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Abstract
This thesis is concerned with the structural estimation of macroeconomic mod-
els via Bayesian methods and the economic implications derived from its empir-
ical output. The �rst chapter provides a general method for estimating structural
VAR models. The second chapter applies the method previously developed and
provides a measure of the monetary stance of the Federal Reserve for the last forty
years. It uses a pool of instruments and taking into account recent practices named
Unconventional Monetary Policies. Then it is shown how the monetary transmis-
sion mechanism has changed over time, focusing the attention in the period after
the Great Recession. The third chapter develops a model of exchange rate de-
termination with dispersed information and regime switches. It has the purpose of
�tting the observed disagreement in survey data of Japan. The model does a good
job in terms of �tting the observed data.

Resumen
Esta tesis trata sobre la estimación estructural de modelos macroeconómicos a
través de métodos Bayesianos y las implicancias económicas derivadas de sus
resultados. El primer capítulo proporciona un método general para la estimación
de modelos VAR estructurales. El segundo capítulo aplica dicho método y propor-
ciona una medida de la posición de política monetaria de la Reserva Federal para
los últimos cuarenta años. Se utiliza una variedad de instrumentos y se tienen
en cuenta las prácticas recientes denominadas políticas no convencionales. Se
muestra cómo el mecanismo de transmisión de la política monetaria ha cambi-
ado a través del tiempo, centrando la atención en el período posterior a la gran
recesión. El tercer capítulo desarrolla un modelo de determinación del tipo de
cambio con información dispersa y cambios de régimen, y tiene el propósito de
capturar la dispersión observada en datos de encuestas de expectativas de Japón.
El modelo realiza un buen trabajo en términos de ajuste de los datos.
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Foreword
This thesis is concerned with the structural estimation of macroeconomic mod-

els via Bayesian methods and the economic implications derived from its out-
put. It is mainly developed within the context of structural vector autoregressive
(SVAR) models and general state space models.
The �rst chapter,� A general algorithm for estimating structural VARs�, is a

joint work with the professor Fabio Canova. It provides the method for estimating
structural VAR models, which are non-recursive and potentially overidenti�ed,
with both constant and time varying coef�cients. The procedure allows for linear
and non-linear restrictions on the parameters, maintains the multi-move structure
of standard algorithms and can be used to estimate structural models with different
identi�cation restrictions. The transmission of monetary policy shocks is studied
with the proposed approach and results are compared with those obtained with
traditional methods.
The second chapter, �Measuring the Stance of Monetary Policy in a Time-

Varying world�, applies the method previously developed and focuses its attention
in measuring the monetary policy stance. The stance of monetary policy is of gen-
eral interest for macroeconomists and the private sector. But it is not necessarily
observable, since a Central Bank can use different instruments at different points
in time. This chapter provides a measure of this stance for the last forty years using
a pool of instruments. Different operating procedures are quanti�ed by comput-
ing the time varying weights of these instruments and taking into account recent
practices named Unconventional Monetary Policies. The measure describes how
tight/loose was monetary policy conduction over time and takes into account the
uncertainty related with posterior estimates of the parameters. Then it is shown
how the monetary transmission mechanism has changed over time, focusing the
attention in the period after the Great Recession.
The third chapter of this thesis, �Heterogeneous Information and Regime Switches

in a Structural Exchange Rate model: Evidence from Survey Data�, develops
a model of exchange rate determination in the context of dispersed information
and Higher Order Expectations. Exchange Rates Survey Data exhibits a consid-
erable amount of disagreement across participants. Moreover, the mentioned dis-
agreement is not constant over time, exhibiting substantial and persistent variation
across time. We introduce regime switches to a model of exchange rate determina-
tion with disparately informed agents, and we provide an empirical exercise using
actual survey data, with the purpose purpose of �tting the observed disagreement.
We assume that the information structure is such that high-volatility regimes are
associated with the appearance of a very noisy public signal about fundamentals.
Given that this signal is very imprecise, and because of the higher volatility of
shocks, disagreement increases. The model-implied dispersion closely follows
the observed disagreement, which means the proposed model does a good job in

xvii
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terms of �tting. We con�rm the latter when comparing the model �t with respect
to a restricted model without regimes switches and with no informational frictions
at all. Furthermore, the model solution using the captured regime switches from
the data is interpreted as evidence in favor of parameter instability in exchange rate
models. The latter is, together with rational confusion, an additional explanation
for the disconnection between Exchange Rates and future fundamentals.
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Chapter 1

A GENERAL ALGORITHM FOR
ESTIMATING STRUCTURAL
VARS (JOINT WITH F. CANOVA)

1.1 Introduction1

Vector autoregressive (VAR) models are routinely employed to summarize the
properties of the data and new approaches to the identi�cation of structural shocks
have been suggested in the last 10 years (see Canova and De Nicoló (2002), Uhlig
(2005), and Lanne and Lütkepohl (2008)). Constant coef�cient structural VAR
models may provide misleading information when the structure is changing over
time. Cogley and Sargent (2005) and Primiceri (2005) were among the �rsts to
estimate time varying coef�cient (TVC) VAR models and Primiceri also provides
a structural interpretation of the dynamics using recursive restrictions on the mat-
rix of impact responses. Following Canova et al. (2008), the literature nowadays
mainly employes sign restrictions to identify structural shocks in TVC-VARs and
the constraints used are, generally, theory based and robust to variations in the
parameters of the DGP, see Canova and Paustian (2011).
While sign restrictions offer a simple and intuitive way to impose theoret-

ical constraints on the data, they are weak and identify a region of the parameter
space. Furthermore, several implementation details are left to the researcher mak-
ing comparison exercises dif�cult to perform. Because of these features, some
investigators still prefer to use �hard� non-recursive restrictions, using the termin-
ology of Waggoner and Zha (1999), even though these constraints are not theoret-

1We would like to thank F. Schorfheide, G. Primiceri, R. Casarin, H. Van Dijk and three an-
onymous referees for comments and suggestions. A previous version of the paper has circulated
with the title �Estimating overidenti�ed, non-recursive, time varying coef�cients structural VARs�.
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ically abundant. Algorithms to estimate non-recursive structural models exist, see
e.g. Waggoner and Zha (2003) or Kociecki and Ca' Zorzi (2013). However, their
extension to overidenti�ed or TVC models is problematic.
This paper proposes a general framework to estimate a structural VAR (SVAR)

that can handle time varying coef�cient or time invariant models, identi�ed with
hard recursive or non-recursive restrictions. The procedure can be used in sys-
tems which are just-identi�ed or overidenti�ed, and allows for both linear and
non-linear restrictions on the parameter space. Non-recursive structures have been
extensively used to accommodate models which are more complex than those per-
mitted by recursive schemes. As shown, e. g., by Gordon and Leeper (1994), in-
ference may crucially depend on whether a recursive or a non-recursive scheme is
used. In addition, although just-identi�ed systems are easier to construct and es-
timate, over-identi�ed models have a long history in the literature (see e.g. Leeper
et al. (1996), or Sims and Zha (1998)), and provide a natural framework to test
interesting hypotheses.
TVC-VAR models are typically estimated using a Bayesian Gibbs sampling

routine. In this routine, a state space system is speci�ed, the parameter vector is
partitioned into blocks, and draws for the posterior are obtained cycling through
these blocks. When stochastic volatility is allowed for, an extended state space
representation is used and one or more parameter blocks are added to the routine.
If a recursive contemporaneous structure is assumed, one can sample the block
of contemporaneous coef�cients equation by equation, taking as predetermined
draws for the parameters belonging to previous equations. However, when the sys-
tem is non-recursive, such an approach disregards the restrictions existing across
equations. Hence, the sampling must be done differently.
To perform standard calculations, one also needs to assume that the covariance

matrix of the contemporaneous parameters is block-diagonal. When the structural
model is overidenti�ed, such an assumption may be implausible. However, relax-
ing the diagonality assumption complicates the computations since the blocks of
the conditional distributions used in the Gibbs sampling do not necessarily have a
known format. Primiceri (2005) suggests to use a Metropolis-step to deal with this
problem. We follow his lead and nest the step into Geweke and Tanizaki (2001)'s
approach to estimate general nonlinear state space models. This setup is conveni-
ent since it can accommodate general non-linear identi�cation restrictions. Thus,
many structural systems can be dealt with in a compact and uni�ed way.
We use the methodology to identify a monetary policy shock in a overiden-

ti�ed TVC system, whose structure is similar to the one employed by Robertson
and Tallman (2001), Waggoner and Zha (2003) and Sims and Zha (2006). We
compare the results with those obtained in an overidenti�ed, but �xed coef�cient
model. We show that there are important time variations in the variance of the
monetary policy shock and in the estimated contemporaneous coef�cients. These
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time variations translate in important changes in the transmission of monetary
policy shocks which are consistent with the idea that the ability of monetary policy
to in�uence the real economy has waned, especially in the 2000s. We also show
that the characterization of the dynamics in response to monetary policy shocks
one obtains in an overidenti�ed but �xed coef�cient VAR is different.
The paper is organized as follows, Section 2 builds up intuition, shows how to

apply the algorithm to estimate a simple SVAR with time invariant coef�cients,
and the identi�cation restrictions that are allowed for. Section 3 extends the
setup to a time varying coef�cients static SVAR. Section 4 presents the general
algorithm that is applicable to non-recursive, overidenti�ed TVC-VAR models
with stochastic volatility and quite general identi�cation restrictions. Section 5
studies the transmission of monetary policy shocks. Section 6 summarizes the
conclusions.

1.2 Constant coef�cients static SVAR

To build the intuition, we start from a static SVAR with constant coef�cients

A (�) yt = "t; "t � N (0; IM) (1.1)

where t = 1; : : : ; T ; yt and "t areM � 1 vectors, A (�) is a non-singularM �M
matrix and � a vector of structural parameters. The likelihood function of (1.1) is

L
�
yT j �

�
= (2�)�MT=2 det (A (�))T exp

(
�1
2

TX
t=1

(A (�) yt)
0 (A (�) yt)

)
(1.2)

Because of the Jacobian, det (A (�))T , the likelihood is non-linear in �. Thus,
the posterior of � will be non-standard. Whenever the SVAR is just-identi�ed and
the restrictions come in a triangular form, draws of the reduced-form covariance
matrix 
 (�)�1 = A (�)A (�)

0
can be used to derive draws for �: However, when

the system is overidenti�ed 
 (�)�1 will be restricted and proper posterior infer-
ence needs to take these restrictions into account (see e.g. Sims and Zha (1998)).
To describe our approach to sample � from the posterior we proceed in four

steps. First, we reparametrize the model. Second, we suggest a proposal distribu-
tion whose parameters can be estimated using the reparametrized model. Third,
we provide a numerical example to highlight the properties of our algorithm.
Fourth, we indicate the type of identi�cation restrictions that are compatible with
the setup.

3
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1.2.1 Reparameterization of the SVAR

There are a number of ways to reparametrize the SVAR. Here we show that they
are equivalent in terms of the likelihood.

Amisano and Giannini's setup

In Amisano and Giannini (1997), the matrix A (�) is re-parametrized as

vec (A (�)) = SA�+ sA

Since

(A (�) yt)
0 (A (�) yt) = tr

�
(A (�) yt)

0 (A (�) yt)
�

tr
�
(A (�) yt)

0 (A (�) yt]
�
= [vec(A(�)yt)]

0[vec(A(�)yt)]

vec (A (�) yt) = (y0t 
 IM) (SA�+ sA) (1.3)

after a number of manipulation (see on-line appendix), the likelihood for the re-
parametrized model can be written as

L
�
yT j �

�
= (2�)�MT=2 det (A (�))T exp

(
�1
2

TX
t=1

�
(3�0S 0A + s0A) (IM 
 y0tyt)

� (SA�+ 2sA)

�)
(1.4)

Waggoner and Zha's setup

Waggoner and Zha (2003) rewrite the A(�) matrix as

A (�) =
�
a1 a2 � � � aM

�
=

�
U1�1 +R1 U2�2 +R2 � � � UM�M +RM

�
such that � =

�
�01 �02 � � � �0M

�0 is the original column vector. That is, they
perform a linear transformation of each of the columns of A (�). This reparamet-
erization allows them to develop a sampling routine where each �i, i = 1; : : : ;M
is drawn from a mixture of normal and gamma distributions. For the sake of
concreteness, suppose that:

A (�) =

24 1 0 �3
�1 1 0
0 �2 1

35 (1.5)

4
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so that the system is non-recursive and overidenti�ed (we require that the vari-
ances of the shocks are unity). The Amisano and Giannini's reparameterization
is

vec (A (�)) =

26666666666664

1
�1
0
0
1
�2
�3
0
1

37777777777775
=

26666666666664

0 0 0
1 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 1
0 0 0
0 0 0

37777777777775
| {z }

SA

24 �1
�2
�3

35
| {z }

�

+

26666666666664

1
0
0
0
1
0
0
0
1

37777777777775
| {z }
sA

The Waggoner and Zha reparameterization is

a1 =

24 1
�1
0

35 ; U1 =
24 01
0

35 ; R1 =

24 10
0

35 ; �1 = �1

a2 =

24 0
1
�2

35 ; U2 =
24 00
1

35 ; R2 =

24 01
0

35 ; �2 = �2

a3 =

24 �3
0
1

35 ; U3 =
24 10
0

35 ; R3 =

24 00
1

35 ; �3 = �3

Clearly

vec (A (�)) =

24 a1
a2
a3

35
so that

SA = diag (U1;U2;U3) ; sA =

24 R1

R2

R3

35
where diag (:) indicates a block-diagonal matrix. Hence, Waggoner and Zha re-
parameterization also delivers the likelihood (1:4).

Alternative re-parametrization

Vectorizing (1:1) produces

vec (A (�) yt) = vec ("t)

5
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Using (1:3) and the fact that vec ("t) = "t, the model can be expressed as:

eyt = Zt�+ "t (1.6)

where eyt � (y0t 
 IM) sA; Zt � � (y0t 
 IM)SA. The likelihood function of
(1.6) is (see Appendix A.1 for details)

eL �yT j �� = (2�)�MT=2 (detD)T exp

(
�1
2

TX
t=1

[eyt � Zt�]
0 [eyt � Zt�]

)
(1.7)

where D = @[vec(A(�)yt)]
@y0t

= Dy +Dz, vec (Dy) = sA and vec (Dz) = SA�. Thus

vec (D) = vec (A (�))

and the likelihood in (1.7) is equal to the likelihood in (1:4). Note that (1.6) tells
us that estimates of � can be obtained using data correlations. For the example in
equation (1.5), (1.6) is equivalent to the following three linear regressions:

y1t = �y2t�1 + �1t

y2t = �y3t�2 + �2t

y3t = �y1t�3 + �3t (1.8)

1.2.2 The proposal distribution and the MH algorithm
The advantage of the reparameterization in (1.6) is that it allows us to easily design
a proposal distribution to be used in a Metropolis routine. First, get estimates of
the � parameters in (1.6)

�� =

"
TX
t=1

Z 0tZt

#�1 " TX
t=1

Z 0teyt
#

(1.9)

and of the covariance matrix

P � (��) =

"
TX
t=1

Z 0t (SSE)
�1 Zt

#�1
(1.10)

where SSE =
PT

t=1 (eyt � Zt�
�) (eyt � Zt�

�)0. Then, the algorithm to draw � is
as follows. Set �0 = �� and for i = 1; 2; : : : ; G:

1. Draw a candidate �y � p�� (�i j �i�1) = t (�i�1; rP
� (�i�1) ; �), where

r > 0, and � � 4.

6



�swp0000� � 2013/7/1 � 20:04 � page 7 � #25

2. Compute � = ep(�yjyT )�p��(�i�1j�i)ep(�i�1jyT )�p��(�ij�i�1) , where ep(:jyT ) = eL(yT j:)p(:) is the pos-
terior kernel of (�y; �i�1). Draw a v � U (0; 1). Set �i = �y if v < ! and
�i = �i�1 otherwise, where

! �
�
min f�; 1g ; if I� (�y) = 1

0; if I� (�y) = 0

Here I� (:) is a truncation indicator and G is the total numbers of draws. Note
that since P � (:), depends on ��, the algorithm can be easily nested into a Gibbs
sampling scheme. A t-distribution with small number of degrees of freedom is
chosen to account for possible deviations from normality: when � is large the
proposal resembles a normal distribution.
Notice two facts about this algorithm. First, the � vector is jointly sampled.

Second, the covariance matrix of P �(��) is generally non-diagonal. As we ex-
plain later, these features distinguish our algorithm from those in the literature
and provides the �exibility needed to accommodate a variety of structural models.
Kociecki and Ca' Zorzi (2013) have derived a closed form solution for the

posterior of � under the assumption that det(A) = 1. Interestingly, their posterior
collapses to our proposal when the prior for � is diffuse.

1.2.3 A Numerical example

We illustrate the properties of our Metropolis approximation in the example of
equation (1.5), when � =

�
0:8 0:5 0:5

�0. We simulate data according to
(1:1) for t = 1; : : : ; 500, re-parametrize the model as in (1:6) and estimate �� and
P � using (1:9) and (1:10). We use �at priors, i.e., p(�i) / 1; i = 1; 2; 3. We set
G = 150; 000, discard the �rst 100; 000, and keep 1 every 100 from the remaining.
The acceptance rate is 24%.
Figure 1.1 indicates that the simulator does a good job in reproducing the DGP

(the vertical lines indicate true values).

1.2.4 Identi�cation restrictions

The framework can deal with linear restrictions (both of exclusion and non-exclusion
type) and with certain non-linear restrictions. To show the type of constraints that
are allowed, we present a few examples. While the focus is on over-identi�ed
systems, just identi�ed ones only require appropriate adjustments of the matrices
SA and sA.

7
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Figure 1.1: Posterior estimates of �

Short-run linear restrictions

Suppose

A (�) =

24 1 0 ��2
�1 1 0
0 �2 1

35

vec (A (�)) =

26666666666664

1
�1
0
0
1
�2
��2
0
1

37777777777775
=

26666666666664

0 0
1 0
0 0
0 0
0 0
0 1
0 �1
0 0
0 0

37777777777775
| {z }

SA

�
�1
�2

�
| {z }

�

+

26666666666664

1
0
0
0
1
0
0
0
1

37777777777775
| {z }
sA

Since the restrictions are linear, the setup �ts the above framework.

Short-run non-linear restrictions

Suppose now

A (�) =

24 1 0 �3
�1 1 0

0 (�2 + 1)
2 1

35 (1.11)

8
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The model is re-parametrized as

vec (A (�)) =

26666666666664

1
�1
0
0
1

(�2 + 1)
2

�3
0
1

37777777777775
=

26666666666664

0 0 0
1 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 1
0 0 0
0 0 0

37777777777775
| {z }

SA

24 �1
(�2 + 1)

2

�3

35
| {z }

F (�)

+

26666666666664

1
0
0
0
1
0
0
0
1

37777777777775
| {z }
sA

where F (�) is a non-linear vector-valued function. Linearity is lost here, but
if we de�ne e�2 � (�2 + 1)

2 as a new parameter, the procedure applies to the
vector e� = (�1; e�2; �3). In fact, given posterior draws for e�2, we can recover
�2 =

pe�2�1 once we impose the extra restriction e�2 > 0. Adding this restriction
avoids us to deal with the fact that F (�) is non-linear.
Consider now:

A (�) =

24 1 0 �3
�1 1 0

0 (�2 + 2�3)
2 1

35 (1.12)

Here

F (�) =

24 �1
(�2 + 2�3)

2

�3

35
Also in this case the procedure can be employed, if we de�ne e�2 � (�2 + 2�3)2
as a new parameter. In fact, with draws from the posterior of e�2 and �3, we can
recover �2 =

pe�2 � 2�3, provided that e�2 > 0.
Consider a �nal example:

A (�) =

24 1 0 �1�2 � 1
�1 1 0
0 �2 1

35 (1.13)

9
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The reparametrized model is

vec (A (�)) =

26666666666664

1
�1
0
0
1
�2

�1�2 � 1
0
1

37777777777775
=

26666666666664

0 0 0
1 0 0
0 0 0
0 0 0
0 0 0
0 1 0
0 0 1
0 0 0
0 0 0

37777777777775
| {z }

SA

24 �1
�2

�1�2 � 1

35
| {z }

F (�)

+

26666666666664

1
0
0
0
1
0
0
0
1

37777777777775
| {z }
sA

where � = [�1; �2]0. Here linearity is lost and adding an inequality constraint does
not help since the third component of F (�) depends on the other two. Letting
zt (�) � ZtF (�), the model is: eyt = zt (�) + "t

In general, if a closed-form solution for combinations of the parameters is
available, the procedure can deal with short run non-linear restrictions. However,
when a closed-form is not available, we need to treat the model as a non-linear
system of equations, and the tools we describe in section 4 are useful.

Long-run restrictions

Long run restrictions are non-linear, but can be dealt in our Metropolis algorithm
with a accept/reject step. To see this consider the more general SVAR model:

A (�) yt = A+yt�1 + "t; "t � N (0; IM) (1.14)

Letting B � [A (�)]�1A+, the VAR is:

yt = Byt�1 + [A (�)]
�1"t (1.15)

The (long run) cumulative matrix is:

D � (IM �B)�1 [A (�)]�1 (1.16)

Given draws ofB and �; one can immediately constructD using (1.16) and check
whether the required restrictions are satis�ed. For example, suppose the cumulat-
ive impact matrix is restricted as

D =

24 D11 D12 0
0 D22 D23

D13 0 D33

35
10
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This set of restrictions can be summarized as

R0vec (D) =

24 00
0

35 (1.17)

with

R0 =

24 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0

35
From (1:15) setting byt � yt �Byt�1, we have that

A (�) byt = "t

where

A (�) =

24 1 �3 �5
�1 1 �6
�2 �4 1

35 (1.18)

To estimate the structural parameters, we need �rst to drawB, then draw candidate
�'s using the suggested reparameterization and for each draw use an accept-reject
step to make sure the long run restrictions (1:17) are satis�ed. Seen through these
lenses, long run and non-linear short run restrictions are similar. Clearly, if par-
tial multipliers or the structural lagged coef�cients A+ are restricted with zero
constraints, the same acceptance/rejection framework can be used.
A situation that leads to a non-linear model is one where there are both long

and short run restrictions (see e.g. Gali (1991)). For example, suppose

D =

24 D11 D12 D13

0 D22 D23

D31 D32 D33

35
and in (1.18) �4 = �5 = 0. Let

(IM �B)�1 �

24 b11 b12 b13
b21 b22 b23
b31 b32 b33

35
Then

D =
1

detA (�)

24 b11 b12 b13
b21 b22 b23
b31 b32 b33

35�
24 1� �4�6 �4�5 � �3 �3�6 � �5
�2�6 � �1 1� �2�5 �1�5 � �6
�1�4 � �2 �2�3 � �4 1� �1�3

35
11
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Thus,D21 = 0 implies�b21 (�4�6 � 1)�b23 (�2 � �1�4)�b22 (�1 � �2�6) = 0
and, using �4 = 0 and �5 = 0, we have �b22 (�1 � �2�6) = 0. Hence, long run
restrictions require �1 = �2�6 and the impact matrix is

A (�) =

24 1 �3 0
�2�6 1 �6
�2 0 1

35
Therefore

vec (A (�)) =

26666666666664

1
�2�6
�2
�3
1
0
0
�6
1

37777777777775
=

26666666666664

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

37777777777775
| {z }

SA

2664
�2�6
�2
�3
�6

3775
| {z }

F (�)

+

26666666666664

1
0
0
0
1
0
0
0
1

37777777777775
| {z }
sA

Sign restrictions

Although sign restrictions are not the focus of this paper, it is straightforward to
show that the algorithm can be applied also to VARs identi�ed this way. Let A(�)
be a general matrix with no zero elements and impose inequality constraints on,
say, the �rst column. Then, one can draw �'s as in section 2.2 and check if the
�rst column satis�es the required inequality restrictions. Thus, sign restrictions
can be dealt with in the same way as long run restrictions.

1.3 Time-varying coef�cients static SVAR
Before we move to a full �edged TVC-SVAR model, it is useful to study the
intermediate step of a static TVC-SVAR. The model is

A (�t) yt = "t; "t � N (0; IM) (1.19)

�t = �t�1 + �t; �t � N (0; V ) (1.20)

where V is positive de�nite and �0 is given. This model is re-parametrized as:

eyt = Zt�t + "t (1.21)

12
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�t = �t�1 + �t (1.22)

where, as before, eyt � (y0t 
 IM) sA and Zt � � (y0t 
 IM)SA. We wish to com-
pute p

�
�T j yT ; V

�
and p

�
V j yT ; �T

�
to be used in the Gibbs sampler. Given the

assumptions the latter is inverted Wishart and its parameters are easy to compute.
Using theMarkovian structure of the model, the conditional posterior p

�
�T j yT ; V

�
can be factorized as

p
�
�T j yT ; V

�
= p (�T j yT ; V )

T�1Y
t=1

p
�
�t j �t+1; yt; V

�
/ p (�T j yT ; V )

T�1Y
t=1

p
�
�t j yt; V

�
p (�t+1 j �t; V )(1.23)

Since each term in the last expression is normal, to sample �T from (1.23) we just
need the mean and the variance of each of the terms.
Thus, set initial values �0 and P0j0 and for each t = 1; : : : ; T construct

b�tjt�1 = b�t�1jt�1
Ptjt�1 = Pt�1jt�1 + V

and the Kalman gain Kt = Ptjt�1Z
0
t


�1
t , where 
t = Z 0tPtjt�1Zt + IM : Estimates

of �t and of its variance are updated according to

b�tjt = b�tjt�1 +Kt

�eyt � Ztb�tjt�1�
Ptjt = Ptjt�1 � Ptjt�1Z

0
t


�1
t ZtP

0
tjt�1

To smooth the estimates set ��T jT = b�T jT , P �T jT = PT jT and, for t = T �1; : : : ; 1;,
compute

��tjt+1 = b�tjt + PtjtZ
0
tP

�1
t+1jt

�
��t+1jt+2 � Z 0tb�tjt�

P �tjt+1 = Ptjt � PtjtZ
0
tP

�1
t+1jtZtP

0
tjt�1

1.3.1 The basic algorithm
Step 1: Given

�
yT ; Vi�1

�
; we take an initial value �T0 = f�0;tg

T
t=1 and:

1. Compute
n
�
�(i�1)
tjt+1

oT
t=1
and

n
P
�(i�1)
tjt+1

oT
t=1
.

2. At each t = 1; : : : ; T , draw a candidate �yt � p�� (�t j �i�1;t) = t
�
�i�1;t; rP

�(i�1)
tjt+1 ; �

�
,

r > 0, � � 4. Set p��
�
�T j �Ti�1

�
=

TY
t=1

p�� (�t j �i�1;t).

13
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3. Compute � = p((�y)T )�p��(�Ti�1j�T )
p(�Ti�1)�p��(�T j�Ti�1)

where p (:) is the posterior kernel (1:23).

Draw a v � U (0; 1). Set �Ti = (�y)T if v < ! and set �Ti = �Ti�1
otherwise, where

! �
�
min f�; 1g ; if I�

�
(�y)T

�
= 1

0; if I�
�
(�y)T

�
= 0

and I� (:) is a truncation indicator function.

Step 2: Given (�Ti ; yt), draw Vi from (V �1
i j �Ti ; yt) � W

�
vV ; V

�1
�
, where

vV = T + vV

V
�1
=

"
V +

TX
t=1

(�t � �t�1) (�t � �t�1)
0

#�1
where vV and V are prior parameters.
We then use �Ti ; Vi as initial values and repeat steps 1 and 2 for i = 1; : : : ; G.
Given the structure of the problem, if � is constant, V is the null matrix. Thus,

Kalman smoother and OLS estimates �� and P � will coincide and the algorithm
collapses to the one described in section 2.2.

1.4 A time-varying coef�cients SVAR
Assume that a M � 1 vector of non-stationary variables yt; t = 1; : : : ; T can be
represented with a �nite order autoregression of the form:

yt = B0;tCt +B1;tyt�1 + :::+Bp;tyt�p + ut (1.24)

where B0;t is a matrix of coef�cients on a �M � 1 vector of deterministic variables
Ct; Bj;t; j = 1; : : : ; p are square matrices containing the coef�cients on the lags
of the endogenous variables and ut � N (0;
t), where 
t is symmetric, positive
de�nite, and full rank for every t. For the sake of presentation, exogenous vari-
ables are excluded, but the setup can be easily extended to account for them. Since
(1:24) is a reduced form, ut does not have an economic interpretation. Denote the
structural shocks by "t � N (0; IM) and let

ut = A�1t �t"t (1.25)

whereAt � A(�t) is the contemporaneous coef�cients matrix and�t = diagf�i;tg
contains the standard deviations of the structural shocks at t. The SVAR is:

yt = X 0
tBt + A�1t �t"t (1.26)

14
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whereX 0
t = IM


�
C 0t; y

0
t�1; : : : ; y

0
t�p
�
andBt =

�
vec (B0;t)

0 ; vec (B1;t)
0 ; : : : ; vec (Bp;t)

0�0
are a M � K matrix and a K � 1 vector, K = �M �M + pM2. It is typical to
assume that (Bt; At;�t) evolve as independent random-walks:

Bt = Bt�1 + �t (1.27)
�t = �t�1 + �t (1.28)

log (�t) = log (�t�1) + �t (1.29)

where �t denotes the vector of free parameters of At, and let:

V = V ar

0BB@
2664
"t
�t
�t
�t

3775
1CCA =

2664
I 0 0 0
0 Q 0 0
0 0 V 0
0 0 0 W

3775 (1.30)

where Q; V;W are full rank matrices. Common patterns of time variations are
possible if the rank of some of these matrices is reduced.
Thus, the setup captures time variations in i) the lag structure (see (1:27)),

ii) the contemporaneous reaction parameters (see (1:28)) and iii) the structural
variances (see (1:29)): As shown in Canova et al. (2012), models with breaks at a
speci�c date can be accommodated by adding restrictions on the law of motions
(1:27)� (1:29).

1.4.1 Relaxing standard assumptions
Consider the concentrated model obtained with estimates of the reduced-form
coef�cients bBt:

At

�
yt �X 0

t
bBt� � Atbyt = �t"t (1.31)

As before, let
vec (At) = SA�t + sA (1.32)

where SA and sA are matrices with ones and zeros of dimensions M2 � dim(�)
and M2 � 1; respectively. The concentrated model can be reparametrized as

(by0t 
 IM) (SA�t + sA) = �t"t

and the state space is composed of

eyt = Zt�t + �t"t (1.33)

of (1.28) and (1.29), where eyt � (by0t 
 IM) sA; Zt � � (by0t 
 IM)SA; . Given
draws for (B̂t; �t), we need to draw �T � f�tgTt=1, from p

�
�T j eyT ;�T ;V ; cBT

�
.
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The standard approach is to partition �t into blocks associated with each equa-
tion, say �t =

�
�10t ; �

20
t ; : : : ; �

M 0
t

�0
; and assume that these blocks are independent,

so that V = diag (V1; : : : ; VM). Under these assumptions

p
�
�T j eyT ;�T ;V ; cBT

�
=

MY
m=2

p
�
�m;T j �m�1;T ; eyT ;�T ;V ; cBT

�
(1.34)

�p
�
�1;T j eyT ;�T ;V ; cBT

�

Thus, for each equationm, the coef�cients in equationm� j; j � 1 are treated as
predetermined and changes in coef�cients across equations are uncorrelated. The
setup is convenient because equation by equation estimation is possible. Since the
factorization does not necessarily have an economic interpretation, it may make
sense to assume that the innovations in the �t blocks are uncorrelated. However, if
we insist that each element of �t has some economic meaning, the diagonality of
V is no longer plausible. For example, if �t contains policy and non-policy para-
meters, it will be hard to assume that non-policy parameters are strictly invariant
to changes in the policy parameters (see e.g. Lakdawala (2011)).
The algorithm to draw � we have described relaxes both assumptions, that is,

the vector �t is jointly drawn and V is not necessarily block diagonal. This modi-
�cation allows us to deal with recursive, non-recursive, just-identi�ed or overiden-
ti�ed structural models in a uni�ed framework.
In a constant coef�cient SVAR one identi�es shocks imposing short run, long

run, or heteroschedasticity restrictions. In TVC-VARs identi�cation restrictions
are typically employed only on At but, as we have seen, certain type of restric-
tions produce non-linear state space models. In some situations one may want to
identify shocks imposing shape restrictions on certain medium term multipliers
(the maximum effect of a monetary shock on output occurs x-months after the
disturbances) or on the variance decomposition, as it is done in the news shock
literature (see e.g. Barsky and Sims (2012)), and these may also generate non-
linear structural VARs. Furthermore, while it is standard to employ a log linear
setup for the time variations in log(�t), one may want to use GARCH or Markov
switching speci�cations, which also generate a non-linear or non-normal law of
motion for some of the coef�cients.
To be able to deal with all these cases, we embed the Metropolis algorithm

to draw �T into a modi�ed version of Geweke and Tanizaki (2001)'s routine for
estimating non-linear, non-Gaussian state space models. This greatly expands the
type of structural models one can consider within the same estimation framework.
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1.4.2 Estimation
Consider the general state space model:byt = zt (�t) + ut(�t; �1t) (1.35)

�t = tt (�t�1) + rt (�t�1; �2t) (1.36)
ht(�t) = kt(�t�1) + �3t (1.37)

where byt, �1t; �3t areM�1 vectors; �t and �2t areK�1 vectors; �1t � N (0; Q1t),
�2t � N (0; Q2t), �3t � N(0; Q3t). Assume that zt (:), tt (:), rt (:) ; ut(:); ht(:); kt(:)
are vector-valued functions.
To estimate this system, it is typical to linearize it around the previous forecast

of the state vector, so that

zt(�t) ' zt(batjt�1) + bZt(�t � batjt�1)
ut(�t; �1t) ' ut(b�tjt�1; 0) + bu�;t(�t � b�tjt�1) + bu�1;t�1;t
tt(�t�1) ' tt(bat�1jt�1) + bTt(�t�1 � bat�1jt�1)

rt (�t�1; �2t) ' rt(b�t�1jt�1; 0) + br�;t(�t�1 � bat�1jt�1) + br�2;t�2;t
ht(�t) ' ht(b�tjt�1) + bht(�t � b�tjt�1)
kt(�t) ' kt(b�tjt�1) + bkt(�t � b�tjt�1)

where bZt, bu�;t, bu�1;t, bTt, br�;t, br�2;t, bht;bkt are matrices corresponding to the Jacobian
of zt (:), ut (:), tt (:), rt(:), ht(:); kt(:), evaluated at �t = batjt�1; �t = b�tjt�1, �1;t =
0, �2;t = 0. Thus, the approximated model isbyt ' bZt�t + bdt + bu�1;t�1;t (1.38)

�t ' bTt�t�1 + bct + br�2;t�2;t (1.39)bht�t ' bkt�t�1 + bft + �3t (1.40)

where bdt = zt
�batjt�1�� bZtbatjt�1 + u(b�tjt�1; 0)� bu�;t(b�tjt�1 � �t) (1.41)

bct = tt
�bat�1jt�1�� bTtbat�1jt�1 + rt(b�tjt�1; 0)� br�;t(b�tjt�1 � at�1) (1.42)bft = kt

�b�tjt�1�� bktb�tjt�1 � ht
�b�tjt�1�+ bhtb�tjt�1 (1.43)

Equations (1:38); (1:39); (1:40) are similar to equations (1:33) and (1:28),(1:29).
When zt (:) ; tt (:) ;

kt (:) ; ht(:); ut (:) are linear, rt is independent of �t and ut is independent of
�t. bdt = 0, bct = 0, bft = 0. In one of the cases considered by Rubio Ramírez et
al. (2010) or in some of those of section 2.4 bdt 6= 0, while if the law of motion of
the structural coef�cient is non-linear bct 6= 0 or bft 6= 0 or both.
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The algorithm

Set initial values for (BT
0 ; �

T
0 ;�

T
0 ; s

T
0 ;V0), where sT is J-dimensional vector of

discrete indicator variables described below. Then:

1. DrawBT
i from from p

�
BT
i j �Ti�1;�Ti�1; sTi�1;Vi�1

�
�IB

�
BT
i

�
; where IB (:)

truncates the posterior to insure stationarity of impulse responses.

2. Draw �Ti from

p
�
�Ti j byTi ;�Ti�1; sTi�1;Vi�1� / p

�
�i;T j byTi ;�i�1;T ; si�1;T ;Vi�1��

T�1Y
t=1

p
�
�i;t j byti ;�i�1;t; si�1;t;Vi��

pt+1 (�i;t+1 j �i;t;�i�1;t; si�1;t;Vi�1)

using the Metropolis approach described in section 3.1, where �ijt+1; Pijt+1
are estimated with the extended Kalman smoother (EKS) described below.

3. Draw �Ti using a log-normal approximation as in Kim et al. (1998). Given�
BT
i ; �

T
i

�
, the model is linear and composed of

bAteyt = y��t = �t"t

and (1:29), but the error is not normal. The m � th equation is y��m;t =
�m;t"m;t, where �m;t is them�th diagonal element of �t. Then

y�t = log
h�
y��m;t

�2
+ c
i
� 2 log (�m;t) + log "2m;t (1.44)

where c is a small constant. Since "m;t is Gaussian, log "2m;t is log (�2)
distributed. Such a distribution can be approximated by a mixture of nor-
mals. Conditional on st, the indicator for the mixture of normals, the model
is linear and Gaussian. Hence, standard Kalman smoother recursions can
be used to draw f�tgTt=1 from (1:44) � (1:29). To ensure independence of
the structural variances, each element of f�m;tgMm=1 is sampled assuming a
diagonalW .

4. To draw sTi , given (�Ti , y�t ), draw u � U (0; 1) and compare it to

P
�
sm;t = j j y�m;t; log (�m;t)

�
/ qj��

�
y�m;t � 2 log (�m;t)� �j + 1:2704

j

�
where j = 1; : : : ; J ;� (:) is the normal density function, qj a set of weights,
the term inside the parenthesis is the standardized error term log "2m;t, and
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�j and j are the mean and the standard deviation of the j�th mixture com-
ponent. Then assign sm;t = j iff P

�
sm;t � j � 1 j y�m;t; log (�m;t)

�
< u �

P
�
sm;t � j j y�m;t; log (�m;t)

�
.

5. Draw Vi from p
�
Vi j �Ti ; byTi ;�Ti�1; sTi�1�. The matrix Vi is sampled assum-

ing that each block follows an independent inverted Wishart distribution.

Then one uses BT
i ; �

T
i ;�

T
i ; s

T
i ;Vi as initial values and repeat the sampling for

the �ve blocks for i = 1; : : : ; G.

The details of step 2

Given (yT ;�T ), we predict the mean and mean square error of �t for t = 1; : : : ; T :

batjt�1 = tt(bat�1jt�1)
Ptjt�1 = bTtPt�1jt�1 bT 0t + br�2;tQ2tbr0�2;t

and compute the Kalman gain Kt = Ptjt�1 bZ 0t��1t , where �t = bZ 0tPtjt�1 bZt +bu�1;tQ2tbu0�1;t.
As new information arrives, estimates are updated according to

batjt = batjt�1 +Kt

�
yt � zt

�batjt�1��
Ptjt = Ptjt�1 � Ptjt�1 bZ 0t��1t bZtP 0tjt�1

To smooth the estimates, set ��T jT = baT jT , P �T jT = PT jT and compute

��tjt+1 = batjt + Ptjt bZ 0tP�1t+1jt ���t+1jt+2 � tt(batjt)�
P �tjt+1 = Ptjt � Ptjt bZ 0t hPt+1jt + br�2;tQ2tbr0�2;ti�1 bZtP 0tjt�1

for t = T � 1; : : : ; 1;. To start the iterations, we use ba1j0 = 0K�1 and P0j0 =
IK � �; � >> 1. Notice that the approximate model is used only in predicting and
updating the mean square error of �.

1.4.3 Discussion
The advantage of nesting our setup into Geweke and Tanizaki's framework should
be clear. However, there is no free lunch and costs are involved. For example,
we are assuming that the posteriors can be approximated by normals and that no
asymmetries exist. While normality may be appropriate in large samples, it is
unclear that it is when the data is short, it includes �nancial or other fast moving
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variables, and rare (and large) shocks hit the economy. The alternative would be
to use recently developed sequential Montecarlo methods, see e.g., Creel (2012)
and Herbst and Schorfheide (2013), to compute the posterior of the unknown of
the non-linear state space model. While such an approach is feasible, it complic-
ates computations quite a lot. As it will be clear in the application section, our
approach allows us to estimate medium scale VARs in reasonable amount of time.
Furthermore, in most applications identi�cation restrictions imply a linear state
space. Thus, it is important to have a tool that can extensively cover that situation
and can deal with certain non-linear restrictions used in the literature without hav-
ing to pay the full costs of having a complete non-linear methodology.

1.4.4 Single-move Metropolis for drawing Bt
To draw BT in step 1 of the algorithm one can employ a standard multi-move
strategy where the components of BT are jointly sampled from normal distribu-
tions having moments centered at Kalman smoother estimates. Koop and Potter
(2011) have argued that multi-move algorithms are inef�cient when one requires
stationarity of the impulse responses at each t; especially if the VAR is of me-
dium/large dimension. The assumption of non-explosive impulse responses is
appealing in many macroeconomic applications and since Cogley and Sargent
(2005), it is common to assume that all the eigenvalues of the companion form
matrix associated with Bt lie within the unit circle for t = 1; : : : ; T . Thus, draws
that do not satisfy the restrictions are discarded. When the Carter and Kohn (1994)
a multi-move logic is used, if one element of the sequences violates the restric-
tions, the entire sequence is discarded, making the algorithm inef�cient.
To solve this problem, Koop and Potter suggest to evaluate the elements of the

BT sequence separately using a single-move algorithm and use an accept/reject
step. The approach works as follows. Given draws ofBT

i�1; �
T
i�1;�

T
i�1; Qi�1; Vi�1;Wi�1,

the measurement equation is

yt = X 0
tBt + A�1t �t"t

and the transition equation for Bt is

Bt = Bt�1 + �t

with �t � N (0; Q) ; B0 given, and A�1t �t"t = ut � N (0;
t). To sample the
individual elements of BT , all t � 1:

1. Draw a candidate Bc
t � N (�t;	t) where

�t =

(
Bt�1;i+Bt+1;i�1

2
+Gt

h
yt �X 0

t

�
Bt�1;i+Bt+1;i�1

2

�i
; t < T

Bt�1;i +Gt [yt �X 0
t (Bt�1;i)] ; t = T
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Gt =

�
1
2
Qi�1Xt (X

0
tQi�1Xt + 
t)

�1 ; t < T

Qi�1Xt (X
0
tQi�1Xt + 
t)

�1 ; t = T

	t =

�
1
2
(IK �GtX

0
t)Qi�1 ; t < T

(IK �GtX
0
t)Qi�1 ; t = T

2. Construct the companion formmatrixBct and evaluate 1
�
max

��eig �Bct��� < 1�,
where 1 (:) is an indicator function taking the value of 1 if the condition
within the parenthesis is satis�ed.

3. The acceptance rate of Bc
t is

!B;t = min

8<:
1(maxjeig(Bct)j<1)

�(Bct ;Qi�1)

1
�(Bt;i�1;Qi�1)

; 1

9=;
= min

(
1
�
max

��eig �Bct��� < 1�� (Bt;i�1; Qi�1)
� (Bc

t ; Qi�1)
; 1

)

where � (:) is an integrating constant, measuring the proportion of draws
that satisfy the inequality constraint. To compute �(:) one �rst drawsBc;l

t �
N (Bc

t ; Qi�1), for l = 1; : : : ; L, constructs the companion form matrix
B
c;l

t and evaluates �l = 1
�
max

���eig �Bc;lt ���� < 1�. Second, one evaluates
� (Bc

t ; Qi�1) =

XL

l=1
�l

L
and � (Bt;i�1; Qi�1) and compute the acceptance

probability. When t = T , this probability is

!B;T = 1
�
max

��eig �Bct��� < 1�
4. Draw a v � U (0; 1). Set Bt;i = Bc

t if v < !B;t and set Bt;i = Bt;i�1
otherwise.

Since Q depends on Bt, we need to change the sampling scheme also for this
matrix. Assume a-priori thatQ�1 � W

�
v;Q�1

�
so that the unrestricted posterior

is Q�1 � W
�
v;Q

�1
�
with v = v + T and

Q
�1
=

"
Q+

TX
t=1

(Bt;i �Bt�1;i) (Bt;i �Bt�1;i)
0

#�1

To draw Q we need to draw a candidate (Qc)�1 � W
�
v;Q

�1
�
and take the

inverse Qc. Then, for t = 1; : : : ; T , we evaluate � (Bt;i; Qc) and � (Bt;i; Qi�1),
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for a �xed L; and calculate the acceptance probability

!Q = min

(
TY
t=1

� (Bt;i; Qi�1)

� (Bt;i; Qc)
; 1

)
Finally, we draw a v � U (0; 1), setQi = Qc if v < !Q andQi = Qi�1 otherwise.
In a standard multi-move approach � (:) = 1, when sampling both BT and Q.

Therefore, Koop and Potter's approach generalizes the multi-move procedure at
the cost of making convergence to the posterior, in general, much slower, and, as
we will see later on, of adding considerable computational time.

1.4.5 A shrinkage approach
To deal with the stationarity issue one could also consider the shrinkage approach
of Canova and Ciccarelli (2009). The approach was originally designed to deal
with the curse of dimensionality in large scale panel VAR models, but can also
be used in our context. The main problem with the standard setup is that when
Bt is of large dimension and each of the components is an independent random
walk, the probability that explosive draws for at least one coef�cient are obtained
is very large at each t. By making Bt function of a lower dimensional vector of
factors �t, who independently move as a random walk, the approach can reduce
the computational costs and the inef�ciency of the algorithm.
The model is still consists of (1.26), (1.28) and (1.29) but now (1.27) is sub-

stituted by

Bt = ��t + �t �t � N(0; I) (1.45)
�t = �t�1 + �t �t � N(0; Q) (1.46)

where dim(�t) � dim(Bt) and where the matrix � is known and composed of
ones and zeros as in Canova and Ciccarelli (2009). The setup where the matrix �
is unknown and estimated along the other unknown quantities is presented in the
on-line appendix. Using (1.46) into (1.45) we have

yt = X 0
t��t + A�1t �t"t +X 0

t�t � X 0
t��t +  t (1.47)

where  t � N (0M�1; Ht) with Ht � A�1t �t�
0
t

�
A�1t

�0
+X 0

tXt.
To estimate the unknowns we do the following:

1. Sample �T using a multi-move routine using (1.47) and (1.46).

2. Given �T , we compute byt = yt �X 0
t��t. Pre-multiplying by At, we get the

concentrated structural model

Atbyt = At�t = �t"t + AtX
0
t�t
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As before
(by0t 
 IM) (SA�t + sA) = �t"t + AtX

0
t�t

so that the second state-space system is

eyt = Zt�t + �t"t + AtX
0
t�t (1.48)

�t = �t�1 + �t (1.49)

and we draw �T using our proposed Metropolis step. Here, the variance
of the measurement error is �t�0t +At (�t)X 0

tXtA
0
t (�t) and it is evaluated

at the current prediction �tjt�1. �T is sampled using the extended Kalman
smoother previously described.

3. Given (�T , �T ): bAtbyt = �t"t + bAtX 0
t�t

Since bAtX 0
t is known, let the lower-triangular Pt satisfy Pt

� bAtX 0
tXt

bA0t�P 0t =
I . Then

Pt bAtbyt = y��t = Pt�t"t + Pt bAtX 0
t�t

with var
�
Pt bAtX 0

t�t

�
= I and where Pt�t�0tP 0t + Pt

� bAtX 0
tXt

bA0t�P 0t is
a diagonal matrix. This transformation is similar to Cogley and Sargent
(2005); however, since bAtX 0

t is known, we only need to sample the vari-
ances of �m;t. As in algorithm 4.2.1, we do this using the log(�2) approx-
imation that consists on a mixture of 7 normals (see (1.44)).

4. Given (�T ; �T ;�T ), we sampleQ; V;W from independent inverted Wishart
distributions as in algorithm 4.2.1.

5. Given new values of �m;t, we construct A�1t �t�0t
�
A�1t

�0
+ X 0

tXt and go
back to step 1.

We evaluate the relative merits of different approaches in the speci�c example
discussed in the next section.

1.5 An Application
We apply our procedures to study the transmission of monetary policy shocks in
an overidenti�ed structural TVC-VAR. We are interested in knowing whether the
propagation of policy shocks has changed over time and in identifying the sources
of variation in certain macroeconomic variables. For comparison, we will also
examine the conclusions obtained estimating a constant coef�cient overidenti�ed
SVAR.
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1.5.1 The SVAR
The vector of endogenous variables is yt = (GDPt; Pt; Ut; Rt;Mt; P comt)

0, where
GDPt is a measure of aggregate output, Pt a measure of aggregate prices, Ut the
unemployment rate, Rt the nominal interest rate, Mt a monetary aggregate and
Pcomt represents a commodity price index. Since researchers working with this
set of variables are typically interested in the dynamic response to monetary policy
shocks, see e.g. Sims and Zha (2006), the structure of At is restricted as in table
1, where X indicates a non-zero coef�cient.

Reduced form n StructuralGDPt Pt UtRtMt Pcomt

Non-policy 1 1 0 0 0 0 0
Non-policy 2 X 1 0 0 0 0
Non-policy 3 X X 1 0 0 0
Monetary policy 0 0 0 1 X 0
Money demand X X 0 X 1 0
Information X X X X X 1

Table 1.1: Identi�cation restrictions

The structural form is identi�ed via exclusion restrictions as follows:

1. Information equation: Commodity prices (Pcomt) convey information about
recent developments in the economy. Therefore, they react contemporan-
eously to all structural shocks.

2. Money demand equation: Within the period money balances; are a function
of structural shocks to core macroeconomic variables (Rt; GDPt; Pt).

3. Monetary policy equation: The interest rate (Rt) is used as an instrument for
controlling the money supply (Mt). No other variable contemporaneously
affects this equation.

4. Non-policy block: Following Bernanke and Blinder (1992), the non-policy
variables (GDPt; Pt; Ut) react to policy, money or informational changes
only with a delay. This setup can be formalized by assuming that the private
sector uses only lagged values of these variables as states or that private
decisions have to be taken before the current values of these variables are
known. The relationship between the variables in the non-policy block is
left unmodeled and, for simplicity, a recursive structure is assumed.

In this setup, it is easy to understand why independence in coef�cients of
different equations is unappealing: changes in policy and non-policy coef�cients
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are likely to be correlated. Let "t =
�
"1t "2t "3t "mpt "mdt "it

�0 be the vector
of structural innovations. The structural model is

26666664
1 0 0 0 0 0
�1;t 1 0 0 0 0
�2;t �5;t 1 0 0 0
0 0 0 1 �11;t 0
�3;t �6;t 0 �9;t 1 0
�4;t �7;t �8 �10;t �12;t 1

37777775
| {z }

At

�

26666664
GDPt
Pt
Ut
Rt
Mt

Pcomt

37777775 = A+t (L)

26666664
GDPt�1
Pt�1
Ut�1
Rt�1
Mt�1

Pcomt�1

37777775+�t
26666664

"1t
"2t
"3t
"mpt
"mdt
"it

37777775
(1.50)

whereA+t (L) is a function ofAt andBt and we normalize the main diagonal ofAt
so that the left-hand side of each equation corresponds to the dependent variable.
Finally,

�t =

26666664
�1t 0 0 0 0 0
0 �2t 0 0 0 0
0 0 �3t 0 0 0
0 0 0 �mpt 0 0
0 0 0 0 �mdt 0
0 0 0 0 0 �it

37777775
is the matrix of standard deviations of the structural shocks.
The structural model (1:50) is non-recursive and overidenti�ed by 3 restric-

tions. Overidenti�cation obtains because the policy equation is different from the
Taylor rule generally employed in the literature. It is easy to check (see on-line
appendix) that the (constant coef�cient version of the) system is globally identi-
�ed and therefore suitable for interesting policy experiments. While the structural
model we consider is conditionally linear, more general non-linear models are
easy to generate using the restrictions described in section 2.4 or considering a
non-linear law of motion for the parameters. Our setup can accommodate for all
these possibilities.

1.5.2 The Data
The data we use comes from the International Financial Statistics (IFS) database
at the International Monetary Fund and from the Federal Reserve Board (www.
imfstatistics.org/imf/about.asp and www.federalreserve.gov/econresdata/
releases/statisticsdata.htm, respectively). The sample is 1959:I - 2005:IV. We stop
at this date to avoid the last �nancial crisis and to compare our results to those
of Sims and Zha (2006), who use a (restricted) Markov switching model over the
same sample. The GDP de�ator, the unemployment rate, the aggregate Gross
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Domestic Product index (Volume, base 2005=100), the commodity prices index,
and M2 are from IFS, the Federal Funds rate is from the Fed. All the variables
are expressed in year-to-year rate changes, i.e. y�t = log (yt) � log (yt�4), except
for the Federal Funds and the unemployment rate, and standardized, that is, xt =
(y�t � E (y�t )) =std (y

�
t ), to have all the variables on the same scale.

1.5.3 The prior and computation details

The VAR is estimated with 2 lags; this is what the BIC criteria selects for the con-
stant coef�cient version of the model. The priors are proper, conjugate for compu-
tational convenience and given byB0 � N

�
B; 4 �VB

�
,Qprior � IW

�
k2Q �VB; (1 +K)

�
,

�0 � N (�; diag (abs (�))), Sprior � IW (k2S � diag (abs (�)) ; (1 + dim�)),
log (�0) � N (�; 10 � IM),W prior

i � IW (k2W ; 1 + 1) ; i = 1; : : : ;M .

To calibrate the parameters of the prior, we use the �rst 40 observations as a
training sample: B andVB are estimated with OLS and � and � with Maximum
Likelihood using 100 different starting points with the constant coef�cient version
of the model. We set k2Q = 0:5�10�4, k2S = 1�10�3; k2W = 1�10�4 and J = 7.
We generate 150; 000 draws, discard the �rst 100; 000 and use one every 100 of
the remaining for inference. Convergence was checked using standard statistics -
see on-line appendix. Draws for Bt are monitored and discarded if the stability
condition fails. The indicator function I� (:) ; used to eliminate outlier draws, is
uniform over the interval (�20; 20) : In our application all draws were inside the
bounds. The acceptance rate for the Metropolis step is 35:6 percent.

Since the structural model hasM = 6, and dim(�) = 12, then

sA = [e
0
1; e

0
2; e

0
3; e

0
4; e

0
5; e

0
6]
0

where ei are vectors in RM with

ei = [ei;j]
M
j=1 such that ei;j =

�
1; j = i
0; j 6= i

:
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and also

SA =

26666666666666666666666666666666666664

01�dim(�)�
1 01�(dim(�)�1)

��
01�(2�1) 1 01�(dim(�)�2)

�
01�dim(�)�

01�(3�1) 1 01�(dim(�)�3)
��

01�(4�1) 1 01�(dim(�)�4)
�

02�dim(�)�
01�(5�1) 1 01�(dim(�)�5)

�
01�dim(�)�

01�(6�1) 1 01�(dim(�)�6)
��

01�(7�1) 1 01�(dim(�)�7)
�

05�dim(�)�
01�(8�1) 1 01�(dim(�)�8)

�
04�dim(�)�

01�(9�1) 1 01�(dim(�)�9)
��

01�(10�1) 1 01�(dim(�)�10)
�

03�dim(�)�
01�(11�1) 1 01�(dim(�)�11)

�
01�dim(�)�

01�(12�1) 1 01�(dim(�)�12)
�

06�dim(�)

37777777777777777777777777777777777775
Finally, computations were performed on an Intel (R) CORE(TM) i5-2400 CPU
@ 3.1GHz machine with 16GB of RAM.

1.5.4 Multi-move, single move, shrinkage algorithms
The Carter and Kohn (1994) routine is fairly popular in the literature. However,
when one needs to impose stationarity of the impulse responses, it becomes very
inef�cient, in particular in situations like ours, when the SVAR has more than three
variables and year-on-year growth rates of the variables are used. The problem can
be somewhat diminished if quarterly growth rates are used, since they tend to be
less persistent 2 and considerably reduced if data is standardized. We show these
facts in table 1.2, which reports the acceptance rates in the four possible options.

In the Koop and Potter's algorithm, we set L = 25; when evaluate the integ-
rating constants � (:) in each period. The priors, the number of draws and the
skipping scheme are the same as in the multi-move algorithm. The averages ac-
ceptance rates for BT are 97% and 91% for year-on-year and quarterly growth

2We thank an anonymous referee for suggesting us this possibility.
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Detrending n Scales Non-standardized Standardized
Year-on-year growth rates 0:46% 10:2%
Quarterly growth rates 0:60% 11:5%

Table 1.2: Acceptance Rates from multi-move routine

Year-on-year, non-standardized Quarterly, non-standardized

Figure 1.2: Acceptance rates of the single-move algorithm

rates, respectively, much higher than in the multi-move algorithm. The accept-
ance rate greatly differs in different time periods (see Figure 1.2) - this is consist-
ent with the fact that in the multi-move algorithm the whole BT is rejected quite
often. However, the higher acceptance rate comes at the cost of higher computa-
tional time: we need about 12 hours to estimate the model with the multi-move
routine but about 96 hours with the single move routine. Thus, the computational
costs offset the ef�ciency gains.
Apart from the constants, the vector Bt has 72 components. Since we want

to maintain as much as possible the covariance structure of the data unchanged,
we estimate the shrinkage model using 15 factors. There is one common factor,
one factor for each equation (6), one factor for each lag (2), one factor for each
variable (6). �t simply loads the factors on the required elements of the Bt vector.
Thus, it is a 72x15 matrix with zeros and ones. To maintain comparability, we use
the same training sample and the same hyperparameters

�
k2Q; k

2
S; k

2
W

�
as in the

benchmark case. The computational time for the algorithm was about 12 hours
and the acceptance rate for BT was around 78% when the data is standardized.
In sum, both the multi-move and the shrinkage algorithms have reasonable

computational costs but the latter has better acceptance rates. The shrinkage al-
gorithm has less problems with explosiveness by construction, but requires im-
portant restrictions on the law of motion of BT and �T , making the trades-off
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roughly similar. The single move algorithm is instead computationally much more
demanding because we need to compute the constant of integration � (:) at each t
and this cancels out the advantages of having more ef�cient draws for BT .
In what follows we comment on the results obtained using standardized year-

on-year growth rates and the multi-move algorithm.

1.5.5 Time variations in structural parameters

We �rst describe the time variations that our model delivers. In �gure 1.3 we
report the highest 68 percent posterior tunnel for the variability of the monetary
policy shock and in �gure 1.4 the highest 68 percent posterior tunnel for the non-
zero contemporaneous structural parameters �t:
There are signi�cant changes in the standard deviation of the policy shocks

and a large swing in the late 1970s-early 1980s is visible. Given the identi�ca-
tion restrictions, this increase in volatility must be attributed to some unusual and
unexpected policy action, which made the typical relationship between interest
rates and money growth different. This pattern is consistent with the arguments
of Strongin (1995) and Bernanke and Mihov (1998b), who claim that monetary
policy in the 1980s was run differently, and agrees with the results of Sims and
Zha (2006).
Figure 1.4 indicates that the non-policy parameters [�1;t; �2;t; �5;t] exhibit con-

siderable time variations which are a posteriori signi�cant. Note that it is not only
the magnitude that changes; the sign of the posterior tunnel is also affected. Also
worth noting is the fact that both the GDP coef�cient in the in�ation equation
(�1;t) and the in�ation coef�cient in the unemployment equation (�5;t) change
sign, suggesting a generic sign switch in the slope in the Phillips curve.

The parameter �11;t, which controls the reaction of the nominal interest rates
to money growth, also displays considerable changes. In particular, while in the
1970s and in the �rst half of the 1980s the coef�cient was generally small and
at times insigni�cant, it becomes much stronger in the rest of our sample (1986-
2005). Interestingly this time period coincides with the Greenspan era, where of-
�cial statements claimed that monetary policy was conducted using interest rates
as instruments and money aggregates were endogenous.
The coef�cients of the money demand equation, [�3;t; �6;t; �9;t]0 are also un-

stable. For example, the elasticity of money demand to the nominal interest rate
(�9;t) is negative at the beginning of the sample and turns positive since the middle
of the 1970s, with some episodes when it is not signi�cantly different from zero.
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Figure 1.3: Median and posterior 68 percent tunnel, volatility of monetary policy
shock.

Also interesting is the fact that the elasticity of money (growth) demand to in�a-
tion is low and sometimes insigni�cant, but increasing in the last decade. Thus,
homogeneity of degree one of money in prices does not hold for a large portion of
our sample.
One additional features of �gure 1.4 needs to be mentioned. Time variations

in elements of �t are correlated (see, in particular, �5;t and �8;t or �1t and �11t).
Thus our setup captures the idea that policy and private sector parameters move
together.
In sum, in agreement with the DSGE evidence of Justiniano and Primiceri

(2008) and Canova and Ferroni (2012), time variations appear in the variance
of the monetary policy shock and in the contemporaneous policy and non-policy
coef�cients.

1.5.6 The transmission of monetary policy shocks

We study how the time variations we have described affect the transmission of
monetary policy shocks. Since �mpt is time-varying, we normalize the impulse
to be one at all t. Thus, the time variations we describe are due to changes in
the propagation but not in the size of the shocks. We compute responses as the
difference between two conditional projections, one with the structural shock nor-
malized to one and one with the structural shock normalized to zero.
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Figure 1.4: Estimates of �

In theory, a surprise increase in the monetary policy instrument, should make
money growth, output growth and in�ation fall, while unemployment should go
up. Such a pattern is present in the data in the early part of the sample, but dis-
appears as time goes by. As �gure 1.5 indicates, monetary policy shocks have
the largest effects in 1981; the pattern is similar but weaker in 1975 and 1990.
In 2005, prices, output and unemployment effects are perverse (in�ation and out-
put growth signi�cantly increase and unemployment signi�cantly falls after an
interest rate increase). Note that the differences in the responses of output and
unemployment between, say, 1981 and 2005 are a-posteriori signi�cant. Thus, it
appears that the ability of monetary policy to affect the real economy has consid-
erably weakened over time and policy surprises are interpreted in different ways
across decades.

Despite these noticeable variations, the proportion of the forecast error vari-
ance of output, prices and unemployment due to policy shocks is consistently
small. Monetary policy shocks explain little of the forecast error variance of in-
�ation at all times and about 15-20 percent of the variability of output growth and
the unemployment rate, with a maximum of about 25 percent in the early 1980s.
Thus, as in Uhlig (2005) or Sims and Zha (2006), monetary policy has modest
real effects.
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Figure 1.5: Dynamics following a monetary policy shock, different dates.

Figure 1.6: Long-run effects of monetary policy shocks
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1975
1981

1990 2005

Figure 1.7: Time varying and time invariant responses.

Our results are very much in line with those of Canova et al. (2008), even
though they use sign restrictions to extract structural shocks, and of Boivin and
Giannoni (2006), who use sub-sample analysis to make their points. They differ
somewhat from those reported in Sims and Zha (2006), primarily because they
do not allow for time variations in the instantaneous coef�cients, and from those
in Fernández-Villaverde et al. (2010), who allow for stochastic volatility and time
variations only in the coef�cients of the policy rule.

1.5.7 A time invariant over-identi�ed model
We compare our results with those obtained in a constant coef�cient overidenti�ed
structural model. Given that time variations seem relevant, we would like to know
how the interpretation of the evidence would change if one estimates a model with
�xed coef�cients.

To illustrate the difference that the two systems produce, we report the re-
sponses of the variables to a unexpected monetary policy impulse at four dates
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(1975, 1981, 1990, 2005). Clearly, there is more uncertainty regarding the liquid-
ity effect in the time varying SVAR model at some dates. Furthermore, the re-
sponses of output growth, in�ation and unemployment in the constant coef�cients
model are different and the dynamics prevailing in the 1970s seem to dominate.
Thus, the two systems give quite a different interpretation of the transmission of
monetary policy shocks.

1.6 Conclusions
This paper proposes a uni�ed framework to estimate structural VARs. The meth-
odology can handle time varying coef�cient or time invariant models, identi�ed
with recursive or non-recursive restrictions, that are just identi�ed or overidenti-
�ed, and where the restrictions are of linear or non-linear type. Our algorithm adds
a Metropolis step to a standard Gibbs sampling routine but nests the model into a
general non-linear state space. Thus, we greatly expand the set of structural VAR
models that researchers can deal with within the same estimation framework.
We apply the methodology to the estimation of a monetary policy shock in a

non-recursive overidenti�ed TVCmodel similar to the one used by Robertson and
Tallman (2001), Waggoner and Zha (2003) with �xed coef�cients. In the context
of this example, we examine the merits of multi-move vs. a single move routines
and �nd that once data are standardized, the computational costs of using a single-
move routine are larger than the ef�ciency gains. We show that there are important
time variations in the variance of the monetary policy shock and in the estimated
non-zero contemporaneous relationships. These time variations translate in im-
portant changes in the transmission of monetary policy shocks to the variables in
the economy. We also show that a different characterization of the dynamics in
response to monetary policy shocks would emerge in an overidenti�ed but �xed
coef�cient VAR.
The range of potential applications of the methodology is large. For example,

one could use the same setup to identify �scal shocks or externally generated
shocks in models which theory tightly parametrizes. One could also use the same
methodology to identify shocks imposing magnitude restrictions on impulse re-
sponses, as in Rubio-Ramírez et al. (2010), long run restrictions as in Galí and
Gambetti (2009) or variance decomposition restrictions. The computational com-
plexity is important but it is not overwhelming and all the computations can be
easily performed on a standard PC with suf�cient RAM memory.
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Chapter 2

MEASURING THE STANCE OF
MONETARY POLICY IN A
TIME-VARYINGWORLD

2.1 Introduction

The stance of monetary policy is of general interest for macroeconomists and the
private sector. It provides an important input to understand the current state of the
economy and contributes to the expectations formation of future states. Despite its
importance, it has been dif�cult to have an exact measure of this stance, given the
lack of consensus on what were the instruments of monetary policy and operating
procedures at each point in time. Currently, this task has turned even more dif�-
cult after the introduction of so-called Unconventional Monetary Policies (UMP)
and the achievement of the Zero-Lower-Bound (ZLB) of the Federal Funds Rate
(FFR), given that the latter used to be considered the core instrument at least for
the last two decades. The purpose of this paper is to provide a measure of the
policy stance which takes into account changes in the operating procedures of the
Fed.
Monetary Policy is implemented through intervention in the reserves market.

In this market, each participant has to meet a reserve requirement set by the Fed-
eral Reserve in advance. To do that, market participants use the interbank loans
market so that banks that have a de�cit in reserves can borrow from the ones that
have excessive reserves. These loans are granted only if the borrowers have an
amount of collateral equivalent to the asked loan. The equilibrium price of this
market is the FFR. The Fed performs open market operations (OMO) in order to
set the supply of reserves and a thereby affect the equilibrium outcome of this
market. If a bank can not meet its reserve requirement, it has the option of borrow
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reserves from the Fed at the Discount Window (DW), these are called Borrowed
Reserves (BR). Given the Total Reserves (TR) that market participants have at
the end of the period, the difference is called Non-Borrowed Reserves (NBR=TR-
BR). Finally, the way these operations (OMO and DW) are implemented is what
we call operating procedures.
In the recent monetary history of the United States we can �nd evidence of dif-

ferent episodes of operating procedures implementation which depend on what the
Fed targets at each point in time, e. g. targeting borrowed reserves, non-borrowed
reserves, total teserves or the federal funds rate (see, Cosimano and Jansen (1988),
Cosimano and Sheehan (1994), Bernanke and Mihov (1998b), among others).
Structural Vector Autoregressions (SVARs) have been popular techniques to

identify monetary policy shocks and measure the policy stance. In these mod-
els the FFR has been considered the core instrument since the seminal work of
Bernanke and Blinder (1992)12. Christiano and Eichenbaum (1992) and Strongin
(1995) on the other hand used reserves of banks as a monetary policy instrument.
Bernanke and Mihov (1998b) reconcile the two strands of the literature with an
eclectic approach that identi�es monetary policy shocks as a linear combination
of innovations in different instruments. Christiano et al. (1999) summarize the
literature. In the last decade, SVARs have been extended to resolve some prob-
lems with the procedure. In particular, larger information sets have been used to
solve the price-puzzle (see Bernanke et al. (2005)), instability of parameters have
been considered and regime changes explicitly discussed (see Primiceri (2005),
Sims and Zha (2006)). Nevertheless, all these extensions still consider the FFR as
the core instrument. Clearly, approaches that used the FFR as policy instrument
turned out to be unsuitable to discuss UMPs and the achievement of the ZLB.
Recent attempts to identify monetary policy where the ZLB binds and UMP is
active can be found in Baumeister and Benati (2012) and also Peersman (2011).
They use sign-restrictions as in Canova and De Nicoló (2002) and Uhlig (2005),
and identify UMP shocks distinct from FFR innovations. UMP has different di-
mensions, and an innovation in each of them must be associated with monetary
policy actions. As a result, considering a different policy shocks for each UMP
dimension (as in Baumeister and Benati (2012) and Peersman (2011)) is not a
good strategy. We believe, that the strategy of identifying monetary policy shocks
as a linear combination of innovations in different instruments as Bernanke and
Mihov have suggested is a good one, given the various dimensions of UMPs (e.g.
to in�uence Financial Markets conditions through Large Scaled Asset Purchases,
Forward Guidance, Direct Financial Intermediation, Quantitative Easing)3. Thus,

1See also Sims (1986) and Leeper et al. (1996).
2See Kilian (2012) for a recent survey about SVARs and identi�cation.
3See Williams (2011), Williams (2012b) and Williams (2012a) for a detailed description of

UMP. See also Borio and Disyatat (2010) and Cecioni et al. (2011) for a thorough survey of the
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in this paper we modify Bernanke and Mihov (1998b)'s approach to take into
account the multidimensionality of the UMP and the possibility that different in-
struments matter at different points in time.
The building blocks of our approach are as follows. Bernanke and Mihov

(1998b) characterize Federal Reserve's operating procedures and provide a meas-
ure of the stance of monetary policy for the period 1965-1996. Essentially, their
model has an interbank market of reserves where monetary policy can be imple-
mented, depending on the parameter values of the model, by setting either interest
rates (price of reserves) or the supply of reserves. What makes this model useful is
its capability to identify monetary policy shocks for different contexts and instru-
ments (see eq. (12) in the mentioned reference). These authors make explicit their
concern about stability of parameters along their sample of analysis because oper-
ating procedures might have changed (e.g. Volcker's experiment in early 1980s or
the recent UMPs in our case). Instead, when measuring policy stance one should
take into account that the weight of each instrument is likely to be time-varying.
These weights are nonlinear functions of estimated structural parameters. To study
the posterior distribution of the path of the monetary policy stance and the weights
taken by each component, we follow Canova and Pérez Forero (2013), who extend
the Time-Varying Coef�cients (TVC) VAR with Stochastic Volatility of Primiceri
(2005) to deal with non-recursive and potentially overidenti�ed SVAR models.
We extend the framework used by Bernanke and Mihov (1998b) to account for
the monetary policy (UMPs) practices. The model can be used to study the role of
Quantitative Easing (QE), since it identi�es demand and supply of reserves shocks
and discount window operations shocks. However, the model needs to be slightly
modi�ed in order to capture Large Scaled Asset Purchases (LSAPs) and Forward
Guidance (the announcement of future path for interest rates), actions aimed to
affect medium and long-term interest rates. Thus, we specify an informational
equation that represents �nancial markets' dynamics through an indicator of the
level of yield-to-maturity spreads with respect to the short term interest rate4. One
potential limitation of our approach is that we do not make explicit the role of
communication (i.e. FOMC meeting Releases, Minutes, Speaches, etc.) and the
recently introduced interest paid for holding reserves. Our strategy to chacarterize
the Monetary Policy Stance is robust in terms of speci�cation, since we are allow-
ing structural parameters in both policy and non-policy blocks to vary over time.
On the other hand, we believe that part of the effect of FOMC communication
is captured through changes in the level of spreads in the yield curve, which is

different dimensions of UMPs.
4Reis (2009), Blinder (2010), Lenza et al. (2010) and Hamilton and Wu (2012) present the

main characteristics of UMPs, emphasizing the role of yield curve spreads as a powerful indicator
that summarizes both credit policy as well as the expectations of future paths for interest rates
(Forward Guidance).
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included in our SVAR.
We �nd that the stance of monetary policy has varied quite a lot over the last 40

years. It was loose for the �rst half of the 1970s and roughly neutral for the second
half, it becomes tighter at the beginning of Volcker's period, i.e. the so-called Vol-
cker's disin�ation experiment (1980-1982) and then becomes loose again. Vol-
cker's period ends with a relatively tight stance but showing more uncertainty
than before. Greenspan's �rst ten years (1987-1996) exhibit a tight stance with a
short period of loose policy in 1989. A long episode of loose stance (1996-2001)
is observed with a subsequent neutral stage (2002-2003). Last Greenspan's years
(2003-2005) display a relatively tight stance but shows an upward trend starting in
late 2004. The stance turns to be loose when Bernanke's period starts until the out-
break of the Great Recession in 2007:Q4, when the stance turns to be tight again
since 2008:Q4. We �nally observe a reversal of this pattern after the implement-
ation of UMPs, when the stance turns to be relatively loose in 2011-2012. This
result is also in line with Beckworth (2011), who claims that the Monetary Policy
Stance was relatively tight in 2008. The relative weights of these instruments are
time-varying, where the most important result is the weight of zero for the FFR
at the end of the sample, consistent with the binding ZLB. What matters here is
the fact that the model is capable of capturing signi�cant changes in operating
procedures.
Model estimates allow us to explore time variations in the transmission of

policy shocks. Overall, the transmission of monetary policy shocks is stable for a
large portion of our sample, but it exhibits signi�cant changes after the outbreak
of the Great Financial Crisis and the achievement of the ZLB. We �nd that the
effect of expansionary policy shocks on the spreads is positive before 2007, but
turns to be negative afterwards. The latter is consistent with the purpose of UMPs,
i.e. since the FFR is constant, the objective is to cut medium and long term in-
terest rates. We also show that the liquidity effect vanishes over time and that the
volatility of monetary policy shocks is changing.
We explore the sensitivity of our results using alternative speci�cations. We

�nd that the paths of structural parameters and variances might differ across mod-
els. However, the main features of our result are robust.
In sum, the approach this paper presents is capable of capturing changes in

monetary policy impementation across different episodes. We present a monetary
policy stance index that hope will be useful for both policy makers and research-
ers. More work is needed for exploring the explicit role of communication in
UMPs, the announcement of future paths of interest rates and credibility. We be-
lieve that these type of issues should be explored in a richer setup and therefore we
leave it for future agenda. In this regard, some structural models that incorporate
different dimensions of UMPs can be found in Gertler and Karadi (2011), Cúrdia
and Woodford (2011) and Chen et al. (2012).
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The paper is organized as follows: section 2.2 presents the Structural VAR
model used for the analysis, section 2.3 describes the estimation procedure, sec-
tion 2.4 presents an estimate of the monetary policy stance, sections 2.5 and 2.6
explore the transmission mechanism and the volatility of monetary policy shocks,
respectively, section 2.7 presents the sensitivity analysis and section 2.8 con-
cludes.

2.2 The Model

2.2.1 A Structural Dynamic System
We are interested in specifying a dynamic setting that allow us to identify mon-
etary policy shocks. Therefore, we closely follow the methodology proposed by
Bernanke and Blinder (1992) and Bernanke and Mihov (1998b). That is, assume
that the structure of the economy is linear and given by

Yt = cnpt Dt +

pX
i=0

Ri;tYt�i +

pX
i=0

Ti;tPt�i + Cnpt v
np
t

Pt = cptDt +

pX
i=0

Si;tYt�i +

pX
i=0

Gi;tPt�i + Cpt v
p
t

where Yt is a vector of macroeconomic variables, Pt is a vector of monetary policy
instruments, cnpt and cpt are matrices of coef�cients on a vector of deterministic
variables Dt and vnpt and vpt are vectors of structural shocks that hit the economy
at any point in time t = 1; : : : ; T with

vkt � N
�
0;�kt�

k0
t

�
; k = fnp; pg

where �kt�k0t is a diagonal positive de�nite matrix and Cov (v
np
t ; v

p
t ) = 0. Notice

that here we allow for potential time variation in matrix coef�cients and variances
and therefore we include the index t for each of them. We assume that the macroe-
conomic variables Yt do not react within the same period to innovations in policy
instruments, i.e. T0;t = 0 8t, so that

Yt = cnpt Dt +

pX
i=0

Ri;tYt�i +

pX
i=1

Ti;tPt�i + Cnpt v
np
t (2.1)

Pt = cptDt +

pX
i=0

Si;tYt�i +

pX
i=0

Gi;tPt�i + Cpt v
p
t

where we assume that a period t is a quarter. For now we can say that the structure
of the economy (2:1) takes the form of a system of Vector Autoregressions (VAR)
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of order p. Denote the vector of variables yt � [Y 0
t ; P

0
t ]
0, the vector of intercepts

ct �
�
cnp0t ; cp0t

�0 and the matrices
At �

�
A11;t A12;t
A21;t A22;t

�
=

�
I �R0;t 0
�S0;t I �G0;t

�
(2.2)

Ai;t �
�
Ri;t Ti;t
Si;t Gi;t

�
; i = 1; : : : ; p

Ct �
�
C11;t C12;t
C21;t C22;t

�
=

�
Cnpt 0
0 Cpt

�
; �t �

�
�npt 0
0 �pt

�
so that the model can be re-expressed as a Structural VAR with time-varying coef-
�cients:

Atyt = ctDt + A1;tyt�1 + :::+ Ap;tyt�p + Ctvt (2.3)
Without additional assumptions, the economic model expressed in its structural
form cannot be directly estimated. In order to identify the vector of structural
shocks

�
vnp0t ; vp0t

�0 we need to identify the matrices At and Ct. We will describe
the structural model in subsection 2.2.3 but �rst we will describe the basic setup
in detail.

2.2.2 Basic setup
Consider a vector of M variables yt(M�1) with data available for T periods. I
assume that the data generating process for yt is the reduced-form version of the
model (2:3), i.e. a VAR(p) process such that:

yt = B0;tDt +B1;tyt�1 + :::+Bp;tyt�p + ut; t = 1; : : : ; T (2.4)

where B0;t � A�1t ct is a matrix of coef�cients on a �M � 1 vector of deterministic
variablesDt and Bi;t � A�1t Ai;t; i = 1; : : : ; p areM �M matrices containing the
coef�cients on the lags of the endogenous variables and the error term is distrib-
uted as ut(M�1) � N (0;
t), where 
t(M�M) is a symmetric, positive de�nite, full
rank matrix for every t. Equation (2:4) is a reduced form and the error terms ut do
not have an economic interpretation. Let the structural shocks be "t � N (0; IM)
and let the mapping between these shocks and their reduced form counterpart be

ut = A�1t Ct�t"t (2.5)

where At(M�M), Ct(M�M) and �t(M�M) are de�ned in (2:2). In order to be in line
with the notation of previous subsection, we should note that "t � ��1t vt is the
normalized version of the structural shocks. I substitute (2:5) into (2:4) so that we
get structural form of the VAR(p) model:

yt = X 0
tBt + A�1t Ct�t"t (2.6)
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The matrix of regressors is X 0
t = IM 


�
D0
t;y

0
t�1; : : : ;y

0
t�p
�
is a M �K matrix

where Dt potentially includes a constant term, trends, seasonal dummys, etc and
K =M �M + p�M2. Parameter blocks

�
Bt; At; C

�1
t ; �t

�
are treated as latent

variables that evolve as independent random walks:

Bt = Bt�1 + �t (2.7)

�t = �t�1 + �t (2.8)

ect = ect�1 + %t (2.9)

log (�t) = log (�t�1) + �t (2.10)

where Bt(K�1) =
�
vec (B0;t)

0 ; vec (B1;t)
0 ; : : : ; vec (Bp;t)

0�0 is a K � 1 vector; �t
and ect denote free parameters of matrices At and C�1t , respectively5. In addition,
�t(M�1) is the main diagonal of �t. Finally, the covariance matrix for the error
vector is:

V = V ar

0BBBB@
266664
"t
�t
�t
%t
�t

377775
1CCCCA =

266664
IM 0 0 0 0
0 Q 0 0 0
0 0 Sa 0 0
0 0 0 Sec 0
0 0 0 0 W

377775 (2.11)

The model presented captures time variations of different parameter blocks: i)
lag structure (2:7), ii) structural parameters (2:8) and (2:9) and iii) structural
variances (2:10). In other words, the model is capable of capturing the sources
of potential structural changes, i.e. drifting coef�cients (Bt; �t;ect) or stochastic
volatility (�t) without imposing prior information about speci�c dates or number
of structural breaks. In particular, in the process of identifying parameters that
affect the policy stance and represent the operating procedures, a subset of (�t;ect)
will have a major relevancy.

2.2.3 A Structural VAR model with an Interbank Market
Bernanke and Mihov (1998b) proposed a semi-structural VAR model that charac-
terizes Federal Reserve's operating procedures. The purpose of this section is to
present an extension of the framework in order to take into account conventional
and unconventional policies.

5The reason of why we are focused on C�1t instead of Ct is for computational convenience
after the construction of the State-Space model (see Appendix B.3.4 for details). For instance,
denote ct as the vector of free parameters of Ct. Then, if Ct is lower-triangular with ones in the
main diagonal (which is indeed the case here), then the set of free parameters of C�1t will be
simply the vector ect = �ct. Thus, recovering the original parameters will be straightforward.
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Consider the vector of variables

yt = [xt; �t;�Pcomt; SPRt; TRt; FFRt; NBRt]
0

where xt represents output growth rate, �t represents the in�ation rate, �Pcomt

is the growth rate of an index of commodity prices, SPRt is an index that sum-
marizes the evolution of �nancial markets, TRt is the total amount of reserves that
banks hold at the Central Bank, FFRt is the Federal Funds Rate in annual terms
and NBRt is the total amount of non-borrowed reserves. Regarding the model
speci�cation, we re-write equation (2:5) as follows6

Atut = Ctvt

where vt = �t"t is the re-scaled vector of structural shocks and ut is the vector
of reduced-form innovations. Moreover, recall the system partition described in
subsection 2.2.1. That is, there is a non-policy block and a policy block:�

A11;t A12;t
A21;t A22;t

� �
unpt
upt

�
=

�
C11;t C12;t
C21;t C22;t

� �
vnpt
vpt

�
(2.12)

Within the non-policy block there is output growth, in�ation, and commodity
prices growth, so that unpt = [uxt ; u

�
t ; u

c
t ]
0 and vnpt = [vxt ; v

�
t ; v

c
t ]
0. The system

has M = 7 variables, where we denote the number of non-policy variables as
Mnp = dim (unpt ) = 3. The policy block contains the remaining variables of
the system, i.e. Mp = M �Mnp = dim (upt ) = 4, which will be called policy
instruments. We specify a sub-system of equations for the portion of upt that is
orthogonal to the non-policy block unpt . The set of assumptions embedded in the
system of equations above can be summarized as follows:

1. Non-policy block: First, non-policy variables only react to policy changes
with some delay, i.e. according to (2:2), we have A12;t = 0(Mp�Mnp);8t.
The intuition behind this assumption is that the private sector considers the
lagged stance of policy as a state variable. That is, non-policy variables will
not change in the same quarter after an innovation in a particular instrument
that belongs to upt . Moreover, following Bernanke and Mihov (1998b), We
will keep this non-policy block unmodeled and just assume that A11;t is
lower triangular

A11;t =

24 1 0 0
��x;t 1 0
�cx;t �c�;t 1

35
6According to Amisano and Giannini (1997) and Lütkepohl (2005) (ch. 9), the model presented

in is one version of the AB model. See the mentioned references for details.
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The ordering in this block is an open question, but for the question of in-
terest it does not matter, since the results we present are robust. We also
assume that innovations in unpt will affect the policy block in the same
quarter, i.e. A21;t is an unrestricted Mnp �Mp matrix of potentially non-
zero parameters (see Appendix B.3.4). In addition, according to (2:2), we
have C12;t = 0(Mp�Mnp) and C21;t = 0(Mnp�Mp);8t. We also assume that
C11;t = IMp is the identity matrix, which means that structural shocks vxt ,
v�t and vct only affect output growth, in�ation and commodity growth on
impact, so that there are no cross-effects on impact.

Turning to the policy block, the next four equations have the aim to describe
the Interbank Market of Reserves. That is, each period t banks have to meet
their reserve requirements determined by the Fed. The sum of the level
of reserves across banks determines the term "Total Reserves" denoted by
TRt. Moreover, these reserves pay an interest that is closely related to the
Federal Funds Rate, FFRt and as a result the latter is a relevant indicator for
the demand of reserves. In order to meet their reserve requierements banks
have three alternatives: they could get liquidity from the Discount Window
("Borrowed Reserves", BRt), or through interbank loans and Open Mar-
ket Operations ("Non-Borrowed Reserves", NBRt). Banks have a pool of
assets that are used as collaterals in order to get liquidity. It is natural to
assume that the pool of assets owned by banks are also traded in the sec-
ondary market. As a result, the evolution of the Spreads in the yield curve
with respect to the short term interest rate, SPRt, is also a relevant indic-
ator. If banks use more of these assets to get reserves TRt, they are going to
affect the relative supply of them in the secondary market, so that the �nal
price is going to change. For that reason, we assume that innovations in
the terms TRt and NBRt potentially affect SPRt contemporaneously. We
also allow that the Federal Funds Rate FFRt affects SPRt contemporan-
eously. To close the model, we assume that the Federal Reserve intervenes
in the market by deciding the amount of liquidity that is going to be in-
jected through open market operations. I will now proceed to describe the
structural equations that describe the Interbank Market. In equation (2:12):

2. Financial markets equation: Here we characterize the dynamics of Finan-
cial Markets. To do that, I construct the indicator SPRt which is essentially
the �rst principal component of a large dataset of spreads w.r.t. the Federal
Funds Rate at different maturities7. This principal component is associated

7I de�ne a set of variables xt that contains the spreads of the Treasury Bonds yield with respect
to the Federal Funds Rate FFRt for every term included (3M,6M,1Y, 2Y, 3Y, 5Y, 10Y, 30Y as
well as AAA and BAA bonds). The indicator Spreadt is the �rst principal component of the
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with the level of the spreads. Moreover, according to Bernanke et al. (2005),
the inclusion of more information in the VAR model is also crucial to avoid
the so-called price puzzle. The structural residual vft represents a �nancial
market shock. Moreover, the fact that one dimension of UMP is to directly
in�uence interest rate spreads makes it possible to consider this equation
within the policy block89.

uSPRt = ��SPRTR;tu
TR
t � �SPRFFR;tu

FFR
t � �SPRNBR;tu

NBR
t + vft (2.13)

3. Demand for Reserves equation: Represents the total demand for reserves of
banks. In particular, the portion of uTRt which is orthogonal to the nonpolicy
block depends negatively on the Federal Funds Rate's innovation uFFRt and
vdt represents a shock to reserves' demand.

uTRt = ��d1;tuFFRt + vdt (2.14)

4. Demand for discount window operations equation: Borrowed Reserves (BR)
is the portion of reserves obtained through the discount window. They de-
pend positively on the Federal Funds Rate's innovations uFFRt and vbt rep-
resents a shock to the discount window operations' demand. This potential
source of �uctuation could become relevant in episodes of �nancial stress
or under BR targeting.

uBRt = uTRt � uNBRt = �b1;tu
FFR
t + vbt (2.15)

5. Federal Reserve equation: Represents the money supply process, i.e. li-
quidity provision through open market operations in order clear the money
market. The portion of uNBRt which is orthogonal to the nonpolicy block
responds contemporaneously to shocks in the spreads, the demand for total
and borrowed reserves. Every other action unrelated with the mentioned
shocks is called an exogenous monetary policy shock, vst .

uNBRt = �ft v
f
t + �dt v

d
t + �btv

b
t + vst (2.16)

matrix xtx0t, a vector that is normalized according to Bernanke et al. (2005). We take only the �rst
factor, which is related with the level of spreads. Second and Third factors are related with the
slope and curvature, see Mumtaz and Surico (2009).

8See also Baumeister and Benati (2012) for a detailed version of a TVP-SVAR identi�ed with
sign-restrictions. The document �nds a powerful effect of lowering interest rate spreads on the
aggregated economy.

9Several empirical papers have found that the Fed is able to in�uence the level of these spreads
at different maturities through Large-Scale Asset Purchases and Forward guidance policies. See
e.g. Gagnon et al. (2010), Gagnon et al. (2011), Swanson and Williams (2012), Hamilton and Wu
(2012), Christensen and Rudebusch (2012), Chung et al. (2012) among others.
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Equations (2:14) and (2:15) and a slightly modi�ed equation (2:16) also ap-
pear in the benchmark version from Bernanke and Mihov (1998b). It is worth
to notice that the signs in equations do not necessarility imply an identi�cation
strategy via sign-restrictions. Thus, our main contribution is equation (2:13). As
in the above reference, we use the idea that each of the four variables could be con-
sidered a monetary policy instrument. In this framework, we abstract for the role
of Fed's monetary policy communication (i.e. FOMC meeting Releases, Minutes,
Speaches, etc.) as well as for interest paid by reserves. Our strategy is robust
in terms of speci�cation, since we are allowing structural parameters from both
policy and non-policy blocks as well as structural variances to vary over time.
Since the model is an approximation that could potentially be misspeci�ed, it
is likely that posterior estimates of structural parameters will vary across sub-
samples. Therefore, it is even better to allow for continuous drifting parameters10.
On the other hand, we believe that part of the effect of FOMC communication
could be captured through changes in the level of SPRt included in our SVAR.
Recall (2:12) and consider the sub-system of equations for the portion of upt

that is orthogonal to the non-policy block unpt , i.e. A22;tu
p
t = C22;tv

p
t . The system

is11:2664
1 �SPRTR;t �SPRFFR;t �SPRNBR;t

0 1 �d1;t 0
0 1 ��b1;t �1
0 0 0 1

3775
| {z }

A22;t

�

2664
uSPRt

uTRt
uFFRt

uNBRt

3775 =
2664
1 0 0 0
0 1 0 0
0 0 1 0

�ft �dt �bt 1

3775
| {z }

C22;t

�

2664
vet
vdt
vbt
vst

3775

The latter system can be solved for structural shocks vpt = C�122;tA22;tu
p
t . In partic-

ular, the last equation of this system corresponds to the monetary policy shock vst ,
that is:

vst = ��ft uSPRt (2.17)

�
�
�bt + �dt + �ft �

SPR
TR;t

�
uTRt

+
�
�bt�

b
1;t � �dt�

d
1;t � �ft �

SPR
FFR;t

�
uFFRt

+
�
�bt � �ft �

SPR
NBR;t + 1

�
uNBRt

The intuition behind equation (2:17) is that monetary policy actions can be rep-
resented as a linear combination of innovations in different instruments. Policy
10See Cogley and Yagihashi (2010), Chang et al. (2010) and Canova and Pérez Forero (2013)

for more details about this issue.
11We have considered that now

q
var

�
vbt
�
= �bt=

���b1;t��. See also Favero (2001) for a similar
approach using Bernanke and Mihov (1998b)'s model.
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actions are characterized not only as interest rate innovations as commonly sug-
gested in the literature and (2:17) can be used to evaluate the Monetary Policy
Stance. Relative to Bernanke and Mihov (1998b), we take into account innova-
tions in Yield-Curve Spreads that are orthogonal to the non-policy block, since
that captures the new UMP instruments.
Because we are allowing coef�cients to vary over time, the weight of each

instrument will be time-varying as well. These weights are nonlinear functions of
structural parameters that come from the estimated SVAR model. As a result, this
characterization of policy actions is robust to changes in the operating procedures
during the sample of analysis. For instance, consider the case of monetary policy
conducted by interest rate setting. If the ZLB is binding, then the FFR will no
longer be the policy instrument, at least temporarily. As a result, the Fed will
re-design its operating procedures putting more weight on other instruments and
assigning zero weight to the FFR12.
The sub-system hasMp = 4 variables. Therefore the variance covariance mat-

rix of the reduced form error terms upt will have 4� (4 + 1) =2 = 10 parameters.
On the other hand, the vector of structural parameters has 12 elements, i.e.

�t =
�
�SPRTR;t ; �

SPR
FFR;t; �

SPR
NBR;t; �

d
1;t; �

b
1;t; �

f
t ; �

d
t ; �

b
t ; �

f
t ; �

d
t ; �

b
t ; �

s
t

�0
These parameters are treated as latent variables (see Canova and Pérez Forero
(2013) for details). Thus, to achieve identi�cation it is necessary to impose 2
additional restrictions. Following Bernanke and Mihov (1998b), we focus our
attention on equation (2:17) and assume that monetary policy is associated with a
particular instrument, i.e. set restrictions such that all the brackets are equal to zero
except the one associated with our instrument of interest. Since our sample covers
periods where the Fed had different chairmen and the period of UMP, we have
less reasons to restric our attention to a particular instrument. Instead, we want
to capture changes in operating procedures, which means that all the brackets in
(2:17) could potentially be different from zero. For that reason we assume that

�SPRTR;t = �SPRNBR;t = 0 (2.18)

Thus, the portion of uSPRt which is orthogonal to the nonpolicy block does not
react within the same quarter to innovations in either Total or Non-Borrowed Re-
serves. This is not necessarily a strong assumption since what makes spreads re-
act is the announcement of future changes in the money supply, such as QE1, and
not necessarily effective changes in reserves. On the other hand, unlike Strongin
(1995) and Bernanke and Mihov (1998b), we assume that �dt 6= 0 and it means
that the demand of Total Reserves is not necessarily inelastic with respect to the
12See for instance Reis (2009) and Blinder (2010).
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Federal Funds Rate. We believe that in the context of a binding ZLB the demand
for Total Reserves is not inelastic and for that reason we choose this assumption.
Our system of equations will be exactly identi�ed if (2:18) is imposed but we are
still free to consider different instruments of monetary policy at any given time.
We also test the sensitivity and plausibility of these identi�cation restrictions in
section 2.7.
The estimation of the path for the structural parameters and of vst in (2:17)

will give us a measure of the monetary policy stance that internalizes changes
in operating procedures. On the other hand, the estimated path of the variance
of policy shocks will shed light on the relative importance of the non-systematic
component.

2.3 Bayesian Estimation

The purpose of this section is to describe the procedure used to estimate the para-
meters of the statistical model described in (2:6). In particular, we are interested in
the posterior distribution of the latent variables described in (2:7), (2:8), (2:9) and
(2:10). I will adopt a Bayesian perspective and, following Primiceri (2005), I will
use a Multi-move Gibbs Sampling procedure. Moreover, we will sample struc-
tural coef�cients from (2:8) and (2:9) introducing two Metropolis-type steps, as
suggested by Canova and Pérez Forero (2013).

2.3.1 Data description

The time series used for the analysis are in quarterly frequency and were taken
from the International Financial Statistics (IFS) Database of the International
Monetary Fund (IMF), from the Federal Reserve Board's website and from S&P
Dow Jones Indices13. From the former database I took the GDP De�ator and
Aggregate Gross Domestic Product index (Volume, base 2005=100). From the
second database I took Total Reserves of aggregated depository institutions, Non-
borrowed Reserves of aggregated depository institutions (both seasonally adjus-
ted), Federal Funds Rate and the Treasury Bonds yields from maturities 3M, 6M,
1Y, 2Y, 3Y, 5Y, 10Y, 30Y as well as AAA and BAA bonds. Finally, I took the
Dow Jones average index from the third database. The sample runs from 1959:Q1
- 2012:Q3 (215 obs.) and includes approximately four years after the outbreak of
the Great Recession.
13http://www.imfstatistics.org/imf/about.asp,
http://www.federalreserve.gov/econresdata/releases/statisticsdata.htm,
http://www.djaverages.com/?view=industrial&page=overview, respectively.
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Industrial Production and Consumer Price Index variables are expressed in
annual growth rates, i.e. y�i;t = 100 � (log (yi;t)� log (yi;t�4)). Federal Funds
Rate and the remaining interest rates from the yield curve are expressed in annual
terms. To induce stationarity, Total and Nonborrowed Reserves were standardized
using the mean and standard deviation of Non-Borrowed Reserves for a window
of 16 quarters. Bernanke and Mihov (1998b) also divide Total and Non-Borrowed
reserves by the average of Total Reserves using a window of 36months. However
their approach is not useful for inducing stationarity given the recent changes in
reserves14.

2.3.2 Priors and setup

The Priors of the VAR are shown in Table 2.1 and they are chosen to be conjug-
ated. As a result the posterior distribution will be Normal and Inverted-Wishart
for each corresponding case. To insure stationarity of impulse responses, the pos-
terior of BT is truncated. That is, the associated companion form of the VAR
(2:4) is computed for each draw of BT and it is discarded if it does not satisfy the
stability condition for t = 1; : : : ; T . The latter procedure is captured by the indic-
ator function IB (:). In addition, the prior for initial states of structural parameters
is calibrated using the �rst � = 40 observations (1959:Q1 - 1969:Q4) as a train-
ing sample. Thus, we estimate

�
B;VB

�
via OLS and (�0; c0;�0)0 via Maximum

Likelihood1516.
Moreover, I set k2Q = 0:5 � 1 � 10�4; k2W = 1 � 10�4, following Primiceri

(2005), and k2Sa = k2Sec = 1 � 10�3, following Canova and Pérez Forero (2013).
Finally, lag length is set to p = 2.

Table 2.1: Priors
B0�N

�
B; 4 �VB

�
Q � IW

�
k2Q �VB; 1 + dimB

�
�0 � N (�; diag (j�j)) Sa� IW

�
k2Sa � diag (j�j) ;
1 + dim�

�
ec0 � N (�c; diag (j�cj)) Sec� IW

�
k2Sec � diag (j�cj) ;

1 + dimec
�

log (�0) � N (log (�) ; IM)Wi� IG (k2W ; 1=2) ; i = 1; : : : ;M

14We have also tried to regress Total and Non-Borrowed Reserves on a constant and linear trend
with breaks in the third quarter of 2008. However, the obtained residuals are extremely volatile.
15The MATLAB code csminwel.m from professor C. Sims website is used

(http://sims.princeton.edu/yftp/optimize/m�les/). I have chosen randomly 100 different starting
points in order to �nd a global maximum.
16Alternatively, we could use a Minnesota-style prior for calibrating

�
B;VB

�
(see Del Negro

(2003), Canova (2007) (ch.10), among others), but we do not cover this issue here.

48



�swp0000� � 2013/7/1 � 20:04 � page 49 � #67

Since it is assumed that the blocks
�
BT ; �T ;ecT ; �T � follow random walks (see

equations (2:7), (2:8), (2:9) and (2:10)), we use the mean and the variance of the
priors of B0, �0, ec0, log (�0) to initialize the Kalman Filter at each iteration. The
sampling procedure is described below.

2.3.3 Sampling parameter blocks
We have to sample parameter blocks

�
BT ; �T ;ecT ; �T ; sT ; V � and we do it se-

quentially using the logic of Gibbs Sampling (see Chib (2001)). The block sT
is an auxiliar one used as an intermediate step for sampling �T , see Kim et al.
(1998). The sampling algorithm is as follows:

1. Set an initial value for
�
BT
0 ; �

T
0 ;ecT0 ; �T0 ; sT0 ; V0� and set i = 1.

2. Draw reduced-form coef�cientsBT
i from p

�
BT
i j �Ti�1;ecTi�1; �Ti�1; sTi�1; Vi�1��

IB
�
BT
i

�
.

3. Draw structural parameters �Ti from p
�
�Ti j BT

i ;ecTi�1; �Ti�1; sTi�1; Vi�1�.
4. Draw structural parameters ecTi from p

�ecTi j BT
i ; �

T
i ; �

T
i�1; s

T
i�1; Vi�1

�
.

5. Draw volatilities �Ti from p
�
�Ti j BT

i ; �
T
i ;ecTi ; sTi�1; Vi�1�.

6. Draw the indicator sTi from p
�
sTi j BT

i ; �
T
i ;ecTi ; �Ti ; Vi�1�.

7. Draw hyperparameters Vi from p
�
Vi j �Ti ;ecTi ; yTi ; �Ti ; sTi �.

8. SetBT
i ; �

T
i ;ecTi ; �Ti ; sTi ; Vi as the initial value for the next iteration. If i < N ,

set i = i+ 1 and go back to 2, otherwise stop.

The indicator function IB (:) truncates the posterior distribution of BT for
draws that violate stationarity for t = 1; : : : ; T . I perform N = 150; 000 draws
discarding the �rst 100; 000 and I store one every 100 draws for the last 50; 000 to
reduce serial correlation. Details about the algorithm are in Appendix B.3.2. The
reader is also referred to the Appendix B.4 for the diagnosis of convergence.

2.4 The Stance of Monetary Policy
Using equation (2:17) and the identi�cation restrictions (2:18), replacing the re-
duced form innovations by the data (standardized) included in the VAR and re-
naming the resulting index as the monetary policy stance (MPS), the expression
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Figure 2.1: Posterior distribution of the Monetary Policy Stance, median value
and 90 percent posterior bands

of interest is:

MPSt = ��ft SPRt �
�
�bt + �dt

�
TRt + (2.19)

+
�
�bt�

b
1;t � �dt�

d
1;t � �ft �

SPR
FFR;t

�
FFRt +

�
�bt + 1

�
NBRt

We compute the posterior distribution forMPSt at each point in time using pos-
terior estimates of the parameters and VAR variables divided by their sample
standard deviation. Moreover, in oder to normalize this index, we substract the
resulting sample mean for each draw of MPSt. Thus, the index has zero mean
and therefore it is easy to associate positive (negative) values with a loose (tight)
stance. In addition, since this index is a linear combination of standardized data,
we assume that the index is also standardized.
Figure 2.1 depicts the index capturing the Monetary Policy Stance for the

period 1974-2012. To the best of our knowledge, this is the �rst time that such
an index is produced taking into account the uncertainty of parameter estimates.
Overall, the stance varies quite a lot over the last 40 years. It is loose for a �rst half
of the decade of 1970s and is about neutral for the second half. We can see a tight
stance at the beginning of Volcker's period, i.e. during the so-called Volcker's
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Figure 2.2: Monetary Policy Stance and NBER recession dates (shaded areas)

disin�ation experiment (1980-1982). Volcker's period ends with a relatively tight
stance but showing more uncertainty than in previous periods. Greenspan's �rst
ten years (1987-1996) were characterized by a tight stance with a short period
of loose stance in 1989. A long episode of loose stance is observed in 1996-2001
with a subsequent neutral stage (2002-2003). Last Greenspan's years (2003-2005)
exhibit a relatively tight stance but policy was increasingly looser since 2004. The
stance turns loose when Bernanke's period starts until the outbreak of the Great
Recession in 2007:Q4. Since 2008:Q4 the stance turns to be tight again. Finally
we observe a reversion in this pattern after the implementation of UMPs, when the
stance turns to be relatively loose in 2011-2012. This result is in line with Beck-
worth (2011), who claims that the Monetary Policy Stance was relatively tight in
2008.
It is important to associate the monetary policy stance with each appoin-

ted chairman. In Figure 2.1 we can differentiate episodes of Burns-Miller (un-
til 1979:Q2), Volcker (1979:Q3-1987:Q2), Greenspan (1987:Q3-2005:Q4) and
Bernanke (2006:Q1-present).
In addition, we show the same stance but including the NBER recession dates

in shaded areas in Figure 2.2. Note that during Volcker's disin�ation period (1980-
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1982), there is a sharp fall in the index as in late 1980 related with a sharp fall in
long term intest rates17. In general, we observe a that our MPS index falls during
recessions.

The contribution of each of the included instruments into the MPS index is
presented in Figure 2.3. As expected, the contribution of FFR, Total and Non-
Borrowed Reserves is important. The interesting part is related with the level of
spreads (SPR), which also exhibits a substantial historical contribution. The latter
is simply to intepret, it indicates that expected future interest rates, in�ation ex-
pectations and credibility play a key role for determining the policy stance. Thus,
managing and anchoring expectations has been always a relevant policy instru-
ment18. Regarding the issue of managing expectations and spreads, we can col-
lect evidence from Goodfriend and King (2005) (the Volcker's disin�ation epis-
ode) and the recent implementation of Unconventional Monetary Policies, with
the speci�c focus on Forward Guidance. In addition, Total Reserves (TR) seem
to also explain the recent monetary policy stance. Thus, in line with Cúrdia and
Woodford (2011), the size of the balance sheet of the Federal Reserve plays an
important role, even when the ZLB is binding.

We have shown how each instrument effectively contributes to the evolution of
the MPS index. However, it turns out that their relative weights are time-varying,
as it is shown in Figure 2.4. The fact that these weights are time varying re�ects
the overwhelming evidence about changes in operating procedures. One should
notice that interest rate spreads always played a signi�cant role, and a role that
actually has been increasing over time (see absolute values in panel (a). On the
other hand, we �nd a signi�cant weight of Total and Non-Borrowed reserves (see
panels (b) and (c)) in the index.

In line with a textbook approach, a negative weight for FFRt (panel (c))
means that monetary policy is loose after lowering this rate. It turns out that
the weight of the FFR in the monetary policy stance is relatively higher during
the Greenspan period (1987-2005). This weight has been decreasing in absolute
value since 2005. Note also that the weight for the FFR is close to zero in early
1980s and turns to be statistically insigni�cant at the end of the sample. These two
effects are consistent with the conventional wisdom and a binding ZLB. All in all,
the model seems capable of capturing signi�cant changes in operating procedures
and this should increase our trust in what it delivers about the transmission of
monetary policy shocks.

17See Goodfriend and King (2005).
18Recall that this is the portion of Spreadst that is orthogonal to the non-policy block.
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Figure 2.3: Historical Decomposition of Monetary Policy index and NBER reces-
sion dates (shaded areas)
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(a) SPR (b) TR

(c) FFR (d) NBR

Figure 2.4: Weights of various instruments in the Monetary Policy index, median
value and 90 percent con�dence bands
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2.5 The TransmissionMechanism ofMonetary Policy
revisited

In this section we explore the transmission of monetary policy shocks ("st) on the
interbank market and the aggregate economy. Since parameters vary continuously,
it is possible to trace impulse responses along the time dimension and explore their
evolution over time. Let the impulse response function be

@yt+j
@"t

= Fj

�
fBigt+ji=t ; At; C

�1
t ;�t

�
; j = 0; 1; : : : (2.20)

where Fj (:) depends on the companion form matrix of (2:4) for periods t; t +
1; : : : ; t+ j and the blocks At, C�1t , �t and depends on when the shock occurs.In
particular:
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J0Ht (e"t � "t)

#
(2.21)

where Ht = A�1t Ct�t and Ac
t is the companion form matrix of (2:4). Details on

the derivation of equation (2:21) are in Appendix B.2.
Figure 2.5 depicts the response of each variable after an expansionary policy

shock ("st) in 1996, a date that we associate with normal times. First, output
growth and in�ation exhibith a hump-shaped response where the peaks are 6 and
12 quarters after the shock. The sluggish response of In�ation suggests some form
of price rigidity. The expansionary policy produces an increase in Total Reserves
(TR). Non-Borrowed Reserves (NBR) and Federal Funds Rate (FFR) move in
opposite directions after the shock occurs, and this effect disappears in the long
run. Finally, this shock produces a positive response in our Spreads indicator,
meaning that short term interest rate (FFR) moves faster than long-term ones.
Figure 2.6 depicts the response of each variable after an expansionary policy

shock ("st) in 2012. In comparison to Figure 2.5, it is noticeable that the transmis-
sion mechanism of monetary policy has been altered. In particular, the response of
in�ation is stronger and more persistent and the peak is higher and it is achieved in
less than 12 quarters. The response of the Spreads index is negative, meaning that
now long-term interest rates move faster than short term interest rate (FFR). As a
matter of fact, the response of the FFR is small and almost insigni�cant, since the
target rate is close to zero19. The latter result is also in line with Baumeister and
Benati (2012), where we can observe that an expansionary policy shock is associ-
ated with a compression in spreads and a positive response in output growth and
in�ation. However, we do not use additional restrictions such as zeroing the coef-
�cients of the interest rate equation for a certain amount of periods. As a matter
19Responses of other dates are avaiable in Appendix B.1.
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Figure 2.5: Responses to Monetary Policy shocks in 1996, 90 percent con�dence
interval

of fact, unlike Baumeister and Benati (2012), our identi�cation strategy is more
�exible, in the sense that it identi�es a pure policy shock, regardless of which is
the current instrument used for conducting monetary policy.
Since the monetary transmission mechanism has changed over time, we want

to dig into a particular issue of interest, named the liquidity effect. According
to the literature20, a temporary increase in money supply introduces a negative
reaction of interest rates which vanishes in the long run. This pattern is clear,
in particular, when rather than M1 or M2, Non-Borrowed Reserves are included
in the SVAR model21. Our model possesses this feature and suggests that this
pattern is changing over time. Figure 2.7 depicts the evolution of the response
of the Federal Funds Rate after a policy shock in Non-Borrowed Reserves of the
same size for each date. It is clear that the response is strong up to late 1980s, but
it decreases afterwards until the interest rates hits the Zero Lower Bound (ZLB)
in 2009.
In sum, there are changes in the transmission of monetary policy shocks which

can be associated with changes in the conduct of monetary policy. Note also that
our result controls for changes in the private sector behavior, since the parameters
of non-policy block can also vary over time, and these changes are correlated with

20See. e.g. Christiano and Eichenbaum (1991), Strongin (1995), Bernanke and Mihov (1998b),
Christiano et al. (1999), among others.
21In general, see Bernanke and Mihov (1998a) for a deep analysis of the Liquidity Effect using

the model of Bernanke and Mihov (1998b), but using long run restrictions instead.
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Figure 2.6: Responses to Monetary Policy shocks in 2012, 90 percent con�dence
interval

Figure 2.7: Response of the Federal Funds Rate to an expansionary NBR policy
shock
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changes in the policy design.

2.6 The evolution of the Systematic and Non-systematic
components of Monetary Policy

The recent literature suggests that monetary policy shocks were more volatile in
early 1980s, a date which is associated with changes in the conduct of monetary
policy and with the use of non-standard instruments (see Primiceri (2005), Sims
and Zha (2006), Justiniano and Primiceri (2008), Canova et al. (2008), Canova and
Gambetti (2009) among others). In part this result could be driven by the fact that
most of these models only allow for a single monetary policy instrument, the short
term interest rate. Since, as we pointed out, we identify monetary policy shocks
allowing for different instruments and controlling for changes in the systematic
component, we have the chance of controlling for this possibility. The policy rule
equation (2:16) is

uNBRt = �ft v
f
t + �dt v

d
t + �btv

b
t + vst

The systematic component is captured by the policy coef�cients �t =
�
�ft ; �

d
t ; �

b
t

�0
=

�ect and the non-systematic one is governed by the shock vst � N
�
0; (�st)

2�. We
will capture changes in the systematic component with the evolution of �t and
changes in the non-systematic one with the evolution of �st .
Figure 2.8 depicts the evolution of vector �t. There is an increase in the abso-

lute value of �ft and �
b
t over time, which can be associated with a stronger reaction

of the money suppy to Spreads and Borrowing Reserves shocks, especially during
the last decade. On the other hand, �dt rises and falls over time. Interestingly,
there is an increase in this value starting from 2008, which could be interpreted as
an increasing importance of the demand of reserves for implementing monetary
policy.
Figure 2.9 shows the evolution of the non-systematic component of monetary

policy. In line with the literature, we observe a high level of volatility in 1970s and
early 1980s. However, we also observe a second episode of high volatility starting
in 2007, an episode related with the Great Financial Crisis. This jump is capturing
other dimensions of Unconventional Monetary Policy not related with Reserves
and affecting future interest rates, for example Direct Financial Intermediation as
in Gertler and Karadi (2011). For a thorough description of different dimensions
of UMPs see also Reis (2009), Borio and Disyatat (2010), Cúrdia and Woodford
(2011), Cecioni et al. (2011), Williams (2012a).
Since the setup of the model is such that the variances of structural shocks

evolve independently, i.e. matrix W is diagonal, we cannot attribute the latter
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(a) (b)

(c)

Figure 2.8: Policy rule coef�cients, median value and 90 percent bands
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Figure 2.9: Standard Deviation of Policy shock �st

result to the fact that these shocks were correlated. Furthermore, we are cap-
turing the portion of structural change that can be considered as non-systematic,
i.e. different than changes in the operating procedures represented by changes in
parameters of matrices At and Ct.

2.7 Sensitivity analysis
The results presented so far have important implications for monetary policy. Here
we are interested in showing that they are robust to changes in the speci�cation of
the empirical model. For comparison, we consider two additional models:
A Federal Funds Rate model (FFR): In this model we achieve identi�cation

by setting coef�cient restrictions according to equation (2:17).
Recall the policy stance equation (2:17):

vst = ��ft uSPRt

�
�
�bt + �dt + �ft �

SPR
TR;t

�
uTRt

+
�
�bt�

b
1;t � �dt�

d
1;t � �ft �

SPR
FFR;t

�
uFFRt

+
�
�bt � �ft �

SPR
NBR;t + 1

�
uNBRt

Here we set parameter restrictions such that the weights associated with instru-
ments different than the Federal Funds Rate are equal to zero. Thus, our identi�c-
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ation restrictions are as follows:
�ft = 0 (2.22)

which implies
�bt = �1 (2.23)

�dt = ��bt = 1 (2.24)

Thus, if we assume that the Fed uses only FFR for when implementing monetary
policy, we will have that policy coef�cients in matrix Ct will be constant. As a
result, the monetary policy stance will be

vst = �
�
�b1;t + �d1;t

�
uFFRt

Themodel is over-identi�ed, since we have imposed 3 restrictions (2:22)�(2:23)�
(2:24). As a result, we have the following SVAR matrices:

At =

2666666664

1 0 0 0 0 0 0
��x;t 1 0 0 0 0 0
�Pcx;t �Pcom�;t 1 0 0 0 0
�SPRx;t �SPR�;t �SPRPc;t 1 �SPRTR;t �SPRFFR;t �SPRNBR;t

�TRx;t �TR�;t �TRPc;t 0 1 �d1;t 0
�NBRx;t �NBR�;t �NBRPc;t 0 1 ��b1;t �1
�FFRx;t �FFR�;t �FFRPc;t 0 0 0 1

3777777775
(2.25)

Ct =

2666666664

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 1 �1 1

3777777775
(2.26)

Clearly, in this particular case vectors �t and ct enter linearly in matrices (2:25)�
(2:26). Therefore, we can sample the vector �t as in section 2.3 and as it is clear,
it will not be necessary to sample ct.
A Bernanke and Mihovmodel (BM): This is a model without the spread indic-

ator, so that:

At =

26666664
1 0 0 0 0 0
��x;t 1 0 0 0 0
�cx;t �c�;t 1 0 0 0
�TRx;t �TR�;t �TRc;t 1 �d1;t 0
�FFRx;t �FFR�;t �FFRc;t 1 ��b1;t �1
�NBRx;t �NBR�;t �NBRc;t 0 0 1

37777775 (2.27)
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Ct =

26666664
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

0 0 0 �dt �bt 1

37777775 (2.28)

As a result, the monetary policy stance turns to be:

vst = �
�
�bt + �dt

�
uTRt +

�
�bt�

b
1;t � �dt�

d
1;t

�
uFFRt +

�
�bt + 1

�
uNBRt

Here the sub-system of policy equations needs one restriction to be identi�ed.
Following the original model, we set �d1;t = 0, i.e. the so-called just-identi�ed
model, so that:

vst = �
�
�bt + �dt

�
uTRt +

�
�bt�

b
1;t

�
uFFRt +

�
�bt + 1

�
uNBRt

We also label our speci�cation, for comparison purposes, as Baseline and we
now proceed to the model comparison in next subsection.
Bernanke and Mihov (1998b) analyze the possibility of regime switches in

the conduct of policy. More speci�cally, they allow policy coef�cients under their
baseline (just-identi�ed) speci�cation to vary according to a hidden discrete latent
variable that takes two values (see Hamilton (1989) and Kim and Nelson (1999)).
They �nd strong evidence of switches for early eighties (see Table I in pp. 883
and Figure I in pp. 891). However, they do not allow shock variances or non-
policy parameters to change, and this may bias the conclusions. Using the �exible
approach of this paper, it is possible to pin down the evolution of these coef�-
cients over time and, at the same time, control for stochastic volatility and policy
changes. Indeed, we �nd strong evidence of changes in policy rule coef�cients
even in this case. However, as shown in Figures 2.10 and 2.11, the resulting
path could be potentially different if we consider a richer speci�cation such as
Baseline. Regarding Figure 2.10, Baseline model (panel a) exhibits larger �uc-
tuations relative to panel (b). In particular, the changes are stronger for the last
decade, in particular starting by 2005.
Regarding Figure 2.11, we observe even a change in the sign of the coef�cient,

but dates of changes are very different across models.
Furthermore, the extent of regime switches depends also on how the model

is speci�ed and identi�ed. In particular, our Baseline has one more instrument
in the policy rule and also has one more variable in the SVAR, and thus a larger
information set.
Finally, we explore whether the results concerning the variance of the policy

shocks depend on the speci�cation of the model.
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(a) Baseline (b) BM

Figure 2.10: Sensitivity to Demand shocks �dt

(a) Baseline (b) BM

Figure 2.11: Sensitivity to Discount window shocks �bt
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(a) Baseline (b) FFR

(c) BM

Figure 2.12: Comparison of Standard Deviation of Policy shock �st

The volatility of the monetary policy shock is higher in 1970s and 1980s and
again during the recent Financial Crisis episode. However, as it is depicted in
Figure 2.12, the pattern is similar with the other speci�cations, but the magnitude
of the changes is different. In particular, in panels (b) and (c) the recent �nancial
crisis seem to have induced a much smaller increase in the volatility of policy
shocks.

2.8 Concluding Remarks
We have estimated the monetary policy stance index for the U.S. economy for the
period 1974-2012 and taking into account the time-varying operating procedures.
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To the best of our knowledge, this is the �rst paper that presents a policy stance
index with bayesian error bands. Moreover, we identify periods of loose and tight
monetary policy, in line with previous literature, and we also quantify the relative
importance of instruments in this process.
We �nd evidence of changes in the monetary transmission mechanism after

the �nancial crisis, and we consider this results important for future research. We
also document that the Vanishing Liquidity Effect has been broken after the last
�nancial crisis. Furthermore, the described results are a consequence of changes
in both systematic and non-systematic components.
Our results are robust to alternative speci�cations. We �nd that the paths of

structural parameters and variances might differ across models. However, the
main features of our result do not change. Overall, this paper presents a power-
ful approach that is capable of capturing different episodes regarding monetary
policy design, especially the so-called Unconventional Monetary Policies. Even
more important is the fact that we present here a monetary policy stance index
with bayesian error bands, which we expect to be useful for both policy makers
and researchers. It remains to be explored the role of communication in Uncon-
ventional Monetary Policies, the announcement of future paths of interest rates
and monetary authority reputation. We believe that these type of issues should be
explored in a richer setup and we leave it for future agenda.
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Chapter 3

HETEROGENEOUS
INFORMATION AND REGIME
SWITCHES IN A STRUCTURAL
EXCHANGE RATE MODEL:
EVIDENCE FROM SURVEY DATA

3.1 Introduction

Survey Data on Exchange Rates forecasts exhibits a considerable amount of dis-
agreement among the poll's participants.This mentioned dispersion is not constant
over time, exhibiting substantial and persistent variation across time as shown in
Figure 3.1. What explains this time varying dispersion? More concretely, what
determines the �uctuation of this disagreement that is inherent to heterogeneous
expectations over time? To answer these questions, we need to �rst dig deeply
into how is the expectation formation in the context of heterogeneous agents and,
how are these expectations connected to fundamentals and actual exchange rates.
To do so, we need to model the decision of economic agents based on what they
observe and how they process information. We present an extension of the theor-
etical model of exchange rate determination with rational but disparately informed
agents by Bacchetta and Van Wincoop (2006), and we perform an empirical exer-
cise using actual Survey Data, with the purpose of �tting the observed disagree-
ment.
Disagreement suggests that poll's participants have access to different pieces

of information about future fundamentals, henceforth signals. Consequently, each
rational agent solves a signal extraction problem, and it is clear that signals' pre-
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Figure 3.1: TANKAN Survey (BoJ): Log-Predicted Exchange Rates by sectors
(next quarter)

cision play an important role. However, this is not enough for explaining the
observed pattern in the data. Therefore, to allow for time varying dispersion we
need to consider time-varying information sets. We do so considering a �exible
approach that accounts for regime switches in volatilities of fundamentals and in
the amount of information available for agents.
Bacchetta and Van Wincoop (2006) argues that the Exchange Rate determin-

ation puzzle (Meese and Rogoff (1983)) can be resolved by allowing for the pres-
ence of heterogeneously informed agents, forcing agents to form the so-called
Higher-order expectations (HOE). Bacchetta and van Wincoop's argument is as
follows: Information heterogeneity matters, since each trader has a portion of
private information about aggregate fundamentals, and the equilibrium exchange
rate is determined by future values of these aggregate fundamentals, which are
not observable. As a result, agents need to form expectations about aggregate
fundamentals, which means that they need to forecast the forecasts of the oth-
ers. Because of information heterogeneity, expectations about future fundament-
als (HOE) also react to aggregate shocks. But agents may confound one shock
with another, so expectations of other fundamentals also react, generating en-
dogenous persistence in Exchange Rates re�ected in hump-shaped responses to
shocks. This type of mechanism was �rst called Rational confusion by Bacchetta
and Van Wincoop (2006). In this context of dispersed information, we introduce
regime switches in the volatility of fundamentals and in information sets as in Ni-
mark (2012a) and estimate the model with bayesian methods following Barillas
et al. (2013). We use the TANKAN Survey from the Bank of Japan, which in
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particular has heterogeneous forecasts of exchange rates across industries.
The model in this paper is connected with a large strand of the empirical lit-

erature of Exchange Rate determination. Starting from Meese and Rogoff (1983),
today researchers often model exchange rates as an asset price, e.g. Engel and
West (2005), Rossi (2005), Engel et al. (2010). That type of modelling allows us
to consider the case where expectations of future fundamentals matter for the ac-
tual exchange rate. Our framework is also connected with the parameter instability
and regime-switching in Exchange Rate models. In these papers it is argued that
the relationship between exchange rates and fundamentals is unstable, starting
with Wolff (1987), and also Engel and Hamilton (1990), Canova (1993), Kamin-
sky (1993), Engel (1994), Evans and Lewis (1995), Rossi (2006), Bacchetta and
Van Wincoop (2009), Bacchetta et al. (2010), among others. Regarding previous
work using Survey Data, disagreement in Survey Data at different horizons has
been covered by Patton and Timmermann (2010) for the speci�c case of Term-
Structure Interest Rates. Bacchetta et al. (2009) use survey of expectations for
studying the excess return predictability in Financial Markets.
We �t a structural model with regime switches to Exchange Rates Survey Data.

The assumed information structure is such that high-volatility regimes are associ-
ated with the appearance of a very noisy public signal about fundamentals. Given
that this signal is very imprecise, and because of the higher volatility of shocks,
disagreement increases. The model-implied dispersion closely follows the ob-
served disagreement, meaning that the presented model does a good job in de-
scribing our dataset. We con�rm the latter when comparing the model �t with
respect to a restricted model without regimes switches and without informational
frictions. Given the presence of regime switches, the model solution implies a
time varying relationship between exchange rates and fundamentals. This result
can be linked with the empirical literature of parameter instability in exchange rate
models. The latter is, together with Rational Confusion, an additional explanation
for the disconnection between Exchange Rates and future fundamentals. We leave
as future agenda the idea to explore several surveys of Exchange Rate expectations
about different currencies, such as Consensus Economics or Bloomberg.
The paper is organized as follows: Section 3.2 explains the extent of Hetero-

geneous Information in the context of Asset Pricing models, Section 3.3 describes
the Exchange Rate model used for the analysis, Section 3.4 covers the empirical
analysis, Section 3.5 discusses the main results and Section 3.6 concludes.

3.2 Asset Prices and Heterogeneous Information
According to Engel and West (2005), a good starting point for studying exchange
rates dynamics is to consider an asset pricing model. In this section we describe
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the extent of heterogeneous information in the context of asset pricing models.
First, let the price euler equation be:

pt = a

Z
Eitpt+1di+ ft (3.1)

where pt is the price at time t, ft is the fundamental that determines the price and
a is a positive scalar. The operator Eit indicates that each agent makes forecasts
conditional on his available information set 
t (i), so that

Eit = E [: j 
t (i)] (3.2)

Under full or common information, an asset price with common information is
solved by exploiting the 'Law of Iterated Expectations' and ruling out bubbles,
since a 2 (0; 1):

pt = a

Z
Eit

�
a

�Z
Eit+1pt+2di+ ft+1

��
di+ ft

pt = a2
Z
Eitpt+2di+ aEtft+1di+ ft

� � �

pt =
1X
k=0

akEtft+k =
1

1� a
ft (3.3)

where Et is the average expectation operator and where the equilibrium price is a
result of the fact that agents have nested information sets.
Turning to heterogeneous information, according to Admati (1985), the equi-

librium price (pt) is a result of aggregation of information. That is, each market
participant i 2 (0; 1) has a different piece of noisy information that is private
(Ii). When each market participant observes the equilibrium price (pt), he can
learn more about the information of the others (I�i), but since this learning is not
perfect, disagreement in forecasts will be present. Moreover, if we take hetero-
geneous information seriously, then we need to reconsider the future expectations
of ft, and �nd an expression equivalent to (3:3). First, if agents have different
information sets, then their forecasts will be different so that:

Eitft+1 6= Ei
0

t ft+1

where (i 6= i0) but there exists an average forecast f (1)t+1 �
R
Eitft+1di. Going back

to euler equation (3:1), then

pt = a2
Z
Eit

�Z
Eit+1pt+2di

�
di+ a

Z
Eitft+1di+ ft
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� � �

pt =
1X
k=0

akf
(k)
t+kj���jt (3.4)

In general, we de�ne the higher-order expectations as:

f
(k)
t+k �

Z
Eitf

(k�1)
t+k�1di (3.5)

The latter implies that, in order to form the k-th order of expectations, agents
need to 'Forecast the Forecasts of the others' (as in Townsend (1983)) up to a
level k�1. By observing (3:4) and (3:5), it is clear that higher-order expectations
of the fundamental ft are an important determinant of the equilibrium price and,
as a consequence, they constitute additional state variables. See Allen et al. (2006)
for an extensive description of the role of higher-order expectations in asset prices.
The richer setup comes at the cost of additional technical complications in or-

der to �nd a model solution. In particular, as pointed out by Townsend (1983)
and Sargent (1991), the dimension of the state vector can be in�nite, and therefore
the model turns to be dif�cult to solve without assuming lagged revelation, as in
Singleton (1987) or Bacchetta and Van Wincoop (2006). On the other hand, Kasa
(2000) and Kasa et al. (2007) use frequency domain techniques in order to solve
this type of models. Furthermore, Nimark (2011) shows how to solve these type
of models in a dynamic setting without assuming lagged shock revelation and, in
addition Nimark (2012a) and Barillas et al. (2013) extend Nimark (2011)'s pro-
cedure to allow for regime switches. In this paper we will follow these last refer-
ences in order to solve and estimate an exchange rates model and �t the observed
dispersion in the data.

3.3 The model

3.3.1 Benchmark setup
The model is taken from Bacchetta and Van Wincoop (2006). This is a two-
country economy where the Purchasing Power Parity (PPP) holds:

pt = p�t + st (3.6)

where pt is the log of price index of home economy, p�t is the same for the foreign
economy and st is the log of exchange rate. Each economy is populated by a
continuum of investors i 2 [0; 1], they live two periods but can only invest in
the �rst one, i.e. there are overlapping generations. When each investor i dies,
he passes his information to his offspring. Each investor i has the possibility
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to invest in three types of assets: (i) domestic currency (mt), (ii) foreign bonds
(biF t), (iii) technology �xed real return r (ini�nite supply). Domestic and foreign
money supplies (mt;m

�
t ) are deterministic and stochastic, respectively. On the

other hand, wealth (wit) is a �xed endowment. Production depends on exchange
rate (st) and real money holdings (emt = mt � pt), so that:

yit+1 = bitst+1 �
emi
t [log (emi

t)� 1]
�

(3.7)

where � > 0 and bit is the privately observed exchange rate exposure of nonas-
set income of investor i. Following Bacchetta and Van Wincoop (2006), the fact
that emi

t is in the production function and not in the utility means that we do not
have to specify a money demand.
Each investor i has a Constant Absolute Risk-Aversion (CARA) concave util-

ity and solves the problem:

max
femi

t;b
i
Ftg
� E

�
exp

�
�cit+1

	
j 
t (i)

�
subject to

cit+1 = (1 + it)w
i
t + (st+1 � st + i�t � it) b

i
F t � it emi

t + yit+1 (3.8)

where 
t (i) is the information set of inverstor i at time t and  is the risk aver-
sion coef�cient. We assume that future consumption cit+1 is normally distributed
conditional on the available information, so that

cit+1j
t(i) � N
�
�; �2c

�
where

� � E
�
cit+1 j 
t (i)

�
(3.9)

�2c � var
�
cit+1 j 
t (i)

�
(3.10)

Exploiting the CARA utility and the normality assumption, we rewrite the utility
function:

�Eit exp
�
�cit+1

	
= �

�
exp

�
��+ 2

2
�2c

��
(3.11)

where:

� = (1 + it)w
i
t +
�
Eitst+1 � st + i�t � it

�
biF t � it emi

t + Eity
i
t+1

with
Eity

i
t+1 = bitE

i
tst+1 �

emi
t [log (emi

t)� 1]
�
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and
�2c =

�
biF t + bit

�2
�2t

because bit is observed and �2t � var
�
sit+1 j 
t (i)

�
. The latter result comes from

the fact that the stochastic components of cit+1 in (3:8) is the future exchange rate
st+1.
The �rst order conditions of this problem are:

emi
t : � �it = log

�emi
t

�
(3.12)

which on aggregate means
mt � pt = ��it

and it is also symmetric for foreign investors, so that:

m�
t � p�t + �mp"

mp
t = ��i�t

We introduce the shock "mpt to rule out a perfect revealing equilibrium.
The optimal condition for bonds is:

biF t : biF t =
Eitst+1 � st + i�t � it

�2t
� bit

Intuitively, since this is a risky asset, both a higher risk aversion coef�cient  and
higher volatility in forecast errors �2t can reduce the demand, but a higher expected
value of returns Eitst+1 increases it. Finally, the demand is negatively related with
the individual nonasset income exposure to foreign currency bit.
The complete monetary model of Exchange Rates as in Bacchetta and VanWin-

coop (2006) is given by:
pt = p�t + st (3.13)

mt � pt = ��it (3.14)
m�
t � p�t + �mp"

mp
t = ��i�t (3.15)

biF t =
Eit (st+1)� st + i�t � it

�2t
� bit (3.16)

The market clearing condition isZ 1

0

biF tdi = ���t

where �t � N (0; 1). The fact that there is a noisy component in the supply of
bonds also prevents a perfectly revealing rational expectations equilibrium; see
also Admati (1985) and Vives (2010). Aggregating the equation (3:16):

���t =
Et (st+1)� st + i�t � it

�2t
� bt
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we get an expression similar to the Uncovered Interest Rate Parity (UIRP)

st = Et (st+1)� (it � i�t )� �2t (bt + ���t) (3.17)

where Et (st+1) =
R 1
0
E (st+1 j 
t (i)) di and where the aggregate exposure com-

ponent
R 1
0
bitdi = bt is not observable as is going to be a relevant aggregate fun-

damental. As it is clear, the latter expression has an explicit time-varying risk-
premium component��2t (bt + ���t), which will be important for our empirical
analysis. Unlike Bacchetta and Van Wincoop (2006), we allow the component �2t
to vary over time.
The equilibrium condition can be simpli�ed. Working with the conditions

(3:14)� (3:15), we get:

it � i�t =
st � ft + �mp"

mp
t

�
(3.18)

where we de�ne the monetary fundamental

ft � mt �m�
t

as the log of the ratio of money supplies. Plugging the interest rate differential in
(3:17)

st =
�

1 + �
Et (st+1) +

ft � ��2t bt
1 + �

� ��2t���t + �mp"
mp
t

1 + �
(3.19)

we get the equilibrium condition of the model. It states that the log of the ex-
change rate is a linear function of its average expectation, a linear combination of
aggregate fundamentals and a linear combination of shocks. As it is clear from
this expression, the presence of the shocks �t and "

mp
t rules out the possibility

of a perfect revealing equilibrium. Moreover, the model in this form needs to
be solved. The equilibrium condition can be re-written similar to equation (3:4)
using the de�nition in (3:5):

st =
1

1 + �

1X
k=0

�
�

1 + �

�k �
f
(k)
t+kj���jt � ��2t b

(k)
t+kj���jt

�
� 1

1 + �

�
�mp"

mp
t + ��2t���t

�
(3.20)

where we assume that there is no bubble solution, i.e.

lim
k!1

�
�

1 + �

�k
s
(k)
t+kj���jt = 0 (3.21)

The equation (3:20)makes explicit that the equilibrium exchange rate st has to be
expressed as a function of the state variables of the model, i.e. fundamentals plus
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higher-order expectations
n
f
(k)
t+k; b

(k)
t+k

o1
k=0

and shocks ("mpt ; �t), i.e. a particular
case of equation (3:4). In what follows we will use the strategy of Nimark (2011)
to solve this model. In the mentioned paper (see section 8), the model-implied
cross sectional dispersion will be a constant non-linear function of parameters.
This feature is not desirable given our dataset in Figure 3.1. Therefore, with the
purpose of getting time variation in this cross sectional dispersion, we introduce
regime switches in information sets 
t (i) in the next subsection.

3.3.2 Introducing Regime Switches

Assume now that the economy will have two regimes and that these regimes are
governed by an underlying dichotomic latent variable � t. Then assume that the
information available for each individual is related with the current regime of the
economy, so that 
t (i) can take two values accordingly:


t (i) =

�

0t (i) , if � t = 0

1t (i) , if � t = 1

where
Pr (� t = 1) = !; t = 1; 2; : : : ; T

is the probability of being in regime � t = 1. This is a simpli�ed version of
the widely used Regime-Switching models based on a hidden markov chain, see
Hamilton (1989). As a result, probabilities of each regime are constant over time,
i.e.

Pr (� t = 1 j � t�1 = 0) = Pr (� t = 1 j � t�1 = 1) = !

meaning that the event � t = 1 does not depend on past values of � . The im-
plication of time-varying information sets is that it is likely that it will impact on
the model implied dispersion. Therefore, we consider that this is the minimal in-
gredient that the presented structural model needs for that purpose, and turning
to a markov-switching setup will be a generalization with a consequent additional
persistence in regimes. On the other hand, one important reason for keeping our
approach is the fact that, given the pattern observed in Figure 3.1, jumps in dis-
persion do not seem to be persistent.
Turning to the model implications of the introduced regime-switches, recall

that before cit+1 was normally distributed with a well de�ned mean � and variance
�2c given by (3:9) and (3:10). The latter moments were constructed conditional on
the information set 
t (i). Thus, the resulting expression in (3:11) was straight-
forward. With regime switches the result is different. Denote the conditional
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moments for j = 0; 1:

�j = Eit;jc
i
t+1 = E

�
cit+1 j 


j
t (i)

�
�2c;j = varit;jc

i
t+1 = var

�
cit+1 j 


j
t (i)

�
Strictly speaking, cit+1 is now following a mixture of normals:

cit+1 � !N
�
�1; �

2
c;1

�
+ (1� !)N

�
�0; �

2
c;0

�
with mean

� = !�1 + (1� !)�0 (3.22)

and variance

�2c = !�2c;1 + (1� !)�2c;0 + ! (1� !) (�1 � �0)
2 (3.23)

The expected utility will be given by:

E
�
� exp

�
�cit+1

��
= !

h
� exp

�
�
�
�1 �



2
�2c;1

��i
+(1� !)

h
� exp

�
�
�
�0 �



2
�2c;0

��i
That is, the technical complication comes from the fact that individuals take into
account the possibility of regime switches for next period. For tractability, follow-
ing Yang (2011), we use a second-order approximation of the utility function1:

E
�
� exp

�
�cit+1

��
� �

�
exp

�
��+ 2

2
�2c

��
(3.24)

with � and �2c de�ned in (3:22)� (3:23). This approximation resembles equation
(3:11) but with the additional feature of the mixture of normals. As a result, the
optimality conditions using (3:24) are now:

mt � pt = ��it

m�
t � p�t + �mp"

mp
t = ��i�t

biF t =
Eit (st+1)� st + i�t � it

�2t
� bit

with
Eit (st+1) = !Eit

�
s1t+1

�
+ (1� !)Eit

�
s0t+1

�
(3.25)

�2t = !�2t;1 + (1� !)�2t;0 + ! (1� !)
�
Eit
�
s1t+1

�
� Eit

�
s0t+1

��2 (3.26)

1See details in Appendix C.4
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so that we get similar expressions to (3:19):

st =
�

1 + �
Et (st+1) +

ft � ��2t bt
1 + �

� ��2t���t + �mp"
mp
t

1 + �

and (3:20):

st =
1

1 + �

1X
k=0

�
�

1 + �

�k �
f
(k)
t+kj���jt � ��2t b

(k)
t+kj���jt

�
� 1

1 + �

�
�mp"

mp
t + ��2t���t

�
Notice that now it is clear that �2t is time varying depending on the regimes � t.
Having these regimes explicit, we turn to the information structure and model
solution.

3.3.3 Information Structure
In order to pin down a solution for equation (3:20), it is necessary to make addi-
tional assumptions regarding the information sets 
t (i). First, denote the vector
xt as the fundamentals and assume that each one follows an autoregressive process
AR(1):

xt �
�
ft
bt

�
=

�
�f 0
0 �b

� �
ft�1
bt�1

�
+

�
�f;t 0
0 �b

� �
"ft
"bt

�
(3.27)

This structure is known for every agent and moreover we have that

�f;t = (1� � t)�f + � t�f2 ; �f2 > �f

That is, we link regimes with states of low (� t = 0) and high (� t = 1) volatility
of fundamental ft. In addition, whenever the economy is in regime (� t = 1), all
investors observe the public signal

zpt = ft + �pv
p
t

The availability of a public signal plus being in a state of high volatility will
impact directly on the model implied dispersion, and this will be time varying.
Intuitively, in more unstable regimes e.g. a �nancial turbulence episode, we ob-
serve more sources of information such as news, media releases, special reports,
etc. These additional sources of information about fundamentals can potentially
be very imprecise. See Nimark (2012a) for the speci�c case of macroeconomic
news.
Dispersion comes from the fact that each agent i observes a private signal at

time t:
zt (i) = xt +

� e�f 0
0 e�b

� �
vft (i)
vbt (i)

�
(3.28)
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and �nally, all investors also observe the realized price st.
As a result, the information set of agent i exhibits time variation:


t (i) =

�

0t (i) = fzt (i) ; st; � t;
t�1 (i)g , if � t = 0

1t (i) = fzt (i) ; z

p
t ; st; � t;
t�1 (i)g , if � t = 1

(3.29)

3.3.4 Solving the model
In this section we closely follow the reference of Barillas et al. (2013). See further
details in Appendix C.5. Recall the exchange rate equilibrium equation (3:19):

st =
�

1 + �
Et (st+1) +

ft � ��2t bt
1 + �

� ��2t���t + �mp"
mp
t

1 + �

and the law of motion (3:27):

xt �
�
ft
bt

�
=

�
�f 0
0 �b

� �
ft�1
bt�1

�
+

�
�f;t 0
0 �b

� �
"ft
"bt

�
These two equations can be nested into a large class of models.
That is, consider Noisy Rational Expectations (NRE) model:

st = A (� t)

Z
E (st+1 j 
t (i)) di+B (� t)xt + F (� t)ut (3.30)

with state variables:
xt = � (� t)xt�1 + � (� t)ut (3.31)

with shocks ut � N(0; I), regimes � t 2 f0; 1g and information sets 
t (i).
Because of the presence of rational agents in a dispersed information context,

the full state of the model consists of the extended state vectorXt de�ned as

Xt �

26664
xt
x
(1)
t
...
x
(k)
t

37775 (3.32)

where
x
(k+1)
t �

Z
E
h
x
(k)
t j 
t (i)

i
di (3.33)

is similar to (3:5). As in the mentioned references, since the state vector Xt can
potentially have in�nite dimension, we assume that the hierachy of expectations
is truncated up to an order k <1.
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The procedure for solving the model is of the type of guess-and-verify. Thus,
we conjecture a solution of the form:

st = G(� t)Xt + F (�(� t))ut (3.34)

Xt =M(� t)Xt�1 +N(� t)ut : ut � N(0; I) (3.35)

Solve the model means to �nd the undetermined matrices G(� t), F (� t), �(� t),
M(� t), N(� t). To do that it is necessary to track the history of regimes � t. As in
the cited reference, we proceed by specifying a maximum lag of � t; say � t�r; that
matters for current dynamics and then check whether increasing the lag r changes
the dynamics suf�ciently to motivate the increased computational burden.
The matrix H is de�ned so that:Z

E [Xt j 
t (i)] di = HXt (3.36)

The Euler equation for st can then be written as

st = !A(� t)G
�
� t+11

�
M
�
� t+11

�
HXt

+(1� !)AG
�
� t+10

�
M
�
� t+10

�
HXt

+
�
B(� t) 0

�
Xt + F

�
� t
�
ut

Using the conjectured form (3.34) and equating coef�cients implies:

G
�
� t
�
= !A(� t)G

�
� t+11

�
M
�
� t+11

�
H (3.37)

+(1� !)AG
�
� t+10

�
M
�
� t+10

�
H

+
�
B(� t) 0

�
De�ne the conditional variance � (� t) as

�
�
� t
�
� E (st+1 � E [st+1 j 
t (i)]) (st+1 � E [st+1 j 
t (i)])0 (3.38)

It can then be computed as:

�2
�
� t
�
= !

nbGk

�
� t+11

� bP �� t+11

� bGk

�
� t+11

�0o (3.39)

+(1� !)
nbGk

�
� t+10

� bP �� t+10

� bGk

�
� t+10

�0o
where bGk (:) and bP (:) are the loadings from the solution and the posterior

variance from the Kalman updating, considering the augmented state vector bXt �
[X0

t; �t; "
mp
t ]

0 as in Appendix A of Nimark (2011).

Algorithm for model solution - Barillas et al. (2013):
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1. Set the values for the dimension of the numerical approximation k and r.

2. Start by making initial guesses for the jT j different versions of the matrices
G (� tr), M(� tr), N(� tr) and, if applicable, �(� tr). A good initial guess is to
set them such that the dynamics are equivalent to the model solution without
regime switching along the lines of Nimark (2011).

3. For given matrices G (� tr), M(� tr), N(� tr) and �(� tr) compute jT j "new"
G (� tr) using (3:37). (That is, one need to loop through the jT j different
matrices G (� tr)).

4. If applicable, for given matricesM(� tr), N(� tr) and the "new" G (� tr) com-
pute jT j "new" �(� tr) using (3:39).

5. For given matricesM (� tr) andN (� tr) and the "new"G (� tr) and �(� tr) com-
pute jT j "new"M(� tr) and N(� tr) using (C:26) and (C:27).

6. Iterate on steps 3 to 5 until convergence.

See speci�c details regarding this setup can also be found in Nimark (2011)
and Nimark (2012a).

3.4 Empirical analysis

3.4.1 Data
In order to estimate the model, data of exchange rates, interest rates differen-
tials and expectations is needed. For our speci�c case, we use the Japanesse
Yen/US Dollar (in logs, detrended), Interest rate differentials (it � i�t ) being the
Call Overnight Rate (Japan) and Federal Funds Rate (in percentages). In addi-
tion, we use the data shown in Figure 3.1, i.e. the Predicted Exchange Rates from
TANKAN Survey (BoJ) for 20 sectors (in logs, detrended) as a proxy for Ex-
change Rates expectations (Etst+1 (i)). Data is in quarterly frequency and covers
the episode 2000:Q1-2012:Q4, see details in Appendix C.1.

3.4.2 Bayesian Estimation
Log Likelihood evaluation

The model solution can be expressed as a State Space System. Including the
observables we get the measurement equations:

st = G
�
� t
�
Xt + F

�
�
�
� t
��
ut (3.40)
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it � i�t =
1

�

�
G
�
� t
�
� e01

�
Xt +

1

�

�
F
�
�
�
� t
��
+ �mpe

0
4

�
ut (3.41)

Etst+1 (i) =

�
!Gk

�
� t+11

�
M
�
� t+11

�
+(1� !)Gk

�
� t+10

�
M
�
� t+10

� �HXt + �
s
t (i) "

e
t (3.42)

and the transition equation:

Xt =M(� t)Xt�1 +N(� t)ut

Equation (3:40) comes directly from the model solution. Plugging this solution in
(3:18) we get equation (3:41). Finally, for each of the expectations in the survey
we specify equation (3:42), which is basically the one-step ahead forecast using
again the solution (3:40). In order to avoid stochastic singularity, we include the
measurement error "et , and we assume that has a standard error equal to the model
implied cross-section dispersion at time t.
It is clear that the latter system is linear and gaussian conditional on a history

of regimes � t. As a result, the log-likelihood function can be evaluated, so that:

logL
�
�; �T j ZT

�
= �1

2

TX
t=1

�
ln 2� + ln j
t (� t)j

+ eZ 0t (� t) [
t (� t)]�1 eZt (� t)
�

with Zt =
�
st; it � i�t ; fEtst+1 (i)g

N
i=1

�0
.

A Multiple-Block Metropolis Hastings procedure

We have identi�ed the parameter set 	 =
�
�; �T

	
, being � the vector of struc-

tural parameters. In order to sample the posterior distribution of 	 we employ, a
Multiple-Block Metropolis Hastings procedure (see also Chib (2001)). The latter
strategy allows us to exploit the conditional distribution of parameter blocks. That
is, consider the joint posterior distribution and apply the basic Bayes' rule:

P
�
�; �T j ZT

�
=

P
�
ZT j �; �T

�
� P

�
�; �T

�
P (ZT )

/ P
�
ZT j �; �T

�
� P

�
�; �T

�
That is, the posterior distribution is proportional to the kernel speci�ed in the right
hand side of this expression. Moreover, the term P

�
�; �T

�
is a joint prior for the

two blocks, which can be factorized such that

P
�
�; �T j ZT

�
/ P

�
ZT j �; �T

�
� P

�
�T j �

�
� P (�)

In other words, we adopt a hierarchical structure for the prior distribution.
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The distributions of � t are independent across time:

P
�
�T j �

�
=
YT

t=1
P (� t j �)

This is not a restrictive assumption, given the speci�cation of the model in which
the probability of (� t = 1) does not depend on the history of regimes. Assume
also independent priors for structural parameters:

P (�) =
Ydim�

k=1
P (�k)

The Algorithm is as follows:
Parameter set 	 =

�
�; �T

	
1. Specify an initial value 	0 =

�
�0; �

T
0

	
.

2. Repeat for j = 1; 2; : : : ; J
(a) Block 1: Draw �j from p

�
�j j �j�1; �Tj�1; ZT

�
:

(i) Draw �� from q� (�
� j �j�1)

(ii) Set ��j = min
�
1;

L(ZT j��;�Tj�1)p(�Tj�1j��)p(��)q�(�j�1j��)
L(ZT j�j�1;�Tj�1)p(�Tj�1j�j�1)p(�j�1)q�(��j�j�1)

�
(iii) Set �j = �� if U (0; 1) � ��j and �j = �j�1 otherwise.
(b) Block 2: Draw �Tj from p

�
�Tj j �Tj�1;�j; ZT

�
:

(i) Draw
�
�T
��
= f� �tg

T
t=1 from q�

��
�T
�� j �Tj�1;�j�

(ii) Set ��j = min
�
1;

L(ZT j�j ;(�T )
�
)p((�T )

�j�j)q�(�Tj�1j(�T )
�
;�j)

L(ZT j�j ;�Tj�1)p(�Tj�1j�j)q�((�T )
�j�Tj�1;�j)

�
(iii) Set �Tj =

�
�T
�� if U (0; 1) � ��j and �Tj = �Tj�1 otherwise.

3. Return values f�0;�1; : : : ;�Jg and
�
�T0 ; �

T
1 ; : : : ; �

T
J

	
.

Adaptive Proposal Distributions

In models with potentially multiple peaks and local modes, it is important to invest
resources in improving mixing properties of the posterior simulator. We adopt
the adaptive approach pionereed by Haario et al. (2001) and include mixtures of
proposals.

1. Block 1 - Structural Parameters (�): Draw a candidate

�� � ��N (�j�1; Cj) + (1� ��)N (�j�1; �Cj) � q� (�
� j �j�1)

with �� 6 1 and � > 1. The covariance matrix depends on the history of
draws, so

Cj =

�
C0; j � j0

cdcov (�0; : : : ;�j�1) + cd"Id; j > j0
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where d = dim (�) and (cd; ") are constants that are calibrated in order to
get an optimal acceptance rate.
The Mixture of Gaussian distributions is very useful for generating candid-
ates with occasionaly large variances, meaning that it is possible to escape
from local modes. Following Strid et al. (2010) , we set �� = 0:95 and
� = 9.
Since proposal is symmetric:

q� (�
� j �j�1) = q� (�j�1 j ��)

we have as a result that the acceptance probability is

��j = min

(
1;

L
�
ZT j ��; �Tj�1

�
p
�
�Tj�1 j ��

�
p (��)

L
�
ZT j �j�1; �Tj�1

�
p
�
�Tj�1 j �j�1

�
p (�j�1)

)

2. Block 2
�
�T
�
: Sampling the posterior of parameters that follow continu-

ous distributions has been widely covered, especially in DSGE estimation
literature, as in An and Schorfheide (2007). On the other hand, sampling
the posterior of discrete variables is a more complex issue. We adopt the
approach of Fiorentini et al. (2012) and Giordani and Kohn (2010) and use
adaptive proposals. However, this time we cannot use the covariance matrix
structure proposed by Haario et al. (2001).
Draw a candidate

�
�T
��
= f� �tg

T
t=1 from q�

��
�T
�� j �Tj�1;�j; cj��. That is,

for t = 1; 2; : : : ; T draw

� �t =

�
1; U (0; 1) � cj� (t)
0; otherwise

where for t = 1; 2; : : : ; T we compute

cj� (t) =

(
c0� (t); j � j0

�c0� (t) + (1� �)
Pj�1
k=1 �

k
t

j�1 ; j > j0

c0� (t) and � 2 (0; 1) are constants that are calibrated in order to get an op-
timal acceptance rate.
Since values � t for each period t = 1; 2; : : : ; T are independent, the pro-
posal density is the product of T Bernoulli-type distributions:

q�
��
�T
�� j �Tj�1;�j; cj�� = TY

t=1

�
cj� (t)

���t �1� cj� (t)
�(1���t )

The use of the two proposal distributions, together with the hierarchical prior
speci�cation, turns to be a consistent procedure for detecting regimes in Survey
Data. In particular, Barillas et al. (2013) provide a Monte Carlo Experiment using
this routine.
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3.5 Results

3.5.1 Posterior distribution of parameters
After running the posterior simulator for 200; 000 repetitions, we get the following
results. It is worth to notice that informative rather than �at priors for � are
included in the estimation procedure. These priors are not very restrictive, since
their standard deviations are fairly large, but are included because the sample
horizon is relatively small (about 52 quarters of observations).
Structural parameter estimates are displayed in Table 3.1. First important fea-

ture is to see that aggregate fundamentals exhibit a considerable persistence re-
�ected in the value of parameters

�
�f ; �b

�
, especially for ft. This result is in line

with the empirical literature of exchange rates, e.g. Rossi (2005). The second
important aspect is the fact that the volatility of the noise in ft is much higher in
regime � t = 1, with (�f2=�f ) � 2:83. In addition, the volatility of the public
signal is much higher than the private one, with (�p=e�f ) � 2. In other words, in
regime � t = 1 agents observe an additional public signal with a relative precision
of 25% with respect to the private signal. This very imprecise public signal, to-
gether withthe fact that (�f2=�f ) > 1, are consistent elements with our story of
an increase in disagreement.

� Mode
�e�� Prior

Distribution Mean S.d.
� 0:75 N (10; 4) 10:00 2:00
 1:79 Gamma (1:6; 1:25) 2:00 1:01
�f 0:98 Beta (2:6; 2:6) 0:50 0:20
�b 0:53 Beta (2:6; 2:6) 0:50 0:20e�f 1:67 I �Gamma (6; 1=4) 0:80 0:40e�b 2:52 I �Gamma (6; 1=4) 0:80 0:40
�f 0:24 I �Gamma (9; 1=4) 0:50 0:19
�b 0:77 I �Gamma (9; 1=4) 0:50 0:19
�� 0:29 I �Gamma (3; 1=2) 1:00 1:00
�mp 0:62 I �Gamma (3; 1=2) 1:00 1:00
�f2 0:68 I �Gamma (9; 1=4) 0:50 0:19
�p 3:35 I �Gamma (10; 1=20) 2:22 0:78
! 0:18 Beta (0:5; 5) 0:09 0:11

logP
�e�;e�T j ZT� 400:88

Table 3.1: Posterior estimates for 2000-2012
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Figure 3.2: Marginal Posterior Distributions for �

As a matter of fact, if we inspect the signal-to-noise ratios (see e.g. Melosi
(2012)), they are:

(1=e�f ) = (1=�f ) � 0:14 (� t = 0)

(1=e�f ) = (1=�f2) � 0:41 (� t = 1)

(1=e�b) = (1=�b) � 0:31

Clearly, because of the regime switches, the signal-to-noise ratio of ft changes
across regimes and it is higher in � t = 1 (0:41) than in � t = 0 (0:14). This means
that agents pay more attention to the private signal under � t = 1 than under � t = 0.
The signal-to-noise ratio also serves as a device to differentiate which fundamental
is relatively more important for private agents. Interestingly, in regime � t = 1
agents pay more attention to fundamental ft than to bt (0:41 > 0:31), but in regime
� t = 0 agents pay more attention to fundamental bt than to ft (0:31 > 0:14).
Finally, we observe at the mode that Pr (� t = 1) = ! = 0:18, which means

that the regime of higher volatility, and therefore lower disagreement, is quite
infrequent with respect to the regime with lower volatility and higher disagree-
ment, with posterior odds != (1� !) � 0:22. Furthermore, histograms from the
Regime-Switching model are depicted in Figure 3.2.
Having observed a �rst evidence of regime switches through the posterior dis-

tribution of �, we now turn to study the posterior distribution of regimes � t. As
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Figure 3.3: Posterior estimates of � t

it is depicted in Figure 3.3, the posterior probability of being in regime � t = 1
is not the same for each point in the data. The latter implies that our dataset ex-
hibits evidence of regime switches at particular dates related with higher volatility
of fundamentals and the observation of a very imprecise public signal. We also
include the history of regimes � t associated with the posterior mode. An interest-
ing result is that it shows some persistence, i.e. at least two consecutive regimes
with � t = 1, even though we have imposed that these regimes are independent
each other. This result does not necessarily implies that a markov-switching type
model should be implemented. It simply means that in some speci�c cases the
regime � t = 1 continues ongoing, but it is still the case that these episodes occur
eventually. The observed persistence, if any, is only for two periods, which is
different than standard markov switching results. We can focus our attention to
the period of the zero interest rates in Japan (until 2006), with the speci�c year
of 2001, or the last �nancial crisis episode, starting in 2008. These episodes of
turbulence imply a higher volatility in the monetary fundamentals, and also more
imprecise information about fundamentals that can generate more disagreement
among poll participants in the TANKAN Survey of Bank of Japan.
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Figure 3.4: Model implied dispersion �i;t

3.5.2 Model Implied Dispersion

We want to see, given posterior estimates of parameters 	 =
�
�; �T

	
, to what

extent the cross-sectional dispersion implied by the model matches with the actual
data, as in Figure 3.1. In this regard, Figure 3.4 depicts this result using a 90 per-
cent con�dence interval and compares it with the actual observables. It can be in-
ferred that the model does a good job in describing the dynamics of disagreement.
In other words, the information frictions plus the regime-switching approach are
good ingredients for this purpose. Of course, the match is not perfect, it gives us
evidence pointing into the right direction.

3.5.3 Rational Confusion and Impulse responses

Once we have identi�ed the parameter values, we proceed to explore the transmis-
sion of shocks in the model. Clearly, one can expect that differences in responses
will be re�ected across regimes, and more importantly, the presence of inform-
ational frictions and higher-order expectations provokes the Rational Confusion,
as pointed out by Bacchetta and Van Wincoop (2006). That is, whenever a shock
hits the economy, since it is a shock to unobservable fundamentals, agent cannot
distinguish the true source of the innovation in the short run. As a result, higher-
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Figure 3.5: Responses of st andXt to "ft , "bt and �t

order expectations for both fundamentals will react to an innovation in only one
fundamental, generating additional persistence in the response of exchange rates.
Concretely, we can see that the response of the exchange rate st to each of the

fundamentals as well as all the responses of the different orders of expectations�
Xf
t ;X

b
t

�
in Figure 3.5. As it is clear, responses across regimes differ because of

the higher volatility, �f2 > �f and because of the time varying information sets

t (i). We explore the impulse responses with respect to the initial regime � t = 1
ot � t = 0, i.e. the current regime when the shock occurs. These differences are
re�ected in both ampli�cation and propagation. The fact that the hierarchy of ex-
pectations about fundamentals exhibit hump-shaped responses, and given that the
exchange rate is a linear function of this hierarchy, we can see a persistent reaction
of exchange rates st. For the speci�c case of monetary fundamentals, the hump-
shaped response of st can also be linked with the so-called delayed overshooting
puzzle (see Dornbusch (1976), Eichenbaum and Evans (1995), Kim (2005)), but
recalling that our model has �exible prices. Furthermore, rational confusion is
even more clear when we observe the reaction of the system to the transitory
shock �t, the stochastic component of bond supply. This shock is not persistent
at all, however we observe the reaction of st as well as the hierachies for ft and
bt. As a result, under the presence of informational frictions and rational confu-
sion, even a transitory i.i.d. shock can produce considerable persistent effects in
exchange rates.
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3.5.4 Model comparison
The purpose of this section is to provide a measure of comparison between the
estimated regime-switching model with respect to two competing ones. Following
a large literature of Bayesian statistics, our measure of model comparison is the
Marginal Data Density. In our case we have the set of models:

M = fBenchmark; Bacchetta and van Wincoop;Common Informationg (3.43)

The model labeled as 'Benchmark' is the one described in this paper. The model
labeled as 'Bacchetta and van Wincoop' is a restricted version of 'Benchmark'
that rules out regime switches. That is, if we set � t = 0, 8t, we go back to the
benchmark model of Bacchetta and Van Wincoop (2006). Solving and estimating
the model under this restriction is much simpler, it is an asset pricing model as in
Nimark (2011) and it is estimated as in e.g. Nimark (2012b) or Barillas and Nim-
ark (2012). In addition, the model labeled as 'Common Information' is a restricted
version of 'Bacchetta and van Wincoop' that rules out informational frictions. As
a result, this is a simpler model solved through the 'Law of Iterated Expectations'.
Survey data are treated using the particular case of equation (3:42) with no regime
changes and no higher-order expectations, i.e. Etst+1 (i) = GMxt. We want to
test to what extent our regime-switching model �ts the data better than the two
competing ones.
Denote the Marginal Likelihood for modelMj as:

P
�
ZT jMj

�
=

Z
�j
L
�
ZT j �js;Mj

�
P
�
�js jMj

�
d�js

where �j = f�jsg
S
s=1 is the set of posterior estimates, L (:) is the Likelihood

Function and P (:) is the prior density. For each of the competing models Mj

we calculate the empirical counterpart of this measure using the harmonic-mean
estimator of Geweke (1999):

MDDj =

24 1
S

SX
s=1

f (�js jMj)

L
�
ZT j �js;Mj

�
P
�
�js jMj

�
35�1 (3.44)

where

f
�
�js
�
= p�1 (2�)�dj=2 exp

�
�1=2

�
�js ��

j
�0
�j
�
�js ��

j
��
�

I

��
�js ��

j
�0
�j
�
�js ��

j
�
� �2p (dj)

�
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and �j and �j are respectively the mean and covariance matrix of the posterior
distribution �j and p 2 (0; 1) is the percentile of the �2 distribution. In other
words, the expression (3:44) is the integral the Posterior Distribution with respect
to the MCMC draws �j . The latter represents the marginal data density (MDD)
or Marginal Likelihood of model j. Having estimated the three models using
200; 000 draws, we set S = 100 and evaluate the expression (3:44).

p BenchmarkBacchetta and van WincoopCommon Information
0:1 420:966 327:536 323:625
0:3 419:867 328:187 323:743
0:5 421:022 328:869 323:952
0:7 421:445 329:020 323:809
0:9 420:935 329:147 323:986

Table 3.2: Log-Marginal Likelihood: Harmonic-Mean estimator

Table 3.2 shows that the model with Regime Switches �ts the data better than
the two other competing models. It is also interesting to see that the Benchmark
model with information frictions does a better job than the model with common
information. It is worth to remark that, for comparison purposes, for each these
three models we use the same dataset with the same detrending procedure. Seen
through these lenses, our model does a good job in describing Survey Data that
exhibits disagreement.

3.6 Concluding Remarks
We �t a structural model with regime switches to Exchange Rates Survey Data.
The assumed information structure is such that high-volatility regimes are associ-
ated with the appearance of a very noisy public signal about fundamentals. Given
that this signal is very imprecise, and the higher volatility of shocks, disagreement
increases. The model-implied dispersion closely follows the observed disagree-
ment, which means the proposed model does a good job in terms of �tting. We
con�rm the latter when comparing the model �t with respect to a restricted model
without regimes switches and with no informational frictions at all.
Furthermore, the model solution using the captured regime switches from the

data is interpreted as evidence in favor of parameter instability in exchange rate
models. The latter is, together with rational confusion, an additional explanation
for the disconnection between Exchange Rates and future fundamentals.
We leave as future agenda the idea of exploring several surveys of Exchange

Rate expectations about different currencies, such as Consensus Economics or
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Bloomberg.
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Appendix A

APPENDIX TO CHAPTER 1

A.1 Equivalent reparameterizations of a SVAR
Consider the SVAR model:

A (�) yt = "t; "t � N (0; IM) (A.1)

t = 1; : : : ; T . yt and "t areM � 1 vectors, A (�) is a non-singularM �M matrix
and � is the vector of structural parameters. The Likelihood function of (A:1) is:

L
�
yT j �

�
= (2�)�MT=2 det (A (�))T exp

(
�1
2

TX
t=1

(A (�) yt)
0 (A (�) yt)

)
(A.2)

Following Hamilton (1994) and Amisano and Giannini (1997), the matrix A (�)
is re-parametrized as

vec (A (�)) = SA�+ sA

We know that

vec (A (�) yt) = vec (IMA (�) yt) (A.3)
= (y0t 
 IM) vec (A (�))

= (y0t 
 IM) (SA�+ sA)

Since A (�) y0t (A (�) yt) is a scalar

(A (�) yt)
0 (A (�) yt) = tr

�
(A (�) yt)

0 (A (�) yt)
�

Also, since:

tr
�
(A (�) yt)

0 (A (�) yt)
�
= [vec (A (�) yt)]

0 [vec (A (�) yt)]
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we have:

L
�
yT j �

�
= (2�)�MT=2 det (A (�))T exp

(
�1
2

TX
t=1

[vec (A (�) yt)]
0 [vec (A (�) yt)]

)

L
�
yT j �

�
= (2�)�MT=2 det (A (�))T exp

�
�1
2

PT
t=1 (SA�+ sA)

0 (y0t 
 IM)
0

� (y0t 
 IM) (SA�+ sA)

�
L
�
yT j �

�
= (2�)�MT=2 det (A (�))T exp

�
�1
2

PT
t=1 (SA�+ sA)

0 (yt 
 IM)
� (y0t 
 IM) (SA�+ sA)

�

L
�
yT j �

�
= (2�)�MT=2 det (A (�))T exp

(
�1
2

TX
t=1

(SA�+ sA)
0 (yty

0
t 
 IM) (SA�+ sA)

)

L
�
yT j �

�
= (2�)�MT=2 det (A (�))T exp

(
�1
2

TX
t=1

(�0S 0A + s0A) (yty
0
t 
 IM) (SA�+ sA)

)

L
�
yT j �

�
= (2�)�MT=2 det (A (�))T exp

�
�1
2

PT
t=1 (�

0S 0A (yty
0
t 
 IM) + s0A (yty

0
t 
 IM))

� (SA�+ sA)

�

L
�
yT j �

�
= (2�)�MT=2 det (A (�))T exp

8>><>>:�
1

2

TX
t=1

2664
�0S 0A (yty

0
t 
 IM)SA�

+�0S 0A (yty
0
t 
 IM) sA

+s0A (yty
0
t 
 IM)SA�

+s0A (yty
0
t 
 IM) sA

3775
9>>=>>;

L
�
yT j �

�
= (2�)�MT=2 det (A (�))T exp

8<:�12
TX
t=1

24 �0S 0A (yty
0
t 
 IM)SA�

+2�0S 0A (yty
0
t 
 IM) sA

+s0A (yty
0
t 
 IM) sA

359=;
L
�
yT j �

�
= (2�)�MT=2 det (A (�))T exp

(
�1
2

TX
t=1

[(3�0S 0A + s0A) (IM 
 y0tyt) (SA�+ 2sA)]

)
(A.4)

where yty0t 
 IM = (yty
0
t 
 IM)

0 = IM 
 y0tyt, because it is a symmetric matrix.
The repameterization used Waggoner and Zha (2003) delivers the same likeli-

hood function because as we have shown in the text

vec (A (�)) =

24 a1
a2
a3

35
so that

SA = diag (U1; U2; U3) ; sA =

24 R1
R2
R3

35
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where diag (:) indicates a block-diagonal matrix.
To show that the reparameterization employed in section 2 of the paper also

delivers the same likelihood, we apply the vec operator to (A:1):

vec (A (�) yt) = vec ("t)

Using (A:3) and the fact that vec ("t) = "t, the model can be re-expressed as:

eyt = Zt�+ "t (A.5)

with eyt � (y0t 
 IM) sA; Zt � � (y0t 
 IM)SA

Hence, the likelihood function is

eL �yT j �� = (2�)�MT=2 (detD)T exp

(
�1
2

TX
t=1

[eyt � Zt�]
0 [eyt � Zt�]

)

where T is the number of observations and where the Jacobian D such that

D =
@ [vec (A (�) yt)]

@y0t

=
@ [eyt � Zt�]

@y0t

=
@ (y0t 
 IM) sA

@y0t
+
@ (y0t 
 IM)SA�

@y0t

=
@IMDyyt
@y0t

+
@IMDzyt
@y0t

=
@Dyyt
@y0t

+
@Dzyt
@y0t

= Dy +Dz

where vec (Dy) = sA and vec (Dz) = SA�. Applying the vec operator we get

vec (D) = vec (Dy +Dz)

= vec (Dy) + vec (Dz)

= sA + SA�

= vec (A (�))

Hence
D = A (�) (A.6)
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The Likelihood function of (A:5):

eL �yT j �� / detDT exp

(
�1
2

TX
t=1

[ey0t � �0Z 0t] [eyt � Zt�]

)

/ detDT exp

(
�1
2

TX
t=1

[ey0teyt � ey0tZt�� �0Z 0teyt + �0Z 0tZt�]

)

/ detDT exp

(
�1
2

TX
t=1

[ey0teyt � 2�0Z 0teyt + �0Z 0tZt�]

)
Notice that ey0teyt = sA (y

0
t 
 IM)

0
(y0t 
 IM) sA

= sA (yt 
 IM) (y
0
t 
 IM) sA

= s0A (yty
0
t 
 IM) sA

= s0A (IM 
 y0tyt) sA

Z 0tZt = S 0A (y
0
t 
 IM)

0
(y0t 
 IM)SA

= S 0A (yt 
 IM) (y
0
t 
 IM)SA

= S 0A (yty
0
t 
 IM)SA

= S 0A (IM 
 y0tyt)SA

ey0tZt = �s0A (y0t 
 IM)
0
(y0t 
 IM)SA

= s0A (yt 
 IM) (y
0
t 
 IM)SA

= s0A (yty
0
t 
 IM)SA

= �s0A (IM 
 y0tyt)SA

so that
Z 0teyt = �S 0A (IM 
 y0tyt) sA

Therefore

eL �yT j �� / detDT exp

8<:�12
TX
t=1

24 s0A (IM 
 y0tyt) sA
+2�0S 0A (IM 
 y0tyt) sA
+�0S 0A (IM 
 y0tyt)SA�

359=;
and using (A:6) we get

eL �yT j �� / detA (�)T exp(�1
2

TX
t=1

[(s0A + 3�
0S 0A) (IM 
 y0tyt) (2sA + SA�)]

)
(A.7)
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A.2 Global Identi�cation

Consider the constant coef�cients version of SVAR model used in section 5:

26666664
1 0 0 0 0 0
�1 1 0 0 0 0
�2 �5 1 0 0 0
0 0 0 1 �11 0
�3 �6 0 �9 1 0
�4 �7 �8 �10 �12 1

37777775
| {z }

A(�)

�

26666664
GDPt
Pt
Ut
Rt
Mt

Pcomt

37777775 = A+ (L)

26666664
GDPt�1
Pt�1
Ut�1
Rt�1
Mt�1

Pcomt�1

37777775+�
26666664

"yt
"pt
"ut
"mpt
"mdt
"it

37777775

with

� =

26666664
�i 0 0 0 0 0
0 �md 0 0 0 0
0 0 �mp 0 0 0
0 0 0 �y 0 0
0 0 0 0 �p 0
0 0 0 0 0 �u

37777775
To verify whether the system is globally identi�ed, we �rst need to re-express this
model using the notation of Rubio-Ramírez et al. (2010). Let

yt � (GDPt; Pt; Ut; Rt;Mt; P comt)
0

and "t �
�
"yt ; "

p
t ; "

u
t ; "

mp
t ; "mdt ; "it

�0. Pre-multiplying by ��1, we obtain
��1A (�) yt = �

�1A+ (L) yt�1 + "t

with "t � N (0; I6). De�ne A0
0 � ��1A (�) and A0 (L) � ��1A+ (L). Then the

model is re-expressed as1

y0tA0 =

pX
L=1

y0t�LAL + "0t

1See equation (1) in Rubio-Ramírez et al. (2010).
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where

A0
0 =

26666664
�y 0 0 0 0 0
0 �p 0 0 0 0
0 0 �u 0 0 0
0 0 0 �mp 0 0
0 0 0 0 �md 0
0 0 0 0 0 �i

37777775

�1 26666664
1 0 0 0 0 0
�1 1 0 0 0 0
�2 �5 1 0 0 0
0 0 0 1 �11 0
�3 �6 0 �9 1 0
�4 �7 �8 �10 �12 1

37777775

=

26666664

1
�y

0 0 0 0 0
�1
�p

1
�p

0 0 0 0
�2
�u

�5
�u

1
�u

0 0 0
0 0 0 1

�mp
�11
�mp

0
�3
�md

�6
�md

0 �9
�md

1
�md

0
�4
�i

�7
�i

�8
�i

�10
�i

�12
�i

1
�i

37777775
DenotingA0 = [akj] we have

A0 =

26666664
a11 a12 a13 0 a15 a16
0 a22 a23 0 a25 a26
0 0 a33 0 0 a36
0 0 0 a44 a45 a46
0 0 0 a54 a55 a56
0 0 0 0 0 a66

37777775
an expression similar to equation (9) in Rubio-Ramírez et al. (2010). The matrices
Qj for j = 1; : : : ; 6. corresponding to Theorem 1 are:

Q1 =

26666664
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

37777775 ;Q2 =

26666664
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

37777775

Q3 =

26666664
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

37777775 ;Q4 =

26666664
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

37777775
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Q5 =

26666664
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

37777775 ;Q6 =

26666664
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

37777775

De�ne the matrices

Mj (A0) =

�
QjA0�

Ij 0j�(M�j)
� � ; j = 1; : : : ;M (A.8)

so that

M1 =

2666666664

0 a22 a23 0 a25 a26
0 0 a33 0 0 a36
0 0 0 a44 a45 a46
0 0 0 a54 a55 a56
0 0 0 0 0 a66
0 0 0 0 0 0
1 0 0 0 0 0

3777777775
;M2 =

266666666664

0 0 a33 0 0 a36
0 0 0 a44 a45 a46
0 0 0 a54 a55 a56
0 0 0 0 0 a66
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0

377777777775

M3 =

26666666666664

0 0 0 a44 a45 a46
0 0 0 a54 a55 a56
0 0 0 0 0 a66
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

37777777777775
;M4 =

2666666666666664

a11 a12 a13 0 a15 a16
0 a22 a23 0 a25 a26
0 0 a33 0 0 a36
0 0 0 0 0 a66
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

3777777777777775
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M5 =

266666666666666664

0 0 a33 0 0 a36
0 0 0 0 0 a66
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

377777777777777775
;M6 =

26666666666666666664

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

37777777777777777775
Since allMj have full column rank, the model is globally identi�ed.

A.3 Lower-dimensional systems
We have described in the text the reparametrized SUR model that results from
using a shrinkage prior on theBt under the assumption that the � are known. Here
we describe a modi�ed algorithm which can be used when the � are unknown.
Consider the TVC-SVAR model:

yt = X 0
tBt + A�1t �t"t

where X 0
t = IM 


�
D0
t; y

0
t�1; : : : ; y

0
t�k
�
, with

Bt = ��t + !t

�t = �t�1 + �t

�t = �t�1 + �t

log (�t) = log (�t�1) + �t

V ar

0BBBB@
266664
"t
!t
�t
�t
�t

377775
1CCCCA =

266664
I 0 0 0 0
0 Q 0 0 0
0 0 R 0 0
0 0 0 V 0
0 0 0 0 W

377775
where Q and R are diagonal matrices. We exploit the hierarchical structure of the
model to simulate the posterior distribution, as in Chib and Greenberg (1995) and
Koop and Korobilis (2010):
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1. Given (�t, �t Q), sample Bt using the equation:

yt = X 0
tBt + A�1t �t"t

with A�1t �t"t = ut � N (0; Ht). That is, for each t = 1; : : : ; T draw:

Bt � N
�
Bt; V Bt

�
where

V Bt =
�
V B�1 +XtH

�1
t X 0

t

��1
Bt = V Bt

�
V B�1Bt +XtH

�1
t yt

�
and priors

V B = Q; Bt = ��t

2. Given (Bt, �t), compute the residuals (Bt � ��t) and sample Q using an
inverse Wishart distribution.

3. Given Bt, sample �t using the state space form:

Bt = ��t + !t

�t = �t�1 + �t

4. Given �t, sample R using an inverse Wishart distribution.

5. Given (Bt,�t, Q) draw � using the equation:

Bt = ��t + !t; t = 1; : : : ; T

where in order to achieve identi�cation, we normalize the �rst upper block
of � to be an identity matrix, as in Koop and Korobilis (2010). That is,
denote F = dim(�t) and K = dim(Bt), then � is a K � F matrix. The
�rst F rows of � are:

�(1:F)�(1:F) = IF

Moreover, since !t � N (0; Q), and we have assumed that Q is diagonal,
we draw the loadings row by row for each element of Bt. For each f =
F + 1; : : : ; K draw:

�f�(1:F) � N
�
�f ; V �f

�
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with

V �f =
�
V ��1 +Q�1(f;f)

�
�T
� �
�T
�0��1

�f = V �f

�
V ��1�f +Q�1(f;f)�

TBT
f

�
where �T is a F � T matrix of explanatory variables, BT

f is a T � 1 vector
that contains the dependent variable andQ(f;f) is the corresponding element
of matrix Q drawn previously. The priors are:

�f = 0F�1; V � = k2�IF

with the hyperparameter k2� = 0:01.

6. Given (Bt, Q), sample �t, V , �t and W as in the text. Once these are
obtained, go back to 1.

A.4 Convergence diagnostics
Following Geweke (1992), Primiceri (2005) and Baumeister and Benati (2012)
among others, we check for the autocorrelation properties of the different blocks
of the Markov Chain via the inef�ciency factor. Let the Relative Numerical Ef�-
ciency (RNE) be:

RNE =
1

2�

1

S (0)

Z �

��
S (!) d! (A.9)

where S (:) is the spectral density of an element of the Markov Chain. The inef�-
ciency factor IF = 1=RNE, can be interpreted as an estimate of (1 + 2

P1
k=1 �k),

where �k denotes the autocorrelation of k-th order. Thus, high values of IF in-
dicate strong serial correlation across draws. We use the MATLAB �le coda.m
from James P. Lesage toolbox to calculate the IF. We set a 4% tapered window for
the estimation of the spectral density at frequency zero and take values around or
below 20 as cut-off point (and values below are considered as satisfactory). Figure
A.1 presents the IF statistic. Overall, serial correlation across does not seem to
be an issue.

A.4.1 Markov Chain plots
Figures A.2 and A.3 depict the evolution of theMarkov chain for the non-discarded
draws for selected parameters. Recall that we have discarded the �rst 100; 000
draws and kept 1 for every 100 draws for the remaining 50; 000 draws.
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Figure A.1: Inef�ciency factor for each parameter of the model

Figure A.2: Plot of �6;t
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Figure A.3: Plot of �9;t

In all �gures parameter �uctuations are small indicating that convergence to
the ergodic distribution has already occurred.
Figure A.4 presents rolling estimates of the diagonal elements of the covari-

ance matrix, where estimates at each point are obtained with 10 draws - we do
this for every t. we For space reasons, we only show the results for t = 25. In
almost all the cases estimates of the variances are stable or do not �uctuate too
much (values are most of them in the order of 1 � 10�5), which suggest that the
chain converged to the ergodic distributions (see Casella and Robert (2004)).

A.4.2 Histograms
Figures A.5, A.6 and A.7 present histograms for coef�cients �11;t, �6;t and �2;t at
selected dates. The empirical distribution look broadly unimodal, which is also a
good indication of convergence.

A.5 Dynamics in the single-move algorithm
This section reports the �gures presented in the text when a single-move algorithm
is used to draw sequences for BT and all variables are expressed in year-to-year
rate changes, i.e. y�t = log (yt) � log (yt�4), except for the Federal Funds and
the unemployment rate and standardized. We set the same priors as in Table 1
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Figure A.4: Rolling Covariance Matrix of MCMC draws

Figure A.5: Histograms for �11;t, selected dates.
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Figure A.6: Histograms for �6;t, selected dates.

Figure A.7: Histograms for �2;t, selected dates.
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with hyperparameters k2Q = 0:5� 10�4, k2S = 1� 10�3; k2W = 1� 10�4 and, for
comparison purposes, we use the same scaling for the variables as in the multi-
move case.
Figures A.8, A.9 and A.10 slightly differ from those in the text (see Figures

1.3, 1.5, and 1.4). We still observe the same in the evolution of volatility of mon-
etary policy shocks as in the benchmark case.

Figure A.8: Volatility of monetary policy shock (single-move)

Since the hyper-parameters
�
k2Q; k

2
S; k

2
W

�
are �xed and since these paramet-

ers control our prior beliefs about the extent of time variation in each parameter
block

�
BT ; �T ; �T

�
, some difference are also present over time. In particular, the

same parameterization implies a tighter prior for BT relative to the multi-move
algorithm and, as a result, we will have less variation impulse responses across
dates. Clearly, a tighter prior for BT leads to an increase in the acceptance rates
for stable impulse responses.
The changes in structural parameters are also different as can be seem in Fig-

ure A.10.

107



�swp0000� � 2013/7/1 � 20:04 � page 108 � #126

Figure A.9: Impulse responses to monetary shocks (single-move)

Figure A.10: Estimates for � (single-move)
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Appendix B

APPENDIX TO CHAPTER 2

B.1 Impulse responses at selected dates
Figure B.1 depicts responses after a policy shock for years 1975, 1981, 1996 and
2004, dates related with normal times. On the other hand, Figure B.2 depicts
responses after a policy shock for years 2009, 2010, 2011 and 2012, i.e. after the
Great Financial crisis.For comparison purposes, responses have been normalized
such that here is a shock of "st = 1 in period t. Details about the computation of
these responses can be found in Appendix B.2.

B.2 Computation of Impulse Responses in a TVC-
SVAR

B.2.1 Setup

Impulse response analysis can be performed using the posterior distribution of
parameter blocks and structural shocks. Following Canova (2007) and Canova and
Ciccarelli (2009), the Impulse Response Function in a Time-Varying-Coef�cients
setup can be interpreted as the difference between two conditional expectations,

IR (t; t+ j) = E (Yt+j j I1)� E (Yt+j j I2) ; j = 0; 1; 2; : : : (B.1)

where the information sets are

I1 =
�
Yt�1; Bt; V; �t;ect; �t; "i;t = e"i;t; "�i;t	

I2 =
�
Yt�1; Bt; V; �t;ect; �t; "i;t = "i;t; "�i;t
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Figure B.1: Responses after a Monetary Policy shocks and before the Great Fin-
ancial Crisis, 90 percent bands

Figure B.2: Responses after a Monetary Policy shocks after the Great Financial
Crisis, 90 percent bands
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That is, given a particular realization of the i�th structural shock at time t, "i;t =e"i;t, we compare the forecast using this information with respect to a different
forecast using the posterior mean "i;t = "i;t.
We now proceed to explain the details. Denote the companion form of (2:4)

as
Yt+j = A

c
tYt+j�1 +Ut+j (B.2)

where

Ac
t =

2666664
B1;t B2;t � � � Bp�1;t Bp;t
IM 0 � � � 0 0
0 IM � � � 0 0
...

... . . . ...
...

0 0 � � � IM 0

3777775 (B.3)

is a (Mp�Mp)matrix,Yt+j is a demeaned version of
�
y0t+j; y

0
t+j�1; : : : ; y

0
t+j�p+1

�0
andUt+j =

�
u0t+j;0

0; : : : ;00
�0. Solving backwards equation (B:2) yields

Yt+j = A
c
t

�
Ac
t�1Yt+j�2 +Ut+j�1

�
+Ut+j

Yt+j = A
c
tA

c
t�1
�
Ac
t�2Yt+j�3 +Ut+j�2

�
+Ac

tUt+j�1 +Ut+j

Yt+j = A
c
tA

c
t�1A

c
t�2Yt+j�3 +A

c
tA

c
t�1Ut+j�2 +A

c
tUt+j�1 +Ut+j

� � �

Yt+j =

 
jY
k=0

Ac
t+j�k

!
Yt�1 +

jX
h=1

 
h�1Y
k=0

Ac
t+j�k

!
Ut+j�h (B.4)

Recall also that
Ut+j =

�
u0t+j;0

0; : : : ;00
�0

which can be written as
Ut+j = Ht+jEt+j

where

Ht+j =

26664
Ht+j 0 � � � 0
0 0 � � � 0
...

... . . . ...
0 0 � � � 0

37775
Et+j =

�
"0t+j;0

0; : : : ;00
�0 and Ht+j = A�1t+jCt+j�t+j . As a result, equation (B:4)

is re-written as

Yt+j =

 
jY
k=0

Ac
t+j�k

!
Yt�1 +

jX
h=1

 
h�1Y
k=0

Ac
t+j�k

!
Ht+j�hEt+j�h (B.5)
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Next step is to compute the conditional expectations and take differences to pin
down impulse responses as in (B:1). Two aspects are worth to remark, i) the
�rst term in (B:5) will be common for both conditional expectations given the
information sets I1 and I2, therefore it will be cancelled, ii) past realizations of
Et+j�h are also common to I1 and I2, thus the only term that survives in the
summation is the one indexed with t (where h = j). As a result (B:1) can be
written as

IR (t; t+ j) = Et

" 
j�1Y
k=0

Ac
t+j�k

!
Ht

�eEt � Et�# (B.6)

Since the latter expression (B:6) is based on the companion form vectorYt+j , it is
useful to re-write it in terms of its original elements. First, de�ne the (M �Mp)
selection matrix J =

�
IM 0 � � � 0

�
and notice that yt+j = JYt+j , JJ0 =

IM and J0J = IMp. As a result, Ht = JHtJ
0, J0J

�eEt � Et� = �eEt � Et�
and J

�eEt � Et� = (e"t � "t), where e"t = [e"i;t; "�i;t] and "t = ["i;t; "�i;t]. Pre-
multiplying (B:6) by J yields

@yt+j
@"t

= Et

"
J

 
j�1Y
k=0

Ac
t+j�k

!
J0JHtJ

0J
�eEt � Et�#

@yt+j
@"t

= Et

"
J

 
j�1Y
k=0

Ac
t+j�k

!
J0 (JHtJ

0)
n
J
�eEt � Et�o#

@yt+j
@"t

= Et

"
J

 
j�1Y
k=0

Ac
t+j�k

!
J0Ht (e"t � "t)

#
(B.7)

The latter expression is equivalent to equation (2:21).

B.2.2 Algorithm for computing impulse responses
Denote the set of posterior estimates as

PE =
�
BT
i ; �

T
i ;ecTi ; �Ti ; sTi ; Qi; Sai; Sci;Wi

	Nd
i=1

Then use the following algorithm to compute responses to shock in variable m 2
f1; : : : ;Mg of size �:

1. Set a date t 2 f1; : : : ; Tg and set k = 1.
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2. For l = 1; : : : ; L do the following:
a) Draw a random number R � U (1; Nd), take the nearest integer R.
b) Pick the elements

�
BT
R; �

T
R;ecTR; �TR; sTR; QR; SaR ; ScR ;WR

�
and setBR

t ; �
R
t ;ecRt ; log ��Rt �

and yt as initial values.
c) Construct the matrix of impacts HR

t =
�
ARt
��1

CRt �
R
t . Then draw

"R1;t � N (0; IM), set ul1;t = HR
t "

l
1;t and ul2;t = HR

t "
l
2;t, where "l2;t = "l1;t but

set the entrym of "l2;t equal to �.
d) For j = 1; : : : ; h� 1 do the following:
i) Forecast (Bt+j; �t+j;ect+j; log (�t+j)) using (QR; SaR ; ScR ;WR) and the
equations (2:7), (2:8), (2:9) and (2:10).
ii) Construct the matrix of impacts Ht+j = (At+j)

�1Ct+j�t+j . Then draw
"l1;t+j � N (0; IM), set ul1;t+j = Ht+j"

l
1;t+j and ul2;t+j = ul1;t+j .

e) For j = 0; : : : ; h� 1 do the following:
i) Forecast yl1;t+j and yl2;t+j by using the companion form (B:2) and using
Bt+j and ul1;t+j and ul2;t+j .
ii) Compute IR (t+ j; k; l) = yl1;t+j � yl2;t+j
f) De�ne IR (t : t+ h; k; l) = fIR (t+ j; k; l)gh�1j=0 .

3. Take averages

IR (t : t+ h; k) =
1

L

LX
l=1

IR (t : t+ h; k; l)

4. If k < N , set k = k + 1 and go back to 2. Otherwise stop.

Finally, take percentiles over fIR (t : t+ h; k)gNk=1.

B.3 Sampling Parameter blocks
This section takes an extended version of the algorithm described in chaper 1. We
describe the sampling procedure for parameter blocks

�
BT ; �T ;ecT ;�T ; sT ; V �

and we do it sequentially using the logic of Gibbs Sampling (see Chib (2001)).
We emphasize how to sample blocks

�
�T ;ecT � and we refer the reader to Primiceri

(2005)'s Appendix A for speci�c details regarding sampling blocks
�
BT ;�T ; sT ; V

�
.

B.3.1 Setting the State Space form for matrices At and C�1t
Consider the state space model generated after sampling the reduced-form coef�-
cients bBt. From (1:26) let

At

�
yt �X 0

t
bBt� = Atbyt = Ct�t"t
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Then the state-space form can be written as

eyt = Z�;t�t + Ct�t"t (B.8)

�t = �t�1 + �t (B.9)
where eyt and Z�;t are de�ned in subsection B.3.4, �t are the free elements in At
and V ar (�t) = Sa.
Similarly, consider the following state space model generated after sampling

the vector �t. From (1:26) let

C�1t At

�
yt �X 0

t
bBt� = C�1t eyt = �!y t = �t"t

Then the state-space form can be written as
�!y t = Zec;tect + �t"t (B.10)

ect = ect�1 + %t (B.11)
where Zec;t is also de�ned in subsection B.3.4, ect are the free elements in C�1t and
V ar (%t) = Sec.
B.3.2 The algorithm

Let
n
fsl;tgTt=1

oM
l=1
be a discrete indicator variable which takes j = 1; : : : ; k pos-

sible values. The procedure has 8 steps and 6 sampling blocks:

1. Set an initial value for (BT
0 ; �

T
0 ;ecT0 ;�T0 ; sT0 ; V0) and set i = 1.

2. Draw BT
i from from p

�
BT
i j �Ti�1;ecTi�1;�Ti�1; sTi�1; Vi�1� � IB �BT

i

�
using

kalman smoothed estimates BtjT obtained from the system (1:26) � (2:7)
and compute byTi , where IB (:) truncates the posterior distribution to insure
stationarity of companion form.

3. Draw �Ti from

p
�
�Ti j byTi ;ecTi�1;�Ti�1; sTi�1; Vi�1� = p

�
�i;T j byTi ;eci�1;T ;�i�1;T ; si�1;T ; Vi�1��(B.12)

T�1Y
t=1

p
�
�i;t j �i;t+1; byti ;eci�1;t;�i�1;t; si�1;t; Vi�1�

/ p
�
�i;T j byTi ;eci�1;T ;�i�1;T ; si�1;T ; Vi�1��

T�1Y
t=1

p
�
�i;t j byti ;eci�1;t;�i�1;t; si�1;t; Vi��

ft+1 (�i;t+1 j �i;t;eci�1;t;�i�1;t; si�1;t; Vi�1)
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4. Draw ecTi from
p
�ecTi j �!y Ti ; �Ti ;�Ti�1; Vi�1� = p

�eci;T j �!y Ti ; �i;T ;�i�1;T ; si�1;T ; Vi�1� (B.13)

�
T�1Y
t=1

p
�eci;t j eci;t+1;�!y ti; �i;t;�i�1;t; si�1;t; Vi�1�

/ p
�eci;T j �!y Ti ; �i;T ;�i�1;T ; si�1;T ; Vi�1�
�
T�1Y
t=1

p
�eci;t j �!y ti; �i;t;�i�1;t; si�1;t; Vi�1�

�ft+1 (eci;t+1 j eci;t; �i;t;�i�1;t; si�1;t; Vi�1)
5. Draw �Ti using a log-normal approximation to their distribution as in Kim
et al. (1998). After sampling

�
BT
i ; �

T
i ;ecTi �, the state space is linear but

the error term is not normally distributed. To see this, note that given�
BT
i ; �

T
i ;ecTi �, the state space system isbC�1t bAteyt = y��t = �t"t

and (2:10). Consider the i� th equation y��i;t = �i;t"i;t, where i = 1; : : : ;M ,
�i;t is the i�th element in the main diagonal of �t and "i;t is the i�th ele-
ment of "t.

y�t = log
h�
y��i;t
�2
+ c
i
� 2 log (�i;t) + log "2i;t (B.14)

Then where c is a small constant. Since "i;t is Gaussian, log "2i;t is log (�2)
distributed and we approximate this distribution by a mixture of normals.
Since conditional on st, the model is linear and Gaussian, standard Kalman
Filter recursions can be used to draw f�tgTt=1 from the system (B:14) �
(2:10). To ensure independence across structural variances, each element
of the sequence f�i;tgMi=1 is sampled assuming that the covariance matrix
W is diagonal.

6. Draw the indicator of mixture of normals sTi . Conditional on �Ti , y�t , and
given l and t, we draw u � U (0; 1) and compare it with the discrete distri-
bution of sl;t which is given by

P
�
sl;t = j j y�l;t; log (�l;t)

�
/ qj � �

�
y�l;t � 2 log (�l;t)�mj + 1:2704

�j

�
;

j = 1; : : : ; k; l = 1; : : : ;M

where � (:) is the probability density function of a normal distribution, and
the argument of this function is the standarized error term log "2l;t (see Kim
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et al. (1998)). Then we assign sl;t = j iff P
�
sl;t � j � 1 j y�l;t; log (�l;t)

�
<

u � P
�
sl;t � j j y�l;t; log (�l;t)

�
.

7. Draw Vi from P
�
Vi j �Ti ;ecTi ; yTi ;�Ti�1; sTi�1� using de�nitions (2:7)�(2:10).

The covariance matrix Vi is sampled assuming that each block follows an
independent Wishart distribution.

8. Set BT
i ; �

T
i ;ecTi ;�Ti ; sTi ; Vi as the initial value for the next iteration and set

i = i+ 1. Repeat 2 to 7 if i < N , otherwise stop.

The complete cycle of draws is repeated N = Nb + Nd times and the �rst
Nb draws are discarded to ensure convergence in distribution. Because the draws
are generally serially correlated, one every nthin of the last Nd draws is used for
inference.

B.3.3 The details in steps 3 and 4
This subsection follows chaper 1. For steps 3 and 4 we use a Metropolis step to
decide whether a draw from a proposal distribution is retained or not.
We only illustrate the case of sampling vector �t, since sampling vector ect

will be completely symmetric following the Multi-move Gibbs Sampling logic.
The densities p (�t j byt;ect;�t; s; V ) are obtained applying the Extended Kalman
Smoother to the original system (1:33)�(B:9). To draw �Ti given byTi ;ecTi�1;�Ti�1; sTi�1; Vi�1,
we proceed as follows:

1. If i = 0, take an initial value �T0 = f�0;tg
T
t=1. If not,

2. Given �Ti�1, compute
n
�
�(i�1)
tjt+1

oT
t=1
and

n
P
�(i�1)
tjt+1

oT
t=1
using the EKS wheren

P �tjt+1

oT
t=1
denotes the covariance matrix of

n
��tjt+1

oT
t=1
.

3. Generate a candidate draw zT = fztgTt=1, where for each t = 1; : : : ; T

p�� (zt j �i�1;t) = N
�
�i�1;t; rP

�(i�1)
tjt+1

�
, and r is a constant. Let p��

�
zT j �Ti�1

�
=

TY
t=1

p�� (zt j �i�1;t).

4. Compute � = p(zT )�p��(�Ti�1jzT )
p(�Ti�1)�p��(zT j�Ti�1)

where p (:) is the RHS of (B:12) using

the EKS approximation. Draw a v � U (0; 1). Set �Ti = zT if v < ! and
set �Ti = �Ti�1 otherwise, where

! �
�
min f�; 1g ; if I�

�
zT
�
= 1

0; if I�
�
zT
�
= 0
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and I� (:) is a truncation indicator.

Finally, steps 2 to 4 in this sub-loop are repeated every time step 3 of the main
loop is executed.

B.3.4 The identi�ed system
Recall the expression

Atbyt = Ct�t"t

The expression of the measurement equation is possible to obtain since vec (Atbyt) =
vec (Ct�t"t). Then, using the fact that At(M�M), byt(M�1), �t(M�M), "t(M�1), then

vec (Atbyt) = vec (IMAtbyt) = (by0t 
 IM) vec (At)

and also

vec (Ct (�t"t)) =
�
(�t"t)

0 
 IM
�
vec (Ct) = (I1 
 Ct) vec (�t"t) = Ct�t"t

since Atbyt and Ct�t"t are already column vectors1. On the other hand, following
Amisano and Giannini (1997) and Hamilton (1994), we also know that the matrix
of the SVAR can be decomposed as follows

vec (At) = SA�t + sA (B.15)

vec
�
C�1t

�
= SCF (ct) + sC (B.16)

where SA(M2�dim�), sA(M2�1), SC(M2�dimF (c)) and sC(M2�1) are matrices �lled by
ones and zeros. Moreover, �t, ct and F (ct) are the vectors of free parameters
in At, Ct and C�1t , respectively and F (:) : Rdim(c) ! RdimF (c) is in general a
nonlinear invertible function. That is, we sample the vector fF (ct)gTt=1 and if and
only if F (:) is invertible, then we can recover fctgTt=1 = fF�1 [F (ct)]gTt=1. We
will denote ect = F (ct). Collecting all the results we get

(by0t 
 IM) (SA�t + sA) = Ct�t"t

Rewriting this equation

(by0t 
 IM)SA�t + (by0t 
 IM) sA = Ct�t"t

(by0t 
 IM) sA = � (by0t 
 IM)SA�t + Ct�t"t

1In general, we have applied the property ABd = (d0 
A) vec (B), where A is an m � n
matrix, B is an n � q matrix and d is a (q � 1) vector. See details in Magnus and Neudecker
(2007), chapter 2, pp. 35.
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The state space form is now

eyt = Z�;t�t + Ct�t"t

�t = �t�1 + �t

where eyt � (by0t 
 IM) sA (B.17)
Z�;t � � (by0t 
 IM)SA (B.18)

On the other hand, given �t,we proceed in the following way

vec
�
C�1t Atbyt� = vec ((�t"t)) = �t"t�
(Atbyt)0 
 IM

�
vec
�
C�1t

�
= �t"t�

(Atbyt)0 
 IM
�
(SCect + sC) = �t"t�

(Atbyt)0 
 IM
�
sC = �

�
(Atbyt)0 
 IM

�
SCect + �t"t

The state space form is now
�!y t = ZC;tect + �t"tect = ect�1 + %t

where
�!y t �

�
(Atbyt)0 
 IM

�
sC (B.19)

ZC;t � �
�
(Atbyt)0 
 IM

�
SC (B.20)

Moreover, for the speci�c case of the model presented, we have that byt denotes
the residuals for the �rst stage and also the matrices

At =

2666666664

1 0 0 0 0 0 0
��x;t 1 0 0 0 0 0
�cx;t �c�;t 1 0 0 0 0
�SPRx;t �SPR�;t �SPRc;t 1 0 �SPRFFR;t 0
�TRx;t �TR�;t �TRc;t 0 1 �d1;t 0
�FFRx;t �FFR�;t �FFRc;t 0 1 ��b1;t �1
�NBRx;t �NBR�;t �NBRc;t 0 0 0 1

3777777775
(B.21)

and

Ct =

2666666664

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

0 0 0 �ft �dt �bt 1

3777777775
(B.22)
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therefore, M = 7, dim� = 18. As it is evident, Ct is a lower-triangular matrix
with the main diagonal governed by ones, i.e. a unitriangular matrix. Moreover,
C 0t will be unitriangular as well and in this case it can also be classi�ed as a
Frobenius matrix2. The inverse of a Frobenius matrix X is exactly X�1 = �X .
Thus, provided by the fact that [C 0t]

�1 =
�
C�1t

�0, we have that [C 0t]�1 = �C�1t �0 =
�C 0t ) C�1t = �Ct, hence

C�1t =

2666666664

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

0 0 0 ��ft ��dt ��bt 1

3777777775
and dimF (c) = dimec = 3. Therefore, it turns out that in this particular case the
function F (:) is actually a linear transformation, i.e. ect = F (ct) = �ct. That is,
as long as C 0t is Frobenius matrix, F (:) will be linear with a well de�ned F�1 (:).
As a result, we need to de�ne matrices SA; sA; SC ; sC �lled by 0s and 1s.

These matrices, together with the column vectors

�t =

�
��x;t; �

Pcom
x;t ; �SPRx;t ; �TRx;t ; �

NBR
x;t ; �FFRx;t ; �Pc�;t; �

SPR
�;t ; �TR�;t ;

�NBR�;t ; �FFR�;t ; �SPRPc;t ; �
TR
Pc;t; �

NBR
Pc;t ; �

FFR
Pc;t ; �

SPR
TR;t ; �

SPR
FFR;t; �

b
1;t

�0
and ect = h��ft ;��dt ;��bti0
are set such that equations (B:15) and (B:16) hold exactly.

B.4 Diagnosis of convergence of the Markov Chain
to the Ergodic Distribution

In this section we closely follow the approach described in Appendix A.4. Fig-
ure B.3 depicts the IF value for each parameter of the model. Overall, serial
correlation across draws does not seem to be an issue.

B.4.1 Markov Chain plots
Figures B.4 and B.5 depict the evolution of theMarkov chain for the non-discarded
draws for selected parameters. Recall that we have discarded the �rst 100; 000
draws and kept 1 for every 100 draws for the remaining 50; 000 draws.

2http://en.wikipedia.org/wiki/Frobenius_matrix
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Figure B.3: Inef�ciency Factor IF for each parameter in the model

Figure B.4: MCMC draws of parameter �6;t
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Figure B.5: MCMC draws of parameter �dt

In all �gures parameter �uctuations are small indicating that convergence to
the ergodic distribution has already occurred.
Figures B.6 and B.7 present rolling estimates of the diagonal elements of the

covariance matrix, where estimates at each point are obtained by adding 10 draws,
and we do this for every t. we For space reasons, we only show the results for
t = 140. In almost all the cases estimates of the variances are stable or do not
�uctuate too much (values are most of them in the order of 1 � 10�3), which
suggest that the chain has reached convergence to the ergodic distributions (see
Casella and Robert (2004)).

B.4.2 Histograms
Figure B.8 presents histograms of coef�cient �dt at selected dates. The empirical
distribution look broadly unimodal, which is also a good indication of conver-
gence.
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Figure B.6: Cumulative variances of vector �t

Figure B.7: Cumulative variances of vector ect
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Figure B.8: Histograms of parameter �dt
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Appendix C

APPENDIX TO CHAPTER 3

C.1 Data Description
Figure C.1 depicts the Yen to Dollar Exchange Rate and the Interest rates for both
Japan and United Sates.
Figure C.2 shows details regarding the Survey of Expectations. Published

forecasts are for march and september. Data for december and june was linearly
interpolated.
Finally, Figure C.3 provides the reference of how are expectations computed

in the TANKAN Survey based on the information provided by �rms in Japan.

C.2 Convergence properties of the Markov Chain
Ergodicity is a desired property for the output of a Markov Chain Monte Carlo
(MCMC) experiment. This turns to be more important in the context of adaptive
proposal distributions, since now draws depend on the full history of the chain,
i.e. the serial correlation across draws is potentially very high. Figure C.4 shows
that draws have achieved convergence to the mean of the ergodic distribution.
In addition, Figure C.5 shows rolling covariances across draws. In this case,

draws have achieved convergence to the variance of the ergodic distribution.

C.3 Mixtures of Normals

C.3.1 Basic setup
Let X1; X2 denote random variables from the 2 component distributions

Xl � N
�
�l; �

2
l

�
; l = 1; 2
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Figure C.1: ER and Interest differentials

which implies that the probability density function for each l is:

pl(x) =
1

�l
p
2�
exp

 
�1
2

�
Xl � �l
�l

�2!
and also assume that the weights are ! and 1 � ! and that there is a non-linear
transformation for X such as � exp (�X).
The expected value of this transformation is

E [� exp (�X)] = !E [� exp (�X1)] + (1� !)E [� exp (�X2)] (C.1)

Given the normal density, we know that for l = 1; 2 the following expression
holds1:

E [� exp (�Xl)] =

Z 1

�1
� exp (�Xl) pl (Xl) dXl

=
1

�l
p
2�

Z 1

�1
� exp (�Xl) exp

 
�1
2

�
Xl � �l
�l

�2!
dXl

=
1

�l
p
2�

Z 1

�1
� exp

 
�Xl �

1

2

�
Xl � �l
�l

�2!
dXl

Let
Xl = �l + �lz ) dXl = �ldz

1See also Moss (2010)
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Figure C.2: Details about Predicted Exchange Rates by Industries data, BoJ

Figure C.3: Reference to Predicted Exchange Rates (TANKAN), FAQ of The
Bank of Japan

then

E [� exp (�Xl)] =
�l

�l
p
2�

Z 1

�1
� exp

�
�1
2

�
z2 + 2�lz + 2�l

��
dz

which means that z 2 (�1;1), Xl 2 (�1;1).
Complete squares:

E [� exp (�Xl)] =
1p
2�

Z 1

�1
� exp

�
�1
2

�
z2 + 2�lz + 2�2l + 2�l � 2�2l

��
dz

E [� exp (�Xl)] =
1p
2�

Z 1

�1
� exp

�
�1
2

�
(z + �l)

2 + 2�l � 2�2l
��

dz
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Figure C.4: Convergence in mean

Figure C.5: Convergence in variance
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E [� exp (�Xl)] =
1p
2�

Z 1

�1
� exp

�
�1
2
(z + �l)

2

�
exp

�
�1
2

�
2�l � 2�2l

��
dz

E [� exp (Zl)] =
1p
2�

Z 1

�1
� exp

�
�1
2
(z + �l)

2

�
exp

�
�
�
�l �



2
�2l

��
dz

The second exponential is independent of z, therefore:

E [� exp (�Xl)] = � exp
�
�
�
�l �



2
�2l

��
�

1p
2�

Z 1

�1
exp

�
�1
2
(z + �l)

2

�
dz

where z is a standard normal. Here we use a change of variable. Let

c =
z + �lp

2
)
p
2dc = dz

which means that c 2 (�1;1), z 2 (�1;1).
As a consequence:

E [� exp (�Xl)] = � exp
�
�
�
�l �



2
�2l

��
�

p
2p
2�

Z 1

�1
exp

�
�c2

�
dc

= � exp
�
�
�
�l �



2
�2l

��
�

1

2

Z 1

�1

2p
�
exp

�
�c2

�
dc

Evaluating the integral:Z 1

�1

2p
�
exp

�
�c2

�
dc = lim

c!1
erf (c)� lim

c!�1
erf (c)

= 1� (�1)
= 2

where erf (:) is the Gaussian Error Function. Using this result:

E [� exp (�Xl)] = � exp
�
�
�
�l �



2
�2l

��
� 1
2
� 2 (C.2)

= � exp
�
�
�
�l �



2
�2l

��
Plugging (C:2) in (C:1):

E [� exp (�X)] = !
h
� exp

�
�
�
�1 �



2
�21

��i
+(1� !)

h
� exp

�
�
�
�2 �



2
�22

��i
(C.3)
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C.3.2 Mixture of normals in the ER model

We assume that the information set 
t (j) can take two values according to an
underlying dichotomic latent variable � t. More formally


t (j) =

�

0t (j) , if � t = 0

1t (j) , if � t = 1

In addition, assume that ! = Pr (� t = 1). Before cit+1 was normally distributed
with well de�ned mean Ejt c

j
t+1 and variance vart

�
cjt+1

�
. The latter moments

were constructed conditional on the information set 
t (j). Thus, the resulting
expression in (3:11) was straightforward. Here the result is different. Denote the
conditional moments for l = 0; 1:

�l = Ejt;lc
j
t+1 = E

�
cjt+1 j 
lt (j)

�
(C.4)

�2c;l = varjt;lc
j
t+1 = var

�
cjt+1 j 
lt (j)

�
Strictly speaking, cjt+1 is now following a mixture of normals. Following (C:3),
the expected utility will be

E
�
� exp

�
�cjt+1

��
= !

h
� exp

�
�
�
�1 �



2
�2c;1

��i
+(1� !)

h
� exp

�
�
�
�0 �



2
�2c;0

��i
(C.5)

Furthermore, we have that

�l = (1 + it)w
j
t +

�
Eits

l
t+1 � st + i�t � it

�
bjF t � it emj

t (C.6)

+bjtE
j
t s
l
t+1 �

emj
t

�
log
�emj

t

�
� 1
�

�
= (1 + it)w

j
t +

�
bjF t + bjt

�
Ejt s

l
t+1 + (�st + i�t � it) b

j
F t

�it emj
t �

emj
t

�
log
�emj

t

�
� 1
�

�

and

�2c;l =
�
bjF t + bjt

�2
�2t;l

where �2t;l = vart

�
sj;lt+1

�
, l = 0; 1 and because bjt = �jt .

FOC:
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emj
t :

@E
�
� exp

�
�cjt+1

��
@ emi

t

= !
h
� exp

�
�
�
�1 �



2
�2c;1

��i
(�)� (C.7)�

@�1
@ emj

t

� 

2

@�2c;1

@ emj
t

�
+

(1� !)
h
� exp

�
�
�
�0 �



2
�2c;0

��i
(�)��

@�0
@ emj

t

� 

2

@�2c;0

@ emj
t

�
= 0

bjF t:

@E
�
� exp

�
�cjt+1

��
@bjF t

= !
h
� exp

�
�
�
�1 �



2
�2c;1

��i
(�)� (C.8)�

@�1
@bjF t

� 

2

@�2c;1

@bjF t

�
+

(1� !)
h
� exp

�
�
�
�0 �



2
�2c;0

��i
(�)

�
�
@�0
@bjF t

� 

2

@�2c;0

@bjF t

�
= 0

For these expressions it is worth to compute the following derivatives:

@�j

@ emj
t

= �it �
log
�emj

t

�
�

(C.9)

@�2c;l

@ emj
t

= 0

) @�l
@ emj

t

� 

2

@�2c;l

@ emj
t

= �it �
log
�emj

t

�
�

which are, in particular, common across regimes.
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Plugging (C:9) in (C:7):
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t

= !
h
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!
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h
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�
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2
�2c;0
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(�)� 
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log
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t

�
�

!
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Factorizing:

@E
�
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�
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t

=

�
!
�
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�
�
�
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2
�2c;1
���

+
(1� !)

�
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�
�
�
�0 � 

2
�2c;0
��� ��

(�)
 
�it �

log
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�
�

!
= 0

@E
�
� exp

�
�cjt+1

��
@ emj

t

= E
�
� exp

�
�cjt+1

��
(�)

 
�it �

log
�emj

t

�
�

!
= 0

Only the last term can be equal to 0, thus,

��it = log
�emj

t

�
which is exactly the same as (3:12). As a result, equations (3:14) � (3:15) in the
monetary model will remain unchanged.
On the other hand:

@�l
@bjF t

= Ejt s
l
t+1 � st + i�t � it (C.10)

@�2c;l

@bjF t
= 2

�
bjF t + bjt

�
�2t;l

) @�l
@bjF t

� 

2

@�2c;l

@bjF t
= Ejt s

l
t+1 � st + i�t � it � 

�
bjF t + bjt

�
�2t;l
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Plugging (C:10) in (C:8):
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�
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�
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�
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Factorizing:
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�
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�
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!
h
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h
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�
�
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2
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�
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0
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�
bjF t + bjt

�
�2t;0
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and simplifying:
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�
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�
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�
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��
(�st + i�t � it)�

(�)
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!E
�
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�
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�
j 
1t (j)

� �
Ejt s

1
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�
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�
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�
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�
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�
j 
0t (j)

� �
Ejt s

0
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�
bjF t + bjt

�
�2t;0
� �

= 0

Solve for bjF t:
Re-arranging the expression:

()E
�
� exp

�
�cjt+1

��
(�st + i�t � it)

= (�)
�

!E
�
� exp

�
�cjt+1

�
j 
1t (j)

� �
Ejt s

1
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�
bjF t + bjt

�
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�
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�
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�
�cjt+1

�
j 
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0
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�
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�
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and simplifying:

E
�
� exp

�
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�
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0
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�
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The expression of the RHS is equivalent to

�
�

!E
�
� exp

�
�cjt+1

�
j 
1t (j)

� �
Ejt s

1
t+1

�
+(1� !)E

�
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�
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�
j 
0t (j)

� �
Ejt s

0
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� �
+

�
!E

�
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�
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�
j 
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�
�2t;1

+(1� !)E
�
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�
�cjt+1

�
j 
0t (j)

�
�2t;0

��
bjF t + bjt

�
We conveniently re-express the LHS:�

!E
�
� exp

�
�cjt+1

�
j 
1t (j)

�
(�st + i�t � it)

+ (1� !)E
�
� exp

�
�cjt+1

�
j 
0t (j)

�
(�st + i�t � it)

�
Combining LHS and RHS, we have as a result:

bjF t =

�
!E

�
� exp

�
�cjt+1

�
j 
1t (j)

� �
Ejt s

1
t+1 � st + i�t � it

�
+(1� !)E

�
� exp

�
�cjt+1

�
j 
0t (j)

� �
Ejt s

0
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� �


�
!E

�
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�
�cjt+1

�
j 
1t (j)

�
�2t;1

+(1� !)E
�
� exp

�
�cjt+1

�
j 
0t (j)

�
�2t;0

� � bjt

(C.11)
The equation (C:11) is a generalization of equation (3:16). That is, if we go back
to the case where 
1t (j) = 
0t (j) = 
t (j), then

Ejt s
1
t+1 = Eits

0
t+1 = Ejt st+1

�2t;1 = �2t;0 = �2t

so that

bjF t =

�
!E

�
� exp

�
�cjt+1

�
j 
t (j)

� �
Ejt st+1 � st + i�t � it

�
+(1� !)E

�
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�
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�
j 
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�
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�
j 
t (j)

�
�2t

+(1� !)E
�
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�
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�
j 
t (j)

�
�2t

� � bjt

Simplifying

bjF t =

�
E
�
� exp

�
�cjt+1

�
j 
t (j)

� �
Ejt st+1 � st + i�t � it

�	

�
E
�
� exp

�
�cjt+1

�
j 
t (j)

�
�2t
	 � bjt

we get �nally

bjF t =

�
Ejt st+1 � st + i�t � it

�
�2t

� bjt

which is equal to equation (3:16).

134



�swp0000� � 2013/7/1 � 20:04 � page 135 � #153

Furthermore, we now need to aggregate the demand of bonds. Recall thatR 1
0
bjF tdj = ���t, where �t � N (0; 1). Aggregating (C:11):

���t =

Z 1

0

0BBB@
�

!E
�
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�
�cjt+1

�
j 
1t (j)

� �
Ejt s

1
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�
+(1� !)E

�
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�
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�
j 
0t (j)

� �
Ejt s

0
t+1 � st + i�t � it

� �


�
!E

�
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�
�cjt+1

�
j 
1t (j)

�
�2t;1

+(1� !)E
�
� exp

�
�cjt+1

�
j 
0t (j)

�
�2t;0

�
1CCCA dj�bt

In general, since the denominator is different across investors, aggregation cannot
be performed withouth additional assumptions. In the original paper, Bacchetta
and VanWincoop (2006) assume that the next period variance of the exchange rate
is common across investors. Here we assume that this variance is time varying
across regimes.
There is still one additional complication. The denominator is a sort of weighted

average of these variances across regimes. Weights are investor speci�c. Unless
we can restrict the denominator to be common across investors, aggregation will
be unfeasible. This issue is resolved in the next section.

C.4 Approximating the Utility Function

C.4.1 Exploiting Jensen's Inequality
Recall the objective function (C:5):

E
�
� exp

�
�cjt+1

��
= !

h
� exp

�
�
�
�1 �



2
�2c;1

��i
+(1� !)

h
� exp

�
�
�
�0 �



2
�2c;0

��i
which is a concave function. Then we know

cjt+1 � !N
�
�1; �

2
c;1

�
+ (1� !)N

�
�0; �

2
c;0

�
so that:

Ejt
�
H
�
cjt+1

��
= Ejt

�
� exp

�
�cjt+1

��
= !Ejt;1

�
� exp

�
�cjt+1

��
+(1� !)Ejt;0

�
� exp

�
�cjt+1

��
Since H (:) is a concave function, the Jensen's inequality says that:

Ejt
�
� exp

�
�cjt+1

��
6 � exp

�
�Ejt cjt+1

�
which is actually

Ejt
�
� exp

�
�cjt+1

��
6 Ejt

�
� exp

�
�Ejt cjt+1

�	
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where we interpret Ejt c
j
t+1 is a linear combination of two normal distributions.

The RHS is

E
�
� exp

�
E
�
�cjt+1

��	
= exp

�
�Ejt cjt+1 +

2

2
vart

�
cjt+1

��
where

Ejt c
j
t+1 = � = !�1 + (1� !)�0 (C.12)

vart
�
cjt+1

�
= �2c = !

�
[�1 � �]2 + �2c;1

�
+

(1� !)
�
[�0 � �]2 + �2c;0

�
Using the latter notation:

E
�
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�
E
�
�cjt+1

��	
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n
�
�
�� 

2
�2c

�o
(C.13)

Recall (C:5):
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Now take the two expressions:
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The linear combination of the RHS arguments is:

!
�
�1 �



2
�2c;1

�
+ (1� !)

�
�0 �



2
�2c;0

�
= !�1 + (1� !)�0

�
2

�
!�2c;1 + (1� !)�2c;0

�
On the other hand, the variance in the LHS argument is

�2c = !�2c;1 + (1� !)�2c;0 + ! [�1 � �]2 + (1� !) [�0 � �]2 (C.14)

That is, the term
! [�1 � �]2 + (1� !) [�0 � �]2 > 0

is the additional one, meaning that the variance is higher in the LHS. Since the
utility function is decreasing in the variance, we have the following result:
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That is, the LHS is a lower bound for our objective function. We could maxim-
ize the LHS following the argument of the Expectation-Maximization Algorithm
(see Hamilton (1989)).
Consider the new objective function (C:13), which is equivalent to minimize

�� 

2
�2c (C.15)

The FOCs are:emj
t :
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@ emj
t
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2

@�2c
@ emj
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= 0

For the �rst term, recall (C:9):
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@ emj
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@�1
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(C.16)
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For the second term, recall also (C:14)
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�
@�2
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t

� @�
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t

�
and using (C:9) and (C:16) we get

@�2c
@ emj

t

= 0

thus,
��it = log

�emj
t

�
which is exactly the same as (3:12).
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bjF t:
@�

@bjF t
� 

2

@�2c
@bjF t

= 0

For the �rst term, recall (C:10):
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For the second term, recall also (C:14)
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and using (C:10) and (C:17) we get
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Simplifying
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(C.18)
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Using the de�nition of �l given by (C:6): we have that
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35 (C.19)

Using the results from (C:17) and (C:19) we get
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= 0

Therefore:
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h
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Notice that actually the variance of the exchange rate is:

�2t = vart
�
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�
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�
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�2
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(1� !)
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Ejt
�
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�
� Ejt (st+1)

�2
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�
Then we have that:

bjF t =
Ejt (st+1)� st + i�t � it

�2t
� bjt

an expression equivalent to (3:16) with Eit (st+1) and �2t de�ned in (C:18) and
(C:20).
Notice also that �2t can be re-expressed more compactly as:

�2t = !�2t;1 + (1� !)�2t;0 + ! (1� !)
�
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�
s1t+1

�
� Ejt

�
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C.4.2 Second order approximation
In this section we will not use Jensen's inequality. Instead, we will tacke the
problem using Taylor approximations, which is in line with the common practice
in macro literature.
Recall the objective function (C:5):
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Following Yang (2011) among others, we take the Taylor expansion around (0; 0):
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Factorizing �:
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That is, since the last term contains a fourth order component, we remove it keep-
ing our approach of the 2nd order approximation. Re-arranging the latter expres-
sion

!�1 + (1� !)�0 �


2

�
!�2c;1 + (1� !)�2c;0 + ! (1� !) (�1 � �0)

2�
The last term is

! (1� !) (�1 � �0)
2

Recall (C:12), then:
�1 � � = � (1� !) (�1 � �0)
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�0 � � = (!) (�1 � �0)

Therefore
[�1 � �]2 = (1� !)2 (�1 � �0)

2

[�0 � �]2 = !2 (�1 � �0)
2

so that:

! [�1 � �]2 + (1� !) [�0 � �]2

= ! (1� !)2 (�1 � �0)
2 + (1� !)!2 (�1 � �0)

2

=
�
! (1� !)2 + (1� !)!2

�
(�1 � �0)

2

=
�
!
�
1� 2! + !2

�
+
�
! � !2

�
!
�
(�1 � �0)

2

= ! (1� !) (�1 � �0)
2

As a result, the objective function is

!�1 + (1� !)�0 �


2

�
!�2c;1 + (1� !)�2c;0 + ! [�1 � �]2 + (1� !) [�0 � �]2

�
and using the de�nitions of (C:12), then we have

�� 

2
�2c

which is exactly the same as (C:15). That is, using a second order approximation
is equivalent to using Jensen's inequality and maximizing the lower bound.

C.5 Signal Extraction
This section closely follows the work developed by Barillas et al. (2013).

C.5.1 Filtering problem
Every period t = 1; : : : ; T each agent i 2 [0; 1] observes the vector Zt (i):

Zt (i) = Ds

�
� t
�
st +Dx

�
� t
�
Xt + eR �� t�ut +Q

�
� t
�
�t (i) (C.21)

where �t (i) � N(0; I). We assume that each agent in the model is rational.
Moreover, conditional on a history � t the model will be linear and gaussian. As a
result, recalling (3:35), estimates of the state vectorXt using the Kalman Filter

Xi
tjt = E [Xt j 
t (i)]
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will be optimal, so that the Kalman Updating equation is:

Xi
tjt =M(� t)Xi

t�1jt�1 +K(� t)

2664Zt (i)�D
�
� t
�
M(� t)Xi

t�1jt�1| {z }eZt(i)

3775 (C.22)

The Kalman gain applying the standard formula is

K(� t) = E
h
Xj
tjt
eZt (i)0i� E

h eZt (i) eZt (i)0i�1
so that

K(� t) =
h
P (� t)D

�
� t
�0
+N(� t)R

�
� t
�0i (C.23)

�
h
D
�
� t
�
P (� t)D

�
� t
�0
+R

�
� t
�
R
�
� t
�0i�1

where
R
�
� t
�
�
�
R (� t) Q (� t)

�
P (� t) � E

�
Xt �Xi

tjt�1;� t
� �
Xt �Xi

tjt�1;� t
�0

C.5.2 Average hierarchy of expectations

Substituting (C:21) in (C:22) we get

Xi
tjt =

�
I �K(� t)

�
D
�
� t
�
M(� t)Xi

t�1jt�1 (C.24)
+K(� t)D

�
� t
� �
M(� t)Xt�1 +N(� t)ut

�
+K(� t)

�
R
�
� t
�
ut +Q

�
� t
�
�t (i)

�
Taking averages across agents we getXtjt �

R
Xi
tjtdi, so that

Xtjt =
�
I �K(� t)

�
D
�
� t
�
M(� t)Xt�1jt�1

+K(� t)D
�
� t
� �
M(� t)Xt�1 +N(� t)ut

�
+K(� t)R

�
� t
�
ut

since
R
�t (i) di = 0.
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Then we stack this posterior estimates with the law of motion of fundamentals:

Xt =

�
xt
Xtjt

�
=

�
� 0
0 0

� �
xt�1

Xt�1jt�1

�
+ (C.25)�

0
K(� t)D (� t)M(� t)

� �
xt�1

Xt�1jt�1

�
+�

0 0
0 [I �K(� t)]D (� t)M(� t)

� �
xt�1

Xt�1jt�1

�
+�

�(� t)
K(� t)D (� t)N(� t)

�
ut +K(� t)R

�
� t
�
ut

Finally we equate undetermined coef�cients using equation (??)

M(� t) =

�
� 0
0 0

�
+

�
0

K(� t)D (� t)M(� t)

�
(C.26)

+

�
0 0
0 [I �K(� t)]D (� t)M(� t)

�

N(� t) =

�
�(� t)

K(� t)D (� t)N(� t)

�
+K(� t)R

�
� t
�

(C.27)
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