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NUMERICAL COMPUTATION AND AVOIDANCE
OF MANIPULATOR SINGULARITIES

Oriol Bohigas Nadal

Abstract

This thesis develops general solutions to two open problems of robot kinematics: the exhaus-
tive computation of the singularity set of a manipulator, and the synthesis of singularity-free
paths between given configurations. Obtaining proper solutions to these problems is crucial,
because singularities generally pose problems to the normal operation of a robot and, thus,
they should be taken into account before the actual construction of a prototype. The ability
to compute the whole singularity set also provides rich information on the global motion ca-
pabilities of a manipulator. The projections onto the task and joint spaces delimit the working
regions in such spaces, may inform on the various assembly modes of the manipulator, and
highlight areas where control or dexterity losses can arise, among other anomalous behaviour.
These projections also supply a fair view of the feasible movements of the system, but do not
reveal all possible singularity-free motions. Automatic motion planners allowing to circumvent
problematic singularities should thus be devised to assist the design and programming stages of
a manipulator.

The key role played by singular configurations has been thoroughly known for several years,
but existing methods for singularity computation or avoidance still concentrate on specific
classes of manipulators. The absence of methods able to tackle these problems on a sufficiently
large class of manipulators is problematic because it hinders the analysis of more complex
manipulators or the development of new robot topologies. A main reason for this absence has
been the lack of computational tools suitable to the underlying mathematics that such problems
conceal. However, recent advances in the field of numerical methods for polynomial system
solving now permit to confront these issues with a very general intention in mind.

The purpose of this thesis is to take advantage of this progress and to propose general robust
methods for the computation and avoidance of singularities on non-redundant manipulators of
arbitrary architecture. Overall, the work seeks to contribute to the general understanding on
how the motions of complex multibody systems can be predicted, planned, or controlled in an
efficient and reliable way.
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1
Introduction

Singularity analysis is a central topic of robot kinematics. It has as a goal the study of certain

configurations, termed singular or critical, where important changes take place in the kineto-

static performance of a manipulator. Motion control or dexterity losses can arise, and there

may appear unresolvable or uncontrollable end-effector forces, among other effects (Figs. 1.1

and 1.2). The study of singularities is thus motivated by a desire to avoid these configurations,

but it may be helpful to operate close to them sometimes, such as when handling heavy objects,

drilling, or fine-positioning, where extreme force or motion transformation ratios are often

required.

While many commercial manipulators are designed not to include singularities in their

workspace, this is not always possible, and the appearance of manipulators with increasingly

complex motions makes the availability of general tools for singularity analysis essential to

assist the robot design and programming processes. In this context, the ability to identify all

singular configurations, and to plan manipulator motions avoiding them, become crucial issues

to be solved.

The main objective of this thesis is to develop reliable methods to solve such issues on the

very large class of lower-pair manipulators of general architecture. The emphasis is placed on

mechanisms involving closed kinematic chains, because they are those exhibiting the whole

range of critical phenomena and present a more intricate analysis, and the attention is restricted

to the non-redundant case, which allows a simpler, more symmetric presentation of results.

1.1 Motivation

In a recent editorial [5], McCarthy states that the ability to analyze and design mechanisms

and robotic systems of increasing complexity has strongly depended on the ability to solve

the associated systems of polynomial equations. It can be expected, he follows, that current
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Figure 1.1: Loss of motion control at a singular configuration. The snapshots are taken from
an experiment carried out at the Vorarlberg University of Applied Sciences, in which a 3-RPR
manipulator is moved to a singular configuration (top sequence) so that the operator can feel
the shakiness of the configuration (bottom picture). The actuator velocities do not determine
the platform velocities in this point and there is a dual loss in the capacity to withstand external
forces. The manipulator gets locked in this experiment, and it has to be taken to a regular
configuration manually to resume normal functioning. The full sequence of the experiment is
available in [1].

advances in computer algebra and numerical continuation methods will advance research in

mechanisms and robotics in the coming years. The problems of singularity computation and

avoidance are clear examples of this situation. Although a proper definition of singularity existed

for several years, it is only now, after some recent results on polynomial system solving, that such

problems become tackleable by extending the current state of the art.
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Figure 1.2: Hexaglide manipulator constructed at the Institut de Robòtica i Informàtica
Industrial [2]. These robots are typically used as high-speed CNC milling machines [3,4]. When
locking the actuators, the platform is stiff in a non-singular configuration (top right), but it
shows uncontrollable motion in a singular one (bottom right).

Investigation on singularity analysis in the context of robot kinematics started to gain mo-

mentum in the early 1980s. Initially, most works were restricted to specific classes of manip-

ulators, specially those with serial kinematic chains, and towards the mid-1990s an approach

allowing to characterize all singularities of a manipulator with an arbitrary architecture had

not been completed yet. The lack of a standard definition of singularity did not allow the

development of general methods to analyze more complex manipulators.

The earliest attempt to provide a general framework to determine and classify all singular

configurations can be attributed to Gosselin and Angeles in 1990, who proposed the use of

input/output velocity equations to define the well-known Type I and Type II singularities, where

the velocity of the end-effector does not determine the velocities of the actuators, and vice

versa [6]. The approach was sound, but neglected the role played by passive joint velocities,
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and it was later found that further singularity types existed that could not be framed into

their formalism [7–11] This observation led Zlatanov to define singular configurations in a

more general way, as those where the forward (FIKP) or the inverse (IIKP) instantaneous

kinematic problems, understood as the computation of the overall configuration velocity given

the input or output velocities, becomes undetermined [12]. Zlatanov’s characterization of

singularity is probably the most systematic and general one proposed so far in the literature,

and accommodates, as special cases, the earlier Type I/II singularities, and subtle singularities,

such as constraint [13, 14] or architecture singularities [15, 16]. By that time, this allowed to

identify whether a specific configuration of an arbitrary manipulator was singular, but it was

clear that for theoretical and practical reasons it was important to have a means of obtaining

the whole set of singular configurations, and to be able to plan manipulator motions avoiding

some or all of its subsets. The rigorous definition of kinematic singularity provided by Zlatanov

certainly laid the ground for a systematic singularity analysis, but Zlatanov himself pointed

out that significant computational problems remained to be settled before the emergence of a

general method able to solve the associated systems of equations [12, Chapter 7].

Since then, a number of works dealing with singularity set computation or avoidance have

appeared [17,18], specially in the context of parallel manipulators. Relevant work in this respect

is due to Bonev [19], who studied the singularity sets of several parallel platforms; Mayer St-

Onge et al. [20] or Li et al. [21], who provided an analytic form of the six-dimensional singular-

ity set of the general Stewart platform; Merlet [22], who presented a formal-numerical approach

for in-workspace singularity detection; Dasgupta and Mruthyunjaya [23] or Sen et al. [24],

who proposed path-deformation or variational techniques for singularity-free path planning; or

Jiang and Gosselin [25], who obtained a method for computing the maximal singularity-free

orientation workspace for the Stewart platform. Also with application to various forms of such

platform, Borràs et al. discovered a number of leg rearrangements that leave the singularity

set invariant, allowing to evolve existing designs with a known singularity locus to newer

designs that are much easier to construct [26–29]. The advances in the field are significant,

but all previous works restrict their attention to narrowly-defined classes of manipulators, and

approaches providing a general way to compute or avoid the singularities have not been given

yet.

The characteristics of each problem pose different challenges and thus demand distinct

approaches. Because the singularity set typically has the structure of a general algebraic va-

riety, the computation of all singularities requires a method to obtain all real solutions of

a system of polynomial equations, even if such solutions exhibit several connected compo-

nents, positive-dimensional continua, or non-smoothnesses like bifurcations, sharpnesses, or

dimension changes. In contrast, the avoidance of singularities requires a method able to de-
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termine a singularity-free path connecting given configurations, whenever one exists, taking

into account that the whole path must lie in a non-parameterizable variety implicitly defined

by a system of nonlinear equations, usually embedded in a highly-dimensional ambient space.

Whereas branch-and-prune methods constitute the ideal basis from which to confront the former

problem [30–32], the latter can be tackled by extending recently-developed tools of higher-

dimensional continuation [33–35].

1.2 Objectives and Scope

The goal of this thesis is to provide reliable methods for solving the following open problems of

robot kinematics, for manipulators of general architecture:

- Computation of singularities: For a given manipulator with designated input and output

coordinates, compute the singularity set exhaustively and represent it in a meaningful way.

- Avoidance of singularities: Given two feasible configurations of the manipulator, de-

termine whether there exists a configuration-space path connecting them that does not

traverse the singularity set at any point.

For the purpose of this work a manipulator will be a multibody system with designated input

and output coordinates, i.e., with a specification of which joints are actuated, and which vari-

ables describe the intended task-space functionality. The various bodies, or links, of the system

will be assumed to be rigid and interconnected through lower-pair joints, and the connection

pattern may be arbitrary, including closed kinematic chains in particular.

Depending on the space where the links operate, such systems are usually referred to as

planar, spherical, or spatial manipulators. While planar and spherical manipulators usually have

three degrees of freedom (two displacements and one orientation, and three orientations, re-

spectively), spatial manipulators usually have six (three displacements and three orientations).

A number of different architectures may be encountered in practice (Fig. 1.3), and our results

will be applicable to all them indistinctively. However, for the sake of clarity, this work will focus

on non-reduntatly actuated mechanisms, where the number of inputs, and also the outputs, is

equal to the number of degrees of freedom to be governed. The results should be extendable to

the redundant case as well, but the developments have a simple symmetry in the non-redundant

case that becomes obscured when redundant actuation is possible.

Finally, we note that collision constraints between the various links of the manipulator will

be neglected in the whole study. Such constraints add considerable complexity to the problems

under investigation and it is plausible to deal with them a posteriori in a generate-and-test
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Figure 1.3: Left to right and top to bottom: The DLR LWR arm and hand [36], a 3(P)RRR
planar reconfigurable manipulator [37], the tripteron mechanism [38], a commercial Stewart
platform [39], a spherical parallel manipulator for the rapid orientation of a camera [40], the
exechon X700 parallel kinematics machine [41], the Kawasaki Delta YF03N manipulator [42],
the rotary hexapod MicARH for micropositioning [43], and the IRI hexacrane [44].

fashion, using collision checkers like those employed in probabilistic path planning methods.

Mechanical joint limits, however, will be naturally acommodated by our approach.

1.3 Outlook at the Dissertation

The dissertation is divided into three parts. Part I is devoted to the description of the different

singularities that can be encountered, and to the development of methods for their exhaustive
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computation. The methods allow to obtain the different singularity sets, and to generate repre-

sentations of the various workspace of a manipulator. It is shown how the representations are

rich in information, but do not reveal all possible singularity-free movements of a manipulator.

Part II overcomes this issue by providing tools to determine singularity-free paths between

given configurations, or to determine the whole singularity-free region that is achievable from

a given configuration. Finally, Part III provides the conclusions of the thesis, a list of derived

publications, and references to previous work in the literature. The contents of each chapter are

next summarized:

Chapter 1 explains the motivation of this research and provides its main objectives and scope.

Chapter 2 gives a complete view of the main singularity types and the mathematical conditions

that characterize the configurations of each type. Using concepts from differential geometry

and calculus, we give a geometric interpretation to these conditions, and discuss the kinematic

consequences of traversing each singularity subset. The definition of Zlatanov’s six lower-level

singularity types is then recalled, and all singularities are illustrated on a simple manipulator

that admits an analytical approach.

Chapter 3 presents a method to compute any of the singularity sets defined in the previous

chapter. The method allows to isolate any the sets at the desired accuracy and is very general,

since it can be applied to any non-redundant manipulator. To do so, we formulate the systems of

equations characterizing the singularity sets using quadratic polynomials only, and then exploit

the special form of such polynomials to define a branch-and-prune scheme able to compute all

singularity points. Since the singularity sets are usually defined in a highly-dimensional space,

we also provide hints on how to represent these sets in a meaningful and informative way.

Chapter 4 extends the developments in Chapters 2 and 3 to allow the computation and repre-

sentation of the various workspaces of a manipulator. It is shown how the computation of certain

generalised singularities leads to identifying the boundary of a workspace, and the various

motion barriers and mobility losses present in its interior. A detailed map of the workspace

is obtained as a result, indicating all interior and exterior regions and the motion impediments

that separate them. Mechanical joint limits are taken into account in the calculations, since they

can greatly modify the shape of the workspace. The chapter also compares the proposed method

with previous methods of a similar generality.

Chapter 5 provides a singularity-free path planning method. Given two configurations of the

manipulator, the method attempts to connect them through a path that does not collide with

the singularity set at any point. The method can be applied to non-redundant manipulators of
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general architecture, and it always returns a path whenever one exists at a given resolution, or

determines path non-existence otherwise. The crucial idea is that the singularity-free subsets

of the configuration space can be placed in correspondence with a smooth manifold, so that by

maneuvering through such manifold one can perform all possible singularity-free movements

of the manipulator, and hence detect the desired paths between the query configurations. To

guarantee a minimum clearance with respect to the singularity set, the determinant of a Jacobian

matrix is forced to remain smaller than a given threshold, which is a suitable criterion when only

the multibody topology of the underlying mechanism is available.

Chapter 6 shows that, when further mechanical properties are known, more meaningful clear-

ance measures can be taken into account. For simplicity, the chapter studies the particular case

of Stewart or cable-driven hexapods, explaining how it is possible to force all configurations

to remain wrench-feasible on the computed paths, i.e., able to counteract a given wrench

applied to the platform, subject to bounded six-dimensional perturbations. Although the overall

study is particular, hints are given on how to extend the developments to also deal with other

manipulator architectures or relevant clearance measures.

Chapter 7 finally summarizes the contributions of the thesis and outlines possible future re-

search directions.



Part I

Computation of Singularities





2
Singularity Types

The literature on singularity analysis is rich, but one often perceives a lack of familiarity with the

range of critical phenomena that can arise in a manipulator, and on the kind of analysis required

to detect such phenomena. To help reversing this trend, and to provide necessary background

for the rest of the thesis, this chapter presents a detailed view of the main singularity types,

their interpretation, and the mathematical conditions allowing to characterize them. We shall

formulate systems of equations for all types, which will be useful in Chapter 3 to numerically

compute the configurations of each type independently.

The presentation relies on the rigorous mathematical definitions given in [12], which depart

from a system of linear equations characterizing the feasible velocities of the manipulator at

a given configuration. Unlike in other approaches, this system accounts for the whole velocity

state of the manipulator, which is crucial to detect all possible singularity types that can be

encountered in practice. The definition of singularity and the mathematical conditions that

characterize the singularity set are then given, and systems of equations encoding the main

singularity types are derived (Section 2.1). A geometric interpretation of singularities and the

kinematic consequences of traversing each singularity type are then provided (Section 2.2), and

the definition of Zlatanov’s six lower-level singularity types is recalled (Section 2.3). Following

each definition, a system of equations allowing to obtain the configurations of the corresponding

type are derived, and the application of these systems to a simple manipulator is illustrated in

the end (Section 2.4).

2.1 Forward and Inverse Singularities

Every configuration of a manipulator can be described by a tuple q of scalar generalized coor-

dinates, and the set of all possible configurations is called the configuration space, or C-space, of

the manipulator. For manipulators with closed kinematic chains, not all values of q correspond
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to feasible configurations, and the C-space is given by the solution set of a system of non-linear

equations,

Φ(q) = 0, (2.1)

which expresses the assembly constraints imposed by the joints [45]. Here, Φ : Q → E is

a smooth map, where Q and E are nq- and ne-dimensional manifolds. The C-space of the

manipulator is thus the set

C = {q ∈ Q : Φ(q) = 0}.

The Jacobian matrix Φq = [∂Φi/∂qj ] is usually full rank at all points q ∈ C except on a subset

G ⊂ C where C may loose the manifold structure. Thus, C \G is a smooth manifold of dimension

n = nq − ne, which is also taken as the dimension of the C-space.

Moreover, the possible instantaneous motions of the manipulator at a configuration q can be

characterized by a system of linear equations,

L m = 0, (2.2)

where L is a matrix that depends on the configuration q, and m is the so-called velocity

vector of the manipulator, which globally characterizes its velocity state and takes the form

m = [mT
u ,m

T
v ,m

T
p ]

T, where mu, mv, and mp encode the output, input and passive velocities

respectively. Typically, mu provides the velocity of a point or the angular velocity, or the twist,

of an end-effector body, mv provides the actuated-joint velocities of the manipulator, and mp

encompasses the remaining velocity coordinates. Such a system, called the velocity equation

in [12], can be obtained for any manipulator by differentiation of Eq. (2.1) (provided that

q includes the input and output coordinates), or using twist loop equations, or by any other

means, and therefore it can be used for the practical identification of singularities.

In general, the instantaneous kinematic analysis of a manipulator addresses two main prob-

lems:

- The forward instantaneous kinematics problem (FIKP): find the velocity vector, m, when

the input velocity mv is given.

- The inverse instantaneous kinematics problem (IIKP): find the velocity vector, m, when

the output velocity mu is given.

Note that, contrarily to what is assumed elsewhere [6], in both cases it is required to find all

velocity components of m, not just those referring to the output or input velocities, respectively.

Following [12], a configuration q is defined as nonsingular when both the FIKP and the IIKP

have unique solutions for any input or output velocity, and as singular otherwise. The set S of
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all singular configurations is called the singularity set of the manipulator, and a configuration

where the FIKP (resp. IIKP) does not have a unique solution for any input (resp. output) velocity

will be called a forward (resp. inverse) singularity.

To characterize the forward and inverse singularity subsets, consider now the partitions

m = [mT
v ,m

T
y ]

T and m = [mT
u ,m

T
z ]

T, where my and mz encompass the velocities remaining in

m after the removal of mv and mu, respectively. Let also Lv and Lu be the submatrices of L

containing the columns corresponding to the input and output velocities, and Ly and Lz those

obtained by removing Lv and Lu from L. This allows writting Eq. (2.2) as either

Lvmv +Lymy = 0, (2.3)

or

Lumu +Lzmz = 0. (2.4)

Since the manipulator is assumed to be non-redundant, both the number of coordinates in mv

and mu is equal to the global mobility of the kinematic chain, defined as the dimension n of

the C-space. In particular, the number of columns of L exceeds the number of rows by exactly

n and Ly and Lz are square matrices [12]. Thus, for configurations q on which Ly and Lz are

nonsingular, we can write Eq. (2.3) and (2.4) in the equivalent form

my = −L−1
y Lv mv, (2.5)

mz = −L−1
z Lu mu, (2.6)

which provide the solution to the FIKP and the IIKP of the manipulator. However, Eqs. (2.5)

and (2.6) only hold whenever Ly and Lz are full rank, and only in this case the input and

output velocities mv and mu will determine unique values for the remaining velocities my and

mz. This must be so because, when Ly is rank-deficient at q, Eq. (2.3) yields, for a given value

of mv, either no solution or infinitely-many solutions for my, in which case it is not possible to

determine the velocity m of the manipulator by specifying the velocities mv of the actuators.

When Lz is rank-deficient at q, Eq. (2.4) reveals an analogous relationship between mu and m.

Following these observations, note that a configuration q ∈ C is singular if, and only if, either

Ly or Lz is rank deficient at q, and the singularity set S can be obtained as the union of the

solution sets of the following systems of equations:
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Φ(q) = 0

Ly ξ = 0

‖ξ‖2 = 1















, (2.7)

Φ(q) = 0

Lz ξ = 0

‖ξ‖2 = 1















. (2.8)

The first equation in each system constrains q to be a feasible configuration of the manipulator,

and the second and third equations enforce the existence of a non-zero vector ξ in the kernel of

the corresponding matrix. Note that ‖ξ‖2 can be any consistent norm, for instance ξTDξ where

D is a diagonal matrix with the proper physical units. There is no need for the norm to be

invariant with respect to change of frame or units. In short, the condition ‖ξ‖2 = 1 only serves

to guarantee that ξ is not 0. Clearly, the points q satisfying the left (resp. right) system are the

forward (resp. inverse) singularities.

2.2 A Geometric Interpretation of Singularities

Several changes take place when traversing a singularity, both at the infinitesimal and finite

motion levels. An easy way to understand such changes is provided here using concepts of

differential geometry and calculus.

2.2.1 Input, Output, and C-space Singularities

A simple differentiation of Eq. (2.1) with respect to time provides the velocity equation of the

manipulator, Eq. (2.2), as

Φqq̇ = 0,

where it becomes apparent that the feasible velocities at each configuration are given by the

vectors q̇ belonging to the kernel of Φq. Assuming the partitions q = [vT,yT]T and q =

[uT, zT]T, where v and u are vectors of nv input and nu output coordinates, respectively, and y

and z encompass the corresponding remaining coordinates, the previous equation can also be

written as

Φv v̇ +Φy ẏ = 0,

or as

Φu u̇+Φz ż = 0.

In these equations, Φq, Φv, Φu, Φy, and Φz play the role of L, Lv, Lu, Ly, and Lz in

Eqs. (2.2)–(2.4). Hereafter the v- and u-spaces will be denoted by V and U respectively.
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Forward singularities Inverse singularities

Input Output
singularitiessingularities

Input-Output

C-space

Figure 2.1: Inclusion relationships of C-space, input, and output singularites, relative to forward
and inverse singularities.

Clearly, a point q is a forward or an inverse singularity when either Φy or Φz is rank deficient.

The previous two equations reveal that, in such configurations, the locking of the input or output

coordinates yields an infinitesimally flexible, or shaky, mechanism, as the examples in Figs. 1.1

and 1.2 demonstrate.

Such a degenerate behaviour has further physical consequences, which can be better appre-

ciated by classifying the points in S according to the geometric cause of rank deficiency of Φy

or Φz. Three types of singular configurations can be distinguished according to this criterion:

- C-space singularities: the points q ∈ G ⊂ C, where the whole Jacobian Φq is rank deficient,

so that both the FIKP and IIKP become unsolvable independently of the choice of input

and output coordinates.

- Input singularities: the points q ∈ C \ G where Φy is rank deficient, so that the FIKP

becomes unsolvable.

- Output singularities: the points q ∈ C \ G where Φz is rank deficient, so that the IIKP

becomes unsolvable.

Note that when Φq is rank deficient, Φy and Φz are rank deficient too, meaning that

the forward singularities contain both the input and C-space singularities, and the inverse

singularities contain both the output and C-space singularities. However, a configuration can

be both an input and an output singularity without being a C-space singularity, as the inclusion

relationships depicted in Fig. 2.1 illustrate.
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C

C C
C

q

q

q
q

Figure 2.2: Examples of C-space singularities.

Geometrically, C-space singularities correspond to points q where C may lose the manifold

structure, such as bifurcations, cusps, ridges, or dimension changes (Fig. 2.2). Since Φq is rank

deficient at such points, the tangent space to C does not exist. On input and output singularities,

contrarily, Φq is full rank and C has an n-dimensional tangent space, but this space has a special

position, as shown in Section 2.2.2 below.

The tangent space to the C-space, wherever it exists, can be defined as the kernel of the

Jacobian matrix Φq, i.e., Tq(C \ G) = ker(Φq). Thus, for points in C \ G, the feasible motions lie

on a tangent space of the same dimension as the C-space, n, and the mobility of the manipulator

is, therefore, the same as the number of inputs or outputs. However, even though the tangent

space only exists at the points of C \ G, the equation Φqq̇ = 0 still holds for any point of C. In

particular, for those points in G, the feasible motions lie in a space of higher dimension than

n, because Φq is not full rank, and there is an increase in the instantaneous mobility of the

manipulator. This explains why in C-space singularities, regardless of which n inputs or outputs

are chosen, the motion of the manipulator remains undetermined. In general, we can say that

the feasible velocities of the manipulator are those in the Zariski tangent space to C, defined as

the vector space spanned by the vectors in the kernel of Φq [12].

2.2.2 Singularities as Critical Points

C-space, input, and output singularities can be interpreted as critical points of specific maps,

which allows to understand the physical consequences of traversing each singularity type geo-

metrically.

To see this, let us recall the definition of critical points and values. Let Γ : M → N be an

arbitrary smooth map between two manifoldsM and N . Then, the differential of Γ at q is the

map between tangent spaces Γq : TqM→ TΓ(q)N induced by the Jacobian matrix Γq = [∂Γi

∂qj
(q)].

A point q ∈ M is said to be a critical point of Γ if the differential Γq is not surjective at q, i.e.,

if its Jacobian has rank less than dim(N ) at q. On these points, Γq(TqM) does not span the

tangent space to N entirely. The image of a critical point q ∈ M is a critical value of Γ, and the

points of N which are not critical values are called regular values.
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H

N

Γ(x, y, z) = (x, y)

Critical points of Γ|H

Critical values

Tangent plane at a critical point

Image of tangent plane

Figure 2.3: Example of critical points. Here H is a sphere inM = R
3 and N = R

2. The map Γ

is the projection from M to N , so that Γ(x, y, z) = (x, y). The figure shows the critical points
and values of the projection map with domain restricted to H. For most points in H, the image
of the tangent plane to the sphere covers the x-y plane. However, at the equator the tangent
plane projects down to a line in the x-y plane. Figure adapted from [46].

In our case, C is defined implicitly as the level set Φ(q) = 0 of the smooth map between

manifolds Φ : Q → E . It may happen that 0 ∈ E is not a regular value of Φ and, hence, the

set G of C-space singularities is in fact the set of critical points of Φ that map onto 0. If such

singularities arise, C is not a smooth manifold because the tangent space to C does not exist in

them. However, leaving out these critical points, for example by restricting the domain of Φ,

the set C \ G is indeed a smooth manifold where the tangent space exists everywhere.

To understand input and output singularities, note that one can also speak of the critical

points of a map Γ with domain restricted to a submanifold H ⊆M. These are the points q ∈ H
for which Γq(TqH) does not span TΓ(q)N entirely, as illustrated in Fig. 2.3, and they can be

detected using the following result. A point q ∈ C \ G is a critical point of Γ with domain

restricted to C \ G if, and only if, the matrix

(Φ,Γ)q =





Φq

Γq





has rank less than dim(E) + dim(N ) at q [46]1.

1The proof in [46] contains a flaw that is easy to repair.
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C

v1 u2

q1 q2

q3

V U

πuπv

Input space Output space

Input singularities Output singularities

Figure 2.4: Interpretation of input and output singularities when Q = R
3, C is a sphere, and

V and U are two coordinate planes of R3. In the figure, q1 and q2 correspond to an input and
an output singularity, respectively, and q3 is both an input and an output singularity. A feasible
velocity vector at v1 or u2 does not locally determine a unique velocity vector in C.

Consider, for instance, the output singularities. By the previous result, the critical points of

the projection map πu : C \ G → U onto the u coordinates, i.e. πu(z,u) = u, with domain

restricted to C \ G, are the points q for which

(Φ, πu)q =





Φz Φu

0 Inu





is rank deficient, where Inu denotes the nu × nu identity matrix. Observe that (Φ, πu)q is

rank deficient whenever Φz is rank deficient, which proves that the output singularities are

the mentioned critical points. The same reasoning can be applied to conclude that the input

singularities correspond to the critical points of the projection map πv : C \ G → V onto the v

variables. In both cases, the tangent space to C \ G has a special position, so that its projection

onto the U or V spaces does not span the tangent space to U or V at the corresponding point.

This is easy to see when Q = R
nq , in which case C can be regarded as a subset of R

nq

(Fig. 2.4). In such a situation, input singularities correspond to points q where the tangent space
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q
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Figure 2.5: Two examples of output singularities seen as critical points of the projection onto
the output space. A trajectory on the output space through a critical value does not correspond
to a unique smooth trajectory on the C-space on the left. However, a smooth trajectory on the
output space may correspond to a unique smooth trajectory on the C-space, as shown on the
right.

to C projects onto V = R
nv as a linear space of dimension lower than nv, and output singularities

are the points where the tangent space to C projects onto U = R
nu as a subspace of dimension

lower than nu. Whereas input singularities yield controllability issues because a feasible vector

v̇ does not determine a unique vector q̇, output singularities correspond to mobility losses of the

end-effector because, independently of the value of q̇, u̇ is always restricted to a linear subspace

of smaller dimension. Note, in addition, that the input and output singularities delimit the set

of possible values for the input and output coordinates, v and u, respectively, a fact that will be

proven in Chapter 4 and will be pretty useful in the context of workspace determination.

The Implicit Function Theorem [47] provides further insight as to the advantages of avoiding

each singularity type. Observe first that, as a consequence of the theorem, if Φz is full rank

at q0 = [zT0 ,u
T

0 ]
T ∈ C, it is possible to find a function z = F(u) relating z with the remaining u

variables, satisfying Φ(F(u),u) = 0. Thus, the u variables can be used as a local parameteriza-

tion of C around q0, implying that arbitrary values in a neighborhood of u0 have a corresponding

z satisfying Φ(z,u) = 0. This means that a smooth trajectory u(t) ⊂ U through a point u0 will

locally correspond to a unique smooth trajectory q(t) on C through the corresponding q0, or,

in other words, a tracking of the output will be sufficient to predict the overall motion of the

manipulator. In a similar way, whenever Φy is full rank at q0 = [yT

0 ,v
T

0 ]
T, a smooth trajectory

v(t) through v0 will locally determine a unique smooth trajectory q(t) on C, so that the overall

movement of the manipulator will be controllable through the inputs.
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This one-to-one correspondence between the input or output trajectories, on the one hand,

and the manipulator trajectory, on the other hand, is not guaranteed at a singular configuration,

as one can already see in the example of Fig. 2.5(a). However, since the Implicit Function

Theorem only gives sufficient conditions to guarantee the uniqueness and smoothness of q(t),

points with Φy or Φz singular can in principle exist where v(t) or u(t) determine a unique

smooth trajectory q(t). An example of this situation is given in Fig. 2.5(b). Such points are not

exempt of problems though, since v̇ or u̇ will still not determine q̇ in them.

2.3 Zlatanov’s Six Types

We have seen that the singularities are those configurations where either the FIKP or the IIKP

of the manipulator become undetermined. However, depending on the kinematic cause of the

degeneracy, six substantially different types of singularities were recognized by Zlatanov [12].

These are redundant input (RI), redundant output (RO), impossible input (II), impossible output

(IO), redundant passive motion (RPM), and increased instantaneous mobility (IIM) singularities.

Each of the six type definitions describes a different change in the kinematic properties of the

manipulator.

When the mechanism is in a singularity of RO or IO (RI or II) type, the output (input) is

indeterminate or restricted. In an RPM type singularity, the passive motion of the mechanism is

indeterminate, which may create problems such as interference with other links and obstacles.

And in an IIM type configuration the instantaneous motion of the manipulator is indeterminate,

no matter which n parameters are being controlled. It is therefore desirable to know whether

a given configuration belongs to one of the types, or to compute all possible configurations of

a specific type. To this end, for each of the six singularity types we first recall its definition

based on the velocity equation (2.2), and then derive a system of equations that characterizes

the configurations of that type.

Recall that Ly and Lz are the submatrices of L obtained by removing the columns corre-

sponding to the input and output, respectively, and let also LP denote the submatrix obtained

by removing both the columns corresponding to the input and output velocities. In the fol-

lowing, we shall use the 3-slider and the 4-bar mechanisms of Fig. 2.6 to illustrate the different

singularity types encountered. Each of these mechanisms has one degree of freedom and, unless

otherwise stated, the input and output velocities are those of points A and B, vA and vB, for the

3-slider mechanism, and the angular velocities of links AB and DC, ωA and ωD, for the 4-bar

mechanism.
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Figure 2.6: Left: A 1-DOF mechanism with three sliders. The prismatic joints at A and B are
on a line perpendicular to the axis of the prismatic joint at C. Right: A 4-bar mechanism. The
angular velocities indicated refer to relative motions, e.g., ωB is the angular velocity of link BC
relative to link AB.

Redundant Input

A configuration is a singularity of RI type if there exist an input velocity vector mv 6= 0 and a

vector mp that satisfy the velocity equation (2.2) for mu = 0, i.e., such that

Lz





mv

mp



 = 0

with mv 6= 0. Since such a vector exists whenever there exists a unit vector with mv 6= 0, q is a

singularity of RI type if, and only if, the system of equations

Φ(q) = 0

Lzξ = 0

‖ξ‖2 = 1















(2.9)

is satisfied for some value of ξ =
[

mv
T,mp

T
]

T with mv 6= 0.

Two examples of such singularities are provided in Table 2.1, first column. In the top

configuration, the instantaneous input vA can have any value, while the velocity of point C

must be zero and, thus, point B cannot move. Similarly, in the bottom configuration the output

link DC cannot move, since the velocity of point C must be zero, while the instantaneous input,

ωA, can have any value.
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RI, IO RO, II RPM IIM

B

C

L1 < L2

vA
A
L1 > L2

vB

A

B

C

vC

L1 = L2

vA

vB

A

B

C

D

ωA

A

B

C

D

ωD

A B

C

C

D

ωB A B

CD

ωA

ωD

Table 2.1: The six singularity types exemplified with the 3-slider and 4-bar mechanisms.

Redundant Output

A configuration is a singularity of RO type if there exist an output velocity vector mu 6= 0 and a

vector mp that satisfy the velocity equation for mv = 0, i.e., such that

Ly





mu

mp



 = 0

with mu 6= 0. Following a similar reasoning as above, q is of RO type if, and only if, it satisfies

the equations

Φ(q) = 0

Lyξ = 0

‖ξ‖2 = 1















(2.10)

for some value of ξ =
[

mu
T,mp

T
]

T with mu 6= 0.

The 3-slider and the 4-bar mechanisms in the second column of Table 2.1 are shown in a

singularity of RO type. On the former, the instantaneous output vB can have any value while

point A must have zero velocity. The same happens on the latter, where the input link AB is

locked while the instantaneous output, ωD, can have any value.

Impossible Output

A configuration is a singularity of IO type if there exists a vector mu 6= 0 in the ouput-velocity

space for which the velocity equation cannot be satisfied for any combination of mv and mp. In
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other words, this means that there is a nonzero vector
[

mu
T,0T,0T

]

T that cannot be obtained

by projection of any vector
[

mu
T,mv

T,mp
T
]

T belonging to the kernel of L.

In order to derive the system of equations for this type, let B = [b1, . . . ,br] be a matrix

whose columns form a basis of the kernel of L. Then, all vectors
[

mu
T,0T,0T

]

T that can be

obtained by projection of some vector of the kernel of L are those in the image space of the

linear map given by the matrix

A =
[

Inu 0

]

B.

Thus, a singular configuration is of IO type if the map is not surjective, i.e., if A is rank deficient.

In this situation it can be seen that there exists a nonzero vector m∗
u in the kernel of AT and,

hence, a vector
[

m∗
u
T,0T,0T

]

T in the kernel of BT. Such a vector is orthogonal to all vectors

b1, . . . ,br, so it must belong to the image of LT. In conclusion, there must exist a nonzero

vector m∗
u satisfying

L
Tζ =

[

m∗
u
T 0 0

]T

for some vector ζ, which can be chosen of unit norm. Therefore, a configuration q is an IO type

sigularity if, and only if, it satisfies

Φ(q) = 0

LTζ =
[

m∗
u
T 0 0

]T

‖ζ‖2 = 1



















(2.11)

with m∗
u 6= 0. For all solutions of this system, the obtained value of m∗

u corresponds to a non-

feasible output at the corresponding configuration.

The examples in the first column of Table 2.1 are also singularities of IO type since, in both

configurations, any nonzero output is impossible.

Impossible Input

A configuration is a singularity of II type if there exists an input velocity vector mv 6= 0 for which

the velocity equation cannot be satisfied for any combination of mu and mp. Following similar

observations as for the IO type, a configuration q is a singularity of II type if, and only if, there

exists a nonzero vector m∗
v such that

L
Tζ =

[

0 m∗
v
T 0

]T
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for some vector ζ, which can also be chosen of unit norm. Thus, a configuration q will be a

singularity of II type if, and only if, it satisfies

Φ(q) = 0

LTζ =
[

0 m∗
v
T 0

]T

‖ζ‖2 = 1



















(2.12)

with m∗
v 6= 0.

The 3-slider and the 4-bar mechanisms in the second column of Table 2.1 are also singulari-

ties of II type since any nonzero input is impossible in these configurations.

Redundant Passive Motion

A configuration is a singularity of RPM type if there exists a vector mp that satisfies the velocity

equation for mv = 0 and mu = 0, i.e., such that

LPmp = 0

with mp 6= 0. This will happen when the kernel of LP is nonzero and, thus, the following system

of equations

Φ(q) = 0

LP ξ = 0

‖ξ‖2 = 1















(2.13)

encodes all RPM type singularities q.

Two examples of these singularities are provided in the third column of Table 2.1. On the 3-

slider mechanism, both the input A and the output B must have zero velocity, while the velocity

of point C can be nonzero. A 4-bar mechanism with a kite geometry, as shown in the table, can

collapse so all joints lie on a single line and B and D coincide. If the input and output are the

velocities at joints A and C, ωA and ωC , the mechanism can move from the configuration shown

in grey, maintaining zero-velocity both at the input and the output joints. Only nonzero velocity

is present at the passive joints B and D. Hence, both mechanisms are shown in a singularity of

RPM type.

Increased Instantaneous Mobility

A configuration is a singularity of IIM type if L is rank deficient. In fact, these are configurations

where the instantaneous mobility is greater than the number of degrees of freedom. The
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definition directly allows to write the system of equations

Φ(q) = 0

LTξ = 0

‖ξ‖2 = 1















, (2.14)

which will be satisfied for some ξ by a configuration q if, and only if, it is a singularity of IIM

type. These correspond to the C-space singularities, where both the FIKP and IIKP become

indeterminate for any choice of input or output on the given velocity variables.

The mobility of the 3-slider and the 4-bar mechanisms in the fourth column of Table 2.1

increases from 1 to 2 at the shown configurations and, thus, they exhibit a singularity of IIM

type.

2.4 The 3-slider Mechanism

To exemplify how the previous systems of equations can be used to obtain the configurations

of each singularity type, consider the 3-slider mechanism in Fig. 2.6. Let (xP , yP ) denote the

coordinates of points P = {A,B,C} relative to the reference frame OXY in the figure, and let

L1 and L2 be the lengths of the connector links. Clearly, a configuration of the mechanism can be

shortly described by the tuple q = {yA, yB, xC} because xA = xB = yC = 0 in any configuration.

Since the distances from A to B and from B to C must be kept equal to L1 and L2, Eq. (2.1) is

yA
2 + xC

2 = L1
2

yB
2 + xC

2 = L2
2







, (2.15)

from which we realize that the C-space corresponds to the intersection of two cylinders in the

space of yA, yB, and xC .

The velocity equation in (2.2) could now be obtained using the revolute- and prismatic-joint

screws [12], but a more compact expression can here be derived by properly differentiating the

equations in (2.15). Taking vA and vB as the input and output velocities, the differentiation

yields

L ·m =





0 2yA 2xC

2yB 0 2xC



 ·









vB

vA

vC









= 0,
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yA yA

yA yA

yB
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yB

xC

xC

xC

xC

(a) (b)

Figure 2.7: Configuration space (in blue) and singularities (red dots) of the 3-slider mechanism
for L1 = L2 (a) and L1 > L2 (b) with some examples of singular configurations depicted. In
this mechanism, the configuration space corresponds to the intersection of two cylinders at right
angles.

from where we readily obtain

Ly =

[

0 2xC

2yB 2xC

]

,

Lz =

[

2yA 2xC

0 2xC

]

,

LP =

[

2xC

2xC

]

,

which allow defining any of the systems in Eqs. (2.7)–(2.14).

These systems can be solved analytically in this case. For example, if L1 = L2 = 1, the

C-space has a single connected component composed of two ellipses intersecting on the xC axis

[Fig. 2.7(a)], and the solutions of the systems in Eqs. (2.7) and (2.8) reveal that the singularity
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set has six isolated configurations, marked in red in Fig. 2.7(a) bottom, with the following values

of q:

(0, 0, 1), (0, 0,−1),
(1, 1, 0), (1,−1, 0),

(−1,−1, 0), (−1, 1, 0).

All of these configurations satisfy both systems, so they are all forward and inverse singularities

because both the FIKP and the IIKP are indeterminate on them and, thus, the control of the

input or the output velocity does not determine the overall motion of the mechanism. It turns

out, moreover, that the four configurations with xC = 0 satisfy Eqs. (2.11), (2.12) and (2.13),

meaning that they are singularities of IO, II, and RPM type. The other two configurations, which

lie on the xC axis, are singularities of RI, RO, and IIM type because they satisfy Eqs. (2.9), (2.10)

and (2.14). These two configurations are in fact C-space singularities. In this case, the C-space

self-intersects at these points, and presents a bifurcation that allows to change the mode of

operation from both sliders moving on the same side of the horizontal axis, yAyB ≥ 0, to one

slider moving on each side, yAyB ≤ 0.

The topology of the C-space changes when L1 6= L2, since the C-space no longer presents

any bifurcation, and it is instead formed by two connected components [Fig. 2.7(b)]. By solving

Eqs. (2.7) and (2.8) for L1 = 1 and L2 = 0.8, for example, eight singularities are obtained:

(1, 0.8, 0), (−1,−0.8, 0),
(−1, 0.8, 0), (0.6, 0,−0.8),
(1,−0.8, 0), (−0.6, 0, 0.8),
(0.6, 0, 0.8), (−0.6, 0,−0.8).

As before, the configurations with xC = 0 are singularities of IO, II, and RPM type, but the other

four configurations are of RO and II type, and there are no singularities of RI or IIM type. To

change the operation mode from yA ≥ 0 to yA ≤ 0 the mechanism has to be disassembled in

this case.

It must be noted that if a singularity identification were attempted by means of an input-

output velocity equation, for instance by using the equation yAvA = yBvB which holds for all

configurations, the singularities with xC = 0 would not be detected.





3
Numerical Computation of Singularity Sets

This Chapter provides a method to compute any of the singularity sets defined in Chapter 2.

The method is very general and applicable to virtually any relevant mechanism with lower-

pair joints. It allows the complete singularity set to be obtained with the desired accuracy, and

each of its singularity types to be computed independently. To this end, Section 3.2 provides a

general way of formulating Eqs. (2.7)–(2.14) in an amenable form, and Section 3.3 describes

the main steps allowing to compute the solution set of any of the systems. Because of the high

number of configuration variables typically involved in the systems, the singularity set is often

defined in a highly-dimensional space, and Section 3.4 provides hints on how to represent this

set in a meaningful way. Finally, Section 3.5 demonstrates the method’s performance, and the

complexities of the singularity set, with the analysis of several manipulators.

3.1 Solution Approach

A complete solution of non-linear systems like those in Eqs. (2.7)–(2.14) typically involves

formulating the systems algebraically, to then take advantage of some suitable symbolic or

numerical technique for polynomial system solving. Unfortunately, a good solution to both

algebraization and resolution, treated as independent problems, does not necessarily lead to

an efficient solution of the original problem. Our aim has been on finding a good combination

of algebraization and resolution, so that the whole process becomes easy to understand and

implement, yet computationally efficient in practice.

Common root-finding approaches for polynomial equations can be classified into algebraic-

geometric, continuation, or branch-and-prune techniques. Within the first group of techniques,

the most usual ones apply elimination methods to reduce the system to a minimal set of resultant

polynomials, so that the roots of these polynomials, once backsubstituted into intermediate

equations, yield all solutions to the original problem [48, 49]. Continuation methods, in con-
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several connected
components

bifurcations

dimension
changes

Figure 3.1: The singularity set is an algebraic variety that may contain bifurcations, dimension
changes, or several connected components, even if the C-space is smooth everywhere.

strast, begin with an initial system whose solutions are known, and then transform it gradually

to the system whose solutions are sought, tracking all solution paths along the way [50–52].

Instead, branch-and-prune methods proceed by exclusion. They start with an initial bounding

box encompassing the solutions, and then use relaxed versions of the equations to iteratively

eliminate portions of the box that cannot contain a solution. The process is repeated until a

fine-enough box approximation of the solution set is obtained [31,53,54].

To determine the proper kind of approach in our case, we must bear in mind that the

structure of the singularity set S can be very general. Generically, S has codimension 1 with

respect the C-space, so we may have to deal with singular sets of dimension 1, 2, or even higher.

Elimination and continuation methods are quite general, but they are typically designed to solve

systems with isolated or one-dimensional solutions at most. While it is true that continuation

methods have been extended to characterize positive-dimensional solutions [55, Part III], they

do not directly provide an explicit representation of all solution points in general. Only higher-

dimensional continuation techniques would in principle be appropriate [35], but they should

be fed with a solution point for each connected component of S, and they are still not robust

enough to the many non-smothnesses that S may eventually present. Note that, even if C
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is smooth and contains only one connected component, S may include multiple connected

components, bifurcations, or even dimension changes, among other phenomenona (Fig. 3.1).

In constrast, branch-and-prune methods can isolate solutions of any dimension with several

connected components, and since they are very robust to non-smothnesses, they appear ideal

for our purposes.

With regard to the formulation, note that the structure of all systems in Eqs. (2.7)–(2.14)

is very similar. The first line is always Eq. (2.1), because all solution points must correspond

to feasible configurations of the manipulator. The second line always involves L or one of

its sub-matrices, and the third line constrains the norm of some vector. Therefore, the main

issue is how to formulate the assembly constraints and the velocity equation in a general way.

We next show that, by using a particular choice of configuration coordinates, the formulation

of these equations leads to a conceptually simple branch-and-prune technique for solving any

of the Eqs. (2.7)–(2.14). The formulation closely follows that of reference point coordinates

in multibody dynamics [31, 45], which produces simple polynomials with little manipulation,

in comparison to other formulations departing from loop closure constraints on relative joint

displacements [45, Sec. 2.2.1], or from point-to-point distances [56].

3.2 Formulating the Equations of the Singularity Sets

3.2.1 Obtaining the Assembly Constraints

To formulate Eq. (2.1), let us assume that our manipulator has nb links and nj joints, labelled

L1, . . . , Lnb
, and J1, . . . , Jnj

, respectively, where L1 is supposed to be the ground link. We furnish

every link Li with a local reference frame, Fi, letting F1 act as the absolute frame. We will write

aFi to indicate that the components of a vector a ∈ R
3 are provided in the basis of Fi, and we

will assume that vectors with no superscript are expressed in the basis of F1, unless otherwise

stated. Then, the pose of each link in the manipulator can be specified by the pair (ri,Ri), where

ri ∈ R
3 is the position of the origin of Fi in frame F1, and Ri ∈ SO(3) is a 3× 3 rotation matrix

expressing the orientation of Fi relative to F1. Note that the link poses cannot be arbitrary

though, since they must fulfill the assembly constraints imposed by the joints. We next provide

such constraints for the revolute, prismatic, universal, and spherical joints, since these are those

typically arising in most manipulators. Other lower pairs can be accommodated in a similar way

however.

If Ji is a revolute joint connecting links Lj and Lk, we consider a point, Pi, on the axis of the

joint, and a unit vector di along the same axis. Then, the assembly constraints of this joint can
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be formulated as follows:

rj +Rj p
Fj

i = rk +Rk p
Fk

i , (3.1)

Rj d
Fj

i = Rk d
Fk

i , (3.2)

where pi is the position vector of Pi. The first equation forces the links to be placed so that the

point Pi, seen as attached to Fj coincides with the same point, seen as attached to Fk, and the

second equation does a similar identification for the di vector [Fig. 3.2(a)].

If Ji is prismatic, we consider two different points on the axis of the joint, Pi and Qi, and

a unit vector di aligned with the joint. In this case, the assembly constraints are equivalent to

forcing Qi to lie on the line of Lj defined by Pi and di, while keeping the relative orientation

between Lj and Lk fixed to a constant offset [Fig. 3.2(b)]. These conditions are equivalent to

rj +Rj p
Fj

i + di Rj d
Fj

i = rk +Rk q
Fk

i , (3.3)

Rj = Rjk·Rk, (3.4)

where di is the linear displacement of the joint and Rjk is a constant rotation matrix providing

the relative orientation between links Lj and Lk.

If Ji is universal, the points Pi at the center of the joint must coincide, and the unit vectors

ai and bi defining the rotation axes must be orthonormal [Fig. 3.2(c)], which translates into

rj +Rjp
Fj

i = rk +Rkp
Fk

i , (3.5)

Rja
Fj

i ·Rkb
Fk

i = 0. (3.6)

If Ji is spherical, the center points Pi on each link must coincide, while Lk can freely rotate

with respect to Lj [Fig. 3.2(d)]. Thus, the valid poses for the two links verify

rj +Rjp
Fj

i = rk +Rkp
Fk

i . (3.7)

Since the coordinates of pi, qi, and di in the corresponding local frames are a priori known,

the only unknowns appearing in the previous equations are the poses of the links and the

displacements of the prismatic joints. The entries of the rotation matrices, though unknown,
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Figure 3.2: Geometric elements intervening in the assembly of (a) revolute, (b) prismatic, (c)
universal, and (d) spherical joints.
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are not independent, since if Ri = [si, ti,wi], then it must be

‖si‖2 = 1, (3.8)

‖ti‖2 = 1, (3.9)

si · ti = 0, (3.10)

si × ti = wi, (3.11)

in order for Ri to represent a valid rotation.

In our case, thus, Eq. (2.1) is the system formed by Eqs. (3.1)–(3.11) established for all joints

and links of the manipulator, and q is the vector encompassing the variables in ri and Ri of all

links, and di for all prismatic joints. Note however that, since L1 is the ground link, r1 = 0 and

R1 is the identity matrix.

3.2.2 Obtaining the Velocity Equation

Sometimes, as in planar manipulators [57], the input and output coordinates directly appear in

the formulation of the assembly constraints, or they can be easily introduced. In these cases,

Eq. (2.2) can be obtained by differentiation, as described in Section 2.2.1, but in general it

is usually easier to formulate Eq. (2.2) using the tools of Screw Theory [12, 58]. In favor of

generality, thus, we shall here show how to formulate Eq. (2.2) using the twist loop equations.

It is known that, for a joint Ji between two links, the velocity of one link with respect to

the other is given by a linear combination of six-dimensional unit twists [12, 58, 59]. Table 3.1

provides the form of these twists and the mentioned linear combination for each of the joints

herein considered. As shown, revolute and prismatic joints only involve one unit twist, which

is multiplied by the joint velocity ωi in the linear combination. Instead, since universal and

spherical joints are equivalent to a combination of two and three revolute joints, they involve

linear combinations of two and three twists respectively, multiplied by their corresponding joint

velocities.

Any set of feasible joint velocities must be in accordance with the kinematic constraints of

the mechanism. For that, the sum of the twists along any closed loop should be zero. If the

joints in a loop are numbered from 1 to l, this condition can be written as

ω1Ŝ1 + ω2Ŝ2 + . . .+ ωlŜl =
l

∑

i=1

ωiŜi = 0, (3.12)

where ωi is the joint velocity related to the i-th unit twist. This condition must be satisfied

for all loops of the manipulator, but only the equations relative to a maximal set of independent
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Pair Shape Unit twists Linear combination

Revolute Pi

Qi

di

Ŝi =

[

pi × di

di

]

ωiŜi

Prismatic Pi

Qi

didi

Ŝi =

[

di

0

]

ωiŜi

Universal
Pi

ai

bi

Ŝi,a =

[

pi × ai

ai

]

Ŝi,b =

[

pi × bi

bi

] ωi,aŜi,a + ωi,bŜi,b

Spherical
Pi

Ŝi,x =

[

pi × ex

ex

]

Ŝi,y =

[

pi × ey

ey

]

Ŝi,z =

[

pi × ez

ez

]

ωi,xŜi,x + ωi,yŜi,y +

+ωi,zŜi,z

Table 3.1: Unit twists and their linear combination for the considered joints. Vectors di, ai, and
bi are those defined in Section 3.2.1 for each joint. Vector pi provides the position of point Pi

of the joint, relative to F1. Without loss of generality, we can suppose that the spherical joint is
instantaneously equivalent to a chain of three revolute joints with axes coincident in Pi, aligned
with the vectors ex = [1, 0, 0]T, ey = [0, 1, 0]T, and ez = [0, 0, 1]T.

loops are necessary, since the remaining ones are linearly dependent of these. If the manipulator

contains c independent loops, we will have 6c equations that impose a necessary and sufficient

condition for the feasibility of the joint velocities, including the actuated ones, mv, and the

passive ones, mp.

The output velocities, mu, can be written as a linear function of the joint velocites if each of

the output velocities is a component of the twist T̂ of the end-effector with respect to the ground

link L1. If we choose any path of links and joints connecting L1 to the end-effector, and number
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the joints in this path from 1 to k, we can write

T̂ = ω1Ŝ1 + . . .+ ωkŜk =
k

∑

i=1

ωiŜi. (3.13)

Therefore, the velocity equation is the system formed by Eq. (3.12) for a set of independent

loops, and Eq. (3.13) relative to a path connecting the ground link to the end-effector. Identi-

fying terms with Eq. (2.2), it can be seen that m is the vector containing the joint velocities ωi

and the components of the twist T̂ , and that L is the corresponding coefficients matrix. Since

the manipulator is non-redundant, if it has N 1-DOF joints and mobility n, then it must have n

actuated joints, N−n passive joints, and n output variables, meaning that the size of m is N+n

and, thus, L is an N × (N + n) matrix.

The components of L are given by the unit twists, and since they depend on the configu-

ration q, it will be necessary to add the expressions in the third column of Table 3.1 relating

the components of the twists with those of q. Even though these expressions do not include q

explicitly, the vectors di, ai, bi, and pi can be obtained from the components of q by introducing

the following linear relations:

di = Rjd
Fj

i , (3.14)

ai = Rja
Fj

i , (3.15)

bi = Rjb
Fj

i , (3.16)

pi = rj +Rjp
Fj

i . (3.17)

Note that the previous developments already provide a general methodology to formulate

Eqs. (2.7)–(2.14), which allows to address their solution in order to find the different singularity

sets they characterize. Each of the systems involve some of the following variables:

- Variables in q from the formulation of the assembly constraints: ri, Ri, and di.

- The components of matrix L, which are components of the unit twists Ŝi: ŝi,j .

- Vectors needed to express the components of L: di, ai, bi, and pi.

- Vectors ξ or ζ needed to establish the singularity condition.

- Vectors m∗
u or m∗

v in the case of IO or II type singularities.

It must be added, however, that the proposed formulation can be usually simplified by elimi-

nating some of the variables and equations involved. For instance, many of the variables in ri

can be eliminated if closed kinematic chains are present in the manipulator, through a process
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explained in detail in [31]. Moreover, in hybrid-chain manipulators it is also possible to use a

method to eliminate passive joint velocities, thus reducing the size of the velocity equation [12],

and allowing more compact systems of equations. Both the general formulation and these

simplifications will be illustrated in Section 3.5 on specific examples.

3.3 Isolating the Singularity Sets

To isolate the solution sets of Eqs. (2.7)–(2.14) with the numerical technique described in this

Section, two requirements must be fulfilled: the equations must adopt the form of a polynomial

system of quadratic equations, and an inital box bounding all solutions of the system must be

defined. Then, the numerical procedure exploits the special form of the equations to iteratively

remove portions of the box that contain no solution, obtaining a box approximation of the

solution set at the desired accuracy.

3.3.1 Reduction to a Simple Quadratic Form

From the previous formulation, observe that all equations in the systems are polynomial, in-

volving only linear, bilinear, or quadratic terms. In other words, if xi and xj refer to any two

variables, the involved monomials are only of the form xi, xixj , or x2i .

Let us define the changes of variables

pk = x2i , (3.18)

bk = xixj , (3.19)

for each quadratic and bilinear monomial, respectively. This allows to convert any of the systems

into the expanded form:

Λ(x) = 0

Ω(x) = 0







, (3.20)

where x is a vector encompassing the original and the newly-defined variables, Λ(x) = 0 is

a subsystem of linear equations in x, and Ω(x) = 0 is a subsystem of quadratic equations of

the form of (3.18) or (3.19). Equation (3.20) involves more equations and variables than the

original system, but the simpler structure of its equations is beneficial to the branch-and-prune

strategy defined in Section 3.3.3.

In the systems of Eqs. (2.9)–(2.12), there is a vector that must be different from zero,

but since the technique can also handle non-strict inequalities, as explained below, the latter

condition can be enforced by setting ‖mv‖2 ≥ ǫ, for systems (2.9) and (2.12), and ‖mu‖2 ≥ ǫ,
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for systems (2.10) and (2.11), where ǫ is a sufficiently small value. By using these inequalities,

whose terms are also quadratic, some solutions might be neglected, but ǫ can be made arbitrarily

small, reducing the set of missed solutions to a negligible size.

3.3.2 Initial Bounding Box

An advantage of the proposed formulation is that it is straightforward to define conservative

interval bounds for all solutions of Eq. (3.20), since:

- Simple feasibility intervals for the components of ri can be derived from the link dimen-

sions.

- The allowed displacement di of the prismatic joints is usually restricted by design or can

be derived from the link dimensions.

- The columns of Ri are restricted to be unit vectors by Eqs. (3.8)–(3.11), so their compo-

nents can only take values in the [−1, 1] interval.

- The components of the unit twists, ŝi,j , can be derived from the intervals of other variables

using the expressions of Table 3.1.

- The variables that refer to the components of the unit vectors di, ai, and bi can only take

values in the [−1, 1] interval.

- The interval for the components of pi can be derived using Eq. (3.17).

- The entries of ξ and ζ are bounded in the range [−1, 1] because they are unit vectors.

- The feasibility intervals for the entries of m∗
u and m∗

v in Eqs. (2.11) and (2.12) can be

obtained by mapping the known intervals using LT
uζ = m∗

u and LT
v ζ = m∗

v.

- Intervals for the pk and bk variables can be derived by simple interval operations using

Eqs. (3.18) and (3.19).

In conclusion, from the Cartesian product of all such intervals it is possible to define an initial

rectangular box B bounding all solutions of Eq. (3.20).

3.3.3 A Branch-and-prune Method

The algorithm for solving Eq. (3.20) recursively applies two operations on B: box shrinking

and box splitting. Using box shrinking, portions of B containing no solution are eliminated by

narrowing some of its defining intervals. This process is repeated until either the box is reduced
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to an empty set, in which case it contains no solution, or the box is “sufficiently” small, in which

case it is considered a solution box, or the box cannot be “significantly” reduced, in which case

it is bisected into two sub-boxes via box splitting (which simply bisects its largest interval). To

converge to all solutions, the whole process is recursively applied to the new sub-boxes, until

one obtains a collection of solution boxes whose side lengths are below a given threshold σ.

The crucial operation in this scheme is box shrinking, which is implemented as follows. Note

first that the solutions falling in some sub-box Bc ⊆ B must lie in the linear variety defined by

Λ(x) = 0. Thus, we may shrink Bc to the smallest possible box bounding this variety inside Bc.
The limits of the shrunk box along each dimension xi can be found by solving the following two

linear programs:

LP1: Minimize xi, subject to: Λ(x) = 0,x ∈ Bc,
LP2: Maximize xi, subject to: Λ(x) = 0,x ∈ Bc.

However, observe that Bc can be further reduced, because the solutions must also satisfy all

equations pk = x2i and bk = xixj in Ω(x) = 0. These equations can be taken into account by

noting that, if [gi, hi] denotes the interval of Bc along dimension xi, then:

- The portion of the parabola pk = x2i lying inside Bc is bound by the triangleA1A2A3, where

A1 and A2 are the points where the parabola intercepts the lines xi = gi and xi = hi, and

A3 is the point where the tangent lines at A1 and A2 meet [Fig. 3.3(a)].

- The portion of the hyperbolic paraboloid bk = xixj lying inside Bc is bound by the

tetrahedron B1B2B3B4, where the points B1, . . . , B4 are obtained by lifting the corners

of the rectangle [gi, hi]× [gj , hj ] vertically to the paraboloid [Fig. 3.3(b)].

(a) (b)

A1

A2

A3

B1

B2

B3

B4

pk

bk

xj

xi
xi

hi

hi

gi

gi

hj

gj

Figure 3.3: Polytope bounds within box Bc.
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Algorithm 3.1: The top-level search scheme.
Solve-system(B,F, σ, ρ)
input : The initial bounding box, B, the functions defining the singularity set to compute, F, and

the parameters σ and ρ.
output: A list B of solution boxes.
B← ∅1

P← {B}2

while P 6= ∅ do3

Bc ← EXTRACT(P)4

while not IS-VOID(Bc) and SIZE(Bc) > σ and
Vc

Vp

≤ ρ do5

Vp ← VOLUME(Bc)6

SHRINK-BOX(Bc,F)7

Vc ← VOLUME(Bc)8

if not IS-VOID(Bc) then9

if SIZE(Bc) ≤ σ then10

B← B ∪ {Bc}11

else12

(B1,B2)← SPLIT-BOX(Bc)13

P← P ∪ {B1,B2}14

RETURN(B)15

Thus, linear inequalities corresponding to these bounds can be added to LP1 and LP2, which

usually produces a much larger reduction of Bc, or even its complete elimination if one of the

linear programs is found unfeasible.

Algorithm 3.1 gives the top-level pseudo-code of the process. As input, it receives the box

B, the list F containing the equations in Eq. (3.20) describing the singularity set to compute,

and two threshold parameters σ and ρ. As output, it returns a list B of “solution boxes” that

enclose all points of the solution set. The functions VOLUME(B) and SIZE(B) compute the volume

and the length of the longest side of B, respectively. These and other low-level procedures of

straightforward implementation are left unspecified.

Initially, two lists are set up in lines 1 and 2: an empty list B of solution boxes, and a list P of

boxes to be processed, containing B. A while loop is then executed until P gets empty (lines 3–

14), by iterating the following steps. Line 4 extracts one box from P. Lines 5–8 repeatedly

reduce this box as much as possible, via the SHRINK-BOX function, until either the box is an

empty set (IS-VOID(Bc) is true), or it cannot be significantly reduced (Vc/Vp > ρ), or it becomes

small enough (SIZE(B) ≤ σ). In the latter case, the box is considered a solution for the problem.

If a box is neither a solution nor empty, lines 13 and 14 split it into two sub-boxes and add them

to P for further processing. The SHRINK-BOX procedure in line 7 takes as input the box Bc to

shrink, and the list of equations F. The procedure collects all linear equations, all half planes
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approximating the parabolic equations, and, finally, all half planes approximating the hyperbolic

equations. Then uses these constraints to reduce every dimension of the box by solving the linear

programs indicated above, which possibly give tighter bounds for the corresponding intervals.

As it turns out, the previous algorithm explores a binary tree of boxes whose internal nodes

correspond to boxes that have been split at some time, and whose leaves are either solution or

empty boxes. The collection of all solution boxes, which is returned as output in line 15, is said

to form a box approximation of the solution set of Eq. (3.20), because its boxes form a discrete

envelope of the set, whose accuracy can be adjusted through the σ parameter (Fig. 3.4 illustrates

such approximations on two examples).

Notice that the algorithm is complete, in the sense that it will succeed in isolating all

solution points of Eq. (3.20) accurately, provided that a small-enough value for σ is used.

Detailed properties of the algorithm, including an analysis of its completeness, correctness, and

convergence order, can be found in [31].

It is worth pointing out that the previous algorithm can be naturally parallelized to be run on

multi-processor computers. To this end, we can just implement the book-keeping of the search

tree on a selected “supervisor” processor which keeps track of the tree leafs at all times. Every

leaf that is neither an empty nor a solution box needs to be further reduced. Since box reduction

is the most time-consuming task, and several boxes await for it simultaneously, it makes sense

to perform the reductions in parallel, by assigning each of them to any of the remaining “child”

processors. A child processor’s task is thus to receive a box from the supervisor, to reduce it as

much as possible by solving the aforementioned linear programs, and to return the reduced box

back to the supervisor, which will queue it for further splitting and reduction, if needed, or mark

it as a solution or an empty box.

3.4 Visualizing the Singularity Sets

Even though we have a means to compute S, a non-trivial issue is how to represent this set

in a meaningful way, suitable to the needs of a robot designer. Because of the high number

of configuration variables typically involved in q, S is often defined in a highly-dimensional

space, so that the use of 2- or 3-D projections becomes inevitable to understand its structure.

An enlightening choice, as done for instance in [19, 21, 60, 61], is to project S onto the output

space U , since this space encodes the end-effector motion and is easier to interpret. On such a

projection, points corresponding to inverse singularities indicate a loss of instantaneous degrees

of freedom relative to the u variables, and, as shown in Chapter 4, they provide the boundaries

and interior barriers of the workspace relative to such variables. Similarly, S can be projected

onto the input space V , as done for example in [62–64], where the forward singularities delimit



42 Numerical Computation of Singularity Sets

Figure 3.4: Left: progression of the algorithm on computing the lemniscate curve of Gerono,
defined by the equation y4 = (y2 − x2). We show the initial box, together with the intermediate
and final box approximations generated by the algorithm. Right: progression of the algorithm
on computing the C-space of the 3-slider mechanism of Section 2.4 [solution of Eq. (2.15)] for
L1 = L2. From top to bottom the sequence shows four stages of the computation, in blue, with
the singularities of the mechanism [solutions of Eqs. (2.7) and (2.8)] shown overlaid in the last
plot, in red. The boxes obtained for such singularities are magnified for clarity, because the
value of σ used to compute them was too small to allow their appreciation.
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the motion range that should be reachable by the actuators. Both the V and U spaces get

partitioned into several regions after such projections, and it is possible to decide what regions

correspond to feasible configurations of the manipulator by selecting a point in each region and

solving Φ(v,y) = 0 or Φ(u, z) = 0, with v or u fixed to the selected point, using the numerical

method described in Section 3.3.

The resulting diagrams, which we refer to as singularity portraits, convey much global

information on the motion capabilities of the manipulator because (Fig. 3.5):

- The existence of several connected components in C may be revealed by the portrait, and

such knowledge may be useful to determine the most appropriate component into which

the manipulator should be “assembled” by design, depending on the task to be performed.

- A feasible path in V or U not crossing a projected singularity always corresponds to a

singularity-free path in C.

- Only when approaching a projected singularity, some kind of motion degeneracy is to be

expected, so that a portrait can be used as a safe navigation map of C.

C

x

y

z U

Figure 3.5: A portrait of a synthetic C-space with two connected components. The V and U
spaces are assumed to be the xy- and xz-planes in this case, so that the forward and inverse
singularity loci are the red and blue curves, respectively. Only the portrait on the U space is
shown for simplicity. The portrait, as in this case, may reveal the existence of several connected
components in C. Also, it can be used as a safe navigation map, because paths in the portrait not
crossing a projected singularity correspond to singularity-free paths on C (left path). However,
the converse is not necessarily true (right path).
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It must be added that the connectivity of the singularity-free regions of C is only partially

reflected in the portraits. It is easy to see on the right component of Fig. 3.5, for example,

that distinct points of C may seem to be separated by singularities when looking at the portrait,

while they are actually connected by singularity-free paths on C. Robust numerical tools to

determine the existence of such paths, and to provide the whole singularity-free region of C that

is reachable from a given configuration, are provided in Chapters 5 and 6.

3.5 Examples

The application of the method is next illustrated on a number of examples. In Sections 3.5.1

and 3.5.2 the method is applied to the computation of the forward and inverse singularity sets of

planar and spatial manipulators. The computation of Zlatanov’s lower-level singularity sets and

the complex partition they induce on the C-space is then illustrated in Section 3.5.3 by means

of a 2-DOF manipulator.

All computations have been carried out using the parallelized version of the method outlined

in Section 3.3.3, implemented in C using the libraries of the CUIK Suite [65], and executed on a

grid computer of Xeon processors able to run 160 threads in parallel. A table is given at the end

of the section, summarizing the size of the solved systems of and the main performance data on

the reported problems.

In all plots that follow, the same color code adopted in Fig. 3.5 has been used to distinguish

the forward and inverse singularity loci, and to identify the regions of U and V attainable by the

manipulator.

3.5.1 The 3-RRR Manipulator

The 3-RRR manipulator consists of a moving platform linked to the ground by means of three

legs, where each leg is a three-revolute chain (Fig. 3.6). Initially, we consider the 3-RRR version

of the manipulator, in which the three intermediate joints placed at P4, P5, and P6 are actuated,

allowing to control the three degrees of freedom of the platform, and the remaining joints are

passive. The inputs of the manipulator are thus the angular velocities at joints J4, J5, and J6,

whereas the outputs are given by the twist of the moving platform P7 − P8 − P9, which acts as

the end-effector.

Several tools can be used to study the singularity set S of this manipulator [67–69], which

is known to be two-dimensional in general. A good reference summarizing them is [19], where

it is shown that the forward singularities can be derived from those of the 3-RPR manipula-

tor [67], whereas the inverse singularities can be generated geometrically, from the so-called
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loop 1

loop 2

P1

P2

P3

P4

P5

P6

P7

P8

P9

α4

α5

α6

L8

Figure 3.6: A planar 3-RRR manipulator. Points P1, P2, and P3 are fixed to the ground. The
end-effector is link L8, and is given by P7, P8, and P9. The relative angles at the intermediate
joints of each leg are labelled αi. Figure adapted from [66].

vertex-spaces of the legs. These methods are useful, but concentrate on deriving the constant-

orientation slices of S only, so that a reconstruction of the whole singularity surface involves

a discretization on the orientation angle of the platform, which necessarily leaves points of S
out of the representation. Moreover, only projections of the slices on the plane of two output

variables are derived, so that the visualization of the singularity surface on the input space, for

example, is not straightforward. The method presented here, in contrast, allows to compute

the whole singularity surface directly on C, and to project it easily onto any required space,

including V or U , without incurring in any loss of information.

To compute S, the proposed method requires formulating the assembly constraints as ex-

plained in Section 3.2. For this purpose, we label the links of the manipulator as L1, . . . , L8,

where L1 is the ground link defined by P1, P2, and P3, L8 is the moving platform P7 − P8 − P9,

and the other links Li are those defined by points Pi−1 and Pi+2. We also label the joints as

J1, . . . , J8, where Ji is the joint at point Pi. For the particular manipulators under study, the

coordinates of points Pi in the local frames of each link are given in Table 3.2, which correspond

to the geometries analyzed in [19, Section 2.4].

Since this is a planar manipulator, the position vectors ri of the links provide points in R
2,
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Link L1 L2 L3 L4

3-RRR

p
F1

1
= [0, 0]T

p
F1

2
= [−2.386, 0]T

p
F1

3
= [−1.193,−2.067]T

p
F2

1
= [0, 0]T

p
F2

4
= [4, 0]T

p
F3

2
= [0, 0]T

p
F3

5
= [4, 0]T

p
F4

3
= [0, 0]T

p
F4

6
= [4, 0]T

3-RRR

p
F1

1
= [0, 0]T

p
F1

2
= [2.35, 0]T

p
F1

3
= [1.175, 2.035]T

p
F2

1
= [0, 0]T

p
F2

4
= [1, 0]T

p
F3

2
= [0, 0]T

p
F3

5
= [1, 0]T

p
F4

3
= [0, 0]T

p
F4

6
= [1, 0]T

Link L5 L6 L7 L8

3-RRR
p
F5

4
= [0, 0]T

p
F5

7
= [3, 0]T

p
F6

5
= [0, 0]T

p
F6

8
= [3, 0]T

p
F7

6
= [0, 0]T

p
F7

9
= [3, 0]T

p
F8

7
= [0, 0]T

p
F8

8
= [−0.276, 0.276]T

p
F8

9
= [−0.919, 0.184]T

3-RRR
p
F5

4
= [0, 0]T

p
F5

7
= [1.35, 0]T

p
F6

5
= [0, 0]T

p
F6

8
= [1.35, 0]T

p
F7

6
= [0, 0]T

p
F7

9
= [1.35, 0]T

p
F8

7
= [0, 0]T

p
F8

8
= [1.2, 0]T

p
F8

9
= [0.6, 0.6

√

3]T

Table 3.2: Joint coordinates of the considered 3-RRR manipulators.

and the matrices Ri can be written in simplified form as

Ri =





ci −si
si ci



 ,

where ci and si are the cosine and sine of the angle θi between F1 and Fi, and thus verify

c2i + s2i = 1. (3.21)

Note that the assembly constraint of a revolute joint in the plane is equivalent to imposing

Eq. (3.1) only. Therefore, Eq. (2.1) is in this case the system formed by Eq. (3.1) for all joints

and Eq. (3.21) for all links. However, as shown in [31], it is possible to eliminate the ri variables

by replacing all Eqs. (3.1) by their sum along a set of independent loops of the mechanism. In

such case, Eq. (2.1) can also be formulated by gathering Eq. (3.21) for all links, together with

the equations

R2p
F2

4 +R5p
F5

7 +R8p
F8

8 −R6p
F6

8 −R3p
F3

5 = 0, (3.22)

R2p
F2

4 +R5p
F5

7 +R8p
F8

9 −R7p
F7

9 −R4p
F4

6 = 0, (3.23)

relative to the closure of loops 1 and 2 indicated in Fig. 3.6. Whereas the original system has

25 equations and 28 variables, this reduced system has only 11 equations and 14 variables, and

thus it is easier to solve.
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If ωi is the joint velocity of Ji, and Ŝi is the associated twist, the twist loop equations relative

to loops 1 and 2 can be formulated as

ω1Ŝ1 + ω4Ŝ4 + ω7Ŝ7 − ω8Ŝ8 − ω5Ŝ5 − ω2Ŝ2 = 0, (3.24)

ω1Ŝ1 + ω4Ŝ4 + ω7Ŝ7 − ω9Ŝ9 − ω6Ŝ6 − ω3Ŝ3 = 0, (3.25)

and the twist T̂ = [vx, vy, ω]
T of the end-effector can be introduced using the equation

T̂ = ω1Ŝ1 + ω4Ŝ4 + ω7Ŝ7. (3.26)

Hence, the velocity equation Lm = 0 is in this case defined by Eqs. (3.24)–(3.26), being

m = [vx, vy, ω, ω1, . . . , ω9]
T and

L =









I3×3 Ŝ1 0 0 Ŝ4 0 0 Ŝ7 0 0

0 Ŝ1 −Ŝ2 0 Ŝ4 −Ŝ5 0 Ŝ7 −Ŝ8 0

0 Ŝ1 0 −Ŝ3 Ŝ4 0 −Ŝ6 Ŝ7 0 −Ŝ9









. (3.27)

Taking into account that mv = [ω4, ω5, ω6]
T and that mu = [vx, vy, ω]

T, the matrices Ly and Lz

needed to formulate Eqs. (2.7) and (2.8) are

Ly =









I3×3 Ŝ1 0 0 Ŝ7 0 0

0 Ŝ1 −Ŝ2 0 Ŝ7 −Ŝ8 0

0 Ŝ1 0 −Ŝ3 Ŝ7 0 −Ŝ9









, (3.28)

and

Lz =









Ŝ1 0 0 Ŝ4 0 0 Ŝ7 0 0

Ŝ1 −Ŝ2 0 Ŝ4 −Ŝ5 0 Ŝ7 −Ŝ8 0

Ŝ1 0 −Ŝ3 Ŝ4 0 −Ŝ6 Ŝ7 0 −Ŝ9









. (3.29)

Finally, it is easy to see that in the planar case the expression of Ŝi given in Table 3.1 reduces

to

Ŝi =









yi

−xi
1









, (3.30)

where pi = (xi, yi) are the absolute coordinates of Pi [59]. These coordinates can be expressed

in terms of the configuration of the manipulator using Eq. (3.17), if the ri variables have not
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x7

y7

θ8

π

−π

Figure 3.7: Output portrait obtained for the 3-RRR manipulator. Top: Forward (red) and inverse
(blue) singularity surfaces in the space defined by x7, y7, and θ8. The boxes computed are drawn
with translucent faces to better appreciate the shape of the surfaces. Bottom: Slices of the output
portrait at a constant value of θ8. From left to right, and from top to bottom, the values of θ8
assumed are −π, −3π

4 , −π
2 , −π

4 , 0, and π
4 .
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0
0

π π

π

−π α4

α5

α6

Figure 3.8: Input portrait of the 3-RRR manipulator. Top: Forward (red) and inverse (blue)
singularity surfaces in the space defined by α4, α5, and α6. Only two octants of the space are
shown for simplicity, the other octants can be obtained by symmetry. Bottom: Slices of the input
portrait at different values of α6. From left to right, and from top to bottom, the values of α6

assumed are −π
4 , 0, π

4 , π
2 , 3π

4 , and π.
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been eliminated, or by resorting to the expressions

p4 = p1 +R2p
F2

4 ,

p5 = p2 +R3p
F3

5 ,

p6 = p3 +R4p
F4

6 ,

p7 = p4 +R5p
F5

7 ,

p8 = p5 +R6p
F6

8 ,

p9 = p6 +R7p
F7

9 ,

otherwise. Note that p1 = pF1

1 , p2 = pF2

2 , and p3 = pF3

3 , so these vectors take the constant

values indicated in Table 3.2.

We now know how to formulate Eqs. (2.7) and (2.8) in the form required by the numerical

method but, in order to generate the portraits mentioned in Section 3.4, it is convenient to

introduce the input and output variables in the systems. The output variables are given by

u = [x7, y7, θ8]
T, and they are already explicit in the formulation. The input variables are given

by the relative angles v = [α4, α5, α6]
T indicated in Fig. 3.6, whose sines and cosines can be

obtained by completing the system with the equations

sαi
= si+1ci−2 − ci+1si−2,

cαi
= ci+1ci−2 + si+1si−2,

which are nothing but the algebraic version of αi = θi+1− θi−2. By introducing these equations,

the numerical method will be able to provide ranges for the sines and cosines of all angles

involved, α4, α5, and α6, from which it is straightforward to obtain the corresponding angular

ranges.

The singularity surfaces obtained by the method are shown in Fig. 3.7 (top), projected onto

the output space. The blue surface corresponds to the inverse singularity locus, which provides

the boundaries of the workspace. The red surface corresponds to the forward singularity locus,

i.e., to configurations where the motion control is compromised, due to the specific choice

of actuated degrees-of-freedom. Even though these singularity surfaces appear to be quite

complex, it can be shown that the constant-orientation slices of the forward singularity locus

can be described by conic sections in the plane of the x7 and y7 variables [19, 67]. Any of

these slices can be readily obtained by the proposed method by simply fixing the value of θ8 in

the equations, obtaining the red curves shown in Fig. 3.7 (bottom), where only pairs of lines,

parabolas, or ellipses appear as expected. The inverse singularity curves in such plots do also

coincide with those obtained through the intersection of vertex spaces [19,68].
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By simply changing the projection coordinates we can easily represent S in the input space as

well, obtaining the results shown in Fig. 3.8. Here, the forward singularities delimit the motion

range of the actuators, and it can be seen how the inverse singularities only appear on planes

where one of the αi angles is either 0 or π, in agreement with the fact that the platform only

loses instantaneous mobility when at least one of the legs is fully extended or folded back [19].

To better understand the structure of the singularity surface on the input space, some slices are

also shown for constant values of α6. Observe how the whole region attainable by the inputs

is singular for α6 = 0 or α6 = π. On these slices, the inverse singularities are no longer one-

dimensional, as one would expect. Whereas this circumstance poses no problem to the proposed

method, it may indeed hinder the application of other methods relying on discretization of α6.

It must be noted that the structure of the singularity set can become quite complex even on

simple manipulators. For example, if on the 3-RRR mechanism we mount the actuators in the

ground joints J1, J2, and J3 instead of the intermediate ones, we obtain the 3-RRR architecture,

and the constant-orientation slices of the forward singularity locus are then described by poly-

nomials in x7 and y7 of minimal degree 42 [19]. Polynomials of such kind constitute valuable

tools for the analysis of the singularity set, but their derivation often requires quite involved

manipulations guided by intuition [20, 21, 61, 64], which difficults the application of such

strategy to every new manipulator that has to be analyzed. The proposed method can compute

the mentioned slices just as easily as in the case of the 3-RRR manipulator (Fig. 3.9). The

full potential of the method is even more apparent on mechanisms of much higher complexity,

where the approach based on descriptive polynomials would be rather difficult to apply [57].

Figure 3.9: Slices of the output portrait of the 3-RRR manipulator computed by the method at
fixed orientations of the platform, assuming the geometric parameters in Table 3.2. From left to
right, the values assumed for θ8 are −π

4 , 0 and π
4 . The plot of the θ8 = 0 slice agrees with the

one published in [19,69].
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3.5.2 The Stewart Platform

The Stewart platform consists of a moving plate, or platform, connected to a fixed base by means

of six legs, where each leg is a universal-prismatic-spherical chain. The most general version of

this manipulator follows the so-called 6-6 design, where the leg anchor points are all different

(Fig. 3.10), though not necessarily coplanar [70]. The six prismatic joints are actuated, allowing

to control the six degrees of freedom of the platform, and the remaining joints are passive.

The assembly constraints can be formulated as explained in Section 3.2. In this case we can

define two links, the ground base and the moving platform, labelled L1 and L2, and the points

P1,i and P2,i at the center of the universal and spherical joints, respectively, for each leg from

i = 1 to 6. Let also O be the origin of the absolute frame, F1, and P that of the frame attached

to the platform, F2 (Fig. 3.10). By taking into account the constraints imposed by the universal,

prismatic, and spherical joints of the i-th leg, i.e., Eqs. (3.3)–(3.7), the constraint imposed on

the platform by such leg can be reduced to

rP = p1,i + didi −R2p
F2

2,i , (3.31)

‖di‖2 = 1, (3.32)

where rP , p1,i, and p2,i are the position vectors of points P , P1,i, and P2,i, respectively, and di is

a unit vector along the i-th leg. Also, di is the length of the leg, representing the displacement of

the prismatic joint. Thus, Eq. (2.1) can be written in this case by gathering Eq. (3.31) and (3.32)

for all legs, and Eqs (3.8)–(3.11) for R2, obtaining a system of 30 equations in 36 variables where

P1,i

P2,i

L1

L2

di

O

P

Figure 3.10: The Stewart platform.
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Leg Base L1 Platform L2

1 p
F1

1,1 = [92.58, 99.64, 20.10]T p
F2

2,1 = [30.0073.00− 35.10]T

2 p
F1

1,2 = [132.58, 30.36, 28.45]T p
F2

2,2 = [78.22,−10.52,−23.00]T

3 p
F1

1,3 = [40.00,−120.00, 31.18]T p
F2

2,3 = [48.22,−62.48,−33.60]T

4 p
F1

1,4 = [−46.00,−130.00, 3.10]T p
F2

2,4 = [−44.22,−56.48,−25.50]T

5 p
F1

1,5 = [−130.00, 23.36, 13.48]T p
F2

2,5 = [−70.22,−20.52,−34.10]T

6 p
F1

1,6 = [−82.58, 89.77, 8.76]T p
F2

2,6 = [−34.00, 45.00,−39.00]T

Table 3.3: Parameters of the analyzed Stewart platform, in millimeters.

the pose of the end-efector is represented by (rP ,R2). The geometric parameters used here are

given in Table 3.3 and correspond to the manipulator studied in [21].

It can be seen that each pair of legs forms a closed-loop of the manipulator, but that only

five of them are independent. Therefore, the velocity equation can be formulated by gathering

Eq. (3.12) for five distinct pairs of legs, and Eq. (3.13) written for any leg. However, on hybrid-

chain manipulators like the Stewart platform, the velocity equation can also be obtained by

writing Eq. (3.13) for each leg [12]. In such case, the matrix L adopts the form

L =



























−I Ŝa
1 0 0 0 0 0 Ŝ

p
1 0 0 0 0 0

−I 0 Ŝa
2 0 0 0 0 0 Ŝ

p
2 0 0 0 0

−I 0 0 Ŝa
3 0 0 0 0 0 Ŝ

p
3 0 0 0

−I 0 0 0 Ŝa
4 0 0 0 0 0 Ŝ

p
4 0 0

−I 0 0 0 0 Ŝa
5 0 0 0 0 0 Ŝ

p
5 0

−I 0 0 0 0 0 Ŝa
6 0 0 0 0 0 Ŝ

p
6



























, (3.33)

where Ŝa
i is the unit twist of the prismatic joint on the i-th leg, and Ŝ

p
i is a 6 × 5 matrix whose

columns are the unit twists of the universal and spherical joints of such leg. Then, the velocity

vector m contains the six components of the output twist, the six active velocities of the prismatic

joints, and the 30 passive joint velocities of the universal and spherical joints. Altogether, this

is a 36 × 42 matrix, but a method explained in [12] allows to reduce its size by eliminating

the passive joint velocities of the equation. The method consists in multiplying each side of

Eq. (3.13) of each leg by a unit screw reciprocal to all passive joints of the leg. Note that such a

screw is any one that passes through the centers of the universal and spherical joints [71, Section
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5.2.2], for instance1

ŝ
r
i =





di

di × p1,i



 . (3.34)

By doing the multiplication, Eq. (3.13) reduces to

ŝ
r
i
T
T̂ = ωa

i , (3.35)

where ωa
i is the velocity of the prismatic joint of leg i, because ŝri

TŜ
p
i = 0 and ŝri

TŜa
i = 1.

Collecting Eq. (3.35) for all legs we obtain the velocity equation as

J
T
T̂ = mv, (3.36)

where J is a matrix that has the unit screws ŝri as columns, and mv contains the six ωa
i .

For some configurations, the space of reciprocal screws of a given leg may have dimension

larger than one. In such a case, the corresponding Eq. (3.13) of the leg should be multiplied by

all vectors of a basis of the space of reciprocal screws, obtaining at the end the velocity equation

as

J
T
T̂ = Hmv, (3.37)

where JT and H are rectangular matrices with more rows than columns. This can only happen

on the Stewart Platform when the twists of the universal joint become dependent of those of

the spherical joint, i.e., when the two joints are coincident and the leg has zero length. This

situation corresponds to an RPM type singularity, but it rarely occurs in practice, because the di
variables are typically constrained to a positive range of values. In such case, J remains square,

H is the identity matrix because of the choice of ŝri , and Eq. (3.36) coincides with the classical

simplified version of the velocity equation [72].

Based on Eq. (3.36), it is easy to see that the solution to the FIKP involves the inverse

matrix of J , so that the forward singularities can be characterized by those configurations

where J is not full rank. Thus, in order to compute the forward singularities, J plays the

role of Ly in Eq. (2.7), obtaining a much compact system of equations than using Ly directly

from (3.33). A similar reasoning applies for the inverse singularities, so they can be computed

as the solution of Eq. (2.8) replacing Lz by H. Since H is the identity matrix whenever di 6= 0,

it is straightforward that the inverse singularities could only occur when some di is zero, which

never happens in our case because the di variables are always kept strictly positive. Therefore,

we will concentrate on computing the forward singularities only.

1The notation ŝi indicates that the twist is written in ray coordinates [59], to allow the reciprocal product.
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x

y
z

φ

θ

ψ

Figure 3.11: Forward singularity locus of the INRIA left hand with the orientation of the platform
fixed at φ = −2◦, θ = 30◦, and ψ = −87◦ (left), and with point P fixed at p = [10, 10, 10]T

(right). For ease of visualization the position variables on the left, and the orientation angles on
the right, have been limited to the ranges [−100, 100] and [−90◦, 90◦], respectively.

It is clear that the singularity locus can not be directly visualized in this case due to its high

dimension. However, insight can be gained through the projection of three-dimensional slices.

In order to plot these slices when they involve the orientation of the platofrm, it is convenient to

introduce three-parameter expressions for R2 in the system. It is worth noting that no consensus

has been reached as to how should platform orientations be parameterized, but the method

herein proposed could equally solve the systems under any possible parameterization, including

those based on conventional Euler angles, tilt-and-torsion angles [73], or Euler-Rodrigues pa-

rameters. For ease of comparison with [21], we will here adopt the parameterization provided

by roll (φ), pitch (θ) and yaw (ψ) angles, for which R2 = RZ(ψ)RY (θ)RX(φ), or

R2 =









cos θ cosψ sinφ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ

cos θ sinψ sinφ sin θ sinψ + cosφ cosψ cosφ sin θ sinψ − sinφ cosψ

− sin θ sinφ cos θ cosφ cos θ









. (3.38)

Two slices of the singularity locus are shown in Fig. 3.11, one computed at a constant

orientation of the platform, corresponding to φ = −2◦, θ = 30◦, ψ = −87◦, and one at a

constant position of the point P in the platform, being rP = [10, 10, 10]T. Note however that
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any other slice obtained by keeping constant three or more of the pose variables of the platform

could also be computed with the method.

3.5.3 A Double-loop Manipulator

The 2-DOF manipulator shown in Fig. 3.12 is used here to illustrate the computation of each

one of the six lower-level singularity sets. The inputs of the manipulator are the joint velocities

at A and E, and the output is the velocity of point G. By gathering the loop-closure equations

of the mechanism, and introducing two further equations to include the position of G, Eq. (2.1)

can be formulated as follows

cos θA + cos θB − 2 cos θD − 1 = 0

sin θA + sin θB − 2 sin θD = 0

2 cos θD + 3

2
cos θC + 2 cos θG − 3 cos θE − 1 = 0

2 sin θD + 3

2
sin θC + 2 sin θG − 3 sin θE = 0

−x+ 2 cos θD + 3

2
cos θC = 0

−y + 2 sin θD + 3

2
sin θC = 0























































(3.39)

where θA, θB, θC , θD, θE and θG are the counterclockwise angles of links AB, BC, CG, DC,

EF , and GF , respectively, relative to the ground, and x and y are the coordinates of point G

relative to a fixed frame centered in D. In this case, the velocity equation of the manipulator

is easily obtained by differentiating (3.39) with respect to all variables, although the twist loop

equations could also be used. In any case, the systems of equations enconding the six singularity

A

B

C

D

E

F

X

Y

G(x, y)

ωA ωE

Figure 3.12: A 2-DOF planar manipulator. The link dimensions are AB = AD = BC = DE = 1,
CD = FG = 2, CG = 1.5 and EF = 3.
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x
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θA

π
3

5π
3

Figure 3.13: Two-dimensional configuration space of the manipulator in Fig. 3.12 computed at
σ = 0.1. Two holes can be seen, whose boundary corresponds to configurations where E, F ,
and G are aligned.

types, Eq. (2.9)–(2.14), can be written and expanded to the desired quadratic form of Eq. (3.20)

by introducing the changes of variables

cτ = cos θτ

sτ = sin θτ

together with the equation

c2τ + s2τ = 1,

for all angles with τ = {A,B,C,D,E,G}.
Given that the manipulator has two degrees of freedom, its configuration space is a surface,

which is shown projected onto the x, y, and θA variables in Fig. 3.13. This surface is obtained

from the computation of all solutions of Eq. (2.1) using the same numerical technique presented

in Section 3.3. Note that by fixing x, y, and θA, there are still two possible positions of point F ,

so that most of the points in this projection correspond, in fact, to two different configurations of

the manipulator. Only the points whereE, F , andG are aligned represent a single configuration,

and these are exactly the boundaries of the two “holes” that the surface presents.
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x

y

θA

−π

π

Figure 3.14: The singular configurations of the mechanism in Fig. 3.12 shown overlaid on a
projection of its configuration space onto the x, y and θA variables. Different colors are used to
identify the several singularity types encountered: green for the RI and IO types, red for the RO
and II types, and orange for the RPM type.

x
y

D

(a)

(b)

(c)

Figure 3.15: A projection of the plot in Fig. 3.14 to the (x, y) plane. (a) A singularity of RPM,
IO, and II type. (b) A singularity of RI and IO type. (c) A singularity of RO and II type.
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θA5π
3

π
3

θD

17π
12

7π
12

θE

π
4

7π
4

Figure 3.16: A projection of the configuration space and the computed singularities to the
(θA, θE , θD) space, together with two configurations where C, G, and F are aligned. Green
corresponds to the RI and IO types, red to the RO and II types, and orange to the RPM type.
There are no singularities of IIM type.

θA

θE

Figure 3.17: A projection of the plot in Fig. 3.16 to the (θA, θE) space.
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The singularity set is generally of lower dimension than the configuration space, so that only

curves or points are to be expected in the solution set of all systems of equations. The result

of the computation of each singularity type defined in Section 2.3 is shown in Figs. 3.14 and

3.15, projected onto the output and one input (x, y, θA), and onto the output only, respectively.

In Fig. 3.14, the configuration space is shown in blue, separated in two parts so that a cross-

section can be seen, but both parts are actually connected through π and −π as in Fig. 3.13. The

grey area in Fig. 3.15 represents all attainable positions of point G, i.e. the workspace of the

manipulator.

As it turns out, this manipulator contains no IIM configurations, and the computation of this

type of singularity gives no box as output. On the contrary, there are eight distinct RPM singular-

ities, which in these projections appear coincident in pairs as four orange boxes, corresponding

to the two possible locations of F . Using a different projection, for instance onto (θA, θD, θE),

the eight boxes appear separated (Fig. 3.16).

The green curves correspond to singularities that are both of RI and IO type. These con-

figurations can be seen to contour the two “holes” of the configuration space in the projection

of Fig. 3.14. The red curves correspond to configurations simultaneously belonging to the RO

and II type. Even if the curves for RI and IO seem to coincide everywhere, there are some

IO configurations that are not of RI type, and the same happens for II and RO singularities,

respectively. This is illustrated in Fig. 3.14 with a magnifying bubble that shows only the output

of computing RI type singularities. These gaps on the curves of RI and RO, which can be found

by properly adjusting the ǫ parameter, coincide with the location of the RPM singularities and,

hence, the RPM singularities are also of II and IO type but not of RI or RO type. Fig. 3.15(a)

shows an example of an (RPM, II, IO) singularity, while Fig. 3.15(b) and Fig. 3.15(c) show

examples of (RI, IO) and (RO, II) singularities, respectively.

Yellow curves corresponding to configurations where points D, B and G are aligned are

also shown in Figure 3.14. In these configurations there is only one possible location of point

C. Hence, these configurations, together with those where E, F , and G are aligned, allow the

transition between different assembly modes. In fact, these configurations coincide with the

points of self-intersection of the projection of the configuration space on the (x, y, θA) space.

The configuration space itself has no self-intersections as there are no C-space, or IIM type,

singularities, and the yellow points are only singularities of the projection map.

Using the same color code, Figs. 3.16 and 3.17 show the projection of the results onto the the

3-dimensional space of the two input angles and one passive joint angle (θA, θE , θD) and onto

the 2-dimensional input space only. The eight RPM singularities appear separated. Similarly

as before, for fixed values of θA, θE , and θD, there are still two possible locations of point C

in general, and almost all points in this projection correspond to two distinct configurations
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of the manipulator. It can be seen that the configuration space presents four “holes” in these

projections. These four contours are made of those configurations whereG, C, and F are aligned

and there is only one possibility for C. Note that none of these “holes” coincides with one in

the previous projection, but, once again, crossing each curve allows the transition between two

different assembly modes. One can imagine the two assembly modes as the two “sides” of

the surface of the configuration-space projection. To “get to the opposite side”, i.e., to change

assembly mode, the motion curve must “go through a hole”.
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Figure Manipulator Computed set Slice dim Neq-Nvar σ Time (s) Nboxes

3.7–3.8 3-RRR

Forward sing.

— 2 29-31 0.1 2168 150538

θ = −π 1 28-29 0.01 18 2692

θ = −
3π
4

1 28-29 0.01 14 1372

θ = −
π
2

1 28-29 0.01 12 894

θ = −
π
4

1 28-29 0.01 13 1113

θ = 0 1 28-29 0.01 17 2612

θ = π
4

1 28-29 0.01 14 1658

α3 = −
π
4

1 28-29 0.01 186 22195

α3 = 0 1 28-29 0.01 216 10158

α3 = π
4

1 28-29 0.01 198 22151

α3 = π

2
1 28-29 0.01 118 23654

α3 = 3π
4

1 28-29 0.01 55 13578

α3 = π 1 28-29 0.01 53 11950

Inverse sing.

— 2 29-31 0.1 1182 242185

θ = −π 1 28-29 0.01 65 9652

θ = −
3π
4

1 28-29 0.01 61 8828

θ = −
π

2
1 28-29 0.01 63 8725

θ = −
π
4

1 28-29 0.01 51 7748

θ = 0 1 28-29 0.01 49 7419

θ = π
4

1 28-29 0.01 46 7579

α3 = −
π
4

1 28-29 0.01 15 6655

α3 = 0 2 28-29 0.1 489 106792

α3 = π
4

1 28-29 0.01 15 6653

α3 = π
2

1 28-29 0.01 18 9851

α3 = 3π
4

1 28-29 0.01 12 5885

α3 = π 2 28-29 0.1 447 170170

3.9 3-RRR

Forward sing.
θ = −

π
4

1 22-23 0.01 9 9276

θ = 0 1 22-23 0.01 15 14548

θ = π
4

1 22-23 0.01 10 9335

Inverse sing.
θ = −

π
4

1 22-23 0.01 59 19906

θ = 0 1 22-23 0.01 66 18917

θ = π

4
1 22-23 0.01 51 19998

3.11 Stewart Forward sing.
const. orientation 2 25-27 0.02 79 146420

const. position 2 37-39 0.25 2554 195982

3.13–3.17 Double-loop

C-space — 2 12-14 0.1 31 85238

RI — 1 19-20 0.01 12 14903

RO — 1 19-20 0.01 12 12773

IO — 1 19-20 0.01 14 14906

II — 1 19-20 0.01 13 13062

RPM — 0 19-18 0.01 4 8

IIM — 0 21-20 0.01 2 0

Table 3.4: Performance data on the reported examples. For each set we indicate if the data refers
to the computation of a slice or the whole set, the dimension of the computed set (dim), the
number of equations (Neq) and variables (Nvar) in its defining system, the accuracy threshold
assumed (σ), the time employed in computing the set in seconds, and the number of solution
boxes returned by the method (Nboxes).



4
Workspace Determination

This chapter shows how the developments in Chapters 2 and 3 can be extended to compute the

various workspaces of a manipulator. For a given workspace, we will show how its boundary can

be determined by computing a set of generalised singularities, and then classifying the points

of such set according to whether they constitute traversable or barrier singularities. A detailed

map of the workspace is obtained as a result, where the interior and exterior regions, together

with the motion impediments that separate them, get clearly identified.

The method is very general. In fact, it is equally applicable to both redundant and non-

redundant manipulators, because the shape of the workspace depends only on the underlying

mechanism, and not on the specific actuation pattern adopted.

After reviewing the state of the art on the topic (Section 4.1), we describe the notion of

workspace mathematically, and then derive the conditions allowing to characterize the boundary

of such workspace and the various motion impediments in its interior (Section 4.2). We then

explain the main limitations of a continuation approach of a similar generality (Section 4.3),

and the alterative method we propose, which overcomes such limitations (Section 4.4). We

finally apply the proposed method to several manipulators, in cases that would be difficult to

analyze using the continuation approach (Section 4.5).

4.1 Related Work

Since the early studies on the problem [74–78], efficient workspace determination methods

have been given, but most of them are tailored to a particular robot architecture, or class

of architectures. An important group of such methods adopt a constructive geometric ap-

proach. Representative of them is [79], which computes the constant-orientation workspace

of a spatial parallel manipulator, [80], which extends the approach to deal with other physical

constraints, or [68], which provides methods for various planar parallel platforms. Other
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significant approaches include interval analysis or discretization techniques for Stewart-type

manipulators [81,82], optimization-based algorithms for fully serial or parallel robots [83], an-

alytic methods for symmetrical spherical mechanisms [61], and analytic, topologic, or algebraic-

geometric procedures for serial manipulators [84–88].

The literature on the topic is rich, and elaborate surveys can be found in [83, 89–91], but it

should be noted that most previous methods, including [61, 68, 74–82, 84–88], are difficult to

apply to manipulators outside the class they consider, because they exploit specificities of the

class in some way or another, like the possibility to parametrize the end-effector pose [84, 92],

simplifications introduced by dimension symmetries [61], or the feasibility of an algebraic [84–

88] or geometric [68, 79, 80] treatment. Even discretization methods, which resort to configu-

ration sampling only [78, 82, 93], rely on the assumption that either the forward or the inverse

kinematic problems have a simple solution, which needs not be the case in general.

While ad-hoc methods are desirable because they tend to yield faster or simpler algorithms,

methods for general structure manipulators are required too, to be able to analyze robots for

which no specific solution exists. Up to the author’s knowledge, only one approach of a similar

generality is available in the literature, due to Haug and collaborators [60, and references

therein]. In their work, Haug et al. apply the idea that the workspace boundaries can be

extracted from a set of generalised singularities, and focus their effort on tracing such singu-

larities numerically using a continuation method. The procedure is elegant and works well in

favorable situations, but important weaknesses of the method were identified in [94], including

(1) the need to manually guide the method with a priori knowledge of the workspace shape,

(2) the fact that only cross-sectional curves of the boundary can be traced in higher-dimensional

cases, or (3) the possibility to miss some boundary segments in the presence of voids within

the workspace. Unfortunately, the performance of the procedure can further degrade, since

one can encounter workspaces with several connected components, hidden barriers, or degen-

erate barriers where the method will produce incomplete or misleading maps of the workspace

(Section 4.3).

4.2 The Workspace and its Boundaries

The motion capabilities of a manipulator are typically assessed by analyzing the set of feasible

poses of the end-effector, which is usually known as the workspace or accessible output set of

the manipulator. However, the notion of workspace is more general. The regions swept by

other configuration coordinates could equally be useful to the robot designer, including those

of the input coordinates, which identify the motion ranges of the actuators, or those of a point

on any link, which could reveal possible collisions with the environment. In this chapter, thus,
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we will be interested in computing the set of attainable values of a generic vector u of nu
coordinates, as the manipulator runs through all possible configurations. Note that such a vector

will only coincide with the homonym vector of Chapter 2 when computing the workspace of the

output coordinates. Moreover, since mechanical joint limits can greatly modify the shape of a

workspace, we will take such limits into account in the formulation of Eq. (2.1), as explained

in Section 4.4.1, and the configuration space C of the manipulator will only contain points q

fulfilling such limits.

Depending on the choice, the u coordinates might or might not be explicit in q. However, we

will show that it is always possible to derive a system of the form of Eq. (2.1) containing the u

variables of interest, so that q will be assumed to include such variables hereafter. By adopting

the partition q = [zT,uT]T, where z accumulates all coordinates in q except those in u, Eq. (2.1)

can be written as

Φ(z,u) = 0, (4.1)

and the workspace of the system relative to the u coordinates can be defined as the set A
of points u ∈ U that satisfy Eq. (4.1) for some z, where U is here the whole space of the u

coordinates. We shall also assume that nu ≤ n, and that A is a subset of U of dimension nu,

which is the common situation in general. In particular, if nz is the size of z, and ne is the

number of equations in Eq. (2.1), nu ≤ n implies that nz ≥ ne, so that the system in Eq. (4.1) is

in general not overconstrained for a fixed value of u.

Although a direct computation ofA could in principle be attempted, it is often more effective

to delimit A by computing its boundary, because such boundary is a set of lower dimension. A

point u lies on the boundary of A, denoted ∂A, if every open set of U containing u intersects

the interior and the exterior of A. We next derive the conditions allowing to identify the points

u ∈ ∂A.

4.2.1 Jacobian Rank Deficiency Conditions

Observe first that the workspaceA is exactly the image of C through πu, the projection map from

q onto the u coordinates, i.e., πu(z,u) = u. Moreover, it can be seen that the Jacobian matrix

Φz = [∂Φi/∂zj ] must be rank deficient at the points q ∈ C that project onto some u ∈ ∂A. The

reasoning is similar to the one used in Section 2.2.2 to geometrically interpret the forward and

inverse singularities.

Note that if Φz is full rank at q = [zT,uT]T ∈ C, then there exists a non-vanishing ne ×
ne minor of Φz, say relative to the variables z′, and by the Implicit Function Theorem it is

possible to find a function z′ = F(u′) relating z′ with the remaining u′ variables, and satisfying

Φ(F(u′),u′) = 0 [47]. Thus, the u′ variables, which include the u ones, can be used as a local
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(a) (b) (c)

C

A
A A

W

Uπu(W)

q
q

q

u = πu(q)

Barrier singularity

Boundary barrier Interior barrier

Traversable singularity

Figure 4.1: (a) SetsW and πu(W) whenQ = R
3, U = R

2, C is the sphere x2+y2+z2 = 1, and πu
is the projection map f(x, y, z) = (x, y). The workspace relative to the (x, y) coordinates is the
projection of the sphere onto the (x, y) plane, and the boundaries of such projection necessarily
correspond to points on the sphere where the tangent plane projects onto a line of R2. (b) and
(c): πu(W) can also lie in the interior of A.

parameterization of C around (z′,u′), implying that arbitrary values in a neighborhood of u have

a corresponding z satisfying Φ(z,u) = 0, so that u must lie in the interior of A. Thus, Φz must

be rank-deficient for u to belong to ∂A.

Geometrically, the points q ∈ C where Φz is rank deficient are the critical points of the

projection of C onto U , i.e., those in which the projection of the tangent space to C does not

span the tangent space of U at u = πu(q), so that the manipulator loses instantaneous mobility

relative to the u variables. Since this result is quite similar to the one obtained for the forward

or inverse singularities in Section 2.2.2, the set W of all critical points of the projection of C
onto U will be called the singularity set in this chapter. When u coincides with the input or

output coordinates, the setW will include the forward or inverse singularities, respectively, but

also other points corresponding to the loss of mobility introduced by the mechanical joint limits

(Section 4.4.1).

A preliminary idea of how the workspace boundary would look like, thus, can be gained

by computing W and projecting it to the u variables to obtain πu(W). Fig. 4.1(a) illustrates

the process on a simple example. However, note from the examples in Figs. 4.1(b) and 4.1(c)

that the rank deficiency of Φz is a necessary but not sufficient condition for πu(q) to lie in ∂A,

as there can be critical points projecting on the interior of A too. We next provide a way to
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classify the points of the singularity set according to whether they actually correspond to motion

impediments in the workspace.

4.2.2 Barrier Analysis

As illustrated in Fig. 4.1, points q where Φz is rank deficient can be classified into two broad

categories. They can be traversable or barrier singularities depending on whether there exists

a trajectory in C through q whose projection on U traverses πu(W) for each neighborhood

of q in C [90,95]. Points corresponding to barrier singularities can in turn be classified as

boundary or interior barriers, according to whether they occur over ∂A or over the interior

of A, respectively. An example of each one of these singularities is depicted in Fig. 4.2 for a

planar 3R manipulator.

As noted in [60, 94, 95], a workspace determination method should ideally detect all bar-

riers in the workspace, either interior or on the boundary, as such barriers constitute true

motion impediments with respect to the u variables. A criterion to determine whether a point

q0 = [zT0 ,u
T

0 ] ∈ W corresponds to a barrier or a traversable singularity was given in [60], based

on the following idea.

(a)

(b)

(c)

θ1 = π
3

θ1 = −π
3

θ1 = 0

Figure 4.2: Workspace of a planar 3R manipulator relative to the (x, y) coordinates of the tip
point of the last link, assuming that the angle θ1 of the first revolute joint is restricted to the
[−π/3, π/3] range. Points corresponding to singularities are indicated in solid lines, and those
relative to boundary and interior barriers are indicated with normal vectors on the forbidden
side. Configurations (a), (b), and (c) correspond to a boundary barrier, an interior barrier, and
a traversable singularity, respectively.
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Let q = q(v) be a smooth parameterization of C in a neighborhood of q0 ∈ W, where Φq(q0)

is full rank, v is a vector of n parameters, and q0 = q(v0) for some v0 ∈ R
n. Since Φq(q0) is

full rank, the Implicit Function Theorem guarantees that such a parametrization exists [47]. Let

also n0 be the normal to πu(W) at u0, which can be computed as follows.

Assume that q(t) = (z(t),u(t)) is an arbitrary trajectory in C, parametrized in t, traversing

q0 = [zT0 ,u
T

0 ]
T for t = t0. Making the substitution q = q(t) in Φ(q) = 0, and evaluating the

time derivatives of this equation at q = q0 yields

Φu(q0)u̇(t0) +Φz(q0)ż(t0) = 0. (4.2)

Since q0 ∈ W, Φz must be rank deficient at q0, and there must exist a non-null vector ξ0 such

that

Φz
Tξ0 = 0. (4.3)

Multiplying both sides of Eq. (4.2) by ξT0 , and taking into account Eq. (4.3), we get

ξT0 Φu(q0)u̇(t0) = 0. (4.4)

Because this holds for all vectors u̇(t0) in the tangent space of πu(W) at u0, the normal vector

n0 can be computed as

n0 = Φu(q0)
Tξ0. (4.5)

In addition, it can be shown that the component of u̇(t0) along n0 must vanish, indepen-

dently of the chosen trajectory q(t), so that u̇(t0) must necessarily lie in the tangent space to

πu(W) at u0. The component of u̇(t) along n0 is given by

u̇
n
0
= nT

0 u̇(t0),

but using Eqs. (4.4) and (4.5) we realise that

u̇
n
0
= ξT0 Φu(q0)u̇(t0) = 0,

on all possible trajectories q(t) in C through q0. In particular, this proves that there is a loss of

mobility with respect to the u variables at all points ofW.

Now, we can determine whether q0 corresponds to a barrier singularity by examining the

sign of

χ(v) = nT

0 (u(v)− u0) (4.6)

for all local trajectories parameterized in time v = v(t) crossing v0 for some t = t0, whose
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corresponding path u = u(t) is orthogonal to πu(W) at u0. This can be done by resorting to the

second-order Taylor expansion of χ(v) around v0

χ(v) ≃ χ(v0) + δvTχv(v0) +
1

2
δvTχvv(v0)δv,

where χv and χvv are the gradient and Hessian of χ(v), and δv = (v − v0) is a small displace-

ment whose corresponding δu = (u− u0) is orthogonal to πu(W).

Note that the first term of the previous expansion vanishes because χ(v0) = nT

0 (u0 − u0) = 0.

Moreover, the time derivative of Eq. (4.6) for v = v(t) is

χ̇(t) = nT

0 u̇(t),

which is the component of u̇(t) along n0 and, as shown above, must vanish irrespectively of the

chosen trajectory v = v(t). Thus, since for t = t0 it is χ̇ = χvv̇ = 0 for all v̇, we conclude that

χv(v0) = 0 as well, meaning that the second term of the Taylor expansion also vanishes.

In conclusion, the sign of χ(v) is mostly determined by the definiteness properties of the

quadratic form δvTχvv(v0)δv. If this form is positive- or negative-definite, then all trajectories

orthogonal to πu(W) lie on one side of πu(W) and q0 is a barrier singularity. If this form is

indefinite, there are trajectories in A that cross πu(W) and q0 is a traversable singularity. Lastly,

if this form is semi-definite, we cannot deduce the singularity type unless we examine higher-

order terms of the Taylor expansion. However, the latter case only occurs on zero-measure

subsets ofW generally.

The definiteness test just outlined can be implemented by checking the eigenvalues of the

matrix form of δvTχvv(v0)δv, as explained in [60].

4.3 Issues of Continuation Methods

In order to see the advantages of our approach in comparison to the continuation method

in [60], this method is next reviewed briefly, identifying a number of cases where it fails to

produce complete maps of the workspace.

We note first that the method in [60] relies on one-dimensional path tracking procedures,

and hence it can only trace ∂A explicitly on one-dimensional boundaries, i.e., when nu = 2.

Fig. 4.3(a) explains the method on a simple setting in which Q = R
3, U = R

2, and C contains

two connected components, C1 and C2, which project onto a workspace A with two regions. The

method begins with a manually-provided configuration of the manipulator qi = [zTi ,u
T

i ]
T, with

ui ∈ A, shoots a ray through ui in U on an arbitrary direction, and traces this ray until a point
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on a barrier singularity is found. The movement along this ray is achieved by continuation of the

corresponding trajectory on C, i.e., by iteratively solving Φ(z,u) = 0 using a Newton method

for u fixed to discrete values along the ray. This process is repeated until a value of u outside A
is found, which is detected because the Newton method fails to converge. A dichotomy-search

process is then performed locally to find a point qb ∈ C lying on W. A second continuation

process is then launched from qb to find the connected component ofW that is reachable from

such point, by solving a system of equations that expresses the rank deficiency of Φz. Once

W has been found, the points of πu(W) are computed by projection, and those corresponding

to barrier or traversable singularities are finally detected through the method outlined in the

previous section.

Because path-tracking methods based on continuation are fast and robust to bifurcations [96],

this approach will rapidly determineW in favorable cases. However, one encounters the follow-

ing situations in which the method will fail to identify ∂A completely.

Multi-component workspaces Difficulties arise, for example, when computing ∂A on work-

spaces with several connected components, like the one in Fig. 4.3(a). Independently of the

chosen direction for the ray, note that the previous process will certainly hit ∂A1, but not ∂A2,

because the tracking of the ray cannot continue beyond ∂A1 using continuation. To converge

to all boundary curves the previous strategy should at least be fed with one point on each

connected component of C, but no satisfactory method has been given yet to compute such

points in general, to the best of our knowledge.

Hidden barriers The continuation method may seem to be able to compute, at least, all

barriers of the workspace component to which qi belongs, but this is not always the case. Note

that W may itself have several connected components, and some of such components could be

missed depending on the position of ui, even if rays on all possible directions were shot. In

Fig. 4.3(b), left, for example, the continuation method may be able to find ∂A1 and ∂A3 from

ui, but not ∂A2, because ∂A2 is hidden behind ∂A1. The problem also arises in workspaces with

interior barriers, as seen in Fig. 4.3(b), right. Starting the continuation from qi allows hitting

the boundary barrier corresponding to W3, but not the interior barriers corresponding to W1

andW2, thus ignoring true obstacles lying inside the workspace.

Degenerate barriers When ∂A has dimension two or higher the continuation method slices

∂A through hyperplanes Hi in order to obtain one-dimensional curves ∂Ai trackable by the

method [Fig. 4.3(c), left]. On manipulators of a special geometry, however, portions of ∂A
can degenerate into lower-dimensional barriers D, thus making the slices Hi contain isolated
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Figure 4.3: Performance of the continuation method in multi-component workspaces (a), hidden
regions (b), and degenerate barriers (c).
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points only [Fig. 4.3(c), right]. The method will clearly miss the lower-dimensional barriers in

such a situation because the ray shooting technique will fail to meet them with probability one,

independently of the location of ui.

As it will be shown in Section 4.5, examples of multi-component workspaces, hidden barri-

ers, and degenerate barriers occur easily on real manipulators and, thus, there is a clear need to

develop alternative methods that are robust to such situations. Next section provides one using

the results of Section 4.2.

4.4 An Alternative Approach

The proposed method exploits the same machinery introduced in Chapter 3 to isolate the differ-

ent singularity sets. It entails modelling the joint limits as equality constraints (Section 4.4.1),

then deriving a system of quadratic equations characterizing the set W under consideration

(Section 3.3), and finally computing a box approximation of W of sufficient resolution, in

order to classify the points of such set into boundary barriers, interior barriers, or traversable

singularities (Section 4.4.3).

4.4.1 Joint Limit Constraints

Although mechanical limits on the joints are usually described by inequalities, in our case it

is easier to accommodate them by using equality constraints. Two types of limits need to

be treated: those referring to angular constraints and those referring to distance constraints.

Typically, these arise on revolute and prismatic joints, respectively, but combinations of both

limits may be encountered on other types of joints.

Following the formulation of Section 3.2, let Lj and Lk be two links connected through a

revolute joint Ji. The relative angle between Lj and Lk, φi, is defined as the angle between

two unit vectors mi and ni orthogonal to Ji’s axis, moving rigidly with Lj and Lk respectively.

Suppose that we want to limit φi to lie in the interval [−φli, φli]. We will take these bounds into

account by limiting the range of the cosine of φi, since the previous constraint is equivalent to

cosφi ≥ cosφli. Note for this that, if ci = cos(φi), then ci is related to mi and ni through

ci = mT

i ni. (4.7)
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Figure 4.4: Joint limit constraints for angular and distance variables.

Moreover, the fact that mi and ni are fixed in Fj and Fk, respectively, implies that

mi = Rj m
Fj

i , (4.8)

ni = Rk n
Fk

i . (4.9)

Thus, to limit φi we can simply add Eqs. (4.7)–(4.9) to the system to be solved, together with

ci = t2i + cosφli, (4.10)

where ti is a new auxiliary variable that can take any value [Fig. 4.4(left)]. The constraint

φi ∈ [−φli, φli] is satisfied if, and only if, Eq. (4.10) is satisfied for some ti. The same equations

can be used to limit the angle on universal and spherical joints, where the vectors mi and ni can

be choosen as shown in Fig. 4.5.

If Lj and Lk are connected through a prismatic joint Ji, the displacement di of the joint is

already present in the system as a variable. Suppose that we want to constrain di to lie within

the interval
[

di, di
]

. In this case we can already impose this constraint by setting

(di −mi)
2 + s2i = h2i , (4.11)

where mi =
di+di

2 , hi =
di−di

2 , and si is a newly-defined auxiliary variable. The values mi and hi
are called the mid-point and half-range of the interval

[

di, di
]

, and Eq. (4.11) simply constrains

the pairs (di, si) to take values on a circle of radius hi centered at (mi, 0) in the (di, si) plane

[Fig. 4.4(right)]. As a consequence, di ∈
[

di, di
]

if, and only if, Eq. (4.11) is satisfied for some si.

When the necessary equations modelling the joint limits are introduced, the newly-defined

variables ti and si become part of q, and Eq. (2.1) characterizes the C-space attainable by the

manipulator taking into account joint limits.
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Figure 4.5: Vectors delimiting the mechanical limits on universal and spherical joints.

4.4.2 Equations of the Singularity Set

To explain how a system of equations characterizingW can be derived, we shall distinguish two

situations, depending on whether the u variables appear explicitly in q, or are only determined

implicitly by some of the variables in q, both illustrated in Section 4.5 on particular examples.

In all cases, it will be assumed that the assembly constraints in Eq. (2.1) have been formulated

following Section 3.2, where the pose of the links appear as (ri,Ri), where ri and Ri respectively

encompass the Cartesian coordinates of a point on the link, and the components of a rotation

matrix giving the orientation of the link. Note that the equations added to take the joint limits

into account are quadratic, so the whole formulation of Eq. (2.1) remains quadratic too.

Dealing with Explicit Workspace Variables

Assume initially that q explicitly contains u. This occurs usually in positional workspaces, i.e.,

when u includes part or all of the variables of some ri. By adopting the partition q = [zT,uT]T,

W is the set of points satisfying Φ(z,u) = 0 for which Φz is rank deficient, i.e. the set of points
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q that satisfy

Φ(z,u) = 0

ΦT
z ξ = 0

ξTξ = 1















, (4.12)

for some ξ, where ξ is an ne-dimensional vector of unknowns, and Φz is transposed since, if

nu < n, it is a rectangular matrix with more columns than rows. Clearly, the first equation

in (4.12) constrains q to be a valid configuration respecting the joint limits, and the second

and third equations impose the rank deficiency of Φz. Since (2.1) is quadratic, (4.12) will be

quadratic too, because all entries in Φz will be linear terms, and ξTξ is directly a quadratic

expression. Thus, a system characterizingW adopts the form of (4.12) in this case.

Dealing with Implicit Workspace Variables

There are situations in which the chosen u variables do not all intervene in q but, instead, they

can be related to a subset ũ of nũ variables in q, through a smooth function of the form

ũ = µ(u). (4.13)

This occurs whenever u contains orientation angles of some link, for instance. Since the for-

mulation of the assembly constraints represents orientations by rotation matrices, orientation

angles are only related implicitly to the components of Ri through a parametrization of the

Special Orthogonal Group under consideration [SO(2) or SO(3), depending on whether the

manipulator is planar, or spatial]. In order to transform (2.1) into the form of (4.1) it will be

possible, in such situations, to consider the partition

q = [z̃T, ũT]T,

and subdivide (2.1) into two subsystems as follows

Ψ(z̃, ũ) = 0

η(ũ) = 0







, (4.14)

where η(ũ) = 0 is a subsystem of equations whose solution set can be globally parametrized

by (4.13), and Ψ(z̃, ũ) = 0 collects the rest of equations. Since ũ = µ(u) parametrizes the

solution set of η(ũ) = 0, η(ũ) = 0 can be replaced by ũ = µ(u) in (4.14), obtaining the
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equivalent system

Ψ(z̃, ũ) = 0

ũ = µ(u)







, (4.15)

which now contains u explicitly. Therefore, (4.1) adopts the form of (4.15) in this case, with

z = [z̃T, ũT]T, and

Φ(z,u) =





Ψ(z̃, ũ)

ũ− µ(u)



 , (4.16)

so thatW will be the set of points q = [zT,uT]T satisfying (4.15) for which Φz is rank deficient.

Note however that, because of the form of (4.16), Φz has the block structure

Φz =





Ψz̃ Ψũ

0 Inũ





in this case, where Inũ
is the nũ × nũ identity matrix, so that Φz will be rank deficient if, and

only if, its upper-left block Ψz̃ is rank deficient. Hence, W can be characterized as the set of

points q = [z̃T, ũT,uT]T that satisfy

Ψ(z̃, ũ) = 0

ũ = µ(u)

Ψz̃
Tξ̃ = 0

ξ̃Tξ̃ = 1



























(4.17)

for some ξ̃, where ξ̃ is a new vector with the appropriate size.

While we could now proceed to isolateW by solving (4.17), µ(u) usually introduces trigono-

metric terms that complicate the solution. Fortunately, since ũ = µ(u) parametrizes the solution

set of η(ũ) = 0, and the u variables only intervene in the second equation of (4.17), we can

substitute ũ = µ(u) by η(ũ) = 0 in (4.17), arriving at the equivalent system

Ψ(z̃, ũ) = 0

η(ũ) = 0

Ψz̃
Tξ̃ = 0

ξ̃Tξ̃ = 1



























, (4.18)

which is quadratic, because Ψ(z̃, ũ) and η(ũ) are quadratic under the adopted formulation.

Thus,W is characterized by Eq. (4.18) in this case.
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4.4.3 Equation Solution and Boundary Identification

As we have seen, Eqs. (4.12) and (4.18) can be both written as a quadratic system of equations

and, therefore, they can be solved using the same numerical method described in Section 3.3.

To construct the initial box bounding the location of their solutions we only have to take into

account that:

- The variables ci only take values in [−1, 1] because they represent the cosine of some angle.

- The range of the variables ti can be set to [ 0,
√

1− cosφli ] [Fig. 4.4(left)].

- The range of the variables si can be set to [0, hi] [Fig. 4.4(right)].

- Being unit vectors, the components of mi and ni will lie in [−1, 1].

As a result, the method will deliver a collection B of boxes tightly enclosing the solution

set of the system. Using B, it is straightforward to obtain a box approximation BW of the

singular set W. If B is obtained by solving Eq. (4.12), then z and u explicitly intervene as part

of the variables in the system, and each box in B already has ranges along the q = [zT,uT]T

dimensions. Such ranges define a box in q-space enclosing points of W, and the collection of

all of such boxes directly provides BW . If B is instead obtained from Eq. (4.18), the u variables

do not intervene in the variables of the system. However, for each box in B we can consider

the ranges along the ũ variables, and derive corresponding ranges for the u variables by solving

ũ = µ(u) using interval or linear relaxation techniques [31,97].

Once BW has been obtained, it remains to check whether the points of W enclosed in BW

correspond to boundary barriers, interior barriers, or traversable singularities. This classification

is performed in two stages, illustrated in Fig. 4.6.

(a) (b) (c) (d)

R1

R2

R3

R4
q0

i

qi

W

Bi
U UU πu(Bi)

Figure 4.6: Boundary identification process. (a) Box approximation of W projected onto the
output space U . (b) Computation of qi ∈ W for each box Bi. (c) Classification of the points of
πu(W) into barrier or traversable singularities. (d) Regions into which πu(W) subdivides U and
their classification into interior (grey) or exterior (white) regions.
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In a first stage, we classify the boxes of BW according to whether they enclose barrier or

traversable singularities. For each box Bi ∈ BW [Fig. 4.6(a)], a point qi ∈ W is computed

[Fig. 4.6(b)], and the barrier determination method mentioned in Section 4.2.2 is applied to this

point. The computation of qi is done by solving (4.12) or (4.18), depending on the situation,

using a Newton-Raphson method starting from a point q0
i taken from an arbitrary point x0

i

inside Bi. This procedure will quadratically converge to some point qi ∈ W provided that the

points within Bi are close enough to W, which can be guaranteed by computing BW using a

small-enough σ threshold (Section 3.3.3). The singularity type obtained for qi (either barrier or

traversable singularity) is taken as an estimation of the singularity type of all points in Bi ∩W,

so that, after repeating this process for all boxes in BW , it is possible to subdivideW into subsets

of constant singularity type. If qi is a barrier singularity, a normal vector bi pointing towards

the forbidden side of the barrier is drawn at ui = πu(qi) [Fig. 4.6(c)].

In a second stage, we determine which of the barrier points qi computed in the previous

stage correspond to boundary or interior barriers. To this end, notice that πu(W) subdivides U
into several regions R1, . . . ,Rnr , where each region fully lies in the interior or in the exterior

of A, and a barrier point ui will lie on ∂A if, and only if, one of its two neighboring regions is

exterior to A. Thus, determining which of the barrier points ui correspond to boundary barriers

boils down to checking whether the regions R1, . . . ,Rnr are interior or exterior to A. The type

of a regionRj can be determined by selecting a point uj in the region, and solving Φ(z,uj) = 0,

which is here done by resorting to the same numerical technique proposed. If Φ(z,uj) = 0 has

at least one solution, then Rj is an interior region, otherwise it is exterior.

While solving Φ(z,uj) = 0 can be costly, note that it is not necessary to apply this test to

most regions because the type of a region can often be decided by noting that:

- If u only contains position coordinates of the end-effector, then the outer region will

necessarily be exterior to A, because the effector can only reach a bounded set of positions

in practice.

- A region Rj whose boundary contains a traversable singularity can be marked as interior,

because Rj contains trajectories that enter Rj through that singularity.

- A region Rj whose boundary contains a barrier point ui with bi pointing outwards from

Rj can be marked as interior as well, because such barrier indicates that there are feasible

trajectories in C projecting inside Rj .

In Fig. 4.6(d), for example, these observations allow identifying R1 as an exterior region if u

only contains position coordinates, and R2 and R3 as interior regions. Only the type of R4

needs to be disambiguated by checking a point in the region.
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Manipulator Workspace d nv nc ns ts

D. Butterfly reachable 1 37 36 145369 218

Stewart platf. const.-orient. 2 27 25 1677906 45

3-UPS/S platf. orientation 2 21 19 156699 30

Agile Eye orientation 1 21 19 100636 17

Table 4.1: Performance data on computing the considered workspaces assuming a value of
σ = 0.1.

4.5 Examples

We next illustrate the performance of the method on various situations. Several representative

workspaces on planar and spatial manipulators are computed to emphasize the generality of

the approach, and to encounter cases of multi-component workspaces, hidden barriers, and

degenerate barriers like those described in Section 4.3.

As in Chapter 3, all computations have been executed using a parallelized version of the

method implemented in C using the libraries of the CUIK Suite [65] on a grid computer of

Xeon processors able to run 160 threads in parallel. For each experiment, Table 4.1 provides

the dimension of ∂A (d), the number of variables (nv) and equations (nc) intervening in (4.12)

or (4.18), the amount of CPU time required to solve it (ts, in minutes), and the number of

solution boxes returned (ns), assuming σ = 0.1 in all cases.

4.5.1 Multi-component Workspaces

To illustrate the performance of our approach on complex multi-loop linkages, and to give one

example of a multi-component workspace, we apply our method to compute the reachable

workspace of a planar mobility-three double-butterfly linkage (Fig. 4.7). A version of this

mechanism has been used to compare the performance of general position analysis methods [30,

98,99], but no complete method has been given to compute the boundaries and interior barriers

of its reachable workspace yet, as far as we know.

For this example it will be assumed that the end-effector is the upper left body in Fig. 4.7,

whose pose is determined by the position vector of point P and the 2×2 rotation matrix of angle

θ1, and that two slider joints are mounted to let lengths l5 and l7 vary within the ranges [11, 13]

and [10, 12], respectively. As for the parameters in Fig. 4.7, we adopt the same values considered

in [30, 98, 99]. Namely, a0 = 7, a1 = 7, a2 = 5, b0 = 13, b1 = 6, b2 = 3, l3 = 7, l4 = 9, a6 = 3,

b6 = 2, and γ0 = 36.87◦, γ1 = 22.62◦, γ2 = 53.13◦, γ6 = 36.87◦, where γi is the acute angle

between segments ai and bi. Then, for this manipulator, Eq. (4.1) can be formulated using the

following equations:



80 Workspace Determination

P

θ1

θ2

θ3

θ4

θ5

θ6

θ7

a0

a1 a2

l3
l4

l5

a6

l7

b0

b1 b2

b6

X

O

Ground link

Figure 4.7: The planar double-butterfly linkage with variable lengths l5 and l7. The fixed frame
is centered at O with the X-axis aligned as indicated, and all angles θi are measured relative to
such axis.

1. The loop equations enforcing the closure of the three loops that leave the ground link via

l7, and return via l4, l3 and l5 [30]:

0 = l7c7 + b2c2cγ2 − b2s2sγ2 − l4c4 − a6c6 + a0cγ0 ,

0 = l7s7 + b2s2cγ2 + b2c2sγ2 − l4s4 − a6s6 − a0sγ0 ,
0 = l7c7 + a2c2 + a1c1 − l5c5 + b0,

0 = l7s7 + a2s2 + a1s1 − l5s5,
0 = l7c7 + a2c2 + b1c1cγ1 − b1s1sγ1 − l3c3 − b6c6cγ6 + b6s6sγ6 + a0cγ0 ,

0 = l7s7 + a2s2 + b1s1cγ1 + b1c1sγ1 − l3s3 − b6s6cγ6 − b6c6sγ6 − a0sγ0 ,

where cγi and sγi stand for the cosine and sine of γi, and ci and si for those of θi.
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2. The equations providing the x and y coordinates of P relative to the fixed OXY frame:

x = b0 + l7c7 + a2c2,

y = l7s7 + a2s2.

3. The circle equations constraining ci and si:

c2i + s2i = 1.

4. The joint limit constraints for l5 and l7

(li −mi)
2 + t2i = h2i ,

where mi and hi are the mid-point and half-range of the intervals for l5 and l7.

The reachable workspace is defined as the set of attainable locations for a point on the end-

effector, e.g. P in our case. Thus u = [x, y]T for this workspace, and since x and y are explicit

in the previous equations, we are in the situation of Eq. (4.12). Moreover, since nu = 2, the

boundary of the reachable workspace will be one-dimensional in general. The proposed method

computes the box approximation of πu(W) shown in Fig. 4.8 in this case, which delimits three

workspace areas corresponding to different assembly modes of the mechanism. The result of

the boundary identification process on one of such areas is shown in Fig. 4.9. Note that, having

several connected components, this workspace would be difficult to map out entirely using the

method in [60].

4.5.2 Hidden Barriers

To show the performance of the method on spatial mechanisms, and to encounter workspaces

with hidden barriers, we next apply the method to the Stewart platform (Fig. 3.10). This is

a challenging test case for any workspace determination method. Its full workspace is six-

dimensional, and its boundary five-dimensional, which hinders any attempt of computing it

exhaustively, due to the curse of dimensionality. For this reason, and because six-dimensional

spaces are impossible to visualize directly in three dimensions, comprehension on this workspace

can be gained by obtaining lower-dimensional workspaces like (1) the constant orientation

workspace, or set of attainable locations by a point P on the platform for a fixed platform

orientation [6, 100], (2) the constant position workspace, or set of platform orientations for a

fixed position of P [25, 82, 101, 102], and (3) the reachable workspace, or set of locations that

P can attain with at least one platform orientation [103, 104]. All of these workspaces can be
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x

y

Figure 4.8: Box approximation of the set πu(S) corresponding to the reachable workspace of
the linkage in Fig. 4.7.
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x

y

Figure 4.9: Results of applying the boundary identification process from Section 4.4.3 to one of
the curve components in Fig. 4.8. The same conventions as in Figs. 4.2 and 4.6(d) are used.

computed by the proposed technique using a proper choice of the u variables and fixing others to

given values. To provide one example where hidden regions arise, we next compute a constant

orientation workspace studied in [6].

Equation (4.1) can be formulated as in the example of the Stewart platform of Section 3.5.2.

Here, the rotation matrix of the platform, R2, will be constant and known, since we are com-

puting the constant orientation workspace. Also, since in this case the lengths di will be limited

within ranges
[

di, di
]

, we must add the equations

(di −mi)
2 + t2i = h2i (4.19)

to the system, for i = 1, . . . , 6, where mi and hi are the mid-point and half-range of
[

di, di
]

.

Clearly, if rP = [x, y, z]T, we have u = [x, y, z]T, and we are in the situation in which u intervenes

explicitly in q, so the system characterizingW adopts the form of Eq. (4.12).

Figure 4.10 shows 3D views of the box approximation obtained for πu(W), which describes

an umbrella-like surface overall. The computation was done assuming the parameters in Ta-

ble 4.2, R2 fixed to the identity matrix, and
[

di, di
]

= [454.5, 504.5]. In fact, this workspace has

an additional connected component symmetric to the one of Fig. 4.10, which corresponds to
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x
x

y

y

z

z

z = 4.95 z = 5.00 z = 5.10

z = 5.12 z = 5.145 z = 5.30

E

V1 V2

V3

L

Figure 4.10: Top row: Two views of the boundary of the constant orientation workspace of a
Stewart platform. Boxes are translucent to better appreciate the shape. Remaining rows: Slices
of the workspace for different values of z. All points of W are classified as barrier singularities
in this case.
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Leg Base L1 Platform L2

1 p
F1

1,1 = [92.58, 99.64, 23.10]T p
F2

2,1 = [30.00, 73.00− 37.10]T

2 p
F1

1,2 = [132.58, 30.36, 23.10]T p
F2

2,2 = [78.22,−10.52,−37.10]T

3 p
F1

1,3 = [40.00,−130.00, 23.10]T p
F2

2,3 = [48.22,−62.48,−37.10]T

4 p
F1

1,4 = [−40.00,−130.00, 23.10]T p
F2

2,4 = [−48.22,−62.48,−37.10]T

5 p
F1

1,5 = [−132.58, 30.36, 23.10]T p
F2

2,5 = [−78.22,−10.52,−37.10]T

6 p
F1

1,6 = [−92.58, 99.64, 23.10]T p
F2

2,6 = [−30.00, 73.00,−37.10]T

Table 4.2: Parameters of the Stewart platform studied in [6].

the assembly mode of this manipulator where P sweeps a similar volume for z < 0. All results

obtained are consistent with those in [6].

To better appreciate the shape of the enclosed volume, Fig. 4.10 plots constant-z slices

of πu(W) indicating the results of the boundary identification process. Note from the plots

that it would be difficult to compute such slices by continuation [60], because many of them

present multi-component boundaries and hidden barriers that difficult the application of the

ray-shooting technique described in Section 4.3. If, for example, the ray is shot from point E on

the z = 5.12 slice, it will not hit the boundary of voids V2 and V3 on that slice. While it is true

that in [100] the authors were able to compute πu(W) using the method in [60], they did so by

defining particular slices of this set obtained by cutting the umbrella with planes through line L

shown in Fig. 4.10. This solution avoids the appearance of internal voids within each slice, but

obviously relies on a-priori knowledge of the result.

4.5.3 Degenerate Barriers

Because of the complexity of their defining equations, orientation workspaces are considered

among the most difficult ones to compute and represent [25, 82, 102, 105]. Their derivation

could be illustrated on Stewart platforms, but we shall do so on spherical parallel manipulators

(SPM) because this will lead to one example of the degenerate barriers mentioned in Section 4.3,

which the method in [60] is unable to identify. The examples are taken from [61] and cor-

respond to popular architectures of three degree-of-freedom SPMs: the 3-UPS/S and 3-RRR

designs, depicted in Fig. 4.11(a) and 4.11(b). These are orientational manipulators where the

moving platform can be rotated with respect to the base about a fixed point O by actuating some

of the leg joints. We next compute their orientation workspace and verify the results with those

of the analytic method in [61]. Note that whereas the method in [61] is only applicable when

certain symmetries hold, the method we propose here remains general.

To derive (4.1), note that each leg imposes the same constraint on the moving platform
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(a) (b)

OO

P1,i

P1,i

P2,i

P2,i

di

Figure 4.11: The 3-UPS/S and 3-RRR spherical platforms. Figures adapted from [61].

irrespectively of the chosen architecture. In a 3-UPS/S platform, for example, di is constrained

to take values within some interval
[

di, di
]

by design, which limits the angle between OAi and

OBi to some range
[

φi, φi
]

. In a 3-RRR platform, the angle betweenOAi andOBi is also limited

to the range
[

φi, φi
]

due to mechanical limits on the joints, or to the angles encompassed by

the leg links. Both designs are thus kinematically equivalent. Moreover, the 3-UPS/S design

can be obtained as a special case of the Stewart platform by making three anchor points of such

platform coincident, and locking the corresponding legs. Hence, for both the 3-UPS/S and 3-

RRR designs Eq. (4.1) can be formulated as in the previous Section with rP = [0, 0, 0]T assuming

that the fixed and moving frames are centered at O.

In general, the orientation workspace is defined as the set of possible values for three

orientation angles of the platform. Although any set of Euler angles could be used for such

matter, we shall here adopt the azimuth (φ), tilt (θ), and torsion (σ) angles assumed in [61] to

ease the comparison of results. Using such angles, R2 = Rz(φ)Ry(θ)Rz(γ), where γ = σ − φ,

and thus the columns of R2 are

r1 =









cosφ cos θ cos γ − sinφ sin γ

sinφ cos θ cos γ + cosφ sin γ

− sin θ cos γ









, (4.20)

r2 =









− cosφ cos θ sin γ − sinφ cos γ

− sinφ cos θ sin γ + cosφ cos γ

sin θ sin γ









, (4.21)
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r3 =









cosφ sin θ

sinφ sin θ

cos θ









. (4.22)

Under the previous convention, Bonev and Gosselin define the orientation workspace as the

set of possible values that u = [φ, θ, σ]T can attain [61], restricting φ ∈ (−π, π], θ ∈ [0, π), and

σ ∈ (−π, π] to guarantee a one-to-one relationship between the orientations and the correspond-

ing triples {φ, θ, σ}. We are thus in the situation in which u does not intervene explicitly in q,

but it can be related to ũ = [rT1 , r
T

2 , r
T

3 ]
T using (4.20)–(4.22). Therefore, equation η(ũ) = 0 is

given by Eqs. (3.8)–(3.11) in this case, and Ψ(z̃, ũ) = 0 consists of (3.31), (3.32) and (4.19),

with z̃ = [d1, d2, d3, t1, t2, t3]. Overall, Eq. (4.18) contains 19 equations in 21 variables and the

boundaries of the orientation workspace are thus expected to be 2-dimensional.

For the particular examples shown next we shall assume the same symmetry conditions as

in [61]. Namely, Ai and Bi will lie on a unit sphere centered at O with position vectors

ai =





cos((i− 1) 2π
3
) sinβ1

sin((i− 1) 2π
3
) sinβ1

− cosβ1



 ,bi =





cos((i− 1) 2π
3
) sinβ2

sin((i− 1) 2π
3
) sinβ2

− cosβ2



 ,

and we will set
[

φi, φi
]

=
[

φ, φ
]

for all i.

Figure 4.12 shows the resulting box approximation of πu(W) for β1 = 0◦, β2 = 35◦, φ = 20◦,

φ = 130◦. These parameters correspond to one of the cases analyzed in [61], where constant-

torsion slices of πu(W) are provided for these manipulators. As expected, πu(W) is a surface

in the {θ, φ, σ}-space and, by analyzing the neighboring relationships of the returned boxes,

this surface can be shown to contain just one connected component. Figs. 4.13 top and middle

respectively show a σ = −30◦ slice of the surface shown in Fig. 4.12 and the barriers identified

on such slice. The resulting curve and the interior regions detected match those in [61] when

plotted in polar coordinates (Fig. 4.13, bottom).

While the orientation workspace will generally have a two-dimensional boundary, such

boundary may degenerate into lower-dimensional barriers for particular choices of the geo-

metric parameters, thus posing serious difficulties to the continuation method in [60]. This

is what occurs on the Agile Eye for example, a well-known instance of the 3-RRR design in

Fig. 4.11(b), where β1 = β2 = arccos(1/
√
3), φ = 0, and φ = π [106]. As mentioned in

Section 4.3, computing such barriers using [60] is almost impossible because the ray shooting

technique will fail to converge to the barriers almost always. On the contrary, the presented

technique is immune to such situations. If the same equations considered for obtaining the plot

in Fig. 4.12 are now used for determining the workspace boundaries of the Agile Eye relative
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θ

θ

θ

φφ

φ

σσ

σ

0

π

π

π

−π

−π

Figure 4.12: Top: 3D view of the boundary of the orientation workspace of the 3-UPS/S
manipulator of Fig. 4.11(b). Bottom: orthogonal projections of such boundary onto the
coordinate planes.

to u = [φ, θ, σ]T, we readily obtain the curves depicted in Fig. 4.14, which agree with those

described in [61]. When analyzed, these curves are seen to be barrier singularities interior to the
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θ

θ

θ

φ

φ

φ
θ = π

θ = π
2

Figure 4.13: Constant torsion (σ) workspace of the spherical parallel manipulator of
Fig. 4.11(b), with parameters β1 = 45◦, β2 = 35◦, α = 20◦, α = 130◦, σ = −30◦.

workspace. In other words, the manipulator will be able to reach any possible orientation, but

it will find a motion impediment when trying to traverse across the curves. The phenomenon is

better understood if we view the curves as the limit case of a one-parameter family of workspace

boundaries, corresponding to setting α = π−k, α = k, and varying the parameter k from π
6 to 0,

while keeping fixed the remaining set of geometric parameters. Tubular boundary barriers are

present in all members of the family (first plots of Fig. 4.15), which degenerate into the barrier

filaments of the Agile Eye (last plot).

4.5.4 Very Complex Manipulators

To illustrate the method on a highly complex situation, we next apply it to compute the position

workspace of a point of the 15-link mechanism in Fig. 4.16(a). The mechanism consists of five

quadrilateral links interconnected through bar links and revolute joints, forming a decagonal

ring. If we fix one of the quadrilaterals to the ground, the mechanism has mobility two, so

that C will have dimension n = 2 in general, and W will be formed by one or several curves in

such space. The mechanism is controlled by actuating the θ1 and θ2 angles indicated, and the

coordinates of interest, u = [x, y]T, are the position variables of a point P on link L.

The complexity of this mechanism comes from the fact that it involves many links, and all
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Figure 4.14: The workspace of the Agile Eye has degenerate barriers. Each line in the θ = π
plane corresponds to a unique pose of the platform.
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Figure 4.15: The workspace of the Agile Eye is a limit case of a one-parameter family of
workpaces. Slices at constant θ are also shown, to see how they degenerate into single points.

of them move in a highly-coupled manner. This behaviour is apparent from the structure of

the mechanism already, but it can be proved through the application of recent Assur Graph

Theory tools [107, 108]. On the basis of these observations, thus, we conjecture that the

derivation of minimal-degree polynomials describing the singularity sets of this manipulator is

an extremely difficult task. The computation of such sets is even too hard through discretization

techniques [109,110], which define a grid of points in the U space, solve the inverse kinematics

problem for each point, and finally analyze the resulting configurations one-by-one, identifying

those that are close to the singularity sets. Note that this process boils down to discretizing the

xy-plane on this mechanism, and that solving the inverse kinematics problem for each position

(x, y) is equivalent to finding all configurations of a seven-loop truss [Fig. 4.16(b)], which is

beyond the capabilities of even the most advanced techniques for position analysis based on

characteristic polynomials [111,112].
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(a) (b)

θ1θ2

L

X
Y

P

Figure 4.16: (a) A 15-link mechanism. (b) Its inverse kinematics problem is equivalent to solving
the position analysis of a seven-loop truss.

Figure 4.17: Position workspaces of the manipulator in Fig. 4.16 assuming the geometric
parameters mentioned in the text. The angles θ1 and θ2 are limited to the ranges [45.57◦, 60◦]
(left plot) and [36.87◦, 53.13◦] (right plot). The red curves correspond to the forward singularities
of the manipulator, while the inverse singularities are included among the blue curves.
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Assuming that P is located in position (0,−1) of the frame indicated in Fig. 4.16(a), that

all quadrilateral links of the mechanism are squares of side 1, and that all bars are of length 2,

except L, which is of length
√
2, the method determines the singularity sets shown in Fig. 4.17.

The two plots correspond to two variants of the mechanism that differ on the limits imposed on

θ1 and θ2 only, using the equations of Section 4.4.1.





Part II

Avoidance of Singularities





5
A General Singularity-free Path Planner

The methods developed in Part I allow to compute and interpret the different singularity sets

of a manipulator. The visualization of the sets is not an easy task, but we have shown how

their projections to the input and output spaces generate very rich diagrams, called portraits,

summarizing the global motion capabilities of the manipulator. These diagrams can be used as

safe navigation maps if desired, because any path not crossing a projected singularity necessarily

corresponds to a singularity-free path in the C-space. However, they do not always reveal all

possible singularity-free paths between given configurations, and additional tools to determine

whether such paths exist become necessary for a complete understanding of the overall motion

capabilities.

This chapter provides an algorithm to this end. Given two non-singular configurations

of the manipulator, the method attempts to connect them through a path that maintains a

minimum clearance with respect to the singularity locus at all points. In comparison to previous

approaches (Section 5.1), the method can be applied to non-redundant manipulators of general

structure, and it is resolution-complete, in the sense that it always returns a path whenever one

exists at a given resolution, or determines path non-existence otherwise. The strategy relies on

defining a smooth manifold that maintains a one-to-one correspondence with the singularity-

free C-space of the manipulator (Section 5.2), and on using a higher-dimensional continuation

technique to explore this manifold systematically from one configuration, until the second

configuration is found (Section 5.3). If desired, the method can also be used to compute an

exhaustive atlas of the whole singularity-free component that is reachable from a configuration,

which is useful to rapidly resolve subsequent planning queries within such component, or to

visualize the singularity-free workspace of any set of manipulator coordinates. Examples are

included to demonstrate the performance of the method on illustrative situations (Section 5.4).
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5.1 Previous Approaches

Several works confront the problem of on-line singularity avoidance [113], but only a few

tackle the general problem of planning paths between distant configurations. They include

an algorithm based on deforming a parametrized path between the query configurations [23],

a variational approach that reduces the problem to a boundary value problem [24], and a

numerical technique based on treating the singularity locus as a collection of obstacles [114].

All of these methods work well in favorable situations, but [23] and [24] mention limitations

relative to proving path existence in some cases, and the one in [114] is computationally

intensive, as it requires constructing polytope approximations of the entire singularity set before

searching for a feasible path. In some way or another, also, the methods in [23,24,114] exploit

the fact that the considered C-spaces have closed-form parameterizations, so that it is difficult to

extend them to tackle manipulators with a more complex architecture. The method we provide

in this chapter, in contrast, makes no recourse to closed-form parameterizations, and can be

applied to any non-redundant closed-chain manipulator, with the sole limitations imposed by

the curse of dimensionality. As opposed to [114], it treats singularities implicitly, not explicitly

as obstacles, resulting in a computationally less intensive approach.

5.2 Equations of the Singularity-free C-space

Given two configurations of C \ S, qs and qg, our goal is to generate a singularity-free path

connecting them, i.e., a continuous map τ : [0, 1] → C \ S, such that τ(0) = qs and τ(1) = qg.

For simplicity, we will focus on avoding the forward singularities only, because they are those

potentially harmful to the manipulator, but the extension to deal with inverse singularities is

straightforward in our approach. In the rest of the chapter, thus, we will be content in generating

paths τ : [0, 1]→ Csfree = C \ Sf , where Sf is the forward singularity locus of the manipulator.

Note that Csfree is the set of points q ∈ C for which det(Ly) 6= 0. However, to be able to apply

a continuation method, it is necessary to turn the latter condition into equality form. To this end,

we introduce an auxiliary variable b and note that det(Ly) 6= 0 if, and only if, det(Ly) · b = 1 for

some value of b. Thus, a system of equations characterizing Csfree is given by

Φ(q) = 0

det(Ly) · b = 1







. (5.1)

If other singularities need to be avoided, the determinant of the matrix that loses rank on them

can be added as an additional factor in the second equation of this system.
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For convenience, system (5.1) will be written as

F(x) = 0 (5.2)

hereafter, where

x = [qT, b]T,

and

F(x) =





Φ(q)

det(Ly) · b− 1



 . (5.3)

LetM be the set of points x that satisfy (5.2), and define the function

b(q) =
1

det(Ly(q))
. (5.4)

Note that the points x ∈ M are in one-to-one correspondence with the points q ∈ Csfree,

because q ∈ Csfree if, and only if, x = [q, b(q)]T satisfies Eq. (5.1). Accordingly, all paths in

Csfree are uniquely represented inM, and vice versa. Thus, the original problem of computing a

singularity-free path on C from qs to qg can be reduced to that of connecting xs = [qT
s , b(qs)]

T

and xg = [qT
g , b(qg)]

T through some path in M. This reduction is advantageous because, by

letting the path planner operate in M, instead of in C directly, guarantees that any computed

path inM will have a corresponding path in C lying entirely in Csfree. This eliminates the need of

checking singularity crossings by the planner, which, as noted in [23], may be difficult in many

situations, due to the intricate structure of the singularity locus.

The correspondence of the two problems is schematically illustrated in Fig. 5.1. The hori-

zontal plane in the bottom represents C, which in this example coincides with the ambient space

Q for simplicity, and the singularity locus Sf is represented by two red parabolas in this plane.

To construct M, we add a new dimension b to Q (the vertical axis in the figure), and we lift

every point q ∈ C to the point x = [qT, b(q)]T. Then, M can be thought of as a new manifold

extending infinitely in the direction b, as the projection q of a point x ∈M approaches Sf .

Two important observations regarding the search for a path sould be made. On the one

hand, note that the Jacobian Fx has the block structure

Fx =





Φv Φy 0

∗ ∗ det(Ly)



 ,

from which we see that Fx is full rank at all points x ∈ M. Note that since Ly is full rank

over allM, Φy will be full rank too, because both matrices lose rank at the same configurations
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Figure 5.1: The original problem of computing a singularity-free path on C connecting qs and
qg is transformed into one of finding an arbitrary path onM connecting xs and xg.

q and, hence, Φq never loses rank in M. By the Implicit Function Theorem, this implies that

M has the structure of a smooth manifold everywhere [47], which is beneficial from the point

of view of applying a continuation method to exploreM [33], because no bifurcations, ridges,

or dimension changes are to be found during such exploration, and no recourse to branch-

switching operations will be necessary [34]. On the other hand, remember that all of the q

coordinates have known bounds in practice, and that those bounds derived from mechanical

limits on the joints can be taken into account, if necessary, by adding extra equations to the

system (Chapters 3 and 4). Moreover, |b| should be maintained below a given threshold bmax to

guarantee some clearance from Sf , given by the task to accomplish and by the characteristics of

the underlying mechanical and control systems. As a result, the search for a path on M must

be restricted to a given domain D of the x-space, usually defined as the Cartesian product of a

number of intervals derived from the coordinate bounds.
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5.3 Exploring the Singularity-free C-space for a Path

To determine a singularity-free path connecting xs and xg we can gradually construct an atlas of

M∩D. An atlas is a collection of charts mappingM∩D entirely, where each chart defines a local

map from R
n to a neighborhood inM of a point xi. The atlas will be computed using the higher-

dimensional continuation method proposed in [33], which generalizes the one-dimensional

pseudo-arclength procedure [115]. These tools generate the atlas for one component of the

n-dimensional variety implicitly defined by a system of equations,

F(x) = 0,

with F : Rm → R
m−n. In our case, F is a smooth function defined as in Eq. (5.3), m is nq + 1,

and n is the dimension ofM which, as we saw, is actually a smooth manifold.

We will first describe the method to generate an atlas covering the full component of the

manifold attainable from xs, and then we will explain how the expansion of the atlas can be

guided in order to avoid computing the full atlas if only xg has to be reached.

5.3.1 Defining a Chart

Given a point on the manifold, xi, a chart Ci defines a mapping ψi : R
n → R

m between a

domain Pi ∈ R
n and an open set containing xi, with ψi(0) = xi. The mapping is defined using

the matrix Ψi, whose columns define an orthonormal basis of Txi
M, the n-dimensional tangent

space ofM at xi. This basis is the m× n matrix satisfying





Fxi

ΨT

i



Ψi =





0

In×n



 .

The mapping xj = ψi(s
i
j) is determined by first selecting an n-dimensional vector sij of

parameters in Tvrxi
M [Fig. 5.2(a)], and then generating a point xi

j ∈ R
m in the neighborhood

of xi as follows:

xi
j = xi +Ψi s

i
j . (5.5)

A point xj onM is finally computed by orthogonally projecting xi
j . This projection is obtained

by solving the system

F(xj) = 0

ΨT

i (xj − xi
j) = 0







using a Newton method initialized at xi
j [116], and iteratively updated with the increment ∆xj
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xi xi
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j

sij

xj xj

(a) (b)
Ti

C

Figure 5.2: The higher-dimensional continuation method applied to a two-dimensional manifold
in R

3. Left: A point xj onM can be obtained by orthogonally projecting a point xi
j on Txi

M.
Right: If a new chart is defined at xj , it must be properly coordinated with the chart at xi so
that their projections smoothly cover the manifold.

fulfilling




Fxi

ΨT

i



∆xj = −





F(xi)

ΨT

i (xj − xi
j)



 . (5.6)

The update is applied until either the norm of the right-hand side of (5.6) becomes negligible,

or a maximum number of iterations is attained. If the process does not converge, the input

parameter sij is out of Pi, the applicability area for the chart Ci. The areas out of the scope of

the chart are to be parameterized by other charts.

The inverse of the mapping ψi can be computed as

sij = ψ−1
i (xj) = ΨT

i (xj − xi),

and can be applied for any point xj in R
m, regardless of whether or not it is on the manifold or

if it is actually projected onto Pi.

5.3.2 Constructing an Atlas

Since the applicability area for each chart is limited, a full parameterization of the manifold

requires the construction of a whole atlas. Each point on the manifold is the potential center

of a new chart [Fig. 5.2(b)], and a method due to Henderson can be used to decide where to

place the chart centers and how to bound their associated applicability areas so as to ensure a
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r
sij

PiPi BiBi

Bij

Ci
js

Figure 5.3: Polytope-based chart construction. Left: The domain for chart Ci, Pi, is a box
including a ball of radius r around xi, both defined in the tangent space associated with the
chart. Right: Pi is refined using a ball Bij that approximates Ci

j , the projection on Ci of the part
of the manifold covered by Cj .

good coverage of the manifold [33]. In his approach, the domain Pi of chart Ci is represented

as a polytope that is initialized as an n-dimensional hypercube enclosing a ball Bi of radius r,

both defined in Txi
M. Then, Pi is progressively refined as new charts are added to the atlas, as

illustrated in Fig. 5.3.

A vector s to a vertex of Pi external to Bi is used to generate a new chart. Using s, a vector

of local parameters giving a point on Bi is computed as

sij = α
s

‖s‖ , (5.7)

where α is initialized to r. A new neghboring chart, Cj , is then defined on the point xj resulting

from applying the mapping ψi(s
i
j), i.e., from projecting the point xi

j computed using (5.5). If

the projection from xi
j to M does not converge, or if the new chart Cj at xj is too far or too

different from Ci, i.e., if

‖xj − xi
j‖ > ǫ, (5.8)

or

det(ΨT

i Ψj) < 1− ǫ, (5.9)

for a given threshold ǫ, the new chart is discarded and a new attempt of chart generation is

performed with a smaller α in Eq. (5.7), which gives a set of parameters sij closer to xi. This

procedure adapts the area covered by each chart to the local curvature of the manifold.

Each new chart Cj added to the atlas has to be properly coordinated with the applicability
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areas of those charts already in the atlas. In the example of Fig. 5.3, Cj is used to refine Pi
from the intersection between Bi and Bij , a ball of radius r centered at the point given by sij that

approximates Ci
j , the projection on Txi

M of the part of the manifold covered by Cj , as shown

in Fig. 5.3(right).

The hyperplane defined by the intersection of Bi and Bij can be computed by subtracting

the equations for the two balls. As shown in Fig. 5.3(right), this plane defines a new face of Pi
that eliminates some of its vertices (in particular the one given by s) and generates new ones.

Symmetrically, the polytope Pj associated with Cj is cropped using an approximation of the

projection of Ci into Cj . The applicability areas of the two neighboring charts are not necessarily

continuous in the ambient space R
m, but under mild conditions their projection to the manifold

slightly overlaps, smoothly covering it. The transition from one local parameterization to the

other can be done by using the direct and inverse mappings for the two neighboring charts. For

a given vector of parameters si at the border of Pi, the corresponding vector in Cj is

sj = ψ−1
j (ψi(si)).

When a chart is fully surrounded by other charts, all vertices of its polytope are inside the

associated ball and the chart is considered to be closed, meaning that its applicability area is

bounded and no further expansion needs to be attempted from that chart. Charts whose center

is out of the domain D are also considered closed. This process of chart expansion continues as

far as there are open (non-closed) charts in the atlas. At the end of the process, the connected

component ofM containing the initial point xs gets fully covered.

Figure 5.4: Progression of the algorithm on the surface of the torus defined by
(
√

x2 + y2 −R1)
2 + z2 −R2

2 = 0, with R1 = 0.5, R2 = 0.8, and using the continuation
parameters r = 0.1 and ǫ = 0.25. Red and blue polygons correspond to open and closed charts.
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As an example, Fig. 5.4 illustrates the progression of the algorithm on tracing the surface of a

torus from a given point, where open and closed charts are colored in red and blue, respectively.

Since a torus is a 2-dimensional manifold, the balls Bi are circles in this case, and the polytopes

Pi are polygons.

5.3.3 Focusing on the Path to the Goal

Once a whole atlas for the explored component is available, a graph can be built whose nodes

are the chart centers and whose edges represent the neighboring relations between charts. If a

path exists from xs to xg, the chart centered at xg* must be connected to the atlas built from xs

and, thus, a solution path can be determined by searching the graph using standard graph search

methods. If the chart centered at xg is not reached, path non-existence can be established at

the considered value of r. Note, however, that this process requires the exploration of the whole

component reachable from xs and does not capitalize the fact that in many cases we are only

concerned with computing a path between two given configurations. This fact can be taken into

account by properly guiding the expansion of the atlas.

To guide the search towards xg, we may use several strategies. A basic approach is to use

a Greedy Best-First strategy where the chart to be expanded is the one yielding a minimum

expected cost to reach the goal. Another one is using an A* strategy [117], which finds a least-

cost path by expanding the chart with the lowest known heuristic cost, while keeping a sorted

priority queue of alternative path segments along the way. In contrast with A*, the Greedy

Best-First strategy does not necessary generate all of the neighbors of a chart under expansion.

The generation of children charts proceeds only while such charts have higher cost than the

parent, which strongly reduces the final number of charts produced. However, the path obtained

by the Greedy Best-First method is not necessarily optimal, and the generation of an optimal,

resolution-complete path requires an A* strategy, which, usually, explores a larger portion of the

manifold due to its optimality, but provides good results in reasonable times.

In any case, the search is stopped as soon as the goal is connected to the rest of the atlas, or

when the full manifold has been covered, meaning that there is no possible path connecting the

start and goal configurations. The algorithm implementing the A* strategy is outlined next.

5.3.4 The Planner Algorithm

Algorithm 5.1 gives the pseudo-code of the singularity-free path planner herein proposed. It

implements an A* search strategy, that takes into account given cost and heuristic functions. The

first of these functions evaluates the cost of the transition between configurations and the second

provides a lower bound of this cost. In our implementation, we use the Euclidean distance in R
m
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for both functions and, thus, the planner will compute shortest paths onM, up to the resolution

used to define the atlas. More sophisticated cost functions could be used though, considering

for instance the travel time or avoiding collisions. In the latter case, the cost function only has

to assign an infinite cost to the transitions between charts that cause collisions [118]. At the

beginning, the algorithm defines charts on the start and goal configurations and uses them to

initialize the atlas (lines 1 to 3). Additionally, it defines the set of charts from where the search

can be expanded H (line 4) and the set of charts already processed along the search, V (line 5).

It then initializes the pointers to the best parent for each chart (line 6), the cost to reach the

initial chart (line 7), and the heuristic estimating the cost from this chart to the goal (line 8).

After that, the algorithm iterates while there are charts in H and the goal chart has not been

reached yet (lines 10 to 31). In this iteration, the chart Ci with minimum expected cost to the

goal is extracted fromH (line 11). If Ci is not the goal chart (line 12), and while it is not a closed

chart (line 13), all its neighbors are generated (lines 14 to 20). Note that charts whose center

is out of the domain D are considered closed and, thus, their neighbors are not generated. If

necessary, the neighbors are generated by selecting a vertex of Pi not in Bi and using this vertex

to define the parameters as in (5.7). The process of generating a neighboring chart is repeated

until the conditions given in (5.8) and (5.9) hold (line 19). When this happens, the new chart is

added to the atlas, coordinating it with the charts already in it (line 20). When all the neighbors

for Ci are eventually generated, the chart is added to V (line 21) and the search is expanded

from it. For each of the non-processed neighbors, the tentative cost to the neighbor via Ci is

computed (line 26). Charts not yet in H, or charts where the tentative cost is lower than the

best cost computed up to the moment, are added to H (line 28), changing their parent chart

(line 29), setting their new cost (line 30), and, finally, computing the heuristic estimation of the

cost to the goal (line 31). At the end of the search, if the goal was found, the path connecting xs

and xg is derived using the pointers to the parent chart stored in p (line 33). Otherwise, an

empty path is returned (line 35) indicating that it is not possible to determine a singularity-free

path at the used resolution.

The cost of the algorithm at each step is dominated by the cost of two searches among

the set of charts: one to find the potential neighbors of a new chart when adding it to the

atlas (line 20), and another one to find an open chart from which to continue the search. The

performace of the first search can be increased using a k-d tree storing the centers of the charts.

If H is implemented using a heap, both the extraction of the next chart to be expanded (line 11)

and the insertion of a new chart in H (line 28) are logarithmic in the number of expandable

charts.
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Algorithm 5.1: Singularity-free path planner.
PathComputation(F,xs,xg, r, ǫ)
input : The functions definingM, F, the start and goal configurations, xs and xg, a function,

CST, giving the cost of the transition between configurations, a heuristic function, HST,
giving a lower bound of the cost of the transition between configurations, and the
parameters r, ǫ used to build the atlas.

output: A singularity-free path connecting xs and xg.
Cs ←NEWCHART(F,xs, r)}1

Cg ←NEWCHART(F,xg, r)}2

A ← {Cs, Cg}3

H ← {Cs}4

V ← ∅5

p(s)← 06

c(s)← 07

h(s)← HST(xs,xg)8

Ci ← Cs9

while H 6= ∅ and Ci 6= Cg do10

Ci ←EXTRACTMIN(H, h)11

if Ci 6= Cg and c(i) <∞ then12

while OPEN(Ci) do13

α← r14

s←VERTEX(Pi) s.t. s /∈ Bi15

repeat16

Cj ←CREATENEIGHBORCHART(Ci, α, s)17

α← α · 0.918

until not SIMILARCHARTS(Ci, Cj , ǫ)19

A ← A∪ {Cj}20

V ← V ∪ {Ci}21

xi ← CENTER(Ci)22

forall Cj ∈ NEIGHBOUR(Ci) do23

if Cj /∈ V then24

xj ← CENTER(Cj)25

t← c(i) + CST(xi,xj)26

if Ci /∈ H or t < c(j) then27

H ← H∪ {Cj}28

p(j)← i29

c(j)← t30

h(j)← t+ HST(xj ,xg)31

if Ci = Cg then32

RETURN(RECONSTRUCTPATH(s, g, p))33

else34

RETURN(∅)35
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5.4 Examples

The performance of the method in computing singularity-free paths is next illustrated in two

situations: first on a fictitious three-dimensional C-space, and then on a 3-RRR manipulator.

The former case is chosen for its simplicity, to illustrate and visualize the method in detail, and

the latter shows the method’s performance on a real application of considerable complexity.

Note that, in all cases, no use is made of closed-form parameterizations of C. Also, despite the

singularity locus and the workspace are shown for reference in the figures (computed using the

methods in Chapters 3 and 4), explicit knowledge of such sets is not used by the planner in

its computations. All results reported have been obtained from an implementation in C of the

method available in [65], executed on a MacBook Pro equipped with a 2.66 GHz Intel Core i7

processor.

5.4.1 A Three-dimensional Example

Consider the fictitious C-space defined implicitly by

Φ(q1, q2, q3) = q1 − σ cos(ω (q22 + q23)) = 0,

with σ = 0.5 and ω = 0.25. It is not difficult to see that this equation defines a sinusoidal surface

in the space of q = [q1, q2, q3]
T, shown in Fig. 5.5 for q ∈ [−1, 1]× [−20, 20]× [−20, 20].

q2

q1

q3

Figure 5.5: A fictitious three-dimensional C-space with its singularities highlighted in red.
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Let us assume for this example that the vector of actuated degrees of freedom is v = [q1, q2]
T,

so that y = [q3]. Then, the forward singularities corresponding to such choice are given, using

differentiation, by the equation

det(Φy) =
∂Φ

∂q3
= 2 σ ω q3 sin(ω (q22 + q23)) = 0,

which, for non-null parameters ω and σ, holds whenever ω (q22 + q23) = n π with n ∈ Z, or when

q3 = 0. Thus the singularity locus is formed by a family of concentric circles and a sinusoidal

line, which are the red curves shown in Fig. 5.5. Note that, in accordance to the geometric

interpretation of the singularities in Section 2.2, the points of such locus are those where the

tangent plane to the C-space projects vertically on a line, in the space defined by v = [q1, q2]
T.

Figure 5.6 shows the results obtained by the planner, when trying to connect the config-

urations qs = [0, 4.33,−0.38]T and qg = [0,−4.33,−0.38]T. To compare the results, the figure

shows the computed path, in green, when navigating C (left figure) andM (right figure), so that

the crossing of singularities is permitted and avoided, respectively. In both cases, the planner

q2

q1

q3

q2

q1

q3

Figure 5.6: The path computed by the proposed algorithm when neglecting and considering
singularity avoidance (left and right, respectively) on the manifold of Fig. 5.5. In the plots,
the singularity locus is highlighted in red, the charts explored to connect the two query
configurations are shown as blue polygons, and the final returned path is shown in green.
While the path on the left figure crosses the singularity set twice, the path on the right figure is
singularity-free.
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returns the shortest path up to the resolution of the generated atlas. The charts of these atlases

are shown in blue in both figures.

Note that the path on the left figure crosses the considered singularity locus twice, while the

path on the right figure, although longer, avoids crossing it. While the latter path approaches

the singularity locus, we note that a certain clearance is always guaranteed, because the value

of |b| is always kept below a given threshold bmax. In this case, the value bmax = 12 was used,

resulting in the shown path, but alternative paths with a larger clearance can be obtained if

desired, by simply reducing bmax. Nevertheless, bmax should always be chosen larger than the

maximum of |b(qs)| and |b(qg)|, so as to guarantee that the domain D within which the search

is restricted (Section 5.2) includes both xs and xg. The computation of the singularity-free path

took 0.04 seconds in this example, using the continuation parameters r = 0.25 and ǫ = 0.25.

5.4.2 The 3-RRR Manipulator

Now, let us consider the same planar 3-RRR manipulator of Section 3.5.1, shown in Fig. 5.7,

and let the three joints attached to the ground be the actuated ones, so that the geometric

parameters of the 3-RRR indicated in Table 3.2 are also assumed here. Due to its relatively large

workspace, and the fact that mounting the actuators on the base reduces weight in the mobile

equipment, this is the most common architecture for a 3-DOF planar parallel manipulator [19].

Although the planning of singularity-free pahts has been addressed for particular instances of

this manipulator [119], no general path planner has been given yet to avoid its singularities, to

the best of our knowledge.

In the considered example, the geometry of the manipulator is set so that the two links of

each leg are in a different plane and, thus, they can not collide. In this way we can illustrate the

fact that, although legs might change their working mode along the computed path, the con-

trollability of the manipulator will always be maintained during the movement, despite initial

doubts about this fact expressed in the literature. Springs on intermediate leg joints or the ex-

ploitation of link inertias are said to be necessary to force the flipping of the legs [19, page 72],

but we show that such flips can be performed without crossing forward singularities. In fact, the

possibility of switching working modes has been also recently demonstrated on real prototypes

through simple active-joint control [120].

The same formulation of Section 3.5.1 can be used here to write Eq. (5.1). The singularity

locus of this manipulator is two-dimensional, and its shape is known to be rather complex. Some

of its slices for a fixed value of θ8 have been shown in Fig. 3.9, and the slice corresponding to

θ8 = 0 is reproduced in Fig. 5.7(top). From the figure, it may seem that the safe motion range

of the manipulator is severely reduced by the presence of singularities. For instance, it appears

that P7 cannot be moved from Ps to Pg while keeping θ8 = 0, but note that we are actually
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P1

P2

P3

P4

P5

P6

P7

P8

P9

L8

Ps

Pg

(+,+,+) (+,+,−)

Figure 5.7: Top: 3-RRR manipulator and constant orientation workspace (in gray) with
boundaries (in blue) and interior singularities (in red) for the geometry of Table 3.2, assuming
θ8 = 0. Bottom: Layers corresponding to two working modes of the manipulator, differing on
the sign of the third leg triangle only, and their corresponding singular curves.

observing a projection of the C-space onto the (x7, y7)-plane, and that for each pose [x7, y7, θ8]
T

of the platform there are up to eight possible inverse kinematic solutions of the manipulator.

Each such solution corresponds to a different working mode of the mechanism, identified by

the sign triple (κ1, κ2, κ3), where κi gives the orientation of the triangle PiPi+3Pi+6 [19]. The

C-space, thus, has more structure than it looks. It is formed by several “layers”, each one of

them corresponding to a different working mode, and if we project such layers separately, larger

singularity-free regions get revealed.

To illustrate this, the layers corresponding to the (+,+,+) and (+,+,−) working modes
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x
x

y
y

b

Figure 5.8: Results of the method on computing a singularity-free path to connect points Ps and
Pg indicated in Fig. 5.7, assuming the platform orientation fixed to θ8 = 0. All results are shown
projected onto the (x7, y7)-plane (left) and onto the (x7, y7, b)-space (right). The obtained path
is shown in green overlaid onto the atlas of the singularity-free component of C attainable from
the start configuration. The atlas charts are shown colored in white, with blue or red edges
depending on whether they lie inside or outside of the domain D. The part actually explored by
the algorithm to connect the two configurations is shown shadowed in blue on the left figure.

for θ8 = 0 are shown in Fig. 5.7(bottom), together with the portion of the singularity curve

lying on them, and a representative configuration in each case, with P7 coinciding on Ps. As

we see, Ps and Pg are actually connectable through a singularity-free path lying entirely on the

(+,+,+) layer. The proposed planner is able to compute such a path in only 0.05 seconds, using

bmax = 3.333, r = 0.2, and ǫ = 0.25, obtaining the results shown in Fig. 5.8, where the position

vectors ps = [0.4,−0.6]T and pg = [1.4, 1.5]T have been assumed for Ps and Pg. Note from the

right plot how the manifoldM reaches higher values of b as it approaches the singularities, but

the found path avoids these zones and the algorithm returns the shortest possible path on M.

The partial atlas generated to resolve the planning query is shadowed in blue on the left plot.

Constant-orientation paths in other layers can be computed if desired, but the full potential

of the method comes out when solving complex planning queries in which the platform is

allowed to rotate and the manipulator has to change its working mode along the path, to

avoid passing through singular configurations (Fig. 5.9). Due to the difficulty of illustrating

a 3-dimensional C-space clearly, the obtained path is shown as a series of pictures in this case,

showing several snapshots of the movement of the manipulator when following the path. The
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.9: Several steps of the movement of the manipulator while performing the computed
path between configurations (a) and (i). The manipulator is shown overlaid on the constant
orientation workspace (in gray with its boundaries in blue) and the singular curves at the
corresponding working mode (in red). Changes of working mode occur between steps (c) and
(d) for the first leg, and between (g) and (h) for the second leg. An animation of this figure is
available in the supplementary downloadable material associated with this document.

first and last snapshots, (a) and (i), show the start and goal configurations to be connected,

which are given by ps = [−0.3,−0.9]T and θs = 0, and pg = [0.5, 1.9]T and θg = −π
2 , assuming

the working modes (+,−,−) and (−,+,−) respectively. Note that at least two legs should

change their working mode along the path, and this can be seen to happen between snapshots

(c) and (d) for the first leg, and between (g) and (h) for the second leg. The workspace and

the singularities shown in each picture correspond to the orientation of the platform at that
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moment only, and can be seen to vary with the orientation. Indeed, the path is obtained by

exploring a 3-dimensional C-space, with a 2-dimensional singularity locus, defined both in a

higher-dimensional ambient space, and each picture in Fig. 5.9 shows a constant-θ8 slice of such

C-space, projected onto the x7 and y7 coordinates. The computation of the singularity-free path

took 1 second in this example, using r = 0.3 and ǫ = 0.25. An animated version of Fig. 5.9 can

be seen in a video associated to this document, as part of a larger movement planned through

three waypoints.



6
Adding Further Constraints

The path planner of Chapter 5 measures the clearance of the path relative to the singularity

locus in terms of the determinant of a Jacobian matrix. It is often argued that such a measure

lacks physical significance [121], but in the early design stages of the manipulator only the

kinematic architecture has been decided, and further information leading to more meaningful

measures, such as the actuators’ positioning accuracy, their maximum force/velocity deliverable,

or the link inertias, is often not yet available. The planner of Chapter 5 already covers the needs

of a robot designer in such situations, because it can compute a reasonably accurate roadmap of

the feasible movements, but for subsequent design stages, or for motion planning during normal

operation, further physical limitations should also be taken into account. This chapter presents a

way to do so, exemplified in the particular case of classical or cable-driven hexapods. Following

the spirit of [122,123] the clearance of the path relative to the singularity locus is defined as the

one that results from allowing wrench-feasible configurations only, i.e., those in which the leg

forces remain within given limits, for any platform wrench subject to six-dimensional uncertainty

(Section 6.1). The method relies on defining a system of equations whose solution manifold

corresponds to the wrench-feasible C-space of the manipulator, so that maneuvering through

such manifold guarantees singularity avoidance at all times, while maintaining leg forces and

lengths within their allowable bounds (Section 6.2). This manifold, as well as any of its

submanifolds obtained by coupling some of the pose parameters under mild conditions, is shown

to be smooth everywhere, which allows exploiting the same higher-dimensional continuation

strategy of Chapter 5 to derive connection paths between given configurations. The approach is

illustrated on two specific hexapods, the Stewart platform and the cable-driven NIST Robocrane

(Section 6.3), but hints on how to extend the developments to account for alternative constraints

or manipulator architectures are given in the end (Section 6.4).
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6.1 Problem Statement

For the purpose of this chapter, a hexapod consists of a moving platform connected to a fixed

base by means of six legs, which can be universal-prismatic-spherical chains, as in the Stewart

platform (Section 3.5.2), or cables winding around independent winches, as in cable-driven

robots (Fig. 6.1). The leg lengths di can be varied within prescribed limits
[

di, di
]

by actuating

the prismatic joints or the winch drives, which allows to control the six degrees of freedom of

the platform within a given workspace.

The C-space of a hexapod can be implicitly defined in a way similar to that followed in

Section 3.5.2. We attach fixed and moving reference frames F1 and F2 to the base and platform

links, centered in O and P , respectively (Fig. 6.1), and represent the platform pose by the pair

q = (p,R) ∈ SE(3) subject to the constraints

p = ai+di −R bi, (6.1)

dT

i di = d2i , (6.2)

di ∈ [ di, di ],

for i = 1, . . . , 6, where p, ai, and bi are the position vectors of points P , Ai, and Bi, R is the

rotation matrix providing the orientation of the platform, and di is the vector from Ai to Bi. It

has been assumed that p, ai, and di are expressed in frame F1, while bi is expressed in F2.

P

P

O

O
Ai

Ai

Bi

Bi

di
di

Figure 6.1: Two hexapods with rigid (left) and cable (right) legs. The cable-driven manipulator
is maintained under a stable position due to the action of gravity.
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As shown in Chapter 3, the orthonormality of R can be imposed in a variety of ways, but

we here resort to the parameterization provided by the tilt and torsion angles, τ = {φ, θ, σ}, for

which

R = Rz(φ)Ry(θ)Rz(σ − φ), (6.3)

because of its intuitive interpretation and attractive properties [73].

In practice, not all configurations satisfying Eqs. (6.1)–(6.3) are allowed, because the leg

forces must be kept within their admissible ranges. This is specially important in cable-driven

manipulators, where all cables must be kept in tension to control the platform, but also in any

other hexapod to avoid excessive stress on the actuators or eventual breakage of the structure.

For this reason, we require any configuration to be wrench-feasible, in the sense that it must

allow the platform to equilibrate any external wrench ŵ acting on it, subject to lie inside a

prescribed six-dimensional region K ⊂ R
6.

The significance of K depends on the particular context of application. In payload trans-

portation, for instance, K may be given by the gravitational wrench acting on the platform and

slight perturbations introduced by inertia forces or external agents like the wind. In contact

situations, K might be given by the wrench that should be suppliable to the environment,

which is in general subject to six-dimensional uncertainty. Specifically, the wrench-feasibility

requirement on a given configuration q implies that for each wrench ŵ ∈ K there must be a

vector

f = [f1, . . . , f6]
T ∈ D =

[

f1, f1
]

× . . .×
[

f6, f6
]

of leg forces satisfying

J f = ŵ,

where J is the 6× 6 screw Jacobian of the manipulator, which depends on the configuration q,

and
[

fi, fi
]

is the range of force magnitudes that can be resisted by the ith leg. For cable-driven

manipulators it must be fi > 0.

Here, K will be assumed to be a six-dimensional ellipsoid centered at ŵ0, defined as

(ŵ − ŵ0)
T
E (ŵ − ŵ0) ≤ 1,

where E is a 6 × 6 positive-definite symmetric matrix. In practice, this ellipsoid can be con-

structed by propagating known bounds on other variables related to ŵ, using the tools of an

ellipsoidal calculus for example [127], and in a most general setting it can be considered to be

dependent on the configuration q, because both ŵ0 and E may be functions of q given by the

specific application of the robot, i.e., ŵ0 = ŵ0(q) and E = E(q). To have an idea, note that

hexapod robots are currently used in a variety of contexts (Fig. 6.2), including machine tool
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Figure 6.2: From left to right and top to bottom: The Okuma PM-600 machining center (top),
and a close-up of the hexapod platform holding the tools (bottom) [124]; a worker programming
and monitoring the TETRA RoboCrane from the NIST [125], used to pick up and place a steel
beam in a stanchion; a cable-driven hexapod for aircraft building and maintenance [125]; and
a swell simulator [126].



6.1 Problem Statement 119

(a)

(b)

(c)

Figure 6.3: Some schematic examples of typical situations encountered in hexapod applications.

technology, flight and automotive simulation, paylod positioning, inspection, aircraft building

and maintenance, swell simulation, oil-well fire fighting, or pipe assembling, to name a few,

and each particular case demands a specific definition of K. A typical situation encountered

in machine tools like those fabricated by the Okuma [124], Ingersoll [128], Symétrie [126],

Toyoda [129], or Mikrolar companies [130], for example, is depicted in Fig. 6.3(a). In this case,

the legs must counteract the efforts given by the drilling operation, which can be modelled as

a six-dimensional ellipsoid, with the matrix E accounting for the uncertainty of the operation,

centered at ŵ0 = ŵdrill. Note that if the weight of the platform-tool can be neglected, both E

and ŵ0 are constant in the fixed frame, but that ŵ0 must be shifted by ŵweight otherwise, which

varies with q if such a frame is used. A more complex drilling operation could be performed

if the workpiece moves attached to the hexapod and, at the same time, is being drilled in a
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coordinate manner by a tool driven by another manipulator [Fig. 6.3(b)]. In such situation it

would be simpler to express K in the platform frame, where E is constant and ŵ0 is either

constant or shifted by ŵweight, as before. In applications involving a high payload that must

be manipulated, like the one depicted in Fig. 6.3(c), it might be interesting to consider slight

perturbations of the weight introduced by inertia forces or external agents like the wind. Since

the weight always points in the same direction, K can be defined in a frame that translates with

the platform with the origin at the center of mass, where E and ŵ0 = ŵweight are constant.

However, if the platform frame is used for some reason, both E and ŵ0 have expressions that

are dependent on the configuration q.

Let us define the wrench-feasible C-space of the manipulator, Cw, as the set of configurations

q for which the platform is able to counteract all ŵ ∈ K with f ∈ D. Given two configurations in

Cw, qs and qg, the goal is to compute a path on Cw connecting them, if one exists, or to determine

path non-existence otherwise. To this end, we next define a system of equations characterizing

Cw which allows using the same continuation approach of Chapter 5 to compute such a path.

6.2 Equations of the Wrench-feasible C-space

6.2.1 Formulating the Wrench-feasible C-space

For a given configuration q, let f0 be the vector of leg forces, or cable tensions, corresponding to

ŵ0 ∈ K, i.e.,

J f0 = ŵ0. (6.4)

By noting that J(f − f0) = ŵ − ŵ0, it is easy to see that the set F of leg forces f corresponding

to all ŵ ∈ K is the ellipsoid given by

(f − f0)
T
B (f − f0) ≤ 1,

where B = JTE J . This ellipsoid will be bounded in all directions or unbounded in some,

depending on whether det(J) 6= 0 or not. However, it is not difficult to see that J is non-

singular for all q ∈ Cw (Section 6.2.2), so that F will always be a bounded ellipsoid in our

case.

Now, for q to be wrench-feasible, we must have F ⊆ D, which can be checked as follows.

For each i = 1, . . . , 6, let vi ∈ R
6 be a vector satisfying

vT

i B vi = 1

Bivi = 0







, (6.5)
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vi,ivi,i
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f0,i

fi
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fi fi

Figure 6.4: The vector vi provides the maximum and minimum values of fi.

where Bi stands for the matrix B with its ith row removed. Observe that if J is non-singular,

then both B and Bi are full row rank, and if the ith component of vi, vi,i, is chosen non-

negative, then there is exactly one vector vi satisfying Eq. (6.5). Using Lagrange multipliers, it

can be shown that, for the solutions vi of Eq. (6.5) with vi,i ≥ 0, f0 − vi and f0 + vi are the

vectors in F attaining the smallest and largest value along the ith coordinate (Fig. 6.4). Hence,

when det(J) 6= 0, F ⊆ D if, and only if,

f0,i − vi,i > fi,

and

f0,i + vi,i < fi,

for i = 1, . . . , 6. In order to use the continuation method, these two conditions have to be

converted into equalities. Instead of using the circle equations of Section 4.4.1, we prefer here

to use hyperbola equations because it simplifies the demonstrations of Section 6.2.2 and, also,

naturally penalizes the paths closer to the limits, since they are longer. Therefore, we impose

(f0,i − vi,i − fi) · si = 1, (6.6)

(fi − f0,i − vi,i) · ti = 1, (6.7)

with si ≥ 0 and ti ≥ 0, where si and ti are newly-defined auxiliary variables. Looking at the first

equation, for instance, it is clear that neither f0,i − vi,i − fi nor si can be zero, so that for any

si > 0, it will always be f0,i − vi,i > fi as desired. In a similar way, the leg length constraints
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di ∈ [ di, di ] are equivalent to imposing

(di − di) · (di − di) · gi = 1, (6.8)

in conjuntion with gi ≥ 0 acting on the new variable gi.

At this point, let us consider the system formed by Eqs. (6.1)–(6.8), which we will write

compactly as

F(x) = 0, (6.9)

where x refers to an nx-vector encompassing all of its variables, and let us distinguish between

the solution set of Eq. (6.9),

M = {x : F(x) = 0},

and the set

M+ = {x ∈M : vi,i ≥ 0, si ≥ 0, ti ≥ 0, gi ≥ 0, for i = 1, . . . , 6}.

Note that every configuration q ∈ Cw has a corresponding point x ∈ M+ and, conversely, each

point in M+ projects down to one q ∈ Cw. Moreover, any continuous path in Cw will also be

represented by a continuous path inM+ and viceversa, so that, similarly as done in Chapter 5,

the original problem of computing a wrench-feasible path in Cw from qs to qg can be reduced to

that of computing a path inM+ connecting the points xs and xg corresponding to qs and qg. In

this case, the variables si, ti, and gi play a role equivalent to that of the variable b in Chapter 5.

6.2.2 Properties ofM

Two properties regarding the structure of M andM+ can be exploited, which are essential in

order to apply the continuation strategy of Chapter 5.

It is easy to see, first, that vi,i, si, ti, and gi never vanish onM, so that there does not exist

any path traversing fromM+ to its complementM\M+. Indeed, if xs and xg are chosen with

positive values for vi,i, si, ti, and gi, then any continuous path onM connecting xs and xg will

entirely lie on M+, and it will correspond to a path on Cw therefore. From Eqs. (6.6), (6.7),

and (6.8) it follows directly that si, ti and gi can never be zero onM. The same property for vi,i
can be proved by contradiction. Let us assume that vi,i = 0 for some i. If we consider Eq. (6.5),

then, by replacing Bivi = 0 into vT

i B vi = 1, we obtain the dot product of two vectors: vi,

with vi,i = 0, and the vector Bvi, whose components are all zero except that in position i. The

result of this dot product is 0, which contradicts the first equation in (6.5), as it should be 1.

As a result, the setM+ and its complementM\M+ are disconnected. In other words, when
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trying to connect xs and xg by continuation onM, the positivity constraints on vi,i, si, ti, and

gi will be implicitly fulfilled, and they can be safely neglected.

Second, it can be shown thatM, and in particularM+, is a six-dimensional smooth manifold

everywhere, so that every point x has a well-defined tangent space TxM, which facilitates the

application of the mentioned continuation strategy because no bifurcations, sharpnesses, or

dimension changes will be found when exploringM. If we can verify that F(x) is a differentiable

function with full rank Jacobian Fx everywhere, then the smoothness ofM will follow from the

Implicit Function Theorem. By construction, all functions intervening in F (x) are differentiable

all overM, and the Jacobian matrix Fx can be expressed in the following block-triangular form

after re-organizing some equations and variables

Fx =















































Φy

∗ J

*

2vT

1B

B1

. . .

2vT

6B

B6

∗ ∗ S

∗ ∗ T















































,

where empty blocks represent zero-matrices and asterisks indicate non-zero blocks.

Due to the triangular structure of Fx it suffices to verify that the five blocks in the diagonal

are full-rank in order to prove the smoothness of M. The first block is the Jacobian matrix of

the system Φ(y) = 0 formed by Eqs. (6.1)–(6.3) and (6.8), which, by rearranging equations

and differentiating with respect to y = (τ,p,R,di, di, gi), takes the form

Φy =















∗ I9

∗ ∗ −I18
∗ −2L

∗ G















. (6.10)

Here L and G are 6× 6 diagonal matrices with diagonal elements −2di and (di − di) · (di − di),
respectively. To see that Φy is full rank, observe that its last four block-columns comprise a

non-singular square submatrix of maximum size, since its diagonal elements do not vanish over
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M by virtue of Eq. (6.8) if we assume di > 0.

The remaining four diagonal blocks of Fx are the Jacobian matrices of Eqs. (6.4)–(6.7),

differentiated with respect to the variables f0, vi, si and ti, respectively, where the blocks S and

T are 6× 6 diagonal matrices with elements f0,i − vi,i − fi and fi − f0,i − vi,i, respectively. The

screw Jacobian J can be shown to be full rank overM by contradiction. Indeed, if J(q) were

rank deficient for some q, then so would be B, and therefore the kernel of B would contain non-

zero vectors. In such case, for some i all solutions of Bivi = 0 would satisfy vi ∈ ker(B) and,

thus, it would be vT

i Bvi = 0, which contradicts Eq. (6.5) and, hence, J cannot be rank deficient

overM. The 6× 6 block matrices involving B and Bi can only be rank deficient if vi,i = 0, but

this can never happen as we have already seen. All these blocks are therefore full rank overM.

Finally, it is clear that S and T are also full rank over M, since their diagonal elements never

vanish due to Eqs. (6.6) and (6.7), and this completes the proof of the smoothness of M and,

in particular, that ofM+.

It is worth mentioning that not only M and M+ are smooth, but also any submanifold

obtained by coupling any of the position or orientation parameters, u = [p, τ ]T, either by

adding equations of the form C(u) = 0, with a full-rank Jacobian Cu, or by introducing

parametric expressions of the form u = u(λ), where both C(u) and u(λ) are assumed to be

smooth functions. Indeed, it can be seen that the addition of C(u) = 0 or u − u(λ) = 0 to

F(x) results in a new full-rank block matrix over the first two block-columns of Eq. (6.10),

which does not change the global rank of the differential Fx. This allows to model situations in

which the moving platform is not allowed to maneuver in six-dimensional space, such as contact

situations, or constant position/orientation movements. For instance, if we need the point P of

the platform to lie on a unit sphere, we could use the function C(p) = |p|2 − 1. If, instead, we

would like the point to follow a certain Bézier patch, we could use the parameterization of such

patch, p = p(λ), to restrict the possible values of p.

With this, the higher-dimensional continuation strategy described in Chapter 5 can be safely

applied to connect xs and xg using Eq. (6.9), as the following examples illustrate.

6.3 Examples

The performance of the method is shown here by means of two hexapods, the Stewart platform

and the NIST Robocrane, with rigid and cable legs, respectively. Note that the same implemen-

tation of the method of Chapter 5 can be used, taking as input the system of equations (6.9)

defined in this chapter. All experiments have also been run on a MacBook Pro equipped with a

2.66 GHz Intel Core i7 processor.
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6.3.1 The Stewart Platform

The geometric parameters of the INRIA left hand have been used to test the method on a Stewart

Platform [70]. All legs of this manipulator admit forces in the range
[

fi, fi
]

= [−300, 300], and

for the experiments we have set ŵ0 = [0, 0, 150, 0, 0, 0]T and E = I6×6, both expressed in a

frame that translates with the platform, and assuming SI units throughout. In this case, the

wrench-feasible C-space of this manipulator is close to the workspace defined by its allowable

leg lengths [70], and the algorithm solves typical planning queries in a few seconds.

To graphically illustrate the performance of the method, however, it is better to adopt the

geometric parameters of the more academic manipulator used in Section 3.5.2, corresponding to

the one studied in [21], where large variations of the leg lengths are allowed, leading to a very

large workspace with interesting singularity surfaces, as shown in Fig. 3.11. Two experiments

are shown for this manipulator, assuming
[

fi, fi
]

= [−300, 300] and E = I6×6 as before, but

using ŵ0 = [0, 0, 1, 0, 0, 0]T. In a first experiment we compute a wrench-feasible path for the

pspg

ps

pg

239 N

−158 N

Figure 6.5: Top: Two paths computed for the manipulator in [21]. Bottom: Plot of the maximum
and minimum forces supported by each leg along the left path.
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platform moving at the same constant orientation of Section 3.5.2, which corresponds to the

tilt-and-torsion angles τ = {−1.449, 0.525,−1.509}rad, and at a constant value of z. Using the

start and goal configurations defined by the positions ps = [0.4, 0, 0.1]T and pg = [−0.3, 0, 0.1]T
for P , the resulting path in the XY plane is computed in 578 seconds. Fig. 6.5, left shows this

path, together with the singularity curve to be avoided, the atlas corresponding to the whole

wrench-feasible connected component accessible from ps (shown as a mesh), and the region

explored by the A* algorithm (shaded in grey). It can be seen that the interpolated path between

ps and pg would go through singularities, but the computed path correctly avoids them while

keeping the leg forces within the specified ranges (Fig. 6.5, bottom). In a second experiment,

we solve the same planning query but keeping constant the orientation of the platform only,

obtaining the path in XYZ shown in Fig. 6.5, right in 90 minutes. As shown, the singularity

surface in blue is correctly avoided by the computed path. The singularity surface, computed

using the method of Chapter 3, is here shown for illustration purposes only, but there is no

need for its actual computation to obtain the desired path. It must be noted that these are

hard planning queries, since the workspace of the manipulator considered is enormous when

compared to typical workspaces arising in usual platforms. Moreover, once a partial atlas is

computed, all planning queries between configurations covered by such atlas can be solved in a

few milliseconds.

6.3.2 Cable-driven Hexapods

In recent years, cable-driven parallel mechanisms have been increasingly studied and applied to

more and more relevant tasks, such as manipulation of heavy loads [131, 132], high-precision

positioning [133], monitoring of aquatic environments [134, 135], automated construction of

civil structures [136], rescue systems [137], or motion simulators [138], among others. Their

generally simple design results in manipulators with low weight but high load capacity. These

advantages, together with the fact that they can usually achieve larger workspaces than their

counterparts with rigid-limb legs, make cable-driven manipulators very energy-efficient and

appropriate to maneuver heavy loads. However, additional constraints apply: their cables can

pull but are unable to push the platform, which obliges to keep all cable tensions positive during

normal operation.

The workspace of a cable-driven manipulator is limited by a number of hypersurfaces where

the control of the manipulator is compromised [139], corresponding to configurations where

the tension of some cable is either zero, for which the cable goes slack and control of one

degree of freedom is lost, or goes to infinity, which indicates that the mechanism is on a

singular configuration and the cable can break. Several authors have proposed strategies for

the determination of wrench-feasible workspaces [122, 139–143], but the problem of planning
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B1

B2

B3

P

O

Figure 6.6: CAD model of the cable-driven hexapod under construction at Institut de Robòtica i
Informàtica Industrial (IRI), inspired in the NIST Robocrane [147] (courtesy of P. Grosch).

paths between two configurations in such spaces has not been intensively studied. While some

approaches indeed exist for cable-driven manipulators [144–146], the path they compute is

evaluated for feasibility at discrete points only, and the fulfillment of all constraints along the

whole path is not guaranteed.

To verify the performance of the method herein presented on a realistic cable-driven ma-

nipulator, we will use here the geometric parameters of the NIST Robocane manipulator [147]

(Fig. 6.6). This manipulator follows an octahedral design where both the base and the platform

are equilateral triangles of sides 2b and 2a, respectively. The fixed reference frame F1 of the base

link is defined with the Z axis pointing downwards for convenience, and the mobile reference

frame of the platform, F2, is centered at a point P . The coordinates of the vertex points of the

base and the platform are given in Table 6.1.

In all experiments, the platform is required to withstand a weight of m Newtons applied

at a point Pm with position vector pF2

m = (a5 ,
a
5 , 0), and we need to set fi > 0 for all legs

to guarantee the control of the manipulator. Since the weight always points downwards, this

corresponds to a wrench ŵ0 that is constant in a reference frame parallel to F1 translating with

Pm, i.e., ŵ0 = [0, 0,m, 0, 0, 0]T. For simplicity, the small variations that may be introduced by

inertia forces or external agents are represented by the ellipsoid K centered in ŵ0 defined by
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Leg Base L1 Platform L2

1 p
F1

1,1 = [−b,−b
√

3/3, 0]T p
F2

2,1 = [0,−2a
√

3/3, 0]T

2 p
F1

1,2 = [b,−b
√

3/3, 0]T p
F2

2,2 = p
F2

2,1

3 p
F1

1,3 = p
F1

1,2 p
F2

2,3 = [a, a
√

3/3, 0]T

4 p
F1

1,4 = [0, 2b
√

3/3, 0]T p
F2

2,4 = p
F2

2,3

5 p
F1

1,5 = p
F1

1,4 p
F2

2,5 = [−a, a
√

3/3, 0]T

6 p
F1

1,6 = p
F1

1,1 p
F2

2,6 = p
F2

2,5

Table 6.1: Parameters of the NIST Robocrane manipulator.

E = 104 · I6, which is a six-dimensional sphere of radius 10−2, and the tensions and lengths for

all cables are set to remain positive but lower than fi = m N and ρi = 5a, respectively.

To illustrate the complexity of the path planning problem, Fig. 6.7 shows several slices of

the wrench-feasible C-space of the manipulator, computed in Matlab using discretization with

a = 1, b = 2, and m = 1. The configurations that cannot be reached due to either cable

lengths or tensions out of range are represented by the red and blue areas, respectively, while

those corresponding to Cw are indicated in green. The figure also shows the singularity curves

where det(J(q)) = 0, in red, computed with the method of Chapter 3 under no constraints

on the cable tensions or lengths. It can be observed that the wrench-feasible C-space naturally

avoids crossing singularities, although in some zones this point may not be clear due to the

resolution of the discretization, and to the small size of the figures. The top row of Fig. 6.7

corresponds to slices where the point P and the torsion σ are held fixed. In the bottom row, the

whole orientation τ of the platform and one of the coordinates of P are held fixed. As it can

be seen from the figures, the navigation between two configurations of C is not a trivial task.

In particular, evaluating the wrench-feasibility conditions on discrete points along a path could

result in erroneous paths that, for example, could join points belonging to different connected

components of C. The method herein presented is able to solve such hard planning queries, even

when permitting the variation of all pose parameters. However, due to illustration limitations,

the performance of the method is demonstrated here by means of two experiments where four

and three pose parameters are held fixed.

In the first experiment, we compute two different paths on the top-center slice of Cw shown

in Fig. 6.7, where p = [0, 0, 2]T and σ = 35◦. Using the start q1 and goal q2 configurations

defined by τ1 = {−0.5, 0.9, 7
36π} rad and τ2 = {2, 0.9, 7

36π} rad, respectively, the resulting path

is computed in 20 seconds. Fig. 6.8(top) shows this path in red together whith the atlas

corresponding to the whole connected component of Cw accessible from the start configuration

(shown as a green mesh), and the region explored by the algorithm (shaded in grey). In

order to evaluate the performance of the method on a more challenging situation, a second
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Figure 6.7: Slices of the wrench-feasible C-space obtained by discretization. Blue, red and
green zones correspond to configurations where some force is out of range, configurations not
attainable due to cables length, and configurations belonging to the wrench-feasible C-space,
respectively.

path is computed between configurations q3 and q4 given by τ3 = {0.8,−2.4, 7
36π} rad and

τ4 = {−2.4, 2.4, 7
36π} rad. In this case the path is computed in 280 seconds and the region

explored is shaded in green in Fig. 6.8(top). On both planning queries, note that the interpolated

path between the start and goal configurations would violate some of the constraints of Cw,

giving rise to uncontrollable motions of the platform, or to breakage of some of the cables, but

the computed paths correctly avoid these situations. Indeed, an advantageous property of the

employed continuation strategy, which cannot be ensured by methods relying on discretization,

is that the computed path will not jump between distinct connected components of Cw, even

when such components are close to each other, thus ensuring that the tensions on all cables

remain within the prescribed ranges along the whole path. As an example, these tensions can

be seen in Fig. 6.8(bottom) for the path from q3 to q4. The evolution along this path of the

maximum and minimum tensions on each cable are plotted in green and blue, respectively.
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q3

q4
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θ

1
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0 N

Figure 6.8: Top: Two paths and the areas of C explored to compute them, on the slice of the
wrench-feasible C-space corresponding to p = [0, 0, 2]T and σ = 35◦. The hexagon-like polygons
shown in dark green in this figure correspond to the polytopes Pi of the full atlas, included for
illustration means. Bottom: evolution of the maximum (green) and minimum (blue) possible
tensions for each cable, along the path from q3 to q4.

Towards the end of the path, some cable may attain a near-zero tension, but this can easily be

avoided, if desired, by simply setting a higher value of fi.

On the second experiment, only three pose variables are held fixed, namely x = 0, y = 0,

and σ = 35◦, giving rise to a three-dimensional slice of the wrench-feasible C-space. Here, the
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Figure 6.9: A path on a three-dimensional slice of the wrench-feasible C-space with x = 0, y = 0
and σ = 35◦. The green volume corresponds to the portion of Cw explored by the algorithm,
which is here visualized by projecting the chart polytopes Pi to the space of z, φ, and θ, and
representing their faces as semi-transparent walls, in order to visualize the computed path in
the interior.

start and goal configurations, q5 and q6, are given by p5 = [0, 0, 1.2]T, τ5 = {0.8,−2.6, 7
36π} rad

and q6 = q4. The resulting path can be seen in Fig. 6.9 in red, together with the atlas generated

by the algorithm in green. This case represents a hard planning query and, therefore, the

computation time increases significantly. However, once a partial atlas is computed, all planning

queries between configurations covered by such atlas can be solved in a few milliseconds.

6.4 Additional Constraints and Robot Architectures

In this chapter we have shown how to account for additional constraints in the problem of

singularity-free path planning. For the sake of concreteness, we have described how to treat

wrench-feasibility constraints in the context of Stewart platforms and cable-driven hexapods,

but the methodology could be extended in a number of ways.

For example, it could be generalised to encompass other robot architectures, because it only

relies on the availability of a Jacobian relating the actuator and end-effector forces. Using the

reciprocal product method outlined in Section 3.5.2, Zlatanov shows how to obtain a simplified
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Figure 6.10: Examples of serial kinematic chains used in parallel robots. From left to right: a
6R leg, a PUS leg used in hexaglide platforms, and the RUS chain adopted for the HEXA design
or the MicARH rotary hexapod. Figures adapted from [66,151].

velocity equation for the broad class of hybrid-chain manipulators [12], from which such a

Jacobian can be easily deduced, and more complex manipulators could also be dealt with using

the extensions presented in [148]. In particular, manipulators with other common legs like those

in Fig. 6.10, or adaptations of them, could potentially be addressed, including the Hexaglide [3],

manipulators with the HEXA design [149, 150], or newer platforms like the MicARH rotary

hexapod [43].

It would also be interesting to accommodate other kinds of constraints. For instance, one

could constrain the movements of the robot so that the positioning error of the end-effector were

always below a threshold, giving rise to a theory reciprocal to the one that has been presented.

To do so, we could use Eq. (3.36),

J
T
T̂ = mv,

which provides a relation between the twist of the end-effector, T̂ , and the velocities of the

actuators, mv = v̇. Note that if the pose is represented by u = [p, τ ]T, then T̂ = Au̇, where A

is a matrix that depends on the chosen orientation parameters τ [70, 151]. Thus, by defining

Jd = JTA, we obtain the relation

Jd u̇ = v̇,
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or its infinitessimal version,

Jd δu = δv,

relating the small displacement errors in the actuated joints, δv, to the corresponding errors

in the pose coordinates, δu. Given an uncertainty ellipsoid for δv and similarly as we did in

Section 6.2, we could now obtain the uncertainty ellipsoid for δu and force it to remain inside

a rectangular domain. We anticipate that the resulting C-space would be smooth too, which

would allow to apply the proposed continuation method to compute paths in it.





Part III

Closing Remarks





7
Conclusions

7.1 Summary of Contributions

This thesis contributes with new and general approaches for manipulator singularity computa-

tion and avoidance. Unlike in previous works, the methods are not limited to specific types

of manipulators. Instead, the problems have ben addressed assuming a general kinematic

architecture and geometry of the underlying mechanisms. By design, the methods are applicable

to any non-redundant manipulator, the only limitation coming from the computational power

available. A special emphasis has been put on manipulators with complex architectures, since

they are those typically arising in today’s robotics, where the development of new machines

with increasingly complex motions is a common trend. The obtained results aim at contributing

to the general understanding of the key role played by singularities in the motion analysis and

programming of such manipulators. Specifically, the following results have been obtained in this

thesis:

1. A general method for singularity set computation (Chapters 2 and 3). Systems of

equations are obtained following from the general definition of the diverse singularity

types, taking advantage of the sudden change in the rank of the matrices that govern the

kinematics of the manipulator that occur at singular configurations. The method is based

on formulating such systems in a suitable way for the application of a numerical procedure

that relies on a branch-and-prune strategy whereby an initial box bounding the singularity

set is recursively reduced and bisected, producing finer and finer approximations of the

set successively, until the accuracy of the result is below a given threshold. The method

can isolate the whole singularity set independently of its dimension, even in the presence

of self-intersections or dimension-changes, with the sole limitations imposed by the course

of dimensionality. An effort has also been made to provide guidelines on how to represent

the singularity set once computed, in order to produce suitable diagrams for the robot
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designer. On this regard, it has been shown that the set can be easily projected to the

input and output spaces to provide global information on the motion capabilities of the

manipulator, including the reachable input/output areas, the locations where control or

dexterity losses can arise, and a delimitation of regions where manipulator motions can

safely be planned.

2. A general method for workspace determination (Chapter 4). The proposed method

delivers a detailed map of the workspace indicating all motion barriers that may be en-

countered by the manipulator, which is a substantially richer output than that produced by

several previous methods for particular manipulators. In comparison to general methods

based on continuation, the method is advantageous in that it is uninformed, since it

does not need to be fed with a-priori knowledge of the workspace, such as pre-computed

assembly configurations or suitable slicing directions, and complete, as it returns the full

workspace map even in the presence of several connected components, hidden regions, or

degenerate barriers. The method is able to compute workspaces of any dimension but the

curse of dimensionality restricts its applicability to up to three-dimensional workspaces

typically. While workspaces of larger dimension arise frequently, as in spatial manipula-

tors, it must be noted that such workspaces are impossible to visualize directly in three

dimensions. The common practice is then to obtain three-dimensional subsets that are

meaningful to the robot designer, like the reachable, constant-orientation, and constant-

position workspaces, which, as shown, can all be computed by the method. Furthermore,

while many previous methods are limited to obtain cross-sectional curves of the boundary

only, the proposed method will directly isolate all points of such boundary.

3. A general singularity-free path planner (Chapter 5). Due to the complexity of the

involved C-spaces, and of their singularity loci, previous planners have only considered

C-spaces with explicit parametrizations. In contrast, the approach presented here makes

no recourse to such parametrizations, and can thus be applied to any non-redundant

manipulator. The problem has been tackled by defining a system of equations implicitly

characterizing the singularity-free C-space of the manipulator, which avoids the need

of representing the singularity locus explicitly as an obstacle. The solution manifold

of this system can be freely navigated without fear of crossing any singularity of the

manipulator. Higher-dimensional continuation techniques are then used to progressively

construct an atlas of the component of this manifold that contains the start configuration,

until the goal configuration is reached, or path non-existence is proved at the resolution

of the atlas. Note that, if desired, the method can also be used to detect non-singular

transitions between assembly modes, and that it can also generate an exhaustive atlas of
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the singularity-free C-space component that is reachable from one configuration, which is

useful to resolve subsequent planning queries rapidly, or to visualize the singularity-free

workspace of the manipulator relative to any set of coordinates.

4. A wrench-feasible path planner for hexapods (Chapter 6). The approach is based on

imposing the resolvability of a six-dimensional set of wrenches at any point on the path.

It has been shown how all configurations satisfying this constraint can be encoded in

a system of equations whose solution set is a smooth manifold, which can be explored

to obtain the desired paths using higher-dimensional continuation techniques without

resorting to branch-switching procedures. As a by-product, the method implicitly ensures

that the screw Jacobian of the manipulator will be non-singular along the path, thus

allowing a full control of the platform motions at all times.

These results have been disseminated so far through the publications listed in Appendix A.

7.2 Future Research Directions

Some prospects for further research have been identified and are briefly discussed next:

1. Non-redundant manipulators. A natural continuation of this research would be to extend

the developments to also account for redundant manipulators. Their treatment was left

out of the scope of the present work, but Zlatanov already provides definitions and classi-

fication methods for the singularities of such manipulators [12], which would provide the

ideal basis for such an extension.

2. Collision constraints. The possible collisions between the various bodies of the manipu-

lator or with the environment have been neglected in the whole study. This can definitely

be the subject of further investigation, and possible research directions could include the

formulation of such constraints with equations of a mild form, to be able to add them to

the systems given in the thesis, or the randomization of the path planners of Chapters 5

and 6, following the spirit of [152] or [118], for example.

3. Detailed singularity analysis of complex spatial manipulators. The interpretation and

visualization of the various singularity sets through multiple C-space projections requires

a profound and detailed analysis that can now be tackled using the methods proposed in

this thesis. It would be interesting to further illustrate their power by applying them to the

analysis of specific challenging manipulators.
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4. Stratification of the singularity set. As noted in [12], ideally one would like to obtain a

stratification of the singularity set, which would decompose the set into non-intersecting

manifolds consisting of singularities of the same class, understanding a singularity class as

a possible combination of Zlatanov’s lower-level singularity types. This would be relevant

in the early stages of the design of a manipulator, to identify the exact physical phenomena

that occur at singular configurations, but also to study the behaviour of the mechanism at

special configurations. Preliminary work in this sense shows that the developments of this

thesis can be used to design a hierarchy of tests on the whole singularity set, which yields

sets of classes to which an identified singularity cannot belong [153]. The performance

of this approach and its application on spatial manipulators actually demands additional

work.

5. Exploitation of symmetries. Almost always, designers tend to produce symmetric ma-

nipulator designs. The presence of such symmetries usually translates into symmetries

of configuration space, and of the various singularity sets studied in this thesis. Previous

work in [61], and several manipulators herein studied provide particular examples of this

situation. It would thus be desirable to exploit such symmetries in order to focus the

computations on the strictest necessary portion of configuration space, in order to reduce

the overall computational burden as much as possible.

6. Dexterous workspaces. A class of workspaces not treated explicitly in this thesis are

dexterous workspaces, defined as the set of end-effector positions that can be reached with

any orientation within a given range. While computing such workspaces seems plausible

under the proposed approach, several modifications need to be introduced in order to

do so. Mathematical conditions allowing to identify the boundary of such workspaces

have already been investigated [154–159], which could be used as a starting point for the

development of this extension.

7. Variants of the path planners. The resolution completeness of the proposed path plan-

ners comes at the expense of a computational cost that scales exponentially with the

dimension of the explored manifold. To deal with higher-dimensional problems, however,

we could adapt the randomized approach in [160], which trades off resolution com-

pleteness by efficiency and probabilistic completeness, or the approach in [161] which,

additionally, guarantees asymptotic optimality. The evaluation of these variants in the

context of singularity-free or wrench-feasible path planning certainly deserves further

attention, but with the current state of the art we foresee the solvability of problems in

dimensions six and above in reasonable times.
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8. Clearance relative to the singularities. A point left open in the case of the singularity-free

path planner is how to establish the value of the threshold bmax governing the clearance

of the path relative to the singularity locus. As mentioned, this threshold has to be

determined case-wise, depending on the particular context of application, but specific

versions of the planner on particular manipulators may lead to systematic ways to set the

clearance. For example, Chapter 6 has shown how to do so on hexapod manipulators,

using the idea that the leg forces should remain within the allowed limits. It should

be possible to develop a dual strategy that fixes the clearance in terms of a maximum

position/orientation error allowed for the platform, which would be nice to have on

manipulators designed for fine-positioning applications for instance [43,120,162].

9. A general wrench-feasible path planner. The wrench-feasible path planner of Chapter 6

should be extendable to other mechanism topologies. Note that the method depends on

the availability of a force Jacobian relating the platform wrench with the joint forces or

torques. On hybrid-chain mechanisms, for example, this Jacobian can be obtained using

the reciprocal screw method developed in [12, Chapter 4], but larger mechanism classes

should be addressable using the results in [148].

10. Dynamical aspects. Some manipulators, like those used for fast pick-and-place opera-

tions, are designed to be operated at very high speeds, so that accounting for dynamical

effects in the proposed path planners would be of great interest. In particular, further

research should be conducted to allow the computation of the trajectory that minimizes

the travel time between the query configurations.
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