

although this author knows of no e�orts to make macro-demographic predictions

about population reproductivity by aggregating from such agent-based models. Al-

gorithms used in the marriage-matching problem are applicable in other matching

problems (e.g. �rms-buyers, �rms-locations).

The most famous such matching algorithm is the Gale-Shapley algorithm (Gale

and Shapley , 1962)53 wherein each male and female member of a population begins

with a ranking of each potential partner according to any criteria. The algorithm

begins with one side (males, let us say) proposing to the highest-ranked unmarried

individual (females) in the preference list to which he has not yet proposed. Second,

each female that received proposals provisionally accepts the proposal from the suitor

that was highest in her own ranking list (gets engaged). In the next round proposals

may be made to engaged or single females, but engaged males do not propose. An

engagement may in this case be broken if a higher-ranked male proposes. The al-

gorithm continues until no new engagements are made. It has been shown that this

algorithm is a solution to the stable marriage problem, meaning that once the each

individual is matched there is no male-female combination in the population wherein

each would prefer to leave their partner. When this condition is met the marriages

are said to be stable. In this algorithm, the proposing side (males in our description)

will always converge to have partners that were ranked higher on their initial list

than the accepting side. This algorithm is not an agent-based model of the marriage

market, per se, but rather a potential component of one.

Agent-based models (ABMs) are attractive for the two-sex problem precisely be-

cause the problem in this setting changes its nature from being one of internal con-

53For instance, a variant of this algorithm is used to assign medical graduates to hospital residencies
in the United States.
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sistency to one of dynamics or matching. Internal consistency is dealt with precisely

because individuals in such simulations mate due to interactions, in which case a

single marriage is assigned to each, and the accounting constraint is ful�lled without

further ado. Billari et al. (2002) puts this framework to productive use, reproducing

aggregate-level age-at-marriage patterns based on sociologically and psychologically

informed micro-level interactions of the marriage market. Namely, potential mates

marry not only as a function of mate availability { that primarily accounted for by

demographers in two-sex models { but also as a function of marriages taking place in

the agents' own social networks, in essence granting part of agent marriage propen-

sity (willingness in the model) to peer e�ects (i.e., contagion). Walker and Davis

(2013) recently built a similarly conceived ABM that permitted the authors to test

sociological theory about various kinds of homogamy against observed census data.

In general, ABMs are of use to demographers interested in the two-sex problem be-

cause they permit the exploration of the implications of particular hypotheses about

decision-making, social interactions, and individual-environment interactions for de-

mographic and other population processes. ABMs will not be useful in the context of

stable populations or reproductivity in the sense studied in this dissertation precisely

because such models are complex and may never stabilize or have unique trajectories

(Johansen and Dagsvik , 1999).
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Populations structured by

remaining years of life
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Chapter IV

Switching the direction of age

Jedes letzte Jetzt ist als Jetzt je immer schon ein Sofort-nicht-mehr, also
Zeit im Sinne des Nicht-mehr-jetzt, der Vergangenheit; jedes erste Jetzt
ist je ein Soeben-noch-nicht, mithin Zeit im Sinne des Noch-nicht-jetzt,
der hZukunfti. (Heidegger , 1972)

translation:

Every last now, as a now, is always already a right-away that is no longer,
thus it is time in the sense of the sense of the no longer now, of the past.
Every �rst now is always a just-now-not-yet, thus it is time in the sense
of the not-yet-now, the \future." (Stambaugh et al., 1996)

In general, a population viewed from the perspective of remaining years of life

displays di�erent patterns from, and yields complimentary information to, one looked

at from the perspective of chronological age, time since birth. This observation is the

point of departure for the population models that are presented in the remainder of

this dissertation.

This perspective is known in other branches of social science as well. Carstensen

(2006); Carstensen et al. (1999), for instance, argue that various aspects of emotion

and cognition are best relativized to one's perception of time until death rather than

time since birth. Carstensen argues, inter alia, that the precision of chronological

age in measuring the life course loses precision in old age, whereas one's intuition of

remaining time gains in precision for marking various kinds of cognitive transitions.
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Meyer (2008) emphasizes that the individual's experience of time is put into play

upon the transition out of productive work, which may include the notion of moving

toward death. Meyer argues that the dominace of various experiences of time over

phases of the lifecourse coupled with changes in the demographic composition can pro-

vide opportunities to rede�ne the dominant understanding of aging. Namely, is the

experience of age backward-looking, a sequence of signi�cant events, forward-looking,

or something else? It is evident that interest in the remaining-years perspective in

social science goes beyond the con�nes of quantitative population studies. Here, we

use the perspective in a strictly formal demographic framework. Secondary uses of

and insights from the strictly demographic results of applying this perspective to pop-

ulation data evidently might reach beyond the limited ends of population accounting

or economic planning.

Counting age as time until death rather than time since birth, applied to the

extent that is to follow, has been lacking from the discipline of demography, although

there is a widespread desire for such tools, and much work of high value has been

done in the same direction. Hersch (1944) introduced the idea of potential years

of life, PYL, the total years of remaining life expectancy for a particular age class

of population. This measure has proven very useful to demographers (Panush and

Peritz , 1996), but it is considerably more aggregate in nature than the methods to be

proposed here, and is not a true departure from the age perspective, as it is calculated

for age classes. Ryder (1975) as well calculated exact ages at which particular life

expectancies were attained using the Coale-Demeny model life tables, taking the extra

step of calculating (stable) proportions of population with a particular remaining life

expectancy.

Recently, Sanderson and Scherbov (2005, 2010) have made much headway in using

the notion of remaining years of life in order to adjust measures of population aging

and life expectancy. For instance, these authors o�er an index of prospective average
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remaining years of life (PARYL), which is calculated as the weighted average of age-

speci�c remaining life expectancies, a measure which summarizes that of Hersch

(1944). The interpretation of this index of course belongs to the remaining-years

perspective. Sanderson and Scherbov (2005), for instance, note that despite aging

in a population, the mean remaining years to be lived may increase. This is due to

improvements in mortality o�setting (or more than o�setting) increases in the mean

age of a population { i.e., age-inflation (Shoven and Goda, 2010). Sanderson and

Scherbov (2007) discuss this age perpective in a very similar way, and give strong

arguments as to its utility.

The author whose work most resembles what is presented here is Miller (2001),

who takes a more exact approach than the above, looking at particular age-speci�c

death distributions54 in order to calculate indices of projected health expenditures.

This method has been extended somewhat into the domain of health care expenditure

projection (Lee and Miller , 2002; Lee, 2007; Topoleski , 2004). We will relate our own

method to Miller (2001) in the following section. Stearns and Norton (2004) and

Seshamani and Gray (2004) as well apply a regression approach in order to account

for time-until-deathe�ects { it is clear that there is great interest among cognate

disciplines for demographic data classi�ed by remaining years of life.

These contributions are of great importance, but they take a di�erent strategy

than that proposed here, working primarily with particular ages, in a regression

framework, or in a stochastic cohort component projection framework. A full em-

brace of the remaining-years perspective would require us to answer variants of the

following question: \How many persons in this population have a remaining life ex-

pectancy of y?" In answering this question for each remaining life expectancy, y, one

arrives at a population structure by remaining years of life { thanatological age55 {

54Age-speci�c death distributions are more speci�c than age-speci�c remaining life expectancy
because the latter are weighted averages of the former.

55This term was coined by Ken Wachter and Tim Miller.
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in which case the population may be said to be structured by remaining years of life.

PYL and similar measures do not answer this question for us. The concept in itself is

not new, and it owes to the work of many demographers, most especially L. Hersch,

T. Miller, R. Lee, W. Sanderson, and S. Scherbov.

Our objective in this dissertation is to take the concept of remaining time, time

until death, three steps further, 1) outright restructuring population by thanatological

age as opposed to chronological age,56 2) exploring the implications for population

growth under this new form of structure in general, and 3) exposing a variety of two-

sex extentions to the growth models, with special attention to stable populations. We

go well beyond a mortality-only or speci�c-use scope.

Demographers mark age as a linear function of newtonian time since birth, an

event which for all is necessarily in the past. For this reason we may label this

concept of age as backward-looking. The age structure of a population is in this

way a mirror to the past. Demographers also project forward, an activity informed

by the experience of the past and present. To the extent that projections of future

population are also structured by age, they are also projections of future mirrors to the

past, i.e., still backward-looking. Yet present populations may also be structured by

an unknown future, and this is what we propose to do. In this dissertation, we derive

this forward-looking population structure based on data from the present, which of

course are a re
ection of the past. The activity is in this way necessarily projective,

but does not seek to be a projection in the proper demographic sense. It is rather an

application of synthetic, static, lifetable methods to a present population under the

assumption of constant mortality conditions. This time transformation is revealing of

a potential future { a potential population structure, in the sense of Hersch (1944).

We speculate that this notion of (potential) reverse chronological age might also

yield insights to all manner of demographic phenomena. Speci�c applications of the

56One could call the temporal ordering element to population structured by remaining years of
life descending age or reverse chronological age.
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remaining-years perspective for the demographic study of the life course will not be

discussed. Instead, we aim to make headway into the more fundamental terrain of

population renewal and growth, and the practice of demography in general. In so

doing, we hope to make available a set of tools to expand the present domain of basic

demographic analysis from an age-sex paradigm to include the remaining years-sex

paradigm.

We begin by pointing out the key di�erences between remaining-years classi�ed

demographic data, henceforth ey-classi�ed data,57 and age-classi�ed data. We �rst

present a method to exactly redistribute population counts (events, exposures) ac-

cording to remaining years of life, as determined by the period lifetable. A reexam-

ination of recent fertility patterns according to remaining years of life follow. The

following chapters will build upon the idea of ey-structured populations to develop

a parallel concept of population renewal and growth. First, the single-sex model

is presented, followed by two-sex extensions. Both linear and non-linear extensions

are considered. Results will be compared with those from the age-classi�ed system.

Special attention is given to the two-sex problem throughout.

4.1 Transforming time since birth to time until death

The steps required to carry out the present data transformation are conceptually

simple, and easy to implement once understood. From a given population and year

extract the dx column from the corresponding lifetable of radix (l0) equal to 1.58

Note that in this case the dx column sums to 1, and is therefore a proper density

function. dx can now be thought of as the probability of dying in any given age from

the perspective of a 0-year-old, according to the given year's mortality experience. It

57ey is distinct from ex, in this sense, since the latter is de�ned as mean remaining lifetime by
age, whereas ey and the subscript y in general are used to refer to remaining years as a classifying,
or structuring, variable.

58If the lifetable was calculated with a di�erent radix, then simply divide the dx column by l0
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follows that the observed population of age 0 can be redistributed according to dx

and interpreted either as the expected death counts in each future year t+x, or more

intuitively as the distribution of persons currently aged 0 according to remaining life

expectancy. This can be done similarly for age 1, by ignoring the mortality experience

of age 0, and rescaling dx to sum to 1, or more generally redistributing each age and

then summing to ex-speci�c totals

Py =

1∫
a=0

Pa
da+y∫1

b=a
db db

da (4.1)

= E(Dt+y)

where Pa is the population of age a, da is the lifetable density function, and E(Dt+y)

is the expected number of deaths y years after the present year t (also understood

as a vector of the current population) redistributed into categories of remaining life

expectancy, Py, our newly reclassi�ed data.

The function of this formula is not original, as Miller (2001) and Vaupel (2009)

made use of a similar identity:

f(nja) = �(a+ n)
l(a+ n)

l(a)
(4.2)

where f(nja) is the probability of dying n years in the future given survival to age

a, and � is the force of mortality. Miller (2001) used the formula to look at death

distributions of particular ages in projecting health expenditures. Equation (4.2) can

thus be used to weight age-classi�ed data as well. When then integrated over age for

a given n, Equation (4.2) is equal to Equation (4.1).

Equation (4.1) is more convenient when discretized,59 although both are equally

59Formula (4.1) is more convenient due to 1) lifetable close-out issues and 2) because only one
column from the lifetable is required instead of three columns (�x, lx, Lx) in Equation (4.2).
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valid. Equation 4.1 is equivalent to:

Pn =

1∫
a=0

Pa�a+n
la+n
la

da (4.3)

where n is treated as y in 4.1. The use of either formula in the way presented in this

section is to this author's knowledge novel. While Equation (4.2) has been used for

particular purposes (Miller , 2001), population structured by remaining years of time

as given by Equation (4.1), structured by Miller's thanatological age, is the notion to

be developed further.

4.2 Populations structured by remaining years

The resulting population structure from applying Equation (4.1) to age-classi�ed

population data is diachronous60 within any given level of remaining life expectancy,

and looks like Figures 4.1 and 4.261 for the years 1975 and 2009 in the US and Spain.62

As a helpful pointer, note that the population at the base of the pyramid is expected

to decrement within the next year, thus the vertical axis can also can also be thought

of as year t+ y, although ey more clearly identi�es the pyramid with year t mortality

conditions. The pyramid should not be taken out of context as a forecast. Note

that this pyramid represents the exact same population as an age-classi�ed pyramid:

underlying males sum to the correct total on the left and females sum to the correct

total on the right. Only the de�nition of age has changed; instead of counting forward

from birth we count age in reverse starting from death. For individuals, this feat would

be impossible, but given the information contained in a period lifetable, one can to

60Heterogeneous with respect to age.
61The idea to redistribute the population pyramid in this way is due to a conversation with John

MacInnes, and appears in (MacInnes and Spijker) (unpublished) using a di�erent method.
62The unlabeled inside cover artwork is the same 2009 pyramid (in green) but preceeded by history

(grey) and continued with a deterministic projection (blue) under speci�c assumptions (Spain left,
US right, vertical axes comparable, horizontal axes not comparable).
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great utility redistribute population aggregates according to ey.
63 Both pyramids

have been rescaled to sum to 100, in order to more comparably represent population

structure.

A time series of remaining life expectancy pyramids for any given Western country

(excluding war years and epidemics, and especially after the rapid fall in infant mor-

tality) will show incredible stability over time, which is remarkable in light of aging in

the observed population pyramid. The simple interpretation of this kind of pyramid

adds to its utility, and this author believes that ey-speci�c population structure, and

indicators that can be derived from this method (not treated here), should make up

a valuable new component for the contemporary demographer's toolbox, as well as

help inform current population debates.

For Spain and the US in the years treated in this dissertation, the remaining-

years-structured population pyramid has been much more stable over time than the

corresponding age-structured pyramid. This we will demonstrate by again making

use of the di�erence coe�cient, � from Equation (2.2), where f1 is the population

structure for year t and f2 is the population structure from year t + 1 (males and

females, together, scaled to sum to 1). We iteratively produce �, comparing year t and

t+ 1 for age-structured pyramids on the one hand and for ey-structured pyramids on

the other. Pyramids are in general very stable, so the di�erence � in both cases will

nearly always fall below 0.02. However, ey-� is consistently and considerably lower

than the age-�. It will su�ce to take the ratio of the two indicators, ey-� divided by

age-� over the period of study for both countries, as seen in Figure 4.3.

In Figure 4.3, a value of 1 would indicate that the two ways of structuring popula-

tion are equally stable between years t and t+ 1; values less than 1 indicate that the

ey-structured population is more stable. For instance, .5 means that the ey-structured

63To undertake the same but assuming future mortality changes (improvements), one might better
undertake a fertility-free cohort component projection and collect the deaths from each future year
t+ y until extinction. This possibility is not treated in the present dissertation.
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Figure 4.1: US population by remaining years, 1975 and 2009
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Figure 4.2: Spain population by remaining years, 1975 and 2009
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Figure 4.3: Relative stability of ey-structured populations to age-structured popula-
tions, year t versus t+ 1, ratio of �, Spain and US, 1969-2009
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population was twice as stable, .2 means 5 times more stable, and so forth. In all

years in this dissertation, ey-structuring acted to stabilize the population somewhat.

As a heuristic, runs of years with continuous and modest improvements in mortality

will produce the most stable ey-structured pyramids. This measure of stability com-

pounds as well: that is to say, an ey-structured population in year t compared with

that from year t + 10 will be much more stable than the same comparison for the

standard population. This lesson reaps dividends throughout the remainder of this

dissertation; we exploit this observation without investigating much further into its

causes.

To satisfy our curiosity about whether this �nding is true only of these two pop-

ulations and these particular years, or whether it is a pattern we would expect to see

over a wider range of populations, we expand the exercise to the entirety of the Hu-

man Mortality Database, and summarize �ndings for the reader. The data used here

include all 46 populations and subpopulations in the HMD at the time of this writing.

Instead of calculating the year-on-year di�erence coe�cient only for 1-year lags, we

calculate it for lags 1-50. This we do �rst for each population and each lag over the

entire span of years available for each population. We then take an unweighted arith-

metic mean over all di�erence coe�cients for the given lag for all countries combined.

This is a rough gauge because not all populations are available for the same number of

years, and the exercise is susceptible to much improvement. Nonetheless, it serves as

strong evidence of our claim that ey-structured populations are more stable over time

than age-structured populations. We then repeat the exercise for years 1950+ only,

which serves to remove most major mortality crises from the data. For the �rst lag,

a total of 4267 population-speci�c year-on-year di�erence coe�cients are calculated

{ 2133 when the lag is equal to 50. For years after 1950 the respective numbers are

2478 and 344. The results are displayed in Figure 4.4, and we conclude that it is an

acceptable rule of thumb to say that remaining years-structured populations are in
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Figure 4.4: Relative stability of ey-structured populations to age-structured popula-
tions, year t versus t + lag, ratio of �, All HMD populations, all years available and
years since 1950
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general twice as stable as age-structured populations, thrice as stable for comparisons

within a 10-year horizon.

4.2.1 Uncertainty in remaining-years structure

The reader may reasonably question whether the structure observed in Figures 4.1

and 4.2 is as certain as its graphical representation would imply { there are namely

no con�dence intervals in the plot, despite the fact that we've used the deaths distri-

bution, dx, to redistribute population counts, and dx is naturally subject to random


uctuations. Aside from typical sources of error for population estimates, and assum-
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ing that age in the �rst place is correctly recorded, we may wish to asses how much

the present population structure could su�er distortion from noise in dx.

To shed light on this question, the following exercise has been carried out. 1)

For each age of original data 1000 random deviates were drawn from the poisson

distribution, using the observed death count as the parameter �. 2) Dividing these

simulated death counts by observed exposures gives simulated death rates �x. 3) dx is

derived from �x using the HMD methods protocol. 4) The population is redistributed

1000 times according to the 1000 random dx disrtibutions. 5) From these simulated

population structure, the 0.025 and 0.975 quantiles are extracted from each class of

remaining years. This yields some rough 95% uncertainty bands.

It happens that uncertainty due to randomness in dx is so minor in both the US

and Spanish populations that these con�dence bands superimposed on Figure 4.1

would not be visible to the naked eye. There is nonetheless a pattern to uncertainty

in ey-structured populations, which we display in Figure 4.5. Con�dence bands are

larger for the Spanish population than for the US population due to the di�erence in

population size. The pattern over remaing years is for uncertainty to decrease from the

lowest life expectancies until ey is around 40 or 50, and then to increase geometrically

until the highest life expectancies. The highest uncertainty corresponds with the

thinnest part of the pyramid, however, and the lowest uncertainty falls around the

mode of the pyramid. Uncertainty for males and females is similar in low ey, but

tends to become greater for males as ey increases geometrically.

By far the greatest source of uncertainty in this pseudo-projection arises if the

demographer decides to account for improvements in mortality. This later uncertainty

arises not only from random 
uctuations, but also due to the projection assumptions

used. This variety of adjustment, adding improvement to the mix, is discussed in the

following section.
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Figure 4.5: Width of 95% uncertainty bands as percentage for each remaining-years
class, Spain and US, 1975

0 10 20 30 40 50 60 70 80 90 100
−10 %

−8 %

−6 %

−4 %

−2 %

0 %

2 %

4 %

6 %

8 %

10 %

Remaining Years

Interval %

US males
US females

ES females
ES males

Lower

Upper

125



4.2.2 Accounting for improvement in mortality

As we are dealing with a forward-looking (Sanderson and Scherbov , 2007) trans-

formation of structure, the reader will likely intuit that our redistribution method

will err toward pessimism to the extent that future improvements in mortality are

ignored. The desire to take account of future mortality improvements is already a

projection mindset, and we have made no claim that the this structure is a realistic

projection { Rather it is a scenario { a speedometer, to use the analogy of Coale

(1972). In any case, one best accounts for future mortality improvements by applying

assumptions about the rate of improvement in the age-speci�c mortality hazard, �a,

rather than directly manipulating da, which is our redistribution vector. To illustrate

by example, take the population of infants and the full present vector of �a. It seems

fair that that �0, or something close to it, will apply to these infants, yet by age 5,

�5 will likely be too high, and certainly by age 50 this same static �50 will be too

high. For the sake of simplicity, let us assume that the rate of improvement, �, applies

equally over all ages and future years, and is equal to about 0.5% per year (conserva-

tive for some ages, liberal for others). To use this as a multiplicative factor, we take

e�a, where � = �0:005. Then we modify �a for these 0-year-olds, in the following way

�0
a = �ae

�a (4.4)

where the superscript indicates that we have done this for persons of age 0, and ! is

the highest age attainable. Now one converts the �0
a to the new d0a and redistributes

the infant population accordingly. The relation between �a and da in continuous

terms is given by

da = �ae
�

∫1
0 �a da (4.5)
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For the sake of completeness, we can respecify the entire redistribution equation (4.1)

in terms of �a as

Py =

1∫
a=0

Pa
�a+ye

�
∫ a+y
b=0 �b db

e�
∫ a
b=0 �b db

da (4.6)

Then allowing for a constant rate of reduction in �a for ages after age a in year t, �

(e.g., �0:005), we get

Py =

1∫
a=0

Pa
�a+ye

�y(e�
∫ a
b=0 �b db + e�

∫ a+y
b=a �be

ιb db)

e�
∫ a
b=0 �b db

da (4.7)

which is likely in need of some explanation. The observed population of age a, Pa,

has already survived to its age a, so improvements for this set of individuals must

happen in later ages only (our assumption about the future). Thus, we do not alter

la (the denominator) or the left side of the sum in parentheses in the numerator

(also equal to la). The part in the numerator in parentheses is la+n from Vaupel's

Equation (4.2), but allowing for improvements in � starting with age a only (the right

side). In this simple case, future �a are reduced by a factor of e�n where n counts up

from the age-group being redistributed. To allow for more 
exible improvements in

�a, we would need a separate vector of values for the proportional reduction in �a+n,

for each change in a, or else a full matrix of the future �a values that would apply to

each age-group, taken for example from a projection.

For our discretized example, the above formulas are not convenient. We use the

HMD methodology to derive to da from �a. This entails the following steps. 1)

Assume that the average proportion of the year completed at death in each single-

age interval is 0.5 (except for age 0, which uses the Coale-Demeny rule of thumb). 2)

Derive death probabilities, qa, using �a and the latter. 3) Derive the survival function,

la, as the cumulative product of the complement of qa, with an initial value of 1 and

a �nal value of 0. 4) Finally, take the element-wise product of qa and la to arrive at
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our requisite da.
64 This must be done for each age, to create as many modi�ed �xa

vectors as there are ages, and then one applies the same Equation (4.1), swapping

the �xa vector as one iterates over ages. Alternatively, as mentioned above, one could

just take some future evolution of �a from a standard projection method, such as the

Lee-Carter method (Lee and Carter , 1992), �nding the mortality trajectory expected

for each individual, converting this to da, and then redistributing the population

accordingly.

Here we execute the simplest assumption, though there is ample room for im-

provement in the method. The results of decreasing year 2009 mortality rates in each

successive year (iteration) by a multiplicative factor of 0.995 (close to e�0:005) are

displayed in Figures 4.6 and 4.7.

Common practice would have been to start the rate of improvement stronger

and let is taper o� with time, or to allow e�ects to work di�erently over age, but the

present exercise is meant to be illustrative. Here one appreciates the slight malleability

of population structure in light of potential future mortality improvements. The

impending mode, composed largely but not entirely of baby-boomers, is absorbed to

a certain extent, and the overall picture is even more optimistic than the original (as

one would expect) for both countries.

To incorporate uncertainty into this method, it is recommended to allow variation

in �x per the strategy outlined in the previous Section 4.2.1. At this time, we depart

from the present line of development. For the rest of this dissertation we deal only

with static period deaths distributions, and we leave the thoughtful incorporation of

mortality improvements and additional uncertainty into the method for future work.

64This is the abbreviated version. See the HMD Methods Protocol (Wilmoth et al., 2007) for the
full version, which for this dissertation we have functionalized.
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Figure 4.6: US population by remaining years under constant multipicative reduction
in µ a of 0.995 per year.

1.0% 0.8% 0.6% 0.4% 0.2% 0.0% 0.2% 0.4% 0.6% 0.8% 1.0%
0

10

20

30

40

50

60

70

80

90

100

110

ey

Percentage

2009 fixed

eι = 0.995

Figure 4.7: Spanish population by remaining years under constant multipicative re-
duction in µ a of 0.995 per year
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4.2.3 Potential indicators of aging under remaining-years structure

The reader will have been quick to notice that the present pyramid lends itself to

the calculation of some simple proportions akin to those o�ered by Sanderson and

Scherbov (e.g., 2005). For instance, one may calculate the proportion of the pyramid

with remaining life expectancy less than some threshold, such as 15 (that commonly

chosen by Sanderson and Scherbov). Where P T is the total population and Py is the

population with exact remaining life expectancy y, we calculate the proportion of the

population with 15 or fewer remaining years of life expectancy, Py�15, as

Py�15 =

∫ 15

y=0
Py dy

P T
(4.8)

The results from this calculation will di�er from the method called the \Prospec-

tive Old-Age Dependency Ratio"(POADR) for two reasons. 1) POADR is calculated

by indexing the lifetable ex to some reference lifetable.65 2) We have lost the age in-

formation necessary to cut o� the total population below age 20, although this could

be accounted for with little trouble. In doing so, however, we would lose the deaths

of all those below age 20 that would happen within the next 15 years.

To better compare with the notion of prospective age, look to the example given

in Sanderson and Scherbov (2007): the authors compare individuals from 1950 and

2000 who each have an average remaining life expectancy of 30. These two individuals

will evidently have had di�erent chronological ages. Imagine that in 1950 ex = 30

occured at age 40, and in 2000 at age 50. Then using 1950 as our standard, we could

say that the 50-year-old in 2000 has a prospective age of 40, in the sense of \50 is the

new 40."

This basis for the method is quite di�erent from that presented here because

indexing is done via the ex column of the lifetable, which is a weighted average.

65This is explained nicely in Sanderson and Scherbov (2007).
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Speci�cally, it is the weighted average of all possible remaining life expectancies,

where dx are the weights. Chronological age is in this way never dispensed with, and

it is hard to imagine how, for instance, this method could do a good job of producing

a fully structured population, such as that seen in Figures 4.1 and 4.2. Our method

instead combines ages via dx so as to arrive at clean breakpoints of y. We do not

o�er a thorough comparison between such measures, although this is a ripe avenue

for further work.

Another measure of population aging that falls out of our method is the Proportion

of Life Left (PLL).66 Take, for instance the same 50-year-old man in 2000 with a

remaining life expectancy of 30. If this man dies at the expected age of 80 then

he has left 30
80

= 0:375 or 37.5% of his life. We can re�ne this by using the deaths

distribution at ages 50 and higher in 2000; some 50-year-old males will die at age 50,

others at age 51, and so on up until the highest age. With respect to each potential

age of death, we may then calculate a proportion of life left, and proceed to take

a population-weighted average of these. Formally, we calculate PLL for the whole

population as

PLL =

∫1
y=0

∫1
a=0

y
a+y

[
Pa

da+y∫1
b=a db db

]
da dy

P T
(4.9)

where a indexes age and y indexes remaining years of life. For the US and Spain, the

time trend of this indicator for our two populations and our relatively narrow range

of years is displayed in Figure 4.8

So far, both the US and Spain have shown on average more remaining years than

there have been years lived, although both countries have exhibited declines in this

period. The US trend has been particularly linear in this period.67 PLL is particularly

66Again, this idea owes to a particular conversation with John MacInnes, upon which I formalized
the concept.

67For the years shown, the correlation coe�cient for US males was �0:994 and for females was
�0:992. We will not overemphasize this linearity, however, as many more years are available prior
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Figure 4.8: Population proportion of life left, PLL, US, 1969-2009 and Spain, 1975-
2009.

1970 1980 1990 2000 2010
0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

Proportion

Year

US males
US females
ES males
ES females

132



intuitive, requiring no involved examples to explain to non-demographers, and the

trend seen here is particularly clear and consistent. One could calculate PLL in like

manner for particular ages, age-ranges, or remaining-years classes. This indicator

will surely yield much lower levels if improvements are accounted for as discussed

in Section 4.2.2, and uncertainty may be introduced using the Monte-Carlo strategy

outlined in Section 4.2.1

This dissertation o�ers no further discussion of the potential aging indicators im-

plied by the present structuring of population. This and the preceeding two sections

on uncertainty and the incorporation of mortality improvements into the present

redistribution method have been intended primarily to placate what the author con-

sidered to have been the most likely initial doubts. As one sees, there is ample room

for improvement in all methods thus far presented. For the remainder of this disser-

tation, we work with the simplest deterministic assumption of �xed period rates. In

the following sections we extend the current redistribution technique to the domain of

fertility. Restructured fertility rates will form the basis of the new population models

to be presented later in this dissertation.

4.3 Fertility rates structured by remaining years of life

The technique presented in Equation (4.1) and illustrated in Figures 4.1 and 4.2

can indeed be used to reclassify any age-classi�ed data, assuming that the appropriate

lifetable is available. The following sections provide a preliminary glimpse of some

basic demographic phenomena (those that might pertain to the two-sex problem)

under the remaining-years perspective.

to 1969 for the US, and these will not likely follow the same linear trend.
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4.3.1 Remaining-years speci�c fertility rates

We now apply this redistribution technique in order to calculate male and female

ey-speci�c fertility rates (eSFR). For any rate, the numerator and denominator require

a common referent, thus both births and exposures are redistributed according to year

t mortality conditions. That is to say, we take the extra step of moving the age-speci�c

vector of birth counts (by mothers' or fathers' age) into ey-speci�c birth vectors before

dividing into ey-speci�c exposures. Explicitly,

Fy =

∫1
a=0

Ba
da+y∫1

b=a) db db
da∫1

a=0
Fa

da+y∫1
b=a db db

da
(4.10)

=
By

Ey
(4.11)

where y indexes remaining years of life and a indexes age, Ba are age-classi�ed births,

and Ea are age-classi�ed exposures. Remaining years of life-speci�c rates cannot be

directly compared with a typical age-speci�c rate, since the time scales are di�erent,

but we can indeed apply some familiar tools in order to analyze this new curve.

The ey-pattern of fertility is distinct from the age-pattern of fertility. In contem-

porary Western populations, female eSFR curves will be further to the right than

male curves for two reasons: 1) Female mortality is almost universally lower than

male mortality at (and beyond) any given age, thus associating births at a given age

with higher remaining life expectancies; 2) female fertility is more tightly concen-

trated over young ages, partly due to the upper bound de�ned by menopause, and

partly due to prevailing hypergamy. Figure 4.9 shows an example eSFR from 2009,

for both the US and Spain.

One may question whether the curves shown in Figure 4.9 properly represent rates.

This author argues that the same de�nition of events in the numerator and exposures
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Figure 4.9: Male and female ey-speci�c fertility rates, 2009, USA and Spain
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in the denominator has been applied { only the structuring variable has changed from

time since birth to time until death (of progenitor here). In this way, age-classi�ed and

ey-classi�ed populations have structure in the same sense. As with any demographic

variable, we may wish to analyze the intensity of demographic phenomena removed

of the distorting e�ects of population structure. Working with event-exposure rates

is just one way of doing so, simple decomposition is another, and indeed such rates

and decompositions are possible in the aggregate both with respect to age and with

respect to ey.

This is, in the best case, a rough calculation, for several reasons. The assumption

of homogeneous mortality is particularly consequential in the case of fertility, where
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health selection is self-evident, but not easily measurable. It is for this reason to be

expected that the left tails in Figure 4.9 are too thick.

Furthermore, exposure is taken from the entire population, not merely the popu-

lation within reproductive ages. The rates could be thusly recalculated, for instance

using female ages 13� 50 and male age 15� 65, and would look like Figure 4.10, in

some instances a more reasonable if less intelligible result.68

Figure 4.10: Male and female ey-speci�c fertility rates, 2009, USA and Spain, with
exposures redistributed using only female ages 13� 50 and male ages 15� 65
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Comparing Figures 4.9 and 4.10 reminds of the comments of Das Gupta (1978a)

and Mitra (1976) on the di�culty of de�ning an effective population for use in ex-

68Rate surfaces based on ey-speci�c fertility data are calculated under a variety of reproductive
spans in Appendix ??.
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posures. Clearly, persons outside the reproductive age range will conventionally be

excluded from exposures. Other kinds of risk heterogeneity are known to exist { such

as age patterns in fecundability, contraceptive use, and sexual intercourse { that are

unaccounted for in standard fertility measures.

With no claim of superiority over the more restrictive exposures used for Fig-

ure 4.10, we proceed in this section by using exposures derived from all ages. One

could weakly defend this choice by noting that we are attempting to measure the pe-

riod reproductivity of an entire population, not just part of it. The reproductive span

was an outcome of evolution, varies greatly between individuals and populations, and

is mutable, due both to ongoing population-level genetic, nutritional and hormonal

changes and direct human intervention. We are for the time being content to work

with the cruder eSFR, and note that this rate, as any other, is amenable to further

disaggregation and decomposition.

As is visible in Figures 4.11 and 4.12, e-SFR has changed its level and under-

gone a gradual displacement over time toward higher ey, an altogether propitious

development as concerns human altriciality. The interpretation of this displacement

is entirely di�erent from that of postponement in ASFR. Observed fertility post-

ponement should shift eSFR unfavorably to higher mortality levels (lower ey levels);

however mortality improvements have tended to o�set this e�ect, acting to move the

curve to higher remaining life expectancies.
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Figure 4.11: Male and female eSFR surfaces, 1969-2009, USA
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Figure 4.12: Male and female eSFR surfaces, 1975-2009, Spain
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4.3.2 A synthetic rate purged of remaining-years structure

This evolution in rates can, as with ASFR, also be summarized with an indicator

akin to TFR, which we here call eTFR

eTFR =

1∫
y=0

Fy dy (4.12)

where y indexes remaining years of life. A time series of this indicator for the period

studied is displayed in Figure 4.13.

Figure 4.13: Male and female ey-total fertility rates versus standard TFR, USA,
1969-2009 and Spain, 1975-2009
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Canonical TFR can conveniently be imagined as the total number of o�spring that
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an average female (male) will have in a lifetime assuming no mortality and constant

fertility rates of the present year. Since a lifetime measured in age counting from

birth is the same length as a lifetime measured in age counting backward from death,

eTFR in fact has the same interpretation. Why is this? Age-classi�ed rates are of

course heterogeneous within age with respect to remaining life expectancy, and here

we have produced a synthetic index based on the reverse idea. The age-classi�ed

distributions of births and populations are quite di�erent (there being an age pattern

to fertility rates). ey-reclassifying these data not only changes the center of gravity

of numerator and denominator distributions, but asymmetrically shifts underlying

schedules, uniquely reshaping the pattern of fertility. Summing over ey-rates, however,

yields a di�erent total { our synthetic eTFR.

Figures 4.12, 4.11, and 4.13 are reproduced according to various de�nitions of the

reproductive span in Appendix ??. Rates are shown to be sensitive to the choice

of reproductive span. For the remainder of this dissertation, we ignore issues of age

boundaries in the reproductive span for simplicity and consistency, although this issue

deserves further attention if the remaining-years perspective is deemed to have merit.

4.3.3 Heterogamy by remaining years

First, note that the observed joint ey-distribution of birth counts is very nearly

identical to the expected distribution.69 Figure 4.14 compares these two distributions

for birth counts in the US in 1970 (compare with Figure 2.17).

It is di�cult to see any di�erence between the two surfaces in Figure 4.14; how-

ever, we can measure the degree of separation, �,70 just as for age-classi�ed births

(compare with Figure 2.18). One provisionally concludes that ey-matching of par-

69The expected distribution is de�ned as in Equation (2.4), which assumes cross-proportionality
between the male and female marginal distributions.

70See Equation (2.2). Recall that 0 signi�es perfect overlap and 1 signi�es perfect separation
between the two distributions
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Figure 4.14: Observed and expected joint distribution of birth counts by remaining
years of parents, 1970, USA
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Expected

ents, at least with this level of approximation, appears to be very close to random71.

When compared using the Kolmogorov-Smirnov test, in fact, one cannot under even

the most generous level of significance conclude that these two observed distributions

come from different theoretical distributions.

Since the joint distribution by mothers’ and fathers’ ey is so close to random, one

could very closely replicate the full cross-classified matrix given only the two marginal

ey birth distributions by applying Equation (2.4).

71Confidence bands used in Figure 4.15, as elsewhere in this dissertation for difference coefficients,
represent the central 95% of randomly generated θ values using Monte Carlo simulations. The
present case differs from earlier simulated confidence bands in that age-classified death counts and
age cross-classified birth counts are first drawn from Poisson distributions, with observed counts
taken as λ. µ a is then derived from the randomly generated death counts using exposures from
the HMD, and da is derived from µ a. The simulated da is then used to redistribute the randomly
generated age cross-classified births distribution by remaining years of life, which is then compared
with its own expected distribution, producing the random θ.
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Figure 4.15: Departure from association-free joint distribution of birth counts cross-
classified by ey of mother and father. USA, 1969-2010 and Spain, 1975-2009
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4.3.4 Divergence in predicted birth counts

It has been noted that the observed and expected distributions of births by re-

maining years of life of mothers and fathers very closely resemble each other (see

Figure 4.15), almost enough so that we could approximate the observed distribution

by a random distribution given only the marginal distributions. In any case, the

result would be a much closer fit to observed data than would be the same excercise

if undertaken with typical age-classified data.

Further, it has been noted that the population pyramid is much more stable (in the

sense of less year-to-year distributional variability) when classified by remaining years

of life than when classified by age. This is so because the ey-classified pyramid does

not uniformly decrement in single-year steps, due to well-known and apparently stable
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trends of year-on-year mortality improvement that have thus far shown no signs of

abatement. Intuitively, the central bulge in an ey-classi�ed population pyramid does

not plummet to the base of the pyramid at a rate of 1 year per year, but rather

much more slowly and smoothly, always leaving a tapered base to the pyramid (the

population expected to decrement soon), as mortality improvements also lead to new

births being incremented to ever-higher ey values. In this way, the ey-pyramid, at

least in popualations that have radically reduced infant and child mortality and have

late-transition fertility levels,72 tends to obtain a characteristic leaf shape.

Since the ey population distribution can be predicted with nearly equal facility

and precision as the age-distributed population in year t + 1, one may ask whether,

given the relative stability of underlying exposures for both male and females, ey-

speci�c fertility rates are also more stable than age-speci�c fertility rates from year

to year. If this is so, then predicting birth counts n years hence separately for the

sexes based on year t ey-SFR and year t+ n ey-classi�ed exposures has the potential

to entail lower disagreement in predicted birth counts derived from male and female

rates and exposures than does the age anologue of this same exercise.

If results show that projected divergence in predicted birth counts, holding single-

sex fertility rates constant, is lesser for the ey-classi�ed data than for age-classi�ed

data, then we can safely say that the two-sex problem has been reduced in size, albeit

not solved. In the case that the magnitude of the problem has been reduced by this

simple transformation, one further concludes that whatever empirical or axiomatic

drawbacks entailed by two-sex adjustment procedures presently in the literature will

also be reduced, thereby making the two-sex problem in practice less problematic.

This exercise has been carried out for both the US and Spain with n equal to 1,

5, 10, and 15. In summary, for the US (see Table 4.1), the sex-discrepancy entailed

by ey-classi�ed data is on the order of �ve times smaller than for age-classi�ed data,

72These two characteristics typically co-occur (MacInnes and Dı́az , 2009), and both conditions
hold for the US and Spain in the years presented here.
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Table 4.1: Relative discrepancy between single-sex projected births n years hence
using ey- versus age-classi�ed data US, 1969-2009

Mean Relative Discrepancy

ex Age
1-year -0.0002 0.0038
5-year -0.0024 0.0202
10-year -0.0073 0.0444
15-year -0.0131 0.0705

Mean Absolute Relative Discrepancy

ex Age
0.0022 0.0049
0.0072 0.0248
0.0106 0.0505
0.0145 0.0743

Table 4.2: Relative discrepancy between single-sex projected births n years hence
using ey- versus age-classi�ed data, Spain 1975-2009

Mean Relative Discrepancy

ex Age
1-year -0.0029 0.0036
5-year -0.0168 0.0193
10-year -0.0403 0.0401
15-year -0.0641 0.0632

Mean Absolute Relative Discrepancy

ex Age
0.0048 0.0047
0.0204 0.0238
0.0419 0.0437
0.0641 0.0633

a welcome improvement. Further, the ey-method for the US entails sex discrepancies

that vary roughly around zero, whereas age-class�ed data were always positively

biased in the period studied. For Spain (See Table 4.2), we notice no di�erence in

the magnitude of discrepancy, but indeed in the sign of discrepancy.

4.3.5 Fisher's reproductive value { 
ipped

We wish to mention in passing that thanatologically structured fertility rates, Fy,

are just a short step away from a remaining-years version of Fisher’s 1999 reproductive

value.73 Note that y indicates the temporal distance from death, and that therefore

no decrement occurs unless y = 0. Hence, Fy is already in a sense discounted for

mortality. The reproductive value, vy, in this setting becomes

vy =

∫ y
0
Fy dy∫1

0
Fy dy

(4.13)

73I thank Robert Chung for suggesting that I think about this.
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In other words, vy is the proportion of reproduction that remains between remaining

years, y, and death, y = 0. As with the age-speci�c reproductive value, vx, this

value is the same in the present and stable populations. The age-structured variant

of this indicator has been of great value in the �eld of biology and in evolutionary

theory, and one wonders if the present de�nition might be of explanatory use. In

the age-perspective, we expect selective pressures on population to be greatest where

the reproductive value, vx, is highest (equal to 1). Under the standard view, the

ages where vx = 1 also are the ages where we observe mortality minima, as well as

negative senescence. Indeed, mortality is at its minimum right before the onset of

fertility (for females) { a better bet for the species in terms of reproductive output

than for infants, though these have the same reproductive value by the vx. Under

vy, things are not so clear { in the highest values of remaining years, the indicator

will obtain the value of 1, and it will fall o� less precipitously with the approach of

death, never fully dropping to 0, because remaining-years classes are heterogeous with

respect to age and therefore even very low values of y will contain some reproduction.

Females, of course, do come much closer to v0 = 0 than males, due to menopause.

Figure 4.16 provides example male and female vx and vy curves for the US in 1990.

Indeed, the two-sex problem has been brought to bear on the concept of repro-

ductive values (Samuelson, 1977b). In brief, one may reasonably ask, what is the

reproductive value of a 25-year-old male if there are no females around? Hence the

need for a two-sex solution. In-depth thinking on the consequences for reproduc-

tive values of the present age transformation is beyond the scope of this dissertation,

much less how two-sex solutions may be of use to the de�nition of more comprehensive

reproductive values. We plant this seed and move on.
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Figure 4.16: Age-speci�c and remaining-years speci�c reproductive values, US, 1990

0 10 20 30 40 50 60 70 80 90 100 110

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

reproductive value

vy males
vy females
vx males
vx females

remaining yearsAge

146



4.4 Re
ections on remaining-years structured vital rates

This chapter aimed to introduce a new variety of population structure { thana-

tological age, or age counted as time until death. The basic steps needed to carry

out the transformation presented in Equation (4.1) were indeed available to demog-

raphers via the work of Miller (2001), Lee and Miller (2002), Vaupel (2009) and

possibly others unbeknownst to this author. Indeed, the perspective as a whole is

widespread in demography { this concept of age as time until death was already in

existence, and the name given to it is of known coinage. Our only addition was to

integrate over age, arriving at a wholly redistributed population (count, rate) vector

entailing loss of age information.74 In a sense this is more of a loss than an addition,

as we throw away information in doing so.

It has been with fresh eyes that we have investigated fertility rates in terms of

thanatological age. Recall the words of Coale: \One of the characteristics of demo-

graphic rmy be a function esearch is a search for empirical regularities, particularly

in the age-schedules of rates of marriage, birth, death, and migration" (Coale and

Trussell , 1996). We may claim to have found empirical regularities in the restruc-

tured fertility rates, although further work is needed to verify this for a wider range of

populations and years. Indeed, these patterns appear to be parametrically tractable

{ we mark this possibility with a cairn and continue onward. There is in any case

no need to smooth data that have been redistributed in this fashion! However, if

it turns out that the remaining-years pattern to fertility is more regular, and hence

more predicatable, than the age-pattern to fertility, one may �nd a model curve to

be of use. We have not given an explicit account of the regularity of ey-structured

fertility over time, though a glance at the surfaces in �gures 4.11 and 4.12 invites

speculation in this direction.

We have also found that the cross-classi�ed remaining-years births distribution is

74If this has indeed been done before, then this author has not seen it, and apologies will be issued.
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regular to the extent that it greatly resembles its own association-free distribution.

Either this observation is indeed so, or it is the result of the overly permissive assump-

tion of homogeneity with respect to mortality in procreating pair formation. Namely,

if there is noticeable selection with respect to mortality �tness in the mate search,

which is rather imaginable (Gangestad and Buss , 1993; Roberts and Little, 2008), the

patterns seen in Figure 4.14 will not re
ect the true distribution. The question is

then how far o� our homogeneity assumption is. This could be answered by means

of linked register data, as has often been done for countries such as Sweden and Den-

mark. We may already surmise that due to selection procreating individuals are on

average in better health and live longer lives than non-procreating individuals. To the

extent that marriage is a proxy for mating, we already know that married males have

a mortality advantage over unmarried males, although there are likely intervening

factors (see e.g., Rogers , 1995; Waite, 1995), and we do not know for sure whether

this is due to causation, selection, or something else (see e.g., Goldman, 1993). For

the present use, we do not necessarily care whether the di�erential might be due to

selection or causality. All this is to say that we ought to take in the observations

of cross-classi�ed fertility with a grain of salt. Furthermore, as is pointed out in the

text, selection may disproportionately a�ect the tails in the lowest remaining years

classes.75 The best we can do in this instance is imagine the direction of bias, as has

we have tried to make clear.

In general, we have seen that period fertility indices calculated using remaining-

years classi�ed data track well to those calculated on the basis of age-classi�ed data,

but also that they return higher estimates of period fertility. At �rst glance, one

would expect the direction of di�erence to be negative rather than positive because

we opted for the simplest possible course of redistributing population counts (or

exposures) from all age classes rather than only from age classes in ages typically

75This possibility would be just the opposite in high maternal mortality settings, which does not
a�ect our two populations.
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identi�ed as reproductive ages. The outcome is positive because the age-distributions

of marginal birth counts and population counts are di�erent, but redistributed by the

same lifetable death distribution. We ought not expect di�ering initial distributions to

wind up proportionally in the same remaining years classes. Hence, the sum of these

ratios (events to exposures) over remaining years is also di�erent. TFR is higher for

remaining-years structured data than the age-equivalent measure because on average

there is less exposure per birth in the newly redistributed data.

One may question whether there is any sense in allowing non-reproductive ages

into remaining-years exposures, and to this we have two responses. The �rst comes

by manner of analogy to age-speci�c fertility distributions, which have tails that

are longer than most people feel comfortable imagining, both for males and females.

For males and females there are so-called central ages of reproduction and there are

less-common ages of reproduction. Even for ages typically measured, say 45-49 for

females, not all persons captured in these exposures are truly exposed to the risk of

fertility, and this statement will be widely accepted. Indeed, a minority of females

in this age group are truly at risk of fertility. This does not imply that the rate

calculated is invalid, but rather that the rates are both low and potentially subject

to further decomposition. This is one reason why a large portion of fertility studies

deal with the measurement of the proximate determinants of fertility { these factors

di�erentiate exposure for purposes of calculating more speci�c rates. Age-speci�c

rates are valid without such di�erentiation, as they help purge our measurement of

distortions from a particular kind of population structure.

As Stolnitz and Ryder (1949) so eloquently describe, demographic rates are never

fully purged of population structure. We may nonetheless destructure in any of

myriad ways, and remaining-years structure is the way that we have shed light upon

in this dissertation. No claim is made about whether chronological or thanatological

age are the more e�cient classifying variable for population data, nor that one is more
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pure than the other. In sum, we have in this chapter provided yet another alternative

structuring variable, and if one questions the validity of a rate calculated on the basis

of blended age groups, one may ask: 1) how many persons are expected to die in y

years and 2) how many births this year were to persons expected to die in y years,

and there we have everything needed to calculate a rate. This is what we have done.

Further re�nements are possible and are worthy of exploration.

The second response to the potential criticism about overly permissive age-heterogeneity

within remaining years classes for purposes of producing fertility rates is that these

rates nonetheless appear to obey a certain degree of empirical regularity. The range

of shapes possible for fertility rates by remaining life expectancy, less mortality crises,

is narrow. This we con�dently claim, but the claim is in need of further empirical

support beyond this dissertation. The same observation may be made of the un-

derlying population structure by remaining years of life { the range of shapes that

we have observed this structure to obtain in Western countries, excluding mortality

crises, is narrow. These observations compel one to conclude that remaining-years

speci�c fertility rates (eSFR) describe a substantive underlying phenomena. If age-

heterogeneity in remaining years classes were problematic in this sense, we would

expect more erratic patterns in eSFR over time and between populations, but this

is not so. Instead, eSFR invites comparison between populations and over time, and

such comparisons are decomposible into mortality and fertility components. We have

not taken this latter exploratory step, but this remains an exciting question, since a

stable eSFR pattern may hold over time even as fertility age patterns and mortality

levels change.

Most empirical �ndings in this chapter were based on data only from the years

1969-2009 for the United States and 1975-2009 for Spain.76 Evidently, any novel

�ndings produced therefrom, especially those dealing with fertility, are in need of

76The primary exception is the relative stability of observed remaining-years-structured popula-
tions versus age-structured populations, which we veri�ed using the entire HMD.
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veri�cation from a wider array of populations, so as to be placed into context. This

is to say that there is ample opportunity to test and re�ne the hypotheses produced

here. Certainly eSFR will move over time, but we suppose that this movement is

meaningful and will aid our understanding of population processes.

Net of the potential criticism of age-heterogeneity in remaining-years classes, there

are reasons to suspect that fertility timing and levels might to a certain extent be

a function of remaining years of life. Although one's own age at death is unknown,

individuals do have a sense of their own remaining life expectancies, and this may

condition fertility. This is not to say that people predict their own lifespans without

bias. Payne et al. (2013), for example, concludes that the framing of the very ques-

tions used to asses subjective remaining life expectancy in survey respondents can bias

results greatly. This source of bias has more to do with eliciting respondents' beliefs

and perceptions, although there are also biases in subjective predictions that vary

over age. The important thing is that people's subjective expectations of remaining

life correlate positively with real remaining life expectancies, and much evidence has

been produced that would support this (Hurd and McGarry , 1995; Mirowsky , 1999;

Hurd and McGarry , 2002; Perozek , 2008; Delavande and Rohwedder , 2011; Post and

Hanewald , 2012). These authors tend to explain individuals' predictive power in

terms of awareness of their own particular genetic and environmental situation. Most

people understand the general mortality increase over age, and are able to weigh

these factors out to produce a rough idea of future death probabilities in particular

age intervals. These �ndings have largely come from health and retirement surveys of

older persons beyond reproductive ages. Of course, it is di�cult to measure how well

persons in reproductive ages are at predicting their own ages at death because panels

would need to run over a very long range of years in order to asses the accuracy of

predictions of the relatively young.

Another particular variety of �nding that lends support to our case are a couple
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studies of risky behavior in youth. Borowsky et al. (2009) show that risky behavior

in teenagers increases with high perceived risks of early death, and these behaviors

include risky sexual behavior. Wilson and Daly (1997) conclude that high real mor-

tality risks for youth due to perceived factors such as accidents, suicide and homicide,

predict reductions in the age of fertility, which at least on the surface is consistent

with the idea of eSFR actually describing some sort of underlying pattern.

None of these studies provide direct support of our hypothesis that we ought expect

that fertility behavior is somehow a function of remaining life expectancy, but they

do help our case beyond our observation that remaining-years fertility curves exhibit

regularity. The kind of data that would help shed direct light on this question is a

panel study that includes questions about expected probabilities of survival until (or

death by) certain future ages, as well as the usual battery of fertility questions. This

could be incorporated, for example, in future waves of longitudinal youth surveys.

To suit our ends directly, this survey would follow up with actual ages of death.

Evidently, much patience will be required to reap any results in this direction, and

there is much uncertainty at this preliminary stage (we are only imagining such a

survey at the moment) about whether results would provide an estimate of true

remaining-years fertility curves, and whether foresight of one's own mortality moves

this curve. Removing subjective remaining life expectancy from our demands, one

may reconstruct cohort eSFR on the basis of long-running population registers from

countries such as Denmark or Sweden.

Absent a well-rounded base of psychological, sociological and demographic evi-

dence in support of the belief that fertility patterns ought be a function of remaining

years of life (as well as a function of age), we rely on our own set of evidence that

simply suggest that these patterns are stable. Stable demographic patterns are desir-

able, as they are useful for predicting. We encourage the exploration of the predictive

power of remaining-years-speci�c demographic rates, just as economists have been
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keen to look for patterns in retirement saving and investment as a function of per-

ceived remaining years of life.

We completed the chapter with some rather inde�nite speculation about the po-

tential use of our vy (Fisher's reproductive value rethought to correspond to the

thanatological perspective) in cognate �elds of demography or evolutionary demogra-

phy itself. One could just as well reframe vy in terms of inter-age transfers rather than

reproduction, as per Lee (2003), although the perspective change will still pertain.

The purpose of this chapter was to de�ne and explore the vital rates to be used

in the remainder of this dissertation. We proceed by de�ning a model of population

renewal akin to Lotka's renewal equation. From this model we extract and explore the

intrinsic growth rate and some other stable parameters that belong to the single-sex

thanatological perspective.
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Chapter V

Renewal in single-sex populations structured by

remaining years of life

By now it has been demonstrated that the vital rates corresponding to an ey-

structured population have a di�erent overall shape and behavior from those that

belong to age-structured populations. This is because 1) ey-classi�ed rates are cal-

culated over the entire population, 2) ey fertility rates respond to both fertility and

mortality changes, and 3) the underlying ey-structured population ranges close to

its ultimate stable form, which means that the e�ects of population structure are

typically minor and almost never abrupt.77 This later point will be demonstrated in

greater depth later in this dissertation.

Before proposing two-sex models that take advantage of the properties of ey-

structured rates and populations, we must �rst de�ne how to conceive of reproduction

under this new regimen of structure. The basics are the same as those for the age-

structure Lotka system, as the only entrance into the population is via birth, and

the only exit is via death. What di�ers are the distributions of the pertinent vital

rates and population stocks, which indeed will lead to a new formula for population

growth. This new system is presented �rst so that it can then be expanded upon in the

77Wars, famines, and other potential large-scale shocks do cause abrupt changes to the ey-
structured pyramid, but such deformations usually disappear within a year, as the ey-structured
pyramid has very little memory.
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typical two-sex fashion that lies at the heart of this dissertation. The present section

provides a schematic overview for how population cycles through the ey-structured

system. The following chapter on single-sex renewal formalizes the ideas explained

here.

First, note that much of what we know about age-structured populations has been

conditioned by our instruments of observation. Age is, nowadays in any case, known

by individuals, and is recorded by statistical apparatuses. Remaining life expectancy

is not recorded as such for individuals, but is rather calculated based on age-classi�ed

data. So it is that data classi�ed by remaining life expectancy rely on age-classi�ed

data and not vice versa. The description of reproduction for populations classi�ed by

remaining years will therefore borrow concepts from age-classi�ed data. In particular,

the deaths distribution, da, is never fully prescinded from, as it is essentially a direct

mirror of deaths classi�ed by remaining years dy, which is iteratively derived from

the former as in Equation (4.1).

Aside from dx, one may conceive of reproduction in an ey-structured population

without periodic reversion to the familiar ground of age-structured populations. Intu-

itively, imagine the two varieties of pyramid that correspond to the (closed) population

in question.

5.1 Remaining-years structured renewal

We begin by describing renewal in age-structured populations, using the popula-

tion pyramid as a mental image. The description might appear to be a statement

of the obvious, but it serves as a guide to the following description of ey-structured

renewal, which is not at �rst glance intuitive. The age-structured pyramid shifts up-

ward by one year with each passing year, with some decrement occurring in each age

of life, such that the essential shape, primarily the result of past fertility,78 takes sev-

78Thanks are owed to Kirk Scott for �rst imparting this heuristic to me.
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eral decades to be erased from memory.79 Births from the age structured population

are produced by a wide range of ages in the population pyramid; these are assigned to

the bottom of the pyramid and are grouped together into a single cohort. This cohort

is heterogeneous with respect to future age (year) at death, but it is homogeneous

with respect to the year of birth. We are familiar with the way the age-structured

population model unfolds, as it re
ects both our experience of life and the history of

demography. The key characteristics are to note where on the pyramid increment and

decrement occur, and the direction of movement in the pyramid with each passing

year.

The ey structured pyramid, on the other hand, (see Figures 4.1 and 4.2) shifts

down by one year each year. There are no deaths, except for in the bottommost

layer, those whose y = 0. Those with a life expectancy of 20 move the next year

into 19, and so forth, experiencing increments from newly added births, but no decre-

ment to mortality. Each ey class is heterogeneous with respect to year of birth (age)

but homogeneous with respect to remaining years of life, forming what could be

called a death cohort. Fertility can arise from individuals with nearly any remaining

life expectancy; the age-boundedness of fecundity belongs to the age perspective of

demography. Thus the entire pyramid produces o�spring.80 Total births, B, are pro-

portioned to the pyramid using the \radix-1" deaths distribution, dx; for example,

Pe1 is incremented by d1 �B, and so forth for all ages, adding a new layer whose total

over y equals B. In this way births increment most heavily around the modal age

at death, typically very high in the pyramid, depending on the year and population.

Some are unfortunate and decrement out of the pyramid in the same year as they

are incremented (births where y = 0). See Figure 5.1 for a schematic visualization of

ey-structured population renewal.

79Thanks are owed to Anna Cabr�e for �rst imparting this heuristic to me.
80The only exception to this statement is the very top of the ey-pyramid, consisting only of

pre-menarchical girls and pre-semenarchical boys who will have very long lives.
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Figure 5.1: Schematic diagram of the renewal process in a population structured by
remaining years of life.
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5.2 The single-sex renewal equation

The present section formalizes the mathematical relations between vital rates as

they pertain to population growth in single-sex ey-structured populations. The entire

system to be presented here �nds its analogue in the familiar stable population model,

as typically applied to age-classi�ed demographic data. Given the renewal process
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described above, it is perhaps now intuitive to see that the stable structure of the

ey-structured population is determined primarily by the deaths distribution and the

rate of growth of the population. Indeed, upon transforming fertility rates to the

earlier-presented eSFR, one is just a few short steps away from a full Lotka-type

renewal model: births for females in year t, Bt are given by

Bt =

1∫
y=0

Fy;tPy;t dy (5.1)

Fy and Py are ey-speci�c fertility probabilities and population counts (rates and expo-

sures when discrete). The population with exact remaining years y, Py, is composed

of multiple birth cohorts, thus

Bt =

1∫
y=0

1∫
n=0

Fy;t
Py+n;tdy+n;t∫1
a=y+n

da;t da
dy (5.2)

where y + n can be thought of as age. Present population can be related to past

births in the same way

Bt =

1∫
y=0

1∫
n=0

Fy
Bt�ndy+n∫1
a=y+n

da da
dn dy (5.3)

and when the population is subject to constant vital rates it will eventually enter into

an invariant structure, where the births in each year are related to the births in the

previous year by a constant proportion

Bt = �Bt�1 (5.4)

and in continuous time

Bt = ernBt�n (5.5)
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where r is Lotka's intrinsic rate of growth. This identity means that Bt can, in the

case of stability, also be written in terms of itself,

Bt =

1∫
y=0

1∫
n=0

Fy
Bte

�rndy+n∫1
a=y+n

da da
dn dy (5.6)

which give us the so-called renewal equation. The fundamental equation to estimate

the growth rate, r, is given by

1 =

1∫
y=0

1∫
a=y

e�radaFy da dy (5.7)

where a indexes age, y indexes remaining years of life, da is the age-distribution

of female deaths from the radix-1 period lifetable, and Fy is the single sex fertility

probability (mother-daughter or father-son) for exact remaining years of life, y (eSFR,

see Equation (4.10)). Equation (5.7) is indeed similar to the original age-structured

Lotka equation, introduced in Equation (2.1). First, note that the survival function

pa inside Equation (2.1) can also be expressed in terms of da (current livings are the

sum of future deaths):

pa =

1∫
x=a

dx dx (5.8)

in which case, Equation 2.1 can be rewritten as

1 =

1∫
a=0

1∫
b=a

e�radbma db da (5.9)

All we have changed in order to derive Equation (5.7) is to turn la andma sideways,

so to speak, multiplying the two vectors together where they coincide in terms of

remaining years instead of in terms of age. This transformation is a simple change

of perspective. r still applies to successive time steps, but in terms of remaining
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years of life it must be applied incrementally over the newcomers to each grouping of

remaining years of life { i.e., over the time-layers of the ey-structured pyramid.

5.2.1 An iterative approach to �nd r

Coale (1957) o�ers a fast-converging iterative approach to estimate the intrinsic

growth rate for age-structured populations. For the ey-structured renewal equation,

a similar approach may be designed, with some slight modi�cations. The following

steps can be followed to estimate r from Equation 5.7:

1. Derive a �rst rough estimate of the mean remaining years of life at reproduction,

T̂ y, akin to Lotka's mean generation time, T . If one assumes a growth rate of

0, then a good guess will be: 81

T̂ y =

∫1
y=0

∫1
a=y

ydafy da dy∫1
y=0

∫1
a=y

dafy da dy
(5.10)

2. A �rst rough guess at the net reproduction rate, R0 is given by

R0 =

1∫
y=0

1∫
a=y

dafy da dy (5.11)

3. A �rst rough estimate of r, r0, is given by

r0 =
ln(R0)

T̂ y
(5.12)

4. Plug r0 into Equation (5.7) to calculate a residual, �0.

81T̂ y appears to range between 50 and 70, judging by the two populations studied in this disser-
tation. True T y is around 10 years lower, ranging from 40-50.
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5. Use �0 and T̂ y to calibrate the estimate of r using

r1 = r0 +
�0

T̂ y � �0

r0

(5.13)

6. Repeat step (4) to to derive a new �i, then step (5) to re�ne ri, until converging

on a stable r after some 30 iterations, depending on the degree of precision

desired (T̂ y is not updated in this process).

The above procedure is both faster and more precise than minimizing the absolute

residual of Equation (5.7) using a generic optimizer82.

5.2.2 Other stable parameters

A �nal calculation of T y is given by

T y =

∫1
y=0

∫1
a=y

ye�radafy da dy∫1
y=0

∫1
a=y

e�radafy da dy
(5.14)

using r from the iterative procedure. The net reproduction rate, R0 is related by,

e.g.,

R0 = erT
y

(5.15)

The birth rate, b, is given by

b =
1∫1

y=0

∫1
a=y

e�rada da dy
(5.16)

82Use of a Newton-Raphson optimizer with analytic objective and gradient functions may prove
even more e�cient, but I have not tried this, since the present routine is more than e�cient enough
for practical purposes.
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The stable age structure, c, where cy is the proportion of the stable population with

remaining years to live y, is given by

cy = b

1∫
a=y

e�rada da (5.17)

Other possibly interesting stable parameters may be estimated by similarly trans-

lating the various de�nitions in the glossary of Coale (1972) to the present perspective.

Before presenting results or extending the present one-sex renewal formula to two-

sex linear and non-linear situations { the heart of this thesis { we �rst describe the

construction of the projection matrix that corresponds to the present model.

5.3 The single-sex projection matrix

This section explains the construction of the projection matrix that corresponds

to the one-sex ey-structured population model presented above. The objective is

to o�er a practical discrete implementation of the prior formulas, which may aid

the reader in understanding main di�erences with the classic one-sex Lotka renewal

model and be of practical use for projections. Matrix-based projections, while not

ubiquitous in the practice of demography, are nonetheless widespread and of high

analytic utility. While the species of matrix presented here is indeed used in data

exercises elsewhere in this dissertation (notably Section 5.6), its properties will not

be explored beyond the construction advice given in this section. It is hoped that this

section will facilitate exploration of the present stable system for the interested reader.

The only computational requisite is a statistical environment that supports matrix

operations, such as R (R Development Core Team, 2011)83 or matlab (MATLAB ,

2010).

83R is the language used behind the scenes for all computations and �gure production in this
dissertation
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If the reader is not familiar with the construction of age-structured Leslie matrices,

a brief description can be found in Appendix E, which is essentially a paraphrase of

the detailed description o�ered in Caswell (2001). As with age-structured Leslie

matrices, ey-structured projection matrices, Y, are square and of dimension n � n,

where n is the number of remaining-years classi�cations into which the population is

divided. The matrix contains elements for survival and elements for fertility. Unlike

Leslie matrices, Y is not sparse, but is populated primarily with non-zero entries.

Recall the description of renewal in an ey-structured population o�ered in Sec-

tion 5.1 and illustrated in Figure 5.1. Of interest is that mortality occurs in only

the population class with zero remaining years of life. ey-class 1 in year t moves to

0 in year t + 1. In this way, populations shift down rather than up with each time

iteration. Thus, instead of in the subdiagonal, we place survival in the superdiagonal,

and indeed all survival values are 1, since there is no decrement, and the upper-left

corner contains no entry for survival. As in Appendix E, we illustrate using a 6�6

matrix. The survival component of Y is organized as in Matrix 5.3.1.

Matrix 5.3.1: Survival component of one-sex remaining years (ey)-structured projec-
tion matrix, Y



ey 0t 1t 2t 3t 4t 5t
0t+1 0 1 0 0 0 0
1t+1 0 0 1 0 0 0
2t+1 0 0 0 1 0 0
3t+1 0 0 0 0 1 0
4t+1 0 0 0 0 0 1
5t+1 0 0 0 0 0 0



Fertility inputs to the matrix are derived from eSFR and the lifetable dx distri-

bution, where x indexes age, but is translated to y, remaining years of life. Recall

that fertility in an ey-structured population occurs in all but the highest remaining

years classes. Say, for our example, that fertility is observed in classes 0-4, whereas

the �nal class has no fertility, where fy indicates the fertility probability for class y in
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the year t entering population (in the matrix columns). Each fy is then distributed

according to dx, indeed with no further translation, since the dx column refers to age

0, as such. Thus the fertility entry in row m and column n of Y will be fn � dm. We

assume that those dying over the course of year t (the �rst column) are exposed to

fertility for half of the year,84 and so discount the fertility entry accordingly. Further,

infant mortality, fy � d0, located in the �rst row, must also be discounted, since part

of the mortality will occur in the same year t and the rest in year t+ 1. The �rst row

of fertility must be further discounted by a factor, �, in order to account for the fact

that infant mortality is higher in the lower Lexis triangle than in the upper { i.e., of

those infants who die in the �rst year of life, a proportion equal to � do not make

it to December 31st of the calendar year in which they were born.85 The fertility

component of Y is then composed as in Matrix 5.3.2.

Matrix 5.3.2: Fertility component of one-sex remaining years (ey)-structured projec-
tion matrix, Y



ey 0t 1t 2t 3t 4t 5t

0t+1 (1� �)f0d0
2

(1� �)f1d0 (1� �)f2d0 (1� �)f3d0 (1� �)f4d0 0

1t+1
f0d1
2

f1d1 f2d1 f3d1 f4d1 0

2t+1
f0d2
2

f1d2 f2d2 f3d2 f4d2 0

3t+1
f0d3
2

f1d3 f2d3 f3d3 f4d3 0

4t+1
f0d4
2

f1d4 f2d4 f3d4 f4d4 0

5t+1
f0d5
2

f1d5 f2d5 f3d5 f4d5 0


84One might be tempted to not allow for fertility at all for females dying in year t, but recall that

fertility is measured in the moment of birth, and not conception.
85� can be derived directly from death counts data classi�ed by Lexis triangles. In the US, � has

behaved similarly for males and females, falling steadily from around 0:9 in 1969 to 0:86 around
1990, since which time it has steadily risen to around 0:87. That is to say, � has varied, but not
drastically. Likewise for Spain, � fell from around 0:885 in 1975 to 0:86 in the mid 1990s, since
which time it has risen another 0:5%. In Spain � has been around 0:5 higher for males than females.
These numbers are just meant to give a feel for the ranges that � can be expected to receive. If
the demographer does not have information to derive � directly, ad hoc semidirect methods may be
used to assign a reasonable proportion.
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The survival and fertility components of Y add together elementwise, thus the

full 6�6 matrix is composed as in Matrix 5.3.3.

Matrix 5.3.3: A full one-sex remaining years (ey)-structured projection matrix, Y

Y =

ey 0t 1t 2t 3t 4t 5t

0t+1 (1� �)f0d0
2

(1� �)f1d0 + 1 (1� �)f2d0 (1� �)f3d0 (1� �)f4d0 0

1t+1
f0d1
2

f1d1 f2d1 + 1 f3d1 f4d1 0

2t+1
f0d2
2

f1d2 f2d2 f3d2 + 1 f4d2 0

3t+1
f0d3
2

f1d3 f2d3 f3d3 f4d3 + 1 0

4t+1
f0d4
2

f1d4 f2d4 f3d4 f4d4 1

5t+1
f0d5
2

f1d5 f2d5 f3d5 f4d5 0



Remaining-years classes should ideally terminate at the highest value permitted

by data. For the data used in this dissertation, there are 111 total age classes, which

translate to 111 total remaining-years classes (0-110+). In practice Y becomes a

111�111 matrix, with most entries non-zero. Construction may appear tedious for

this reason. However, note that the bulk of fertility entries can be derived as the

outer (tensor) product dx 
 fy, leaving only the �rst row and �rst column mortality

discounting followed by the addition of the survival superdiagonal. In most statistical

programming languages constructing Y entails only a few more lines of code than

constructing a Leslie matrix.

As with Leslie matrices, the above projection matrix may be manipulated using

generic matrix techniques in order to extract such information as the intrinsic growth

rate, or the stable ey structure. The former is the natural log of the largest real

eigenvalue, and the latter is the real part of the eigenvector that corresponds to the

largest real eigenvalue, rescaled to sum to 1.86

86See Caswell (2001, p.86-87).
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5.4 The method applied to the US and Spanish data

We have applied the iterative procedure to estimate rm and rf for each eyar of the

US and Spanish data, and the results are displayed in Figure 5.2 alongside those for

the age-structured single-sex r. For the US, in nearly all years studied, ey-structured

r has been greater than the age-structured r. The exceptions are the �rst couple of

observations, as well as for females in the most recent years, where results have been

nearly identical. In the case of US males, in no year studied has the ey-structured rm

dropped below 0. For the Spanish population, ey-structured r has tended to have the

same sign as age-structured r, but it has also tended closer to 0. Broadly, one sees less

erratic series for both the US and for Spain, although overall pattern of change has

been very similar in both case. The convergence seen between male and female r for

the age-classi�ed model in the 1990s does not appear as completely in the ey-classi�ed

model. This is because the opposing forces of mortality, fertility, and the sex ratio at

birth combine di�erently in the ey-structured model, as will be decomposed later.
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Figure 5.2: One-sex intrinsic growth rates, rm and rf , according to renewal Equa-
tion (5.7), US and Spain, 1969-2009.
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5.5 On the stablity of remaining-years population structure

Upon viewing a variety of ey-classi�ed population leaves,87 one �nds abundant

anecdotal evidence for the existence of a characteristic shape. It has been claimed

in this dissertation that the range of shapes that might be observed for this variety

of population structure is relatively narrow { relative with respect to age-classi�ed

pyramids. The author o�ers no mathematical proof that this is so, but it is evident

that the deaths distribution is the primary force behind the ey-structure, and demog-

raphers recognize a characteristic shape to both dx and the force of mortality from

87When structured by remaining years of life, population pyramids in contemporary Western
countries look like leaves { even more so when cohorts are colored separately within the �gure.
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which it is derived. These characteristics are negative senescent youth, a hump from

the teenage age until ages 30-40, followed by Gompertz mortality, which probably

tapers o� to constant, albeit high, mortality in the oldest of old ages (Horiuchi and

Wilmoth, 1998; Vaupel , 1997). The ey-structured population will tend to conform

then to the distribution derived from the characteristic shape of the force of mortal-

ity, while the a�ect of fertility change will be to weight the deaths distribution, as new

generations are added to the population. When fertility is assumed constant, as in

the stable population, the deaths distribution, weighted by the growth rate, becomes

the only determinant of the shape.

This being so, we may venture to complement the original claim, that observed ey-

structures tend not to vary far from their characteristic shape, by comparing observed

with stable structures. To do this, we use the same measure of distribution separation

seen elsewhere in this dissertation (see Equation (2.2)), the di�erence coe�cient, �,

which is the complement to the proportional overlap between two distributions. This

we show in Figure 5.3,88 where we see that for the US and Spanish populations,

the observed and stable distributions for males and females obtained some 80-95%

overlap over the period studied. Single-sex male populations tended to be closer to

their stable form.

The dramatic fertility drop in Spain is likely to have caused the distance from

the present to the stable structure to increase via abrupt changes in the growth rate,

which will have noticeably moved the modal ey-class. We do not decompose changes

in dissimilarity over time into fertility and mortality components in this dissertation,

though this would be an informative exercise and is left for future work. The degree of

separation between observed and stable age-structured populations follows a similar

year-to-year pattern. For the Spanish and US populations in the period studied,

88Trends actually indicate 95% con�dence regions, which in this case are quite narrow. We have
allowed for stochasticity in birth counts and death counts, as elsewhere in this dissertation, but
taken the growth rate, population counts, and original exposures as given.
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Figure 5.3: Distribution dissimilarity of ey-structured populations in year t and cor-
responding year t stable distributions. US, 1969-2009 and Spain, 1975-2009
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age-θ has always been higher than ey-θ, indicating greater separation between the

stable and observed structures. Figure 5.4 displays the ratio of these two measures of

separation. High values in this figure indicate that the ey-structure was much closer

to its stable form than the age-structure to its stable form. This evidence is used in

support of the claim that ey-structures are more stable than age-structure. We now

complement this evidence with other perspectives on stability.

The degree of distributional separation between the present and stable structure

is not the entire story – it represents only the starting and theoretical stable states,

but says nothing about the changes in structure that would unfold in the process of

convergence toward stability. The path to stability may entail abrupt oscillations that

last a few generations, or it may proceed quickly and smoothly. We can measure such
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Figure 5.4: Ratio of observed versus stable dissimilarity in ey- and age-structured
populations; US 1969-2009 and Spain 1975-2009
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things as the speed at which convergence occurs or the magnitude of the oscillations

undergone in population structure along the path to stability.

Figure 5.5 displays the so-called damping ratio from the respective projection ma-

trices, which gives an indicator of the speed of convergence. Superscripts in this figure

indicate sex89. The damping ratio is the ratio of the largest to the second-largest real

eigenvalue from the projection matrix(Caswell , 2001, p101). Higher values indicate

faster convergence, while lower values indicate likely-slower convergence. One notes

that females here tend to undergo faster convergence than males by this indicator,

though this difference has been more consistent and more marked in the US than

89These results were derived by eigenvector analysis of the respective male and female, age-
structured and ey-structured projection matrices using statistical tools from the popbio package
(Stubben and Milligan, 2007) in the R programming language (R Development Core Team, 2011).
The popbio package is primarily based on Caswell (2001).
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Figure 5.5: Damping ratios. Age-classi�ed versus ey-classi�ed trajectories. US, 1969-
2009 and Spain, 1975-2009
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for Spain. The US population would also have had a theoretically faster journey to

stability than the Spanish population, save for the year range 1975-1985. The length-

ening of the likely duration to stability in Spain will have owed to the rapid decline

in fertility that quickly changed the shape of the stable structure, while the observed

population structure changed only slowly over the same period. This couples with

the information from Figure 5.3, where we saw a dramatic increase in dissimilarity

between the observed and stable populations for Spain. Of interest in the present

discussion is that ey-structured populations, with great di�erence, are seen here to

converge faster than age-structured populations. With this we have another piece of
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evidence to support the claim that ey-structured populations are more stable than

age-structured populations: ey-structured populations have a shorter trip to the sta-

ble structure.

This information we complement further by measuring the total departure from

stability from the initial to stable states, as proposed by Cohen (1979). The method

works by projecting a given starting population (the year t population) forward a large

number of years. For each year t+n of the projection, we measure the distributional

di�erence from the stable structure (ca, or cy) using the di�erence coe�cient from

Equation 2.2 (having scaled the year t + n population and the stable structure to

each sum to 1), and integrate these di�erences over time. Explicitly, and in discrete

form, since this exercise is best varried out with projection matrices, de�ne the ey-

structured projection matrix, Y, the year t ey-classi�ed population vector py, and

the stable population vector, cy

Total Oscillation =
1∑
t=0

1�
!∑
y=0

min

(
Y py;t∑
Y py;t

; cy

)
(5.18)

where

py;t+1 = Y py;t (5.19)

The population vector py;t changes in each iteration based on the projection ma-

trix. Eventually the age structure stabilizes, after which time the central sum will

equal 0. This is in essence a measure of the total absolute departure from the sta-

ble structure from the initial population until the stable population, Cohen's D2

(Caswell , 2001). The process works the same way for age-classi�ed data, changing

the subscript to a. The results of applying Equation (5.18) to the Spanish and US

data are displayed in Figure 5.6. Larger values of this indicator signify larger oscil-

lations, which take longer to diminish to 0. One could simplistically understand this

as a measure of the di�culty, or friction, along the path to stability.
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Results are mostly consistent with previous indicators shown in this section { ey-

structured populations oscillate less in the process of converging. This is because the

oscillations are smaller, which is because the distributional overlap is greater, produc-

ing smaller waves in structure that disappear faster and more smoothly. Curiously,

females have a larger total oscillation than males, save for the start and end of the

Spanish age-classi�ed series. This is curious because, according to the damping ratio,

females should approach stability faster. On the whole, there has been a downward

trend in this indicator for the US population, and the trend in the Spanish population

coincides from the trend in overall departure from the stable form, as seen in Fig-

ure 5.3. The peaks for Spain in Figure 5.6 also correspond with dips in the Figure 5.5

damping ratio, as expected.

We have presented evidence in support of the statement that ey-structured popu-

lations are more stable than age-structured populations. There is some risk that the

evidence presented here has been accidental rather than essential in nature. Namely,

the range of years presented here for these two populations may have coincidentally

fallen at a point in time where conditions were such as to make ey-structure appear

more stable. No formal proof is o�ered that would support the claim that these obser-

vations were necessarily so. We do, however make one �nal syllogistic appeal. It has

been noted that, as a simple heuristic, the shape of the remaining-years structured

population is in the �rst place determined by the age-pattern of mortality, whereas

the shape of the age-structured pyramid is in the �rst place determined by tempo-

ral changes in fertility levels. Of mortality and fertility, the shape of mortality will

tend to be the more invariant of the two (small populations excluded). The shape of

mortality is less transient than is fertility. The shape of mortality is less conditioned

by perception, preference, culture, and planning than is the shape of fertility. This

latter statement will not hold all of the time, but it will hold most of the time, and

particularly it will have held in most Western populations in the past 50-or-so years.
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Figure 5.6: Total oscillation along the path to stability. Age-classi�ed versus ey-
classi�ed trajectories. US, 1969-2009 and Spain, 1975-2009
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If one accepts that mortality is in this sense more stable than fertility, one might

readily admit that the kind of results presented throughout the present section were

also to be expected.

So it is that, in the absence of a formal proof, we will be content to operate under

the assumption that population structured by probabilistic time until death rather

than recorded time since birth is less volatile and closer to stable than typically

observed age-structured populations. These results are distinct from and comple-

mentary to our data exercise from Section 4.2 which came to the same conclusion by

examining the distributional di�erence between population cross-sections lagged over
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a series of years for the 46 populations of the HMD at the time of this writing. We

o�er further speculation, but do not assume, that ey-population structure is in some

way the more essential of the two.

It may be noted that to the stable ey-structure there corresponds a unique age-

structure, yet we have o�ered no formula to undo the age-transformed population

back to its original age-structure. If stock is taken in the r estimates produced in the

ey-structured model, then one can in like manner walk back to the survival function

and calculate the supposed age-structure, ca:

ca =
e�rala∫1

0
e�rala da

(5.20)

This indeed can be retrieved from the cy structure when noting that la is just the

sum of future deaths, da (la =
∫1
a
da da), the very building blocks of cy, which we

never fully dispensed with. In noting this, one also realizes that to the stable age-

structure there corresponds a unique and stable ey-structure (so long as vital rates

in this instance come from the age-perspective), in which case one simply inserts

the age-derived intrinsic growth rate into Equation (5.16) followed by (5.17). These

corresponding stable structures are not explored further, and this author is uncertain

as to how to rectify the disagreements in structure that result from the derivation of

di�ering intrinsic growth rates.

5.6 Time until an unreasonable sex ratio

The basic projection matrix has been described for the single-sex ey-structured

model. This tool permits us to repeat the illustrative exercise from Section 2.1.1.2

wherein male and female populations are projected separately and in parallel until

such time as one sex outnumbers the other sex by a factor of two. Long waiting

times indicate less divergence, short waiting times strong divergence. This exercise is
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close to being just another viewpoint on the intrinsic growth rate, except that initial

conditions are expected not to be stable, and can therefore in
uence results. Again,

human sex ratios of two or one half are simply absurd, and this species of indicator

merely serves to compare.

In Figure 5.7, results from the age-structured model (dashed lines) are compared

with those of the ey-structured model (solid lines). These results were arrived at

using the respective Leslie matrices. Recall that higher values indicate less or slower

divergence, by this de�nition. For some years in both Spain and the US, the single-

sex ey-structured models were less divergent, and in other years the single-sex age-

structured models were less divergent. For the age-structured models, very long

waiting times are associated with crossovers in r. The single-sex rm and rf have

undergone no such crossovers for the ey-structured model in either Spain or the US,

as was seen in Figure 5.2. The rate of divergence for the ey-structured models was

for this reason, relatively consistent over the range of years studied.

The pace of divergence will be determined in the long run by the sex-gap in

r. As we saw for the age-structured model, the sex-gap in r owes to various vital

rate components, which were revealed in a decomposition in Section 2.2.2. Likewise,

the sex-gap in the ey-structured model is not the whole story, and it will be better

understood if we examine the role of each vital rate in determining its magnitude.

176



Figure 5.7: ln(years) until one sex is twice the size as the other, given separate single-
sex projections using annual vital rates and initial conditions, ey-structured model
and age-structured model. US, 1969-2009 and Spain, 1975-2009
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5.7 Decomposition of the sex gap in r

At this point we have demonstrated that the two-sex problem persists in ey-

structured populations, we have given some measures of its magnitude, and these

have been compared with analogous results from age-structured populations. These

measures have included the gap in the intrinsic growth rate, r, between males and

females, as well as divergence in projected birth counts and some temporal notion of

sex separation, as previously presented for age-structured populations in Section 2.1.1.

We will now repeat the decomposition exercise that was the topic of Section 2.2.2,
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but for the male and female intrinsic growth rates derived from the ey-structured

model. Speci�cally, we partition the gap, rm � rf into three components: di�erences

due to fertility, mortality, and the sex ratio at birth. Again, we add a parameter

to Equation (5.7) to account for the sex ratio at birth, &y, making FM
y the both-sex

fertility of males and F F
y0 the both-sex fertility of females by remaining years. &y is

then de�ned as SRBy
1+SRBy

for males and &y0 as 1
1+SRBy0

for females { i.e., allowing the

sex ratio at birth to vary by remaining years of life separately for males and females.

Figures 5.8 and 5.9 provide a graphical display of the decomposition for each year

of data. Some aspects of the pattern resemble those of the same exercise for age-

structured populations (see Figure 2.13), and others di�er. Speci�cally, the e�ect of

the sex ratio at birth is more or less the same as in the age-structured decomposition

{ rather uniformly in favor of males. Mortality e�ects are also observed to be in

favor of females in each year, as one would expect. However, in the case of ey-

structured populations, mortality usually assumes a much greater role in determining

the di�erence between growth rates{ one exception is in the mid 1970s for Spain.

Fertility is also seen to be more regularly, but not exclusively, in favor of males. The

magnitude of fertility e�ects were in some years greater in the ey-structured model

{ especially years 1980 onward in Spain. Both the age-structured model and the

ey-structured model show rather stable forces contributing to the gap in sex-speci�c

intrinsic growth rates from around 1990 onward. In many years the total magnitude

of opposing forces was greater for the ey-structured sex-gap in r than for the age-

structured gap.

The primary curiosity is that the e�ects of fertility and mortality appear to mirror

each other rather consistently in the present model. We must determine whether this

is coincidentally so, whether it is an artifact of the method, or whether this is an

observation that might bear lessons. Much, even most, of this owes to the fact that

changes in mortality leave an imprint on eSFR, because the death distribution is
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used to redistribute ASFR. Further, the stable population structure is determined

exclusively by the deaths distribution and growth rate. This combination works to

somewhat align the modal ages of fertility and population structure.90 In this way,

the fertility component in the present decomposition is not fully purged of mortality

e�ects: e-SFR has been taken for granted, namely. Mortality and fertility do not,

in the present case, fully o�set each other. Evidently, more work is required to fully

understand the dynamics at play in the present decomposition.

90Recall that in the populations treated here, the stable population structure (and observed struc-
tures, for that matter) is tapered at the base.
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Figure 5.8: Components to difference in single-sex intrinsic growth rates (rm − rf )
when population is structured by remaining years, US, 1969-2009
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Figure 5.9: Components to difference in single-sex intrinsic growth rates (rm − rf )
when population is structured by remaining years, Spain, 1975-2009
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As with the single-sex age-structured decomposition presented in Section 2.2.2, we

can break down the present decomposition even further, so as to separate the e�ects

of fertility shape from those of fertility level. This we do using a similar strategy,

wherein Fy (eSFR) is broken into two multiplicative pieces, �rst the overall level,

� = eTFR =
∫
Fy, and second Fy rescaled to sum to 1, �y = Fy

�
. The results of this

second decomposition are displayed in Figures 5.10 and 5.11.

Here we note that most fertility e�ects in the sex-gap to ey-structured population

growth rates are due to the shape of fertility and not the level of fertility. Recall that

in the age-structured decomposition the weight was 
ipped for the US and roughly

equally divided for Spain. We also conclude that both the fertility-shape e�ects and

the fertility-level e�ects are of ambiguous sign, although fertility-shape e�ects have

been consistently in the favor of rm > rf in the US over the period studied. It has been

seen consistently throughout the results in this dissertation that the massive fertility

decline in the Spanish population through the �rst two decades of these data echoes

through nearly all indicators, no matter how transformed, but most importantly that

it e�ected males and females di�erently. Here we note that the shape-penalty to this

fertility decline was observed much more among females than among males. In recent

years, fertility shape e�ects for Spain have levelled o�, and females have recuperated

in aggregate fertility levels.

One lingering question we might have is why the fertility and mortality e�ects

so often (but not always) nearly mirror each other. Of course, in the ey-perspective,

all data are derived in the �rst place from age-speci�c information, and all mortality

e�ects are redistributed in terms of remaining years of life on the basis of age-speci�c

mortality data. That is to say, fertility information in the ey-perspective depends

greatly on mortality information. The decomposition has been conducted such that

fertility is transformed to the ey-structure prior to decomposition, whereas the mor-

tality information, in the decomposition, enters only into the Lotka Equation (5.7).
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Figure 5.10: Additional decomposition into the components to difference in single-sex
intrinsic growth rates (rm − rf ) for ey-structured population, US, 1969-2009
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Figure 5.11: Additional decomposition into the components to difference in single-sex
intrinsic growth rates (rm − rf ) for ey-structured population, Spain, 1975-2009
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In other words, the shape of fertility with respect to remaining years of life is taken

for granted, whereas the stable population structure is determined in the �rst place

by the deaths distribution (derived from �x). To this extent, the fertility shape e�ects

could once again be broken down into two parts, namely, shape e�ects due to shape

of age-speci�c fertility and shape e�ects due to �x. This exercise is left for later work.

The interplay between fertility and mortality in the present model is therefore

complex, and the apparent mirroring only seen in Figures 5.10 and 5.11 would seem

to oversimplify the story. Mortality e�ects are much more consistent than fertility

e�ects, but we do not see this when summed over y, as was done above for the sake

of parsimony. To illustrate the underlying complexity, not necessarily apparent in

the above, for the time being it su�ces to take a glimpse at the ey-pattern to the

sex-gap in growth rates from some particular year. In this case, we display 1990,

Spain in Figure 5.12. The eTFR e�ect is left out of the �gure, as it is not speci�c

to remaining years { this e�ect was in the favor of males (0:000658). There is of

course a time-pattern to that displayed here, a complex evolution. An exploration of

this pattern must wait for future work as well. Here we merely aim to illustrate that

the apparent counterweighting of fertility and mortality in the present decomposition

is only apparent { most of the counterweighting occurs within the shape of fertility

itself over thanatological age! It would also appear that around 50 years from death,

the shape of fertility, SRB and mortality o�set each other close to perfectly. As one

would expect, male advantage in fertility is apparent in low remaining years of life

(late life in the age-perspective), and females have a fertility shape advantage when

many years remain until death (early reproductive ages, on average).
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Figure 5.12: Components to difference in single-sex ey-structured intrinsic growth
rates (rm − rf ) by remaining years of life, Spain, 1990
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5.8 Re
ections on the single-sex �ndings

This chapter has been rather ambitious in its material, and it has opened several

branches of remaining work, likely producing more questions than there is material

covered. We began by imagining how single-sex population renewal would work when

viewed from the perspective of remaining years of life. Indeed much changes { the

orientation of increment and decrement most especially, and there is more to it than

simply inverting the pyramid. It turns out that the intrinsic growth rates belonging to

one and the same population di�er when calculated from an age-structured or from a

thanatologically-structured population { intrinsic growth rates in the present system

will often, but likely not necessarily, fall closer to zero than their age-structured single-

sex equivalent. It has been demonstrated using our example data that observed US

and Spanish ey-structured populations are in the �rst place closer to their ultimate

stable forms, but will also obtain stability faster and with less oscillation than the very

same population when structured by age. No proof has been o�ered as to whether

this observation is necessary for all populations or is accidental, but we speculate that

this will typically be the case.

Further, no explanation has been o�ered as to why it is that intrinsic growth

rates di�er from classic intrinsic growth rates. One could relate these two intrinsic

growth rates formally using Coale's line of thinking mentioned in Section 2.1.1.1,

but this would do little to explain why the di�erence should occur in the �rst place.

One may conceive of this discrepancy as reconcilable in that it owes to the marginal

distributions of a matrix containing one and the same data, as is the case with birth

counts in the age-structured two-sex problem.

To illustrate, note that with the two-sex problem, births cross-classi�ed by age of

mother and age of father begin in a single matrix, from which the marginal sums of the

rows equal the male distribution (the convention in this dissertation only) and the col-
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umn margins give the female distribution. Either of these once-marginal distributions

after being reapportioned into remaining-years classes also has this property. Specif-

ically, if instead of integrating Equation (4.1) over age, one leaves the redistributed

data in a matrix, the (in our case) row margins are equal to the ey-distribution, and

the column margins are equal to the original age distribution. The primary reorien-

tation behind the present ey-structured model is in the fertility rates, Fy, as the da

used herein relates in a direct way to la in the age-structured model.

In this way, one can easily arrive at a births matrix91 wherein the row margins

give ey-structured birth counts and the column margins give age-structured birth

counts. This matrix would be the link matrix, as per the age cross-classi�ed birth

matrix for males and females. As with the male and female exposures in the two-sex

problem, the sums of age-structured and ey-structured exposures will not match, and

the problem would shift to the determination of a proper denominator, or e�ective

population. That is, such a link could be made so as to use information from both

age perspectives to arrive at a single estimate of r, or other growth parameter. This

adventure would indeed square the degree of complexity of the problem at hand,

calling for a function to use information from ey-rates, age-structured rates, and each

sex { four combinations to be dealt with. Imagine then the �nal cross-classi�ed array

in single ages and per the dimensions used in this dissertation: it would contain 1114

(over 150 million) cells for just a single year, and this with no added variables for

nuptial states! This observation is of a speculative nature, and despite temptation,

we will not explore this avenue. Instead we aim to work out some common solutions

to the two-sex problem in this particular variety of population structure.

Other avenues at our disposal have not been explored { for example, can our ear-

91Indeed the fertility-rate matrix must go back to its two origin matrices { births and exposures,
from which rates are derived. The total births will sum correctly in the intial year. The redistributed
exposure matrix, as treated here, will not sum to the exposures used in age-classi�ed rates. Recall
the discussion in Section 4.3.1 as to the e�ective population to use in rates, and that we have decided
to take exposures from the whole population for simplicity and consistency.
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lier re-orientation of Fisher's reproductive value (see Section 4.3.5) also be extracted

from the discrete projection matrix by way of an eigenvector? There are also surely

re�nements to be made to the discretization of our model in the corresponding pro-

jection matrix outlined in Section 5.3, although we still have been able to make good

use of it in measuring the transient dynamics of the present model.

The single-sex model outlined here can be said to be minimal, in that many of its

properties are left unexplored. This author has been content to establish a working

and coherent model, so as to move on to a treatment of the two-sex problem within

it. This is the topic of the following chapter.
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Two-sex renewal in populations

structured by remaining years
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It has been noted that divergence between the sexes, in terms of predicted birth

counts, is often dampened when projected using rates and populations that are struc-

tured according to remaining years as compared to age-structured rates. This does

not, however, mean that the problem of the sexes is in this context negligible. In-

stead, the problem has only become slightly more tractable. The author considers the

problem more tractable because in decreasing the magnitude of discrepancy between

male and female rates, the trade-o�s inherent in the various two-sex solutions o�ered

in the literature also become smaller. The present Part 3 introduces some two-sex

extensions of the ey-structured population model introduced in the earlier Chapter V:

1. In Chapter VI we translate the dominance-weighted extension earlier presented

in Section 3.3. This method assuming �xed weights for male and female marginal

fertility distributions. We provide a continuous model, an interactive method to

estimate r, a two-sex projection matrix, and discuss stable population structure

at some length.

2. In Chapter VII we propose an extension based on the generalized mean of the

joint male-female exposures, as presented earlier in Section 3.4.2 for the case

of age-structured populations. We provide the continuous model, an iterative

method to estimate r and discuss the stable fertility distribution.

3. In Chapter VIII we describe the translation of iterative proportional �tting

(IPF) to ey-structured populations, as previously presented in Section 3.5 for

the case of age-structured populations. We provide the continuous model, an

iterative method to estimate r, and some results of the stable fertility distribu-

tion.

4. In Chapter IX we consider a two-sex extension especially for ey-structured pop-

ulations, based on a constant departure from the association-free joint birth
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distribution. An iterative method to produce r is provided, as are some basic

results.
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Chapter VI

Dominance-weighted two-sex renewal

Goodman (1967) o�ers a suite of formulas to determine the stable age-sex compo-

sition of a population taking into account the vital rates of both sexes, assuming that

one can assign a relative weight (summing to 1) to male and female fertility. This

model was presented in Section 3.3 for age-structured populations, and will now be

translated for the case of remaining-years structured populations. Recall that this

model entails two trade-o�s: 1) one must (arbitrarily) choose dominance weights,

and 2) these weights are constant. The �nal result is bracketed by the cases of male

and female dominance, but the gap between these two extremes also measures the

demographer's subjective leeway, which we would like to minimize. Both of these

drawbacks can be reduced in the case of ey-structured populations, since,

1. ey-structured populations have a more stable (in terms of year-to-year distribu-

tional variation) structure than age-structured populations.

2. Mate-selection with respect to remaining years of life is nearly random in ey-

structured populations (see Section 4.3.3).

3. The di�erence between male and female dominance (in terms of projected birth

counts) is often reduced, thereby limiting of the impact of the demographer's

\dominance caprice" on results (see Section 4.3.4).
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Points (1) and (2) reduce (but do not eliminate) the necessity of sex-interactions in a

model. By this it is meant that the proportional di�erence in results from one choice

of model weights over another is simply diminished. This being so, the comparative

advantage of a more sophisticated or realistic model is to some degree diminished.

Since the weighting coe�cients in this model do not change, we have taken the extra

step to design a projection matrix for this dominance model, and we put this to use

to study some of the transient properties of the present model, as well as to examine

the resulting stable population structure.

6.0.1 The renewal equation

As mentioned, choose some weight, �, between 0 and 1 to apply to male rates,

where the female weight is de�ned as 1� �. When � = 1 there is perfect male domi-

nance, and when � = 0 there is perfect female dominance. Of course, births to girls

are subject to female mortality and births to boys are subject to male mortality. As

with Equation (5.7), this mortality enters in the equation by way of the dx distri-

bution used to distribute births over life expectancies. If one knows the sex ratio at

birth, expressed as the proportion male of births, &, then year t births B(t) can be

expressed as follows:

B(t) =

1∫
y=0

�&Py(t)Fy dy +

1∫
y0=0

(1� �)(1� &)Py0(t)Fy0 dy0 (6.1)

Py(t) and Py0(t) are the male and female year t population counts classi�ed by exact

remaining years y (exposures when discrete), and Fy and Fy0 are remaining-years

classi�ed fertility rates, eSFR (including both sexes of birth). Of course, Py can be
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expressed in terms of past births in a roundabout way:

Py =

1∫
a=0

Pa
da+y
pa

da

=

1∫
a=0

&B(t� a)pa
da+y
pa

da

=

1∫
a=0

&B(t� a)da+y da (6.2)

where pa is the probability of surviving to age a, which is just the same as
∫1
x=a

dx dx.

Plugging the last line into Equation (6.1), we have:

B(t) =

1∫
y=0

1∫
a=0

�&B(t� a)da+yFy da dy

+

1∫
y0=0

1∫
a=0

(1� �)(1� &)B(t� a0)da0+y0Fy0 dy0 da0

(6.3)

If left to evolve for long enough the size of consecutive birth cohorts will be related by

a constant factor, er, and this property allows us to rewrite Equation (6.3) in terms

of years t births:

B(t) =

1∫
y=0

1∫
a=0

�&B(t)e�rada+yFy da dy

+

1∫
y0=0

1∫
a=0

(1� �)(1� &)B(t)e�ra
0
da0+y0Fy0 dy0 da0

(6.4)
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Dividing both sides by B(t) brings us to the familiar-looking Lotka-type unity equa-

tion, which can be used to estimate the two-sex intrinsic growth rate, r,

1 =

1∫
y=0

1∫
a=0

�&e�rada+yFy da dy

+

1∫
y0=0

1∫
a0=0

(1� �)(1� &)e�ra0da0+y0Fy0 dy0 da0

(6.5)

where & is the proportion male at birth for the stable population, which may either be

assumed or estimated simultaneously with r{ the iterative estimation strategy out-

lined below describes how to estimate these two parameters simultaneously. Equa-

tion (6.5) does not assume that fertility rates are available by sex of birth, but these

will be needed in following in order to simultaneously calibrate the sex ratio at birth.

The dominance-weighted two-sex r extracted from Equation (6.5) is bounded by

the ey-structured rf and rm, and indeed rf and rm are recovered by setting � to 0

and 1, respectively. That is to say, setting � to 1 or 0 makes the single-sex model a

degenerate case of the present model. This works because the dominance-weighted

model uses both sexes of birth for each sex of progenitor, but appropriately weights

the radix of progenitor by the sex ratio at birth. In the single-sex model, one may

conceive of the progenitor radix as unweighted, whereas fertility is indeed weighted.

In the end, � has the same e�ect, and the border cases are identical. The dominance-

weighted model would not have this property if only a single sex of o�spring were

included in fertility. This author does not recognize any theoretical or practical merits

of the single-sex modeling choice, as it is not the case that males are responsible for

the birth of boys and females for the birth of girls.92

It must be noted that the two-sex value of r is dependant upon the choice of �, and

92Or vice versa, as we saw in Section 3.2.1. Pollard (1948) took this idea even further by swapping
sexes: the fertility functions in this paper are based on the births of boys to mothers and girls to
fathers, i.e., M � F and F �M fertility. This we saw was parsimonious in terms of getting quick
results that are guaranteed to fall within reasonable bounds, but is even less intuitively appealing.
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that no guidelines are provided for choosing a good value of �. This ambiguity also

exists in the age-structured variant of the present model. For ey-structured models,

it has been claimed that sex-divergence is lesser than is the case for age-structured

models. Recall that this was the case for predictions of birth counts, and not for

the growth parameter, r. The di�erence between the ey-structured rf and rm is not

necessarily lesser than is the case for the age-structured rf and rm. This will be

discussed further along with empirical results for the two populations considered in

this dissertation.

6.0.2 An iterative approach to �nd r

Steps to practically solve Equation (6.5) for r are similar to those presented for the

one-sex case in Section 5.2.1, except we must add a step to simultaneously calibrate

the sex ratio at birth, S.

1. Determine a starting value for Ŝ0. 1.05 is a good enough guess, although for

Spain 1.07 might be more reasonable. Use Ŝ0 to calculate &0 using

&0 =
Ŝ0

1 + Ŝ0
(6.6)

& is updated in subsequent iterations.

2. A �rst rough estimate of the net reproduction rate, R̂0 (assuming r = 0) is

given by

R̂0 = (1� �)

1∫
y0=0

1∫
a0=y0

(1� &0)dFa0
(
fF�Fy0 + fF�My0

)
da0 dy0

+�

1∫
y=0

1∫
a=y

&0dMa
(
fM�My + fM�Fy

)
da dy

(6.7)

3. Calculate the sum of Equation (6.7) again after weighting in y and y0, respec-
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tively, and divide this sum by R̂0 to arrive at an estimate of the mean length of

generation (in terms of remaining years), T̂ .

4. A �rst rough estimate of r, r0, is given by

r0 =
ln(R̂0)

T̂
(6.8)

5. Plug r0 into Equation (6.5) to calculate a residual, �0.

6. Use �0 and T̂ to calibrate the estimate of r using

r1 = r0 +
�0

T̂ � �0

r0

(6.9)

7. Use the improved r to update the sex ratio at birth, using sex-speci�c fertility

rates, FM
y (father-son), F F

y (father-daughter), F F
y0 (mother-daughter) and FM

y0

(mother-son) fertility rates:

S1 =

∫1
y0=0

∫1
a0=y0

e�r
1a0(1� &0)dFa0fF�My0 da0 dy0 +

∫1
y=0

∫1
a=y

e�r
1a&0dFa f

M�M
y da dy∫1

y0=0

∫1
a0=y0

e�r1a0(1� &0)dFa0f
F�F
y0 da0 dy0 +

∫1
y=0

∫1
a=y

e�r1a&0dFa f
M�F
y da dy

(6.10)

Then update to &1 using Equation (6.6).

8. Repeat step (5) to to derive a new �i, then step (6) to re�ne ri, adjusting Si

with (7), and again steps 5-7 until converging on a stable r (and S) after some

30 iterations, depending on the degree of precision desired (T̂ is not updated in

this process).

One may rightly object that given only Equation (6.5) we should be able to solve for

only one variable, r or S, and not both. In practice, results are not sensitive to the

choice of starting S0, and the calibration method leads in any (reasonable) case to

the same stable r. There is simply little room for S to deviate from its stable value
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given that 1) the starting and stable structures are typically in this case not far from

one another, and 2) males and females produce each sex of o�spring, thus narrowly

constraining S even in the case of perfect dominance. No doubt unrealistic scenarios

could be concocted wherein the present model would be unstable in the sense of not

having a unique solution, but the author doubts that such scenarios would pertain

in observed contemporary populations. As a sensitivity test, some extreme starting

values for S0 were chosen for select years from the data used in this dissertation

(ranging between .8 and 1.3): all lead to identical calibrated values of r and S. At

least with this estimation method and the data used in this dissertation, the equations

presented here are identi�able.

6.0.3 Other stable parameters

Once two-sex linear r and the stable proportion male of births, &, have been found

for the given �, one may proceed to �nd the two-sex mean length of generation T and

stable R0, replacing the �rst guesses used in the iterative procedure described above.

We can derive the stable population sex ratio, �S:

�S =

∫1
y=0

∫1
a=y

&e�radMa da dy∫1
y0=0

∫1
a0=y0

(1� &)e�ra0dFa0 da0 dy0
(6.11)

The both-sex stable birth rate, b is given by

b =

[( ∫1
y0=0

∫1
a0=y0

e�ra
0
(1� &)dFa0 da0 dy0

+
∫1
y=0

∫1
a=y

e�ra&dMa da dy
)]�1 (6.12)

which can be used to derive the stable ey-structure of males and females, cy and cy0 ,

respectively:
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cy0 = b(1� &)
1∫

a0=y0

e�ra
0
dFa0 da0

cy = b&

1∫
a=y

e�radMa da0 (6.13)

where of course,

1 =

∫
cy0 dy0 +

∫
cy dy (6.14)

6.1 The dominance-weighted two-sex projection matrix

The formal relations presented in Sections 6.0.1 and 6.0.3 establish coherence,

and some merits have been presented. This section o�ers tools more relevant to the

discrete practice of applied demography. The model contained in Equation (6.5) is

conformable to replication with a projection matrix, similar in concept to that o�ered

for the single-sex ey-structured case in Section 5.3. The two-sex linear projection ma-

trix combines the projection of each sex jointly in a single instrument, the construction

of which is more involved than the single-sex case: four times more involved to be

precise.

Assuming n ey-classes each for males and females, the dimensions of the present

matrix will be 2n � 2n, where male and female ex-classi�ed population vectors are

joined, for instance end-to-end in a single population vector. The convention used in

this description places males (ordered by remaining years of life) in positions 1 : n of

the vector p and females ordered by remaining years in positions (n + 1) : (2n) of p

{ i.e., end-to-end. This being so, the projection matrix Y must conform with these

locations of males and females, locating survival and fertility appropriately.

Y is divided into four main blocks. The top left block is nearly identical to the

male single-sex case, and the bottom left block is nearly identical to the female single-
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sex case. Both of these two submatrices contain survival (all 1's) in the superdiagonal.

Fertility is analogous, but must be weighted according to � (1 � �). The lower left

submatrix contains M � F fertility weighted by � and distributed over female death

probabilities, dfa, and the upper right matrix contains F �M fertility, weighted by

1 � � and distributed according to male death probabilities. As with the single-sex

projection matrix, fertility in the �rst year of life must be further discounted by �

to account for the part of infant mortality that occurs before December 31st of the

calendar birth year. In this case � may optionally be entered separately for males

and females.
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Matrix 6.1.1 is a schematic representation of a two-sex ey-structured projection

matrix. This example contains four classes of life expectancy in order to economize

space (as opposed to the six shown in Matrix 5.3.3). Such a matrix amenable to the

data used in this thesis would have �nal dimensions 222 � 222, since we work here

with 111 remaining life expectancy classes93.

6.2 The method applied to the US and Spanish data

This procedure has been applied to the data from the US and Spain with �

given the values of 0, 0.5, and 1, which correspond to the cases of female-dominance,

an intermediate value, and male-dominance, and can be seen in Figure 6.1. Detailed

results for r and the stable sex ratio at birth can be found in the tables of Appendix D

alongside those of other remaining-years renewal models.

Patterns accord with trends generally known from the age-classi�ed rf and rm,

but values of r are higher than the age-classi�ed intrinsic growth rates in all of the

years studied. In all years tested here, r was indeed bounded by the ey-structured rf

and rm. We con�rm that our implementation is good in that the border cases where

� equals 0 or 1 produce the same results as the single-sex models.

93The 111 ey classes are derived from the 111 ages of dx provided by the HMD, ages 0� 110+.
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Figure 6.1: Two-sex linear intrinsic growth rate, rυ, according to renewal Equa-
tion (6.1), with σ given the values 0, 0.5 and 1; US and Spain, 1969-2009
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6.3 More on the stability of remaining-years population struc-

ture

Using Equation (6.13) we can calculate the stable structure for any year from

our test populations. Figures 6.2 and 6.3 provide a glimpse of how the 1975 and

2009 US and Spanish populations structured by remaining years compare to their

corresponding stable populations. For all cases, σ was assigned a value of 0.5. For

the US, one notes that the stable populations have differed little between these two

time points. Indeed the respective r estimates for these two years, −0.00076 and

−0.00033, were not very far from 0, which causes the walls to be rather close to
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vertical in both stable populations. Slight improvements in male and female mortality,

however, pushed the deaths distribution to higher ages, which caused the 2009 stable

population to elongate relative to 1975. In comparing the stable with the initial

population structure, one may ask how it came to be that the initial pyramid acquired

such a high modal age { this will be due primarily to changes in cohort sizes over time

(the baby boomers having still be rather young in 1975), but also to slight shifting of

the deaths distribution to higher ages over time.

The picture with the Spanish population is rather di�erent, since the respective

r estimates have changed so drastically over the period examined here, dropping

from 0:00870 in 1975 to �0:00714 in 2009. The departure from zero was in both

years higher than that in the US, causing sharp tapering at the base of the stable

structure in 1975 and a rather pyramidal shape in 2009, due to an endogenously

shrinking population. One notes that in 1975 the initial ey-structure was very similar

to the �nal stable form, but by 2009 these two structures were quite di�erent. Initial

(observed) conditions were much more concentrated around the mode, due also to

underlying cohort sizes and continual and fast improvements in mortality.
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Figure 6.2: US, stable (σ = 0.05) versus initial ey-structures, 1975 and 2009
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Figure 6.3: Spain, stable (σ = 0.05) versus initial ey-structures, 1975 and 2009
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It has been mentioned before that the time series of observed ey-structures has

held rather steady in last several decades (major wars and epidemics excluded), due

to the forces of mortality, fertility, and (in)migration change having compensated

each other somewhat. Namely, for the Spanish population, decreases in r have been

compensated somewhat by decreases in mortality that pushed the modal age at death

(modal remaining years at birth) to higher ages (remaining years), as well as by a

large in
ux of relatively young migrants starting in the 1990s. The stable model

of course assumes constant mortality and fertility, as well as zero migration, and so

will not produce the same rather consistently observed tapered base to the population

structure year after year { in the stable model the (optimistic) tapered base will come

about when low infant mortality is coupled with high (roughly > 0) intrinsic growth

rates. Indeed, the drop in r (i.e., fertility) is the primary culprit for the wide base

in the stable ey-structure for the Spanish population in 2009, which actually started

some two decades earlier.

Figure 6.4 gives an example of the in
uence of r on the stable population structure

for a given deaths distribution (1975 US). In summary, growing populations tend to

have higher modal remaining years of life, shrinking populations are biased to lower

remaining life expectancies. The basic results would be the same for all years of data

for both populations dealt with in this dissertation.

Figure 6.5 displays the 1975 US population assuming r = 0 but with di�erent

levels of mortality. The deaths distribution, dx was regenerated according to two

scalings of the underlying mortality rates, �x. All ages of �x were scaled to 1.2 and

0.8 times lower mortality levels { equivalent to a bit more than two years lower and

higher life expectancy at birth, respectively. dx was then rederived from the newly

scaled �x. Notice that higher levels of mortality are on balance lower structures with

slightly wider bases, and vice versa for lower mortality levels.
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Figure 6.4: Stable population structure under di�erent values of r. US, 1975
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Figure 6.5: Stable population structure under di�erent levels of mortality, observed
(center line), �x � 1:2 and �x � 0:8; r = 0. US, 1975
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Despite the great di�erences in mortality in Figure 6.5, the shape of the stable

population structure does not change substantially. Let us not confuse this observa-

tion with the earlier claim that ey-structured populations are shaped in the �rst place

by mortality and in the second place by fertility. ey-structured human populations

obtain their (rather invariant) characteristic curve due to mortality because new co-

horts of births are layered (see Figure 5.1) according to the deaths distribution, which

itself has a characteristic shape. This could be seen by comparing the present �gures

with those from populations in mortality crisis years, and/or high infant mortality {

such years do no enter into study in this thesis.

As with the single-sex case, one may measure the distributional distance between

the initial and stable conditions for two-sex ey-structured populations. The degree of

separation, �, will be intermediate to those calculated for the single-sex cases, leaning

closer to the male or female indices depending on the value of � used to calculate the

two-sex stable population. Also as with the single-sex case, the damping ratio may be

calculated from the two-sex ey-structured projection matrix presented in Section 6.1.

Here the value is not necessarily intermediate to the male and female single-sex cases,

as seen in Figure 6.6.

Note that in both cases the � used to calculate the two-sex matrices was .5, in

principle half-informed by male vital rates and half-informed by female vital rates.

For the US, as one might expect, the damping ratio was intermediate to the single-

sex male and female ratios. For the Spanish population, however, the two-sex model

is expected to stabilize faster than either of the corresponding one-sex models. We

speculate that this will be in large part due to the explicit balancing of the male and

female populations by the sex ratio at birth, which is higher in Spain than in the US.

In the two-sex model, the Spanish population moves forward as a whole rather than

quickly diverging due to its high sex ratio. This may be a desirable property.

Our other summary measure of transient dynamics, the total absolute oscillation
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Figure 6.6: Damping ratios from two-sex ey-structured projection matrices compared
with single-sex values. US, 1969-2009 and Spain, 1975-2009
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of population structure from the initial to stable states (Cohen, 1979), in this case

tends to be intermediate to the male and female values (see Figure 6.7). One exception

are the years 1975-6 for the Spanish population, where total oscillation in this model

would have been higher than for either single-sex model. Recall that the damping

ratio for each year of data was higher (faster stability) for the two-sex case than for

either single-sex case. Only the � value of 0.5 was tested, but here we see that other

values of � also would not guarantee damping ratios or total oscillations bracketed by

the single-sex cases. That we see this in the simple linear combination of male and

female models might be a precursor to observing that such measures for non-linear
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models will also not necessarily be bracketed by the male and female single-sex cases.

Figure 6.7: Total oscillation along the path to stability. Two-sex (� = 0:5) versus
single-sex ey-structured projection trajectories. US, 1969-2009 and Spain, 1975-2009
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6.4 Re
ections on the weighted two-sex model

I posit that there exists a formal identity to relate the various results (e.g., rf to

the two-sex r), just as Coale (1972, p. 56) relates the age-structured rm and rf , but

this fruit will be left on the tree for the time being.

Most important, as is visible in Figure 6.1, there is simply very little spread in

growth rates between the positions of extreme dominance. One intuitively wishes

to see a non-linear two-sex model that accounts for interactions between both sexes
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and remaining years of life, just as one wishes, in an age-structured model to allow

for 
uid interactions between sex and age. In such a model, the laws of supply and

demand would move � according to the relative weight of male and female exposure.

However, the distance between male and female dominance represents around twice

the maximum di�erence in r that one would observe upon applying the more sophis-

ticated model. This statement assumes 1) that the interactive model is bounded by

the dominant cases presented here, and 2) that one is comparing with the case of

� = 0:5, a prudent choice.

As a secondary point, notice also that the present linear model holds rates constant

with respect to remaining life expectancy, but not with respect to age. From year

to year the population structure with respect to remaining life expectancy changes,

as does the underlying age structure. One could re-derive age-speci�c fertility rates

from the ey-speci�c fertility rates used here, and would note that since the weighting

variable has changed with time, so too would the weighted sum of the ey-speci�c

rates inherent in any age-speci�c rate. This observation heeds Stolnitz and Ryder

(1949), who point out several ways in which fertility rates are indeed simply weighted

sums of even more speci�c weights. Prior to the formulation of the present model we

have pointed out another dimension in which age (parity-race-class)-speci�c rates are

weighted sums, and we have exploited that, short of holding very cross-classi�ed rates

constant, one observes greater stability over time with ey-classi�ed rates. Holding ey-

classi�ed rates constant will force underlying age-speci�c rates to fold and adapt with

each passing year (albeit not much). Forcing age to adjust in accord with constant

ey-speci�c rates appears to this author to be just as palatable as forcing ey-speci�c

rates to change under the constraint of constant age-speci�c rates { perhaps more

so. This judgment is passed on having compared the observed volatility in the two

kinds of speci�c rates and deciding ey-speci�c rates are more reconcilable with the

stable population assumption of �xed rates. This di�erence is not necessarily large,

211



and may in any case be an accident of history, as we have not pondered why it is that

ey-speci�c rates would hold more constant over time than age-speci�c rates. Part of

this might owe to inadequacies in the method used to redistribute age-classi�ed data

to ey-classi�ed data, as the method is new, and has not undergone scrutiny beyond

this very dissertation.
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Chapter VII

A mean of male and female exposures

One can also take a more interactive approach to the two-sex problem than that

presented for the weighted-dominance case. The latter relied on �xed male and female

marginal fertility rates and a �xed dominance parameter. In this section we translate

the two-sex method �rst presented in Section 3.4.2 to the remaining-years case. This

method allows the fertility of each sex to vary from year to year according to a

given mean function of the joint male-female remaining-years fertility distribution as

determined in the initial year according to the same mean function. That is to say,

the model described here incorporates a certain degree of internal feedback due to

changes in the sex ratios of male and females in each remaining-years class.

7.0.1 The renewal equation

Formulas are here couched in the harmonic mean, but this may be generalized,

given that we specify the mean itself as a function. The harmonic mean function

itself di�ers from Equation (3.30) only in its subscripts:

H(Pm
y ; P

f
y0) =

2Pm
y P

f
y0

Pm
y + P f

y0

(7.1)

As elsewhere in this dissertation, y and y0 index remaining years of males and fe-

males, respectively. We begin the process by calculating a single joint fertility rate
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distribution, later assumed constant

FH
y;y0 =

By;y0

H(Pm
y ; P

f
y0)

(7.2)

again, only di�ering from Equation (3.31) in the remaining-years subscripts. FH
y;y0 is

the primary model component. With this, we may calculate the births for a given

year:

B(t) =

∫ ∫
FH
y;y0H

(
Pm
y (t); P f

y0(t)
)

dy dy0 (7.3)

The population count Py is, however, easily related to past births via the previous

Equation (6.2), the result of which was

Py =

1∫
a=0

&B(t� a)da+y da (7.4)

where & is of course the proportion male of births and the survival function is just

the sum of future deaths: pa =
∫1
x=a

dx dx. This identity allows us to rewrite Equa-

tion (7.5) in terms of past births

B(t) =

∫ ∫
FH
y;y0H

(
&

1∫
0

B(t� a)da+y da ; (1� &)
1∫
0

B(t� a0)da0+y0 da0

)
dy dy0

(7.5)

which when left to renew itself for many years on-end, will eventually attain a constant

rate of growth, r, in which case we may rewrite Equation (7.5) entirely in terms of

year t births:

B(t) =

∫ ∫
FH
y;y0H

(
&

1∫
0

B(t)e�rada+y da ; (1� &)
1∫
0

B(t)e�ra
0
da0+y0 da0

)
dy dy0

(7.6)
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This lets us divide by B(t) to arrive at our standard approachable unity equation,

which permits the estimation of the stable growth parameter, r:

1 =

1∫
0

1∫
0

FH
y;y0H

(
&

1∫
0

e�rada+y da ; (1� &)
1∫
0

e�ra
0
da0+y0 da0

)
dy dy0 (7.7)

As in other two-sex models, & is also best estimated along with r rather than assumed

constant from the outset.

7.0.2 An iterative approach to �nd r

Optimizing r from Equation (7.10) is straightforward if the proportion male of

total births, &, is assumed to be some �xed quantity. In that case, one may use

a generic optimizer to �nd r. As with the age-structured optimization akin to the

present one, though, it is preferable to calibrate the sex ratio at birth simultaneous

with r. This is even more important for remaining-years structured populations, since

the SRB pattern over remaining years of parents is more pronounced than is the age-

pattern. O�setting the potential obstacle presented by the strong ey-pattern to SRB

is the lucky observation that present and stable ey population structures are typically

not markedly di�erent. In practice with the two populations tested here, we noted no

problems from over-determination, as the range of values that SRB can take is very

narrow, and indeed allowing the SRB to move in accordance with r and vice versa

stabilizes the optimization rather than causing it to shoot o� in some direction. This

is safely the case because each sex of parent is responsible for each sex of birth.

The data requirement for carrying out this optimization is therefore similar to that

of the age-structured procedure from Section 3.4.2. We require da and da0 from the

period lifetable, the joint distribution of boy births BM
y;y0 , and the joint distribution

of girls births BF
y;y0 , along with population vectors Py and Py0 (exposures in discrete

time), from which one calculates the mean sex-of-birth speci�c joint fertility rates,
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F F
y;y0 and FM

y;y0 using some mean of male and female joint exposures in the denominator.

F F
y;y0 and FM

y;y0 are taken as constant and used throughout. The steps to �nd the stable

r and S are then as follows:

1. Establish a starting value for the sex ratio at birth. For instance, one may take

the year t observed sex ratio at birth. From this, derive &0 as SRB
1+SRB

2. Establish a guess at the net reproductive rate, R̂0, assuming r = 0,

R̂0 =

1∫
0

1∫
0

Fy;y0H

(
&

1∫
0

da+y da ; (1� &)
1∫
0

da0+y0 da0

)
dy dy0 (7.8)

where Fy;y0 = FM
y;y0 + F F

y;y0 .

3. Weight y, y0 into Equation (7.8) and divide this sum by R̂0 to arrive at an

estimate of the mean generation length, T̂ , in terms of remaining years.

4. Calculate a starting value of r, r0 as

r0 =
ln(R̂0)

T̂
(7.9)

5. Plug ri and & i into Equation (7.10) to produce a residual, �i,

�i = 1�
1∫
0

1∫
0

Fy;y0H

(
& i
1∫
0

e�r
iada+y da ; (1� & i)

1∫
0

e�r
ia0da0+y0 da0

)
dy dy0

(7.10)

where Fy;y0 = FM
y;y0 + F F

y;y0 .

6. Use �i to improve the estimate of r, ri+1:

ri+1 = ri � �i

T̂ � �i

ri

(7.11)
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7. Use the improved ri+1 to update the proportion male of births, & i+1:

BM;i+1 =

1∫
0

1∫
0

FM
y;y0H

(
& i
1∫
0

e�r
i+1ada+y da ; (1� & i)

1∫
0

e�r
i+1a0da0+y0 da0

)
dy dy0

(7.12)

BF;i+1 =

1∫
0

1∫
0

F F
y;y0H

(
& i
1∫
0

e�r
i+1ada+y da ; (1� & i)

1∫
0

e�r
i+1a0da0+y0 da0

)
dy dy0

(7.13)

Si+1 =
BM;i+1

BF;i+1
(7.14)

and �nally

& i+1 =
Si+1

1 + Si+1
(7.15)

8. Repeat steps 5-7 until the error � vanishes to zero, which may take 25-30 itera-

tions for maximum double 
oating point precision, far fewer for most practical

purposes.

7.0.3 Other stable parameters

Once r and & have been located, one may derive other stable quantities, as de-

scribed elsewhere in this dissertation. R0 and T are calculated as described in the

iterative procedure, except that now they use the stable &. The stable both-sex birth

rate, b, becomes

b =

[ 1∫
0

1∫
0

&e�rada+y da dy +

1∫
0

1∫
0

(1� &)e�ra0da0+y0 da0 dy0

]�1
(7.16)
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With b we may derive the stable male and female structures, cy and cy0 , by remaining

years:

cy = b&

1∫
0

e�rada+y da (7.17)

cy0 = b(1� &)
1∫
0

e�ra
0
da0+y0 da0 (7.18)

and naturally:

1 =

∫
cy +

∫
cy0 (7.19)

Using the stable structure, stable male and female marginal fertility rates, fy and

fy0 , can also be retrieved:

fy =

∫1
y0=0

FM
y;y0H

(
cy ; cy0

)
dy0

cy
(7.20)

fy0 =

∫1
y=0

FM
y;y0H

(
cy ; cy0

)
dy

cy0
(7.21)

In the following, we compare these stable marginal fertility rates with initial rates.

The stable structures, cy and cy0 , can also be used to then calculate the stable pro-

portions of the populations above or below some y threshold, to calculate the stable

whole-population sex ratio, or any of the other typical measures. The stable age

structure that belongs to this stable population, which underlies it, may be retrieved

using r in the standard way with the survival function, pa.

7.1 The method applied to the US and Spanish data

The iterative technique described in Section 7.0.2 to optimize the two-sex r (and

the SRB) for the present population model is here run for each year of data. Detailed

results for r and the stable sex ratio at birth using the harmonic, geometric and
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logarithmic means can be found in the tables of Appendix D alongside those of other

remaining-years renewal models. r itself is not visually distinguishable in a time series

plot from the previous weighted-dominance model where � = 0:5, and so we do not

bother to display yet another time series of it. The case is similar for the ultimate

two-sex stable population structure. Equation (7.17) can be followed to produce

structures that are also very similar to those previously displayed for the weighted-

dominance case where � = 0:5. Neither do we endeavor to measure the transient

dynamics of the present model, as has been done for the dominance-weighted two-sex

model. Instead, in order to better grasp the implications of this particular model,

we display the initial versus stable ey-speci�c fertility rates, eSFR, for a pair of years

from the US and Spanish data. This author has never seen such comparisons done

for age-classi�ed models, even when equations are given to calculate the stable TFR.

One aspect of the present model that might not be obvious is that male and female

marginal fertility rates indeed change from the initial state in each time point along

the path to stability, and ultimately di�er in the �nal state from the initial ey-speci�c

rate vectors. Two aspects of fertility are held constant in the present model. 1) The

initial joint rates calculated on the basic of a given mean of male and female exposures

speci�c to each combination of remaining years of life. This matrix is indeed held

�xed. 2) The particular mean function used in the �rst place to calculate the mean

rate matrix is reapplied in each successive year to the evolving population vectors.

As population vectors oscillate, the ultimate predicted birth count for a particular

remaining-years combination will rise or fall, as will male and female marginal birth

count predictions. The end e�ect is that the marginal rates themselves are also

di�erent in the initial versus stable states. Figure 7.1 compares the initial eSFR

vectors for each sex with their ultimate stable values for 1975 and 2009 in the US and

Spain.

In general, initial rates will di�er from stable rates as a function of the degree of

219



Figure 7.1: Male and female initial and stable eSFR (harmonic mean method). US
and Spain, 1975 and 2009.
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di�erence in the initial versus stable population structures. Where initial and sta-

ble structures are similar, marginal fertility rates are not expected to change much,

such as 2009 US in Figure 7.1. What is constant in the model is the element-wise

interaction between remaining years classes of males and females, as captured by

a particular mean function. Here we have used the harmonic mean, but this can

certainly be switched for any other criterion (albeit with little consequence in our

experience). To draw an example from the current �gure, note that marginal rates

for 1975 US females are higher in the stable than in the initial states. This means

that females in the stable population are relatively less abundant than in the initial
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population. Rates for males in this case must on average move downward to com-

pensate. This model property applies in like manner to the analogous age-classi�ed

model presented earlier in Section 3.4.2.

One can compare the full series of initial versus stable fertility rates by summing

over remaining years within each year to arrive at eTFR, and then taking the dif-

ference between stable and initial eTFR. The results of this exercise are displayed

in Figure 7.2. As one might expect, the male and female eTFR di�erences mirror

each other approximately. These di�erences are due primarily to changes in the sex

structure between the initial and stable states, and since fertility rates are calculated

on the mean of male and female exposures, male and female eTFR will be pulled in

opposite directions. The magnitude of the di�erence between initial and stable TFR

under this model de�nition has on the whole been decreasing over time, and it has

typically been smaller for the US population than for the Spanish population.
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Figure 7.2: Di�erence between stable and initial eTFR, males and females (harmonic
mean method). US, 1969-2009 and Spain, 1975-2009.
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Figure 7.3: Di�erence coe�cient, �, between stable and initial eSFR distributions,
males and females (harmonic mean method). US, 1969-2009 and Spain, 1975-2009.
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7.2 Re
ections on the mean-based model

Clearly the stable population structure in the present generalized means model,

for which we have run on the example of the harmonic mean, will di�er from the

results of the dominance-weighted model only to the extent that r (and the stable

SRB) di�ers between the two models. We have concluded that r does not appreciably

di�er, and so the methods would both seem acceptable for purposes of judging the

ultimate population structure that one would expect to see given constant application

of the year t vital rates. One di�erentiates between the models, therefore, based on

the model design itself, at times with respect to the axioms presented for the age-

classi�ed model, which aid us here too.

We may di�erentiate these models based with the availability axiom: The use of

a mean function that falls to zero in the absence of one or the other sex, as is the

case with the harmonic mean and others, will already produce a more realistic model

than the dominance-weighted model, which does not have this property. This is a

hefty observation, and may su�ce as far as axiom-based judgements are concerned.

In looking at the model design itself, one appreciates the more interactive nature of

this chapter's model, wherein the year t rates are conditioned based on the relative

abundance of males and females in each remaining-years class.

Remaining-years classes are here interactive, and the dominance-weighted model

does not have this design characteristic. Thus, the fertility rate of males with 40

remaining years, for example, is conditioned based on the relative size of this death

cohort compared to that of all female death cohorts. Does this make sense? Staying

within the realm of minimum-biased means, such as the harmonic mean, gives rela-

tively small cohorts bottleneck status in the model. How then do we imagine that this

interaction is supposed to unfold when all individuals involved are unaware of their

own and others' remaining lifetimes? Clearly such bottlenecking cannot unfold via
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conscious preference, unless of course, physical traits and lifestyles are so predictive

of individual mortality. We suppose that mate selection will include such markers,

and that this may lead indirectly to such interactions.

Even so, it is harder to imagine a death cohort as having an inherent force of

fertility than it is a birth cohort, and this makes it harder to imagine what is going

on in the population that would cause inter-cohort rates to tug upon each other via the

harmonic or some other mean. One could just as easily imagine that the daily churn

of the mating market happens in the conscious realm of age, but even so, preference

and partnering will unfold less with the conscious evaluation of ages than it will on the

basis of other measures of suitability such as health, beauty, income, status, lifestyle,

and myriad other categories, all of which correlate to a certain extent with age so as

to exaggerate the appearance of age-preferences, per se. In age-classi�ed models, and

especially those with explicit preference functions, these other tangible preferences

are all subsumed by age. This is perhaps the best way to imagine the inner-workings

of any remaining-years classi�ed two-sex model, but especially the present relatively

interactive version. Preferences at play in mating markets correlate with remaining

years, just as they correlate with years since birth.

The present remaining-years model does not preclude an underlying age-interactive

population, as long as the underlying age interactions are constrained and conform to

the outcomes predicted by the remaining-years model. One could of course attempt

to model both perspectives simultaneously, via an increase in the dimensionality of

the problem, but most, the present author included, would see more obstacles than

advantages in this line of development. In following, we hash out a new two-sex

balancing method designed to exploit a particular observation of the remaining-years

perspective, before moving on to a translation of the iterative proportional �tting

method.
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Chapter VIII

Iterative proportional �tting

Recall the curious �nding from Section 4.3.3 that the probable joint distribution

of births by remaining years of mothers and fathers is typically very similar to the

association-free distribution of the same. This trait appears to lend itself to the two-

sex method presented in Section 3.5, namely iterative proportion �tting, IPF. The

properties of remaining-years birth distributions prove advantageous for IPF because

1) initial and year t + n population ey-structures di�er by much less than the age-

structures, and 2) since observed and joint ey distributions are close to their own

association-free distributions, the fact that IPF preserves cross-product ratios seems

less arbitrary than was the case for age joint distributions. That IPF maintains inter-

age competition and substitutability seems not to be as key in the remaining-years

perspective as it is in the age-perspective because we suppose that couples are not

selective with respect to remaining years of life.

8.0.1 The renewal equation

Much of the present implementation will follow directly from the age-oriented im-

plementation from Section 3.5. The primary di�erence is our convention of swapping

out the survival function for ey-speci�c fertility rates applied step-wise to elements of

the death distribution, as seen elsewhere in renewal formulas for the ey-perspective.
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IPF itself is carried out in like fashion to that described earlier, with total marginal

birth predictions �rst balanced by some mean.

To rehash, de�ne the IPF function, IPF (By;y0(t); F
M
y (t); F F

y0 (t); Py(t+ n); Py0(t+

n)), where the �rst three parameters are the joint distribution of births, and male

and female ey-classi�ed fertility rates. Py and Py0 are the population structures to

which rates iteratively adjust until birth count predictions are equal for males and

females in each (y; y0) pair. The marginal distributions of the adjusted birth counts

are used to calculate the adjusted fertility rates, FM�
y and F F�

y0 .94 As before, for the

�rst three (t) arguments, those that de�ne the initial state, we can summarize with

the single parameter � , indicative of initial conditions: IPF (�; Py; Py0), where Py,

Py0 could come from any year or population. In short, year t births are simply the

following:

B(t) =

1∫
y=0

1∫
y0=0

IPF
(
�; Py(t); Py0(t)

)
dy dy0 (8.1)

Assuming constant mortality and sex ratio at birth, year t population counts can

be expressed as a product of past births, Py(t) = &
∫1
a=0

B(t � a)da+y da, which

after many years of constant conditions can be rewritten in terms of B(t), Py(t) =

&
∫1
a=0

B(t)e�rada+y da,

B(t) =

1∫
y=0

1∫
y0=0

IPF

(
� ;

1∫
a=0

&B(t)e�rada+y da ;

1∫
a0=0

(1� &)B(t)e�ra
0
da0+y0 da0

)
dy dy0

(8.2)

94The M and F superscripts are redundant with a and a′ in identifying sex of progenitor, but will
be handy later when doubled with a second superscript to indicate sex of o�spring.
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which reduces to our Lotka-type unity equation,

1 =

1∫
y=0

FM�
y

1∫
a=0

&e�rada+y da dy (8.3)

=

1∫
y0=0

F F�
y0

1∫
a0=0

(1� &)e�ra0da0+y0 da0 dy0 (8.4)

where

B�y;y0 = IPF

(
� ;

1∫
a=0

&e�rada+y da ;

1∫
a0=0

(1� &)e�ra0da0+y0 da0

)
(8.5)

FM�
y =

∫1
0=y0

B�y;y0 dy∫1
a=0

&e�rada+y da
(8.6)

F F�
y0 =

∫1
0=y

B�y;y0 dy∫1
a0=0

(1� &)e�ra0da0+y0 da0
(8.7)

8.0.2 An iterative approach to �nd r

For a given proportion male at birth, &, it would be straightforward to estimate r

using a generic optimizer and Equation (8.3), with the fertility component properly

expressed in place by Equations (8.5) and (8.6) (or vice versa for females). As de-

scribed elsewhere, however, the stable & is not known in advance unless one does away

entirely with the remaining-years pattern to the sex ratio at birth, and the reason for

this is that the stable age-structure itself is not known until the equations are solved

for r. Since there is indeed a remaining-years pattern to the sex ratio at birth and one

does not know the ultimte structure in advance, one best proceedes by estimating r

and & together in an iterative process based on some good-enough guesses of starting

values. The process unfolds in like manner to those outlined elsewhere in this disser-

tation, and is based on a modi�ed version of that presented by Coale (1957). Fertility

rates are speci�c to sex of progenitor and sex of birth, and follow to two-superscript

notation used elsewhere in this dissertation, where the �rst superscript indicates sex
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of progenitor and the second indicates sex of o�spring.

1. Establish a starting value for the sex ratio at birth. For instance, one may take

the year t observed sex ratio at birth. From this, derive &0 as &0 = SRB
1+SRB

2. Establish a guess at the net reproductive rate, R̂0, assuming r = 0,

R̂0 =

1∫
y=0

FM0

y

1∫
a=0

&0da+y (8.8)

where FM0

y is the male remaining-years speci�c fertility rate after having con-

verged on a solution to Equation (8.5) with r = 0 and then using this in Equa-

tion (8.6) where r = 0 in the denominator equation.

3. Repeat the prior step, weighting y into Equation (7.8) and divide this sum by R̂0

to arrive at an estimate of the mean generation length, T̂ , in terms of remaining

years. This is just an approximation, of course.

4. Calculate an initial value of r, r0 as:

r0 =
log(R̂0)

T̂
(8.9)

5. Now begins the iterative part. For the given r, r0 in the �rst instance, calculate

the male and female sex-speci�c IPF-adjusted rates, FM�
y and F F�

y0 , that belong

to this r using Equations (8.5), (8.6), and (8.7). This will produce F F�F�
y0 ,

F F�M�
y0 , FM�M�

y , and FM�F�
y .

6. Use the rates from the prior step in the following equation to produce a residual,
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�i, where i indicates the present iteration:

�i = 1� 1

2

( 1∫
y=0

FM�
y

1∫
a=0

& ie�r
iada+y da dy

+

1∫
y0=0

F F�
y0

1∫
a0=0

(1� & i)e�ria0da0+y0 da0 dy0

) (8.10)

This can be replaced with Equation (8.3) if one prefers. The fertility rates here

are simply summed by sex of progenitor, e.g. FM�
y = FM�M�

y + FM�F�
y from

the prior step.

7. Use �i to improve the estimate of r, ri+1:

ri+1 = ri � �i

T̂ � �i

ri

(8.11)

8. Use the improved ri+1 to update the proportion male of births, & i+1. One could

re-optimize the IPF-adjusted births at this point using the new r as well. This

could reduce iterations, but will not speed computation on the whole. Instead,

take the right-hand side of Equation (8.10) twice, once for boy-birth fertility

and once for girl birth fertility. The ratio of these two sums is the iteration's

sex ratio at birth, Si+1, and this is converted to & i+1 using

& i+1 =
Si+1

1 + Si+1
(8.12)

9. Repeat steps 5-8 until �i vanishes to zero. At this time both r and & will have

obtained their stable values. For the data used in this dissertation, around 30

iterations were required to arrive at maximum double 
oating point precision.
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8.0.3 Other stable parameters

Having estimates the two-sex r and &, one can proceed to estimate other quantities

of interest in the stable population. T and R0 can be calculated directly, replacing

the estimates T̂ and R̂0 used in the previous iterative procedure. The only di�erence

in these equations will be that the variable & is in its stable state, as r is not used,

and so these values will not change by much. Perhaps more interesting will be the

stable population structure, which we brie
y describe in following. First calculate

the stable two-sex birth rate, b:

b =

[
1

2

( 1∫
y=0

1∫
a=0

&e�rada+y da dy +

1∫
y0=0

1∫
a0=0

(1� &)e�ra0da0+y0 da0 dy0

)]�1
(8.13)

With this calculate the male and female stable ey-structures, cy and cy0 :

cy = b&

1∫
y=0

1∫
a=0

& ie�rada+y da dy (8.14)

cy0 = b(1� &)
1∫

y0=0

1∫
a0=0

& ie�ra
0
da0+y0 da0 dy0 (8.15)

Of course 1 =
∫
cy +

∫
cy0 . With the stable structures, we can calculate the stable

population sex ratio, �S,

�S =

∫1
y=0

cy dy∫1
y0=0

cy0 dy0
(8.16)

or the stable proportions above, below, or between some given age threshold(s).

Also of interest are the stable male and female marginal fertility rates, which di�er

from but depend on the original marginal fertility rates, fy and fy0 , which are also

present in the last iteration of the r estimation procedure described previously but
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can also be regenerated using cy and cy0 :

by;y0 = IPF (�; cm; cf ) (8.17)

Here, cm and cf are the entire vectors of ey stable population structure, � stands for

the three standards used (the observed birth matrix, and male and female marginal

rates), and by;y0 stands for all y; y0 combinations of predicted births (and is not to be

confused with the stable two-sex birth rate, b).

fy =

∫1
y0=0

by;y0 dy0

cy
(8.18)

fy0 =

∫1
y=0

by;y0 dy

cy0
(8.19)

fy and fy0 are potentially of interest in their own right, as a consequence of the present

model, and we also be explore these somewhat in applying this method to the US

and Spanish data.

8.0.4 The model applied to the US and Spanish data

We have applied the iterative r (and SRB) estimation procedure as outlined in

Section 8.0.2 to produce estimates of the intrinsic growth rate, r for each year of the

US and Spanish data. Detailed results for r and the stable sex ratio at birth can be

found in the tables of Appendix D alongside those of other remaining-years renewal

models. The IPF method produces only a single estimate of r, and there is less room

for the demographer to in
uence results in one direction or another than there is

for the dominance-weighted two-sex solution from Chapter VI. One can arbitrarily

choose which global mean to use at the outset for the IPF procedure,95 but this will

not move the r estimate by much unless r is in general far from 0 and the sex-gap

95i.e., one may choose the mean to use in order to make the male and female margins sum properly
prior to initiating the iterative adjustment.
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in r is large. This is not to be confused with rate balancing by using a single joint

fertility rate and the harmonic mean of male and female exposures.

Figure 8.1 displays the trend in the arithmetic and harmonic IPF-estimated intrin-

sic growth rates for the US and Spanish populations as compared with the single-sex96

growth rates. Results are in general consistent and believable. For the US population

for these data it makes essentially no di�erence whether one were to choose the arith-

metic or harmonic means at the initial marginal adjustment in the IPF prodedure,97

but for the Spanish population the choice entails a considerable di�erence in results.

The arithmetic adjustment yields results very close to the dominance-weighted two-

sex r with � = 0:5 from Chapter VI (comparison not shown), but the harmonic rate

behaves rather di�erently. During the mid-late 1990s the harmonic IPF r was not

bracketted by the single-sex r values (which we need not demand of it). If one needed

to then decide between the arithmetic and harmonic means (or others) for the ini-

tial IPF marginal adjustment, it is advised to base the decision on properties of the

mean, in which case the harmonic mean is preferable because it respects availability,

homogeneity and monotonicity. To be clear, the choice between means for the IPF

marginal adjustment is distinct from the choice of means for the method presented

in Chapter VII. In Chapter VII, mean functions were used for exposures of each

(y; y0) combination, whereas in the IPF model the mean is applied globally and then

birth matrix counts are shaken up until both margins match, which usually requires

minimal shifting about of birth counts.

Still, r is not the only result of interest, and model di�erences in r estimates are not

so large that we are able to judge the practical consequences of model choice. More

information that would aid in comparing is provided on the basis of other results,

such as the intrinsic eSFR, fy, which is distinct from the initial state eSFR, Fy, both

96These are identical to the 100% sex-dominant growth rates from the weighted dominance
method.

97Both the arithmetic and harmonic series are plotted, but there is no point in di�erentiating the
label as they are essentially superimposed.
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Figure 8.1: Two-sex r calculated using IPF for remaining-years classified data, com-
pared with rm and rf . US, 1969-2009 and Spain, 1975-2009.
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for the present model and for the case of generalized means. Failing such empirical

judgment, one resorts to other properties, such as competition and substitutability.

Figure 8.2 shows initial versus stable fertility rates from the IPF method98 specific to

remaining years of life for males and females in two different years. For several years

of the US data, there was virtually no difference between initial and stable rates (more

so even than 2009 from Figure 8.2). For the Spanish population, differences tended

to be much larger, except for 1980 where the size of the initial-stable gap is similar

to US 2009 (not shown). As one may expect, differences between initial and stable

98Rates calculated with r and SRB from IPF method using initial harmonic mean marginal
adjustment.
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rates are driven mostly by changes in the proportions male and female in population

structure.

Figure 8.2: Male and female initial and stable eSFR (IPF method). US and Spain,
1975 and 2009.
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That there are di�erences between initial and stable eSFR, and that these di�er-

ences tend to all be in the same direction, on average implies a di�erence between

initial and stable ey-total fertility rates, eTFR. Figure 8.3 displays this TFR di�er-

ence (stable minus initial eTFR) for each year of data, and it is informative to see

that 1) male and female eTFR di�erences roughly (not exactly) mirror each other,

and 2) the female trend in this di�erence (or minus the male trend) follows the overall

pattern of development in r for both countries. This is quite di�erent from the same
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exercise displayed in Figure 7.1 for the harmonic mean stable population. Further,

the direction of change between the inititial and stable eSFR in this case is not even

consistent with those from the harmonic (or other) mean method.

Figure 8.3: Di�erence between stable and initial eTFR, males and females (IPF
method). US, 1969-2009 and Spain, 1975-2009.
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The �rst observation is to be expected for the present method, and will owe in the

�rst place to the harmonic-mean initial adjustment of the marginal male and female

birth predictions. Beyond the initial rescaling, further (but smaller) di�erences may

accrue from the iterative procedure itself, but these are re
ected more in di�erences

in the distribution than in levels. Of course, male and female rates in the IPF method

adjust in opposite directions.
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The second observation owes in part to the changes in stable population structure

due to changes in the sex ratio at birth and stable growth parameter. When r moves

down, the pyramid becomes relatively bottom-heavy, but more so for males than

females, and so the sex ratio between 40 and 60 remaining years shifts toward females,

which means that stable TFR for females must drop in order balance with males (for

whom the movement is in just the opposite direction.). Further, decreases in SRB {

due partly to real changes in propensity, but primarily to movement in rates along the

ey-pattern to SRB { imply increases in male rates. Note that the dominance-weighted

method also entails di�erences in fertility rates between initial and stable states, but

these are less worth exploring, as there is no age-interaction or even proper male-

female interaction, and these di�erences may be primarily attributed to the domince

parameter, �, which entails constant rescaling.

Further worth mentioning for the IPF model are di�erences between the initial

and stable fertility distributions. This is notable because 1) the dominance-weighted

model has no such property, and 2) these di�erences behave di�erently from the case

for the mean-based rates presented in Chapter VII. The pattern to the distributional

di�erence coe�cient, �, which measures the di�erence between the initial and stable

fertility rate distributions, follows a trajectory that correlates closely with the absolute

value of the series presented in Figure 8.2. This we display in Figure 8.4, below. We

do not take the extra step to decompose the overall eSFR di�erence based on shape

and level components, but clearly iterative proportional �tting of birth distributions

to new given margins has the ability to mold rates { indeed this has been touted as

its major advantage { and this will exert an e�ect on r in the stable model. Further,

we do not undertake any transient analysis of the present model, as was done for the

dominace-weighted model.

In the following we will attempt some broad comparisons and to synthesize much

of what has been revealed in the previous model exploration.
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Figure 8.4: Di�erence coe�cient, �, between stable and initial eSFR distributions,
males and females (IPF method). US, 1969-2009 and Spain, 1975-2009.
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Chapter IX

Adjustment using a constant ratio of observed to

expected births

The present section is motivated by the desire for a non-linear two-sex model of

ey-structured population growth that takes advantage of the observation that the

observed joint distribution of births by remaining years of fathers and mothers, By;y0 ,

is in our experience very close to the expected distribution, taking the male and female

marginals as given. We have noted that the overall distributional distance between

observed and expected counts is typically very small (see for example Figure 4.15), but

we have not described any patterns in the di�erence between these two distributions.

There is indeed a common pattern to the departure between the observed and

expected distributions of ey-structured births, as seen in Figure 9.1 for the example

of 1975, US. We note that the greatest departures are in the four extreme corners of

this surface, which are also the locations in the joint distribution with the lowest birth

counts. The average absolute departure percentage is here only 9.4% when weighted

by the number of observed births.

The method presented here stays true to the stable population concept of �xed

male and female ey-speci�c fertility rates, but adds a second �xed component, a

constant ratio between By;y0 and E(By;y0), which is used as an adjustment instrument,

in e�ect providing 
exibility in the male and female marginal rates, while forcing
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Figure 9.1: Example ratio of observed to expected joint distribution of ey-classified
births. US, 1975.
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consistency (via a mean expected count matrix), both in the total birth count and

in the ey-distribution of births. This method, described in the following, has several

desirable properties for two-sex models.

9.0.5 The renewal equation

The present method works as follows. Take constant base male and female ey-

specific fertility rates, Fy and Fy′. Given these rates and a male and female ey-

structured population, we can generate the male and female predictions of birth

counts. We know from Section 4.3.4 that the male and female total counts tend
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to di�er by less than if we were to repeat the same for age-structured populations.

However, the two total counts will still di�er, and so cannot be taken directly as the

marginal birth count distributions from which to calculate the association-free joint

distribution { the denominator in Equation (2.4). To generate the expected count

matrix, we therefore calculate the cross-product of the male and female predictions

and divide by a mean of the male and female total predictions as follows:

Ê(By;y0) =
B̂yB̂y0

M(
∫
B̂y dy;

∫
B̂y0 dy0)

(9.1)

B̂y is calculated using the constant base rate for males, Fy, applied to male exposures,

Ey, and likewise for females. M() is any mean function. For 
exibility, one could

use a generalized mean, such as the Stolarsky mean or Lehmer mean, for M(), or

any speci�c mean function, such as the harmonic mean, if desired. The choice of

mean function in the denominator has a trivial e�ect on the ultimate estimate of the

intrinsic growth rate.

Next, we estimate a constant ratio, Ry;y0 , between the observed and expected

counts, which we take simply as

Ry;y0 =
By;y0

E(By;y0)
(9.2)

from the year of departure.

Using Ry;y0 , we adjust the estimated expected distribution, Ê(By;y0) element-wise,

and then rescale to sum properly to E(B), the chosen mean of the male and female

marginal predictions:

B̂y;y0 = Ry;y0Ê(By;y0)

∫ ∫
Ê(By;y0)∫ ∫

Ry;y0Ê(By;y0)
(9.3)

Let us call Equation (9.1) the mean expected function, M(B̂y; B̂y0), and Equa-
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tion (9.3) the ratio-adjustment function, A(Ry;y0 ;M(B̂y; B̂y0)).

The marginal predictions of birth counts, B̂y and B̂y0 , in the stable population will

be determined by �xed fertility rates and population exposures, which are a function

of the deaths distribution and the growth rate, r, as in the other ey-structured models

presented in this dissertation.

For instance, since B̂y = PyFy, we can determine the year t births as follows:

B(t) =

1∫
y=0

1∫
y0=0

A (Ry;y0 ;M ( Py(t)Fy; Py0(t)Fy0)) dy dy0 (9.4)

Of course population by remaining years, Py, is a function of Pa and the deaths distri-

bution, da, and we know that Pa is a function of past births and survival probabilities,

Pa = &B(t�a)pa (assuming constant mortality and proportion male of births, &). So,

we may rewrite Equation (9.4) in terms of past births

B(t) =

1∫
y=0

1∫
y0=0

A

Ry;y0 ;M

 Fy

1∫
a=0

&B(t� a)da+y da ;

Fy0

1∫
a0=0

(1� &)B(t� a0)da0+y0 da0

 dy dy0

(9.5)

since the pa cancels out
∫1
a
da da in the denominator of Equation (4.1). As one might

suspect, if the hypothetical population is left to evolve endogenously under constant

vital rates, da and Fy, eventually the size of each new cohort will be related to the

size of the previous cohort by a �xed and constant factor equal to er, where r is the

two-sex intrinsic growth rate. In this case, we can rewrite Equation (9.5) in terms of
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year t births:

B(t) =

1∫
y=0

1∫
y0=0

A

Ry;y0 ;M

 Fy

1∫
a=0

&B(t)e�rada+y da ;

Fy0

1∫
a0=0

(1� &)B(t)e�ra
0
da0+y0 da0

 dy dy0

(9.6)

Dividing out by B(t) we arrive at the familiar Lotka unity-equation form, which allows

us to isolate and estimate r as a function of vital rates in the initial year:

1 =

1∫
y=0

1∫
y0=0

A

Ry;y0 ;M

 1∫
a=y

Fy&dae
�ra da;

1∫
a0=y0

Fy0(1� &)da0e�ra
0
da0

 dy dy0

(9.7)

Fertility rates, Fy and Fy0 are standard eSFR, including both sexes of o�spring, and

& is used to weight sex of progenitor, not sex of o�spring. As will be seen below,

in order to fully estimate r, it is best to estimate r and & together, since there is a

pattern to & over y, and the population structure is expected to change somewhat

between the initial and stable states.

9.0.6 An iterative approach to �nd r

Steps to practically solve Equation (9.7) for r are similar to those presented for

the two-sex linear case in Section 6.0.2. Namely, r and the sex ratio at birth, S, are

estimated together in an iterative process, using parameter guesses as starting values

and then updating in each iteration. First, derive as inputs the matrix Ry;y0 using

Equation (9.2), ey-speci�c fertility vectors by sex of progenitor and o�spring, and the

relevant da vectors:

1. Decide a starting value for Ŝ0, such as the initial observed SRB, although 1.05

is a good enough guess. For Spain 1.07 might be more reasonable. Use Ŝ0 to
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calculate &0:

&0 =
Ŝ0

1 + Ŝ0
(9.8)

2. A rough estimate of the net reproduction rate, R̂0 (assuming r = 0) is given by:

R̂0 =

1∫
y=0

1∫
y0=0

A

Ry;y0 ;M

 1∫
a=y

Fy&
0da da;

1∫
a0=y0

Fy0(1� &0)da0 da0

 (9.9)

3. Weight y and y0 into Equation (9.9) and divide the new sum by R̂0 to arrive at

a �rst estimate of the mean generation time (in remaining years of life), T̂ .

4. A good starting value r, r0, is given by

r0 =
ln(R̂0)

T̂
(9.10)

5. Plug ri into Equation 9.7 to calculate a residual, �i.

6. Use �i and T̂ to calibrate the estimate of r:

ri+1 = ri +
�i

T̂ � �i

ri

(9.11)

7. Use the improved r to re-estimate the sex ratio at birth, using sex-speci�c

fertility rates, FM�M
y (father-son), FM�F

y (father-daughter), F F�F
y0 (mother-

daughter) and F F�M
y0 (mother-son) fertility rates99:

Si+1 =

∫1
y=0

∫1
y0=0

A
(
Ry;y0 ;M

( ∫1
a=y

FM�M
y & idae

�ri+1a da;
∫1
a0=y0

F F�M
y0 (1� & i)da0e�r

i+1a0 da0
))

∫1
y=0

∫1
y0=0

A
(
Ry;y0 ;M

( ∫1
a=y

FM�F
y & idae�r

i+1a da;
∫1
a0=y0

F F�F
y0 (1� & i)da0e�ri+1a0 da0

))
(9.12)

99This formula is ugly, but it is just Equation (9.7) twice: once with fertility rates for male births
and again with fertility rates for female births.
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Then update & using: & i+1 = Si+1

1+Si+1 .

8. With the updated r and &, repeat steps 5-7 until � reduces to 0. Typically one

achieves maximum double 
oating point precision in 5-20 iterations, though

fewer iterations are required for most practical applications.

9.0.7 The method applied to the US and Spanish data

The method to estimate r (and the stable SRB) described in the previous section

has been applied to each year of the US and Spanish data to produce the series

displayed in Figure 9.2. Detailed results for r and the stable sex ratio at birth can be

found in the tables of Appendix D alongside those of other remaining-years renewal

models. One notes immediately that the ratio-adjustment method by far yields the

most di�erent results from any of the other methods tested. The sex ratio at birth falls

in line with estimates produced by other methods, and so we can say that the method

is still in a sense well-balanced. Broadly, we may state that this method produces

an even-less erratic series of intrinsic growth rates than any seen thus far, often (but

not always) tending closer to zero than either of the single-sex rates. The direction of

change is always the same as the male and female series, but the magnitude of change

is typically smaller. Here we �nally have a method that yields results meaningfully

di�erent from the pack, and with a hint of intuitive appeal. In the following section

we disscuss other aspects of this method to help judge its worth.
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Figure 9.2: Two-sex r calculated using the ratio-adjustment method for remaining-
years classified data, compared with rm and rf . US, 1969-2009 and Spain, 1975-2009.
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9.0.8 Noteworthy properties of the model

The two-sex ratio-adjustment model presented here is characterized by a set of

desirable properties. The first has to do with interpretation: the ratio of observed

to expected counts taken from the initial year has a substantive meaning in that it

summarizes some manner of association that resembles preference or attraction. This

adjustment need not carry this particular substantive explanation, since individual

lifespans are typically unknown. An exception are of course other markers that are

known to individuals, but that correlate with lifespan – and are even known as such by

individuals – such as health, smoking, diabetes, education and other things. We un-
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derstand the ratio adjustment method as the metaphorical shadow of preference after

translation to the remaining years perspective. Second, the use of the association-free

expected distribution prior to adjusting for shadow preference is a way of assuming

perfect mixing in the population, ergo contact opportunities conditioned by supply.

The �rst step is therefore to treat the population like one large panmictic circle (in

the sense of Henry , 1972), and the second step imposes a relatively smooth departure

from perfect mixture to account for observed non-randomness in mating according to

a �xed ratio.

The ratio adjustment method performs comparably with iterative proportional

�tting when predicting the distribution of year t+1 ey-classi�ed births. Both methods

come very close to the observed year t + 1 birth distribution, overlapping on the

order of 99% of the observed distribution. For the US joint births-distribution, both

methods achieve on average 99.20% overlap, faring even better for the male and female

marginal distributions with around 99.45% overlap. For the Spanish population, both

methods overlap around 98.88% of the observed year t + 1 joint birth distribution,

and about 99.1% of the marginal male and female distributions. For Spain, the ratio-

adjustment method performed slightly better in terms of the distribution prediction,

and for the US performance was close to even. This test is noteworthy because IPF

could be touted for its distributional sensitivity, given its substitution property. On

this metric, IPF shows no clear advantage over the ratio-adjustment method. In this

case, one might prefer the ratio-adjustment method because it is a simple adjustment

rather than a complete iteration.

As with all remaining-years methods, one need not worry too much about competi-

tion and substitution, given that the dividing lines between remaining-years classes are

not as well known to individuals in the population { or at least we assume that these

lines are less clear and less known than is the case for age. Furthermore, if we assume

that competition and substitution should take place in terms of age, then remaining-
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years models indirectly account for these axioms as follows. If a relatively large or

small cohort passes through the population under a remaining-years model, this co-

hort distributes over all remaining-years classes. In this case, the modal age at death

for neighboring cohorts will tend to most closely match that for the oddly-sized cohort,

and so we would expect penalization (bene�t) to fall more upon neighboring cohorts

than upon distant cohorts. In other words, we should expect age-heterogeneity within

remaining-years classes to take care of the competition/substitution problem without

further ado. Whether e�ects distribute reasonably over ages is an open question.

The ratio-adjustment method has not been fully described, and we categorize it

as experimental at this time. Its properties appear promising, but a more thorough

comparison is needed before passing judgment or making a recommendation to apply

it. We do not assume that the model will work as well in projective settings for

age-structured populations, precisely because the distributional distance between the

observed and expected joint birth distribution is much greater in that case.
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Chapter X

Re
ections on models structured by remaining

years of life

In this Part, we jumped from the single-sex model structured by thanatological

age to two-sex models prior to providing a complete exploration of the properties and

consequences of the former. For instance, one might question whether the single-sex

model has a unique solution. This author was personally content to plot the residuals

of a �nely grained series of potential values for r to see that the solution is indeed

unique along a curve of monotonically non-decreasing values, but this will surely not

be satisfactory to the rigorous mathematician. As mentioned in the corresponding

results sections, all values estimated for stable r and S are available in the Appendix D

for each year of US and Spanish data used in this dissertation.

Also pertinent, as we have dealt primarily with two-sex renewal functions, is our

lack of proof that the stable rates of growth attained in the various two-sex remaining-

years structured models are unique, necessary or ergodic.100 There is a possibility that

under some real conditions the stabilizing trajectory arrives in a limit cycle,101 bifur-

cates, or is otherwise complex. Wijewickrema (1980) and Chung (1990, 1994) explore

the possibility of such cycles and bifurcations in age-structured two-sex models, but

100Independent of initial conditions.
101This author considers limit cycles to be a particular variety of stability.
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this and many other dynamic properties remain to be explored for remaining-years

structured two-sex populations. We have also omitted any sensitivity analysis, al-

though this would enhance our ability to compare age-classi�ed and remaining-years

classi�ed models. We have in some cases measured the total amount of oscillation in

population structure between the initial and stable states, but we have not examined

the path to stability. These and most other transient properties of the models pre-

sented in this dissertation have been ignored, and are particularly ripe for exploration

for the new family of remaining-years structured models that we propose. These are

priorities for future research.

Assuming that the patterns to fertility by remaining years of life are indeed mean-

ingful, and in any case observing that they are regular (for some this is the only

requisite), we are now free to model population on the basis of them, just as demog-

raphers have always done on the basis of age. This we began for the single-sex case

in Chapter V, and there we learned in the �rst place that the intrinsic growth rate

that belongs to this family of model is less erratic than the age-analogue. In other

contexts, demographers have lent value to less-erratic renditions of otherwise familiar

demographic time-series. Such has been the case with tempo-adjusted fertility rates

(Bongaarts and Feeney , 1998).102 Here we have produced such a series for intrinsic

growth rates (and R0 and eSFR), more stable than the chronological-age analogue,

and the reader must be the judge of whether this adds value or not. We expect that

many demographers would prefer to tinker with these methods before passing judge-

ment. For this reason, we make available the basic transformation of Equation (4.1)

in both a spreadsheet and an R function.

As for why results of chronological age should di�er from those of thanatological

age, we noted above that the pertinent rates are calculated on the basis of di�erent

underlying exposures. There is room to experiment with �ner segmentation of expo-

102Although authors (e.g., Kim and Schoen, 2000) have found this species of adjusted TFR to be
erratic as well, the basic desire for a relatively stable indicator remains.
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sures, but we are uncertain (although not doubtful) that anything is to be gained by

a more complex model. Clearly one can coherently conceive of population renewal

under the remaining-years perspective, and we have built models that accord with

this vision. A parallel may be drawn with male and female single-sex models under

either variety of age; both models are of equal soundness, yet return results that are

at odds. It is tautologically the case that in the year of initial conditions as well as in

hypothetical stability, the male and female models produce no discrepancy. We may

say the same of models under thanatological and chronological age: in the initial year

(as well as in hypothetical stability) these two models are congruent, but thereafter

they diverge.

With the two-sex problem, it is easy to imagine that the two sexes modeled sep-

arately are bound to diverge, and to note that this may not be so in observed pop-

ulations, as governed by the sex ratio at birth. Any two-sex model will provide that

the two sexes project through time in unison. Model divergence under chronological

versus thanatological age, on the other hand, will result even when both sex sexes

are modeled together under the same principles under each of the two age structures.

Two-sex models for either age de�nition are a summary of the growth of the entire

population, yet results depend on whether one counts up from birth or down toward

death. We are happy to have demonstrated this discrepancy, but this �nding is rather

unglamorous in comparison to a hypothetical model that would contain information

from both age de�nitions and both sexes, or to a philosophical argument for why one

de�nition of age produces a superior model of population growth. Clearly a popula-

tion may have only one total growth rate or net reproduction ratio. Let us call this

conundrum for now the two-age problem.

While the two-sex problem has not been solved in an necessary and true way,

some satisfactory solutions have arisen. These solutions have in common that they

deal somehow with mixing, with the interaction between sexes, and axioms have
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been developed to help guide the way in determining ideal model properties. No

such axioms exist at this time for the two-age problem { this author does not even

know how to properly frame it. No model has been proposed that would unify the

results of these two de�nitions of age. Recall that some of the initial responses to the

pointing-out of the two-sex problem were to produce ad hoc justi�cations for female

dominance, and some of these have had staying-power. These issues are worthy of

more contemplation than that. After Karmel (1947), formal demographers came to

realize the importance of modeling the two sexes together, and a great body of work

has been produced to this end.
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Chapter XI

Conclusions

Wenn einer kratzt, wo es ihn juckt, mu� ein Fortschritt zu sehen sein?
Ist es sonst ekin echtes Kratzen oder kein echtes Jucken? Und kann diese
Reaktion auf die Reizung lange Zeit nicht so weitergehen, ehe ein Mittel
gegen das Jucken gefunden wird? (Wittgenstein, 1980)

English translation:

If somebody scratches the spot where he has an itch, do we have to see
some progress? Isn't genuine scratching otherwise, or genuine itching
itching? And can't this reaction to an irritation continue in the same way
for a long time before a cure for the itching is discovered? (Wittgenstein,
1980)

Many re
ections and discussions about the �ndings of this dissertation have been

planted in the text where deemed appropriate. However, we attempt a synthesis of

the knowledge produced from this dissertation, and so expand on where it might take

demography as a whole.

In this dissertation we aimed to investigate and compare models of population

growth. A guiding principle has been that population renewal models should thought-

fully incorporate both sexes. We started by doing this in the traditional way in Part

1, modeling populations structured by both age and sex. In Chapter II we showed

that the practical consequences of neglecting the two-sex problem in fertility mea-

surement and projections are often non-negligible. The discrepancies between pre-

dictions/models based on male and female rates result from a complex mix of the
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shapes (over age) and magnitudes of all vital rates. In Chapter III we showed that

the common two-sex adjustment methods designed to deal with these discrepancies

tend to produce very similar results in the aggregate despite di�erences in properties.

Fertility is best modeled as a function of male and female fertility rates for both sexes

of birth, and additional 
exibility can be gained when fertility information comes from

the joint distribution of births by ages of males and females. The stable sex-ratio at

birth need not be equal to the initial sex ratio at birth.

in Parts 2 and 3 we replaced age-structure with remaining-years structure for pop-

ulation renewal modes and laid the groundwork for a demography based on remaining-

years structure. Part 2 In Chapter IV we saw that any age-structured demographic

phenomenon can instead be structured in terms of remaining-years of life by means of

a simple transformation. The remaining-years perspective is not new, but remaining-

years structure is indeed a new idea with implications for and beyond the practice

of demography are many. In Chapter V we showed that reproduction in populations

structured by remaining-years of life can summarized in a parsimonious single-sex

renewal equation akin to the Lotka equation for age-structured single-sex popula-

tions. Of course, the two-sex problem nonetheless persists in populations structured

by remaining years of life, but the pace of divergence is usually slower than in the

case of age-structured populations, and the components to sex di�erences break down

di�erently.

In the Chapters 6 through 9 we showed that common two-sex methods for age-

structured populations are amenable to translation to the remaining-years perspec-

tive, and that these maintain the same properties. Further, remaining-years struc-

tured populations are usually more stable (in di�erent senses of the concept) than age-

structured populations. Population renewal models structured by remaining-years are

incongruous with models structured by age, just as male and female single-sex models

produce incongruous results. As a result, it is possible for one and the same pop-
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ulation to be both growing and shrinking according to the renewal models of each

perspective. We call this the two-age problem.

11.1 Discussion of primary �ndings

Only a single step is required to incorporate thanatological age instead of chrono-

logical age into a population renewal model, but there are many ways to incorpo-

rate both sexes into the fertility component of a population renewal model, and so

the two-sex component requires extra attention under either kind of age-structure.

Consideration of two-sex solutions has occupied a majority of this dissertation, and

explains the �rst part of the title: \the two-sex problem." The primary novelty of

this dissertation, however, has been to do demography in general { and model pop-

ulation renewal in particular { using thanatologically structured demographic data.

The latter has been our objective and the former an intermediary, but we are not sure

which will prove of to be greater utility beyond this dissertation. In producing two-sex

models under this new structure, we have concluded that the same two-sex strategies

that work for age-structured populations also work for remaining-years structured

populations with much the same properties.

We have also concluded that the year-to-year stability of observed thanatological

age-structure, using our redistribution method, is greater than that of the same pop-

ulation structured by chronological age. This �nding is valid for the four decades of

US and Spanish population data used throughout this dissertation, and has been fur-

ther con�rmed on the basis of all 46 populations in the Human Mortality Database.

The same kind of stability might hold for fertility rates as well, but this remains

to be con�rmed for other periods and populations. One of the implications of this

�nding, however, is that the pace of divergence between male and female predictions

of future births is slower { we observe less such divergence because of the relative

stability in population structure by remaining years. This means that the gap in

255



total births predicted on the basis of male and female fertility rates and future expo-

sures is smaller when these rates and exposures are structured by thanatological age

than when structured by chronological age. However, sex-divergence in predictions is

not eliminated, and both sexes should still be considered together when modeling or

projecting populations structured by remaining years of life.

Of equal or greater importance in this dissertation is the �nding that models of

population renewal yield incongruous results when structured by chronological versus

thanatological age. This is a new problem to which we have o�ered no solution, and

from which we hope to inspire future formal demographic work. The only exceptions

to this incongruity are rare coincidences and the tautological cases of the initial pop-

ulation state and the theoretical stable state. We can therefore make a manner of

recommendation for future research toward 1) re�ning the remaining-years-structured

population model where necessary, 2) reconciling the con
icting results obtained from

these two de�nitions of age and 3) reconciling both sexes and both de�nitions of age

in a single model of population renewal. We do not claim that it will be possible to

model the two de�nitions of age together in a true and necessary way, but we expect

that the attempt to do so will surrender insights into population dynamics, as has

been the case with the long history of two-sex modeling.

In the following section we make several recommendations regarding two-sex meth-

ods. In the �nal section we outline a set of speci�c future research directions based

on the results of this dissertation.

11.2 Practical recommendations regarding two-sex models

Population projections rarely incorporate males into fertility assumptions. In

Chapter II we showed that this female dominance is not an innocuous assumption

for the case of age-structured models, and in Chapter V we further showed it is

also not an innocuous assumption for the case of the remaining-years structured
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populations proposed here. In Chapter III for chronological age and the chapters

of Part 3 for thanatological age, we set out to provide a suite of standard working

examples of solutions of two-sex adjustment methods so that these can be compared

and implemented by the demographer if desired. This is a practical concern that

has implications for how contemporary demography is practiced. In this section we

provide some guidance by recommending from among the methods presented.

The two-sex problem comes to the fore when projecting population into the future.

The most common practice to avoid disagreement between the sexes is to assume

female dominance, which characterizes the female single-sex Lotka renewal model, and

is a degenerate case of the Goodman (1967) two-sex model from Section 3.3 with the

dominance parameter set to accept 100% of model information from female fertility

rates. There are very few population projections produced for consumption beyond

two-sex studies themselves that do not make this assumption. Assuming female

dominance in one way or another is so widespread that newcomers to demography

often perceive it as a given, or in the worst case adopt the practice dogmatically.

For others, the implementation is too complex or the requisite transition rates are

unavailable. These latter two obstacles can be overcome by omitting nuptial states

from the model altogether, as we have done in this dissertation.

Formal demographers have long taken sex-divergence seriously, at least for pur-

poses of consistent model design. These mathematical models have been the driving

force behind this dissertation e�ort. We have at times simpli�ed two-sex models from

their original form, and one o�shoot of this choice is that our palette of models might

be of potential use to applied demographers. The R code used to produce our results

should be recyclable, or else can easily be quarried to such ends. It therefore behooves

us to recommend from among the methods explored here. In order to account for sex

divergence in projections or self-contained models, of those methods treated in this

dissertation, we recommend from the following three adjustment strategies.
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1. The weighted-dominance method of Goodman (1967) from Section 3.3 and

Chapter VI is a reasonable choice, probably with a dominance parameter of

0:5, such that equal information is taken from male and female weights. This

method wins on parsimony and ease of implementation, and it has the simplest

data inputs. It produces reasonable results for population structures typically

observed (i.e., without zeros in reproductive ages). It is also containable in a

static Leslie matrix, although we explain this construction only for populations

structured by thanatological age (see Section 5.3). The method has a drawback

in that the model itself is less appealing, as it does not allow for proper interac-

tion between sexes, or ages. However, for the purposes of projecting populations

structured by age and sex within a 40-year horizon103, the simplest model is well

worth consideration.

2. The mean method from Sections 3.4.2 and VII for age and remaining-years

structured models respectively, is also a reasonable choice. In this case, we

recommend implementation with the mean set to either harmonic, logarithmic,

geometric or an unnamed general mean in that approximate range (with the

property of falling to zero if one sex is absent). There is no point in quibbling

over which of these is best, as observed human populations do not exhibit the ex-

treme sex ratios required to produce meaningfully di�erent results. If one were

to further segment the population into categories on which partner preference

occurs, then more extreme sex ratios would be possible { but then the whole

model design also becomes more complex. This method is appealing because

the male and female marginal fertility rates for a given year are determined dy-

namically by changes in each age-combination (remaining-years combination)

of males and females, and the range of means listed here allows for some degree

103This is an arbitrary threshold. The idea is that in the near term results between models do not
di�er by much.
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of bottlenecking due to the minority sex in a particular combination. The model

is also of parsimonious design, easy to understand, and straightforward to im-

plement. However, this model does not allow for competition or substitution

between ages (remaining years), which could be a drawback if the demogra-

pher wishes to infer future age-speci�c fertility rates through abrupt changes in

cohort size.

3. The iterative proportional �tting method (IPF) is the most 
exible of these, be-

cause it does incorporate competition and substitution between ages (remaining

years). That the method is iterative presents no real drawback, as any of the

above methods is best implemented in a scripted language, and the method is

not perceptibly slower to calculate than the alternatives. The properties of IPF

are easy to demonstrate but di�cult to prove, and so it has received less at-

tention from mathematicians and continuous-equation modelers. However, for

the demographer designing a projection apparatus, IPF is nonetheless a conve-

nient choice. This method is in need of comparison with the recent contribution

from Choo and Siow (2006), which has similar properties, but which we do not

discuss here.

Each of these three methods has advantages and disadvantages, and it is up to the

demographer to evaluate the optimal choice for a particular projective or modeling

scenario. All three work equally well in age-structured and remaining-years structured

projections. Further, these adjustment techniques work just the same for projections

that incorporate assumptions about future developments in fertility. In this case,

the demographer makes assumptions about the male and female paths of fertility-

rate development and adjusts in each iteration to force agreement in results. For

the mean method, the incorporation of sophisticated assumptions entails more care,

as these must be distributed over a matrix. If this proposition is inconvenient, one

259



might prefer either IPF or dominance weighting, which rely only on marginal fertility

distributions for adjustments beyond the initial year.

Further, we have demonstrated that mean-based and IPF methods entail changes

to the marginal male and female rates after adjustment, and one might wonder

whether these adjusted rates have any predictive power per se { for instance, ad-

equately adjusting for foreseen changes in population structure or whether they are a

modeling artifact to be disregarded in favor of the total (unstructured) birth count.

We have demonstrated that this feature exists, and we have shown instances where

the two methods make predictions that are at odds. We do not follow up this observa-

tion with an empirical comparison to determine which hits the mark closer in terms of

fertility distribution prediction. This therefore remains an intriguing question (which

has been ignored thus far in the literature) that could tip the balance in favor of one

of these methods. A priori, we expect IPF to display more appropriate sensitivity

amidst abrupt changes in cohort size, but we do not know whether the magnitude

and distribution of adjustment is appropriate.

Of course, the demographer can also consider two-sex models not treated in this

dissertation, perhaps incorporating nuptial states into the model. In this case, the

two-sex method is transferred to nuptiality { match-making, pairing, marriage { as

the event being predicted, but the adjustment procedures are one and the same.

Such a projection entails more sophisticated construction, more data inputs, and

the incorporation of more hypotheses, namely hypotheses ( speci�cally regarding

changes in marriage rates, as well as changes in marital and extramarital fertility).

For populations with high proportions of extramarital fertility, extra data are required

to approximate the formation of non-marital mated pairs { for example, transitions

into and out of cohabitation, as well as fertility rates that apply to this subpopulation

(and mortality rates if supposed di�erent). That is to say, adding further state

considerations to fertility assumptions greatly increases model complexity and data
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requirements, and so this is not likely to be appealing to projection designers unless

predictions of the states themselves are necessary or inherently interesting.

To the extent that fertility rates and the sex ratio at birth vary along the path to

stability, one might wonder whether any of the interactive two sex models are at odds

with the notion of rate invariance in stable populations. In any of the interactive

models, the element held �xed prior to stability is not rates, but some standard.

For IPF, the element held constant in our description is the original cross-classi�ed

birth matrix and corresponding male and female marginal rates. For the mean-

based method, one holds constant the standard rate matrix, as well as the mean

function itself, but the marginal rates produced by these standards have been shown

to change over time under these modeling assumptions. Once in the state of stability,

of course, both population structure and marginal male and female fertility rates

are invariant, which implies that the two-sex problem itself vanishes. In this case,

for both the mean and IPF methods, the stable adjusted marginal fertility rates

become invariant, and the male and female rates yield the same results { making the

population tautologically dominance-indifferent once in stability.

These recommendations are made not for the sake of modeling, but for the sake

of applied demography: projections. The �rst two of these recommendations violate

at least one axiom, and the last (though easy to program), is a sort of black box, and

it is di�cult to describe in a parsimonious way.

11.3 Future research

Suggestions for future research have been o�ered throughout this dissertation

when it seemed appropriate. Here we summarize such recommendations into a well-

rounded research agenda. Most of these lines of research stem from our formalization

of the remaining-years perspective, the novel aspect of this dissertation. Due to the

de�nition of remaining-years population structure, research areas already interested in
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the remaining-years perspective, but without formally recognizing this tool, will yield

more well-founded results. These include studies that deal directly with population

structure, such as studies of dependency and population aging.

In Section 4.2.3 we de�ned two exceedingly simple indices that derive from the

remaining-years population structure. A worthy task will be to more fully relate these

two indices to already-existing indices that attempt to measure the same underlying

quantity. A second aspect of this research direction is to derive descriptive results

from these indicators, and examine whether any conclusions change from our present

state of knowledge. These issues are of inherent public, economic, and policy-making

interest, and thus it is worth grooming the graphical tool used to communicate this

new kind of population structure: the population pyramids as depicted in Section 4.2

and elsewhere in this dissertation, which we think will make this material palatable

to a wider audience. Speci�cally, the visualization of a remaining-years pyramid com-

municates more about the future than an age-classi�ed pyramid, and so circulation

of such images (and ensuring that they are interpreted correctly) would likely be

more useful to non-demographer policy-makers. For instance, the baby-boomer aging

bubble is rather smoothed and absorbed in the remaining-years pyramid.

Other aspects of this redistribution method in need of further research are con-

ceptual design decisions regarding whether the method is best carried out using the

static period deaths distribution (i.e., �nding greater utility as a period indicator

itself), or whether the redistribution should be treated as a projection and should

therefore take mortality improvements into account. In the latter case, it will be

necessary to simultaneously depict uncertainty in the resulting population structure.

In Sections 4.2.1 and 4.2.2 we o�ered preliminary work in these two directions, but

this preliminary work is ripe for greater formalization and application.

Also a bridge beyond applied demography, in Section 4.3.5 we de�ned a remaining-

years version of Fisher's reproductive value. We have given the indicator, but have not
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related it to the existing foundation of biological and life course theory that has been

based on Fisher's reproductive value. The question is left begging whether the timing

of certain life course transitions such as menopause, or the existence of curiosities such

as the human post-reproductive lifespan { (which have been determined by evolution)

{ are best related to the remaining-years transformed reproductive value.

Of interest to demography in general, but perhaps especially to evolutionary de-

mographers, is our de�nition of remaining-years fertility rates, eSFR. We have claimed

many times that these fertility rates exhibit regularity and are likely meaningful.

However, whether such rates have a good substantive interpretation is a matter for

discussion beyond the con�nes of this dissertation. In order to stimulate such dis-

cussion we hypothesize that fertility rates are a function of time until death in two

ways.

First, to the extent that fertility is a volitional demographic phenomenon, and

to the extent that individuals have a sense of their remaining years of life104, there

may be a calculus of fertility that adjusts to this subjective estimate. The direction

of this calculus need not be simple. One could advance reproduction in the face of

a likely early death, so as to ensure procreation. One could advance fertility despite

foreseeing death far in the future so as to ensure maximal years of overlapping life

with o�spring (to ensure that o�spring themselves survive to reproductive ages).

One could postpone fertility in foreseeing death far in the future so as to accumulate

resources prior to reproduction. Clearly saving is a function of one's foreseeable years

remaining until death, but also of projected childbearing, and so forth. There is ample

room for exploration of the volitional aspects of fertility and subjective remaining life

expectancy. In any case, this hypothetical relationship will be re
ected in remaining-

years structured fertility only to the extent that one's personal projection of time

until death is roughly accurate.

104In Section 4.4 we list several studies suggesting that people do have a rough sense of their
remaining years of life.
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Second, there may be subconscious population-endogenous mechanisms as work.

Such a mechanism is di�cult to de�ne, and is motivated by the observation (not

presented in this dissertation) of remarkable stability in the shape of remaining-years

population pyramids over long time series in certain populations. The hypothesis is

that the population attempts to maintain a particular shape with respect to remaining

years of life, and one of the levers in this process is the fertility level rather than

shape. This could just as likely be an analogy, however; fertility rates have long

been hypothesized to adjust after mortality changes, and the uncanny stability of

remaining-years population structure could be an artifact of these other mechanisms.

The majority of this dissertation has yielded formal results from two-sex popula-

tion renewal models. The age-structured models (or some variant of them) already

existed in the literature, but the remaining-years structured models did not. In the

�rst place, the single-sex model from Section 5.2 must be complemented with a math-

ematical proof of a unique real solution, but otherwise these formal results are ready

to ship in a self-contained formal article. The corresponding projection matrix is also

well-de�ned, and completes the product, although it has as-yet unexplored properties

that would best be described apart. While the two-sex extensions are of interest, of

more immediate concern is an explanation for the discrepancy between results from

chronological and thantalogical age. A good place to start is the admittedly super�-

cial solution of simply summing the chronological-age and thanatological-age renewal

models and optimizing for the value of r that makes the two models sum to two.

This value of r will be intermediate, of course, but it also sheds no light on the prob-

lem. The same solution would work for any of the analogous two-sex models that

we present in this dissertation. Of course, a real solution could be derived from this

species of musing.

Also unexplored in this dissertation are the kinds of aspects of the remaining-years

model that Caswell (2001) describes for age and/or stage-structured matrix popula-
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tion models. Speci�cally, in Section 6.3 we explored the transient dynamics of the

remaining-years model in only the most summary ways. A more detailed examina-

tion of the path to stability as compared with that of the analogous age-structured

model will be informative. Further, we have undertaken no sensitivity tests, nor have

we examined the elasticity of these models. Our models have been deterministic,

and there are most certainly stochastic extensions of these models to be designed

and explored. In exploring these aspects of the thanatological reproduction model

we propose, comparisons alongside like analyses of the age-structured model will be

informative and add to our understanding of population models and of population

dynamics in general. As is typical of theoretical work, we have succeeded in producing

more questions than we have answered. We believe that the new questions are good

ones and invite demographers to consider the material we propose.
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APPENDIX A

Results from age-structured renewal models: r and

SRB.

This appendix provides numerical results from all age-structured two-sex methods

treated in this dissertation applied to the US and Spanish populations for the years

1969-2009 and 1975-2009, respectively. The two results to be listed are the intrinsic

growth rate, r, and the intrinsic sex ratio at birth, S, which for some methods strays

slightly from the initial value of the sex ratio at birth due to changes in population

structure between the initial and stable states and our inclusion of an age-pattern

to the sex ratio at birth for males and females via sex-of-birth speci�c fertility rates.

These results are placed into four tables, �rst r for the US (Table A.1), followed

by S (Table A.2) for the US, then r and S for the Spanish population (Tables A.3

and A.4). Throughout, we use superscripts in the column headers to identify the

model according to the following key.

rm Equation (2.1) using single-sex male fertility and survival.

rf Equation (2.1) using single-sex female fertility and survival. This is the standard

Lotka result.

rPollard Section 3.2.1 two-sex (mixed single-sex fertility) r. This method does not

optimize the sex ratio at birth alongside r.
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rMitra Section 3.2.2. two-sex r. This method assumes a constant sex ratio at birth.

r�=1 Section 3.3 weighted-dominance method with 100% male information. This is

identical to the single-sex male rate.

r�=0 Section 3.3 weighted-dominance method with 100% female information. This is

identical to the single-sex female rate.

r�=0:5 Section 3.3 weighted-dominance method with information split 50-50 between

males and females.

rGupta Section 3.4.1 two-sex r, based on Das Gupta (1978a).

rHM Section 3.4.2 mean method on the basis of the harmonic mean.

rGM Section 3.4.2 mean method on the basis of the geometric mean.

rLM Section 3.4.2 mean method on the basis of the logarithmic mean.

rmin Section 3.4.2 mean method on the basis of the minimum function.

rIPF�HM Section 3.5 with male and female marginal birth predictions balanced by the

harmonic mean prior to re-estimating rates using iterative proportional �tting.

The same superscripts are used for stable sex ratios as birth, where S(t) simply

refers to the observed sex ratio at birth for the given year. Not all methods optimize S

aloside r. Results with full digit precision are available by executing the accompanying

R code. Such precision should not give a false sense of exactitude, however, but serves

only for veri�cation when reproducing results. These estimates were arrived at by

following the step-by-step instructions outlined in the text. Notably, as mentioned in

the text, the sex ratio at birth, S, does not vary greatly between the initial and stable

states, typically varying between methods only in the 5th digit. This should put the

reader at ease if questioning the stability of optimizing two parameters simultaneously.
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One can verify that the single-sex models are degenerate cases of the Goodman model

when � is set to 0 or 1. Mean-based models produce very similar results (except for the

minimum function). We suggest executing the R code for more detailed comparisons

of these.
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APPENDIX B

Fertility rates by remaining years of life under

di�erent assumed reproductive spans

The reader may wish to see ey-classi�ed fertility rates calculated where exposures

in the denominator are taken only from ages within the known reproductive span. For

many, this will more closely represent the population exposed. Bounding the original

age-classi�ed exposures introduces a second problem, namely that of determining the

which age-bounds to use for males and females. Results are sensitive to the choice,

especially when comparing males and females, since 1) the male reproductive span

is much longer than the female span, and 2) the ey-distributed population shows a

greater and steadier sex-imbalance than the age-classi�ed population. As expected,

results are sensitive to the choice of bounds. In following, Figures 4.11, 4.12 and 4.13

are reproduced after �rst limiting original age-classi�ed exposures to certain repro-

ductive bounds. These include:

• ages 15-55 for both males and females (Section B.0.1).

• ages 13-49 for females and 15-64 for males (Section B.0.2).

• ages higher than the 1st and lower than the 99th quantiles of ASFR for males

and females separately, with ASFR averaged over the entire period studied

(Section B.0.3).

275



• ages higher than the 1st and lower than the 99th quantiles of ASFR for each year

for males and females separately. Only ey-TFR is presented here (Section B.0.4).

We conclude that none of these options is a satisfactory improvement over simply

using all ages. Part of this choice may be justi�ed in noting that for age-speci�c fer-

tility rates too, there are also non-trivial proportions of non-exposed persons within

exposure for many age groups, especially but not only those at the tails of the distri-

bution.
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B.0.1 ey-fertility from ages 15-55 for both males and females

Figure B.1: Male and Female ey-total fertility rates, eTFR. USA, 1969-2009 and
Spain, 1975-2009.
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Figure B.2: Male and Female eSFR surfaces, 1969-2009, USA, redistributing expo-
sures only from ages 15-55
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Figure B.3: Male and Female eSFR surfaces, 1975-2009, Spain, redistributing expo-
sures only from ages 15-55

 0.01  0.02 

 0.03 

 0.03 

 0.04 

 0.04 

 0.05 

 0.05 

 0.06 

 0.
07

 

 0.08 

 0.
09

 

 0.1 

 0.
07

 
 0.

07
 

 0.
07

 
 0.

07
 

 0.
07

 

 0.05  0.05  0.05  0.05  0.05  0.05  0.05  0.05  0.05  0.05  0.05  0.05  0.05 

 0.1 
 0.1 
 0.1 
 0.1 

 0.05 
 0.05 
 0.05 
 0.05 
 0.05 
 0.05 

 0.01 

 0.02 

 0.02 

 0.02 

 0.03 

 0.03 

 0.04 

 0.04 

 0.05 

 0.05 

 0.06  0.06 

 0.
07

 

 0.08 

 0
.0

9 
 0.1 

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

1980 1990 2000 2010 1980 1990 2000 2010

ey ey

Year Year

Male Female

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

278



B.0.2 ey-fertility from ages 13-49 for females and 15-64 for males

Figure B.4: Male and Female ey-total fertility rates, eTFR. USA, 1969-2009 and
Spain, 1975-2009.
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Figure B.5: Male and Female eSFR surfaces, 1969-2009, USA, redistributing expo-
sures only from ages 13-49 for females and 15-64 for males
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Figure B.6: Male and Female eSFR surfaces, 1975-2009, Spain, redistributing expo-
sures only from ages 13-49 for females and 15-64 for males
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B.0.3 ey-fertility from ages higher than the 1st and lower than the 99th

quantiles of ASFR, full period

Figure B.7: Male and Female eTFR. USA, 1969-2009 and Spain, 1975-2009.
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Figure B.8: Male and Female eSFR surfaces, 1969-2009, USA, redistributing expo-
sures only from the 1st-99th quantiles of ASFR over the full period
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Figure B.9: Male and Female eSFR surfaces, 1975-2009, Spain, redistributing expo-
sures only from the 1st-99th quantiles of ASFR over the full period
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B.0.4 ey-fertility from ages higher than the 1st and lower than the 99th

quantiles of ASFR, each year

In comparing Figures B.7 and B.10, one notes that 
exibly changing the age

bounds included in ex-classi�ed exposures according to year-to-year changing ASFR

quantiles does not make much di�erence as compared to holding the same bounds over

the entire period. If the central 98% of fertility moves over age with time, then year-

to-year 
exibility may be desirable. These data do not undergo large enough changes

in these thresholds to justify this practice. Further, surfaces are best rendered based

upon constant bounds.

Figure B.10: Male and Female eTFR. USA, 1969-2009 and Spain, 1975-2009.
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APPENDIX C

Equation 5.7 applied to the US and Spanish data:

estimates of r, T y and R0
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Table C.1: Intrinsic growth rate, r, mean remaining years of life at reproduction, T y,
and net reproduction, R0, according to renewal equation 5.7, US, 1969-2009.

Males

r T y R0

1969 0.0069 41.64 1.331
1970 0.0077 42.07 1.381
1971 0.0056 41.93 1.263
1972 0.0023 41.34 1.098
1973 0.0007 41.27 1.028
1974 0.0007 41.73 1.029
1975 0.0003 41.99 1.011
1976 0.0002 42.12 1.009
1977 0.0014 42.61 1.062
1978 0.0012 42.64 1.051
1979 0.0023 43.16 1.106
1980 0.0030 43.25 1.138
1981 0.0029 43.37 1.134
1982 0.0031 43.59 1.144
1983 0.0025 43.43 1.113
1984 0.0025 43.42 1.113
1985 0.0030 43.43 1.137
1986 0.0026 43.37 1.120
1987 0.0028 43.44 1.130
1988 0.0033 43.53 1.156
1989 0.0042 43.89 1.202
1990 0.0048 44.31 1.238
1991 0.0040 44.30 1.196
1992 0.0034 44.29 1.163
1993 0.0025 43.96 1.116
1994 0.0018 43.93 1.084
1995 0.0012 43.86 1.052
1996 0.0008 44.12 1.037
1997 0.0005 44.43 1.022
1998 0.0007 44.69 1.030
1999 0.0006 44.75 1.025
2000 0.0011 45.00 1.049
2001 0.0006 44.98 1.026
2002 0.0004 45.01 1.017
2003 0.0007 45.25 1.034
2004 0.0008 45.66 1.036
2005 0.0008 45.77 1.036
2006 0.0015 46.35 1.074
2007 0.0017 46.71 1.083
2008 0.0011 46.69 1.052
2009 0.0002 46.75 1.007

Females

r T y R0

1969 0.0050 50.61 1.289
1970 0.0058 51.07 1.346
1971 0.0038 50.91 1.211
1972 0.0004 50.37 1.018
1973 -0.0013 50.26 0.936
1974 -0.0015 50.71 0.929
1975 -0.0019 51.09 0.908
1976 -0.0020 51.18 0.904
1977 -0.0007 51.73 0.966
1978 -0.0010 51.75 0.952
1979 0.0003 52.34 1.017
1980 0.0010 52.30 1.055
1981 0.0010 52.41 1.052
1982 0.0012 52.63 1.067
1983 0.0006 52.36 1.031
1984 0.0007 52.35 1.037
1985 0.0013 52.39 1.068
1986 0.0010 52.34 1.056
1987 0.0013 52.38 1.072
1988 0.0020 52.45 1.109
1989 0.0029 52.90 1.167
1990 0.0037 53.23 1.216
1991 0.0031 53.22 1.177
1992 0.0023 53.15 1.131
1993 0.0014 52.70 1.077
1994 0.0008 52.60 1.041
1995 0.0000 52.39 1.001
1996 -0.0003 52.40 0.985
1997 -0.0007 52.45 0.966
1998 -0.0004 52.57 0.978
1999 -0.0006 52.46 0.971
2000 0.0000 52.61 1.002
2001 -0.0004 52.54 0.980
2002 -0.0006 52.52 0.967
2003 -0.0003 52.66 0.986
2004 -0.0002 53.04 0.988
2005 -0.0002 53.11 0.989
2006 0.0006 53.65 1.033
2007 0.0009 53.98 1.048
2008 0.0002 53.84 1.009
2009 -0.0009 53.83 0.955
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Table C.2: Intrinsic growth rate, r, mean remaining years of life at reproduction, T y,
and net reproduction, R0, according to renewal equation 5.7, Spain, 1975-2009.

Males

r T y R0

1975 0.0095 42.14 1.492
1976 0.0095 42.61 1.499
1977 0.0083 42.90 1.429
1978 0.0071 42.94 1.359
1979 0.0051 43.04 1.244
1980 0.0034 43.20 1.160
1981 0.0013 42.91 1.058
1982 0.0002 43.06 1.008
1983 -0.0020 42.47 0.919
1984 -0.0028 42.44 0.889
1985 -0.0041 42.09 0.841
1986 -0.0053 42.12 0.799
1987 -0.0062 42.06 0.771
1988 -0.0069 41.86 0.750
1989 -0.0077 41.66 0.726
1990 -0.0082 41.48 0.710
1991 -0.0086 41.32 0.700
1992 -0.0086 41.42 0.700
1993 -0.0094 41.18 0.680
1994 -0.0105 40.94 0.652
1995 -0.0110 40.65 0.639
1996 -0.0111 40.58 0.636
1997 -0.0107 41.04 0.646
1998 -0.0110 41.03 0.638
1999 -0.0102 41.10 0.658
2000 -0.0090 41.70 0.687
2001 -0.0089 41.94 0.689
2002 -0.0084 42.14 0.701
2003 -0.0075 42.30 0.727
2004 -0.0070 42.79 0.740
2005 -0.0069 42.80 0.743
2006 -0.0063 43.43 0.762
2007 -0.0062 43.46 0.763
2008 -0.0050 44.00 0.801
2009 -0.0063 43.89 0.759

Females

r T y R0

1975 0.0078 50.12 1.479
1976 0.0081 50.68 1.510
1977 0.0067 51.02 1.409
1978 0.0053 51.14 1.313
1979 0.0033 51.40 1.186
1980 0.0012 51.45 1.065
1981 -0.0015 51.21 0.927
1982 -0.0026 51.40 0.875
1983 -0.0046 50.85 0.792
1984 -0.0056 51.08 0.752
1985 -0.0068 50.81 0.709
1986 -0.0081 50.70 0.664
1987 -0.0090 50.75 0.632
1988 -0.0097 50.71 0.613
1989 -0.0105 50.63 0.589
1990 -0.0110 50.50 0.573
1991 -0.0115 50.39 0.560
1992 -0.0114 50.69 0.562
1993 -0.0123 50.35 0.539
1994 -0.0133 50.12 0.513
1995 -0.0138 49.92 0.502
1996 -0.0139 49.88 0.501
1997 -0.0134 50.20 0.510
1998 -0.0139 50.07 0.497
1999 -0.0128 50.22 0.526
2000 -0.0118 50.74 0.551
2001 -0.0112 51.07 0.566
2002 -0.0108 51.23 0.574
2003 -0.0097 51.25 0.608
2004 -0.0093 51.83 0.618
2005 -0.0088 51.83 0.633
2006 -0.0081 52.47 0.654
2007 -0.0079 52.55 0.661
2008 -0.0066 52.92 0.703
2009 -0.0081 52.78 0.651
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APPENDIX D

Results from remaining-years structured renewal

models: r and SRB.

This appendix provides numerical results from all remaining-years two-sex meth-

ods applied to the US and Spanish populations for the years 1969-2009 and 1975-2009,

respectively. The two results to be listed are the intrinsic growth rate, r, and the in-

trinsic sex ratio at birth, S, which strays slightly from the initial value of the sex ratio

at birth due to changes in population structure between the initial and stable states

and our inclusion of an age-pattern to the sex ratio at birth for males and females

via sex-of-birth speci�c fertility rates. These results are placed into four tables, �rst

r for the US (Table D.1), followed by S (Table D.2) for the US, then r and S for the

Spanish population (Tables D.3 and D.4). Throughout, we use superscripts in the

column headers to identify the model according to the following key:

rm Section 5.2 single-sex male.

rf Section 5.2 single-sex female.

r�=1 Chapter VI weighted-dominance method with 100% male information. This is

identical to the single-sex male rate.

r�=0 Chapter VI weighted-dominance method with 100% female information. This

is identical to the single-sex female rate.
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r�=0:5 Chapter VI weighted-dominance method with information split 50-50 between

males and females.

rHM Chapter VII mean method on the basis of the harmonic mean.

rGM Chapter VII mean method on the basis of the geometric mean.

rLM Chapter VII mean method on the basis of the logarithmic mean.

rRADJ�HM Chapter IX ratio-adjustment method with male and female marginal birth

predictions balanced by the harmonic mean prior to calculating the expected

distribution, followed by the ratio-adjustment.

rIPF�HM Chapter VIII with male and female marginal birth predictions balanced

by the harmonic mean prior to re-estimating rates using iterative proportional

�tting.

The same superscripts are used for stable sex ratios as birth, where S(t) simply refers

to the observed sex ratio at birth for the given year. Results with full digit precision

are available by executing the accompanying R code. Such precision should not give

a false sense of exactitude, however, but serves only for veri�cation when reproducing

results. These estimates were arrived at by following the step-by-step instructions

outlined in the text. Notably, as mentioned in the text, the sex ratio at birth, S,

does not vary greatly between the initial and stable states, typically varying between

methods only in the 5th digit. This should put the reader at ease if questioning the

stability of optimizing two parameters simultaneously. The stable S will only di�er

if there is both a pattern over remaining years and a di�erence in remaining-years

population structure in stability.
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Table D.1: Intrinsic growth rates, r, from remaining-years renewal models. US, 1969-2009.

rm rf r(�=1) r(�=0) r(�=0:5) rHM rGM rLM rRAdj�HM rIPF�HM

1969 0.0069 0.0050 0.0069 0.0050 0.0060 0.0059 0.0059 0.0059 0.0041 0.0059
1970 0.0077 0.0058 0.0077 0.0058 0.0068 0.0067 0.0067 0.0067 0.0046 0.0068
1971 0.0056 0.0038 0.0056 0.0038 0.0047 0.0046 0.0046 0.0046 0.0032 0.0047
1972 0.0023 0.0004 0.0023 0.0004 0.0013 0.0012 0.0012 0.0012 0.0009 0.0013
1973 0.0007 -0.0013 0.0007 -0.0013 -0.0003 -0.0005 -0.0005 -0.0005 -0.0002 -0.0003
1974 0.0007 -0.0015 0.0007 -0.0015 -0.0003 -0.0006 -0.0005 -0.0005 -0.0002 -0.0004
1975 0.0003 -0.0019 0.0003 -0.0019 -0.0008 -0.0010 -0.0010 -0.0010 -0.0005 -0.0008
1976 0.0002 -0.0020 0.0002 -0.0020 -0.0008 -0.0011 -0.0010 -0.0010 -0.0006 -0.0009
1977 0.0014 -0.0007 0.0014 -0.0007 0.0004 0.0002 0.0002 0.0002 0.0003 0.0004
1978 0.0012 -0.0010 0.0012 -0.0010 0.0002 -0.0000 -0.0000 -0.0000 0.0001 0.0001
1979 0.0023 0.0003 0.0023 0.0003 0.0014 0.0013 0.0012 0.0012 0.0009 0.0013
1980 0.0030 0.0010 0.0030 0.0010 0.0021 0.0020 0.0019 0.0019 0.0014 0.0020
1981 0.0029 0.0010 0.0029 0.0010 0.0020 0.0019 0.0019 0.0018 0.0013 0.0020
1982 0.0031 0.0012 0.0031 0.0012 0.0022 0.0021 0.0021 0.0021 0.0014 0.0022
1983 0.0025 0.0006 0.0025 0.0006 0.0016 0.0015 0.0014 0.0014 0.0010 0.0015
1984 0.0025 0.0007 0.0025 0.0007 0.0016 0.0016 0.0015 0.0015 0.0011 0.0016
1985 0.0030 0.0013 0.0030 0.0013 0.0021 0.0021 0.0020 0.0020 0.0014 0.0021
1986 0.0026 0.0010 0.0026 0.0010 0.0019 0.0018 0.0018 0.0017 0.0012 0.0019
1987 0.0028 0.0013 0.0028 0.0013 0.0021 0.0021 0.0020 0.0020 0.0014 0.0021
1988 0.0033 0.0020 0.0033 0.0020 0.0027 0.0027 0.0026 0.0026 0.0018 0.0027
1989 0.0042 0.0029 0.0042 0.0029 0.0036 0.0036 0.0035 0.0035 0.0024 0.0036
1990 0.0048 0.0037 0.0048 0.0037 0.0043 0.0043 0.0042 0.0042 0.0028 0.0043
1991 0.0040 0.0031 0.0040 0.0031 0.0036 0.0036 0.0035 0.0035 0.0024 0.0036
1992 0.0034 0.0023 0.0034 0.0023 0.0029 0.0029 0.0028 0.0028 0.0019 0.0029
1993 0.0025 0.0014 0.0025 0.0014 0.0020 0.0020 0.0019 0.0019 0.0013 0.0020
1994 0.0018 0.0008 0.0018 0.0008 0.0013 0.0013 0.0012 0.0012 0.0009 0.0013
1995 0.0012 0.0000 0.0012 0.0000 0.0006 0.0006 0.0005 0.0005 0.0004 0.0006
1996 0.0008 -0.0003 0.0008 -0.0003 0.0003 0.0003 0.0002 0.0002 0.0002 0.0003
1997 0.0005 -0.0007 0.0005 -0.0007 -0.0001 -0.0001 -0.0002 -0.0002 -0.0000 -0.0001
1998 0.0007 -0.0004 0.0007 -0.0004 0.0001 0.0001 0.0000 0.0000 0.0001 0.0001
1999 0.0006 -0.0006 0.0006 -0.0006 0.0000 -0.0000 -0.0001 -0.0001 0.0000 0.0000
2000 0.0011 0.0000 0.0011 0.0000 0.0006 0.0005 0.0005 0.0005 0.0004 0.0006
2001 0.0006 -0.0004 0.0006 -0.0004 0.0001 0.0001 0.0000 0.0000 0.0001 0.0001
2002 0.0004 -0.0006 0.0004 -0.0006 -0.0001 -0.0001 -0.0002 -0.0002 -0.0001 -0.0001
2003 0.0007 -0.0003 0.0007 -0.0003 0.0003 0.0002 0.0002 0.0002 0.0002 0.0003
2004 0.0008 -0.0002 0.0008 -0.0002 0.0003 0.0003 0.0002 0.0002 0.0002 0.0003
2005 0.0008 -0.0002 0.0008 -0.0002 0.0003 0.0003 0.0002 0.0002 0.0002 0.0003
2006 0.0015 0.0006 0.0015 0.0006 0.0011 0.0011 0.0010 0.0010 0.0007 0.0011
2007 0.0017 0.0009 0.0017 0.0009 0.0013 0.0013 0.0013 0.0012 0.0008 0.0013
2008 0.0011 0.0002 0.0011 0.0002 0.0006 0.0006 0.0006 0.0006 0.0004 0.0006
2009 0.0002 -0.0009 0.0002 -0.0009 -0.0003 -0.0004 -0.0004 -0.0004 -0.0002 -0.0003
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Table D.2: Stable sex ratio at birth, S, from remaining-years renewal models. US, 1969-2009.

S(t) S(�=1) S(�=0) S(�=0:5) SHM SGM SLM SRAdj�HM SIPF�HM

1969 1.05300 1.05288 1.05287 1.05287 1.05287 1.05287 1.05287 1.05264 1.05287
1970 1.05468 1.05456 1.05456 1.05456 1.05455 1.05456 1.05456 1.05425 1.05456
1971 1.05182 1.05173 1.05171 1.05172 1.05172 1.05172 1.05172 1.05161 1.05172
1972 1.05121 1.05103 1.05107 1.05104 1.05104 1.05104 1.05104 1.05100 1.05105
1973 1.05213 1.05194 1.05198 1.05195 1.05194 1.05195 1.05195 1.05196 1.05195
1974 1.05484 1.05473 1.05476 1.05474 1.05473 1.05474 1.05474 1.05474 1.05474
1975 1.05370 1.05340 1.05347 1.05343 1.05342 1.05343 1.05343 1.05346 1.05343
1976 1.05250 1.05248 1.05250 1.05249 1.05249 1.05249 1.05249 1.05249 1.05249
1977 1.05263 1.05248 1.05249 1.05249 1.05248 1.05249 1.05249 1.05248 1.05249
1978 1.05267 1.05263 1.05267 1.05265 1.05265 1.05265 1.05265 1.05265 1.05265
1979 1.05166 1.05157 1.05167 1.05161 1.05161 1.05161 1.05161 1.05159 1.05161
1980 1.05281 1.05274 1.05276 1.05275 1.05275 1.05275 1.05275 1.05272 1.05275
1981 1.05160 1.05147 1.05148 1.05147 1.05147 1.05147 1.05147 1.05141 1.05147
1982 1.05062 1.05058 1.05063 1.05060 1.05060 1.05060 1.05060 1.05060 1.05060
1983 1.05195 1.05187 1.05194 1.05190 1.05190 1.05190 1.05190 1.05188 1.05190
1984 1.05021 1.05018 1.05016 1.05017 1.05017 1.05017 1.05017 1.05016 1.05017
1985 1.05206 1.05201 1.05205 1.05203 1.05203 1.05203 1.05203 1.05201 1.05203
1986 1.05087 1.05081 1.05084 1.05082 1.05082 1.05082 1.05082 1.05079 1.05082
1987 1.04999 1.04992 1.04998 1.04995 1.04995 1.04995 1.04995 1.04991 1.04995
1988 1.04995 1.04995 1.04997 1.04996 1.04996 1.04996 1.04996 1.04995 1.04996
1989 1.04979 1.04977 1.04979 1.04977 1.04978 1.04977 1.04977 1.04974 1.04977
1990 1.04972 1.04974 1.04974 1.04974 1.04974 1.04974 1.04974 1.04969 1.04974
1991 1.04580 1.04579 1.04580 1.04579 1.04579 1.04579 1.04579 1.04576 1.04579
1992 1.04997 1.04997 1.04997 1.04997 1.04997 1.04997 1.04997 1.04995 1.04997
1993 1.04997 1.04991 1.04997 1.04994 1.04994 1.04994 1.04994 1.04991 1.04994
1994 1.04785 1.04782 1.04783 1.04783 1.04783 1.04783 1.04783 1.04781 1.04783
1995 1.04897 1.04896 1.04895 1.04896 1.04896 1.04896 1.04896 1.04895 1.04896
1996 1.04707 1.04704 1.04707 1.04705 1.04705 1.04705 1.04705 1.04705 1.04705
1997 1.04769 1.04762 1.04768 1.04764 1.04765 1.04765 1.04765 1.04765 1.04765
1998 1.04720 1.04714 1.04720 1.04717 1.04717 1.04717 1.04717 1.04717 1.04717
1999 1.04882 1.04875 1.04881 1.04878 1.04878 1.04878 1.04878 1.04878 1.04878
2000 1.04803 1.04801 1.04803 1.04802 1.04802 1.04802 1.04802 1.04801 1.04802
2001 1.04567 1.04562 1.04567 1.04564 1.04564 1.04564 1.04564 1.04564 1.04564
2002 1.04797 1.04794 1.04796 1.04795 1.04795 1.04795 1.04795 1.04795 1.04795
2003 1.04867 1.04868 1.04868 1.04868 1.04868 1.04868 1.04868 1.04867 1.04868
2004 1.04848 1.04848 1.04848 1.04848 1.04848 1.04848 1.04848 1.04848 1.04848
2005 1.04935 1.04933 1.04935 1.04934 1.04934 1.04934 1.04934 1.04934 1.04934
2006 1.04955 1.04952 1.04955 1.04953 1.04953 1.04953 1.04953 1.04951 1.04953
2007 1.04746 1.04747 1.04746 1.04747 1.04747 1.04747 1.04747 1.04746 1.04747
2008 1.04779 1.04781 1.04779 1.04780 1.04780 1.04780 1.04780 1.04781 1.04780
2009 1.04816 1.04813 1.04815 1.04814 1.04814 1.04814 1.04814 1.04815 1.04814
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Table D.3: Intrinsic growth rates, r, from remaining-years renewal models. Spain, 1975-2009.

rm rf r(�=1) r(�=0) r(�=0:5) rHM rGM rLM rRAdj�HM rIPF�HM

1975 0.0095 0.0078 0.0095 0.0078 0.0087 0.0087 0.0087 0.0087 0.0063 0.0087
1976 0.0095 0.0081 0.0095 0.0081 0.0089 0.0088 0.0088 0.0088 0.0063 0.0088
1977 0.0083 0.0067 0.0083 0.0067 0.0076 0.0076 0.0075 0.0075 0.0053 0.0075
1978 0.0071 0.0053 0.0071 0.0053 0.0063 0.0063 0.0062 0.0062 0.0044 0.0063
1979 0.0051 0.0033 0.0051 0.0033 0.0042 0.0042 0.0042 0.0042 0.0029 0.0042
1980 0.0034 0.0012 0.0034 0.0012 0.0024 0.0023 0.0023 0.0023 0.0016 0.0024
1981 0.0013 -0.0015 0.0013 -0.0015 0.0000 -0.0001 -0.0001 -0.0001 0.0000 -0.0001
1982 0.0002 -0.0026 0.0002 -0.0026 -0.0011 -0.0013 -0.0013 -0.0013 -0.0008 -0.0012
1983 -0.0020 -0.0046 -0.0020 -0.0046 -0.0032 -0.0034 -0.0034 -0.0034 -0.0022 -0.0033
1984 -0.0028 -0.0056 -0.0028 -0.0056 -0.0041 -0.0044 -0.0043 -0.0043 -0.0028 -0.0041
1985 -0.0041 -0.0068 -0.0041 -0.0068 -0.0053 -0.0057 -0.0056 -0.0056 -0.0037 -0.0054
1986 -0.0053 -0.0081 -0.0053 -0.0081 -0.0066 -0.0070 -0.0069 -0.0069 -0.0046 -0.0067
1987 -0.0062 -0.0090 -0.0062 -0.0090 -0.0075 -0.0080 -0.0079 -0.0078 -0.0052 -0.0076
1988 -0.0069 -0.0097 -0.0069 -0.0097 -0.0082 -0.0087 -0.0085 -0.0085 -0.0057 -0.0082
1989 -0.0077 -0.0105 -0.0077 -0.0105 -0.0090 -0.0095 -0.0094 -0.0093 -0.0063 -0.0090
1990 -0.0082 -0.0110 -0.0082 -0.0110 -0.0095 -0.0101 -0.0099 -0.0099 -0.0067 -0.0096
1991 -0.0086 -0.0115 -0.0086 -0.0115 -0.0100 -0.0106 -0.0104 -0.0103 -0.0070 -0.0100
1992 -0.0086 -0.0114 -0.0086 -0.0114 -0.0099 -0.0105 -0.0103 -0.0102 -0.0070 -0.0100
1993 -0.0094 -0.0123 -0.0094 -0.0123 -0.0107 -0.0114 -0.0112 -0.0111 -0.0077 -0.0108
1994 -0.0105 -0.0133 -0.0105 -0.0133 -0.0118 -0.0125 -0.0123 -0.0122 -0.0085 -0.0119
1995 -0.0110 -0.0138 -0.0110 -0.0138 -0.0123 -0.0130 -0.0128 -0.0127 -0.0090 -0.0124
1996 -0.0111 -0.0139 -0.0111 -0.0139 -0.0124 -0.0131 -0.0129 -0.0128 -0.0091 -0.0125
1997 -0.0107 -0.0134 -0.0107 -0.0134 -0.0119 -0.0126 -0.0124 -0.0123 -0.0087 -0.0120
1998 -0.0110 -0.0139 -0.0110 -0.0139 -0.0123 -0.0130 -0.0128 -0.0127 -0.0090 -0.0124
1999 -0.0102 -0.0128 -0.0102 -0.0128 -0.0114 -0.0119 -0.0117 -0.0117 -0.0083 -0.0114
2000 -0.0090 -0.0118 -0.0090 -0.0118 -0.0103 -0.0108 -0.0106 -0.0106 -0.0075 -0.0104
2001 -0.0089 -0.0112 -0.0089 -0.0112 -0.0099 -0.0104 -0.0102 -0.0102 -0.0072 -0.0100
2002 -0.0084 -0.0108 -0.0084 -0.0108 -0.0095 -0.0099 -0.0098 -0.0098 -0.0069 -0.0096
2003 -0.0075 -0.0097 -0.0075 -0.0097 -0.0086 -0.0089 -0.0088 -0.0088 -0.0061 -0.0086
2004 -0.0070 -0.0093 -0.0070 -0.0093 -0.0081 -0.0084 -0.0083 -0.0083 -0.0058 -0.0081
2005 -0.0069 -0.0088 -0.0069 -0.0088 -0.0078 -0.0081 -0.0081 -0.0080 -0.0056 -0.0079
2006 -0.0063 -0.0081 -0.0063 -0.0081 -0.0071 -0.0073 -0.0073 -0.0073 -0.0050 -0.0071
2007 -0.0062 -0.0079 -0.0062 -0.0079 -0.0070 -0.0072 -0.0072 -0.0072 -0.0049 -0.0070
2008 -0.0050 -0.0066 -0.0050 -0.0066 -0.0058 -0.0059 -0.0060 -0.0060 -0.0040 -0.0058
2009 -0.0063 -0.0081 -0.0063 -0.0081 -0.0071 -0.0073 -0.0073 -0.0073 -0.0050 -0.0072
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Table D.4: Stable sex ratio at birth, S, from remaining-years renewal models. Spain, 1975-2009.

S(t) S(�=1) S(�=0) S(�=0:5) SHM SGM SLM SRAdj�HM SIPF�HM

1975 1.07243 1.07239 1.07238 1.07238 1.07238 1.07239 1.07239 1.07174 1.07239
1976 1.06401 1.06398 1.06396 1.06397 1.06397 1.06397 1.06397 1.06348 1.06397
1977 1.06886 1.06879 1.06878 1.06878 1.06878 1.06878 1.06878 1.06838 1.06878
1978 1.07380 1.07366 1.07369 1.07367 1.07367 1.07367 1.07367 1.07329 1.07367
1979 1.06812 1.06795 1.06793 1.06794 1.06794 1.06794 1.06794 1.06770 1.06794
1980 1.07799 1.07787 1.07785 1.07786 1.07785 1.07786 1.07786 1.07779 1.07786
1981 1.09160 1.09155 1.09173 1.09163 1.09163 1.09163 1.09163 1.09163 1.09163
1982 1.08731 1.08705 1.08713 1.08708 1.08708 1.08708 1.08708 1.08712 1.08709
1983 1.07622 1.07619 1.07601 1.07611 1.07609 1.07610 1.07610 1.07616 1.07610
1984 1.08283 1.08299 1.08293 1.08296 1.08297 1.08296 1.08296 1.08289 1.08296
1985 1.07343 1.07326 1.07319 1.07323 1.07321 1.07322 1.07322 1.07336 1.07323
1986 1.07374 1.07348 1.07334 1.07342 1.07341 1.07342 1.07342 1.07365 1.07342
1987 1.07695 1.07704 1.07701 1.07702 1.07703 1.07703 1.07703 1.07697 1.07702
1988 1.07168 1.07197 1.07180 1.07190 1.07189 1.07189 1.07189 1.07170 1.07189
1989 1.07082 1.07052 1.07065 1.07057 1.07057 1.07057 1.07057 1.07083 1.07058
1990 1.06995 1.06951 1.06971 1.06960 1.06958 1.06959 1.06959 1.06998 1.06961
1991 1.07204 1.07214 1.07220 1.07217 1.07218 1.07217 1.07217 1.07201 1.07217
1992 1.06618 1.06611 1.06628 1.06618 1.06619 1.06619 1.06619 1.06615 1.06619
1993 1.06989 1.07007 1.06977 1.06994 1.06992 1.06992 1.06993 1.06984 1.06992
1994 1.06679 1.06661 1.06652 1.06657 1.06655 1.06656 1.06656 1.06675 1.06656
1995 1.06434 1.06407 1.06446 1.06424 1.06425 1.06424 1.06424 1.06426 1.06426
1996 1.06122 1.06077 1.06103 1.06088 1.06089 1.06089 1.06089 1.06135 1.06090
1997 1.06254 1.06261 1.06273 1.06266 1.06268 1.06267 1.06266 1.06249 1.06267
1998 1.07265 1.07198 1.07223 1.07209 1.07209 1.07210 1.07210 1.07290 1.07211
1999 1.06158 1.06120 1.06138 1.06128 1.06130 1.06130 1.06130 1.06183 1.06129
2000 1.07061 1.07045 1.07045 1.07045 1.07045 1.07045 1.07045 1.07074 1.07045
2001 1.05665 1.05636 1.05648 1.05641 1.05642 1.05642 1.05642 1.05675 1.05642
2002 1.06480 1.06457 1.06483 1.06468 1.06470 1.06469 1.06469 1.06496 1.06469
2003 1.06200 1.06173 1.06193 1.06182 1.06183 1.06183 1.06183 1.06216 1.06183
2004 1.06899 1.06882 1.06901 1.06890 1.06892 1.06891 1.06891 1.06924 1.06891
2005 1.06204 1.06202 1.06196 1.06200 1.06200 1.06200 1.06200 1.06229 1.06200
2006 1.06592 1.06548 1.06582 1.06564 1.06566 1.06566 1.06566 1.06594 1.06565
2007 1.06396 1.06383 1.06393 1.06388 1.06388 1.06388 1.06388 1.06392 1.06388
2008 1.06752 1.06744 1.06759 1.06751 1.06752 1.06752 1.06752 1.06763 1.06752
2009 1.07074 1.07058 1.07058 1.07058 1.07058 1.07058 1.07058 1.07080 1.07058
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APPENDIX E

Construction of the standard one-sex Leslie matrix

The Leslie matrix(Leslie, 1945) is a tool used for age-structured cohort component

population projections. Here we o�er a very abbreviated presentation of the elements

that correspond to a simple one-sex age-structured population. More details on each

element presented here can be found in Caswell (2001).

Say we have a population with n discrete age-classes. Call the vector of age-speci�c

population counts p. The Leslie matrix, L, is a n � n square matrix that contains

probabilities of survival from age n to age n + 1 (assuming single age population

counts) in the subdiagonal with age advancing down and to the right. The top row

contains age speci�c fertility rates, discounted somewhat for those births in the year

that do not survive until the end of the year. The rest of the matrix consists in zeros,

and the lower right corner contains a zero too, in order to close out the lifetable and

not accumulate population in the open age group.

Once constructed, pt can be projected forward one year by matrix multiplying L

from the left:

pt+1 = Lpt (E.1)

Say we have a population with 6 age classes, where Sx denotes survival probabil-

ities from age x to age x + 1, fx denotes the exact fertility probability for age class
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Matrix E.0.1: An example one-sex Leslie matrix with 6 age categories



Age 0t 1t 2t 3t 4t 5t
0t+1 0 �f1 �f2 �f3 �f4 0
1t+1 S0 0 0 0 0 0
2t+1 0 S1 0 0 0 0
3t+1 0 0 S2 0 0 0
4t+1 0 0 0 S3 0 0
5t+1 0 0 0 0 S4 0


(x; x + 1], which must also take into account the fact that not all potential mothers

(fathers) alive on January 1st of year t will survive until December 31st. � is a discount

for the part of infant mortality to births in year t that do not survive to be counted

as age 0 at the begining of year t+ 1. Assume we have fertility in ages 1-4 only.

Roughly, and for the sake of intuition, imagine that the population aged 2 in

year t, p2;t, enters the matrix from the top of the 3rd column from the left a2t.

This population then travels down the column. When the population runs into a

probability entry, these two values are multiplied together, and the product exits the

matrix at that exact row to the left. As p2;t enters the matrix from the top, it �rst

multiplies into �f2, the product of which is the contribution to births surviving to

year t + 1 of p2;t, the new age 0 in year t + 1. p2;t then continues down the column,

multiplying into S2 in the 4th row and exiting out the left to age 3, discounted by the

survival probability S2.

In this way, L contains all of the information necessary to project a �xed set of

rates forward any number of years, eventually arriving at the stable age-structure of

the population. Indeed, there are ways to extract the intrinsic growth rate and stable

age structure directly from the matrix without carrying projection computations. For

details on how to calculate the individual matrix elements, please refer to Caswell

(2001), as mentioned before.
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1 (2), 207{235.

302



Keilman, N. (1999), Female dominance, in The joy of demography–and other disci-
plines: liber amicorum presented to Dirk van de Kaa on the occasion of his re-
tirement as Professor of Demography at the University of Amsterdam, edited by
H. d. G. A. Kuijsten and H. de Feijter, 11, pp. 215{228, Purdue University Press.

Kendall, D. (1949), Stochastic processes and population growth, Journal of the Royal
Statistical Society. Series B (Methodological), 11 (2), 230{282.

Key�tz, N. (1972), The mathematics of sex and marriage, in Proceedings of the Sixth
Berkeley Symposium on Mathematical Statistics and Probability held in Berkeley,
California, June 16-21, 1971, vol. IV, edited by E. L. S. Lucien Marie Le Cam,
Jerzy Neyman, pp. 89{108, University of California Press.

Key�tz, N., and H. Caswell (2005), Applied mathematical demography, Springer Ver-
lag.

Kim, Y. J., and R. Schoen (2000), On the quantum and tempo of fertility: Limits
to the bongaarts-feeney adjustment, Population and Development Review, 26 (3),
554{559.

Kirschner, D., and J. Morgan (1998), Solution of the asymmetric mixing problem,
SIAM Journal on Applied Mathematics, 58, 725{736.

Kitagawa, E. (1955), Components of a di�erence between two rates, Journal of the
American Statistical Association, 50, 1168{1194.

Kuczynski, R. (1932), Fertility and reproduction: methods of measuring the balance
of births and deaths, Falcon Press.

Kuczynski, R. (1935), The measurement of population growth: methods and results,
Text-books of social biology, Sidgwick & Jackson, ltd.

Lee, R. (2003), Rethinking the evolutionary theory of aging: transfers, not births,
shape senescence in social species, Proceedings of the National Academy of Sciences
of the United States of America, 100 (16), 9637.

Lee, R., and T. Miller (2002), An approach to forecasting health expenditures, with
application to the us medicare system, Health Services Research, 37 (5), 1365{1386.

Lee, R. D. (2007), Demographic change, welfare, and intergenerational transfers: a
global overview, in Ages, Generations and the Social Contract, pp. 17{43, Springer.

Lee, R. D., and L. R. Carter (1992), Modeling and forecasting us mortality, Journal
of the American statistical association, 87 (419), 659{671.

Leslie, P. H. (1945), On the use of matrices in certain population mathematics,
Biometrika, 33, 183{212.

303



Lillova, K., and M. Sugareva (2008), Decomposition of the dynamics of net reproduc-
tion rate into two main determinants fertility and mortality in selected european
countries (1990 2005), Cmamucmuka (Statistics), 3, 27{41, in Bulgarian.

Lindstr•om, J., and H. Kokko (1998), Sexual reproduction and population dynamics:
the role of polygyny and demographic sex di�erences, Proceedings of the Royal
Society of London. Series B: Biological Sciences, 265 (1395), 483.

Lluch, C., A. Powell, and R. Williams (1977), Patterns in household demand and
saving: summary, Washington: World Bank.

Lotka, A. (1922), The stability of the normal age distribution, Proceedings of the
National Academy of Sciences of the United States of America, 8 (11), 339.

MacInnes, J., and J. P. D��az (2009), The reproductive revolution, The Sociological
Review, 57 (2), 262{284.

MacInnes, J., and J. Spijker (), Population ageing in scotland: time for a re-think?,
in preparation. To be sent in 2013.

Martcheva, M. (1999), Exponential growth in age-structured two-sex populations,
Mathematical biosciences, 157 (1-2), 1{22.

Martcheva, M., and F. Milner (2001), The mathematics of sex and marriage, revisited,
Mathematical Population Studies, 9 (2), 123{141.

Martcheva, M., and F. A. Milner (1999), A two-sex age-structured population model:
Well posedness, Mathematical Population Studies, 7 (2), 111{129.

MATLAB (2010), version 7.10.0 (R2010a), The MathWorks Inc., Natick, Mas-
sachusetts.

Matthews, A., and M. Garenne (2013), A dynamic model of the marriage market-
part 1: Matching algorithm based on age preference and availability, Theoretical
Population Biology, 85 (0), {, doi:10.1016/j.tpb.2013.01.006.

Maxin, D., and L. Berec (2010), A two-sex demographic model with single-dependent
divorce rate, Journal of theoretical biology, 265 (4), 647{656.

McFarland, D. (1970), E�ects of group size on the availability of marriage partners,
Demography, 7 (4), 411{415.

McFarland, D. (1972), Comparison of alternative marriage models, in Population
Dynamics: Proceedings, edited by T. N. E. Greville, pp. 89{106, Academic Press,
New York.

McFarland, D. (1975), Models of marriage formation and fertility, Social Forces,
54 (1), 66{83.

304



Meyer, C. (2008), Altern und Zeit: der Einfluss des demographischen Wandels auf
Zeitstrukturen, Vs Verlag Fur Sozialwissenschaften.

Miller, T. (2001), Increasing longevity and medicare expenditures, Demography,
38 (2), 215{226.

Milner, F. (1988), A �nite element method for a two-sex model of population dynam-
ics, Numerical Methods for Partial Differential Equations, 4 (4), 329{345.

Milner, F., and G. Rabbiolo (1992), Rapidly converging numerical algorithms for
models of population dynamics, Journal of mathematical biology, 30 (7), 733{753.

Mirowsky, J. (1999), Subjective life expectancy in the us: correspondence to actuarial
estimates by age, sex and race, Social science & medicine, 49 (7), 967{979.

Mitra, S. (1976), E�ect of adjustment for sex composition in the measurement of
fertility on intrinsic rates, Demography, 13 (2), 251{257.

Mitra, S. (1978), On the derivation of a two-sex stable population model, Demography,
15 (4), 541{548.

Mitra, S. (1980), On das gupta's birth function in a two-sex model, Population studies,
34 (3), 566{567.

Mitra, S. (1982), Alternative least square solutions for a two-sex stable population
model, Genus, 38, 39{50.

Mode, C., and M. Salsburg (1993), On the formulation and computer implementation
of an age-dependent two-sex demographic model, Mathematical biosciences, 118 (2),
211{240.

Myers, R. (1941), The validity and signi�cance of male net reproduction rates, Journal
of the American Statistical Association, 36 (214), 275{282.

National Center for Health Statistics { Centers for Disease Control and Prevention
(1969-2009), Birth data �les, microdata. 
at text �les, each year in a separate �le.

Panush, N., and E. Peritz (1996), Potential demography: A second look, European
Journal of Population/Revue européenne de Démographie, 12 (1), 27{39.

Parlett, B. (1972), Can there be a marriage function?, in Population Dynamics: Pro-
ceedings, edited by T. N. E. Greville, pp. 107{135, Academic Press, New York.

Payne, J. W., N. Sagara, S. B. Shu, K. C. Appelt, and E. J. Johnson (2013), Life
expectancy as a constructed belief: Evidence of a live-to or die-by framing e�ect,
Journal of Risk and Uncertainty, 46 (1), 27{50.

Perozek, M. (2008), Using subjective expectations to forecast longevity: Do survey
respondents know something we dont know?, Demography, 45 (1), 95{113.

305



Pollak, R. (1986), A reformulation of the two-sex problem, Demography, 23 (2), 247{
259.

Pollak, R. (1987), The two-sex problem with persistent unions: A generalization of the
birth matrix-mating rule model* 1, Theoretical population biology, 32 (2), 176{187.

Pollak, R. (1990a), Convergent Issues in Genetics and Demography, chap. Two-sex
population models and classical stable population theory, pp. 317{333, Oxford:
Oxford University Press.

Pollak, R. (1990b), Two-sex demographic models, Journal of Political Economy, 98,
399{420.

Pollard, A. (1948), The measurement of reproductivity, JIA, 74, 0288{0337.

Pollard, J., and C. Hohn (1993), The interaction between the sexes, Zeitschrift fur
Bevolkerungswissenschaft, 19, 203{8.

Pollard, J. H. (1973), Mathematical models for the growth of human populations,
vol. 10, Cambridge University Press Cambridge.

Post, T., and K. Hanewald (2012), Longevity risk, subjective survival expectations,
and individual saving behavior, Journal of Economic Behavior & Organization, 86,
200{220.

Pr•uss, J., and W. Schappacher (1994a), Persistent age-distributions for a pair-
formation model, Journal of Mathematical Biology, 33 (1), 17{33.

Pr•uss, J., and W. Schappacher (1994b), Semigroup methods for age-structured pop-
ulation dynamics, in berblicke Mathematik, Jahrbuch 1994, pp. 74{90, Vieweg.

Quensel, C. (1941), N�agra kritiska anm•arkningar r•orande begreppet reproduktionstal,
Ekonomisk Tidskrift, 43 (3), 227{235.

R Development Core Team (2011), R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-
900051-07-0.

Rankin, D., and H. Kokko (2007), Do males matter? the role of males in population
dynamics, Oikos, 116, 335�A348.

Revazova, E., N. Turovets, O. Kochetkova, L. Kindarova, L. Kuzmichev, J. Janus, and
M. Pryzhkova (2007), Patient-speci�c stem cell lines derived from human partheno-
genetic blastocysts, Cloning and stem cells, 9 (3), 432{449.

Roberts, S. C., and A. C. Little (2008), Good genes, complementary genes and human
mate preferences, Genetica, 132 (3), 309{321.

Rogers, R. G. (1995), Marriage, sex, and mortality, Journal of Marriage and the
Family, 57, 515{526.

306



Ryder, N. B. (1975), Notes on stationary populations, Population Index, 41 (1), 3{28.

Samuelson, P. (1977a), Generalizing �sher's" reproductive value": linear di�erential
and di�erence equations of" dilute" biological systems, Proceedings of the National
Academy of Sciences, 74 (11), 5189.

Samuelson, P. A. (1977b), Generalizing �sher's reproductive value: Nonlinear, ho-
mogeneous, biparental systems, Proceedings of the National Academy of Sciences,
74 (12), 5772{5775.

Sanderson, W. (1983), A two-sex general equilibrium marriage model, in Modeling
Growing Economies in Equilibrium and Disequilibrium, pp. 301{316, Duke Press
Policy Studies.

Sanderson, W., and S. Scherbov (2007), A new perspective on population aging,
Demographic research, 16 (2), 27{58.

Sanderson, W. C. (1981), An analytically based two-sex marriage model and max-
imum likelihod estimates of its parameters, IIASA Working Papers, WP-81-130,
1{33.

Sanderson, W. C., and S. Scherbov (2005), Average remaining lifetimes can increase
as human populations age, Nature, 435 (7043), 811{813.

Sanderson, W. C., and S. Scherbov (2010), Remeasuring aging, Science(Washington),
329 (5997), 1287{1288.

Schmitz, S., and C. Castillo-Chavez (2000), A note on pair-formation functions, Math-
ematical and computer modeling, 31 (4-5), 83{91.

Schoen, R. (1977), A two-sex nuptiality-mortality life table, Demography, 14 (3), 333{
350.

Schoen, R. (1978), A standardized two-sex stable population, Theoretical Population
Biology, 14 (3), 357{370.

Schoen, R. (1981), The harmonic mean as the basis of a realistic two-sex marriage
model, Demography, 18 (2), 201{216.

Schoen, R. (1987), Modeling multigroup populations, Plenum Publishing Corporation.

Seitz, S., A. Siow, and E. Choo (2010), The collective marriage matching model:
Identi�cation, estimation and testing, in 2010 Meeting Papers, 267, Society for
Economic Dynamics.

Seshamani, M., and A. M. Gray (2004), A longitudinal study of the e�ects of age and
time to death on hospital costs, Journal of health economics, 23 (2), 217{235.

Sharpe, F., and A. Lotka (1911), L. A problem in age-distribution, Philosophical
Magazine Series 6, 21 (124), 435{438.

307



Shoven, J. B., and G. S. Goda (2010), Adjusting government policies for age in
ation,
in Demography and the Economy, pp. 143{162, University of Chicago Press.

Siow, A. (2008), How does the marriage market clear? an empirical framework,
Canadian Journal of Economics/Revue canadienne d’économique, 41 (4), 1121{
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