

Development and application of computational methodologies for Integrated Molecular Systems Biology

Hiren Mahendrabhai Karathia

Dipòsit Legal: L. 280-2013

http://hdl.handle.net/10803/110518

Development and application of computational methodologies for Integrated Molecular Systems Biology està subjecte a una llicència de Reconeixement-NoComercial 3.0 No adaptada de **Creative Commons**

Les publicacions incloses en la tesi no estan subjectes a aquesta llicència i es mantenen sota les condicions originals.

(c) 2012, Hiren Mahendrabhai Karathia

DEVELOPMENT AND APPLICATION OF COMPUTATIONAL METHODOLOGIES FOR INTEGRATED MOLECULAR SYSTEMS BIOLOGY

HIREN MAHENDRABHAI KARATHIA

DOCTOR OF PHILOSOPHY

SUPERVISOR: RUI ALVES

GROUP OF BIOMATHEMATICS AND BIOSTATISTICS,

DEPARTMENT DE CIÈNCIES MÈDIQUES BÀSIQUES

UNIVERSITY OF LLEIDA – IRB LLEIDA,

LLEIDA (CATALUÑA)

SPAIN

2012

શ્રી ૧Ι

||श्री गणेशाय नमः ||

શ્રી ગોપલો જયતે શ્રી લાલજી મહારાજ જયતે શ્રી કાળકા માં જયતે

या कुन्देन्दु तुषार हार धवला या शुभ्रवस्त्रावृता । या वीणावरदंड मंडितकरा या श्वेतपद्मासना ॥

Declaration

As required under the University of Lleida regulations, I hereby declare that this thesis work is not substantially the same as any that I have submitted or will be submitting for a degree or diploma or other qualification at this or any other university. Furthermore, this dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration, except where specified explicitly in the text.

Lleida, 4th September, 2012.

Signature

Hiren M. Karathia

I, Rui Carlos Vaqueiro de Castro Alves, Associate Professor in the Basic Medical Sciences Department of the University of Lleida, certify that the present study, entitled "Development and Application of Computational Methodologies for Integrated Molecular Systems Biology" and presented by Hiren Karathia for the award of the degree of Doctor, has been carried out under my supervision in the department where I am assigned.

Lleida, 4th September, 2012.

Signature

Rui Alves

Acknowledgements

This thesis dissertation would not have been possible without the guidance and the help of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of this study.

First and foremost, I dedicate this thesis to my "*Guru*" (supervisor), **Prof. Rui Alves**, who has supported me throughout my thesis with his patience and knowledge whilst allowing me the room to work in my own way. I attribute the level of my knowledge to his encouragement and effort. Without him this thesis work would not have been completed or written. One simply could not wish for a better or friendlier supervisor.

I would like to thank **Prof. Albert Sorribas**, who has always provided me friendly and familial atmosphere. I would also like to thank **Ester Villaprinyó**, who has provided friendly and social atmosphere inside as well as outside the department. I would like to thank **Montserrat Rue, Montserrat Martinez, Carles Forné, Anabel Usie, Alexandra** for being so much cooperative colleagues. Without them, I would have been lonely in the lab.

I cannot forget support of my friends in Lleida. I would always keep great memories of time that I spent with **Jordi Rosse, Ernesto, Paul, Jose, Marta, Jordi, Uxue, Bupesh, Arindam, Sarvanam** and many more. I thank to all of them for always providing me with joyful support. I would also thankful to our collaborators, **Francesc Solsona, Ivan Texidó**, who provided technical supports and help in establishing back end server of Homol-MetReS.

I would also like to thank to **AGAUR**, which has been source of my fellowship during the thesis and Ministry of Education and Science, Spain for providing support of partial fundings for development of Homol-MetReS.

I am so lucky that **Falguni Karathia** is my wife and she has been with me during my stay in Lleida and during my Ph.D. program. She has always been cheering me up and stood by me through the good times and bad. My research would not have been possible without her help. I also devote achievements to my **Parents**, **grandmother**, **Harshit**, **Nilesh**, **Megha**, **Sanjay Kumar**, **parents-in-law**, **brothers-in-law**, the dearest sister, **Arti** and my nieces (**Devangi and Smeet**). They were always supporting me and encouraging me with their best wishes.

Last but not the least, one above all of us, I devote all these to the ever present **Gopal lalji** and **Lalaji maharaj** for answering my prayers and always being with me to provide strength for finishing this thesis.

Publications, Posters, and Congress Presentations

Published Papers:

Hiren Karathia, Ester Vilaprinyo, Albert Sorribas and Rui Alves, 2011, "*Saccharomyces cerevisiae as a model organism: a comparative study.*" PLoS One 6(2): e16015 (Chapter 2 of this thesis).

Papers included in this thesis that have been submitted or are in preparation:

Hiren Karathia, Anabel Usie, Ivan Teixido, Ester Vilaprinyo, Albert Sorribas, Francesc Solsona and Rui Alves, "*A human centric comparison of eukaryotic proteomes: Implications for the study of human biology.*"

Hiren Karathia, Ivan Teixidó, Anabel Usie, Ester Vilaprinyo, Albert Sorribas, Francesc Solsona and Rui Alves, "*Homol-MetReS: An integrated framework tool to study evolutionary molecular systems biology.*"

Posters and oral talks in meetings:

Hiren Karathia, Anabel Usie, Ester Vilaprinyo, Francesc Solsona and Rui Alves, 2012, "Homol-MetReS: A web application for integration between molecular systems biology and evolutionary biology", Oral talk in Student symposium at XI Jornadas de Bioinformática, Barcelona.

Hiren Karathia, Anabel Usie, Ester Vilaprinyo, Albert Sorribas., Francesc Solsona and Rui Alves, 2011, "*Homol-MetReS: Network Reconstruction Based on Whole Proteome Comparisons*", Poster presentation at ICMSB 2011 -XIIth International Congress on Molecular Systems Biology, Lleida, Spain.

Hiren Karathia and Rui Alves, 2010, "A tool for comparison of complete proteomes between pairs of organisms", Poster presentation at 9th European Conference on Computational Biology, Ghent, Belgium.

Hiren Karathia and Rui Alves, 2010, "Saccharomyces cerevisiae as a model organism: Strengths & drawbacks", Poster presentation at European Molecular Biology Organization (EMBO), Barcelona, Spain.

Published collaborations that led to papers to be included in theses by other people:

Baldiri Salvado, Ester Vilaprinyo, Hiren Karathia, Albert Sorribas and Rui Alves, 2012. "*Two component systems: physiological effect of a third component.*" PLoS One 7(2): e31095.

Baldiri Salvado, Hiren Karathia, Anabel Usie Chimenos, Ester Vilaprinyo, Stig Omholtc, Albert Sorribas and Rui Alves, 2011, "*Methods for and results from the study of design principles in molecular systems.*" Math Biosci 231(1): 3-18.

Anabel Usié, Hiren Karathia, Ivan Teixidó, Joan Valls, Xavier Faus, Rui Alves, and Francesc Solsona1, 2011, "*Biblio-MetReS: a bibliometric network reconstruction application and server*." BMC Bioinformatics 12: 387.

Oussama Abdelli, Anabel Usié, Hiren Karathia, Jordi Vilaplana, Francesc Solsona and Rui Alves, "*Parallelizing Biblio-MetReS, a data mining tool.*" XXII Jornadas del paralelismo, La Laguna 7-9 Sep, 2011.

Abbreviations

2D-PAGE	2 Dimensional Polyacrylamide Gel Electrophoresis
Α	Class of Absent Proteins
AIDS	Acquired Immune Deficiency Syndrome
AL	Alignment Length
AP	Absent Protein
BLAST	Basic Local Alignment Sequence Tool
CaMK	Calcium/Calmodulin-dependent protein Kinase
CCA	Common Component Architecture
CDC	Cell Division Cycle
CEMP	Cementum Protein
СоА	Coenzyme A
D	Class of Domain Ortholog Proteins
DEFB4	Defensin Beta 4
DOCK	Dedicator of Cytokinesis
DP	Domain ortholog Protein
E.C	Enzyme Commission
EGFR	Epidermal Growth Factor Receptor
FO	Class of Functional Orthologous proteins
FOXP	Forkhead box P
GHRL	Ghrelin/obestatin prepropeptide
GO	Gene Ontology
GPI	Glycosylphosphatidylinositol
GST	General Systems Theory
Н	Homologues Class

HD	Hamming Distance
HMHB1	Histocompatibility (minor) HB-1
HP	Homologous Protein
HPRD	Human Protein Reference Database
HTTP	Hypertext Transfer Protocol
IR	Illegitimate Recombination
IVF	In-Vitro Fertilization
KEGG	Kyoto Encyclopaedia of Genes and Genomes
KISS	KISSpeptin
МАРК	Mitogen Activated Protein Kinase
M-M	Many-to-Many
M-O	Many-to-One
MSML	Molecular Systems Mark-up Language
NCBI	National Centre for Biotechnology Information
NHD	Normalized Hamming Distance
NHEJ	Non-Homologous End-Joining
NMR	Numerical Magnetic Resonance
0	Class of Functional Orthologous proteins
Og	Class of General Orthologous proteins
О-М	One-to-Many
0-0	One-to-One
OP	Orthologous Protein
ORM	Object Relation Mapping
PAEP	Progestagen-Associated Endometrial Protein
PERL	Practical Extraction and Report Language
PL	Protein Length

Abbreviations

PLN	PhosphoLambaN
RSK	Ribosomal S6 Kinase
RXR	Retinoid X Receptor
SBML	Systems Biology Mark-up Language
ScCAGs	Saccharomyces cerevisiae Clusters of Absent Genes
ScCHGs	Saccharomyces cerevisiae Clusters of Homologues
ScCOGs	Saccharomyces cerevisiae Clusters of Orthologs
SCOP	Structural Classification of Protein
SGD	Saccharomyces Genome Database
SLN	Sarcolipin
SNARE	Soluble N-ethylmaleimide-sensitive factor Attachment Protein Receptor
SP	Significant Protein
SPRR	Small Proline-Rich protein
STD	Sexually Transmitted Disease
TAT	Trans-Activator of Transcription
TCA	Tri Carboxylic Acid
THMB	Thymosin Beta
TIMM	Translocase of Inner Mitochondrial Membrane
TNRFRSF	Tumour Necrosis factor Receptor Superfamily
TOP1	Topoisomerase 1
TOR	Target of Rapamycin
UQCR	UbiQuinol-Cytochrome c Reductase
ZODB	Zope Object Database

Glossary

Glossary

Glossary

Alternative Organism - any non-classical model organisms from any biological kingdom from which new biological knowledge can be extracted with minimum constraints.

Biological System - a group of common sub-systems that interact to perform and regulate a certain biological task.

Cluster of Absent Proteins - collection of query proteins with no homologous sequences in a target proteome.

Cluster of Homologues - collection of proteins from multiple proteomes that meet sequence homology criteria.

Cluster of Orthologs - collection of proteins from multiple proteomes that meet sequence orthology criteria.

Complete Proteome - entire set of proteins coded in a genome.

Cybernetics - a trans-disciplinary approach for exploring regulatory systems, their structures, constraints, and possibilities.

Dynamical Systems Theory - an area of mathematics used to describe the behavior of complex dynamical systems, usually by employing differential or difference equations.

E-value or Expect value (E) - a parameter that describes the number of similar sequence hits one can "expect" to see by chance when searching a sequence database of a particular size. The lower the E-value, the more "significant" the match is between two analyzed sequences.

F-score - a composite score proposed to evaluate most likely ortholog pairs.

Functional Genome - complete set of genes that are required to build a functional organism.

Functional Module - sets of molecules that are involved in a given biological process.

Genome Project - a scientific research project designed to study and identify all of the genes in an organism's genome, to determine the base-pair sequences in human DNA, and to store this information in computer databases.

Hamming Distance - distance between two vectors of equal length in the number of positions at which the corresponding numerical symbols are different.

Homologous Protein – proteins that diverged from a common ancestor.

Model Organism - a representative organism that can be used to study a given process whose results can be extended to other organisms.

Molecular Organization - sets which comprise one or more molecular entity and that assemble in order to form cellular phenomena.

Omics - informally referred to a field of study in biology ending in -omics, such as genomics, proteomics or metabolomics.

Orthologous Proteins - proteins that have diverged from a common ancestor and have the same function in different species.

Predictive Biology - an inter-disciplinary area of biological predictions based on available genomics and proteomics data.

Protein Annotation - an act or process of furnishing critical commentary or explanatory notes to describe a protein X in terms of topic Y.

Protein Ontology – a classification of proteins for their nature of being, existence, or reality, as well as the basic categories of being and their relations.

Proteome Hierarchical Information - collection of proteins arrangements in a way in which each protein is represented as being "above," "below," or "at the same level as" one another at sequence diversity level.

Proteome Spatial Information - collection of information for expression, localization, synthesis, degradation, and turnover rates of endogenously expressed, untagged proteins in different subcellular compartments.

Proteome Functional Information - collection of information for interaction mapping, interaction network and cellular functions in signaling pathway/networks.

Proteome Structural Information - complete information of entire proteins in a proteome in context of the proteins amino acid sequences.

Proteomics - is the large-scale study of proteins, particularly their structures and functions.

Sequence Alignment - a way of arranging the sequences of DNA, RNA, or protein to identify regions of similarity that may be a consequence of functional, structural, or evolutionary relationships between the sequences.

Sequence Identity or Similarity - criteria used for measuring how equivalent two sequences are over the span of an alignment of proteins, DNA or RNA.

Systems Biology - a biology-based inter-disciplinary field of study that focuses on complex interactions within biological systems, using a more holistic perspective (holism instead of the more traditional reductionism) approach to biological and biomedical research.

Theoretical Biology - a scientific research field with a range of applications in biology, medicine and biotechnology. The field may be referred to as mathematical biology or biomathematics to stress the mathematical side, or as theoretical biology to stress the biological side

Summary

Summary

English

The aim of the work presented in this thesis was the development and application of computational methodologies that integrate sequence, functional, and genomic information to provide tools for the reconstruction, annotation and organization of complete proteomes in such a way that the results can be compared between any number of organisms with fully sequenced genomes.

Methodologically, I focused on identifying molecular organization within a complete proteome of a reference organism, linking each protein in that proteome to proteins of other organisms in such a way that anyone can compare the two proteomes at spatial, structural, functional, cellular tissue, development or physiology levels. Such linkage between proteomes is based on estimations of sequence similarity between the proteins in the reference proteome and the proteins in the alternative proteome. The similarities are used to link functional information between proteomes and identify both, the most likely functional orthologs and the proteins that are absent in either of the organisms with respect to the other. This methodology was implemented in a pipeline that integrates a central database with independent modules for computation, annotation, analysis, and visualization of results.

The methodology was applied to address the issue of identifying appropriate model organisms to study different biological phenomena. To do so we made and partially tested the hypothesis that "similarity between the set of proteins that comprise the network responsible for a given biological phenomenon in two organisms is a reasonable proxy for similarity in the dynamics and adaptive responses of those networks". This was done by comparing the protein sets involved in different biological phenomena in *Saccharomyces cerevisiae* and *Homo sapiens* to corresponding sets in other organisms with fully sequenced genomes to find that, whenever experimental data was available, our hypothesis was consistent with the data. Furthermore, our analysis could explain differences in phenotypes between similar species of organisms.

This thesis concludes by presenting a web server, Homol-MetReS, on which the methodology is implemented. It provides an open source environment to the scientific community on which they can perform multi-level comparison and analysis of proteomes.

Español

El objetivo del trabajo presentado en esta tesis fue el desarrollo y la aplicación de metodologías computacionales que integran el análisis de la secuencia y de la información funcional y genómica, con el objetivo de reconstruir, anotar y organizar proteomas completos, de tal manera que estos proteomas se puedan comparar entre cualquier número de organismos con genomas completamente secuenciados.

Metodológicamente, me he centrado en la identificación de la organización molecular dentro de un proteoma completo de un organismo de referencia, vinculando cada proteína del proteoma a las proteínas de otros organismos, de tal manera que cualquiera pudiera comparar las siguientes características entre proteomas: distribución de las proteínas a nivel espacial, tejidular, funcional, fisiológico y de desarrollo del organismo . Tal conexión entre proteomas se basa en estimaciones de similitud de secuencia entre las proteínas en el proteoma de referencia y las proteínas en el proteoma alternativo. Las similitudes se utilizan para transferir información funcional entre proteomas e identificar tanto los ortólogos más similares en funcionalidad como las proteínas que están ausentes en cualquier organismo con respecto a algún otro. Esta metodología se aplicó en un "pipeline" que integra una base de datos central con módulos independientes para el cálculo, anotación, análisis y visualización de los resultados.

La metodología se aplicó para abordar la cuestión de la identificación de organismos modelo adecuados para estudiar diferentes fenómenos biológicos. Para ello hemos realizado, y parcialmente validado, la hipótesis de que "la similitud entre el conjunto de proteínas que conforman la red responsable de un determinado fenómeno biológico en dos organismos se corresponde de forma razonable con una similitud en la dinámica y las respuestas adaptativas de las redes". Esto se hizo comparando conjuntos de proteínas involucradas en diferentes fenómenos biológicos en *Saccharomyces cerevisiae* y *Homo sapiens* con los conjuntos correspondientes de otros organismos con genomas completamente secuenciados. Se observó que nuestra hipótesis era consistente con los datos en los casos en que existe información experimental. Además, nuestro análisis podría explicar las diferencias en los fenotipos similares entre las especies de organismos.

La tesis concluye con la presentación de un servidor web, Homol-MetReS, en el que se implementa la metodología. Homol-MetReS proporciona un entorno de código abierto a la comunidad científica en la que se pueden realizar múltiples niveles de comparación y análisis de proteomas.

Català

L'objectiu del treball presentat en aquesta tesi va ser el desenvolupament i l'aplicació de metodologies computacionals que integren l'anàlisis de informació sobre seqüències proteiques, informació funcional i genòmica per a la reconstrucció, anotació i organització de proteomes complets, de manera que els resultats es poden comparar entre qualsevol nombre d'organismes amb genomes completament seqüenciats.

Metodològicament, m'he centrat en la identificació de l'organització molecular dins d'un proteoma complet d'un organisme de referència, associant cada proteïna del proteoma a les proteïnes funcionalment corresponents en altres organismes, de manera que qualsevols dos proteomes es poden comparar respecte a la distribució de les seves proteïnes en las següents dimensions: espacial, estructural, funcional, teixidular, el desenvolupament o els nivells de la fisiologia. Tal associació entre proteomes es basa en estimacions de similitud de seqüència entre les proteïnes en el proteoma de referència i les proteïnes en el proteoma alternatiu. Les similituds s'utilitzen per transferir informació funcional entre proteomes i identificar tant, els orthologs més similars funcionalment com les proteïnes que estan absents en qualsevol dels organismes pel que fa a l'altre. Aquesta metodologia es va aplicar en un pipeline que integra una base de dades central amb mòduls independents per al càlcul, anotacions, anàlisi i visualització dels resultats.

La metodologia es va aplicar per abordar la qüestió de la identificació de organismes model adequats per a estudiar diferents fenòmens biològics. Per això hem realitzat, i parcialment testat, la hipòtesi que "la similitud entre el conjunt de proteïnes que conformen la xarxa responsable d'un determinat fenomen biològic en dos organismes es correspon de forma raonable amb una similitud en la dinàmica i les respostes adaptatives de les xarxes". Això es va fer mitjançant la comparació d'un conjunt de proteïnes involucrades en diferents fenòmens biològics en *Saccharomyces cerevisiae* i *Homo sapiens* amb els conjunts corresponents d'altres organismes amb genomes completament seqüenciats. Vam trobar quela nostra hipòtesi era consistent amb les dades experimentals disponibles en la literatura. A més, el nostre anàlisi podria explicar les diferències en els fenotips similars entre les espècies d'organismes.

La tesi conclou amb la presentació d'un servidor web, Homol-MetReS, en què s'implementa la metodologia. Homol-MetReS proporciona un entorn de codi obert a la comunitat científica en què es poden realitzar múltiples nivells de comparació i anàlisi de proteomes.

Gujarati

આ સ્નાતક ઉપાધી મેળવવા માટે લખેલા આ મહાનિબંધ કાર્ચ નો મૂળ હેતુ ગણકચંત્ર (કમ્પ્ચુટર) દ્રારા પદ્ધતિ અને તેનો વ્યવસ્થિત ઉપયોગ એવી રીતે પ્રસ્થાપિત કરવાનો હતો કે જેના દ્રારા કોઈ પણ ઔજસદ્રવ્ય (પ્રોટેઈન) માં રહેલા બઠુધા અણુસમુદાયો નો ક્રમ, તેના દ્રારા થતું જૈવિક કાર્ચ, અને આનુંવાન્શિક ને લગતી માહિતી આપતું એક વ્યવસ્થિત માળખાકીય યંત્ર વૈજ્ઞાનિક સમાજ ને આપી શકાય. આ યંત્ર માંથી બહાર નીકળતી માહિતીઓનો અભ્યાસ વૈજ્ઞાનિકો એવી રીતે કરી શકે કે જેના દ્રારા કોઈ પણ સજીવ કોષ માં રહેલા સંપૂર્ણ જૈવિક બંધારણ અને તેની તુલાનાકીય માહિતી, તેઓનું નામકરણ, તેની અંદર રહેલી માહિતી આપલે ની સંપૂર્ણ માળખાકીય વ્યવસ્થા ની તુલના, બીજા કોઈ સજીવ નાં કોષો માં રહેલા માળખાકીય વ્યવસ્થા સાથે કરી શકાય.

મારા અભ્યાસ નો આરંભિક ઉદ્દેશ બઢુ પ્રચલિત જીવો નો અભ્યાસ, કે જેનો અભ્યાસ વૈજ્ઞાનિક સૃષ્ટી માં બઢુ જ થાય છે, તેઓનાં વિશ્લેષણો ને કેન્દ્ર સ્થાને રાખીને કરવાનો છેઅમોએ . સૌ પ્રથમ આ જીવ માં રઠેલા બધા જ પ્રોટેઈન માં રઠેલા ક્રમિક અણુસમુદાયો ને એક પછી એક બીજા જીવ માં રઠેલા પ્રોટેઈનો નાં અણુસમુદાયો સાથે એવી રીતે સરખાવામાં માં આવેલ છે કે દરેક બે પ્રોટેઈનો ની એક જોડી બની રઠે. ત્યારબાદ, દરેક પ્રોટેઈન ની જોડીઓ ને એક સમાનતા ધરાવતા સમૂઠો માં જમા કરવામાં આવેલ છે કે જેની અંદર દરેક પ્રોટેઈન ની જોડીઓ માં રઠેલા અણુસમુદાયો નાં ક્રમ નું પૃત્થ્કરણ કોષો માં રઠેલા કોઈ એક કાર્ય ના સંદર્ભ માં કરી શકાય. આવા સમૂઠો મા રઠેલ દરેક પ્રોટેઈન ની જોડીઓ નો ઉપયોગ બાદમાં તેના જે તે માતૃત્વ કોષ સાથે નીશ્બત ધરાવતા સિદ્ધાંતો, જેવા કે, અવકાશિકતા, કાર્યશીલતા, ભૌતિકતા અને એક કોષ માંથી બીજા કોષ નાં ઉત્પાદન કાર્ય ક્ષમતા વગેરે નાં પૃત્થ્કરણ માટે કરવામાં આવેલ છે. આ પ્રકારની વિધિયાત્મક માઢિતી દ્વારા મોટે ભાગે એવું જાણી શકાય છે કે કથા કોષો નાં સીદ્ધાંતો સાથે સંકળાયેલા પ્રોટીનો કથા બીજા સજીવો ના જૈવિક કોષો માં હાજર છે અને કથા સજીવો ના જૈવિક કોષો માં ગેર હાજર છે. આ પદ્ધતિમાં શ્રુન્ખ્લાકીય ગણતરી દ્વારા પ્રાપ્ત કરેલી માઢિતીઓ, જેવી કે, પ્રોટેઈનો માટે નાં માપાંકો, માનદંડો, નામકરણ, વિશ્લેષણ, અને તેના પરિણામો નાં દ્રશ્યો વગેરે ને લગતી માઢિતીઓ એક સાથે અને એક સમૂઠ માં કેન્દ્રી કર્મચ કરી કમ્પ્યુટર નાં ડેટાબેઝ સાથે સલગ્ઠ કરવામાં આવેલી છે.

આ પદ્ધતિ દ્વારા સજીવ ની જૈવિક પ્રતિકૃતિ ઓળખવા માટે અને તેઓમાં રહેલી વિવિધ જૈવિક ઘટના નાં અભ્યાસ ના મુદ્દાને ઉદાહરણ સ્વરૂપે લાગુ કરવામાં આવેલ છે. આમ કરવા માટે, અમે એક આંશિક પૂર્વધારણા ને ધ્યાન માં લીધી હતી કે "જે પ્રોટીનો નો સમૂઠ આપેલ બે સજીવો નાં જૈવિક ઘટના માટે જવાબદાર હોય અને તેઓના બઠ્ઠધા અણુસમુદાયો સમાનતા ધરાવતા હોય, તેઓ આ જૈવિક ઘટનાઓ ની ગતિશીલતા અને તે માળખા નાં અનુકૂલનશીલતા ની સામ્યતા માટે પણ એક પણ એક બીજા ની પ્રતિકૃતિ સમાન છે". આ પૂર્વધારણા નાં પ્રયોગિક પુરાવા માટે અમે બે સજીવો ને પ્રતિકૃતી ની સાબિતી માટે ઉદાહરણ સ્વરૂપે લીધા છે અને તેને સૃષ્ટિ ની દરેક જાતી નાં સજીવો નાં આનુંવાન્શિકતા અને કોષો ની કાર્યક્શીલતા અને જૈવિક ઘટના માટે જવાબદાર સમૂહ્યે વચ્ચે સમાનતા ધરાવતો આભ્યાસ હાથ ધર્યો છે. આ પૂર્વધારણા નાં પ્રયોગિક પુરાવા માટે અમે એવું પણ સાબિત કરી શક્યા છીએ કે જ્યારે પણ પ્રાયોગિક માહિતી ઉપલબ્ધ હોય, અમારા વિશ્લેષણ ની માહિતી આ માહિતીઓ સાથે સુસંગત મળતી આવે છે. આ ઉપરથી અમાટું તારણ એ નીકળે છે કે અમારી પદ્ધતિ અને તેના વિશ્લેષણ દ્વારા કોઈ પણ સજીવ ના જૈવિક કાર્ય ના સંશોધન બીજા સજીવ ની સરખામણી નાં આધારે કરવા માટે ઉપયોગ માં લઇ શકાય છે.

આ મહાનિબંધ નું અંતિમ તારણ અમે આ સંપૂર્ણ અભ્યાસ પદ્ધતિ ને એક ગણ યંત્ર ઉપર વ્યવસ્થિત રીતે સંસ્થાપન કરીને ને સંપૂર્ણ કરેલ છે. જેનું નામ "હોમોલ-મેતરેસ" છે. આ ગણક યંત્ર પદ્ધતિ દ્વારા કોઈ પણ વૈજ્ઞાનિક કોઈ પણ જૈવિક સમુદાય ની પ્રતિકૃતિ નો અભ્યાસ બીજા જૈવિક સમુદાય ના ઉદાહરણ સ્વરૂપે કરી શકે છે કે જેના દ્વારા વૈજ્ઞાનિક સમાજ ને એક નવાજ પ્રકાર નો વૈજ્ઞાનિક અભિગમ પ્રાકટ્ય થઇ શકે અને તેના વિષેની માહિતીઓ ની આપલે પણ થઇ શકે.

Table of Contents

Declaration	i
Acknowledgements	iii
Publications, Posters, and Congress Presentations	V
Published Papers:	v
Papers included in this thesis that have been submitted or are in preparation:	
Posters and oral talks in meetings:	
Published collaborations that led to papers to be included in theses by other people:	
Abbreviations	vii
Glossary	11
Summary	XV
English	xvi
Español	xvii
Català	xviii
Gujarati	xix
Table of Contents	xxi
List of Figures	XXV
List of Supplementary Figures	xxvi
List of Tables	xxviii
List of Supplementary Tables	xxix
Objectives	xxxi
Chapter 1. Introduction	1
1.1. Biological Systems	4
1.2. Systems Biology	6
1.3. Fruits of Genome Projects	7
1.4. Proteome	11
1.5. Thesis Organization	14
Chapter 2. Saccharomyces cerevisiae as a Model Organism: A Comparat	ive Study_17
2.1. Abstract	
2.1.1. Background	18
2.1.2. Methodology/Principal Findings	
2.1.3. Conclusions/Significance	
2.2. Introduction	
2.3. Results	
2.3.1. Strategy for the comparison of different processes in different organisms	20

	2.3.2.	Functional comparison of the full <i>S. cerevisiae</i> protein complement to that of archaea	
	2.3.3.	bacteria and eukaryotes Functional comparison of biological processes and pathways between <i>S. cerevisiae</i> ar	
	2.3.3.	organisms	
	2.3.4.	Validating the predictions	
2.4.		sion	
	2.4.1.	The rational choice of model organisms and its technical limitations	
	2.4.2.	S. cerevisiae as a model organism	
2.5.	Conclu	lsion	
2.6.	Mater	ials and Methods	
	2.6.1.	Selection of genome sequences	
	2.6.2.	Homology analysis	
	2.6.3.	Orthology analysis	
	2.6.4.	Classification of clusters according to pathways and biological processes	
	2.6.5.	Calculation of the Hamming distance	
2.7.	Suppo	rting Materials	
	2.7.1.	Appendix 1 - Detailed functional analysis of S. cerevisiae as a model organism	
	2.7.2.	Supplementary Figures	
	2.7.3.	Supplementary Tables	
	2.7.4.	Supplementary File containing the ScCOGs	
	2.7.5.	Supplementary File containing the ScCHGs	
2.8.	Ackno	wledgments	
		r Contributions A human centric comparison of eukaryotic proteomes: Implications	
aptei	r 3.	A human centric comparison of eukaryotic proteomes: Implications the study of human biology	for
apter 3.1.	r 3.	A human centric comparison of eukaryotic proteomes: Implications the study of human biology	fo1
apter 3.1. 3.2.	r 3.	A human centric comparison of eukaryotic proteomes: Implications the study of human biology	fo1
apter 3.1. 3.2.	r 3. Abstra Introd Result	A human centric comparison of eukaryotic proteomes: Implications the study of human biology	fo1
3.1. 3.2.	r 3	A human centric comparison of eukaryotic proteomes: Implications the study of human biology	 for
apter 3.1. 3.2.	r 3	A human centric comparison of eukaryotic proteomes: Implications the study of human biology	
3.1. 3.2.	Abstra Abstra Introd Result 3.3.1. 3.3.2. 3.3.3.	A human centric comparison of eukaryotic proteomes: Implications the study of human biology	
3.1. 3.2.	Abstra Introd Result 3.3.1. 3.3.2. 3.3.3. 3.3.4.	A human centric comparison of eukaryotic proteomes: Implications the study of human biology	
3.1. 3.2.	Abstra Introd Result 3.3.1. 3.3.2. 3.3.3. 3.3.4. 3.3.5.	A human centric comparison of eukaryotic proteomes: Implications the study of human biology	
3.1. 3.2.	Abstra Abstra Introd Result 3.3.1. 3.3.2. 3.3.3. 3.3.4. 3.3.5. 3.3.6.	A human centric comparison of eukaryotic proteomes: Implications the study of human biology	
3.1. 3.2.	Abstra Abstra Introd Result 3.3.1. 3.3.2. 3.3.3. 3.3.4. 3.3.5. 3.3.6. 3.3.7.	A human centric comparison of eukaryotic proteomes: Implications the study of human biology	
3.1. 3.2.	Abstra Abstra Introd Result 3.3.1. 3.3.2. 3.3.3. 3.3.4. 3.3.5. 3.3.6. 3.3.7. 3.3.8.	A human centric comparison of eukaryotic proteomes: Implications the study of human biology	
3.1. 3.2.	Abstra Introd Result 3.3.1. 3.3.2. 3.3.3. 3.3.4. 3.3.5. 3.3.6. 3.3.7. 3.3.8. 3.3.9.	A human centric comparison of eukaryotic proteomes: Implications the study of human biology	
apter 3.1. 3.2.	Abstra Introd Result 3.3.1. 3.3.2. 3.3.3. 3.3.4. 3.3.5. 3.3.6. 3.3.7. 3.3.8. 3.3.9.	A human centric comparison of eukaryotic proteomes: Implications the study of human biology	
apter 3.1. 3.2.	Abstra Abstra Introd Result 3.3.1. 3.3.2. 3.3.3. 3.3.4. 3.3.5. 3.3.6. 3.3.7. 3.3.8. 3.3.9. 3.3.10.	A human centric comparison of eukaryotic proteomes: Implications the study of human biology	for
3.1. 3.2.	Abstra Abstra Introd Result 3.3.1. 3.3.2. 3.3.3. 3.3.4. 3.3.5. 3.3.6. 3.3.7. 3.3.8. 3.3.9. 3.3.10. 3.3.11.	A human centric comparison of eukaryotic proteomes: Implications the study of human biology	
3.1. 3.2.	Abstra Abstra Introd Result 3.3.1. 3.3.2. 3.3.3. 3.3.4. 3.3.5. 3.3.6. 3.3.7. 3.3.8. 3.3.9. 3.3.10. 3.3.11. 3.3.12.	A human centric comparison of eukaryotic proteomes: Implications the study of human biology	foi
3.1. 3.2. 3.3.	Abstra Abstra Introd Result 3.3.1. 3.3.2. 3.3.3. 3.3.4. 3.3.5. 3.3.6. 3.3.7. 3.3.8. 3.3.9. 3.3.10. 3.3.11. 3.3.12. 3.3.13.	A human centric comparison of eukaryotic proteomes: Implications the study of human biology	
3.1. 3.2. 3.3.	Abstra Abstra Introd Result 3.3.1. 3.3.2. 3.3.3. 3.3.4. 3.3.5. 3.3.6. 3.3.7. 3.3.8. 3.3.9. 3.3.10. 3.3.11. 3.3.12. 3.3.13.	A human centric comparison of eukaryotic proteomes: Implications the study of human biology	

Table of Contents

	3.5.1.	Proteome sequences	151
	3.5.2.	Homology analysis	
	3.5.3.	Proteome Comparison and Classification	
	3.5.4.	Functional orthology and duplication analysis	
	3.5.5.	Functional re-annotation of the human proteome	
	3.5.6.	Calculating the difference between corresponding sets of proteins in different organisms	
3.6.	Supp	orting Materials	157
	3.6.1.		
Chapter	r 4.	Homol-MetReS: An integrated framework tool to study evolutionary	
		molecular systems biology	179
4.1.	Abstr	act	180
4.2.	Intro	duction	181
4.3.	Resul	lts	183
	4.3.1.	Homol-MetReS	
	4.3.2.	Using Homol-MetReS	
	4.3.3.	Case studies in Homol-MetReS: Saccharomyces cerevisiae	
	4.3.4.	Case studies in Homol-MetReS: Malaria Parasites	
4.4.	Discu	ssion	198
4.5.	Mate	rials & Methods	202
	4.5.1.		
	4.5.2.	Internal database	202
	4.5.3.	Proteome Comparison	204
	4.5.4.	Metric for prediction of orthologs	205
	4.5.5.	Network Comparison	206
	4.5.6.	Management of Homol-MetReS jobs and user-specific information	207
4.6.	Supp	orting Materials	209
	4.6.1.	Appendix 2 - Details for implementation of Homol-MetReS Overall conceptual implementation of Homol-MetReS	209
	4.6.2.	-	
	4.6.3.		
Chapter		Final Discussion	
-			
5.2.	Gene	ral discussion and future perspectives	225
5.3.	Possi	ble pitfalls and how to avoid them	230
5.4.	Final	Remarks	231
Chapter	r 6.	Conclusions	233
Bibliog	raphy		237
Index	,		259
Inuca			

List of Figures

FIGURE 1.1	MODULARITY AND SYSTEMS BIOLOGY IN LIVING BEINGS
FIGURE 1.2	Relational scheme used to integrate protein information of cells 10
FIGURE 2.1	DETAILS OF A HEAT-MAP REPRESENTATION SHOWING HOW DISTANT EACH ORGANISM IS
	FROM S. CEREVISIAE WITH RESPECT TO EACH INDIVIDUAL KEGG PATHWAY
FIGURE 2.2	DETAILS OF A HEAT-MAP REPRESENTATION SHOWING HOW DISTANT EACH ORGANISM IS
	FROM S. CEREVISIAE WITH RESPECT TO EACH BIOLOGICAL PROCESS FROM THE GOSLIM
	CLASSIFICATION
FIGURE 2.3	DETAILS OF A HEAT-MAP REPRESENTATION SHOWING HOW DISTANT EACH ORGANISM IS
	FROM S. CEREVISIAE WITH RESPECT TO EACH MOLECULAR FUNCTION FROM THE GOSLIM
	CLASSIFICATION
FIGURE 2.4	DETAILS OF A HEAT-MAP REPRESENTATION SHOWING HOW DISTANT EACH ORGANISM IS
	FROM S. CEREVISIAE WITH RESPECT TO EACH CELLULAR COMPONENT FROM THE GOSLIM
	CLASSIFICATION
FIGURE 2.5	SUMMARY OF THE PROCESS USED TO BUILD SCCOGS, SCCHGS AND SCCAGS
FIGURE 3.1	METHOD FOR THE HUMAN CENTRIC PROTEOME COMPARISONS
FIGURE 3.2	COARSE ANALYSIS OF PROTEIN CONSERVATION IN EUKARYOTES WITH FULLY SEQUENCED
	GENOMES. (S-CLUSTER AND O-CLUSTER)
FIGURE 3.3	COARSE ANALYSIS OF PROTEIN CONSERVATION IN EUKARYOTES WITH FULLY SEQUENCED
	GENOMES. (H-CLUSTER)
FIGURE 3.4	ANALYSIS OF PROTEIN CONSERVATION IN EUKARYOTES WITH FULLY SEQUENCED GENOMES.
	(<i>OG</i> -CLUSTER)125
FIGURE 3.5	ANALYSIS OF PROTEIN CONSERVATION IN EUKARYOTES WITH FULLY SEQUENCED GENOMES.
	(<i>D</i> -CLUSTERS)
FIGURE 3.6	ANALYSIS OF PROTEIN CONSERVATION IN EUKARYOTES WITH FULLY SEQUENCED GENOMES.
	(<i>O</i> -CLUSTERS)
FIGURE 3.7	SUMMARY OF PROTEIN CONSERVATION FOR THE HUMAN PROTEOME ASSOCIATED TO
	SPECIFIC TISSUES
FIGURE 3.8. A	SUMMARY OF PROTEIN CONSERVATION FOR THE HUMAN PROTEOME ASSOCIATED TO
	SPECIFIC LIGAND FUNCTIONS
FIGURE 3.8. B	SUMMARY OF PROTEIN CONSERVATION FOR THE HUMAN PROTEOME ASSOCIATED TO
	SPECIFIC RECEPTOR FUNCTIONS
FIGURE 3.9	SUMMARY OF PROTEIN CONSERVATION FOR THE HUMAN PROTEOME ASSOCIATED TO
	SPECIFIC METABOLIC FUNCTIONS
FIGURE 3.10	SUMMARY OF COMPARATIVE STUDY OF PROTEIN CONSERVATION BETWEEN S. CEREVISIAE
	AND HUMAN PROTEOMES ASSOCIATED TO ALL 20 AMINO ACID BIOGENESIS PATHWAYS 139

List of Figures & Tables

FIGURE 3.11	SUMMARY OF PROTEIN CONSERVATION OF UNIQUE AND DUPLICATED PROTEINS IN FO -	
	CLUSTERS.	145
FIGURE 3.12	SUMMARY OF PROTEIN CONSERVATION IN FO -clusters for proteins associated to	
	HIV-TAT PROTEINS.	147
FIGURE 3.13	CLASSIFICATION OF HUMAN CENTRIC FO-CLUSTERS	153
FIGURE 4.1	USING HOMOL-METRES. USERS LOG IN	185
FIGURE 4.2	FUNCTIONAL (RE)ANNOTATION IN HOMOL-METRES.	186
FIGURE 4.3	RESULT VISUALIZATION IN HOMOL-METRES	187
FIGURE 4.4	INTEGRATION OF FUNCTIONAL ANNOTATION FOR THE 5880 PROTEINS IN THE	
	SACCHAROMYCES CEREVISIAE PROTEOME	191
FIGURE 4.5	COMPARATIVE FUNCTIONAL ANALYSIS OF THE INTEGRATED ENZYME COMPONENT OF THE	l
	YEAST PROTEOME WITH OTHER EUKARYOTES AT DIFFERENT HOMOLOGY LEVELS	193
FIGURE 4.6	COMPARING THE ENZYME COMPLEMENT OF DIFFERENT ORGANISMS FROM THE PLASMODIC	UM
	GENUS	196
FIGURE 4.7	Summary of database structure and connectivity between functional	
	MODULES IN HOMOL-METRES	203
FIGURE 4.8	FLOW CHART FOR HOMOL-METRES FUNCTIONING.	208
FIGURE 5.1	COMPARATIVE PHYLOGENETIC TREE ANALYSES FOR ORTHOLOG SETS OF GENES INVOLVE) IN
	HUMAN'S BRAIN (A), BONE (B) AND MUSCLE (C) DEVELOPMENT	227
FIGURE 5.2	MOLECULAR NETWORK/PATHWAYS ALIGNMENT AT EVOLUTION LEVELS.	228
FIGURE 5.3	INTEGRATION OF RELATIONAL SCHEME USED TO LINK PROTEIN INFORMATION OF CELLS A	ND
	EVOLUTION	231

List of Supplementary Figures

FIGURE S1.1	FREQUENCY DISTRIBUTION OF S. CEREVISIAE PROTEINS ACCORDING TO DIFFERENT	
	FUNCTIONAL CLASSIFICATIONS	. 55
FIGURE S1.2	Full heat-map representation showing how distant each organism is from S .	
	CEREVISIAE WITH RESPECT TO EACH INDIVIDUAL KEGG PATHWAY	. 56
FIGURE S1.3	Full heat-map representation showing how distant each organism is from S .	
	CEREVISIAE WITH RESPECT TO EACH BIOLOGICAL PROCESS FROM THE GOSLIM	
	CLASSIFICATION.	. 57
FIGURE S1.4	Full heat-map representation showing how distant each organism is from S .	
	CEREVISIAE WITH RESPECT TO EACH MOLECULAR FUNCTION FROM THE GOSLIM	
	CLASSIFICATION.	. 58

FIGURE S1.5	FULL HEAT-MAP REPRESENTATION SHOWING HOW DISTANT EACH ORGANISM IS FROM S .
	CEREVISIAE WITH RESPECT TO EACH CELLULAR LOCALIZATION CATEGORY FROM THE
	GOSLIM CLASSIFICATION
FIGURE S2.1. A	FREQUENCY OF PROTEINS FOUND FROM HUMAN AND VERTEBRATES IN THE CLUSTERS OF
	FUNCTIONAL ORTHOLOGS, ORTHOLOGS, DOMAIN ORTHOLOGS, HOMOLOGOUS,
	SIGNIFICANCE AND ABSENT
FIGURE S2.1. B	FREQUENCY OF PROTEINS FOUND FROM HUMAN AND FUNGI DOMAIN IN THE CLUSTERS OF
	FUNCTIONAL ORTHOLOGS, ORTHOLOGS DOMAIN ORTHOLOGS, HOMOLOGOUS,
	SIGNIFICANCE AND ABSENT
FIGURE S2.1. C	FREQUENCY OF PROTEINS FOUND FROM HUMAN AND PLANT DOMAIN IN THE CLUSTERS OF
	FUNCTIONAL ORTHOLOGS, ORTHOLOGS, DOMAIN ORTHOLOGS, HOMOLOGOUS,
	SIGNIFICANCE AND ABSENT
FIGURE S2.1. D	FREQUENCY OF PROTEINS FOUND FROM HUMAN AND PROTIST DOMAIN IN THE CLUSTERS OF
	FUNCTIONAL ORTHOLOGS, ORTHOLOGS, DOMAIN ORTHOLOGS, HOMOLOGOUS,
	SIGNIFICANCE AND ABSENT
FIGURE S2. 2	COMPLETE HEAT MAP FOR COMPARISON OF PROTEOME ASSOCIATED TO HUMAN TISSUES AND
	THAT FOUND CONSERVATION AT FUNCTIONAL ORTHOLOGS LEVELS IN THE $[FO]$ CLUSTERS
	WITH 56 EUKARYOTES
FIGURE S2.3	COMPLETE HEAT MAP FOR COMPARISON OF PROTEOME ASSOCIATED TO LIGAND ACTIVITY IN
	HUMAN AND THAT FOUND CONSERVATION AT FUNCTIONAL ORTHOLOGS LEVELS IN THE $\left[FO \right]$
	CLUSTERS WITH 56 EUKARYOTES
FIGURE S2.4	COMPLETE HEAT MAP FOR COMPARISON OF PROTEOME ASSOCIATED TO RECEPTOR ACTIVITY
	IN HUMAN AND THAT FOUND CONSERVATION AT FUNCTIONAL ORTHOLOGS LEVELS IN THE
	[FO] CLUSTERS WITH 56 EUKARYOTES164
FIGURE S2.5	COMPLETE HEAT MAP FOR COMPARISON OF PROTEOME ASSOCIATED TO SPECIFIC REACTIONS
	IN METABOLIC OR SIGNALING PATHWAYS OF HUMAN AND THAT FOUND CONSERVATION AT
	FUNCTIONAL ORTHOLOGS LEVELS IN THE [FO] CLUSTERS WITH 56 EUKARYOTES165
FIGURE S2.6	Comparative study of regulatory catalytic processes in each of the 20 amino
	ACID BIOGENESIS PATHWAYS BETWEEN S. CEREVISIAE AND HUMAN
FIGURE S2.7	COMPLETE HEAT MAP FOR COMPARISON OF PROTEOME ASSOCIATED TO BONE DEVELOPMENT
	OF HUMAN AND THAT FOUND CONSERVATION AT FUNCTIONAL ORTHOLOGS LEVELS IN THE
	[FO] CLUSTERS WITH 18 ANIMALS173
FIGURE S2. 8	COMPLETE HEAT MAP FOR COMPARISON OF PROTEOME ASSOCIATED TO MUSCLE
	DEVELOPMENT OF HUMAN AND THAT FOUND CONSERVATION AT FUNCTIONAL ORTHOLOGS
	LEVELS IN THE [FO] CLUSTERS WITH 18 ANIMALS174
FIGURE S2. 9	COMPLETE HEAT MAP FOR COMPARISON OF PROTEOME ASSOCIATED TO BRAIN
	DEVELOPMENT OF HUMAN AND THAT FOUND CONSERVATION AT FUNCTIONAL ORTHOLOGS
	LEVELS IN THE [FO] CLUSTERS WITH 18 ANIMALS

List of Figures & Tables

FIGURE S2.10	COMPLETE HEAT MAP FOR COMPARISON OF HUMAN PROTEOME ASSOCIATED TO HIV-TAT	
	BINDING ACTIVITY AND THAT FOUND CONSERVATION AT FUNCTIONAL ORTHOLOGS LEVEL I	N
	THE [FO] CLUSTERS WITH 3 PRIMATES17	76

FIGURE S3.1	ARCHITECTURE OF WEB APPLICATION CONCEPTUAL MODEL FOR HOMOL-METRES
FIGURE S3.2	DATA MODEL INTEGRATION IN HOMOL-METRES
FIGURE S3.3	COMPLETE HEAT MAP FOR THE COMPARISON BETWEEN THE SETS OF PROTEINS INVOLVED IN
	THE DIFFERENT BIOLOGICAL PROCESSES IN S. CEREVISIAE AND IN 56 OTHER EUKARYOTES
FIGURE S3.4	COMPLETE HEAT MAP FOR THE COMPARISON BETWEEN THE SETS OF PROTEINS INVOLVED IN
	THE DIFFERENT MOLECULAR FUNCTIONS IN S. CEREVISIAE AND IN 56 OTHER EUKARYOTES
FIGURE S3.5	COMPLETE HEAT MAP FOR THE COMPARISON BETWEEN THE SETS OF PROTEINS INVOLVED IN
	THE DIFFERENT LOCALIZATIONS IN S. CEREVISIAE AND IN 56 OTHER EUKARYOTES
FIGURE S3.6	Complete heat map for the comparison between the sets of enzymes in S .
	CEREVISIAE AND IN 56 OTHER EUKARYOTES217
FIGURE S3.7	COMPLETE HEAT MAP FOR THE COMPARISON BETWEEN THE SETS OF ENZYMES INVOLVED IN
	BIOLOGICAL PROCESSES IN S. CEREVISIAE AND IN 56 OTHER EUKARYOTES
FIGURE S3.8	COMPLETE HEAT MAP FOR THE COMPARISON BETWEEN THE SETS OF ENZYMES INVOLVED IN
	MOLECULAR FUNCTIONS IN S. CEREVISIAE AND IN 56 OTHER EUKARYOTES
FIGURE S3.9	COMPLETE HEAT MAP FOR THE COMPARISON BETWEEN THE SETS OF ENZYMES ASSOCIATED
	WITH A CELLULAR LOCALIZATION IN S. CEREVISIAE AND IN 56 OTHER EUKARYOTES220

List of Tables

TABLE 1.1	APPLICATIONS RESULTING FROM GENOME PROJECTS	8
TABLE 3. 1	HUMAN CENTRIC COMPARISON OF FULL PROTEOMES FOR 54 EUKARYOTES WITH FULLY	110
TABLE 3.2	SEQUENCED GENOMES Frequency of enzymes and their regulatory interactor proteins associated with amino acid biogenesis pathways in <i>S. cerevisiae</i> and that found as)
	ORTHOLOGS AND ABSENT IN HUMAN	140
TABLE 4.1	SUMMARY OF FUNCTIONAL COMPARISON OF OTHER WEB APPLICATIONS AND HOMOL-	199
TABLE 4.2	SUMMARY OF FUNCTIONAL COMPARISON OF OTHER WEB APPLICATIONS AND HOMOL- METRES.	200

List of Supplementary Tables

TABLE S1.1	ANALYZED ORGANISMS AND LUMPED HOMOLOGY WITH RESPECT TO THE S . <i>CEREVISIAE</i>
	GENOME
TABLE S1.2	SUMMARY OF THE COMPARISON BETWEEN S. CEREVISIAE SEQUENCES AND THOSE OF
	ORGANISMS FROM DIFFERENT GROUPS FOR DOMAINS, KINGDOMS OR PHYLA, CLASSIFIED BY
	BIOLOGICAL PROCESS, MOLECULAR FUNCTION AND CELLULAR LOCALIZATION FROM THE
	GOSLIM ONTOLOGY75
TABLE S1.2. A	S. CEREVISIAE ORTHOLOGY ANALYSIS WITH BIOLOGICAL PROCESS(ES) OF GO75
TABLE S1.2. B	S. CEREVISIAE HOMOLOGY ANALYSIS WITH BIOLOGICAL PROCESS(ES) OF GO77
TABLE S1.2. C	S. CEREVISIAE ABSENT GENES ANALYSIS WITH BIOLOGICAL PROCESS(ES) OF GO79
TABLE S1.2. D	S. CEREVISIAE ORTHOLOGY ANALYSIS WITH MOLECULAR FUNCTION(S) OF GO81
TABLE S1.2. E	S. CEREVISIAE HOMOLOGY ANALYSIS WITH MOLECULAR FUNCTION(S) OF GO
TABLE S1.2. F	S. CEREVISIAE ABSENT GENES ANALYSIS WITH MOLECULAR FUNCTION(S) OF GO85
TABLE S1.2. G	S. CEREVISIAE ORTHOLOGY ANALYSIS WITH CELLULAR COMPONENT(S) OF GO
TABLE S1.2. H	S. CEREVISIAE HOMOLOGY ANALYSIS WITH CELLULAR COMPONENT(S) OF GO
TABLE S1.2. I	S. CEREVISIAE ABSENT GENES ANALYSIS WITH CELLULAR COMPONENT(S) OF GO91
TABLE S1.3	SUMMARY OF THE COMPARISON BETWEEN S. CEREVISIAE SEQUENCES AND THOSE OF
	ORGANISMS FROM DIFFERENT GROUPS FOR DOMAINS, KINGDOMS OR PHYLA, CLASSIFIED
	WITH THE DIFFERENT KEGG PATHWAYS
TABLE S1.3. A	S. CEREVISIAE ORTHOLOGY ANALYSIS WITH PATHWAYS OF KEGG
TABLE S1.3. B	S. CEREVISIAE HOMOLOGY ANALYSIS WITH PATHWAYS OF KEGG
TABLE S1.3. C	S. CEREVISIAE ABSENT GENES ANALYSIS WITH PATHWAYS OF KEGG
TABLE S1.4	A COMPARISON OF DYNAMIC AND ADAPTIVE RESPONSES OF DIFFERENT ORGANISMS WITH S .
	CEREVISIAE
TABLE S3.1	CURRENT STATISTICS OF HOMOL-METRES DATABASE

Objectives

There are three main objectives for this thesis.

- **1.** To develop an integrative methodology that systematically:
 - a) Identifies analogous proteins between different organisms and proposes relationships between the analogues at functional and/or spatial organization levels.
 - b) Identifies clusters of functionally similar proteins from different organisms, based on levels of sequence similarity.
 - c) Facilitates functional (re)annotation and mapping of proteins to alternative functional categories and transfer of that annotation between organisms.
 - d) Applies a method to integrate the information in such a way that any two proteins can be mapped at any level of the functional and/or evolutionary organization proposed in this thesis.
- **2.** Applying the methodology to the study of well characterized organisms and comparing the proteomes of these organisms to the proteomes of other living beings with fully sequenced genomes.
- The third and final objective is to implement the methodology developed in objective 1 on a web server for free use by the community.

Chapter 1. Introduction

Introduction

«ॐ पूर्णमदः पूर्णमिदं पूर्णात्पुर्णमुदच्यते पूर्णश्य पूर्णमादाय पूर्णमेवावशिष्यते ॥"

"Om purnam adah, purnam idam, purnat purnam udachyate, Purnasya purnam adaya, purnam evavasisyate."

"That is whole, this is whole; From that whole, this whole came; From that whole, this whole removed or added, What remains is whole." (Vedas)

These are the two philosophical/conceptual lines in Sanskrit quoted from "*PURNAMADAH*", by Swami Dayanand Saraswati. Their interpretation differs between individuals.

From a theoretical biologist's point of view, the first two lines could be interpreted as suggesting that an organism is regulated by its cells, each of which is itself a whole organizational unit of life, and descended from another cell. These two cells are distinct but similar entities and biological organization principles appear to exist at the different levels at which they can be studied. Investigating even the simplest object within the whole that are those cells could contribute to decoding some of the general principles that impinge upon how they work.

From a system biologist's point of view, the last two lines of the above saying can be interpreted as describing the molecular organization of the cell, in which each molecule establish various relationships at spatial, functional, conditional or temporal level with others, and contribute to functional modules within that cell. Each event generated by one such set of relationships leads to the emergence of a given phenotype. Each change in the relationships or in the components can lead to a change in that phenotype. Such changes are caused by regulatory events at the different levels of organization and the interacting whole runs the life of the cell. Investigating the changes and their timing provides information about the past and present of a system. Sometimes, the information is enough to predict future behavior.

Inspired by these beautiful four lines and the philosophy contained in them, the work presented in this *Ph. D.* thesis deals with the problem of designing, standardizing and applying a methodology to,

Chapter 1.

Introduction

- a) identify molecular organization within a complete sequenced proteome from any organism, and
- b) compare and annotate complete proteomes of any two organisms at spatial, structural, functional, cellular and tissue level.

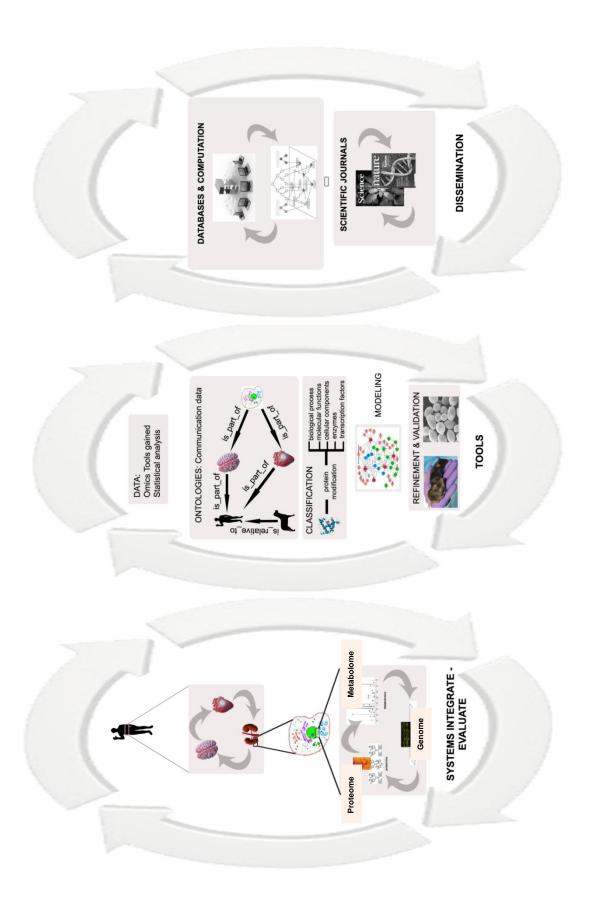
This is an important issue, given that it is impossible to study all organisms in detail. By performing the types of comparisons described in a) and b) we may be able to identify groups of organisms that are similar and dissimilar regarding different aspects of their biology. Such identification permits the rational choosing of the "average" organism in that group to study a given process and extrapolate its functioning to the other organisms of the group. This can reduce the number of organisms that one has to study in order to understand the molecular biology of a given process across the tree of life. We also aimed at implementing the methodology in web tool that is accessible to be used by other researchers.

Developing such a methodology requires considering the general properties of molecular organization in a cell and the functional information of its components. Integrating this information will allow extrapolating behavior between organisms, through comparison of the similarities and differences between sequences of the proteomes. This can be more easily achieved by comparing the molecular modules involved in a given biological response and assuming that similarity between the modules is correlated to similarity between the responses. With this in mind the work done in this thesis was planned to:

- a) Develop the basic methodology and apply it to test the assumption that similarity between molecular module components is positively correlated to similarity between responses. To do so, we applied the method to compare the proteome of *Saccharomyces cerevisiae* to that of other fully sequence organisms, followed by a limited phenotypic comparison between that yeast and a few selected organisms;
- b) Apply the validated methodology to compare the human proteome to that of other eukaryotes and identify both, what makes us unique at the protein level and those eukaryotes that could serve as good models to study different aspects of human physiology.
- c) Implement the methodology in a web tool and make it available for other researchers to use in their research.

3

Introduction


With these goals in mind, in this chapter we will provide a short introduction to the biological and methodological considerations that directly led to this work as well as to the organization of the remainder of the thesis. We start by a brief description of what is a biological system. We then move forward to shortly discuss systems biology and limit that discussion to the aspects we find strictly relevant for the work presented in the thesis. We then zoom in on the effects of the various genome projects on the amount of data that made this thesis possible and follow with a briefly categorical analysis of proteomics, the science that focuses on the analysis of the proteome, which is our subject matter. We conclude the chapter with a schematic description of the goals for the work, and of the remaining chapters of the thesis and their organization.

1.1. Biological Systems

A biological system (from Latin systēma, in turn from Greek $\sigma \upsilon \sigma \tau \eta \mu \alpha$ systēma, "whole compounded of several parts or members, system", literary "composition") is a group of common sub-systems that interact to perform and regulate a certain task. Generally, a cell, a tissue, an organ, an organism can be considered as living components of the biological system that works at various levels of coordination to perform certain functions that make its system alive. Thus, living systems are organized in modular fashion. This modularity appears to exist all the way down to the molecular level (**Figure 1.1**).

As the modules interact at different levels, they create a system that reacts and adjusts over time to environmental stimuli, allowing the organisms survive, reproduce, and evolve. One can only understand these processes if one are willing to study biological systems as a whole. This notion was proposed by Alexander Bogdanov. It was later given a more serious scientific framework by Bertalanffy in his General Systems Theory (GST) and Cybernetics

Figure 1.1

1.2. Systems Biology

Current systems biology directly evolved from the ideas of General Systems Theory. The term describes a rapidly evolving interdisciplinary field that endeavors to understand the detailed coordinated workings of a large set of components of cells and organisms [1, 2]. Often, these workings are used to distinguish between healthy and pathological states [3]. Currently, typical systems biology studies can be of different types:

- a) Those emphasizing the use of high-throughput "*omics*" technologies to measure the changes in the complete set of individual molecular components of a certain type in the whole system [4-7]. After analyzing the whole set of data, the components of the bigger system are often grouped into smaller subsystems that are then analyzed, in a "*top-down*" approach.
- b) Those emphasizing a "bottom-up" approach that begins by analyzing the behavior of individual (sets of) components of the bigger system, from molecules to functional modules. The different analyses are then integrated and used to understand the behavior of whole system [8-12].
- c) Those emphasizing systems biology as a "*New physiology*", that complements the reductionist molecular biology with integrative approaches [13]. Such approach has been adopted in pioneering work on heart models, in a "*middle-out*" strategy, starting from tissue models ("*middle level*"), incrementally extending to the organ and "*higher*" levels as well as "*down*" to molecular detail [14, 15].
- d) Those focusing on dynamic systems theory. Such studies integrate approaches from "dynamic system theory" and use those approaches to describe the behavior of complex dynamic systems, usually by employing differential equations or difference equations [16-19].

Introduction

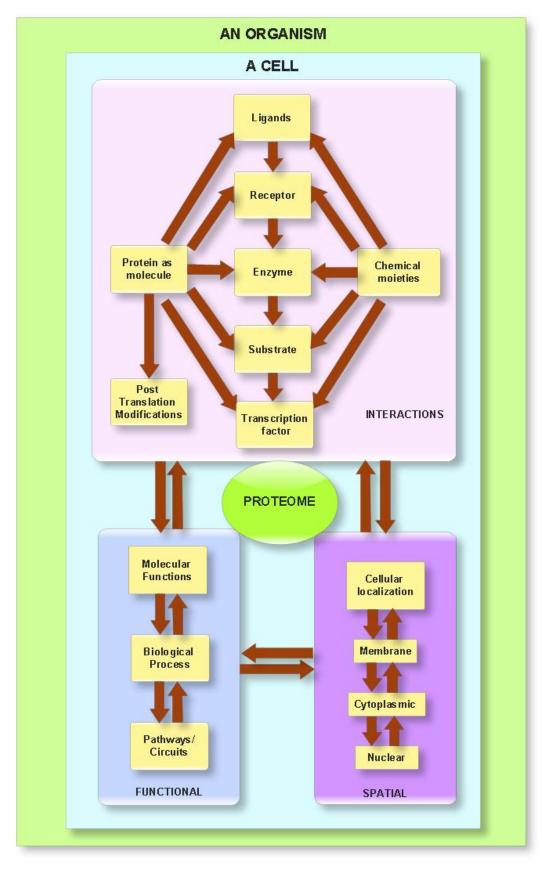
- e) Those that focus on specific processes and responses [20]. Examples are the work that tries to understand how bacteria regulated their chemo-tactile behavior [21-24] or nitrogen assimilation through two component systems [25].
- f) Those that use systems approaches for doing "*Predictive Biology*" or "*Quantitative Biology*" [26]. Datasets are collected and used to characterize a given biological system [27]. This characterization is then used to predict how the system will work under different circumstances [28]. Doing so typically requires the use of various software packages for modeling, analysis, visualization, and general data manipulation [29-32]. These packages run on different platforms and communicate to use each other's capabilities via a fast binary encoded-message system like markup languages [33-36].

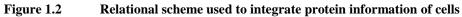
In all the cases, however, appropriately identified individual components of the systems with high quality functional annotation and inter-dependent relationships are required to make the most out of systems biology approaches. The work described in the current thesis addresses that issue, as it enables a better identification and functional annotation of components in new genomes. It also allows for the systemic reconstruction of the molecular modules and circuits that are responsible for different types of biological processes and events. Finally it allows for a clear comparison between the molecular components of corresponding functional modules in different proteomes.

1.3. Fruits of Genome Projects

The identification of the complete list of individual components of proteomes is a direct consequence of the number of genome projects that have been finished or are undergoing [37, 38]. Genome projects sequence the complete DNA content of organisms and identify the regulatory elements, genes and proteins coded in that sequence. These results have wide implications and applications [39-44]. Some of the later are described in **Table 1.1**.

Genome Projects	Area of Applications	Specific Applications
Human Genome	Molecular Medicine	Improved diagnosis of disease
		Earlier detection of genetic predispositions to disease
		Rational drug design
		Gene therapy and control systems for drugs
		Pharmacogenomics "custom drugs"
	Risk Assessment	Assess health damage and risks caused by radiation exposure, including low- dose exposures
		Assess health damage and risks caused by exposure to mutagenic chemicals and cancer-causing toxins
		Reduce the likelihood of heritable mutations
Animal Genome	Bio-archaeology, Anthropology, Evolution, and Human Migration	Study evolution through germ-line mutations in lineages
		Study migration of different population groups based on female genetic inheritance
		Study mutations on the Y chromosome to trace lineage and migration of males
		Compare breakpoints in the evolution of mutations with ages of populations and historical events
Plants and Animal Genomes	Agriculture, Livestock Breeding, and Bioprocessing	Disease-, insect-, and drought-resistant crops
		More nutritious produce
		Bio-pesticides
		Edible vaccines incorporated into food products
		New environmental clean-up uses for plants like tobacco
Microbial Genome	Energy and Environmental Applications	Create new energy sources (biofuels)
		Develop environmental monitoring techniques to detect pollutants


Table 1.1 Applications resulting from genome projects


Introduction

The immense amounts of data generated by these projects create several problems. It is not enough to simply annotate the genes and proteins in the genomes. It is also important to connect this annotation to

- a) the functional information about the individual proteins and the modules and circuits that they create through their interactions, physical or otherwise,
- b) the information about the hierarchical relationships among the modules at different scales of biological scale and organization, and
- c) the information about temporal and spatial behaviour of the different components of the systems, ranging from gene expression, to protein abundance and activity, to metabolic fluxes and concentrations.

The work described in this thesis focuses on complete proteomes and provides ways to integrate and transfer structural, functional, hierarchical and spatial information between proteins of different organisms. The scheme for the functional organization of the proteome that we use for enabling such transfer is summarized in **Figure 1.2**.

1.4. Proteome

An organism's genome contains the complete set of genes that are required to build a functional organism. The complete proteome is the entire set of proteins coded in those genes. These proteins are differentially expressed by the genome at any given time, depending on environmental conditions and cell types, among other factors. Proteomics is the science that studies the proteome [45]. Until recently, protein function analyses mainly focused on single proteins. As high-throughput technologies improved it became possible to study large fractions of a cell's proteome. Generally proteomic analysis results from three broad types of experiments:

- a) Structural proteomics, the large-scale analysis of protein structures: Protein structure comparisons can help to identify the functions of newly discovered genes [46]. Structural analysis can also show where drugs bind to proteins and where proteins interact to each other. This is achieved using technologies such as X-ray crystallography and NMR spectroscopy, and, more recently, protein modeling. The protein oriented information provide background of feature predictions for secondary structure, solvent accessibility, trans-membrane helices, globular regions, coiled-coil regions, structural switch regions, B-values, disorder regions, intra-residue contacts, protein-protein and protein-DNA binding sites, sub-cellular localization, domain boundaries, beta-barrels, cysteine bonds, metal binding sites and disulphide bridges.
- b) Expression proteomics, the large-scale analysis of protein expression: Measurements of protein abundance and activity identified by the main proteins found in a particular sample and proteins differentially expressed in related samples, such as diseased vs. healthy tissue. A protein found only in a diseased sample may represent a useful drug target or diagnostic marker. Proteins with similar expression profiles may also be functionally related. Technologies such as 2D-PAGE and mass spectrometry are used here. These and other technologies allow for protein identification [47], measurement of protein abundance [48] and processing [49], including post translation modifications, determination of protein interactions [50]. compartmentalization [51], turnover time [52], etc. Proteome signatures that are specific to a given cell type, phenotype, or adaptive response can be identified through the qualitative and quantitative comparison of proteomes measured under the alternative relevant conditions.

c) Interaction proteomics, the large-scale analysis of protein interactions: The characterization of protein-protein interactions helps to determine protein functions and can also show how proteins assemble in larger complexes. Technologies such as affinity purification, mass spectrometry and the yeast two-hybrid system are particularly useful.

While proteomic evaluation has improved research output in a variety of disciplines, a number of distinct classes of proteins can be identified within a proteomic dataset. Such classes are defined in **Box 1.1**. They were used to organize the database that underlies the tool described in Chapter 4 and facilitate functional analysis of large protein sets.

Box 1.1 Classifiers of proteome into various dimensions

Complete proteome - The proteome is the entire set of proteins coded in a completely sequenced genome, including alternative products such as splice variants for those species in which these may occur.

Cellular proteome - Subset of a complete proteome containing all proteins expressed in specific types of cells under induction of particular sets of environmental stimuli.

Functional proteome - Subset of a complete proteome containing all proteins for which functional information is available.

Enzymatic proteome - Subset of a complete proteome containing all proteins that have an associated enzyme activity.

Receptor proteome - Subset of a complete proteome containing all proteins that are known to be integral membrane proteins and are involved in recognizing and binding to signals in order to initiate signal transduction.

Ligand proteome - Subset of a complete proteome containing all proteins that bind to receptors and lead to signal transduction.

Localized proteome - Subset of a complete proteome containing all proteins that are specifically associated to the different subcellular compartments and components.

Gene Regulatory proteome - Subset of a complete proteome containing all proteins that are involved in regulation of gene expression through direct interaction with genetic elements.

Box 1.1 [continued...]

Post-translational modified proteome - Subset of a complete proteome containing all proteins that are known to suffer post translational chemical modifications in the side-chains of their amino acids.

Interacting proteome - Subset of a complete proteome, containing all sets of proteins that are known to physically interact with each other.

Biological process proteome - Subset of a complete proteome containing all sets of proteins associated to known biological processes

Pathways proteome - Subset of a complete proteome containing all sets of proteins associated to known biological pathways and circuits.

1.5. Thesis Organization

The remaining chapters of this thesis are organized as follows:

- a) The second chapter focuses on describing the development of a methodology for the functional comparison of proteomes and applying that to the well characterized model organism *Saccharomyces cerevisiae*. A large scale functional comparison between its proteome and that of other organisms with fully sequenced genomes is made.
- b) The third chapter focuses on applying the methodology developed in Chapter 2 to the comparative study of the complete human proteome to that of other eukaryotes with fully sequenced genomes. We identify the protein(function)s and modules that are specific to humans.
- c) The fourth chapter describes the implementation of the methodology in a web server that will be made available to the community.
- **d**) The fifth chapter presents a general discussion of the work, together with perspectives for future developments in the area.
- e) The two remaining chapters present the conclusions and bibliography of the thesis.

Chapter 2. Saccharomyces cerevisiae as a Model Organism

Chapter 2. *Saccharomyces cerevisiae* as a Model Organism: A Comparative Study¹

¹ This chapter was published as Karathia, H., et al., *Saccharomyces cerevisiae as a model organism: a comparative study. PLoS One*, 2011. 6(2): p. e16015.

2.1. Abstract

2.1.1. Background

Model organisms are used for research because they provide a framework on which to develop and optimize methods that facilitate and standardize analysis. Such organisms should be representative of the living beings for which they are to serve as proxy. However, in practice, a model organism is often selected *ad hoc*, and without considering its representativeness, because a systematic and rational method to include this consideration in the selection process is still lacking.

2.1.2. Methodology/Principal Findings

In this work we propose such a method and apply it in a pilot study of strengths and limitations of *Saccharomyces cerevisiae* as a model organism. The method relies on the functional classification of proteins into different biological pathways and processes and on full proteome comparisons between the putative model organism and other organisms for which we would like to extrapolate results. Here we compare *S. cerevisiae* to 704 other organisms from various phyla.

For each organism, our results identify the pathways and processes for which *S*. *cerevisiae* is predicted to be a good model to extrapolate from. We find that animals in general and *Homo sapiens* in particular are some of the non-fungal organisms for which *S*. *cerevisiae* is likely to be a good model in which to study a significant fraction of common biological processes. We validate our approach by correctly predicting which organisms are phenotypically more distant from *S*. *cerevisiae* with respect to several different biological processes.

2.1.3. Conclusions/Significance

The method we propose could be used to choose appropriate substitute model organisms for the study of biological processes in other species that are harder to study. For example, one could identify appropriate models to study either pathologies in humans or specific biological processes in species with a long development time, such as plants.

2.2. Introduction

The use of model organisms for research is a hallmark of scientific endeavour (e.g. [53-59]). Such organisms are used because a) they may help overcomes ethical and experimental constraints that hold for the target life form, b) they provide a framework on which to develop and optimize analytical methods that facilitate and standardize analysis, and c) they are thought to be representative of a larger class of living beings for whatever biological phenomenon or process the community is interested in. However, the choice of a model organism is often guided more by the first two considerations than by the last one. Nevertheless, selection of a model organism based on accumulated technical experience and on availability of experimental techniques does not guarantee representative results in other organisms. In fact, a gap exists in systematically establishing how close different organisms are with respect to a given process, before choosing one of them as a model for studying that process.

Such a choice should be informed by several considerations. First, the processes of interest for comparison must be clearly identified. Then, one should establish a qualitative or quantitative metric that measures similarity between the different organisms with respect to those processes. Finally, the processes of interest should be sufficiently well characterized in the alternative organisms so that the metric can be used for comparison. If rigorously performed, this final step defeats the purpose of using the model system as a tool to extrapolate from, because all organism would be rigorously characterized beforehand. In fact, this characterization (by proxy) is the purpose of using a model organism. Therefore, methods that rationally predict how similar different organisms might be with respect to biological processes of interest are needed.

The accumulation of fully sequenced genomes [60] and the advances in comparative genomics [61, 62] and computational systems biology [63] allows us to develop such methods. This can be done by applying strategies that compare the protein or gene networks involved in the process of interest in order to establish a similarity ranking that can be used to predict, to a first approximation, the accuracy of extrapolating the behavior of specific processes between organisms. Testing this idea requires a thorough analysis of the molecular circuits in a well-known model organism and a comparison of these circuits to those in other living beings.

To do this we have chosen the yeast *Saccharomyces cerevisiae* (*S. cerevisiae*) to perform a pilot study. This yeast is one of the most widely used eukaryotic model organisms. It has been used as a model to study aging [64], regulation of gene expression [65], signal transduction [66], cell cycle [67], metabolism [68, 69], apoptosis [70], neurodegenerative disorders [71], and many other biological processes. For example, up to 30% of genes implicated in human disease may have orthologs in the yeast proteome [72].

We use the protein networks that are involved in specific biological processes to compare the differences between *S. cerevisiae* and 704 other organisms, and predict in which organisms the different processes should behave more similarly to the corresponding process in the yeast. We validate some of the predictions by comparing the dynamic behavior of a number of specific pathways in different organisms to that of the corresponding pathway in *S. cerevisiae*.

Our results suggest that the method proposed here is adequate for its purpose. Furthermore, they support the use of *S. cerevisiae* as a model organism to study different processes, while pinpointing specific biological phenomena from this yeast that may not be readily comparable to their analogous processes in other organisms. The method we propose here could be especially relevant to assist in the choice of appropriate model organisms for both, the study of human specific biological processes and the characterization of a specific biological phenomenon in a large class of organisms. It could also be useful in choosing appropriate models for processes in organisms, such as plants, that due to their long duplication times cannot be easily studied.

2.3. Results

2.3.1. Strategy for the comparison of different processes in different organisms

The strategy we use to establish how similar a given process is in two different organisms is as follows. First, we identify orthologs (i.e. genes in different species that evolved from a common ancestral gene by speciation) between the genome of the potential model organism and that of the target organism(s). Then, we attribute function to the different genes in the organisms under comparison and assign each gene to specific biological processes, using biological ontologies [73]. Specifically, we use:

- a) The Gene Ontology (GO) [74], which has been widely used for annotating function and localization of genes at a coarse level in many organisms [75-79], and
- b) The pathways that regulate and execute the processes that one is interested in studying, as defined in KEGG [80] (one can also use MetaCYC [81]).

Finally, we compare the sets of genes responsible for the different processes that are present in each organism. Such an approach predicts if two organisms are likely to be comparable with respect to specific processes of interest, by establishing whether the elements that are a part of the molecular circuits executing the relevant processes are analogous between the organisms (see methods for further details).

Because this is a pilot study, we focus on an organism that is widely used and well characterized, *S. cerevisiae*. We have attributed function to each of the proteins in *S. cerevisiae*, according to the information derived from GO and KEGG. This allowed us to create a functional classification of the proteins with respect to the biological processes that they are involved in. Details about this classification are given in supplementary **Figures of S1** and **Supplementary Tables of S1** materials. With the functional classification of proteins in place, we can compare the different molecular circuits and processes of yeast to their analogues in 704 other organisms.

To compare these molecular circuits and biological processes between *S. cerevisiae* and other organisms, we created clusters of **orthologs** (ScCOGs: *S. cerevisiae* Clusters of Orthologs), **homologues** (ScCHGs: *S. cerevisiae* Clusters of Homologues) and **absent** proteins (ScCAGs: *S. cerevisiae* Clusters of Absent Genes) for each *S. cerevisiae* protein with respect to the translated genome of each of the other 704 organisms. Hereafter we only discuss the results for ScCOGs, because these are consistent with those for ScCHGs. The results for each organism are summarized in Supplementary Table S1. The detailed clusters are provided as supplementary files **ScCOGs.S1.txt** and **ScCHGs.S2.txt**. We are also preparing a server where these results can be further explored and the method can be applied to other organisms.

Each cluster was associated with the functional terms corresponding to its *S. cerevisiae* protein. To analyze the differences between *S. cerevisiae* and a specific organism with

respect to a given process, we compare the fraction of proteins that are annotated as functioning in that process in both organisms. We investigate if orthologs or homologues for each of these proteins are simultaneously present in both organisms or not. Then, we rank organisms with respect to the differences in the set of proteins responsible for each process, analysing for ScCOGs, ScCHGs and ScCAGs at the level of domain, kingdom and phyla for all the 704 organisms (summarized in Supplementary Table S1.1, Table S1.2 and Table S1. 3).

2.3.2. Functional comparison of the full *S. cerevisiae* protein complement to that of archaea, bacteria and eukaryotes

We compared how well the proteins in the different ScCOGs, ScCHGs and ScCAGs are conserved between *S. cerevisiae* and various classes of organisms. This allowed us to predict if *S. cerevisiae* can be a good model for specific processes in different classes of organisms, rather than in individual species. The details of the analysis are presented in **Appendix S1**. No *S. cerevisiae* protein has orthologs in all 704 organisms. Furthermore, no *S. cerevisiae* protein has homologues in all the Prokaryotes (Archaea & Bacteria together). In addition, 2642 (45%) *S. cerevisiae* proteins are absent in all the Prokaryotes (for more details see Supplementary **Table S1.2** and **Table S1.3**).

ARCHEA DOMAIN

We analyzed 48 species of *Archaea*. About 20% (1158) of all *S. cerevisiae* proteins generate ScCOGs that contain *Archaea* sequences. However, only 2% (103) of all yeast proteins generate ScCOGs that contain at least a sequence from each sequenced species of *Archaea*. An additional 18 (0.3%) *S. cerevisiae* proteins have homologues in all *Archaea*. 3672 (62%) *S. cerevisiae* proteins are absent in all *Archaea*. Most of these have unknown function. Overall, there is no group of organisms for which the networks of proteins responsible for a large fraction of biological processes in *S. cerevisiae* are similar to their counterparts in *Archaea*. However, some biological processes are predicted to be similar between *S. cerevisiae* and some *Archaea* (see below).

BACTERIA DOMAIN

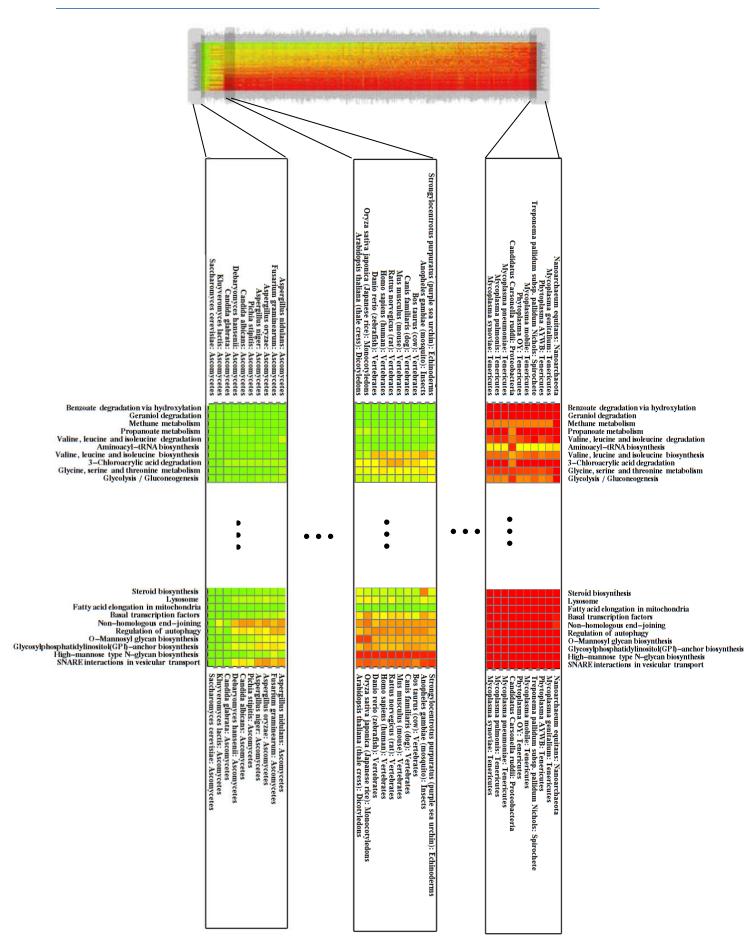
We analysed 598 species of *Bacteria*. 1612 (27%) of all *S. cerevisiae* proteins generate ScCOGs that contain bacteria sequences. However, no ScCOG or ScCHG contains a sequence from each bacterial species. Furthermore, 2881 (49%) *S. cerevisiae* genes are absent from all *Bacteria*, a smaller percentage than that for *Archaea*. As was the case in archaea, overall, there is no group of organisms for which the networks of proteins responsible for a large fraction of biological processes in *S. cerevisiae* are similar to their counterparts in *Bacteria*. However, some biological processes are predicted to be similar between *S. cerevisiae* and some *Bacteria* (see below).

EUKARYOTA DOMAIN

Overall, there are 59 species of *Eukaryotes* in our dataset. About 4.5% (263) of all ScCOGs contain sequences from each of these organisms. Between 40% and 60% of all *S. cerevisiae* proteins involved in "MAPK signalling pathways", "Signal transduction" biological process, and "Helicase activity" molecular functions have orthologs in all 59 species. Furthermore, between 60% and 80% of all proteins involved in "Microtubule organizing centre" of *S. cerevisiae* are also found in all 59 sequenced eukaryotes. Overall, the networks of proteins responsible for a large fraction of biological processes in *S. cerevisiae* are similar to their counterparts in *Ascomycetes*. Furthermore, several biological processes are predicted to be similar between *S. cerevisiae* and other *Eukaryotes*.

2.3.3. Functional comparison of biological processes and pathways between *S. cerevisiae* and other organisms

After getting such a bird's eye view of the similarities and differences between *S. cerevisiae* and different clades of organisms with respect to different biological processes, we now focus on individual organisms. To obtain an approximate estimation of how close a given biological process is between *S. cerevisiae* and another organism we build a matrix of 704x5880 entries. In this matrix, a row represents an organism, while a column represents a ScCOG. The matrix entries are 0 if no sequence from the corresponding organism is found in the appropriate ScCOG and 1 otherwise.

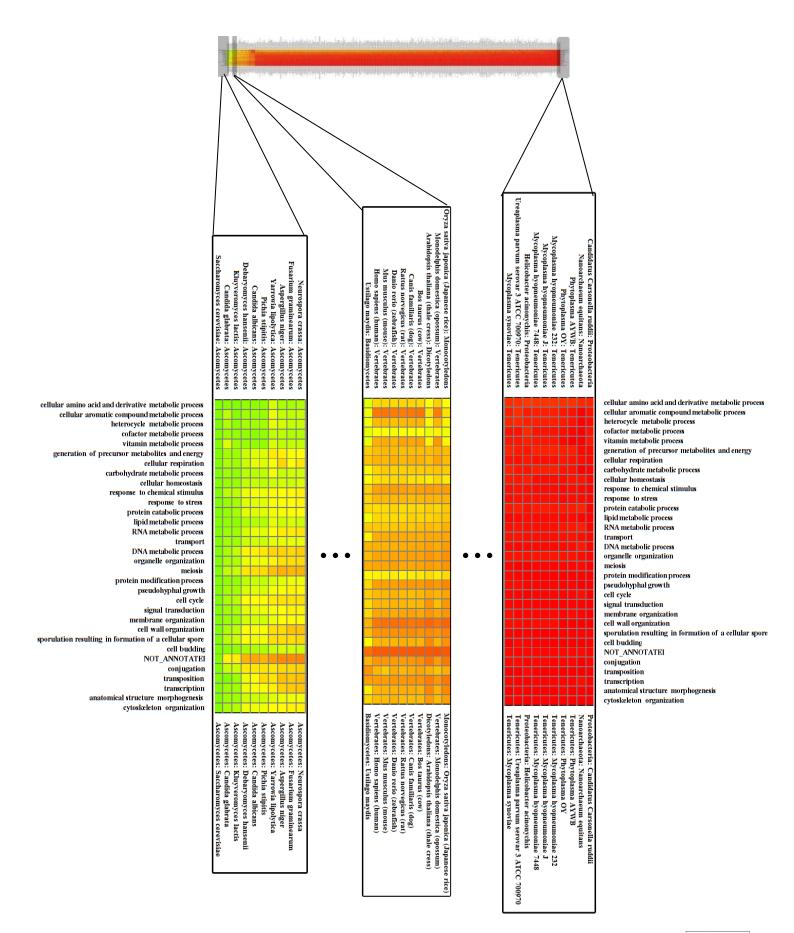

Then, we build a secondary set of four additional matrices containing information about KEGG pathways, biological processes, molecular activity and cellular localization. In each matrix, the rows represent the organisms and the columns represent the biological process, the cellular localization, the molecular function, or the KEGG pathway. Each entry in one of these matrices is a vector with a variable number of elements that is constant for each column of a matrix. The number of elements in the vector is equal to the number of different proteins that is associated to the specific biological process or pathway corresponding to the column (See methods for details).

Subsequently, we calculate the Normalized Hamming Distance (NHD) between the vector of proteins in one entry of the matrix and the corresponding vector for *S. cerevisiae* from that same column. This NHD is a metric based on the number of elements that are different between the two vectors. The smaller the NHD, the more similar the two vectors are and the more similar the set of proteins executing a specific process in both organisms is. Consequently, the more likely it is that *S. cerevisiae* is a good model to study the relevant process and generalize the results to the other organism. Using this metric we have clustered the organisms in the matrix according to growing overall NHD with respect to *S. cerevisiae*.

KEGG Pathways

Figure 2.1 summarizes the results for KEGG pathways (see Supplementary Figure S1.2 for a complete analysis). "Benzoate degradation via hydroxylation", "Geraniol degradation", "Propanoate metabolism", "Valine, leucine and isoleucine biosynthesis", "Glycolysis/Gluconeogenesis", "methane metabolism", "Glycolysis/Gluconeogenesis" and "Aminoacyl-t-RNA biosynthesis" are pathways that appear to be similar to those of S. cerevisiae in a large fraction of organisms. Pathways such as S. cerevisiae's "RNA polymerase" (29 genes), "Lysosome" (14 genes), "Endocytosis" (33 genes), "Oxidative phosphorylation" (76 genes), "Ribosome" (142 genes), "MAPK signaling pathway - yeast" (55 genes), "DNA replication" (30 genes), and "Ubiquitin mediated proteolysis" (44 genes) and "Nucleotide excision repair" (34 genes) are much more similar to those from other eukaryotes than to the corresponding prokaryotic pathways (when they exist). Among the pathways that are central for life, the one that appears to be more unique to S. cerevisiae and other Saccharomycetes is cell cycle (115 genes), because only a small fraction of its proteins have orthologs in other eukaryotes. Thus, these results suggest that extrapolating cell cycle studies in S. cerevisiae to other organisms outside of the Saccharomycetes clade should be done only at the level of basic principles, if at all (see for example [82, 83]).

Figure 2.1


Figure 2.1 Details of a heat-map representation showing how distant each organism is from *S. cerevisiae* with respect to each individual KEGG pathway. A green square indicates a high level of coincidence between the set of proteins involved in the specific pathway (column) in a given organism (row) and the set of proteins for the same pathway in *S. cerevisiae*. A red square indicates complete absence of the set of proteins involved in the specific pathway (column) in a given organism (row) with respect to the same pathway in *S. cerevisiae*. Intermediate colours indicate intermediate degrees of coincidence between the set of proteins in the target organism and that in *S. cerevisiae*. The complete heat-map can be seen in Figure S1.2.

An encouraging observation for the use of *S. cerevisiae* as a model organism for mammals is that most of the studied mammals (humans, dogs, mice, cows and rats) are among the non-fungal organisms that have biological processes with protein sets that are similar to the corresponding sets of *S. cerevisiae*. Specifically, the sets of *S. cerevisiae* proteins that are associated to "Mismatch repair" (18 genes), "Ubiquitin and other terpenoid-quinone biosynthesis" (5 genes), "Inositol phosphate metabolism" (15 genes), "Steroid biosynthesis" (15 genes), "Ubiquitin mediated proteolysis" (44 genes), "DNA replication" (30 genes), "Ribosome" (142 genes), "Proteasome" (35 genes), "Galactose metabolism" (23 genes), "One carbon pool by folate" (14 genes) and "Glycolysis/gluconeogenesis" (48 genes) are those that appear to be more similar to the corresponding sets of proteins in man. A more thorough analysis is given in the Supplementary **Appendix 1**.

GO Biological Processes, Cellular Component and Molecular Function

Figure 2.2, **Figure 2.3** and **Figure 2.4** summarize the results for the comparisons between *S*. *cerevisiae* and the other organisms using the GO categories classification. Details can be further analyzed in Supplementary **Figure S1.3**, **Figure S1.4** and **Figure S1.5**. The results are similar to those described for **Figure 2.1** (or those reported in Supplementary **Figure S1.2**), which suggests that these functional classifications are, to a large extent, equivalent, in spite of all problems that they might have (see discussion).

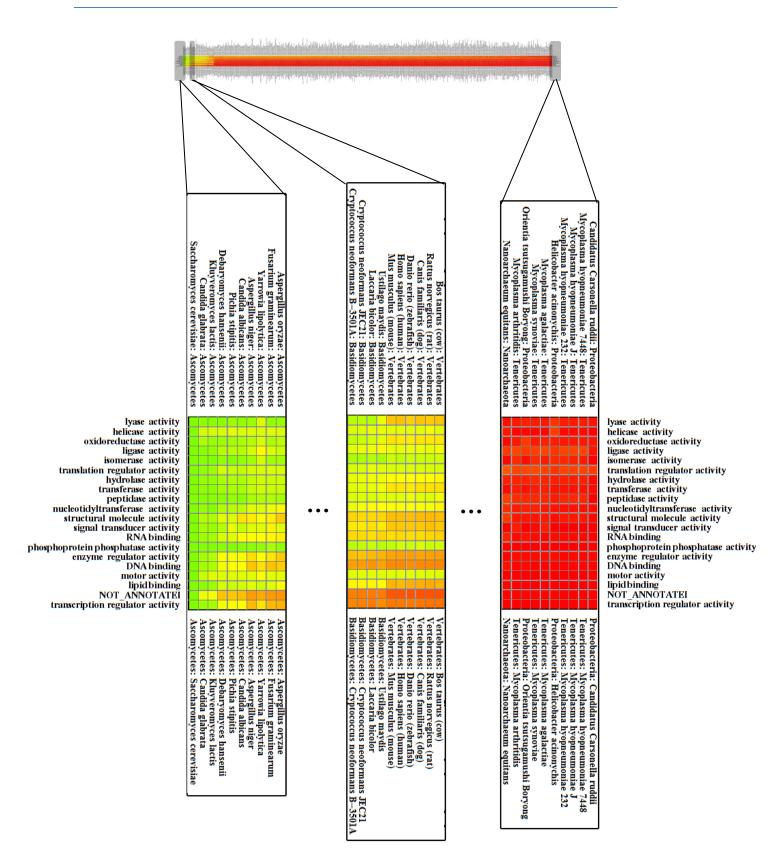
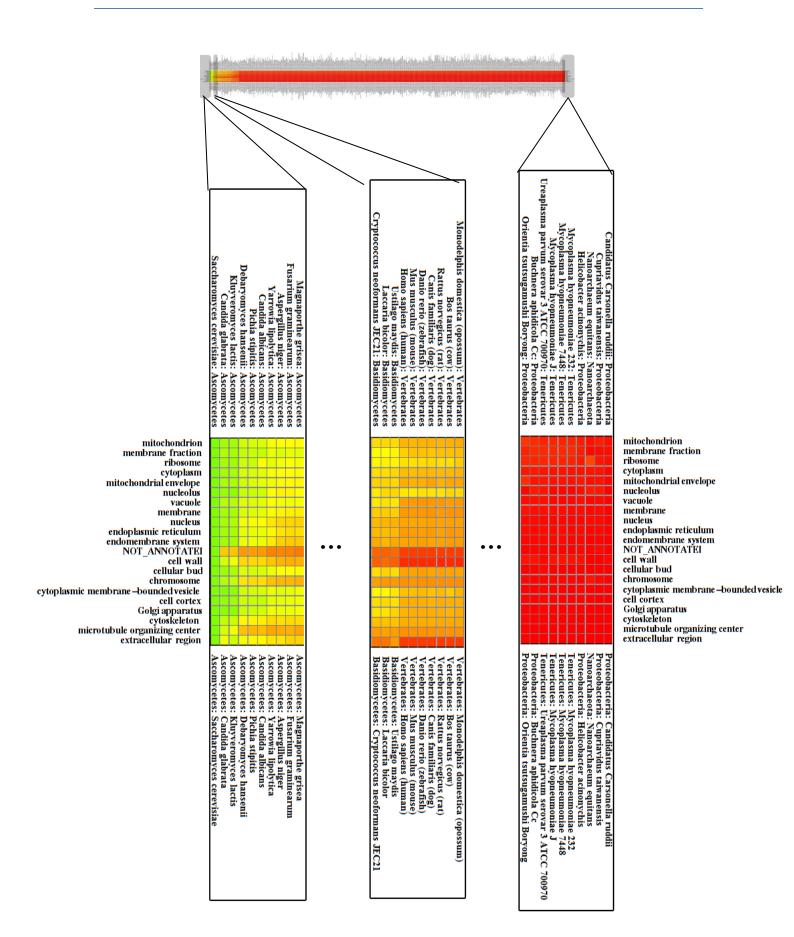

Figure 2.2

Figure 2.2 Details of a heat-map representation showing how distant each organism is from *S. cerevisiae* with respect to each biological process from the GOSLIM classification. A green square indicates a high level of coincidence between the set of proteins involved in the specific biological process (column) in a given organism (row) and the set of proteins for the same pathway in *S. cerevisiae*. A red square indicates complete absence of the set of proteins involved in the specific pathway (column) in a given organism (row) with respect to the same biological process in *S. cerevisiae*. Intermediate colours indicate intermediate degrees of coincidence between the set of proteins in the target organism and that in *S. cerevisiae*. The complete heatmap can be seen in Figure S1.2.

S. cerevisiae metabolic activities like "Cellular amino acid and derivative metabolic process", "Cellular aromatic compound metabolic process", "Heterocycle metabolic process", "Cofactor metabolic process" and "Vitamin metabolic process" are the ones that are more conserved in all organisms. In contrast, "cytoskeleton organization", "Transcription", "Anatomical structure morphogenesis", "Transposition", "conjugation", "Cell budding", and "Protein modification process" appear to be conserved mostly in eukaryotes. Conservation of the "Cell wall organization" pathway is restricted to fungi. A more detailed analysis of these pathways and their similarity between *S. cerevisiae* and the other 704 organisms can be found in the appendix and in Supplementary **Figure S1.2**.


Figure 2.3

Chapter 2. Saccharomyces cerevisiae as a Model Organism

Figure 2.3 Details of a heat-map representation showing how distant each organism is from *S. cerevisiae* with respect to each molecular function from the GOSLIM classification. A green square indicates a high level of coincidence between the set of proteins involved in the specific molecular function (column) in a given organism (row) and the set of proteins for the same pathway in *S. cerevisiae*. A red square indicates complete absence of the set of proteins involved in the specific pathway (column) in a given organism (row) with respect to the same molecular function in *S. cerevisiae*. Intermediate colours indicate intermediate degrees of coincidence between the set of proteins in the target organism and that in *S. cerevisiae*. The complete heat-map can be seen in Figure S1.4.

Figure 2.4

Figure 2.4 Details of a heat-map representation showing how distant each organism is from *S. cerevisiae* with respect to each cellular component from the GOSLIM classification. A green square indicates a high level of coincidence between the set of proteins involved in the specific molecular function (column) in a given organism (row) and the set of proteins for the same pathway in *S. cerevisiae*. A red square indicates complete absence of the set of proteins involved in the specific pathway (column) in a given organism (row) with respect to the same molecular function in *S. cerevisiae*. Intermediate colours indicate intermediate degrees of coincidence between the set of proteins in the target organism and that in *S. cerevisiae*. The complete heat-map can be seen in Figure S1.5.

2.3.4. Validating the predictions

The analysis described above and the results given in **Figure 2.1-Figure 2.4** and in Supplementary **Figure S1.2, Figure S1.3, Figure S1.4 and Figure S1.5** ranks the difference between the proteins set responsible for a given biological process in each organism and the corresponding set in *S. cerevisiae*. If our earlier arguments are correct, one would expect that the similarity between the adaptive responses that involve a given process in other organisms and the same responses in *S. cerevisiae* is directly correlated to the similarity between the protein sets that regulate and execute that process.

In other words, we define a static metric of closeness of processes between organisms that is based solely on the similarity between the sets of proteins involved in those processes in both organisms. Can we assume that such a metric is also a good measure of closeness between physiological and adaptive responses of the pathways regulating the processes in the organisms being compared, even though it does not include any kinetic or regulatory information?

To answer this question we selected pathways for which dynamic, regulatory, and/or phenotypic information was available for *S. cerevisiae* and for a scope of different organisms. This selection was based on a careful analysis of Supplementary **Figure S1.1**. We systematically identified pathways or processes with more than 4 genes and then searched the literature for comparable studies of the dynamical and adaptive behaviour of these processes in different organisms that belong to our dataset. We were able to identify twelve cases that could be used to answer the question from the previous paragraph. The results are summarized in Supplementary **Table S1.4**.

They show that the phenotypic adaptations and dynamical behaviour of a given pathway is more similar to that of *S. cerevisiae* in organisms that are found to be closer to *S. cerevisiae* according to our analysis than in more distant organisms. Thus, even if the method

we propose is based on static information, the results of the analysis appear to be adequate for pinpointing an appropriate model organism from which to study and extrapolate the dynamical and adaptive behavior of specific biological processes.

2.4. Discussion

2.4.1. The rational choice of model organisms and its technical limitations

In this work we ask the question "How can one chose an appropriate model organism in which to study a specific biological process in such a way that the results may be extrapolated to another organism?" We propose a systematic way to answer this question that involves comparing the similarity between the set of proteins that participate in the biological process of interest in the organism to the equivalent set of proteins in the organism to which we want to extrapolate the results. The closer the set of proteins is between the two, the more likely it is that the results from one organism can be extrapolated to the other. To compare the sets of proteins between organisms, we propose a procedure that involves: a) associating a protein to a process or pathway, for example using GO categories or the KEGG pathways, and b) compare the sets of proteins associated to the process between the relevant organisms. This method offers a proxy for establishing probable equivalency of processes between organisms, but it has some drawbacks.

First, more often than not, there will be little functional information associated to the proteins of a given organism. To overcome such a problem, we propose choosing an initial subject organism that is well studied and functionally well characterized at the molecular level. As our method relies on ortholog identification and functional annotation, it requires that this annotation be continuously improved even in well studied organisms. By choosing *S. cerevisiae* as an example we use the eukaryotic organism that we believe has the best overall functional annotation. It must also be emphasized that, when comparing the set of proteins that participate in a given process in different organisms, one must consider the "super set" of proteins participating in that process and compare the differences. In other words, for example when comparing KEGG pathways, one can consider the pathway that includes all possible E.C. numbers and then compare the two organisms in this context. This was also

done here. Otherwise, one may find a situation where two organisms are predicted as being good models with respect to a given process when the proteins in one organism are a small subset of those in the other.

Second, using sequence similarity to establish functional orthology also has its drawbacks. On one hand, sometimes functional orthology exists even in the absence of sequence orthology and vice versa. Comparing the structures of proteins as well as their amino acid motifs and active centres provides some assistance in tackling this problem. However, at the current stage of development in bioinformatics, sequence comparison is still the most efficient and accurate way to make such predictions on the scale that we made them for this work. On the other hand, sometimes, due to gene duplication and domain shuffling, proteins that are unique in one organism may have several close sequence homologues in another. We address this problem by proposing a procedure that takes several similarity factors between sequences into account before deciding which of the homologues is the more likely to be orthologous to the query protein. These factors include e-value score, similarity of the sequences and the fraction of the two proteins that is comparable. Nevertheless, if one also analyzes homologues separately, as we also do here, one stands a better chance of controlling for false negative orthologs.

Third, by comparing only the set of proteins associated with a given biological process in different organisms, we are disregarding regulatory and dynamic information that could be important for the comparison. This shortcoming may not be problematic. On one hand our method is a good way to eliminate processes and organisms for which the reference organism is not a good model. If the sets of proteins that execute a given process are very dissimilar, then the dynamics are not even an issue because other model organisms need to be chosen. On the other hand, having a more similar set of proteins associated to a specific process makes it more likely that the adaptive and regulatory responses of the process be similar. This claim can be supported by comparing the physiological responses of different organisms to that of the model organism (see below).

Fourth, sometimes the logic used to define the proteins associated to specific biological pathways or processes is questionable. This is a very important factor and a successful general application of the method described here requires that the annotation of genomes and ontologies/pathways keeps on improving. Poorly characterized biological processes will lead to greater errors in the comparisons. There is little we can do with respect

to this limitation at this time. One of the actions that can be taken to minimize this problem is to choose as a model an organism that is one of the best annotated worldwide. We did so by choosing *S. cerevisiae* as a model for the study. This organism has the additional advantages of being well characterized at the molecular level and used to study many biological processes that are important in other organisms. To further ameliorate this problem we carefully curated both the KEGG and GO associations of yeast.

2.4.2. *S. cerevisiae* as a model organism

We apply our method to a pilot study of *S. cerevisiae* as a model organism, by comparing it to 704 other organisms. The results are presented in detail in Supplementary Figure S1.2, Figure S1.3, Figure S1.4 and Figure S1.5 and Supplementary Table S1.1, Table S1.2, and Table S1. 3. In *S. cerevisiae* 4571 proteins are not associated to any pathway in the KEGG database. Analyzing the approximately 1000 proteins that have such a functional association, we find that, as expected, in many cases evolutionary closeness goes on par with similarity between sets of proteins that are associated to a specific biological process.

As mentioned above, our inference of closeness between *S. cerevisiae* and the other organisms is based upon an analysis of similarity between the sets of proteins involved in a specific process in both organisms. This analysis does not include any information about the physiological responses and the dynamic or regulatory aspects of the biological processes and pathways being compared between organisms. To understand if this limitation is in general important we selected pathways for which dynamic, regulatory, and phenotypic information was available for *S. cerevisiae* and for a scope of other different organisms. We then compare the behaviour of those pathways in yeast and in the other organisms. In this comparison, organisms that are predicted to be closer for a specific pathway or process also have more similar adaptive responses (Supplementary **Table S1.4**). Furthermore, recent work that uses orthology between human genes and those in other organisms to find models for human diseases support these results [84-86]. Together, this suggests that our method is adequate both for eliminating unsuitable model organisms and for choosing an appropriate model organism from which to study and extrapolate the dynamical and adaptive behaviour of specific biological processes.

2.5. Conclusion

Our results support the use of *S. cerevisiae* as a model organism to study different biological processes and pathways in specific organisms, while pinpointing specific processes in this yeast that may not be readily generalizable to other organisms. We conclude that using a single proteome as a reference and applying a methodology such as the one suggested here, one can in general appropriately select model organisms to study the dynamic and adaptive responses of a given biological process, as long as the proteins that participate in that process are known.

2.6. Materials and Methods

2.6.1. Selection of genome sequences

The complete proteome of *Saccharomyces cerevisiae* (5880 proteins) was downloaded from NCBI (December 2009). The complete sequences for the full protein complement of 704 organisms with fully sequenced genomes was downloaded from the KEGG database (December 2009) and cross-referenced to that provided the NCBI database.

2.6.2. Homology analysis

We downloaded BLAST version 2.2.18 from NCBI and used it locally. All genome and protein sequences were formatted using FormatDB. A pipeline for selecting orthologous proteins, homologous proteins and proteins of the *S. cerevisiae* that are absent in each of the other organisms was developed and implemented in PERL.

2.6.3. Orthology analysis

The collection of all proteins in a target genome that blasted against a specific protein of *S*. *cerevisiae* with an $e - value \leq 10^{-10}$ was analyzed. Manually and through the comparison of the *S*. *cerevisiae* proteome to that of two organisms from each class, we setup a cut-off value for separating orthologs from homologues. Pairs of proteins with e-value between 10^{-10} and 10^{-36} and identity score below 30% are considered as homologues. If the alignment spans over 85% of either sequence and either the e-value of the blast search is bellow 10^{-36} or the identity score is higher than 30%, both proteins are considered as belonging to the same family of orthologs [87]. When more than one protein in a target genome meets these

conditions with respect to the same *S. cerevisiae* protein we calculate an orthology score function, F. The protein with the highest F-score function is considered to be the most likely ortholog with respect to the *S. cerevisiae* protein, while the remaining proteins are flagged as in-paralogs of that ortholog. F is defined as follows:

$$F = (F1 + F2) - F3$$
 Eq. 1

Factor *F1* is calculated as follows.

$$F1 = 1 - (S - I)/S$$
 Eq. 2

In Eq. 2, S represents the similarity score and I represent the identity score of the alignment. F1 is always between 0 and 1. The more similar two sequences are, the closer to 1 will F1 be.

Factor *F2* is calculated as follows.

$$F2 = AL/PL Eq. 3$$

In Eq. 3, AL represents the length of the alignment, and PL is the total length of the query sequence. F2 is always between 0 and 1. The larger the fraction of the query sequence that aligns with the target sequence is, the more similar the two proteins will be and the closer to 1 will F2 be.

Finally, factor *F3* is calculated as follows.

$$F3 = (G1/L1) + (G2/L2)$$
 Eq. 4

In Eq. 4, GI represents the number of gaps within the aligned region of the query sequence, LI represents the length of the query sequence, G2 represents the number of gaps within the aligned region of the target sequence, and L2 represents the full length of the target sequence. The closer to zero F3 is the more similar will the two sequences be.

Theoretically, $-\infty \leq F \leq 2$. However, in practice, we found that F typically assumes values between 0 and 2. The higher F is, the more likely it is that the query and target sequence are orthologs. The whole process is summarized in Figure 2.5. At the end of the analysis we obtain clusters of orthologs (ScCOGs) and homologues (ScCHGs) for all the *S. cerevisiae* genes with respect to the other 704 organisms. We also obtain a third family of clusters (ScCAGs), that of proteins from *S. cerevisiae* that are absent from the target genomes.

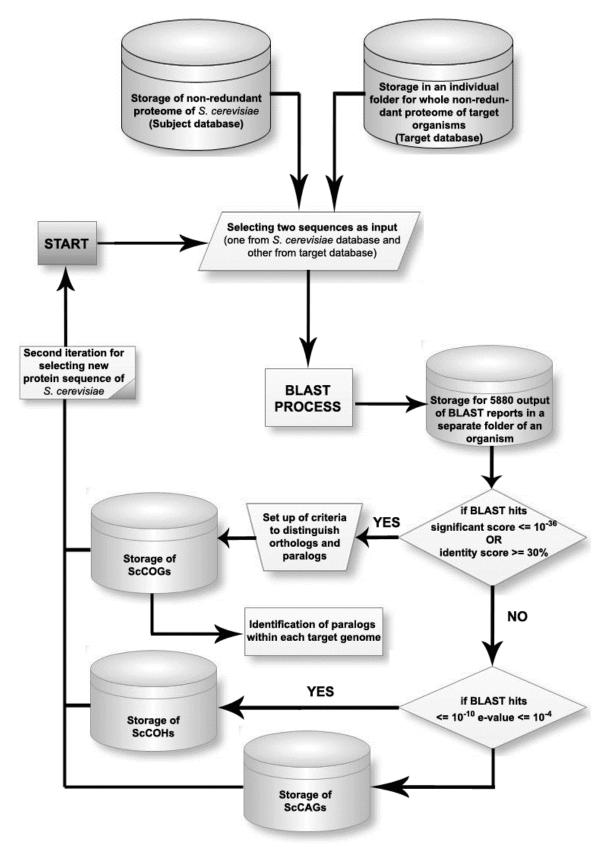


Figure 2.5 Summary of the process used to build ScCOGs, ScCHGs and ScCAGs. The full proteome of *S. cerevisiae* was compared to the full proteome of each of 704 different organisms using BLAST. See methods for details.

2.6.4. Classification of clusters according to pathways and biological processes

In order to attribute biological function to the ScCOGs, ScCHGs and ScCAGs, we implemented the following procedure. On one hand, we used the GOSLIM classification of gene function for *S. cerevisiae* from SGD [88, 89] to attribute biological function, molecular functions and cellular localization to each cluster. On the other, we downloaded data from KEGG that associates genes to KEGG metabolic circuits in fully sequenced genomes [90] and attribute pathways terms to each of the clusters.

2.6.5. Calculation of the Hamming distance

The Hamming Distance (HD) between the vector $\overrightarrow{V1}$ of protein functions associated to a specific process, localization or pathway in *S. cerevisiae* and the vector $\overrightarrow{V2}$ of corresponding protein functions in another organism gives a measure of how different the two vectors are. It is calculated using the formula $HD = \sum_{i=1}^{n} (1 - \delta_i)$ where δ_i is the Kronecker delta. δ_i is 1 if the elements in position *i* of both vectors are orthologs and 0 otherwise. The smaller the distance, the more similar the two vectors are and the more similar is the set of genes executing a specific process in both organisms. HD can be normalized (NHD) by dividing it by the maximum HD between corresponding vectors of all organisms. Consequently, the smaller NHD is, the more likely that *S. cerevisiae* is a good model to study the relevant process or pathways and generalize the results for the other organism. The vectors we define for each pathway include all proteins that could participate in that pathway in all organisms in the KEGG database. This ensures that the comparison we are making accounts for differences between the pathway in *S. cerevisiae* and that in the other organism and vice-versa. All calculations were performed using Mathematica [91].

2.7. Supporting Materials

2.7.1. Appendix 1 - Detailed functional analysis of *S. cerevisiae* as a model organism

The 5880 non-redundant genes of *S. cerevisiae* are obtained from NCBI (http://ncbi.nlm.nih.gov) database (December 2009). These genes are grouped according to four different functional classifications. Three of these describe the biological function of the proteins according to Gene Ontology (GO) categories [molecular function, biological process, and cellular localization]. The fourth category describes the KEGG pathways in which the proteins are involved.

With respect to the GO classification, 1725 (29%) proteins are not annotated, 1646 (28%) proteins are associated with a single term and 2509 (43%) proteins are associated with more than one term for biological process. Further details about the functional GO classification of *S. cerevisiae* proteins can be found in **Figure S1.1**.

Mapping the total *S. cerevisiae* protein set to KEGG pathways terms shows that 78% (4571) of genes have not been associated with any pathway. The remaining 22% (1309) of proteins are associated to 105 terms for pathways. Almost all these proteins are associated with more than one pathway. The results are summarized in Supplementary Figure 1 and in Supplementary **Table S1.2** and **Table S1.3**.

With this functional classification of *S. cerevisiae* proteins in place, we can compare the different molecular circuits and processes of yeast their analogues in other organisms. To do this we downloaded the fully sequenced genome of 704 organisms, distributed in three domains (*Eukaryota, Bacteria* and *Archaea*). A list of all organisms is given as Supplementary **Table S1.1**.

Functional comparison of the full *S. cerevisiae* protein complement to that of other organisms

To compare molecular circuits, biological process, molecular function and cellular localization between *S. cerevisiae* and the other organisms, we created clusters of **orthologs** (ScCOGs), **homologues** (ScCHGs) and **absent** genes (ScCAGs) for each *S. cerevisiae* protein with respect to the genome of each of the other 704 organisms. The results are

summarized in Supplementary **Table S1.1, Table S1.2** and **Table S1. 3** and the detailed clusters can be downloaded in the supplementary files. Each cluster was associated with the functional terms corresponding to its *S. cerevisiae* protein, as classified in the previous section. Supplementary **Figure S1.2, Figure S1.3, Figure S1.4** and **Figure S1.5** describe these results. Given the functional associations and the ScCOGs, we can now look for differences and similarities in specific pathways, functions, or processes between *S. cerevisiae* and any of the studied organisms (for more details see Supplementary **Table S1.1, Table S1.2** and **Table S1.3**).

ARCHAEA DOMAIN

We analysed 48 species of *Archaea*. About 20% (1158) of all *S. cerevisiae* proteins generate ScCOGs that contain *Archaea* sequences. However, only 2% (103) of all yeast proteins generate ScCOGs that contain at least a sequence from each sequenced species of *Archaea*. An additional 18 (0.3%) *S. cerevisiae* proteins have homologues in all *Archaea*. 3672 (62%) *S. cerevisiae* proteins are absent in all *Archaea*. Most of these have unknown function. At the phyla level, *Crenarchaeota* commonly share orthologs to 164 (3%) *S. cerevisiae* proteins, while *Euryarchaeota* commonly share orthologs to 148 (3%) *S. cerevisiae* proteins. *Korarchaeota* and *Nanoarchaeota* are represented in our sampling with only one organism per phylum.

Globally, the biological pathways of *S. cerevisiae* that share the highest fraction of their protein complements with all *Crenarchaeota* are "Aminoacyl-tRNA biosynthesis" and "Proteasome". Even so, less than 60% of the *S. cerevisiae* proteins associated with these pathways have orthologs in the organisms of the phylum. 35% of the *S. cerevisiae* proteins associated with "RNA metabolic process" have orthologs in all the organisms of the phylum. Orthologs for the protein complements of the remaining *S. cerevisiae* proteins associated with other pathways and processes are mostly absent from the phylum.

There are 3672 (62%) *S. cerevisiae* genes those are totally absent in all *Archaea*. 88% of these genes have no associated function in the KEGG database. No significant homology is found in any Archaea with respect to all of proteins from *S. cerevisiae* that are involved in "SNARE interaction vesicular transport" pathways (23 genes). Homologues for these proteins are also absent from all *Bacteria*, which is consistent with the fact that the function is very specific to eukaryotes [**92**]. Homologues for more than 80% of all *S. cerevisiae* proteins that are involved in "Glycosylphosphatidylinositol (GPI)-anchored biosynthesis", "High-

mannose type N-glycan biosynthesis" and "Unsaturated fatty acid biosynthesis" are absent from *Archaea*.

Homologues for 4209 (72%) *S. cerevisiae* proteins are absent in all *Crenarchaeota*, while only 3807 (65%) are absent in all *Euryarchaeota*. More than 80% of all *S. cerevisiae* proteins involved in "Ubiquitin mediated proteolysis", "Endocytosis", "Fructose and mannose metabolism", "Mismatch repair", "sphingolipid metabolism", "High-mannose type N-glycan biosynthesis", "Biosynthesis of unsaturated fatty acid" are absent in all *Crenarchaeota*. In contrast, all *Euryarchaeota* have significant homologues for more than 40% of the *S. cerevisiae* proteins involved in "Mismatch repair" and "Sphingolipid metabolism". These results suggest that, for these pathways, *Euryarchaeota* are closer to *S. cerevisiae* than *Crenarchaeota*.

BACTERIA DOMAIN

We analysed 598 species of bacteria. 1612 (27%) of all *S. cerevisiae* proteins generate ScCOGs that contain bacteria sequences. However, no ScCOG or ScCHG contains a sequence from each bacterial species. Furthermore, 2881 (49%) *S. cerevisiae* genes are absent from all *Bacteria*, a smaller percentage than that for *Archaea*.

Interestingly, a higher percentage of *S. cerevisiae* proteins that participate in the "RNA polymerase", "DNA replication", "Pyrimidine metabolism", and "Ribosome" pathways is absent from *Bacteria* than from *Archaea*. This suggests that, for these pathways, *S. cerevisiae* may be more similar to *Archaea* than to *Bacteria*. On the other hand, a higher percentage of genes that participate in the "Starch and sucrose metabolism", "O-Mannosyl glycan biosynthesis", "High-mannose type N-glycan biosynthesis", "Biosynthesis of unsaturated fatty acid" and "Androgen and estrogen metabolism" pathways in *S. cerevisiae* is absent from *Bacteria*.

Most bacteria with fully sequenced genomes are *Proteobacteria* (315 organisms) and *Firmicutes* (122 organisms). Only 11 (0.2%) *S. cerevisiae* proteins have orthologs in all *Proteobacteria*, while 96 (2%) *S. cerevisiae* proteins have orthologs in all *Firmicutes*. One additional protein (0.01%) has homologues in all *Proteobacteria*, while an additional 8 (0.1%) proteins have homologues in all *Firmicutes*. By and large, the sets of proteins from *S. cerevisiae* that associate with individual biological processes and pathways are closer to the corresponding set of proteins from *Proteobacteria* than to those from *Firmicutes*. The

exception to this rule is observed for the "Lysosome" pathway of *S. cerevisiae*, which has more absent genes in *Proteobacteria* than in *Firmicutes*.

Our dataset contains genomes for 48 *Actinobacteria* and 30 *Cyanobacteria*. *S. cerevisiae* has 180 proteins that are present in all *Actinobacteria* genomes [146 orthologs (3%) + 34 (0.6%) homologues], and 352 proteins that are present in all *Cyanobacteria* genomes [263 (4%) orthologs and 89 (2%) homologues]. The set of proteins associated with "Aminoacyl-tRNA biosynthesis", "Pentose phosphate pathways", "Valine, leucine and isoleucine biosynthesis", "Histidine metabolism" pathways, "Cellular amino acid and derivative metabolic process", "Generation of precursor metabolites and energy", "Cofactor metabolic process" and "Cellular respiration" in *S. cerevisiae* are more similar to the corresponding sets in *Cyanobacteria* than to those in *Actinobacteria*.

3889 (66%) of all *S. cerevisiae* proteins are absent in all sequenced *Actinobacteria* and 3940 (67%) proteins of *S. cerevisiae* are absent in all *Cyanobacteria*. In terms of biological function, the sets of proteins that lack a higher number of homologues in *Actinobacteria* than in *Cyanobacteria* are associated with "Proteasome", "Amino sugar and nucleotide sugar metabolism", "Galactose metabolism", "Pentose and glucuronate interconversions", and "Lipid metabolic process".

Other bacterial phyla have a smaller number of organisms with fully sequenced genomes [Tenericutes (19 organisms), Spirochete (11 organisms), Bacterioides (11 organisms), Green nonsulfur bacteria (8 organisms), Chlamydia (13 organisms), Hyperthermophilic bacteria (4 organisms), Green sulfur bacteria (7 organisms) and Deinococcus-thermus (4 organisms)]. The set of S. cerevisiae proteins that is associated with the "Aminoacyl-tRNA biosynthesis" pathway is that which is most conserved in all organisms from these phyla, with the exception of *Tenericutes*. In this phylum, only 3 genes associated to "Aminoacyl-tRNA biosynthesis" have homologues. Three out of these seven phyla have a similar number of organisms with fully sequenced genomes. Those phyla are of Spirochete, **Bacterioides** and Chlamydia. The set proteins involved in "Glycolysis/Gluconeogenesis" and "TCA cycle" pathways in S. cerevisiae is more similar to that of *Chlamydia* than to those of the two other phyla. The set of proteins associated with "One carbon pool by folate" in S. cerevisiae is more similar to that of Bacterioides than to those in the other phyla. All the three phyla have an equal level of similarity to S. cerevisiae

with respect to the "Proteosome" pathway. The genes involved in "SNARE interaction in vesicular transport" pathway are totally absent in all the three phyla.

Another interesting comparison is that between *Green nonsulfur bacteria* (8 organisms) and *Green sulfur bacteria* (7 organisms). The set of *S. cerevisiae* proteins involved in "Glycolysis/Gluconeogenesis", "Glycine, serine and threonine metabolism", "Histidine metabolism", "Riboflavin metabolism", "Limonene and pinene degradation" and "Thiamine metabolism" pathways are more similar to the corresponding sets of *Green sulfur bacteria* than to those of *Green nonsulfur bacteria*. Similar fractions of the sets of *S. cerevisiae* proteins involved in "Phenylalanine, tyrosine and tryptophan biosynthesis", "One carbon pool folate" and "Fatty acid biosynthesis" pathways are found in both phyla.

More than 80% of the *S. cerevisiae* proteins associated with "Endocytosis", "RNA polymerase", "Basal transcription factor", "Glycosylphosphatidylinositol(GPI)-anchored biosynthesis", "Porphyrin and chlorophyll metabolism", "Steroid biosynthesis", "Sulfur metabolism" and "High-mannose type N-glycan biosynthesis" are absent in both phyla.

EUKARYOTA DOMAIN

Overall, there are 59 species of eukaryotes in our dataset. About 4.5% (263) of all ScCOGs contain sequences from each of these organisms. Between 40% and 60% of all *S. cerevisiae* proteins involved in "MAPK signalling pathways", "signal transduction" biological process, and "helicase activity" molecular functions are present in all 59 species. Furthermore, between 60% and 80% of all proteins involved in "Microtubule organizing centre" of *S. cerevisiae* are also found in all 59 sequenced eukaryotes.

FUNGI DOMAIN

We analyze 19 fungal species. 781 (13%) of the ScCOGs contain sequences from all these species. More than 80% of the proteins of *S. cerevisiae* involved in "O-mannosyl glycan biosynthesis", "Synthesis and degradation of ketone bodies", "Microtubule organizing centre", "helicase activity" and "motor activity" are also present in all other *Fungi*. More than 60% of all *S. cerevisiae* proteins involved in "RNA metabolic process", "Organelle organization", "Protein modification process", "Cell cycle", "Response to stress", "DNA metabolic process", and "Response to chemical stimuli" are also present in all other fungi.

2310 (39%) ScCOGs contain sequences from *Basidiomycetes* (4 organisms), while only 2174 (36%) ScCOGs contain sequences from *Ascomycetes* (14 organisms) (*S. cerevisiae*'s phylum). 469 (8%) ScCHGs have sequences from all *Basidiomycetes*, while 1525 (26%) genes are absent in all sequenced *Basidiomycetes*.

ANIMAL KINGDOM

We analysed the genomes of 20 animal species, distributed throughout 4 phyla: Vertebrates (12 organisms), Insects (4 organisms), Nematodes (3 organisms), and Echinoderms (1 organism, *Strongylocentrotus purpuratus* [purple sea urchin]). 2737 (47%) ScCOGs contain animal sequences. 480 (8%) of the ScCOGs contain sequences from all animals. An additional 81 (1%) *S. cerevisiae* proteins also have homologues in all animals.

More than 60% of the *S. cerevisiae* proteins that are associated with "MAPK signalling pathways - yeast", "Fatty acid metabolism", "Limonene and pinene degradation pathways" are also present in all animals. Between 40% and 60% of the *S. cerevisiae* proteins associated with "Signal transduction" and between 60% and 80% of *S. cerevisiae* proteins associated with "Signal transducer activity" and "Cytoskeleton, cellular bud and "Microtubule organizing centre" are also found in all animals.

2028 (34%) yeast proteins are absent in all the animal genomes. Most of these proteins have unknown biological function. Between 40% and 60% of the proteins involved in "Cell wall organization", "Sporulation", and "Transcription regulator activity" in *S. cerevisiae* are absent from all animals. This is expected, given that animals do not have cell walls.

Globally, 573 (10%) ScCOGs have sequences from all sequenced Vertebrates. This is phylum that has the lowest number of proteins that are common to all its organisms and have orthologs in *S. cerevisiae*. Homologues for the proteins from *S. cerevisiae* associated with the following processes are mostly absent from Vertebrates : "MAPK signalling pathway yeast", "Protein modification process", "Response to chemical stimuli", "Signal transduction", "Meiosis", "Transposition"; molecular functions involved genes like "RNA binding", "Translation regulator activity" and "Signal transducer activity". This suggests that *S. cerevisiae* is not a good model to study these processes in vertebrates.

The sets of *S. cerevisiae* proteins involved in "Starch and sucrose metabolism", "Galactose metabolism", "GPI-anchored biosynthesis", "Porphyrin and chlorophyll

metabolism", "One carbon pool by folate", "O-Mannosyl glycan biosynthesis", "Gamma-Hexachlorocyclohexane degradation", "Protein modification process", "Carbohydrate metabolic process", "Cellular amino acid and derivative metabolic process", "Heterocycle metabolic process" are more similar to the analogous sets found in *Insects* than to those found in *Nematodes*. The sets of *S. cerevisiae* proteins involved in "DNA metabolic process", "Helicase activity" and "Lipid binding" are more similar to the analogous sets found in *Nematodes* than to those found in *Insects*. Both phyla have orthologs for a similar proportion of the *S. cerevisiae* proteins involved in: "Ribosomes", "Ubiquitin mediated proteolysis", "Aminoacyl-tRNA biosynthesis", "TCA cycle", "DNA replication", "Glutathione metabolism", "Phosphatidylinositol signalling system", "Valine, leucine and isoleucine degradation" and "beta-Alanine metabolism", "RNA metabolic process", "Response to chemical stimulus", "Transferase activity", "DNA binding" and "Enzyme regulatory activity". Both phyla have orthologs for a similar proportion of the *S. cerevisiae* proteins localized to: "Nucleolus", "membrane fraction", "Golgi apparatus", and "Cytoplasmic membrane bounded vesicle".

PLANTS KINGDOM

We analysed 5 plant organisms distributed throughout 4 phyla. The *Dicotyledons*, *Monocotyledons*, and Red algae have one fully sequence genome each, while two Green algae genomes have been fully sequenced. 1371 (23%) ScCOGs contain sequences from all plants. An additional 253 (4%) yeast proteins have homologues in all plants.

All plants have orthologs for more than 80% of the *S. cerevisiae* proteins associated with: "Ribosome", "Aminoacyl-tRNA biosynthesis", "Pentothenate and CoA biosynthesis", "Propeonate metabolism", "Valine, leucine and isoleucine degradation", "Limonene and pinene degradation", "Homologous recombination", "Selenoamino acid metabolism", "Mismatch repair", "Valine, leucine and isoleucine biosynthesis", "Lysosome", "Alpha-Linolenic acid metabolism", "Benzoate degradation via hydroxylation", "Meiosis", "Structure molecular activity", "Ligase activity", "Helicase activity", and "Isomerase activity". All plants have orthologs for more than 80% of the set of *S. cerevisiae* proteins localized at "Ribosomes".

Interestingly, in Dicotyledons only 282 (5%) *S. cerevisiae* proteins are absent, whereas in *Monocotyledons* and *Red algae* at least 43% of *S. cerevisiae* proteins are absent. It is not possible at this time to know if this difference is just a consequence of the very limited

sampling of plant genomes that is available for our analysis or if it reflects some fundamental difference between the phyla. Nevertheless, *Arabidopsis thaliana* has the protein complement that is closest to that of *S. cerevisiae* in the plant kingdom.

PROTISTS KINGDOM

We analysed 15 protists organisms distributed throughout 7 phyla. Cellular slime molds, *Choanoflagellates*, *Diplomonads*, *Entamoeba* and *Parabasalids* have only one fully sequenced genome each, while *Alveolates* has 7 and *Euglenozoa* has 3 fully sequenced genomes. 591 (10%) ScCOGs contain sequences from all protists. An additional 43 (0.7%) yeast proteins have homologues in all protists. Between 60% and 80% of all *S. cerevisiae* proteins associated with the "Proteasome" have orthologs in all sequenced organisms from the Protists kingdom. Between 40% and 60% of the proteins associated with the following pathways in *S. cerevisiae* have orthologs in all protists: "Ribosome", "MAPK signaling pathway - yeast", "Ubiquitin mediated proteolysis", "Aminoacyl-tRNA biosynthesis", "Nucleotide excision repair", "Endocytosis", "DNA replication", "Homologous recombination", "Mismatch repair", "Lysosome", and "Protein export".

839 (14%) *S. cerevisiae* proteins have orthologs and 194 (3%) *S. cerevisiae* proteins have homologues in *Alveolates*. Orthologs or homologues for more than 80% of the *S. cerevisiae* proteins involved in "Proteosome" pathways are also presents in Alveolates. Between 60% and 80% of the proteins involved in the following pathways of *S. cerevisiae* have orthologs and/or homologues in Alveolates: "Ribosome", "Aminoacyl-tRNA biosynthesis", "Pyrimidine metabolism", "MAPK signaling pathway - yeast", "Ubiquitin mediated proteolysis", "Nucleotide excision repair", "DNA replication", "Homologous recombination", "Mismatch repair", "Glyoxylate and dicarboxylate metabolism", and "CO2 fixation".

2740 (47%) *S. cerevisiae* proteins are absent in *Alveolates*. Homologues and orthologs for the *S. cerevisiae* proteins involved in the following pathways are absent from the genome of all sequenced *Alveolates*: "O-Mannosyl glycan biosynthesis", "Riboflavin metabolism" and "High-mannose type N-glycan biosynthesis".

In *Euglenozoa*, 1281 (22%) *S. cerevisiae* proteins have orthologs and 695 (12%) *S. cerevisiae* proteins have homologous. Orthologs and homologues for more than 80% of the *S.*

cerevisiae proteins involved in the following pathways are also found in *Euglenozoa*: "Ribosome", "Proteosome", "Citrate cycle (TCA cycle)", "Glutathione metabolism", "Homologous recombination", "Mismatch repair", "Inositol phosphate metabolism", "Phosphatidylinositol signalling system", "Lysosome".

3157 (54%) S. cerevisiae proteins are absent in Euglenozoa. Most of these are also absent in Alveolates.

Proteins that are specific to S. cerevisiae

There are 24 *S. cerevisiae* proteins that have no orthologs in any other organism. However, out of these, only ten have no homologues in any of the analyzed genomes. The NCBI references for these proteins are NP_010097, NP_010148 (ribosomal protein L47 of 60S subunit), NP_010496, NP_013364, NP_878067, NP_010319, NP_013978, NP_878042, NP_878075, NP_878108. These ten genes code for small peptides. A few of them may be miss-annotated as genes. However, some have been predicted based on microarray expression data, which strongly suggests that they are being expressed and may have a function that is specific to this yeast.

Functional comparison of biological processes and pathways between *S*. *cerevisiae* and other organisms

KEGG PATHWAYS

Figure 2.2 summarizes the results for KEGG pathways (for more detail analysis see Supplementary **Figure S1.2**). Here, we find that "Benzoate degradation via hydroxylation" (2 genes) is the biological pathway that is fully present in the highest fraction of organisms. Even so, this pathway is fully absent from all *Tenericutes organisms*. "Geraniol degradation" (1 gene), "Methane metabolism" (7 genes), "Propanoate metabolism" (11 genes), "Valine, leucine and isoleucine degradation" (18 genes), "Aminoacyl-t-RNA biosynthesis" (39 genes) and "Glycolysis/Gluconeogenesis" (48 genes) are also pathways that appear to be similar to those of *S. cerevisiae* in a large fraction of organisms. Pathways such as *S. cerevisiae*'s "RNA polymerase" (29 genes), "Lysosome" (14 genes), "MAPK signaling pathway - yeast" (55 genes), "DNA replication" (30 genes), and "Ubiquitin mediated proteolysis" (44 genes)

and "Nucleotide excision repair" (34 genes) are much more similar to those from other eukaryotes than to the corresponding prokaryotic pathways (when they exist).

The full "Valine, leucine and isoleucine" pathway (18 genes) is found in all eukaryotes. Of all pathways, this is the one that is closest to that of a largest fraction of *Proteobacteria*, *Actinobacteria* and *Firmicutes*. Other prokaryotic phyla only have orthologs for less than 40% of the proteins in the pathway.

The *S. cerevisiae* "DNA replication" pathway (30 genes) is similar to that of all other eukaryotes and *Archaea. Bacteria* have no orthologs to protein associated with the yeast pathway. However, sequence homologues for the pathway are present in the *Bacteria* domain. *S. cerevisiae* "MAPK signalling pathways" (55 genes) are also well conserved in *Fungi*, and partially conserved in Animals, Plants and Protists. The *S. cerevisiae* "Ubiquitin mediated proteolysis" pathway (44 genes) is similar to those of other *Fungi*, *Animal*, *Plants*, and *Protists*. Orthologs for proteins involved in this pathway are often absent in *Alveolates*. The "Proteasome" pathway (35 genes) is similar to that of most *Eukaryotes*, with *Diplomonads* being the exception. These organisms have orthologs for only a few genes of the pathway.

The "Glycolysis/Gluconeogenesis" pathway (48 genes) is very similar between *S. cerevisiae* and all *Eukaryotes* and most *Bacteria* and *Archaea*, although, all the *Proteobacteria* being the exception. The *S. cerevisiae* "Thiamine metabolism" pathway (5 genes) is most similar to the corresponding pathways in other *Fungi*, in *Plants*, and in some *Proteobacteria*. The pathway is absent in *Animals* and *Protists*. The "Steroid biosynthesis" pathway (15 genes) is fully present in *Fungi*, *Plants* and *Vertebrates*. In *Insects* and *Nematodes* the pathway is absent.

The *S. cerevisiae* "Basal transcription factor" (23 genes) and "High-mannose type N-glycan biosynthesis" (12 genes) are similar only to the corresponding pathways of other *Ascomycetes*. Nevertheless, a fraction of the proteins for the first pathway are present in human, dog, zebra fish and African clawed frog. The "SNARE interaction in vesicular transport" pathway (23 genes) is fully present only in *Kluyveromyces lactis, Candida glabrata* and *Pichia stipitis*. It is completely absent from other *Ascomycetes*, from *Basidiomycetes*, from *Animals*, and from *Plants*.

The pathway that executes *S. cerevisiae* cell cycle (115 genes) appears to be quite unique to Fungi, because only a small fraction of its proteins have orthologs in other eukaryotes. This suggests that extrapolating the results of studying cell cycle in *S. cerevisiae* to other organisms should be done only at the level of basic principles, if at all [see for example [82, 83].

As expected, the closest organisms to S. cerevisiae in our analysis are Kluyveromyces lactis and Candida glabrata. A. thaliana (Dicotyledons) and Oryza sativa (Monocotyledons) are the closest organisms to S. cerevisiae, outside of the Fungi clade. A curious observation is that, when clustering organisms with respect to S. cerevisiae, most of the mammals remain close to S. cerevisiae. Humans, dogs, mice, cows and rats are among the organisms that are closer to the yeast, when you disregard other fungi. Dictyostelium discoideum (Cellular slime molds) is the closest protist to S. cerevisiae, whereas, Giardia lamblia (Diplomonads) is the most distant protist. Interestingly, E. cuniculi (Microsporidians) is the eukaryotic organism that appears to be the most different from S. cerevisiae, even though it belongs to the Fungi kingdom. Only some proteins from a few of the pathways from S. cerevisiae have orthologs in E. cuniculi. These pathways are "Arachidonic acid metabolism", "Alpha linolenic acid metabolism", "Pentose & glucuronate interconversion", "Terpenoid backbone biosynthesis", "Mismatch repair", "Proteasome", "RNA polymerase" and "Base excision repair". This organism has what appears to be a vestigial mitochondrial organelle, the mitosome. Fe-S cluster biogenesis, which takes place in the S. cerevisiae mitochondria, is also initiated in the mitosome of E. cuniculi. The remaining S. cerevisiae pathways are absent in E. cuniculi. This is consistent with the evolutionary history of *Microsporideans* [93].

When it comes to human metabolism, *S. cerevisiae* is likely to be a reasonable model for the study of "mismatch repair" (18 genes), "Ubiquitin and other terpenoid-quinone biosynthesis" (5 genes), "Inositol phosphate metabolism" (15 genes), "Steroid biosynthesis" (15 genes), "Ubiquitin mediated proteolysis" (44 genes), "DNA replication" (30 genes), "Ribosome" (142 genes), "Proteasome" (35 genes), "Mismatch repair" (18 genes), "Galactose metabolism" (23 genes), "One carbon pool by folate" (14 genes) and "Glycolysis/gluconeogenesis" (48 genes). It might also be a moderately good model to study "basal transcription factor" pathways (17 genes), "N-Glycan biosynthesis" (28 genes), "RNA polymerase" (29 genes), "Glycine, serine and threonine metabolism" (30 genes) and "Glycerophospholipid metabolism" (16 genes). *S. cerevisiae* pathways that have orthologs in humans for only a small fraction of their proteins are: "androgen estrogen metabolism" (4

genes), "Cyanoamino acid metabolism" (9 genes), "Nitrogen metabolism" (16 genes), "SNARE interactions in vesicular transport" (23 genes), "Gamma-Hexachlorocyclohexane degradation" (10 genes), "Phenylalanine, tyrosine and tryptophan biosynthesis" (22 genes), "GPI-anchored biosynthesis" (22 genes) and "MAPK signaling pathway - yeast" (55 genes).

Most *Bacteria* are closer to *S. cerevisiae* than any *Archaea*. Specifically, *Proteobacteria* are the closest to *S. cerevisiae* and *Klebsiella pneumoniae* is the closest Proteobacteria. *Tenericutes* are the most distant bacterial phylum to *S. cerevisiae*, and *Mycoplasma genitalium* is the most distant organism. In *Archaea, Haloarcula marismortui* (*Euryarchaeota*) is the closest organism to *S. cerevisiae* and *Nanoarchaeum equitans* (*Nanoarchaeota*) is the most distant.

Even though S. cerevisiae is an Ascomycetes, the sets of S. cerevisiae proteins involved in "Basal transcription factor", "Glycerophospholipid metabolism", "Tyrosine metabolism", "High-mannose type N-glycan biosynthesis" and "Ether lipid metabolism" are more similar to the corresponding sets of *Basidiomycetes* than to those of other *Ascomycetes*. This is also true for the sets of proteins involved in the following biological processes: "transport", "lipid metabolic process", "cellular amino acid derivative metabolic process", "membrane organization", "generation of precursor metabolites and energy", "heterocycle metabolic process", "meiosis" and "Vitamin metabolic process", molecular functions like binding", "Structural molecular "RNA activity", "Oxidoreductase activity". "Nucleotidyltransferase activity" and "isomerase activity" ScCOGs sequence for cellular localization at cytoplasm, membrane and ribosomes. This suggests that for these pathways and biological processes S. cerevisiae might be closer to Basidiomycetes than to other organisms of its own phylum. The protein complements associated with the remaining pathways and biological processes in S. cerevisiae appear to be 80% similar to those of other Ascomycetes. Thus, as expected based on its evolutionary history, most S. cerevisiae biological processes are more similar to those of Ascomycetes than to those of Basidiomycetes.

Of all fungi, *Encephalitozoon cuniculi* is the organism with the lowest number of proteins that are similar to those of *S. cerevisiae*. Only 1764 *S. cerevisiae* proteins are also found in *E. cuniculi* [1015 (17%) orthologs and 749 (13%) homologues]. 4097 (70%) of the proteins from *S. cerevisiae* are absent from *E. cuniculi*. The sets of proteins associated with the following pathways and processes in *S. cerevisiae* are absent from *E. cuniculi*: "TCA

cycle", "Arginine and proline metabolism", "Cysteine and methionine metabolism", "Nglycan biosynthesis", "SNARE interaction in vesicular transport", "Nitrogen metabolism", "Steroid biosynthesis", "Sulfur metabolism", "1- and2- Methylnaphthalene degradation", "3chloroacrylic acid degradation", "Cellular amino acid and derivative metabolic process", "Generation and precursor metabolites and energy", "Heterocycle metabolic process", "Cellular respiration", "Vitamin metabolic process", and "Cellular aromatic compound metabolic process". Supplementary Figures 2-5 detail which other functional groups of proteins differ the most between the two organisms.

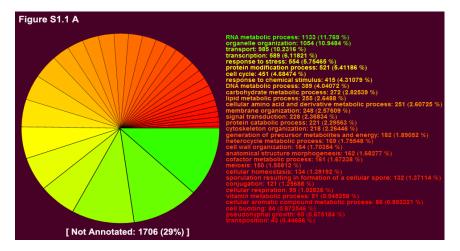
GO BIOLOGICAL PROCESSES, CELLULAR COMPONENT AND MOLECULAR FUNCTION

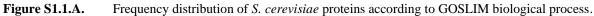
Figure 2.2, **Figure 2.3** and **Figure 2.4** summarize the results for the comparisons between *S*. *cerevisiae* and the other organisms using the GO categories classification. The results are quite similar to those described for **Figure 2.1**, which suggests that these functional classifications could be equivalent to a large extent, in spite of all problems that they might have (see discussion). *S. cerevisiae* metabolic activities like "Cellular amino acid and derivative metabolic process", "Cellular aromatic compound metabolic process", "Heterocycle metabolic process", "Cofactor metabolic process" and "Vitamin metabolic process" are the ones that are more conserved in all organisms. In contrast, "Motor activity", "Transcription", "Anatomical structure morphogenesis", appear to be conserved mostly in eukaryotes. Conservation of "Cell wall organization" pathways is restricted to fungi.

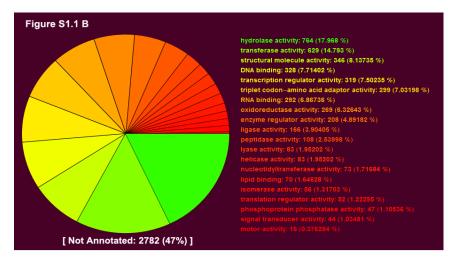
Evolutionary aspects of this work

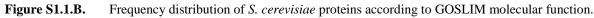
As one would predict beforehand, the organisms that have the highest fraction of processes associated to proteins sets that are similar to the corresponding proteins sets of *S. cerevisiae* are *Kluyveromyces lactis, Candida glabrata*, and other Ascomycetes. *A. thaliana* (Dicotyledons) and *Oryza sativa* (Monocotyledons) are the organisms with the largest fraction of processes with protein sets that are similar to those of *S. cerevisiae*, outside of the *Fungi* clade. In general, ranking the organisms with respect to the global similarity between their protein sets and the corresponding set in *S. cerevisiae* creates a clustering tree that mostly replicates phylogenetic trees built using ribosomal RNA (data not shown).

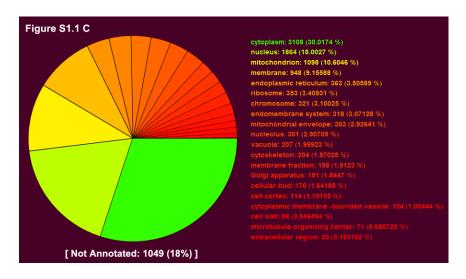
Interestingly, in that clustering tree, *Encephalitozoon cuniculi (Microsporidians*) is the eukaryotic organism that is the most distant from *S. cerevisiae*, even though it belongs to

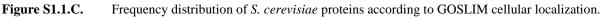

the *Fungi* kingdom. Only some proteins from a few of the pathways of *S. cerevisiae* have orthologs in *E. cuniculi* (see supplementary appendix for details). This is consistent with the evolutionary history of *Microsporideans* as a specialized intracellular fungi that both, lost many of its biological functions and has a high rate of divergence from other eukaryotes **[93]**.


Another interesting fact is that 138 (111 orthologs and 27 homologues) out of 352 *S*. *cerevisiae* proteins that have homologues in all *Cyanobacteria* are mitochondrial proteins. 39% of all *S. cerevisiae* genes with orthologs in all *Cyanobacteria* are mitochondrial. In contrast 13.5% of all *S. cerevisiae* genes are mitochondrial. Thus, there are 2.9 (\pm 0.24) times more mitochondrial genes in the *Cyanobacteria* ortholog set than one would expect from change alone. Given that a) the mitochondrial ancestor is a *Rickettsia* genus and not a *Cyanobacteria*, and b) the ancestor of chloroplasts is a *Cyanobacteria*, this result puzzled us and we speculated that it could provide functional insight into the evolution of both organelles [**94-98**].


To understand if there were any genes with specific functions and strong homologues that were common to mitochondria and chloroplasts, we decided to compare the sets of genes that have strong homologues between S. cerevisiae, all Cyanobacteria, all Rickettsia and the plant A. thaliana. We discovered that, 98 out of the 111 S. cerevisiae mitochondrial genes that had orthologs in all *Cyanobacteria* also had orthologs localized to the chloroplast in A. thaliana. Out of these, 92 where predicted to have strong homologues both in mitochondria and chloroplast. The localization of genes in A. thaliana was determined by checking the GO annotation (cellular component) of the genes in the TAIR database [99]. We also found that 110 S. cerevisiae mitochondrial genes had orthologs in all Rickettsia. Out of these, 68 had orthologs also in all Cyanobacteria and in A. thaliana. Mitochondrial and/or chloroplast genes are 3 to 4 times more common in this data set than one would expect from the set of S. cerevisiae proteins. The biological processes that dominate these sets of genes according to the GO classification is "biological process unknown". Furthermore, genes involved in energy production are also abundant. However, no specific biological process or molecular function was significantly enriched in these datasets when compared to all A. thaliana chloroplast and/or mitochondrial genes. Thus, further work that requires better functional classifications is needed in order to understand if these datasets have any functional implications in the evolution of energy producing organelles.


2.7.2. Supplementary Figures


Figure S1.1



Chapter 2.

Figure S1.1 [continued...]

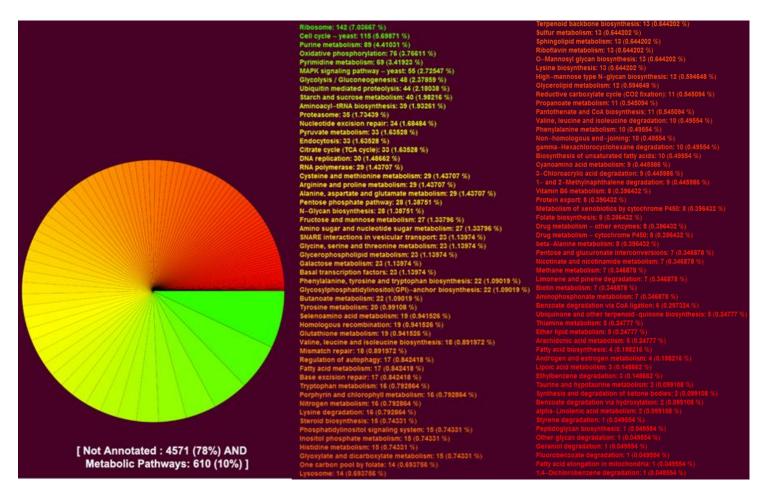


Figure S1.1.D. Frequency distribution of *S. cerevisiae* proteins according to KEGG pathways.

Figure S1.1 Frequency distribution of *S. cerevisiae* proteins according to different functional classifications.

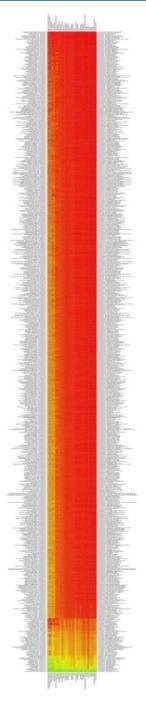

Figure S1.2*

Figure S1.2 Full heat-map representation showing how distant each organism is from *S. cerevisiae* with respect to each individual KEGG pathway. A green square indicates a high level of coincidence between the set of proteins involved in the specific pathway (column) in a given organism (row) and the set of proteins for the same pathway in *S. cerevisiae*. A red square indicates complete absence of the set of proteins involved in the specific pathway (column) in a given organism (row) with respect to the same pathway in *S. cerevisiae*. Intermediate colours indicate intermediate degrees of coincidence between the set of proteins in the target organism and that in *S. cerevisiae*. *Enlarged figure is available as Figure S1.2 in the CD that is provided with this thesis.

Chapter 2.

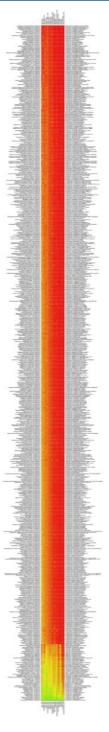

Figure S1.3*

Figure S1.3 Full heat-map representation showing how distant each organism is from *S. cerevisiae* **with respect to each biological process from the GOSLIM classification.** A green square indicates a high level of coincidence between the set of proteins involved in the specific biological process (column) in a given organism (row) and the set of proteins for the same process in *S. cerevisiae*. A red square indicates complete absence of the set of proteins involved in the specific process (column) in a given organism (row) and the set of proteins for the same process (column) in a given organism (row) with respect to the same biological process in *S. cerevisiae*. Intermediate colours indicate intermediate degrees of coincidence between the set of proteins in the target organism and that in *S. cerevisiae*. ***Enlarged figure is available as Figure S1.3 in the CD that is provided with this thesis.**

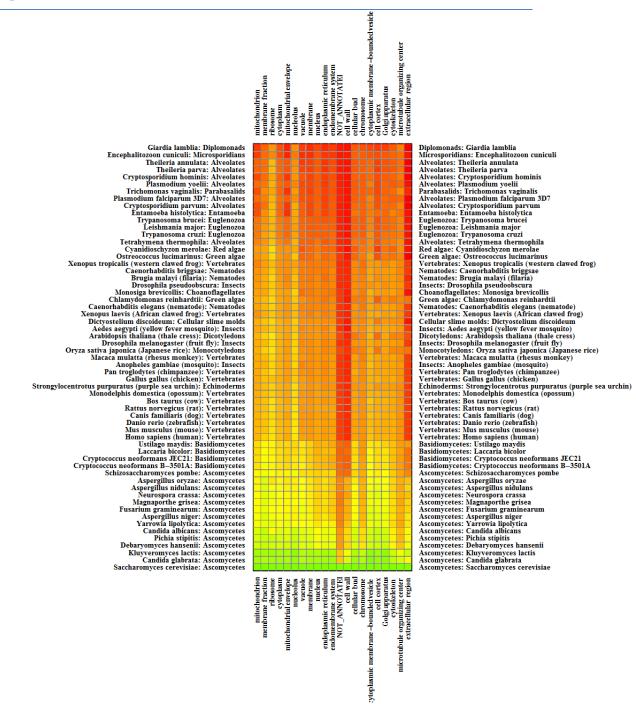

Chapter 2.

Figure S1.4*

Figure S1.4 Full heat-map representation showing how distant each organism is from *S. cerevisiae* **with respect to each molecular function from the GOSLIM classification.** A green square indicates a high level of coincidence between the set of proteins involved in the specific molecular function (column) in a given organism (row) and the set of proteins for the same process in *S. cerevisiae*. A red square indicates complete absence of the set of proteins involved in the specific function (column) in a given organism (row) with respect to the same molecular function in *S. cerevisiae*. Intermediate colours indicate intermediate degrees of coincidence between the set of proteins in the target organism and that in *S. cerevisiae*. ***Enlarged figure is available as Figure S1.4 in the CD that is provided with this thesis.**

Figure S1.5*

Figure S1.5 Full heat-map representation showing how distant each organism is from *S. cerevisiae* with respect to each cellular localization category from the GOSLIM classification. A green square indicates a high level of coincidence between the set of proteins assigned to a specific cellular localization (column) in a given organism (row) and the set of proteins for the localization in *S. cerevisiae*. A red square indicates complete absence of the set of proteins assigned to the specific cellular localization (column) in a given organism (row) with respect to the same localization in *S. cerevisiae*. Intermediate colours indicate intermediate degrees of coincidence between the set of proteins in the target organism and that in *S. cerevisiae*. *Enlarged figure is available as Figure S1.5 in the CD that is provided with this thesis.

2.7.3. Supplementary Tables

Table S1.1 Analyzed organisms and lumped homology with respect to the S. cerevisiae genome

						Number of S.	Number of	
					Number of	5. cerevisiae	S. cerevisiae	Number of S.
D	VINCIDOM		NO	ODCANICMINANT	annotated	proteins	proteins	cerevisiae
Domain	KINGDOM	PHYLUM	NO.	ORGANIS M NAME	proteins in	with	with	proteins
					genome	orthologs in	homologs in	absent in
						organism	organism	organism
			1	Saccharomyces cerevisiae	5880	5856	0	0
			2	Candida glabrata	5191	4912	281	687
			3	Kluyveromyces lactis	5335	4879	416	585
			4	Debaryomyces hansenii	6324	4021	769	1090
			5	Pichia stipitis	5816	3988	760	1132
			6	Candida albicans	14105	3864	754	1262
		Ascomycetes	7	Yarrowia lipolytica	6543	3498	859	1523
			8	Aspergillus niger	14102	3410	957	1513
			9	Fusarium graminearum	11656	3364	982	1534
	Fungi		10	Aspergillus nidulans	9541	3316	980	1584
			11	Magnaporthe grisea	14010	3309	983	1588
			12	Neurospora crassa	9824	3308	1009	1563
			13	Aspergillus oryzae	12074	3260	896	1724
			14	Schizosaccharomyces pombe	5003	3139	970	1771
			15	Cryptococcus neoformans B-3501A	6500	2935	1084	1861
		Basidiomycetes	16	Cryptococcus neoformans JEC21	6273	2899	1036	1945
			17	Laccaria bicolor	18215	2838	1075	1967
			18	Ustilago maydis	6538	2821	1074	1985
		Microsporidians	19	Encephalitozoon cuniculi	1996	1015	749	4116
EUKARYOTA		Vertebrates	20	Homo sapiens (human)	24305	2344	1087	2449
			21	Mus musculus (mouse)	29537	2342	1105	2433
			22	Danio rerio (zebrafish)	35022	2320	1108	2452
			23	Rattus norvegicus (rat)	26207	2304	1070	2506
			24	Canis familiaris (dog)	19797	2301	1128	2451
			25	Bos taurus (cow)	24127	2276	1086	2518
		(creesiaces	26	Monodelphis domestica (opossum)	19113	2237	1059	2584
			27	Pan troglodytes (chimpanzee)	25163	2160	1074	2646
			28	Macaca mulatta (rhesus monkey)	23956	2142	1112	2626
	Animals		29	Gallus gallus (chicken)	18107	2139	1083	2658
	1 minuto		30	Xenopus laevis (African clawed frog)	10355	1987	1038	2855
			31	Xenopus tropicalis (western clawed frog)	7091	1795	1022	3063
			32	Caenorhabditis elegans (nematode)	20077	1999	1167	2714
		Nematodes	33	Brugia malayi (filaria)	11371	1896	1085	2899
			34	Caenorhabditis briggsae	16441	1842	1157	2881
			35	Drosophila melanogaster (fruit fly)	14144	2149	1075	2656
		Insects	36	Anopheles gambiae (mosquito)	12527	2143	1114	2623
			37	Aedes aegypti (yellow fever mosquito)	15432	2131	1079	2670
			38	Drosophila pseudoobscura	9869	1945	1052	2883
		Echinoderms	39	Strongylocentrotus purpuratus (purple sea urchin)	28881	2204	1075	2601

Domain	KINGDOM	PHYLUM	NO.	ORGANISM NAME	Number of annotated proteins in genome	Number of S. cerevisiae proteins with orthologs in organism	Number of S. cerevisiae proteins with homologs in organism	Number of S. cerevisiae proteins absent in organism
		Dicotyledons	40	Arabidopsis thaliana (thale cress)	27216	2269	1147	2464
		Croop algae	41	Ostreococcus lucimarinus	7603	1860	1057	2963
	PLANTS	Green algae	42	Chlamydomonas reinhardtii	14416	2019	1090	2771
		Monocotyledons	43	Oryza sativa japonica (Japanese rice)	26937	2244	1091	2545
		Red algae	44	Cyanidioschyzon merolae	5013	1766	1051	3063
			45	Tetrahymena thermophila	26052	1656	1169	3055
			46	Plasmodium falciparum 3D7	5261	1350	945	3585
			47	Plasmodium yoelii	7353	1294	916	3670
		Alveolates	48	Cryptosporidium parvum	3805	1293	917	3670
EUKARYOTA			49	Theileria annulata	3795	1230	848	3802
[continued]			50	Theileria parva	4061	1226	849	3805
			51	Cryptosporidium hominis	3885	1198	839	3843
	PROTIS TS	ellular slime mol	52	Dictyostelium discoideum	13437	2174	1156	2550
		Choanoflagellates	53	Monosiga brevicollis	9203	2007	1162	2711
		Diplomonads	54	Giardia lamblia	6500	959	752	4169
		Entamoeba	55	Entamoeba histolytica	11065	1300	945	3635
		Euglenozoa	56	Trypanosoma cruzi	19607	1491	1036	3353
			57	Leishmania major	8264	1470	1079	3331
			58	Trypanosoma brucei	8712	1427	1058	3395
		Parabasalids	59	Trichomonas vaginalis	59679	1257	1054	3569
		Acidobacteria	60	Solibacter usitatus	7826	708	740	4432
			61	Rhodococcus sp. RHA1	9145	742	621	4517
			62	Streptomyces avermitilis	7673	702	684	4494
			63	Streptomyces coelicolor	8154	700	691	4489
			64	Saccharopolyspora erythraea	7197	699	697	4484
			65	Arthrobacter sp. FB24	4506	680	609	4591
			66	Mycobacterium smegmatis	6716	667	660	4553
				Frankia sp. EAN1pec	7191	660	608	4612
			68	Mycobacterium sp. JLS	5739	649	656	4575
			69	Nocardia farcinica	5936	649	674	4557
BACTERIA	BACTERIA		70	Mycobacterium sp. KMS	5975	646	649	4585
		Actinobacteria	71	Mycobacterium sp. MCS	5615	645	646	4589
			72	Mycobacterium vanbaalenii	5979	639	646	4595
			73	Frankia alni	6711	638	687	4555
			74	Mycobacterium gilvum	5579	633	709	4538
			75	Mycobacterium abscessus ATCC 19977T	4941	627	649	4604
			76	Thermobifida fusca	3110	622	657	4601
			77	Kineococcus radiotolerans	4681	620	656	4604
			78	Mycobacterium avium paratuberculosis	4350	617	606	4657
			79	Frankia sp. CcI3	4499	617	593	4670
			80	Mycobacterium bovis AF2122/97	3920	616	608	4656

Domain	KINGDOM	PHYLUM	NO.	ORGANISM NAME	Number of annotated proteins in genome	S. cerevisiae proteins with orthologs in organism	Number of S. cerevisiae proteins with homologs in organism	Number of S. cerevisiae proteins absent in organism
			81	Mycobacterium avium 104	5120	613	607	4660
			82	Mycobacterium bovis BCG Pasteur 1173P2	3952	613	612	4655
			83	Mycobacterium tuberculosis F11	3941	610	614	4656
			84 85	Mycobacterium tuberculosis H37Ra	4034 3989	609 609	614 614	4657 4657
			86	Mycobacterium tuberculosis H37Rv Mycobacterium tuberculosis CDC1551	4189	609	610	4661
				Corynebacterium glutamicum R	3080	607	609	4664
			-	Corynebacterium gittamicum A Corynebacterium glutamicum ATCC 13032 (Kyowa Hakko)	2993	606	598	4676
			89	Corynebacterium glutamicum ATCC 13032 (Bielefeld)	3057	603	599	4678
			90	Nocardioides sp. JS614	4909	603	655	4622
			91	Salinispora tropica	4536	603	629	4648
		Actinobacteria [continued]	92	Mycobacterium ulcerans	4160	600	624	4656
			93	Kocuria rhizophila	2357	586	586	4708
			94	Clavibacter michiganensis subsp. michiganensis	3079	581	628	4671
			95	Corynebacterium efficiens	2950	564	610	4706
			96	Clavibacter michiganensis subsp. sepedonicus	3117	563	631	4686
			97	Rubrobacter xylanophilus	3140	555	636	4689
			98	Corynebacterium diphtheriae	2272	547	609	4724
BACTERIA [continued]	BACTERIA [continued]		99	Corynebacterium jeikeium	2120	547	567	4766
[continued]	[continued]			Corynebacterium urealyticum	2024	541	573	4766
				Bifidobacterium longum DJO10A	2003	539	521	4820
				Bifidobacterium longum NCC2705	1729	532	527	4821
				Leifsonia xyli xyli CTCB07	2030	528	559	4793
				Bifidobacterium adolescentis	1631	516	507	4857
				Propionibacterium acnes	2297	514	624 531	4742
				Mycobacterium leprae	1605 783	503 301	531 454	4846 5125
				Tropheryma whipplei TW08/27 Tropheryma whipplei Twist	783 808	301	454	5125
			108	Flavobacterium johnsoniae	5017	600	607	4673
				Bacteroides thetaiotaomicron	4816	562	630	4673
				Parabacteroides distasonis	3850	559	621	4700
				Cytophaga hutchinsonii	3785	556	617	4700
				Gramella forsetii	3584	550	549	4780
		Bacteroides		Salinibacter ruber	2833	550	673	4657
				Bacteroides fragilis NCTC9343	4231	542	540	4798
				Bacteroides fragilis YCH46	4625	539	558	4783
			117	Bacteroides vulgatus	4065	502	550	4828
			118	Flavobacterium psychrophilum	2412	482	503	4895
			119	Porphyromonas gingivalis W83	1909	377	471	5032

Domain	KINGDOM	PHYLUM	NO.	ORGANISM NAME	Number of annotated proteins in genome	Number of S. cerevisiae proteins with orthologs in organism	Number of S. cerevisiae proteins with homologs in organism	Number of S. cerevisiae proteins absent in organism
			120	Candidatus Protochlamydia amoebophila	2031	441	579	4860
			121	Chlamydophila felis	1013	340	408	5132
			122	Chlamydophila caviae	1005	336	401	5143
			123	Chlamydophila pneumoniae CWL029	1052	324	410	5146
			124	Chlamydophila pneumoniae TW183	1113	323	411	5146
			125	Chlamydophila pneumoniae J138	1069	322	412	5146
		Chlamydia	126	Chlamydophila pneumoniae AR39	1112	320	411	5149
			127	Chlamydophila abortus	932	317	428	5135
			128	Chlamydia trachomatis A/HAR-13 (serovar A)	919	303	409	5168
			129	Chlamydia trachomatis 434/Bu	874	302	410	5168
			130	Chlamydia trachomatis L2b/UCH-1/proctitis	874	302	413	5165
			131	Chlamydia trachomatis D/UW-3/CX (serovar D)	895	301	411	5168
			132	Chlamydia muridarum	911	292	448	5140
			133	Anabaena variabilis	5661	675	768	4437
			134	Anabaena sp. PCC7120	6131	665	763	4452
				Cyanothece sp. ATCC 51142	5304	656	753	4471
				Trichodesmium erythraeum	4451	624	735	4521
				Microcystis aeruginosa	6312	615	719	4546
			138	Gloeobacter violaceus	4430	610	747	4523
				Synechocystis sp. PCC6803	3264	602	704	4574
				Synechococcus sp. CC9311	2892	520	539	4821
				Cyanobacteria Yellowstone B-Prime	2862	517	721	4642
BACTERIA	BACTERIA			Cyanobacteria Yellowstone A-Prime	2760	513	692 (04	4675
[continued]	[continued]			Synechococcus elongatus PCC7942	2662 2475	512 510	694 750	4674 4620
				Thermosynechococcus elongatus	2475	505	750	4620
			145	Synechococcus elongatus PCC6301	2327	499	504	4074
				Synechococcus sp. CC9902	2307 2997	499	562	4877
		Cyanobacteria		Prochlorococcus marinus MIT 9303 Synechococcus sp. WH7803	2533	495	533	4823
					2535	493	529	4858
				Synechococcus sp. RCC307 Synechococcus sp. WH8102	2535 2519	490	499	4891
				Synechococcus sp. W18102 Synechococcus sp. CC9605	2645	490	522	4868
				Prochlorococcus marinus MIT9313	2269	463	509	4908
				Prochlorococcus marinus SS120	1883	453	504	4923
				Prochlorococcus marinus SS120	2193	445	484	4951
				Prochlorococcus marinus NATL2A	2163	445	487	4948
				Prochlorococcus marinus MIT 9515	1906	436	465	4979
				Prochlorococcus marinus MED4	1717	425	485	4970
				Prochlorococcus marinus MIT9312	1810	423	497	4960
			159	Prochlorococcus marinus MIT 9301	1907	423	491	4966
			160	Prochlorococcus marinus MIT 9215	1983	421	492	4967
			161	Prochlorococcus marinus AS9601	1921	418	505	4957
			162	Acaryochloris marina	8383	347	1075	3912
			163	Deinococcus geothermalis	3062	608	658	4614
		Deinococcus-	164	Deinococcus radiodurans	3181	567	627	4686
		Thermus	165	Thermus thermophilus HB8	2238	534	625	4721
			166	Thermus thermophilus HB27	2210	524	573	4783

Domain	KINGDOM	PHYLUM	NO.	ORGANISM NAME	Number of annotated proteins in genome	Number of S. cerevisiae proteins with orthologs in organism	Number of S. cerevisiae proteins with homologs in organism	Number of S. cerevisiae proteins absent in organism						
			167	Bacillus cereus ATCC 10987	5844	683	691	4506						
			168	Bacillus licheniformis DSM13	4196	669	667	4544						
				Bacillus anthracis Sterne	5287	669	682	4529						
			170	Bacillus subtilis	4105	669	655	4556						
			171	Bacillus anthracis Ames	5311	668	671	4541						
			172	Bacillus anthracis Ames 0581	5617	667	670	4543						
			173	Bacillus thuringiensis Al Hakam	4798	667	693	4520						
			174	Bacillus licheniformis ATCC 14580	4178	666	664	4550						
			175	Bacillus thuringiensis 97-27	5197	664	684	4532						
			176	Bacillus cereus ZK	5641	663	709	4508						
			177	Bacillus anthracis A2012	5852	661	654	4565						
			178	Clostridium beijerinckii	5020	658	599	4623						
			179	Bacillus amyloliquefaciens	3693	655	681	4544						
			180	Bacillus weihenstephanensis	5653	653	686	4541						
			181	Bacillus pumilus	3681	650	689	4541						
			182	Bacillus cereus ATCC 14579	5255	648	706	4526						
		Firmicutes		Geobacillus kaustophilus	3540	645	650	4585						
				Oceanobacillus iheyensis	3500	629	634	4617						
				Geobacillus thermodenitrificans	3445	626	645	4609						
				Lysinibacillus sphaericus	4771	622	655	4603						
				Bacillus cereus subsp. cytotoxis NVH 391-98	3844	614	666	4600						
			188	Bacillus halodurans	4066	609	681	4590						
			189	Bacillus clausii	4096	606	646	4628						
			Firmicutes	Firmicutes	Firmicutes	Firmicutes	Firmicutes		190	Clostridium acetobutylicum	3848	600 506	620	4660
BACTERIA [continued]	BACTERIA [continued]								Staphylococcus saprophyticus	2514 2846	596 595	612 584	4672 4701	
[continucu]	[continucu]				Listeria monocytogenes EGD-e Listeria innocua	3043	595 595	584 584	4701					
											2821	595 595	588	4701
				Listeria monocytogenes F2365 Listeria welshimeri SLCC5334	2774	589	580	4037						
			-	Staphylococcus epidermidis ATCC 12228	2485	588	608	4684						
				Staphylococcus epidermidis RP62A	2526	582	625	4673						
			-	Staphylococcus epidermillis KI 02A Staphylococcus aureus MSSA476	2598	581	612	4687						
			-	Staphylococcus aureus MW2	2632	580	614	4686						
				Staphylococcus aureus NCTC8325	2892	577	612	4691						
				Desulfitobacterium hafniense	5060	577	632	4671						
			202	Staphylococcus aureus Newman	2614	577	605	4698						
				Staphylococcus aureus USA300	2604	576	615	4689						
				Staphylococcus aureus N315	2619	572	610	4698						
				Staphylococcus aureus Mu50	2731	572	614	4694						
				Staphylococcus aureus MRSA252	2656	571	635	4674						
				Staphylococcus haemolyticus	2676	571	649	4660						
			208	Staphylococcus aureus JH1	2780	571	625	4684						
			209	Staphylococcus aureus Mu3	2698	571	611	4698						
			210	Staphylococcus aureus JH9	2726	569	622	4689						
			211	Exiguobacterium sibiricum	3015	563	658	4659						
			212	Clostridium botulinum B1 Okra	3852	562	607	4711						
			213	Clostridium botulinum A3 Loch Maree	3984	561	607	4712						
			214	Staphylococcus aureus RF122	2509	561	615	4704						
			215	Clostridium botulinum F Langeland	3659	561	597	4722						
			216	Clostridium botulinum A ATCC 3502	3590	559	608	4713						

Domain	KINGDOM	PHYLUM	NO.	ORGANIS M NAME	Number of annotated proteins in genome	S. cerevisiae proteins with orthologs	Number of S. cerevisiae proteins with homologs	Number of S. <i>cerevisiae</i> proteins absent in					
						in organism	in organism	organism					
			217	Clostridium kluyveri	3913	558	633	4689					
			217	Clostridium botulinum A ATCC 19397	3552	558	602	4720					
			210	Lactococcus lactis subsp. lactis IL1403	2321	552	566	4762					
			220	Clostridium botulinum A Hall	3404	548	609	4723					
			221	Lactobacillus plantarum	3057	544	575	4761					
			222	Staphylococcus aureus COL	2618	539	530	4811					
			223	Alkaliphilus metalliredigens	4625	539	591	4750					
			224	Clostridium difficile	3753	538	616	4726					
			225	Desulfotomaculum reducens	3276	536	633	4711					
			226	Clostridium perfringens ATCC 13124	2876	530	566	4784					
			227	Lactococcus lactis subsp. cremoris MG1363	2434	527	571	4782					
			228	Clostridium phytofermentans	3902	527	578	4775					
			229	Clostridium perfringens 13	2723	523	560	4797					
			230	Leuconostoc mesenteroides	2005	521	547	4812					
			231	Clostridium botulinum B Eklund 17B	3527	518	610	4752					
			232	Carboxydothermus hydrogenoformans	2620	516	553	4811					
			233	Lactococcus lactis subsp. cremoris SK11	2504	515	567	4798					
		Firmicutes	234	Streptococcus sanguinis	2270	514	548	4818					
			235	Symbiobacterium thermophilum	3338	513	657	4710					
			236	Lactobacillus casei BL23	3044	513	576	4791					
			237	Clostridium thermocellum	3189	508	596	4776					
			238	Heliobacterium modesticaldum	3000	508	612	4760					
			Firmicutes	239	Lactobacillus casei ATCC 334	2771	506	579	4795				
				Firmicutes	Firmicutes	Firmicutes			Clostridium novyi	2315 1843	504 504	558 563	4818 4813
BACTERIA [continued]	BACTERIA [continued]							Lactobacillus fermentum	2578	504	565	4813	
[continueu]	[continucu]				Clostridium perfringens SM101 Thermoanaerobacter tengcongensis	2578	499	539	4821				
			-	Lactobacillus reuteri F275 (JGI)	1900	493	573	4814					
				Pelotomaculum thermopropionicum	2920	493	611	4776					
			-	Leuconostoc citreum	1820	492	547	4841					
			-	Streptococcus thermophilus LMG18311	1889	492	513	4875					
				Streptococcus suis 05ZYH33	2186	490	514	4876					
				Streptococcus thermophilus CNRZ1066	1915	489	516	4875					
				Streptococcus suis 98HAH33	2185	489	525	4866					
				Enterococcus faecalis	3265	487	613	4780					
			252	Streptococcus pneumoniae R6	2043	486	532	4862					
			253	Streptococcus pneumoniae D39	1914	485	526	4869					
			254	Streptococcus agalactiae 2603 (serotype V)	2124	483	519	4878					
			255	Lactobacillus brevis	2218	479	557	4844					
			256	Streptococcus agalactiae A909 (serotype Ia)	1996	478	526	4876					
			257	Streptococcus thermophilus LMD-9	1716	477	516	4887					
			258	Streptococcus mutans	1960	476	557	4847					
			259	Streptococcus pneumoniae TIGR4	2105	476	537	4867					
			260	Streptococcus agalactiae NEM316 (serotype III)	2094	475	522	4883					
			261	Pediococcus pentosaceus	1755	470	606	4804					
				Streptococcus gordonii	2051	468	556	4856					
				Lactobacillus sakei	1879	467	546	4867					
			-	Alkaliphilus oremlandii	2836	460	552	4868					
			265	Moorella thermoacetica	2465	456	664	4760					
			266	Oenococcus oeni	1691	454	567	4859					

Duracia			NO		Number of annotated	Number of S. cerevisiae proteins	Number of S. cerevisiae proteins	Number of S. cerevisiae
Domain	KINGDOM	PHYLUM	NO.	ORGANISM NAME	proteins in genome	with orthologs	with homologs	proteins absent in
					genome	in organism	in organism	organism
			267	Clostridium tetani E88	2432	443	547	4890
			268	Candidatus Desulforudis audaxviator	2157	441	560	4879
			269	Streptococcus pyogenes MGAS5005 (serotype M1)	1865	439	505	4936
			270	Streptococcus pyogenes MGAS10270 (serotype M3)	1986	439	506	4935
			271	Lactobacillus salivarius	2013	438	483	4959
			272	Streptococcus pyogenes MGAS10394 (serotype M6)	1886	436	505	4939
			273	Streptococcus pyogenes MGAS2096 (serotype M3)	1898	436	510	4934
			274	Streptococcus pyogenes MGAS9429 (serotype M3)	1877	435	517	4928
			275	Streptococcus pyogenes MGAS6180 (serotype M28)	1894	435	505	4940
			276	Streptococcus pyogenes Manfredo (serotype M5)	1745	435	491	4954
		Firmicutes [continued]	277	Streptococcus pyogenes MGAS315 (serotype M3)	1865	434	496	4950
		[continueu]	278 279	Streptococcus pyogenes SF370 (serotype M1)	1697 1861	432 428	509 494	4939 4958
				Streptococcus pyogenes SSI-1 (serotype M3)	1861	428	514	4958
			280 281	Streptococcus pyogenes MGAS8232 (serotype M18) Streptococcus pyogenes MGAS10750 (serotype M3)	1839	423	514	4943 4938
			281	Lactobacillus acidophilus	1979	418	548	4938
			282	Lactobacillus delbrueckii ATCC BAA-365	1721	413	546	4914
			283	Lactobacillus delbrueckii ATCC 11842	1721	407	534	4939
			285	Lactobacillus helveticus	1610	403	534	4943
			286	Lactobacillus johnsonii	1821	401	549	4930
			287	Lactobacillus gasseri	1755	399	539	4942
			288	Finegoldia magna	1813	359	516	5005
		Fusobacteria	289	Fusobacterium nucleatum	2067	419	491	4970
		i usobucterru	290	Roseiflexus sp. RS-1	4517	652	680	4548
BACTERIA	BACTERIA			Roseiflexus castenholzii DSM13941	4330	647	691	4542
[continued]	[continued]	Green		Herpetosiphon aurantiacus	5278	647	711	4522
		nonsulfur	293	Chloroflexus aurantiacus	3853	637	733	4510
		bacteria	294	Dehalococcoides sp. CBDB1	1458	366	473	5041
			295	Dehalococcoides sp. BAVI	1371	355	476	5049
			296	Dehalococcoides ethenogenes	1580	346	466	5068
			297	Chlorobium phaeobacteroides DSM 266	2650	500	600	4780
			298	Chloroherpeton thalassium	2710	499	635	4746
			299	Chlorobaculum parvum NCIB 8327	2043	495	592	4793
		Green sulfur	300	Chlorobium phaeobacteroides BS1	2469	489	613	4778
		bacteria	301	Pelodictyon luteolum	2083	477	579	4824
			302	Chlorobaculum tepidum	2252	466	608	4806
			303	Chlorobium chlorochromatii	2002	446	642	4792
			304	Prosthecochloris vibrioformis	1753	444	590	4846
			305	Thermotoga maritima	1858	415	571	4894
		Hyperthermophi	306	Thermotoga petrophila	1785	407	566	4907
		lic bacteria	307	Fervidobacterium nodosum	1750	391	519	4970
			308	Thermosipho melanesiensis	1879	391	457	5032
		Planctomyces	309	Rhodopirellula baltica	7325	632	712	4536
			310	Myxococcus xanthus	7331	763	667	4450
			311	Pseudomonas aeruginosa PAO1	5568	715	695	4470
				Pseudomonas aeruginosa PA7	6286	712	679	4489
		Proteobacteria		Pseudomonas aeruginosa UCBPP-PA14	5892	711	690	4479
				Burkholderia phymatum	7496	708	720	4452
				Burkholderia xenovorans	8702	703	707	4470
			316	Pseudomonas fluorescens Pf-5	6138	700	743	4437

	-							-																									
Domain	KINGDOM	PHYLUM	NO.	ORGANISM NAME	Number of annotated proteins in genome	Number of S. cerevisiae proteins with orthologs in organism	Number of S. cerevisiae proteins with homologs in organism	Number of S. cerevisiae proteins absent in organism																									
			317	Burkholderia cenocepacia MC0-3	7008	696	695	4489																									
			318	Klebsiella pneumoniae	5187	694	556	4630																									
			319	Burkholderia vietnamiensis	7617	692	646	4542																									
			320	Hahella chejuensis	6778	691	694	4495																									
			321	Pseudoalteromonas atlantica	4281	690	702	4488																									
			322	Pseudomonas putida F1	5252	689	687	4504																									
			323	Escherichia coli E24377A	4997	688	635	4557																									
			324	Ralstonia eutropha H16	6626	687	700	4493																									
			325	Ralstonia eutropha JMP134	6446	687	709	4484																									
			326	Burkholderia cenocepacia HI2424	6919	686	688	4506																									
			327	Pseudomonas putida KT2440	5350	684	671	4525																									
			328	Burkholderia ambifaria MC40-6	6697	684	699	4497																									
			329	Burkholderia cepacia	6617	682	721	4477																									
				Burkholderia cenocepacia AU1054	6477	681	687	4512																									
				Burkholderia sp. 383	7717	681	705	4494																									
			332	Serratia proteamaculans	4942	679	604	4597																									
				Seriaua proteamacutans Pseudomonas fluorescens Pf0-1	5736	678	748	4454																									
			334	Citrobacter koseri ATCC BAA-895	5008	676	526	4678																									
				Pseudomonas entomophila	5134	675	684	4521																									
				Escherichia coli K-12 W3110	4226	672	557	4651																									
			337		4132	669	557	4654																									
			338	Escherichia coli K-12 MG1655	4132	667	556	4657																									
									339	Escherichia coli ATCC 8739		667	563	4650																			
																		Escherichia coli HS	4378														
			340	Pseudomonas syringae pv. syringae B728a	5089 4913	666 666	697 565	4517 4649																									
		Proteobacteria [continued]							341	Escherichia coli SECEC																							
BACTERIA	BACTERIA			342	Escherichia coli O157 Sakai (EHEC)	5318	666	558	4656																								
[continued]	[continued]			[continued]	[continued]	[continued]] [continued]	[continued]	[continued]	[continued]	[continued]	[continued]	[continued]	[continued]	[continued]	[continued]	[continued]	[continued]	[continued]	[continued]		[continued]			[continued]	[continued]	[continued]	343	Bradyrhizobium japonicum	8317	666	770	4444
																												Mesorhizobium loti		664	717	4499	
												Burkholderia thailandensis	5634	664	729	4487																	
										Burkholderia pseudomallei 668	7230	663	720	4497																			
																					Escherichia coli UTI89 (UPEC)	5166	663	566	4651								
						Pseudomonas syringae pv. tomato DC3000	5613	662	707	4511																							
				Burkholderia pseudomallei K96243	5728	659	725	4496																									
				Enterobacter sp. 638	4240	659	555	4666																									
				Escherichia coli K-12 DH10B	4126	659	534	4687																									
				Burkholderia pseudomallei 1106a	7183	658	735	4487																									
				Escherichia coli 536 (UPEC)	4620	658	567	4655																									
				Enterobacter sakazakii	4420	657	590	4633																									
			355	Photobacterium profundum	5489	656	716	4508																									
			356	Shigella sonnei	4475	655	559	4666																									
		357	Salmonella enterica subsp. enterica serovar Typhi Ty2	4318	655	628	4597																										
			358	Salmonella enterica subsp. enterica serovar Typhi CT18	4758	655	628	4597																									
			359	Salmonella typhimurium LT2	4527	654	553	4673																									
			360	Yersinia enterocolitica	4051	654	542	4684																									
			361	Burkholderia pseudomallei 1710b	6347	653	734	4493																									
			362	Pseudomonas syringae pv. phaseolicola 1448A	5171	652	703	4525																									
			363	Escherichia coli APEC O1	4851	650	564	4666																									
			364	Salmonella enterica subsp. enterica serovar Paratyphi A	4093	650	531	4699																									
			365	Escherichia coli 0157 EDL933 (EHEC)	5397	649	669	4562																									
			366	Rhizobium leguminosarum	7143	648	657	4575																									
			367	Colwellia psychrerythraea	4910	648	675	4557																									

Domain	KINGDOM	PHYLUM	NO.	ORGANISM NAME	Number of annotated proteins in genome	Number of S. cerevisiae proteins with orthologs in organism	Number of S. cerevisiae proteins with homologs in organism	Number of S. cerevisiae proteins absent in organism
			368	Erwinia tasmaniensis	3622	647	581	4652
			369	Pseudomonas mendocina	4594	647	654	4579
			370	Salmonella enterica subsp. enterica serovar Choleraesuis	4634	646	540	4694
			371	Xanthomonas campestris pv. campestris ATCC 33913	4181	642	586	4652
			372	Burkholderia mallei NCTC 10247	5852	642	716	4522
			373	Xanthomonas campestris pv. campestris 8004	4273	642	586	4652
			374	Shigella dysenteriae	4506	640	535	4705
			375	Caulobacter sp. K31	5438	640	688	4552
			376	Aeromonas hydrophila	4122	640	614	4626
			377	Shigella flexneri 301 (serotype 2a)	4440	640	548	4692
			378	Burkholderia multivorans ATCC 17616 (JGI)	6258	639	642	4599
			379	Erwinia carotovora	4472	639	525	4716
			380	Ralstonia metallidurans	6319	639	687	4710
			381	Xanthomonas campestris pv. vesicatoria	4726	639	697	4544
			382	· ·	4720	638	576	4666
				Yersinia pseudotuberculosis IP31758				
				Burkholderia mallei SAVP1	5189	638	701	4541
				Shigella flexneri 2457T (serotype 2a)	4061	637	552	4691
				Shewanella frigidimarina	4029	637	657	4586
			386	Rhizobium etli CFN 42	5963	636	671	4573
			387	Bradyrhizobium sp. ORS278	6717	636	697	4547
			388	Shigella flexneri 8401 (serotype 5b)	4115	636	553	4691
			389	Xanthomonas axonopodis	4427	636	676	4568
			390	Pseudomonas stutzeri	4128	635	680	4565
			391	Delftia acidovorans	6040	635	704	4541
BACTERIA	BACTERIA	Proteobacteria	392	Escherichia coli CFT073 (UPEC)	5339	634	580	4666
[continued]	[continued]	[continued]	393	Burkholderia mallei ATCC 23344	5024	633	709	4538
			394	Ralstonia solanacearum	5116	633	678	4569
			395	Chromobacterium violaceum	4407	633	651	4596
			396	Shewanella loihica	3859	632	627	4621
			397	Shigella boydii Sb227	4285	632	556	4692
			398	Leptothrix cholodnii	4363	632	718	4530
			399	Yersinia pestis Pestoides	4069	631	557	4692
			400	Yersinia pseudotuberculosis IP32953	4039	630	564	4686
				Bradyrhizobium sp. BTAi1	7622	629	686	4030
			401		4437	629 628	581	4505
				Aeromonas salmonicida Varsinia postis Antiaua				
				Yersinia postis Antiqua	4364	628 628	554	4698
			404	Yersinia pestis Nepal516	4094	628 625	546	4706
			405	Agrobacterium tumefaciens C58 (UWash/Dupont)	5335	625	609	4646
			406	Azoarcus sp. BH72	3989	623	612	4645
				Yersinia pestis KIM	4202	622	537	4721
			408	Sinorhizobium medicae	6213	622	598	4660
			409	Azorhizobium caulinodans	4717	622	662	4596
			410	Yersinia pestis Mediaevails	4142	622	548	4710
			411	Yersinia pestis CO92	4066	621	546	4713
			412	Shewanella baltica OS155	4489	620	661	4599
			413	Photorhabdus luminescens	4683	620	541	4719
			414	Shewanella baltica OS185	4394	620	599	4661
			415	Sinorhizobium meliloti	6201	620	600	4660
				Rhodopseudomonas palustris CGA009	4820	620	690	4570
					4832	619	710	
			417	Vibrio parahaemolyticus	4034	019	719	4542

Domain	KINGDOM	PHYLUM	NO.	ORGANISM NAME	Number of annotated proteins in genome	Number of S. cerevisiae proteins with orthologs in organism	Number of S. cerevisiae proteins with homologs in organism	Number of S. cerevisiae proteins absent in organism
			421	Agrobacterium tumefaciens C58 (Cereon) Polaromonas sp. JS666 Marinobacter aquaeolei Rhodoferax ferrireducens Shewanella sp. W3-18-1 Shewanella sediminis Xanthobacter autotrophicus Shewanella sp. ANA-3 Psychromonas ingrahamii Vibrio harveyi Dechloromonas aromatica Pseudoalteromonas haloplanktis Vibrio vulnificus CMCP6	5453 4272 4418 4044 4497 5035 4360 3545 6055 4171 3486 4484	617 617 615 615 615 611 611 611 607 605 605 603	688 637 653 636 700 645 671 680 693 681 629 677	4575 4626 4610 4629 4565 4624 4598 4598 4589 4580 4594 4646 4600
			432 433 434 435 436 437 438 439 440	Beijerinckia indica Vibrio vulnificus YJ016 Rhodopseudomonas palustris BisB18 Rhodopseudomonas palustris BisA53 Rhodopseudomonas palustris BisB5 Azoarcus sp. EbN1 Shewanella pealeana Shewanella sp. MR-7 Shewanella sp. MR-4	3784 5024 4886 4878 4397 4599 4241 4014 3924	602 601 600 600 600 599 598 598 597	593 688 672 653 671 653 707 678 673	4685 4591 4608 4627 4609 4627 4574 4604 4610
BACTERIA [continued]	BACTERIA [continued]	Proteobacteria [continued]	444 445 446 447 448	Shewanella putrefaciens Anaeromyxobacter sp. Fw109-5 Chromohalobacter salexigens Cellvibrio japonicus Xanthomonas oryzae MAFF311018 Bordetella petrii Gluconacetobacter diazotrophicus Minibacterium massiliensis Shewanella oneidensis	3972 4466 3298 3754 4372 5027 3778 3697 4467	597 597 596 595 595 595 594 593 593 593 592	583 719 634 630 683 677 608 648 650	4700 4564 4650 4655 4602 4609 4679 4639 4638
			451 452 453 454	Nitrobacter hamburgensis Brucella melitensis 16M Xanthomonas oryzae KACC10331 Paracoccus denitrificans Mesorhizobium sp. BNC1 Hyphomonas neptunium Polaromonas naphthalenivorans Shewanella denitrificans Saccharophagus degradans	4326 3198 4144 5077 4543 3505 4929 3754 4008	591 590 590 589 589 589 589 589 589 587	544 552 666 650 615 607 700 678 698	4745 4737 4624 4640 4676 4684 4591 4613 4595
			459 460 461 462 463 464	Bordetella bronchiseptica Rhodopseudomonas palustris HaA2 Marinomonas sp. MWYL1 Rhodobacter sphaeroides ATCC 17029 Rhodobacter sphaeroides 2.4.1 Acidiphilium cryptum JF-5 Parvibaculum lavamentivorans Shewanella amazonensis	4994 4683 4439 4132 4242 3559 3636 3645	586 586 584 583 582 582 582 580 580	578 629 669 638 625 664 571 600	4716 4665 4627 4659 4673 4634 4729 4700
			467 468 469	Geobacter metallireducens Caulobacter crescentus Novosphingobium aromaticivorans	3532 3737 3937	579 579 579	577 595 655	4724 4706 4646

						Number of S. cerevisiae	Number of S. cerevisiae	Number of
					Number of annotated	proteins	proteins	S. cerevisiae
Domain	KINGDOM	PHYLUM	NO.	ORGANISM NAME	proteins in	with	with	proteins
					genome	orthologs	homologs	absent in
						in organism	in organism	organism
			470	Phodomini II um muhmum	3841	579	615	4686
			470	Rhodospirillum rubrum Brucella abortus S19	3000	579	525	4000
			472	Vibrio fischeri	3802	573	689	4618
			473	Brucella canis	3251	572	554	4754
			474	Methylibium petroleiphilum	4449	572	705	4603
			475	Geobacter uraniumreducens	4357	572	538	4770
			476	Brucella suis ATCC 23445	3241	571	555	4754
			477	Bordetella parapertussis	4185	569	556	4755
			478	Brucella ovis	2890	569	554	4757
			479	Brucella melitensis biovar Abortus	3034	569	529	4782
			480	Herminiimonas arsenicoxydans	3325	567	628	4685
			481	Geobacter lovleyi	3685	567	609	4704
			482	Brucella suis 1330	3271	567	556	4757
			483	Brucella abortus 9-941	3085	566	536	4778
			484	Vibrio cholerae O395	3875	565	578	4737
			485	Rhodobacter sphaeroides ATCC 17025	4333	564	593	4723
			486	Erythrobacter litoralis	3011	563	612	4705
			487	Vibrio cholerae O1	3835	562	572	4746
			488	Silicibacter pomeroyi	4252	562	644	4674
			489	Bordetella avium	3381	560	569	4751
			490	Verminephrobacter eiseniae	4947	559	674	4647
			491	Legionella pneumophila Corby	3206 5345	558 558	731 583	4591 4739
			492 493	Sphingomonas wittichii Psychrobacter cryohalolentis	2511	558	638	4684
			494	Legionella pneumophila Lens	2934	557	693	4630
BACTERIA	BACTERIA	Proteobacteria	495	Methylococcus capsulatus	2956	556	659	4665
[continued]	[continued]	[continued]	496	Granulobacter bethesdensis	2437	556	514	4810
			497	Legionella pneumophila Paris	3166	555	732	4593
			498	Legionella pneumophila Philadelphia 1	2942	554	723	4603
			499	Roseobacter denitrificans	4129	554	557	4769
			500	Dinoroseobacter shibae	4187	554	522	4804
			501	Acidovorax sp. JS42	4155	553	665	4662
			502	Gluconobacter oxydans	2664	548	583	4749
			503	Bordetella pertussis	3436	547	528	4805
			504	Sphingopyxis alaskensis	3195	547	552	4781
			505	Magnetospirillum magneticum	4559	545	631	4704
			506	Silicibacter sp. TM1040	3864	545	580	4755
			507	Pelobacter propionicus	3804	545	581	4754
			508	Jannaschia sp. CCS1	4283	544	631	4705
			509	Geobacter sulfurreducens	3446	543	543	4794
			510	Nitrosococcus oceani	3017	542	592	4746
			511	Nitrobacter winogradskyi	3122	541 530	560 408	4779
			512 513	Francisella philomiragia	1915 2628	539 537	498 579	4843 4764
			513 514	Idiomarina loihiensis Syntrophobacter fumaroxidans	4064	537	579 690	4764
			514		2516	536	490	4054
			515	0	2805	532	504	4844
			517		3352	530	523	4827
				Methylobacillus flagellatus	2753	529	626	4725
			519		2385	528	632	4720
			520	5 1 5	2551	527	535	4818

						Number of	Number of	
						S.	S.	Number of
					Number of	cerevisiae	cerevisiae	S.
Demeter	KRICDOM		NO	ODCLINICMINANT	annotated	proteins	proteins	cerevisiae
Domain	KINGDOM	PHYLUM	NO.	ORGANIS M NAME	proteins in	with	with	proteins
					genome	orthologs	homologs	absent in
						in organism	in organism	organism
			521	Nitrosomonas europaea	2461	525	512	4843
			522	Desulfotalea psychrophila	3234	525	568	4788
			523		2077	524	588	4700
			525 524	Polynucleobacter sp. QLW-P1DMWA-1 Actinobacillus pleuropneumoniae AP76 (serotype 7)	2142	521	493	4866
			525	Maricaulis maris	3063	519	525	4836
			526		2380	515	516	4849
			527	Mannheimia succiniciproducens Bdellovibrio bacteriovorus	3587	515	653	4712
			528	Francisella tularensis subsp. novicida U112	1719	515	512	4853
			529	Actinobacillus pleuropneumoniae L20 (serotype 5b)	2142	513	493	4874
			529	Acunobacittus pieuropneumontae L20 (serotype 30) Zymomonas mobilis	1998	515	501	4868
			530		2079	510	516	4854
				Actinobacillus succinogenes	2079	510	594	4776
			532	Psychrobacter arcticum Thiobacillus denitrificans	2120	510	594 608	4776
			533	Thiobacillus denitrificans	2827	506 505	608 479	4766 4896
			534	Pasteurella multocida				
			535	Francisella tularensis subsp. holarctica LVS	1754	504	483	4893
			536	Halorhodospira halophila	2407	503	527	4850
			537	Magnetococcus sp. MC-1	3716	495	690	4695
			538	Desulfovibrio desulfuricans	3775	494	586	4800
			539	Actinobacillus pleuropneumoniae JL03 (serotype 3)	2036 1917	493 487	504 480	4883 4913
			540	Neisseria meningitidis FAM18 (serogroup C)				
			541	Francisella tularensis subsp. tularensis WY96-3418	1634	487	483	4910
			542	Candidatus Desulfococcus oleovorans	3265	487	610	4783
			543	Francisella tularensis subsp. tularensis SCHU S4	1603	485	485	4910
			544	Desulfovibrio vulgaris Hildenborough	3531	483	596 452	4801
BACTERIA	BACTERIA	Proteobacteria	545	Haemophilus influenzae Rd KW20 (serotype d)	1657	483	452	4945
[continued]	[continued]	[continued]	546	Neisseria meningitidis MC58 (serogroup B)	2063	483	479	4918
			547	Xylella fastidiosa 9a5c	2832	482	505	4893
			548	Neisseria meningitidis Z2491 (serogroup A)	2049	481	489	4910
			549	Desulfovibrio vulgaris DP4	3091	481	595	4804
				Syntrophus aciditrophicus	3168	480	511	4889
			551	Haemophilus influenzae 86-028NP (nontypeable)	1792	478	450	4952
			552	Xylella fastidiosa Temeculal	2036	478	504	4898
			553	Francisella tularensis subsp. mediasiatica FSC147	1406	477	468	4935
			554	Francisella tularensis subsp. holarctica FTNF002-00	1580	476	460	4944
			555	Thiomicrospira crunogena	2196	474	534	4872
			556	Francisella tularensis subsp. tularensis FSC 198	1605	474	499	4907
			557	Nitratiruptor sp. SB155-2	1843	470	658	4752
			558	Neisseria gonorrhoeae	2002	467	466	4947
			559	Coxiella burnetii Dugway 5J108-111	2125	464	587	4829
			560	Francisella tularensis subsp. holarctica OSU18	1555	461	481	4938
			561	Haemophilus somnus 2336	1980	457	474	4949
			562	Coxiella burnetii RSA 331	1975	454	596	4830
			563	Coxiella burnetii RSA 493	2052	454	608	4818
			564	Haemophilus somnus 129PT	1798	452	462	4966
			565	Haemophilus influenzae PittEE	1619	447	445	4988
			566	Sulfurovum sp. NBC37-1	2438	445	569	4866
			567	Haemophilus influenzae PittGG	1667	427	420	5033
			568	Candidatus Pelagibacter ubique	1354	421	416	5043
			569	Campylobacter fetus	1719	418	446	5016
			570	Candidatus Ruthia magnifica	976	411	498	4971
			571	Thiomicrospira denitrificans	2096	410	492	4978

						Number of	Number of	
						S.	S.	Number of
					Number of	cerevisiae	cerevisiae	<i>S</i> .
Domain	KINGDOM	PHYLUM	NO.	ORGANISM NAME	annotated	proteins with	proteins with	cerevisiae
					proteins in genome	orthologs	homologs	proteins absent in
					genome	in	in	organism
						organism	organism	
			572	Bartonella tribocorum	2092	406	432	5042
			573	Bartonella henselae	1488	402	408	5070
			574	Wolinella succinogenes	2042	390	459	5031
			575	Dichelobacter nodosus	1280	385	448	5047
				Bartonella bacilliformis	1283	384	387	5109
			577	Haemophilus ducreyi	1717	383	360	5137
			578	Bartonella quintana	1142 937	380 379	381 490	5119 5011
			579 580	Candidatus Vesicomyosocius okutanii Helicobacter hepaticus	1875	373	490	5020
			581	Campylobacter jejuni NCTC11168	1675	369	481	5030
			582	Campylobacter jejuni RM1221	1838	366	480	5034
			583	Baumannia cicadellinicola	595	362	319	5199
			584	Campylobacter jejuni 81116	1626	362	485	5033
			585	Campylobacter jejuni subsp. doylei 269.97	1731	360	452	5068
			586	Campylobacter jejuni 81-176	1758	357	492	5031
			587	Campylobacter curvus	1931	356	431	5093
			588	Wolbachia wMel	1195	354	766	4790
			589	Campylobacter hominis ATCC BAA-381	1687	351	408	5121
			590	Helicobacter pylori J99	1489	347	418	5115
			591	Candidatus Blochmannia pennsylvanicus	610	345	299	5236
			592	Helicobacter pylori 26695	1576	344	458	5078
			593	Helicobacter pylori HPAG1	1544	343	438	5099
			594	Buchnera aphidicola APS	574	341	283	5256
			595	Campylobacter concisus 13826	1985	336	437	5107
			596	Candidatus Blochmannia floridanus	583	335	287	5258 5277
BACTERIA	BACTERIA	Proteobacteria	597 509	Buchnera aphidicola Sg	546 805	323	280	5277 5205
[continued]	[continued]	[continued]	598 599	Wolbachia wBm	805 1337	320 320	355 411	5205
			599 600	Lawsonia intracellularis Anaplasma marginale	949	319	359	5202
				Rickettsia felis	1512	318	414	5148
				Ehrlichia canis	925	316	358	5206
			603	Buchnera aphidicola Bp	507	316	277	5287
			604	Rickettsia bellii RML369-C	1429	315	407	5158
			605	Ehrlichia ruminantium Welgevonden (France)	958	314	351	5215
			606	Rickettsia conorii	1374	312	372	5196
			607	Ehrlichia ruminantium Gardel	950	311	349	5220
			608	Ehrlichia chaffeensis	1105	310	375	5195
			609	Ehrlichia ruminantium Welgevonden (South Africa)	888	310	352	5218
			610	Anaplasma phagocytophilum	1264	309	374	5197
			611	Rickettsia rickettsii Sheila Smith	1345	309	370	5201
			612	Rickettsia massiliae	980	309	357	5214
			613	Wigglesworthia glossinidia	617	307	336	5237
			614	Rickettsia akari	1259	306	375	5199
				Rickettsia prowazekii	835	306	351	5223
				Rickettsia bellii OSU 85-389	1475	304	397	5179 5230
			617	Neorickettsia sennetsu	932 1093	297	344 349	5239 5235
			618 619	Rickettsia canadensis Rickettsia typhi	838	296 295	349	5235 5222
			619 620	Rickettsia typhi Buchnera aphidicola Cc	357	253	210	5416
			621	Orientia tsutsugamushi Boryong	1182	234	332	5312
			622	Cupriavidus taiwanensis	1550	218	410	5252
			623	Helicobacter acinonychis	1618	196	485	5199
			-	Candidatus Carsonella ruddii	182	75	136	5669
·	ļ				ļ			J

Domain	KINGDOM	PHYLUM	NO.	ORGANISM NAME	Number of annotated proteins in genome	Number of S. cerevisiae proteins with orthologs in organism	Number of S. cerevisiae proteins with homologs in organism	Number of S. cerevisiae proteins absent in organism
			625	Leptospira biflexa serovar Patoc Patoc 1 (Ames)	3600	548	632	4700
			626	Leptospira biflexa serovar Patoc Patoc 1 (Paris)	3726	548	632	4700
			627	Leptospira interrogans serovar lai	4727	518	659	4703
			628	Leptospira borgpetersenii L550	2945	517	629	4734
			629	Leptospira interrogans serovar Copenhageni	3658	516	656	4708
		Spirochete	630	Leptospira borgpetersenii JB197	2880	508	643	4729
			631	Treponema denticola	2767	397	404	5079
			632	Treponema pallidum subsp. pallidum Nichols	1036	272	335	5273
			633	Borrelia afzelii	1214	245	301	5334
			634	Borrelia burgdorferi	1640	244	310	5326
			635	Borrelia garinii	932	244	313	5323
		a	636	Caldicellulosiruptor saccharolyticus	2679	489	564	4827
		Synergistetes	637	Syntrophomonas wolfei	2504	426	561	4893
			638	Acholeplasma laidlawii	1380	335	367	5178
			639	Mesoplasma florum	682	295	344	5241
BACTERIA	BACTERIA		640	Mycoplasma penetrans	1037	294	380	5206
[continued]	[continued]		641	Mycoplasma mobile	633	268	309	5303
			642	Mycoplasma capricolum	812	266	374	5240
			643	Mycoplasma pneumoniae	689	264	324	5292
			644	Mycoplasma mycoides	1016	255	380	5245
			645	Mycoplasma genitalium	477	246	335	5299
				Mycoplasma gallisepticum	726	245	346	5289
		Tenericutes	647	Mycoplasma pulmonis	782	241	336	5303
			648	Mycoplasma agalactiae	742	232	328	5320
			649	Phytoplasma OY	754	225	196	5459
			650	Mycoplasma synoviae	672	224	313	5343
			651	Mycoplasma arthritidis	631	219	314	5347
			652	Phytoplasma AYWB	693	218	202	5460
			653	Ureaplasma parvum serovar 3 ATCC 700970	614	215	305	5360
			654	Mycoplasma hyopneumoniae J	665	195	226	5459
			655	Mycoplasma hyopneumoniae 7448	663	195	226	5459
			656	Mycoplasma hyopneumoniae 232	691	192	212	5476
			657	Sulfolobus solfataricus	2977	508	628	4744
			658	Sulfolobus acidocaldarius	2223	477	669	4734
			659	Sulfolobus tokodaii	2825	472	675	4733
			660	Metallosphaera sedula	2256	450	677	4753
			661	Caldivirga maquilingensis	1963	447	653	4780
			662	Pyrobaculum aerophilum	2605	414	671	4795
A	41		663	Pyrobaculum islandicum	1978	406	1204	4270
Archea	Archea	Crenarchaeota	664	Pyrobaculum arsenaticum	2299	405	658	4817
			665	Pyrobaculum calidifontis	2149	393	688	4799
			666	Aeropyrum pernix	1700	383	534	4963
				Thermofilum pendens	1876	372	1110	4398
			668	Hyperthermus butylicus	1602	363	458	5059
			669	Ignicoccus hospitalis	1434	362	497	5021
			670	Staphylothermus marinus	1570	356	499	5025

						Number of S.	Number of S.	
					Number	5. cerevisiae	S. cerevisiae	Number of
					Number of annotated	proteins	proteins	S. cerevisiae
Domain	KINGDOM	PHYLUM	NO.	ORGANISM NAME	proteins in	with	with	proteins
					genome	orthologs	homologs	absent in
					0	in	in	organism
						organism	organism	
			671	Methanosarcina acetivorans	4540	588	605	4687
			672	Methanosarcina barkeri	3624	575	670	4635
			673	Methanosarcina mazei	3370	555	556	4769
			674	Methanospirillum hungatei	3139	530	644	4706
			675	Haloarcula marismortui	4240	520	675	4685
			676	Candidatus Methanoregula boonei	2450	518	588	4774
			677	Uncultured methanogenic archaeon RC-I	3085	504	615	4761
			678	Pyrococcus furiosus	2125	498	600	4782
			679	Picrophilus torridus	1535	498	665	4717
			680	Methanoculleus marisnigri	2489	490	610	4780
			681	Methanococcoides burtonii	2273	481	523	4876
			682	Natronomonas pharaonis	2822	478	626	4776
			683	Halobacterium sp. NRC-1	2622	465	563	4852
			684	Halobacterium salinarum R1	2749	463	569	4848
			685	Methanobacterium thermoautotrophicum	1873	454	487	4939
		Euryarchaeota	686	Thermococcus kodakaraensis	2306	453	539	4888
		Euryarchaeota	687	Methanobrevibacter smithii ATCC 35061	1793	453	466	4961
Archea	Archea		688	Methanocorpusculum labreanum	1739	451	492	4937
			689	Haloquadratum walsbyi	2646	447	589	4844
			690	Methanosaeta thermophila	1696	446	507	4927
			691	Methanococcus vannielii	1678	435	484	4961
			692	Pyrococcus abyssi	1898	433	538	4909
			693	Methanococcus maripaludis S2	1722	431	487	4962
			694	Methanococcus jannaschii	1786	426	425	5029
			695	Thermoplasma volcanium	1499	423	591	4866
			696	Methanosphaera stadtmanae	1534	421	473	4986
			697	Methanococcus maripaludis C7	1788	421	498	4961
			698	Methanococcus maripaludis C5	1822	420	486	4974
			699	Thermoplasma acidophilum	1482	417	586	4877
			700	Methanococcus aeolicus	1490	412	437	5031
			701	Pyrococcus horikoshii	1955	410	510	4960
			702	Methanopyrus kandleri	1687	366	433	5081
		Korarchaeota	703	Candidatus Korarchaeum cryptofilum	1602	401	638	4841
		Nanoarchaeum equitans	704	Nanoarchaeum equitans	536	201	310	5369

Table S1.2Summary of the comparison between S. cerevisiae sequences and
those of organisms from different groups for domains, kingdoms
or phyla, classified by biological process, molecular function and
cellular localization from the GOSLIM ontology.

(See the Tables S1.2 A-I. as following)

 Table S1.2. A
 S. cerevisiae
 Orthology analysis with Biological Process(es) of GO

Each row represents a group from a given domain of life. The group is identified in column 2. The numbers shown in parenthesis on that column indicate the number of *S. cerevisiae* proteins that have orthologs in all organisms of the corresponding group. Columns numbered 1-32 represent each a biological process. The number shown in the second row for each of these columns indicates the number of *S. cerevisiae* proteins associated to each GOSLIM category. In each column, a green to red colour scale indicates the similarity between the set of proteins associated to the biological process in *S. cerevisiae* and that of proteins commonly associated to all organisms from the group. Green entries indicate high similarity, while red entries indicate low similarity between the two sets of proteins. The numbers in each entry indicate the number of orthologs to *S. cerevisiae* proteins that are common to all organisms from the group represented in the row.

	E.2.4	E.1.3 Microsporidians E.2.3	E.1.2 Basidiomycetes E.2.2	Ascomycetes E.2.1				B (0(0%)) 0 0				A (103(270)) 23 28		B 14 (138/296))				(4) (2014) (2014) (4) (4) (4) (4) (4) (4) (4) (E (263(5%)) 23 53	B.11 (275(5%)) 48 37	B.9 (279(5%)) 44 47	B.15 (319(5%)) 42 40	B.10 (341(6%)) 51 58	B.6 (401(7%)) 52 59	A.3 (401(7%)) 81 58	B.8 (419(7%)) 53 52		OPTHOLOGS E2.4 (573(10%)) 72 111	E.4 (591(10%)) 113 166	B.12 (632(11%)) 91 102	B.1 (708(12%)) 105 123	E1 (781(13%)) 116 216	E4.1(839(14%)) 152 233	E 4 4 (1959/1664) 138 - 360	E4.7 (1257(21%)) 219 316	E4.6 (1281(22%)) 232 288	E4.5 (1300(22%)) 235 353	E3 (1371(23%)) 227 315	E.2.3 (1592/27%)) 266 390		E3.4 (1766(30%)) 281 389	E.4.3 (2007(34%)) 334 455	E1.1 (2107(36%)) 324 420	E4.2 (2174(37%)) 387 497	E.2.1 (2204(38%)) 366 528	E.3.3 (2244(38%)) 421 485		E1.2 (2310(39%)) 303 455 E3.1 (2269(39%)) 402 504	(20N) (19N) 402 514
	E.3.4	Nematodes E.3.3 M	Insects E.3.2	Echinoderms E.3.1	ANIMAL E3			0 0 0	0 0 0 0			2 10 2 10 2 11 2 11 3 11	; : ; :	4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8 ! 2 ! 4 }		• • • • •		: 5 ; 5 ; -		74 67 25 45	52 25 5 Z7	53 45 8 25	63 59 10 33	62 57 9 33	67 56 7 31	55 60 25 32	78 56 17 54	108 118 57 81	127 138 63 93	136 122 58 87	109 88 29 84	111 110 41 87	176 142 91 120	183 174 83 123	200 1/4 122 160	249 236 111 182	239 255 93 168	261 245 129 168	268 255 116 176	326 332 151 193	207 000 000 000 000	346 <mark>302</mark> 155 219	366 368 151 233	408 469 197 260	413 350 202 263	415 416 224 261	384 422 185 258		420 523 194 248 408 431 193 258	Lass Lass <thlass< th=""> Lass Lass <thl< td=""></thl<></thlass<>
	Red algae E.4.4	Monocotyledons E.4.3	Green algae E.4.2		PLANTS E.4	А		0 0	0 0											,	92 50 33 1	7 8 18 1	5 5 18 1	15 15 XS 2	12 6 30 1	19 10 31 1	21 29 25 1	12 10 35 3	117 73 71 3	119 83 81 4	127 92 45 5	75 41 65 4	92 47 87 4	170 115 77 8	154 114 57 8		230 157 105 1	195 144 103 10	217 157 104 11	209 155 106 11	244 157 126 13	200 420 427 430 1.	251 177 132 1	279 194 197 1	258 205 179 14	304 214 162 18	317 221 163 13	258 195 168 15		282 199 184 14 301 204 167 1	Image: 1
		Choanoflagellates E.	Cellular slime molds E.		PROTISTS		0		0 0					5 C			20 V 0				2 12 7 2	7 0 9 45	2 21 11 68	69 5 2Z 0	3 27 16 <mark>74</mark>	5 33 16 <u>93</u>	8 17 15 74	4 40 15 57	5 30 25 30	1 35 32 22	9 18 13 22	51 26 111	2 64 30 105	6 52 27 21		2 12 24 24	47 65	15 78 68 74	0 78 50 59	15 73 60 117	5 91 91 91 91 91 91 91 91 91 91 91 91 91			1 126 114 153	7 142 132 149	9 129 144 139	8 130 142 141	7 144 131 164		6 152 140 169 22 143 141 169	12 12 19 19 19 19 19 19 19 19 19 19 19 19 19
	Paraba salids	E.4.7	E.4.6 Euglenozoa	+					0 0 0			, , , , , , , , , , , , , , , , , , ,	, , , , , ,	n 0 0 1 1 1	• •	л 4 9 - 1 		, . , . , .	· · · ·		23 <mark>45</mark> 23 22	6 3 15 0	9 3 14 0	9 5 15 4	10 2 13 1	10 7 16 3	5 9 21 4	9 3 19 1	33 <mark>58</mark> 34 32	35 60 39 40	31 51 46 37	15 34 30 12	18 35 26 15	5 : 2 2 : 2 5 : 2		5 5 8 2 8 8 8 8	64 73 88 78	8 8 8 8	69 83 79 80	8 4 8 8	22 : 23 23 : 23 25 : 23	8 8 8 8 8 8	8 8 8 8 8 8	S1 S5 109 99	111 110 109 100	101 108 122 101	99 108 117 97	99 91 117 91	20 02 20 02	120 108 98 107 55 118 98 107	
		A.4 Nanoarchaeota	A.3 Korarchaeota	A.2 Euryarchaeota	A.1 Crenarchaeota	A ANUHEA			0 0 0									2 11 0		21 38 7 0	8 2 12 2	18 35 5 0	18 38 6 1	20 47 6 2	22 43 6 1	30 51 7 3	18 25 1 1	25 <mark>52</mark> 5 1	23 11 16 2	32 12 18 23	12 5 14 25	35 62 13 1	43 65 14 1	17 7 26 39				<mark>55 45</mark> 26 30	36 18 29 48	58 65 22 3S	70 1 48 1 60	5 8 8 2 8 2 8 2 8 2 8 2	79 91 30 47	54 90 43 66	70 78 57 8	1 81 85 43 69	82 83 48 75	89 105 43 55	90 109 43 57	85 98 67 87	22 (NS) (NS) (NS) (NS) (NS) (NS) (NS) (NS)
.	B.S Oya	ta B.4 Chlamydia	8.3	B.2 Ac		¢.			0		• •	• •			3 • • •	د د. د د	 			31 4 12	10 18 14	18 7 13	23 4 10	28 9 8	33 4 13	39 3 12	18 10 19		12 23 24	1 17 27 28	8 7 <u>77</u> 28			8	37 37 38	2 12 4 12 6 12	33 123 123 123 123 123	21 45 \$2	24 45 74	22 22 28	8 : 	9 8 8 8 8 8	114 SB 75	104 56 73	2 102 52 75 .	100 52 81	113 67 73	115 57 81	116 61 82		
.		8.9	les B.8	ria B.7	B.6				0 0 0				•••	 	· ·		• • • • • •	1 14		1 10 17	10 15 2 0	3 2 6 13	3 3 8 14	2 2 9 19	2 3 11 19	4 4 19 23	3 2 11 15	3 3 10 <u>27</u>	17 19 5 6	18 20 14 7		8	11 12 24 36	មា				21 23 31 26	32 33 8 10	28 36 32 35	<u>1</u>	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 18 2 di	39 43 44 48	55 50 % 43	11 43 41 42	5 49 45 42	н 33 45 53	5 5 5 5	57 45 38 52	
		Green nonsulfur bacteria 8	Fusobacteria I	Firmicutes		BAU I ENIA			0 0 0) () () (· ·	 		 	 				0 12 8 2	17 0 1 0	21 0 1 0	22 3 2 1	23 1 3 0	27 3 4 0	16 3 1 1	26 1 2 0	3 18 14 5	3 19 14 5	2 13 8 8	5 7 3	9 9 2	22 14 6		איג 13 13 13 13 14 13	ផ	19 20 13 11	7 25 16 11	18 17		21 22 12 12 12	: 13 13	25	42 49 30 16	36 37 27 20	28 37 27 17	51 32 23 19		48 49 29 12 51 30 24 19	48 (193) (19
B.16	B.15	B.14	B.13 P		┢					organisms from the group represented in the row.	between the two sets of prote	entries indicate high similarity,	proteins commonly associated	proteins associated to the blok	a green to red color scale indic	the second row for each of the	numbered 1-32 represent ead	that have orthologs in all organ	inte. The group is identified in a	GOSLIM ontology. Each row re	domains, kingdoms or phyla, d	Supplementary Table I (A). Sur	32 transposition	31 pseudohyphal growth	30 cell budding	29 cellular aromatic co	28 vitamin metabolic process		26 conjugation	25 sporulation resultin						18 generation or precursor metalo		16 protein catabolic process	15 signal transduction			12 End metabolic measurements			8 cell cycle		6 response to stress	5 transcription		1 3	2 RNA metabolic process 3 organelle organization 4 transport
Tenericutes	Synergistetes	Spirochete	Proteobacteria	Planctomyces	Hyperthermophilic bacteria					esented in the row.	there is a sets of proteins. The numbers in each entry indicate the imber of artholoss to S comulate proteins that are common to all	ntries indicate high similarity, while red entries indicate low similarity	roteins commonly associated to all organisms from the group. Green	roteins associated to the biological process in S. cerevisioe and that of	areen to red color scale indicates the similarity between the set of	the second row for each of these columns indicates the number of S.	umbered 1-32 represent each a biological process. The number shown in	that have orthologs in all organisms of the corresponding group. Columns	ine. The group is identified in column 2. The numbers shown in	GOSLIM ontology. Each row represents a group from a given domain of	omains, kingdoms or phyla, classified by biological process from the	upplementary Table I (A). Summary of the comparison between S.		ş		cellular aromatic compound metabolic process	rocess			sporulation resulting in formation of a cellular spore	G		process	e morphogenesis		generation or precursor metabolites and energy	zation	ocess		ition	cellular amino acid and derivative metabolic process	nome bioress	1213 1213	al stimulus		n process				on	tess ion

Supplementary Table S1.2. A. S. cerevisiae Orthology analysis with Biological Process(es) of GO [continued...].

Table S1.2. B S. cerevisiae Homology analysis with Biological Process(es) of GO S. cerevisiae Homology analysis with Biological Process(es) of GO.

Each row represents a group from a given domain of life. The group is identified in column 2. The numbers shown in parenthesis on that column indicate the number of *S. cerevisiae* proteins that have homologues in all organisms of the corresponding group. Columns numbered 1-32 represent each a biological process. The number shown in the second row for each of these columns indicates the number of *S. cerevisiae* proteins associated to each GOSLIM category. In each column, a green to red colour scale indicates the similarity between the set of proteins associated to the biological process in *S. cerevisiae* and that of proteins commonly associated to all organisms from the group. Green entries indicate high similarity, while red entries indicate low similarity between the two sets of proteins. The numbers in each entry indicate the number of homologues to *S. cerevisiae* proteins that are common to all organisms from the group represented in the row.

(See the Table S1.2 B. on next page)

	E13	E1.2	E1.1	E1	E																						
	Microsporidians	Basidiomycetes	Ascomycetes	FUNGI		B (0(0%))	A & B (0(0%))	E.1.1 (0(0%))	E.1 (0(0%))	E (0(0%))	B.13 (1(0.01 %))	B.7 (8(0.1%))	A (18(0.3%))	A.2 (30(0.5%))	B.16 (33(0.6%))	B.2 (34(0.6%))	E-4 (43(0.7%))	B.14 (64(1%))	E.2 (81(1%))	A.1 (82(1%))	B.5 (89(2%))	B.3 (104(2%))	E.2.4 (125(2%))	B.9 (156(3%))	B.4 (190(3%))	E4.1 (194(3%))	
E.2.4	E.2.3	E.2.2	E.2.1	E.2		0	0	0	0	0	0	-	ъ	5	2	10	#	18	t	C3	77	8	8	\$	45	\$	
						•	•	•	•	•	•	N	ь	w	w	-	w	ti	4	4	ы	X	ы	N	8	ŧ	
Verte	Nema	_	Echino	ANIMAL		•	•	•	•	•	4	-	о	о	00	9	8	¥	đ	±	5	6	5	19	22	49	I
Vertebrates	Nematodes E.3.3	Insects E.3.2	Echinoderms	-		۰	٥	0	۰	0	۰	w	w	w	00	m	ð	2	M	w	ø	ø	×	8	8	8	
E.3.4	E.3.3	E.3.2	E.3.1	E.3		-	•	•	•	•	•	•	ы	ы	•	ы	m	ы	đ	5	-	7	X,	4	R	8	
	Mo			P	EUK	•	•	•	•	•	-	-	0	5	w	o	5	0	ч	42	N	5	t2	¥	26	đ	
Red	Monocotyledons	Green algae	Dicotyledons	PLANTS	EUKARYOTA	۰	0	0	۰	۰	۰	-	۰	-	0	ð	ø	m	w	-	w	•	w	5	22	¥	
Red algae	edons	algae	ödons		TΑ	۰	۰	•	۰	۰	-	-	ω	ω	÷	u	4	•	•	7	7	đ	7	w	8	ä	
E.4.4	E43	E4.2	E4.1	E.4		۰	۰	۰	۰	۰	۰	-	۰	۰	4	4	Ν	۰	4	w	w	ø	#	5	ß	-4	
		8				۰	۰	۰	٩	۰	-	-	5	5	N	9	-	ø	9	ŧ	đ	r)	*	5	47	±	
D	Choan	llulars				٥	٥	٥	۰	۰	۵	-	۰	۰	٥	۰	۰	5	٥	w	N	8	۰	N	5	w	
Diplomonads	ofiagel	lime n	Alveolates	PF		•	۲	٦	•	٦	•	•	*	UN	٦	*	ω	٦	un	*	*	7	m	4	đ	#	
nads	Choanoflagellates E.4.7	Cellular slime molds E.4.6	ates	PROTISTS		۰	۰	٥	۰	۰	۵	-	-	w	M	۵	۰	5	2	12	=	m	=	17	5	٣	
-	47	4.6	E.4.5	s		۰	0	•	۰	۰	۵	۰	۰	۰	•	-	w	•	6	۰	•	۰	5	۰	7	=	
Paraba salids		Euglenozoa	Entamoeba			۰	٥	٥	۰	۰	۰	۰	۰	۰	٥	-	-	-	-	-	-	-	5	-	00	00	
salids			Toeba			۰	۰	•	۰	۰	•	۰	۰		-	•		w	4	Ν	-	w	ω	N	w	00	
						•	•	•	•	•	•	•	•	•	•	-		ω	N	•	-	÷	м	-	4		
	A.4	A.3	2	P.1	A	۰	۰	•	۰	۰	•	۰	۰	۰	w	•	۰	N	N	۰	7	٠	N	đ	ð	w	
	Nar	ĸ	F	ទ	A	•	۰	۰	۲	۰	۰	۲	۲	۲	۰	•	۲	N	4	*	5	4	ω	ii	۰,	-	
	Nanoarchaeota	Korarchaeota	Euryarchaeota	Crenarchaeota	ARCHEA	۰	۰	•	۰	۰	•	٥	٩	•	۰	4	•	۰	N	4	۰	N	N		9	w	
		-		-	A	۰	۰	۰	۰	۰	•	۰	•	۰	۰	4	w	۰	N	۰	۰	۰	w		v,	#	
B.5	B.4	8.3	B.2	B.1	в	•	•	•	•	•	-	•	-		-		•	N	ы	a	ω	•	N	u	±	•	
Ŷ			Acti	R		۰	۰	٥	٥	٩	۰	٥	-	N	-	w	-	N	ω	vi	w	8	vi	*	≠	w	
Cyanobacteria	Chlamydia B.9	Bacteroides	Actinobacteria	Acidobacteria		-	-	•	•	-	-	-	-	•	-	-4	-	-	ω	-	-	m	ω	w	w	5	
8	×.	ă.	ğ,	ğ,							-	-											ы				

1 Citer I Cater						ſ	L		ſ															Г
			ļ			ļ				ļ		f												Ţ
e		Green sulfur hasteria	R 10		C anot	2				,	Poroho colida		Dialomonada		FAA		Ĩ.	Т	Vertebrates F	V	5			
B.14 Spirochete		Green nonsulfur bacteria	ø	Chlamydia 8.9	Chia	B.4		Nanoarchaeota	A.4		-	es E.4.7	Choanoflagellates	Choan	E43		Monocotyledons		Nematodes E	Nema	E23		E13	
B.13 Proteobacteria		Fusobacteria	ŝ	Bacteroides B.8	Bacte	B.3	Korarchaeota	Koran	Å	1202	Euglenozoa	ds E.4.6	Cellular slime molds	Cellulars	E4.2		Green algae	E.3.2	Insects E	_	E2.2	_	E1.2	C
B.12 Planctomyces		Firmicutes	4		Actinobacteria	B.2	Euryarchaeota	Euryan	A.2	e b	Entamoeba		Alveolates		E4.1	_	Dicotyledons	E.3.1		Echinoderms	E2.1	Ascomycetes EL	11	
B.11 Hyperthermophilic bacteria		Deinococcus-Thermus	6	acteria B.6	Acidobacteria	B.1	Crenarchaeota	Crenary	2			PROTISTS	PRO		E4		PLANTS	G		ANIMAL	~	FUNGI E2		
		PACTERIA				8		ARCHEA	A								EUKARYOTA							
						2																		
	•	0 0 0 0	•	•	•	•	•	•	•	•	•			•	•	•	0		•	•	•		B(
	•	0 0 0 0	•	-	•	-	•	•	•	•	•		•	•	°	•	•	•	•	•	•	& B (0(0%))	A	
*	0	0 0 0 0	•	-	0	•	•	0	•	0	•	0	•	0	•	•	0		٥	0	•	L1 (0(0%))		
rotains that are common to all organisms from the group represented in the	0 prot	0 0 0 0	•	•	0	•	•	•	•	0	•	0	•	•	°	•	0		•	•	•	(() (() () ()		
umbers in each entry indicate the number of homologues to 5, cerevisive		0 0 0 0	-	-	0	-	•		•	0	•			•	0	•	0		0	0	•	(((\$\$0)0)		
associated to an organization from the group: Green entries indicate right straining, this end entries indicate low similarity between the two sets of proteins. The	1															•						I a Total C		
o the biological process in S. convision and that of proteins commonly	8														•	• •					•			
o red color scale indicates the similarity between the set of proteins associated	8		-	-	•	-			•	-				-			-		w	- ·		(8/0.1%))		
provides proteins associated to each GOSLIM category. In each column, a green	orne	0 0 0	•	-	-	-	•	•	•	•				0	0	ω	0	N 0	ω		•	18(0.3%))	A	
hown in the second now for each of these columns indicates the number of 5.	at a	0 1 0 1	•		2		•	•	•	-	•		0 0	•	•	ω	-	2 5	w	0	5	(30(0.5%))	A.2	
must follow a sumband 1.57 responsent each a biological process. The sumbar		3 0 0 0 0			-	-	•	•	w	-	0		2	0	*		•	•	•	*	7 9	16 (33(0.6%))	8.1	
The numbers shown in parenthesis on that column indicate the number of 5.	2.1	0 1 0 0 0	•	-	а 1	-	4	-	•	•	-	-	-	0	4	IN	10	N 6	on	5	10 	(34(0.6%))	B.2	
epresents a group from a given domain of life. The group is identified in column	and and a	0 0 0	-	-	-	-	w	•	•	-	-	w	30	•	N	•	ŵ	e 9	đ	8	=	(43(0.7%))	5	
equences and more or organizers from driverent groups for contents, singlooms riphyle, destified by biological process from the GOSUM ontology. Each row	d to	0 1 0 0 0	•	-	2 1	N	•	2 0	N	3	-	0	-	*	•	•	on	4 5	7	9 14	18 1	4 (64(1%))	8.1	
upplementary Table I (B). Summary of the comparison between S. convision	dins	2 1 1 1 1 1	w		з 3	N	N	1 2	N	1	-		5 7	0	*	4	w	7 51	X	7 13	10	(81(1%))	E2	
indication 26	L	0 4 U U U	-		2 2			*		× 0	-	-	•			-	1	-	u	1	5	((er)ro)	2	
																• •				 		((42)60)		
	.]								•							•		• •	• •		: :			
		4 4 0			1+ 15	•	•	4 N	•				- -	N 4	o 	đ	01 01	7	ø	5	X N	3 (104/2%))		
31. pseudohyphal growth	-	2 1 2 2 2	w		ч 3		w	а 2	N	9 2	v	vı	6 +	•	=	4	v	8	ĸ	7	Ж N	4 (125(2%))	2	
30 cell budding	0	4 1 9 1 0 0		-	•	5		12 1	8	N 1	-	•		0 7	10	w	÷	4 10	8	19	48 2	9 (156(3%))	6.8	
29 cellular aromatic compound metabolic process		5 3 2 0 1 0			1	=	0	е 9	6	3 7	0	-	1	7 10	2	8	32	22	2	3 32	45 3	(180)081)	5.4	
		2 0 0 3 1	a		2	-	1	- 1		0	0	1	1	3		8	ų.	23 12	8	49	8	4.1 (194(5%))	5	
			1			12		18 N	13	2	N		16	5 17	23	8	16	12 2	N	40	9	11 (251(4%))		
																1			1	i k	28			
		1	1			•			•				f ,		t 1	8	5	1 i 1 1	3 1	0	88		HOMOLOGS = =	H
		9 8 10 1 0			4 0	t	v	7	¹	n			:	- *	5 0	3	,,	я х	x	n 5	2 2	10 (260/4%))	2	
24 cellular homeostasis	w	s 0 1 0 1	w	m	ನ 6		w	ш -	•	10 2	-	N	d N	60 00	21 3	27	27	ы 4	4	12 43	2 1	4 (310(5%))	2	
23 meiosis	-	9 11 16 2 0 .	•	r	20 15	t	ч	15 6	N	0	12	0	15 40	9 23	28 2	35	8	2	t	3 46	ф б	.6 (326(6%))	B.6	
22 cofactor metabolic process	•	6 9 17 2 1 J	u	m	15 12	15	10	18 8	đ	9 7	5	10	17 33	7 24	33 2	8	2	18 39	4	22	72 6	15 (343(6%))	2	
21 anatomical structure morphogenesis	0 	5 11 10 a	1 2		10 8	- 1	17	10 10	•	20 19	100	23	21 12	о 14	36	ß	43	83 48	78	101	117 101			
20 cell wall organization	N	9 18 17 5 0	7		16 12	31		25 5	19	12	8	15	4 %	9 19	32	33	37	40	۲ <u>ا</u>	6 76	125			
19 neterocycle metabolic process	•		u		10 10	12		7 0	Ŭ	<u>ل</u> ا	1	0	رد ۵	0	t 4	8	g	57 42	128	701 10		3		
	• •					5	ŭ				8	la	21	; e	: I	1	4		ŝ				1	
ar cymsacaeun o genazeuon			5 0		i 7	0	1	: 1 ; ;	1 0		8	; ;	: 5	1		: 1	1 8		Ī		15			
	• •					1 0	2	; = ; ;	1	6 D 6 D	5 X	; :	: 8	2 R	:) K	2		ī	1 10	i i	1		
						; ;			;	6 ! {	:					3	8 8		i	5 1				
15 simal transduction		1 6 0	_		11 11		ы н	∞ ;	4	27	8 9	8	4) 8	8	1 3 1	6	3		1	135 135			-	
	n			•	3 I	k 1	5	5 1 5 1	d I	X I	2 1	, , ,	2	5 i	5 : 	<u>r</u> :	8		Ż		8 : ; ;			
	<u>"</u>		е ;		3 ! X !	8	» i	5 1 1	z .	2 1 5 1	2	, 1	6 1 R	a 1	0 1 n	5	8	9 9	ġ ł	58		_	2	
		4 i		ń	3 8	ń	†		4		đ	5		3	4 4	2	ŝ		ŧ,	n 1	s i x			
	u U	1 <mark>2</mark> 7	đ	ø	12 i	8	:	13 10	12	33	8	X.	8		t) -	থ :	97	ध	<u>s</u>	50 151	5		-	
10 DNA metabolic process	• •		8 1	:		8 I	4	y y	¥	5 : 2 1	6 1	1	5 4	n -	<u>г</u> :	8	-		8 2	5 i	2 2 2	4 5 (945(16%))	F. (
 encyce response to chemical stimulus 			8 t	: 7		8 8	2	z t t	z 1	5 5 8 5	7 -	t 1	в I л 4	4 5	2 i	8.1		¥ !	216	19 5		3.4 (1051/18%))		
 protein mountation process 			8 =	;;	x 6 2 5	8 0	5 5	20	×¥	5 1 5 1	2 2	h K		2 t	1 8 	8 3	8 8	2 5 5 V	5 8	4 8 4 4		2.1 (1054(205())	-	
a ichonac marcas			ìō	1 1		: 8	: :		: 6	: 2 : X	1) 8				} =		8 8	{			2.4 (402E(4660))	: (
	" (°	t (; ;	5 5 5 6	6 5	; ;	: 1 : :	8 1	2 2 5 5	: 1	8 5	2 2	: : : :		3 8	i i	2 2 9 2	1				. (
5 transmittion	0	5 5 5 5 5 5	4 B	: :	2 0 5 0	2 8	3 8	5 2 ft 0	8 8	ћ 8 х 8	; ;	4 ¥		n o	: 8 	R 8	* •	Ř 8 8 8	5	10 200	2 0 7 1			
3 organelle organization	n on	15 16 13 26 16 0	8 ¥	: 11	26 7	8 8	3 8	4 14 6 26	× ۲	* 19 * 19	: 2	3 8	5 12 15	8	3 E	8 8	• - •	3 ₹ 5 =	Η	5 12 1 14	6 8 7 8	A 3 (1162(20%))		
•		(541) (541) (541) (541) (542) (542)	(255) (2	(250) (250)	(3%) (2%)	(336)	(386)	(394) (398)	8	(456) (456)	2	(exe)	(ase) (ase)	(5%)	(NA)	(886)		(sos) (sos)	(17%)	(1224)	(Sec) (Sec)		(5880)	
		91 86 84	_	192	150 134	161 1				221 238	-		_			_	1 1 1 1	-	8	33 1054	1705 1133	8	S. cerevisiae genome size	
1 NOT ANNOTATED		27 28 29 30 31 32	8	ß		z	ы	19 20	5	16 17	5	ŭ,	12	• #	9	•	7	о 6	4	w	1 2	_	SIOLOGICAL PROCESS TERMS	2
		0.	S) OF G	AL PROCESS(ES) OF GO.	2.4	BIOLOG	S WITH	ANALYSI	VOLOGY	Supplementary Table 1.2 - (B) S. cerevisioe HOMOLOGY ANALYSIS WITH BIOLOGI	S. cerevis	.2 - (B)	v Table :	lementar	quip									
																								l

Supplementary Table S1.2. B. S. cerevisiae Homology analysis with Biological Process(es) of GO [continued...].

Table S1.2. C S. cerevisiae Absent genes analysis with Biological Process(es) of GO

Each row represents a group from a given domain of life. The group is identified in column 2. The numbers shown in parenthesis on that column indicate the number of *S. cerevisiae* proteins that are simultaneously absent in all organisms of the corresponding group. Columns numbered 1-32 represent each a biological process. The number shown in the second row for each of these columns indicates the number of *S. cerevisiae* proteins associated to each GOSLIM category. In each column, a green to red colour scale indicates the similarity between the set of proteins associated to the biological process in *S. cerevisiae* and that of proteins commonly associated to all organisms from the group. Green entries indicate high similarity (low absent), while red entries indicate low similarity (highly absence) between the two sets of proteins. The numbers in each entry indicate the number of *S. cerevisiae* proteins that are absent in all organisms from the group represented in the row.

(See the Table S1.2 C. on next page)

	E13	E1.2	E11	ß	-	Π																								GENES	ABSENT																						S. cerevis	BIOLOGICAL
	Microsporidians	Basidiomycetes	Ascomycetes	HUNG			A.4 (5350(91%))	B.8 (4951(84%))	A.3 (4822(82%))	B.16 (4727(80%))	for a second	R. 4. (471 2080%)	B.11 (4585(80%))	B.15 (4577(80%))	B.12 (4517(77%))	B.1 (4413(75%))	B.6 (4408(75%))	B.10 (4393(75%))	B.14 (4363(74%))	A.1 (4209(72%))	E4.4 (4195(71%))	8.9 (41/8//1%))	E.1.3 (4097(70%))	B.3 (40/6(69%))	B-2 (3540(67%))	B.2 (3889(66%))	A.2 (3807(65%))	B.7 (3692(63%))	E.4.5 (3678(63%))	A (3672(62%))	E.4.7 (3616(62%))	B.13 (3256(55 %))	E4.6 (3157(54%))	B (2881(49%))	E4.3 (2755(47%))	E 4 1 (2740(47%))	A & B (2642(45%))	E 4 2 (2603(44%))	E 7 1 (7597(AA96))	E 2 A (2554(439/))	E 3 3 (252/(43%))	E3.2 (2519(43%))	E.2.2 (2371(40%))	E.2.4 (2185(37%))	E.2 (2028(34%))	E.4 (1978(34%))	E.1.2 (1525(26%))	E.3.1 (282(5%))	E3 (142(2%))	E 1.1 (10/0.2%))	E-(U(U70)) E-1 (10/0.229)	(5880)	5. cerevisiae genome size	DLOGICAL PROCESS TERMS
	23			_	2		1584	1512	1497	1361	1	1403	1485	1461	1460	1437	1433	1406	1412	1348	1399	1369	1420	1345	1302	1305	1258	1228	1297	1225	1289	1107	1151	1005	1	1058	916	ŝ į	ŝ ž	į	1027	1017	1005	£	ÿ	8	764	149	З	0	0 0	(200		1
Ve	Ne		Ech.	ANI			6 998	886 8	803 8	848 8		8 962	840	8 958	821 8	807 8	802 8	8 582	8 552	733 8	625 6	772 7	531 6	2 892	731 7	252	649 7	213 27	483 6	625 7	497 S	638 6	495 5	584 57	375 4	370 4	477 5	K A			¥ A	¥	285 3	252 3	238 2	259 3	205 2	24	8	0	• •	(1981) (11		2
Vertebrates E.3.4	Nematodes	Insects	Echinoderms	ANIMAL			59 913	83 896	91 813	42 815		214 216	57 810	61 810	21 757	28 731	19 768	10 757	25 774	24 699	86 659	74 727	858 95	88 894	43 670	60 636	55 643	32 611	20 546	25 610	87 521	54 549	58 423	73 475	1) 20		41 446	328		12 72 72	22	39 314	64 Z76	26 254	99 228	27 225	11 120	7 27	17	0		(1884) (1794)	1054 985	•
E.3.4	E3.3	E.3.2	5.1				545	543	505	521		2	520	522	503	505	497	500	459	467	431	488	342 2	ł.	4	480	ŧ	463	338	412	355	419	374	379	283	295	<u>K</u>	5	¥ ¥	1 23	270	282	211	ź	181	209	ħ	4	đ	0		(Rost)	585	v
"	Monoc	670	Dico	PLANIS		EI KARVOTA	491 48	451 40	436 40	411 39		5	434 48	417 38	386 35	370 36	375 35	385	369	372 34	344 23	358	311 22	344	333 31	331 31	320 31	317 30	283 21	308 30	277 20	277 26	256 18	239 21	217 1		220 22	in se	\$ ¥		197	203	162 9	15 <u>4</u>	139 7	142 8	103 5	22	5			(avd) (avd)	_	و 9
Red algae	Monocotyledons	Green algae	Dicotyledons	SIN		VOTA	89 407	72 407	372	395 65		r ř	88 391	375	355	355	353	362	88	19 338	57 258	19 338	229	338	9 320	12 331	313	307 S	12 234	12 298	209	22 279	214	14 238	5 178	s S I	225	8 8 8 8			188	3 171	3 139	18	8 121	130	7 104	5		•		(856)		8
	5			Ş	1		377	Ħ	319	285		ž	80	ğ	281	258	267	281	265	270	1 <u>8</u>	257	272	245	237	232	236	212	242	224	241	202	215	176	176	đ i	ස්	2 7	3 3	17	5	174	ŧ	161	142	128	8	N	÷	-		2	-	9
	ş	8					328 2	300 2	239 2	282 1		3	1	226 1	275 1	283 1	278 1	264 1	276 1	259 1	227 1	258 1	197 1	254 1	246 1	253 1.	226 1	239 1	203 1	219 1	185 1	207 8	181 11	182	ŝ		10	i i	1 F.	5	142	Ŧ	124	110 8	101 6	115 9	97 2	=	7	•		(7%) (5%)	_	10 11
Diplomonads	Choanoflagellates	Cellular slime molds	Alv				54 240	13 200	15 219	11 128		4	197	76 202	72 190	59 180	53 185	180	57 154	51 186	91 181	161	73 162	150	159	23 135	36 158	12 128	152	36 156	1 58 158	9 97	8 18	01 84	ສ <mark>:</mark> ສ	2	99 99	un d Vin e	0 0 2 8	, a ; g	0 8	32	e B	3 42	8	35	7 20	0 w	N	0	• •	N) (456)		1 12
				PROTISTS			198	138	116	137	1	ŝ	73	¥	9	ß	71	75	ß	8	178	9	195	8	: 8	\$	ß	37	īź	&	138	¥	78	ß	2	7	8	8 8	8	\$ 8	47	3	8	8	\$	19	0	-	-	•		(48)	251	t
	E.4.7	+	+				242	223	224	214		3	2	247	216	214	213	213	210	23	172	N.	174	204	8	199	193	193	139	185	141	1	117	ŝ		<u></u> 8 i	ħ	83	R <mark>j</mark>	2	8	5	£	76	2	73	8	σ	4	0		(494)		8
		Euglenozoa	Entamoeb				219 19	215 19	185 18	176 18		Ř.	207 17	183 18	173 17	163	173 18	177 18	174 17	165	137 13	157 10	139 12	100	147	156 14	145 14	18	108 10	144 13	110 9	19 12	[3 %	113 11	_			8 8 v o	s <mark>e</mark>	5 8 • •	8	8	75 4	8	67 3	71	49 9	=	σ 	•	• •	(456) (456)	-	5
		0 0	S.	1			2 215	0 208	34 197	192		197	79 207	199	76 180	54 187	184	190	74 190	181	32 133	52 175	21 129	178	165	175	12 167	161	108	37 160	3 108	33 147	3 107	112 124	8		106 119	8 8	3 <mark>.</mark>			105	3 74	3	8	8	^ ₿		7			(ass)	-	5 1/
l	A.4	ß	A.2	P	2	٨	12	138	147	129		ŝ	Ň	Ē	115	106	107	103	105	112	145	*	ĝ	8	8	8	Ŕ	r	126	8	125	ส	8	8	ឡ រ	2	r	8	R 8	: \$	8	2	8	8	t a	\$	ß		<i>т</i>	-		(38		18
	Nano	Ko	g	Cren		ΔR	165	91	109	76	: 8	8	3	2	74	74	51	님	8	8	138	4 8	145	43	8	37	\$	8	125	45	121	27	8	S	8	8	¥.	थ ।	g 1	: %	4	. W	8	8	45 51	¥	đ	m	m	0	• •	(336) (3		19
	Nanoarchaeota	Korarchaeota	Euryarchaeota	Crenarchaeota		CHEA	163 15	194 19	147 13	136 12		1	145 14	144 13	139 13	136 13	134 12	139 13	137 12	138 12	131 11	129	120 99	127 12	121	118 12	126 11	114 11	110 7	121 11	123 8	8	120 90	8	8		8		8 8	2 9 4	100 70	97 79	4	87	8	84 31	58 2	15 7	υ ω		•••	(335) (335)	-	20 21
	60 B.4				,	7	3 157	78	6 112	8		× X	0 2	9 91	6 51	۰ ۳	53	51	8 8	3	0 114	45	12	3	1	2	9 43	в М	105	₩ \$5	1 12	7 13	2 37	10	8	8 1	đ	5 I	K T	1 8	1 8	1	2	8	đ		N	0	0	0		(300)	-	22
2			Act	B			124	Ŕ	ž	18		÷	3	đ	8	Ŕ	ŝ	113	8	ą	8	Ŕ	73	â	8	8	8	8	8	2	75	r	78	ส	3	8 :	8	ងខ	0 8	6 B	\$	8	5	Ŗ	2	8	đ	4	N	0		(936)	5	C
Cvannharteria B 10	Chlamydia	Bacteroides	Actinobacteria	Acidobacteria			12	8	97 1	8		8	9	8	8	3	8	76 1	81	2	74	77	8	8	9	8	8	đ	8	ß	8	4	#	8	4	8	K :	8 8	t k	5	8	<u><u></u></u>	H	R	8	ы	g k	-	0	•	• •	(200) (2		24
). R 10	dia B.9	B.8	nia B.7				121 118	11 88	101 60	11 10			12	10	10 10	08 10	05 103	10 10	05 10	01 97	93 81	2	83 76	12 58	55	94 87	92	92	77	87 89	81	75 77	80 72	70	8	8 :	8	888 878			к К	56	58	57 47	55 45	52 49	20 20	3 7	w N	•	• •	(255) (255)		25 26
		+					8	79	8	79	1	<u>я</u>	3	3	8	8	5	8	8	ß	8	8	8	8	5	¥	8	8	2	8	3	5	ñ	8	8	5	w	£ 1	8 ¥	: 8	6	¥	8	8	8	2	đ	ь	N	0		(220) (224)		21
	Green			5	,		91 85	46 4	8	40 4		ř	32	39 2	39 3	33 3	25 2	36 3	22 2	37 2	66 7	18	74 7	21 2	17 2	10	24 1	1	64 7	22 1	54 6	4	38 47	4 		28 31		8 1 8 1		30 37			¥	31 3	27 3	-	4	•	•	•	• •	(224) (124)	2	28 29
	Green nonsulfur bacteria	2		Deinococcus-Thermus		BAC	2	87	13	10		м Х	2	76	5	37	13	2	73	65	2	8	2	8	R	65	10	ມ ຄ	35	r	7 48	r T	7 47	8					5 5	-	÷		5	7 13	15	5	u					(1XX)		8
Green sulfur barteria	ur bacte	Fusobacteria	Firmicutes	s-therm		A BHL	2	8	8	8		8	8	8	2	8	57	8	57	8	8	2	45	5	2	2	8	2	¥	48	8	4 5	8	4	26	8	ы 1	8	2 6		U.			19	19	1 0	13	'n	N	0	• •	(131) (131)	8	31 32
	ria 8.14			US 8.11	1		8	from t		in the second	comm	ansoci	S Super	cerevé	the se	is numb	simult	i nu	SOST SOST	domai	oldins 0		55	2	. 2	8	28	10	23 27	27 26	20	8 24	23											13	5	4	6 8	7	•	"	• •			2
+		t		┢	1			he group i		milarity ()	OBLA NUM	ated to the	to red cold	side prote	cond row	ered 1-32 (aneously a	oup is ide	M ontolog	ins, kingdo	amentary	dsum	pseud	dement	pseud	cell bo	cellut	Vitam	cellut	conju	sporu	cellula	meiosis	cofact						algue			lipid n		DNA	respo	cell cyde	protei	respo		organelle			
Synergistetes	Spirochete	Proteobacteria	Planctomyces	Hyperthermophilic bacteria				from the group represented in the row.	sense; between the two sets of procents, the numbers is seth only firsts the number of Conversions modeled that are absent in all occursions	(highly similarity (low absent), while red entries indicate low similarity (highly see a low similarity (highly	mmonly associated to all organisms from the group. Green entries indicate	ociated to the biological process in S cereviside and that of proteins	en to red color scale indicates the similarity between the set of proteins	evision proteins associated to each GOSUM category. In each column, a	e second row for each of these columns indicates the number of S.	mbered 1-32 represent each a biological process. The number shown in	inclusion inside the number of 3, cerevaled proteins that are inclusionably absent in all organisms of the corresponding group. Columns	is group is identified in column 2. The numbers shown in parenthesis on	OSUM ontology. Each row represents a group from a given domain of life.	omains, kingdoms or phyla, classified by biological process from the	pplementary Table I (C). Summary of the comparison between S.	transposition	pseudohyphal growth	transposition	pseudohyphal growth	cell budding	cellular aromatic compound metabolic process	vitamin metabolic process	cellular respiration	conjugation	sporulation resulting in formation of a cellular spore	cellular homeostasis	sis	cofactor metabolic process	anatomical structure morphocenesis	cell wall oceanization	e r r etabolic process	reneration of precursor metabolites and energy	process caracteristics	gnal transduction	membrane organization	cellular amino acid and derivative metabolic process	ipid metabolic process	carbohydrate metabolic process	DNA metabolic process	response to chemical stimulus	y/de	protein modification process	response to stress	transcription	organelle organization transport		SNA metabolic process	NOT_ANNOTATED

Table S1.2. DS. cerevisiae Orthology analysis with Molecular Function(s) of GO

Each row represents a group from a given domain of life. The group is identified in column 2. The numbers shown in parenthesis on that column indicate the number of *S. cerevisiae* proteins that have orthologs in all organisms of the corresponding group. Columns numbered 1-20 represent each a molecular function. The number shown in the second row for each of these columns indicates the number of *S. cerevisiae* proteins associated to each GOSLIM category. In each column, a green to red colour scale indicates the similarity between the set of proteins associated to the molecular function in *S. cerevisiae* and that of proteins commonly associated to all organisms from the group. Green entries indicate high similarity, while red entries indicate low similarity between the two sets of proteins. The numbers in each entry indicate the number of orthologs to *S. cerevisiae* proteins that are common to all organisms from the group represented in the row.

(See the Table S1.2 D. on next page)

(1	m	m	-)t	er	2	2.							1	Sc	lC	C	ha	ır	0	m	y	Ce	?S	С	e	re	vi		_	e	a	S	a	N	Ιο	d	el	()r	g	an	is	sn	1						_	_	
_			1.2 Bas	11 A	T T	-	a color la color de la color d	a te mo			B 13 /11/	B 7 (96/2	A (103(2%)	B.14 (138	B.2 (146(3%)	A.2 (148(3%	A.1 (164(3%)	A.4 (201(3%	B.4 (233(4%)	B.3 (236(4%)	B.5 (263(5%)	E (263(5	B.11 (275	B.9 (279)	8.15 (319	B.10 (341(6%	B.6 (401(7%))	A.3 (401(7%)	B.8 (419(7%))	E2(ORTHOLOGS E2.4 (57)	E-4 (591(10%)	B.12 (632	B.1 (708(12%)	E.1 (781(13%)	E.4.1 (83)	E.4.4 (95)	E.1.3 (10)	E4.7 (12)	E 4.6 (12)	E4.5 (13)	LIZEU E A	E.3.2 (16)	E.2.2 (17)	E.3.4 (17)	E.4.3 (20)	E1.1 (21)	E.4.2 (21)	E 2.1 (2204	E.3.3 (22)	E 3.1 (22)	E1.2 (2310)	5. <i>cerevisiae</i> genome size (5880)	
				Ascomycetes E.	FUNGI E.2						1110.2 %		96))	(2%))	3%])	3%))	3%))	3%))	4%))	4%))	5%))	(5%))	(275(5%))	(5%))	(319(5%))	(6%))	(%)	/%))	7%))	()	4 (573(10%))	10%))	632(11%))	12%))	((%E1	1 (839(14%))	4 (959(16%))	(1015(17%))	(1257(21%))	6 (1281(22%))	9				=	(2007(34%))	(2107(36%))	2 (2174(37%))	04(38%))	(2244(38%))	.1 (2269(39%))	(1%62		
E2.4		E23	E.2.2	E2.1	~						 	4	9	10 i 10	10 61	14 46	16 SJ	2	23 78	16 91	17 80	33 12	31 91	8	27 58	32 10	8	12	22	16	92 18	21	82	131 18	19 26	159 26	160 28	5	35	34	2 8			400	41	179 45	11 44	83 48	58 SO	08 47.	i99 47		2782 764 (47%) (13%)	•
Vertel		Nema	-	Echinoderms	ANIMAL			, ,		, ,		÷ -	о О	t,	8	5 5	#	5	32	8	2	۵ ۵	ŧ	47	23	5	2 79	2	3 75	8 12	85	5 106	8 155	167	5 159	139	8 190	7 189	8 236	2	N N	22.0		301	2 318	1 347	1 375	5 376	1 363	2 383	393			0
Vertebrates E.			Insects E.				•	, ,	•	• •		•	ß	5	=	×	¥	ĸ	8	ti	ð	ð	Ci	18	И	16	R	8	N	¥	8	8	t:	X	7	18	14	ig B	128	Ŕ	Ê	5 3	151	138	ġ	161	119	158	158	ŝ	Ē	- 6	(KS) 346	4
E.3.4	t		E.3.2	E3.1	8					•••	•••		80 -	5	2	9 2	10 2	13 2	13 3	•	e 0	5	9	9 1	13 1	5 2	5 0	17 3	15 3	39 Z7	4 5 30	37 9	21	8	59 39	51 12	8	2	59 24	8	2	а 9 4 9		97 68	77 48	100	8	94 75	103 83	8	8	- 8	(6%) (5%)	(
Rec		Monocotyledons	Green	Dicotyledons	PLANTS						. ,	w	0		ω	ø		5	on	•	6	11	n	0	0	ø	=	, R	=	13	19	8	4	N	*	2	8	8	* 8	ମ ମ	8	7 8	2	2 2	8	111	8	Ξ	120	118	n 12	- 8	2 4 2 1	•
Red algae B			Green algae B	-					•	• •	• •	4	•	-1	u	ω	m	5	8	¥	4	-	Ħ	8	H	\$	8	8	\$	8	3	4	8	8	S.	8	B	ß	ß	8	8	ġ B	Ŵ	119	151	167	Ē	8	178	179	%	- 6	X	1
E4.4		4	4.2	4	4		•	• •	•	•	• •	w	•	"	w	•	•	N	0	m	w	*	e.	o	•	ø	•	N	m	ő	ß	ō	2	. 10	C3	8	8	X	\$	8	8	5 8	t	8	8	3	13	8	78 1	75 1	3	-	2 X	0
		ç	0ellu) 0) 0				के : 2	± .	2	23	17 11	22 10	24 17	3	36	38	16 1:	31 1	38 10	4	45	47	34	4	27 2	30 22	40 23	57	51	38 30	53 31	8	66 30	ຕ ຄ	78 43	66 48	97 02 49		0	2	112 74	80	113 74	110 75	114 70	117 7	-	(3%) (2%) (2%)	1
Diplon		Choanoflacellates	Cellular slime molds	Alv									ω			50 24	01 10	ч 0	4	2	w	2		N	Ľ	Ы	18		8	4	2 31	ti ti	8	*	5	5	2	5	59	ະ ເບ	8	r 8		8	8	÷	68	# 8	8	8	8		۰۰ ۲	1
Diplomonads				Alveolates	PROTISTS		•				• •	.	-	u 1	đ	7	u	w	t2	ta	N	•	15	Ľ	27	25	¥	19	27	•	z	-	ÿ	×	w	m	t	t	N	2	2	e b	4	×	\$	\$	8	\$	4	s	8	8	1	
P	_	FA7	E.4.6	E.4.5	S		•		•	•	. 1		m	•	N	vi	m	00	w	ŀ,	w	•	w	9	9	o	b			-	N	ð	•		8	8	ß	¥	8	2	8	5 8	3	8	8	8	X	t h	\$	\$	đ	- 6	1 1 1 1 1 1 1 1 1	1
Paraba salid:		ŀ	Euglenozoa	Entamoeba			•	• •	•	•) (9	0	•	•	0	•	-	•	-	•	•	-	-	N	i	ľ	0	-	~	5	-	-	-	•	1	w	n	=	u 1	4	» 5	t 12	8	••	8	ä	DX	8	23	N		لا <mark>گ</mark>	(
lids			202	8										N .		N 1	•	-	U)	0 	*	°	•	9	0	=	0		16	12 L	4	12 1	19 1	N N	17	20	28 2	24 2	31 2	¥ :		45 <mark>1</mark> 8		39	τ5 ω	47 3	32 3	45 ω	45 v	SI 4	8 4		(19) (19) (19) (19)	(
		2	P.S	P	P	A									•	•	•	2	•		•	۳ ۵	•	-					2	5	17	4 16	+	*	6 17	0 19	1 28	18	2	о 13	4 ·	 3 b	, N	2	5	4 31	2	о Ж	8 39	о ¥	22		۵ » ا	-
	ľ	z	_		0									-								t		2	4					te	R	đ	=	ᆄ	ti Si	17	18	ŧ	23	ö	N	5 B	8	ы	8	24	27	N	C:	C	¥	25	} :	1
		noarch	Korarchaeota	Euryarchaeot	Crenarcha	MUHLA		, ,			-	•	0	•	•	•	•	•	•	•	•	•	•	•	•	0	•	0	•	un	v	v	•	•	8	÷	7	÷	7	5	:	n .	; =	12	ø	12	÷	r,	5	÷	÷	12	(NSCO) 91	(
8			Ū.																														8		8 P	5	16 15	15 líj	8	5 I			•	•	7	•	v	*	w W	•	•			
B.5		8.4	£'8	B.2	B.1	•	1																										motor activity	signal transducer activity	phosphoprotein phosphatase activity	translation regulator activity	somerase activity	lipid binding	nucleobidy/transferase activity	yase activity	helicase addivity	igase according	enzyme regulator activity	oxidoreductase activity	RNA binding	transcription regulator activity	DNA binding	structural molecule activity	transferase activity	hydrolase activity	NOT_ANNOTATED			
Cyanob		2	Bact	Actinob	Acidob																												vity	sducer a	otein ph	regulati	activity	*	ltransfer	ŧ,	ivity .		Enjagor a	dase act	- 	on regula	~	molecule	e activity	activity	DTATED			
Cyanobacteria		Chlamvdia	Bacteroides	Actinobacteria B.7	Acidobacteria B.6																													divity	ospinatas	oractivit			ase activ				dawity	Y	:	stor activ		activity						
B.10		B.9	B.8	B.7	B.6																														se activit				Ϋ́Υ							ψ								
		67																																	¥																			
Green		Green nonsulfur bacteria			Deinococcus-Thermus																																																	
Green sulfur bacteria		sulfur ba	Fusoba	Firm	ocus-Th	BALIENIA																																																
		đeni:	Fusobacteria	Firmicutes	ermus	MA		dnoug	to S. o	prote	while	dio IIe	functi	the si	GOSL	indica	Then		protei		GOSU	doma	CEREM	Subb	I																													
B.15		B.14	B.13	B.12	B.11			represe	erevisio	ins. The	red entr	anisms (on in S.	milarity (M categ	ttes the r	umber s	Colum	ins that	ue group	M ontoi	ins, king	side seq	ementar																														
					Нур			group represented in the row.	to S. cereviside proteins that are common to all organisms from the	proteins. The numbers in each entry indicate the number of orthologs	thile red entries indicate low similarity between the two sets of	all organisms from the group. Green entries indicate high similarity.	unction in S. cereviside and that of proteins commonly associated to	he similarity between the set of proteins associated to the molecular	50SUM category. In each column, a green to red color scale indicates	ndicates the number of S. cereviside proteins associated to each	The number shown in the second row for each of these columns	proup. Columns numbered 1-20 represent each a molecular function.	roteins that have orthologs in all organisms of the corresponding	re. The group is identified in column 2. The number of 6 consulting	SOSUM ontology. Each row represents a group from a given domain of	iomains, kingdoms or phyla, classified by molecular function from the	rerevisioe sequences and those of organisms from different groups for	Supplementary Table I (D). Summary of the comparison between S.																														
					Hyperthermophilic bacteria			ne row.	is that a	in each	ste low s	group. G	e and th	the set o	ach colu	of S. cene	the second	ered 1-20	hologs in		n row rep	phyla, d	and those	(D). Sum																														
Syner	4	S.	Proteo	Planet	ophilic				re comm	entry ind	imitarity	reen en	at of pro	of protei	mn, a gre	visiae pr	nd now to	represe		2 umu -	presents	assified	of orga	many of																														
Synergistetes		Spirochete	Proteobacteria	Planctomyces	bacteria		1		on to all	heate the	betweet	tries indi	teins con	ns associ	en to re	oteins a	or each o	nt each a	isms of	ine nut	a group	by molec	nisms fro	the com																														
		_					1		usinegro	number	the two	cate high	nmonly a	ated to t	d color s	sociated	T these o	molecu	he come	noers snu	(B e mou	ular func	ym differ	parison (
									ns from	roforth	sets of	similari	associate	he mole	cale indi	to each	olumns	lar funct	spondin	own in	wen don	ction fro.	ent grou	between																														
									- the	sloge		4	ed to	cular	cates	-			4		Do UID	mthe	ips for	S																														

Supplementary Table S1.2. D - S. cerevisiae Orthology analysis with Molecular Function(s) of GO. [continued...]

Table S1.2. E S. cerevisiae Homology analysis with Molecular Function(s) of GO

Each row represents a group from a given domain of life. The group is identified in column 2. The numbers shown in parenthesis on that column indicate the number of *S. cerevisiae* proteins that have homologues in all organisms of the corresponding group. Columns numbered 1-20 represent each a molecular function. The number shown in the second row for each of these columns indicates the number of *S. cerevisiae* proteins associated to each GOSLIM category. In each column, a green to red colour scale indicates the similarity between the set of proteins associated to the molecular function in *S. cerevisiae* and that of proteins commonly associated to all organisms from the group. Green entries indicate high similarity, while red entries indicate low similarity between the two sets of proteins. The numbers in each entry indicate the number of homologues to *S. cerevisiae* proteins that are common to all organisms from the group represented in the row.

(See the Table S1.2 E. on next page)

				С	h	aj	ote	er	2)							Sc	lC	cl	ha	ır	01	n	yC	es	5 (ce	re	ev	is	ia	le	8	IS	a	N	1	od	e	()r	g	an	is	m					
ſ		613	E1.2	E11	E	E		•					a)					Ģ	m	A	œ				<u>.</u>		œ 1	HOMOLOGS		•		2	7 5						œ	œ l		1 [71			will a	1 [77]) 2. cerevisio	MOLECOLAR FO	
		Microsporidians	Basidiomycetes	Ascomycetes	FUNGI		(0(0%))	& B (0(0%))	1.1 (0(0%))	1 (0(0%))	(0(0%))	13 (1(0.01 %))	7 (8(0.1%))	(180.3%))	2 13010 5551	16 73 0 16 73 0 16 73 0 16 73 0 16 70 10 10 10 10 10 10 10 10 10 10 10 10 10	4 (43(0.7%))	14 (64(1%))	2 (81(1%))	.1 (82(1%))	5 (89(2%))	3 (104(2%))	2.4 (125(2%))	9 (156(3%))	4 (190(3%))		11 (251(4%))		4 (310(3%))	b (32b(5%))	(lealers) or	15 (343(694))	a (491(aa)) 1 7 (460(8%))		3 7 (638(11%))	2.2 (638(11%))	2.3 (693(12%))	4.6 (695(12%))	12 (712(12%))	1 (740(13%))	4.4 (752(13%))	4.5 (945(16%))	3.4 (1051(18%))	4.7 (1054(20%))	2.1 (1075(18%)) 2.1 (1075(18%))	3.1 (1147(20%))	4.3 (1162(20%)) 4.2 (1156(20%))	(5880)	NCTION TERMS	
	E2.4	_			E2		•	•	•	0	•	о і 		ь . л .	n (י ד ד י	: M 	8	ts on	13	t6 20	X X	8	रु । स	8 ¥	: :	8 8 8 8	8 8 5 5		12	; 8 ; 8	8 §				297 60	1X8 88	281 100	235	22 - 2		351	436 13	393 17	49 53 55	94) H	515 15 522 141	2782 764 (47%) (13%)	•	•
	Vertebrates E.3.4	Nematodes	Insects	Echinoderms	ANIMAL		0	0	0	0	•			 	n c	• =		7 10	4	28 11	13 11	13 17	5 -	5 S	51 <mark>5</mark> 22 7	6 1 4 1	ж 5 8	8 1 7 1	4 4 2 4	51 21			5 5 5	ة ¦ 8	151 51	71 24	73 23	93 31	116 33	11 23	85 103 44	112 33	143 38	95 9 54 9	112 49	113 45	130 39 108 47	(11%) (6%)	•	
	s E.3.4	\top	E3.2		63	EU				•					 	•••	23	4 1	17 19	4 2	7 1	-	22 23	ю 1	• -	• •	8 1 w 7	с. с. 4	• •	5	: a	s 1		5 b		41 48	45 56	19 19	ы П	17 12		51 68	63 78	58	3 2 7 2	72 79	76 78 74 77	(604) (504) 615 825	•	
	Red algae	Monocotyledons	Green algae	Dicotyledons	PLANTS	EUKARYOTA	0	•	0	0	•	o (- ·		• •		0 6		9 2	9 8	5 10	00	о (х :	5 5	:	س	# 5	8 13 8 18	• •		4 (x t 1	; ; ;;	(9	35 24	45 12	4 8	23	8	R #	: % 8	57 54	7 -	4 4 6 8	2 2	9 8 8 8	(5%) (5%) (2	•	4
	ie E.4.4		-		E.4		0	•	0	•	•	• •		ы і 			· _•		•	*	-	-	-				 -	44	- u			n (3 8	5 7		×	8		17 2		8 8 		¥	£ 8	49 49	4:	К) &	2 1	u	Subb
	Dipl	Choanof	Cellular slime molds	A			0	•	•	0	•	•	 		- (•	2	*		-	5	on 1	ω 0		• •		4 6 5 <mark>13</mark>				n a 0 t		1 0 1 5 1	8 16	С	6 16 2	7 15	81		8	0 18 2	4 31 2		22	8 26 21 4 27 18	(234) (234)	F	ementary T
	Diplomonads	Choanoflagellates E.4.7		Alveolates E.4.5	PROTISTS		0	0	0	0						• •		2 1	2	•	-	2 3	3	a	ю 1 њ с		ω ι 	4 4	• •		1	t	-	5 a	, n	4		10	8	 18 -		, B	8	3 13	2 4 4		24 18 18	(136) 136	t	Table - S1.2
	Paraba salids	_	1.6 Euglenozoa	+			0	•	0	0	-	- -	• •		- (-	2	3 2	•	-	2	ы і 6 і	 		* *	з 4 л с		-		- (- (n K	· ·	· •	6 13	6 20	0 18	a	7	- 0 - 0	2	6 15	5	5 4 8 4	5 24	15 15 22	73 70 (1%) (1%) (t	Supplementary Table - S1.2 (E) S. cerevisioe HOMOLOGY ANALYSIS WITH
	đ						•	•	•	•	-	•	•		• •			2 2	•	-	4 2	2	•	ю (ы і	•• *		0 -		•	-	, u		- 8 	n k		4	5	6 9	9	18 7	ם מ די מ	10 11	8 6	11 C	n 4	ە 4	5 5 7	-	ţ	side HOMO
		A Nan		┢	A.1 Cre	A A	•	•	•	•	•	• •		•		• •		•	•	•	•	•	•	• •	- F	• •	<mark></mark> -	~ •	• •		 	n I	• •	4 0 4 1		-	2	ю Л	ដ ∞	12 V 4	n 0 n 0	14	± ∞	а о	и <mark>с</mark>	1	11 11 5 7	47 (1%) (1%) (-	LOGY ANA
		Nanoarchaeota			Crenarchaeota	ARCHEA	•	•	•	•	•	• •	- c				0	•	•	•	•	•	•	0 0	0 0		• •			0	8	5 1	5 5	י ב ג ב	: 6	- 5	•	0 13	• 12	 # 1	- N	• ••	1 7	•	- c	•	0 2	16 (0.3%)	6	LYSIS WITH
	8.5 CY	┢		+		в																									noon scorely		phosphoprove		somerase activity	Surping pinding	nucleotidyttra	yase activity	helicase activity	peptidase activity	enzyme regulator activity ferse activity	oxidoreductase activity	RNA binding	branscription r	structural molecule activity DNA binding	transferase activity	NOT_ANNOTATED			MOLECULA
	Cyanobacteria 8.10	Chlamydia	Bacteroides	Actinobacteria	Acidobacteria I																											or activity	spendprotein perdspinatase acuvity at transducer activity	tion regulator activity	way		eotidyltransferase activity		*	λġ.	tor activity	eactivity		nscription regulator activity	oulle activity	Bivity	đ t			MOLECULAR FUNCTION(S) OF GO.
	3.10	B.9	8.8	B.7	B.6																												E OCLIVITY				¥							ų						(S) OF GO.
	Greens	Green non:			Deinoco	в																																												
	Green sulfur bacteria	Green nonsulfur bacteria	Fusobacteria	Firmicutes	Deinococcus-Thermus	Bacteria		represent	proteins	similarity	associate	molecula	scale ind	associate	1-20 rep	homolog	that colu	The grou	domains	cerevisio	Supplem																													
0.10		a B.14	8.13	s B.12	s 8.11			represented in the row.	The numbers	, while red en	d to all organ	r function in s	icates the sim	d to each GO	esent each a	ues in all orga	mn indicate ti	o is identified	kingdoms or	e sequences a	entary Table I																													
					Hypertherm				In each entry	tries indicate	isms from the	cerevisioe a	larity between	SUM category	molecular runo	nisms of the c	he number of :	in column 2. T	phyla, dassifie	and those of o	(E). Summary																													
Tenencus	Synergistetes	Spirochete	Proteobacteria	Planctomyces	Hyperthermophilic bacteria			concentred in the row.	roteins. The numbers in each entry indicate the number of nomologues to	milarity, while red entries indicate low similarity between the two sets of	ssociated to all organisms from the group. Green entries indicate high	olecular function in S. cerevisioe and that of proteins commonly	cale indicates the similarity between the set of proteins associated to the	ow not each of once contains manages are number of a concentrate process speciated to each GOSLIM category. In each column, a green to red color	-20 represent each a molecular function. The number shown in the second	omologues in all organisms of the corresponding group. Columns numbered	hat column indicate the number of S. cerevision proteins that have	source of the second	domains, kingdoms or phyla, dassified by molecular function from the	cerevisive sequences and those of organisms from different groups for	Supplementary Table I (E). Summary of the comparison between S.																													
đ	ß	8	19.	ß	i				umber of hom	between the ty	entries indicate	eins common!	teins associati	In. a green to	Der snown in	group. Column	roteins that ha	Iown in parent	r function from	different grou	ison between																													
								droug	ologues to	wo sets of	e high	~	ed to the	red color	the second	s numbered	We	thesis on	in the	ps for	S.																													

Supplementary Table S1.2. E - S. cerevisiae Homology analysis with Molecular Function(s) of GO. [continued...]

Table S1.2. F S. cerevisiae Absent genes analysis with Molecular Function(s) of GO

Each row represents a group from a given domain of life. The group is identified in column 2. The numbers shown in parenthesis on that column indicate the number of *S. cerevisiae* proteins that are absent in all organisms of the corresponding group. Columns numbered 1-20 represent each a molecular function. The number shown in the second row for each of these columns indicates the number of *S. cerevisiae* proteins associated to each GOSLIM category. In each column, a green to red colour scale indicates the similarity between the set of proteins associated to the molecular function in *S. cerevisiae* and that of proteins commonly associated to all organisms from the group. Green entries indicate high similarity (low absent), while red entries indicate low similarity (highly absence) between the two sets of proteins. The numbers in each entry indicate how many *S. cerevisiae* proteins are commonly absent from the genome of all organisms in the group represented in the row.

(See the Table S1.2 F. on next page)

Chapter	2.
---------	----

				-																							GENES	ABSENT																						S. cerev	MOLECULA
	Microsporidians	Ascomycetes	HUNG		(lettelneed) #18	B.8 (4951(84%))	A.3 (4822(82%))	B.16 (4727(80%))	B.4 (4712(80%))	B.11 (4685(80%))	B.15 (4677(80%))	B.12 (4517(77%))	B.1 (4413(75%))	B.6 (4408(75%))	B.10 (4393(75%))	B.14 (4363(74%))	A.1 (4209(72%))	E.4.4 (4195(71%))	B.9 (4178(71%))	E.1.3 (4097(70%))	B.3 (4076(69%))	B.5 (3940(67%))	B.2 (3889(66%))	A.2 (3807(65%))	B.7 (3692(63%))	E.4.5 (3678(63%))	A (3672(62%))	E.4.7 (3616(62%))	B.13 (3256(55 %))	E.4.6 (3157(54%))	B (2881(49%))	E.4.3 (2755(47%))	E4.1 (2740(47%))	(1000) (1000) (1000)	E.2.1 (2582(44%))	E.3.4 (2554(43%))	E.2.3 (2540(43%))	E.3.3 (2527(43%))	E.3.2 (2519(43%))	E.2.2 (2371(40%))	E 2 4 (2185(37%))	E-2 (2028(34%))	[[@@7]C7C1]2712	E-3-1 (282(3%))	E.3 (142(2%))	E.1.1 (10(0.2%))	E.1 (10(0.2%))	E (0(0%))	(5880)	S. cerevisiae aenome size	LECULAR FUNCTION TERMS
				}	2120	2518	2583	2562	2545	2519	2529	2465	2426	241	2440	2494	2382	2367	2363	2379	2309	2257	2209	2227	2119	2178	2179	2153	1925	1938	1737	1807	1789	1728		τ <mark>έ</mark>	1683	1679	1671	1598	ŝ i	į,		212	Ŕ	00	00	0	(MAR)		1
Ve	N		ANIMAL		906 870		487 42	438 39	11 15	433 44	477 36	459 36	424 35	406 33	404 36	414	354	345 X	348	328 39	ž	316 26	300	285		277 30	265 24	254	202 17	25	152 13	167 16	152 17	5 5 5 7	157 15	191 14	152 14	152 13	137 11	129 14	15	9 8 9 9	5 E	3 =	-	•	•	0	(13%) (11%)		2 3
Vertebrates F3.4	Nematodes	teninoderms	NAL		224	8 257	8 221	251	4 284	4 259	251	276	255	257	55 254	6 290	193	177 177	12 12 12	4 176	6 252	77 245	8 237	6 194	6 225	161	178	ង ខ្ល	6 214	6 143	186	ы R	-1 - 12 - 7		, e V	15 101	119	120	9 112	109	8	8 1 8 1	е с 8 г	, . ; ;		N	N	0	N) (634)		4
2			0		107	N	285	291	285	284	285	283	287	281	279	276	N	1	277	8	275	27	275	261	262	196	15	14	236	225	220	ý i	i i		<u></u>	ź	ŝ	ź	187	1 3	Ŕ		Ż D	: 7	=	0	0	0			u
	Mono		2	UKA	1 015	, si	304 1	307 1	303 1	302 1	304 1	258 1	297 1	289 1	285 1	8 ! - !	¥ :	¥	282 1	202	285	8	285	28	¥	212	¥	228	¥ 1	N N	8	1 2 2			\$ 15	161	156	174 4	197	苔		<u>i</u> 2		3 #	ω	•	•	0	(5%) (5	_	•
	Monocotviedons	Dicotyledons	PLANIS	EUKARYOTA	10	88 173	57 158	83	8 13	80 123	88 133	8	51 88	74	83 88	8 1 74 1	5 8	8 N	8	36 197	53 53	1 12	7 8	12 28	39 47	57 181	100 70	161	27 27	ະ ສ	2 2 8	5 i X	8 8	; ; ; ;	5 55 5 55	8 8	8	8	8	8 8	5	8 3 8 3	х :: 5 ч	ς ω ,		0	。 。	0 0	(5%) (5%)		8
					201	12	10	78		100		180	TR R2	182	176	1 2	Ē	138	176	1	174	Ē	175	2	167	12	160	106	149	13	139	<u>9</u>	<u>8</u>	i a	: 2	8	8	8	103	8 :	8	8 8	6 t	; -	4			0			9
T	-	,			128	96	113	ŝ	8	8	89	8	87	8	8	8	8	78	78	74	77	75	69	76	3 1	2	76	8	ឡ	35	5	LI B	2 8	8	3 13	24	ß	ü	18	5 1	i i	i i	5 E	; -		•	•		(3 3)	_	6
	Choanofiasellates				70	8	73	8	2	74	75	78	2	2	2	2	8	¥2	8	4	8	8	đ	2	8	8	8	¥	5	8	N	± i	1 1	: =	: ;;	8	15	17	12	5	m	σ I	U K	د ر		0	•	•			Ħ
Dialognosta	fiacellar	Alveolates	PRO		43	N	2 A	N A	K A	17 2	8	15 1	18	8	13 2	26	й - -	w m	7 -	Ψ e	φ	•	7	1	×	2	ω	m	м	01	ω	un (u i		• 8	5	un M	w	4	м -) М	ь :	њ. с			-	•	-	•	(156) (1	_	3
	tes E4.7	L 5 5 4 5			0	27	12 43	8 2	56 25	5	4	22 10	5	8	8	5	19 26	8 8	4 9	ä X	ω 21	12	5 2	2	o 1 40	55 55	= 8 !	8	39	8 N	۳ ۲		 		5 11 5 11	3	11 11	10	° ti	13 I	00 F	4 (4 (2 - 4 2 V			0		0	(NET) (NET)	_	13 14
			1		5/	8	٩	8	67	65	58	58	5	8	ŝ	ະ ສ	8	8	53	40	ŝ	8	8	8	8	8	8	8	8	X	‡;	t !	N 8		ಕೆ	38	4	ы	2	4		ದೇ				0		0	(186)	-	5
Daraha ankida	cugienozoa				2	¥	£	N	17	8	19	ы	ü	≓	17	ت ا	18	¥	4	¥	ω	ನ	m		n	7	•	4	4		ω	N I	т и		a m	ω	7	ω	N	"	un i	ь с							()	-	16
					5	8	38	¥	¥	¥	B	8	¥	щ	77	8	C	t	W	¥	W.	ĸ	8	8	¥ :	4	ن ق	d	м	ð	17	i i	ð :	: 7	5 8		v		ð	.		4.5	4.5			0	•	•	(154)	3	17
	5 2	24		Α	1	*	ä	8	8	¥	ţ,	8	8	ä	ä	8	ß	ដ	8	¥	ß	C3	¥	K)	ß	đ	¥	w	ដ	w	7	n 1	۰ u	i k	J (N	7	•	ω	ω	0	n .	ь.				•	•	•	(E) (_	8
			1	AIK	1	4	33	28	28	37	28	S	N	X	28	28	¥.	8	N	8	N	ä	N	ä	<u>ی</u>	N	ä :		ä	N		4	5 S	1 4	1 of	л,	18	8	17	ಕ	i 1	ii (7 4	0	ω	0	•	•	(ISS) (0.		19
	Nanoarchaeota	Curyarchaeota	Crenarchaeota	ARCHEA	8	. П	đ	ΰ	<u>б</u>	ιų.	16	đ	đ	6	đ	क ः	¥		а,	4	σî.	τî.	đ	#	=	4	#	00 I	ΰ.	-	d N		-	• •	. w	9 14	4	5	4 11	ω .							•	•	(0.3%)	f	8
	84	0.2			,																										20 mot			10	15 lipid		3 lyas	2 helic	1 pept	10 ligas			7 RNA h		4 struct	a tran	2 hydrol	NOT A			
,	╈	2		T																											oractivity	al transd	sphoprot		Building	eotidyna	e activity	case activity	lidase activity	e activity			1.	• 5		sferase a					
	Chlamydia	Actinobacteria	Acidobacteria																												*	ansducer activity	oprotein phosphatase activity	Y	1	idyltransferase activity		Ψ,	tivity		regulator activity	uctase activity	tion regulator activity		ral molecule activity	ase activity	Grifty	INOTATED			9 10 11 12 13 14 15 16 17 18 19 20
	nvdia 8.9																															ł	photose			eactivity						2	at accord		divity						
5	6 0	• `	1 ja	`																													activity																		
	。																																																		
Gree	Fusopacteria Green nonsulfur bacteria		Deino																											Ĵ																			•		
	nsulfur	۲ ₂	coccus-	BACIERIA		=		• •		-	-	0					0	•	0	10																															
Green sulfur bacteria	rusobacteria ulfur bacteria	rinnicutes	Deinococcus-Thermus	INA		n the gro	enewisio	osentj.	ultan ism	unction	he simil	ach GOS	hese col	ach a m	nat colu	he grou	SOSTIM -	lomains,	erevisio	upplem																															
	814	0.12				up repre	orotein	while rea	s from t	in S. cent	nity bet	UM cate	umns inc	olecular	mn india	p is iden.	ontology	kingdon	sequer	entary Te																															
Ť	↑	T				sented	S are co	dentries T	ne group	VISIOE a	ween the	gory. In	licates ti	function	are the	ified in	Each ro	ns or phy	ices and	ble I (F)																															
			Hyperthermophilic bactena			n the group represented in the row.	cone way sets of proteins, the numbers in each endy markate now many s.	osenty, while red entries indicate low similarity (nigny absence) between the two sets of proteins. The numbers in each entry indicate how many S	organisms from the group. Green entries indicate high similarity (low	inction in S. cereviside and that of proteins commonly associated to all	the similarity between the set of proteins associated to the molecular	ach GOSUM category. In each column, a green to red color scale indicates	these columns indicates the number of S. cerevisive proteins associated to	each a molecular function. The number shown in the second row for each of	in a second s	The group is identified in column 2. The numbers shown in parenthesis on	GOSLIM ontology. Each row represents a group from a given domain of life.	fomains, kingdoms or phyla, classified by molecular function from the	rerevisive sequences and those of organisms from different groups for	Supplementary Table I (F). Summary of the comparison between S.																															
<u>_</u>	3		mophi			W.	absent	IOW SID	entriesi	of prote	vroteins	dumn, a	erofs.	mber sh	01 2. 02.0	. The nu	sents a g	ified by	organis	ry of the																															
Sumarristates	Spirochete	Planctomyces	lic bacte				from the	manty (ndicate	ins comi	associat	green to	cenevisio	own in t	evisiae	umbers s	proup fre	molecul	ims from	e compa																															
ĝ	\$ 3	6		•			- genom	a fundant	high sim	monly as	ed to the	o red colu	re prote	the second	proteins	shown in	om a give	ar functi	differen	rison be																															
							of all o	sencel	ilarity (b	sociated	molecu	or scale i	ins assoc	Id row 1	that are	parenth	en doma	on from	nt group	tween S.																															
								1 H H									- 21		- M 1																																- 1

Supplementary Table S1.2. F - S. cerevisiae Homology analysis with Molecular Function(s) of GO. [continued...]

Table S1.2. GS. cerevisiae Orthology analysis with Cellular component(s) of GO

Each row represents a group from a given domain of life. The group is identified in column 2. The numbers shown in parenthesis on that column indicate the number of *S. cerevisiae* proteins that have orthologs in all organisms of the corresponding group. Columns numbered 1-21 represent each a cellular localization. The number shown in the second row for each of these columns indicates the number of *S. cerevisiae* proteins associated to each GOSLIM category. In each column, a green to red colour scale indicates the similarity between the set of proteins associated to the cellular component in *S. cerevisiae* and that of proteins commonly associated to all organisms from the group. Green entries indicate high similarity, while red entries indicate low similarity between the two sets of proteins. The numbers in each entry indicate the number of orthologs to *S. cerevisiae* proteins that are common to all organisms from the group represented in the row.

(See the Table S1.2 G. on next page)

C	'ł	18	ıp	ot	e	r	2	•								1	Sa	ac	C	h	a	rc	n	n	yc	<i>:e</i>	?S		Ce	2 1	·e	VI	is	i	a	2	a	5	a	I	M	0	d	el		0	r	g	ar	i	sr	n											
	E				F1	H																												ORTHOLOGS																											S. cerevi	CELLULAR CO	
	Microspondians	Basidiomycetes					الاحماما متام	i fornal a		A & B (0(0%))	B.13 (11(0.2 %))	(ershee) via	R 7 (06/34/W	A (103(2%))	B.14 (138(2%))	B.2 (146(3%))	A.2 (148(3%))	A.1 (164(3%))	((ec)102) +:0	((04))CC2) +:0	((##)0C2) C.0	NJON/SECIER	B 5 (263/5%))	E (263(5%))	B.11 (275(5%))	(sci6/2) 619		B 15 (319(5%))	B.10 (341(6%))	B.6 (401(7%))	A.3 (401(7%))	((«,/),674) era		5	E.2.4 (573(10%))	E-4 (591(10%))	B.12 (632(11%))	B.1 (708(12%))	(sec)max)	F 1 (781/13%))	E 4.1 (839(14%))	E.4.4 (959(16%))	E.1.3 (1015(17%))	E.4.7 (1257(21%))	E.4.6 (1281(22%))	E4.5 (1300(22%))	E.3 (13/1(25%))	(le valaera) eran	C.3.2 (1502()497())	[[4:62]97/T] 777		E 3.4 (1766/30%))		E 1.1 (2107(36%))	E.4.2 (2174(37%))	E.2.1 (2204(38%))	E.3.3 (2244(38%))	E.3.1 (2269(39%))	E.1.2 (2310(39%))		nome size	LULAR COMPONENT TERMS	
E2.4	573	222			C.3		9			0	1 2	8		28	93 2	103 1	111 3	6.11	157 4	18		i i		135	181 4	183 4		205 6	227 6	259 5	258 8	5 007	- 101 - 101	278 19	334 18	352 19	373 14	403 16	20 004	× 167	503 24	CE 065	575 38	743 43	798 38	776 49	858 40	200		10/2				1218 64	1300 70	1322 73	1311 68	1342 71	1339 67		3108 1354	1 2	
Verte	Nemi			Echinodesee	ANIMA		0			•	7	1	5 1	ж ti	4 72	6 61	0 24	8	 			3		∞ 42	8 113	8 103		124	2 133	8 159	3	194		5 8	124	82 85	18 208	57 220	021	5 2	148	158	91 164	35 212	35 284	38 211	27 318	200	1 2	52 S/B	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 1 3 1	449	456	482	95 470	92 486	15 505	73 490	futer) for		w	
Vertebrates E	Nematodes b	Insects E			-		e			0	0		•		7	#	ø		• •		; =	: 1	X I	ĸ	ß	2	1	2	ß	2	×	8	()	5	52	8	8	R	8	8	8	ଣ	ଣ୍	8	82	g	8	ŝ	ž	Ş	ī	i i	ŝ	<u>1</u>	នឹ	ŝ	229	198	224	A fear		4	
E.3.4	5.5.5	T			23	1	•			-	4	8	51	5	8	×.	5	17	1	; 1	: :	8 1	8	8	35	35		22	4	47 1	45	K	9 G	2	¥	72 1	8	74 2	2	5		110 4	112 5	161 6	192 7	173 6	187 5	C (107	111	25/ 10	1 1		š.	372 14	357 13	363 13	¥6 11	355 13	408 13	(a) (war)	i ii	5	
Be	Monocotyledons	Gree	(hono		PIAN	EUKARYOTA	0			•	3		; ;	8	25	7 19	2	5	; 8		: . : .	, . ; ;			39	1 32		2	х х	2 38	2 77	2	•••	2	7 2	о 12	9 45	ہ 40		3	0 12	1	0 12	148	4 156	3 172	8 175	1	 	15		7 1 2 2 1	107	137	35 195	190	27 205	31 208	35 192		5 8 5 8	7	
Red algae	yledons			_	_	OTA				-	•			6	N	•	3	13	1		• •		u i	đ	ы	ω		n		N	¥	u		ч	¥	47	đ	3	2	q	<u>n</u>	8	8	ä	2	91	9	¥	2 8	ŝ	3	R	ŧ.	ź	114	121	197	110	105	1000	22	•	
E4.4	£	E4.2			P 4		c	•	•	•	•	•	• •	N	w	4	Ν	N		• •	• •	•	un (÷	б	ø	•	n	±	5	5	K	5 5	X	8	18	5	8	8	ສ :	4	\$	\$	ຊ	8	74	\$	2	8 8	8	8	3 8	8	113	120	122	117	122	110		H	۵	
	9			l			•			•	•		: ·	0 0	=	12	7 7	0			1		N :	ö →	17 4	17 1		3	2	22 1	19 1	4	2 2	8	39 2	¥ v	30	31		3 /	5 0	8	8	38	89	36	# 00	8		i S		9 8 0 8		132 10	129 12	135 13	124 12	131 12	141 11		8 8 8	10 11	
Diplon	Choanoflagellates	Cellular slime molds								-				N	4	5	4					•		4	: ±	9			8	*	2 E	-		5	7	*	18	5	1	3		3	2	0 42	о В	0 49	39	2	2 2	ų	1 8	n 19 7 8	n 5	57 84	78	85	5	2 75	103			1 12	
					PROTISTS		c			0	•			0	0	0	0	•			, .	•	•	5	0	0			-	ы	w	-		X	ä	22	t	đ	đ	4	4	t	2	g	8	8	t i	9	1 2	19	1 8	0 8	8	8	78	R	72	70	82	1990	N	5	1
	E.4.7	+	+	2	2		e		•	0	•	• •	•	6	15	15	m	0			; 5	2	2	N	N	19	1	3	8	8	3	0	8 8	8	\$	37	2	8	3	45	\$	Ø	8	đ	đ	3	2	9	t a	2	18	8 8	8	ġ	Ē	97	107	10	114	E	8	14	
Paraba salids		Euglenozoa					c			0	•		• •	0	0	1	•	•			, -	•	1		N	-	•	v	-	N	7	u	•	8	2	26	•	ол	3	% :	¥	¥	đ	48	4 5	49	\$ 	8	3 8	g	3 ×	4	1	¥	75	8	2	8	2		191	5	
đ		202								•	°			•	•	1	•						°	с С	°	_		л ч	<u> </u>	6 2				5 8	*	8	8	8	e z	5	¥ 7	:: ::	73 14	1	5	8	10	×		ŭ t	i i	58	n l	Ω Ω	55 37	23 12	8	8	8		1 H 1 H	16 17	
	P.4	2	; ;	2	Δ 1	A				•	0			•		4	0	9		, _		, .		00	4	4			•	_	4			5	8	17	Ļ	N	Ū	÷	8	5	3	5	8	22	8	4	: 12	8	: 3	K Z	5	±.	th	47	47	ŧ	8			7 18	
	N				2	A	-			-	-			-	m	m	-	-			1 0	n (n		un	5		n	'n	m	•	v	•		IJ	'n	5	7	1	4	m	'n	7	m	m	u	u	a	; •		1 0	n o	0	:	7	đ	ť	ø	N		8	19	
	Nanoarchaeota	Korarchaeota	conversion and a		- Anten	RCHEA	c	•	•	•	•	•	•	•	•	•	•	•	•	• •	• •	•	•	÷	•	•	•	•	•	•	N	•	1	4	4	ಕ	n	0	8	i i	ii d	¥	N	X	Ľ	М	Ν	C	4	Þ	();	X 8	×	M	X	X	¥	¥	M		a a	8	
8.5	ota 5.4	_	_		B 1	B				•	•			•	•	•	0	•		, ,) C		•	•	•	0		•	•	•	0	•	•	-		2	8	5		•		•	5	N 19	ت	-		. 5	, c		, .		•	5 5	-	w w		4	N	late:	8	21	
			+	╈																																	3	8		_	8	_		M mem		12 Vacuale									4 NOT		nudeus	1 cytoplasm					
Cyanobacteria E	Chiamydia b	Bacteroides	ACCINOPACIENT		Acidoharteria P																															oellular region	crotubule organizing center		presented internation of	decinic membras	cell contex	Jular bud	Golgi apparatus	membrane traction	cytoskeleton	0ie	nudeolus	unmenonanai enverope	encomemorane system	romosome	Ĩ	choopeanine reactioning	a bender mehenden	membrane	NOT ANNOTATED	mitochondrion	ius.	plasm					
B.10 G	6.9 Gree				R6 D																																5 center		chobiastine memorale contract version	e-bounded wegicle								ň				-											
Green sulfur bacteria	n nonsu	_			inner	BA																																		1																							
fur bact	Green nonsultur bacteria	Fusobacteria	1 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Einstein auf		BACIERIA		repres	CEVEN.	and and		similar	associ	cellula	scale i	associ	row fo	21 rep	orthol	that o	The gr	GOSLI	domai	CENEWL	Subble																																						
eria B.15	ena B.14	eria 8.13			mue B 11			represented in the row.	side prov			rity, while	ated to a	oduno J	ndicates	ated to e	or each ot	resent et	logs in all	olumn in	oup is ide	M ontolo	ins, kingo	side sequ	ementary																																						
91	ľ		1	╈				the row.	eins that			red enti	II organis	nent in S.	the simil	ach GOS	these on	th a cell	organisn	licate the	intified it	gy. Each	oms or p	lences an	Table I																																						
Synergistetes	Spirochete	Proteobacteria	Flaticontyces		Hunerthermonbilic horterio				cerevisive proteins that are common to all organisms from the group	anotenia: the manufacts in cost cited inducate the manufact of orthogonal as a	in each entry indicate the num	imilarity, while red entries indicate low similarity between the two sets of	ssociated to all organisms from the group. Green entries indicate high	ellular component in S. cerevisioe and that of proteins commonly	cale indicates the similarity between the set of proteins associated to the	ssociated to each GOSLIM category. In each column, a green to red color	row for each of these columns indicates the number of S. cerevisioe proteins	21 represent each a cellular localization. The number shown in the second	rthologs in all organisms of the corresponding group. Columns numbered 1-	that column indicate the number of S. cereviside proteins that have	The group is identified in column 2. The numbers shown in parenthesis on	GOSLIM ontology. Each row represents a group from a given domain of life.	domains, kingdoms or phyla, classified by cellular localization from the	cerevisioe sequences and those of organisms from different group for	Supplementary Table I (G). Summary of the comparison between S.																																						
	14			· [-				s from the group	and of orthograph and a	when of orthology to S	tween the two sets of	tries indicate high	ins commonly	eins associated to the), a green to red color	of S. cerevisioe proteins	shown in the second	p. Columns numbered 1-	teins that have	wn in parenthesis on	a given domain of life.	alization from the	ifferent group for	on between S.																																						

Supplementary Table S1.2. G - S. cerevisiae Orthology analysis with Cellular Component(s) of GO. [continued...]

Table S1.2. H S. cerevisiae Homology analysis with Cellular component(s) of GO

Each row represents a group from a given domain of life. The group is identified in column 2. The numbers shown in parenthesis on that column indicate the number of *S. cerevisiae* proteins that have homologues in all organisms of the corresponding group. Columns numbered 1-21 represent each a cellular localization. The number shown in the second row for each of these columns indicates the number of *S. cerevisiae* proteins associated to each GOSLIM category. In each column, a green to red colour scale indicates the similarity between the set of proteins associated to the cellular component in S. cerevisiae and that of proteins commonly associated to all organisms from the group. Green entries indicate high similarity, while red entries indicate low similarity between the two sets of proteins. The numbers in each entry indicate the number of *S. cerevisiae* proteins that have homologues in all organisms from the group represented in the row.

(See the Table S1.2 H. on next page)

Chapter	2.
---------	----

Saccharomyces cerevisiae as a Model Organism

T		F13				-1																											HOMOLOGS																											S. cerevi		
		Mirmsnoridians	Acomyceue	FUNGI			B (0(0%))	A & B (0(0%))	E.1.1 (0(0%))	E.1 (0(0%))	E (0(0%))	B.13 (1(0.01 %))	B.7 (8(0.1%))			A.2 (30/0.5%))	B.16 (33(0.6%))	B.2 (34(0.6%))	E.4 (43(0.7%))	8.14 (64(1%))	ביל העדשון	e o recher o	A 1 (82(1%))	B.5 (89(2%))	B.3 (104(2%))		E 2 4 1125/25/1	B.9 (156(3%))	B.4 (190(3%))	((scher) 1'b)		B 11 (251/49/1)	153	B.10 (260(4%))	A.4 (310(5%))	(select) ere		R 15 (343/6%))	E 1.2 (469(8%))	B.S (491(8%))	E.3.2 (636(11%))	A.3 (638(11%))	E.Z.2 (838(11%))	((e.7T)c60) c.73		F 4 6 (605(1)%)	B 12 (712/12%))	B 1 (740/13%))	E 1 3 (749(13%))	E.4.4 (752(13%))	E.4.5 (945(16%))	E.3.4 (1051(18%))	E.4.7 (1054(20%))	E.2.1 (1075(18%))	E.3.3 (1091(19%))	E.3.1 (114/(20%))	E.4.2 (1156(20%))	E.4.3 (1162(20%))	(1984)	S. cerevisiae genome size		COMBONENT TERMS
		53		<u> </u>	5		•	•	0	•	•	•	a	1	\$ 1	ನ	21	ŧ	8	37	k	: (5	8	8	•	2	đ	111	8	ŝ	Â	Ŕ	149	175	i	ę į	ž	ĕ	ž	283	355	314 4	ÿ	1	ă l	ä	4	348	\$	508	535	558	503	¥	¥.	571	50 22		3108	ŀ	•
		z	8	AIN			-	•	•	•	•	•		• •	•	In	ω	8	13	77	8	: 1	8	N	ĸ	1	5	8	ŧ	g	: 8	8	9	78	102	1	2 1	ß	182	137	195	203	211	1	(¥ I	2	207	20	283	358	390	391	351	371	374	393	4		1064	•	•
		Insects	000	AMINIME			•	•	•	•	0	0		()	•	đ	#	*	6	19	10	: I	3	27 3	30		*	51 -	¥	-		8 d	45 9	72 2	75 1		: :	2	91 21	129	103 13	136 7	97 9				174		126	44	164	12	187 12	182 19	183	188	199 17	193 19		1098 1049	•	-
					5		_		-				w			un	un	N		4		1		11	9		3	8	21 9	ł		 	8	8 8	35		2 1		8	5	9 100	9 79	2 134			ý i	8	118	- X	3	159	5 187	191	H 179	198	7 200		8 207				
ľ	T	5	T			FUK	•	•	•	•	0	•				ω	•	ы	4	N			•	6	7		•	8	10	r.	; ;	÷ 1	÷	6	15		\$;	ñ	N	31	4	5	9	ŧ	; ;	5	7	49	ß	4	69	67	63	72	82	79	1	70		8	•	"
and a new	Ded along	Green algae	Dirochiedous			FUKARYOTA	•	•	•	•	•	•	-	•	•	m	đ	ь	-	đ	-	• ;	đ	ť	N		·	8	25	ŀ	8	*	r,	N	71	1	6	ő	1	۲Ĵ	25	2	47	1	;	5	8	4	4	4	ö	ħ	23	4	45	4	\$	4		5	·	4
6 - F				-		Α	•	•	•	•	•	4		• •		ω	-	ω	ω	u	a	• •	m	•	7	•	•	7	•	Ū		3 i	ü	ii)	M		a :	1	¥	¥	31	27	31	: 6	; ;	41	# !	27	3	5	Æ	8	2	57	Ł	8	8	74		321	+	•
1000		E4.2					•	•	•	•	0	0				N 0		•	2	•			ω.		N		4	_					-	•			n (•	¥ 2	а ы	32 3	17 2	38		, ,		3 I		4	55	23 4	2 5	72 5	67 4	5	60	75 6	5	н	312	t	•
							•		•	0	0	0				۵ 	2	3	3				m	7 5	-			ö	6	9			7	6 16	2	1		5 I	¥ 10	5	8	40	8			7 1 5 1	5	8	49	8 42	6 45	8 48	46	8	5 37	48	4	4			÷	10 11 12 13 14 15 16 17 18 10 20 21
Concernent	Dislamanda	Chosnofiscellates	HIV						-										ы			. ,	N				n	n	w			n (6	m	-					17	23	K	y,	1	1	:	3	3	5	iii	¥	đ	4	4	4	10	1	8		N N	÷	3
or province and		molds			DDOTI0		•	•	•	•	0	•	•	, ,		0	•		4	•			0	•	•			-	6	ø				N	w				17	ω	12	đ	b	ł	; ;	3	5	4	2	X	¥	26	37	4	31	4	ä	37	1000	N	1	#
		E.4.0					•	•	•	•	•	•	•	• •		0	-	N	•	-		• •	•	•	-	•	J	u	1			t		w	7	2	\$	•	4	ü	24	28	ť	; 5	: 1	<u>ي</u>	ñ	X	3	щ	19	27	31	ч	22	¥	X	40	(we)	198	1	•
		Euglenozoa		F			•	•	•	•	•	•	•	• •	•	0	•	•	N	•	•	• •	•	•	•	•	•	•	-	•		•	i,	•	-	1		•	5	œ	32	đ	8	1 8	; ;	5	5 1	d	X	18	42	47	4	39	8	6	÷.	4 00	feed	1	ł	ħ
	i.	0200	0000				•	•	•	•	•	•	0	• •	•	0	•	-	ω	•	•		•	•	•	•		м	5	α			m	-	u	1	5 F	t i	5	ω	00	N	N	5	1	ń	•	00	Х	5	¥	27	¥	8	N	N	14	37		3	ł	*
_			>	> 3	>		•	٦	•	•	•	•	•	• •	•	•	•	•	-	•		•	•	•	•	1	•	-	ω		•	•	m	4	•	1		•	17	•	ø	1	8	1 5	1	r I	4		ň	5	8	8	ß	8	X	. 10	13	2	-	H	+	\$
	ŀ	2	u h	2 2	•	Δ	•	2	•	•	•	•	•	• •	•	0	•	•	м	•	•	•	•	•	•			•	•		• -	÷ (m	м	•	'		•	ð	м	12	•	ti d	đ	1	t.	•	1	ä	19	ы	1X	ч	¥	6	19	1	8				
		Nano	, un			ARCHEA			•									- -		0				°	0		- -	-		ĺ					1			- -	9		-			, .					9	•	4	• •	5 - 1	•	5					1	2	5 2
		Nannarchaeota	curyarchaeota	Cremarchaeota		ΗFA										0																							_											0	4	•		N	N		u	N		8		2
5						70																														:	: ;		5	8 1	17	16		: :	: 1	# I		= 1	5	•	•	7	•	\$	•		• ••			2		1
4	,		10	1																																			Cel Wall	cytople	cell cortex	cellular	eolisi al	memor				nucleolus	mitochu	endom	chromo	riboson	endopit	membr	NOT A	mitochi	nudeus	cytople				
		Chlamudia	Actinopacteria	Acidobacteria																																in accurate the Protection	and the second second			smic me	iex	Jar bud	gi apparatus	Ibrane Iracuor				ā	chondrial envelope	membrane system	some		plasmic reticulum	Raine	OT_ANNOTATED	ochondrion		ŝ				I
of all operation in the second		ides 0.8		ena 0.0																																Succession of the second				mbrane				Tion					Invelope	e system			ticulum		8							
		Green nonsulfur bacteria																																				rantar		oplasmic membrane-bounded vesicle																						
OT COLUMN THE DATE OF THE DATE		ruso		Demococcus-Inermus		BACTERIA		2, 2			1. 6									<u> </u>	2	×.	2	5	1																																					
Contraction of the		Fusobacteria		. nermu		RIA		n the row.	note inc												ntology	ingdom	erevisio	upplem																																						I
		B 14	0.12									o no o no	Cates ti								Each	s or phy	e seque	entary 1																																						I
				nypermermo					the homologues in all organized	where in each entry indicate	and antrias indicate low sim	sociated to all providents from the group. Green entries indicate (the similarity between the st	cited and the second of the second seco	Continues interaction in the	Column indicate the num	a on organization of the contraportion of the number shows in the recon	of the corresponding group	the number of S convision	d in column 2 The number	w represents a group from	ingdoms or phyla, classified by cellular localization from the GOSUM	nces and those of organism	Supplementary Table I (H). Summary of the comparison between S.																																						
ad the Protocol		Sainachete	Flanctomyces	Decterna				o the row.	roteins that have homologues in all oceanisms from the group represented	otains. The numbers in each entry indicate the number of C persuision	milarity while red entries indicate low similarity between the two sets of	Some extracting indicate high	are indicates the similarity between the set of proteins associated to the	ale indicates the similarity between the set of proteins associated to the	or educing these continues introduces the number of a constant provents	or each of these columns indicates the number of C contains proteins		and an experiment of the corresponding group. Columns numbered 1-21	num indicate the number of C consuming a proteins that have bomologues	the shows in parametric on that	ntology. Each row represents a group from a given domain of life. The	lization from the GOSUM	ereviside sequences and those of organisms from a group for domains,	comparison between S.																																						

Supplementary Table S1.2. H - S. cerevisiae Homology analysis with Cellular Component(s) of GO. [continued...]

Table S1.2. I S. cerevisiae Absent genes analysis with Cellular component(s) of GO

Each row represents a group from a given domain of life. The group is identified in column 2. The numbers shown in parenthesis on that column indicate the number of *S. cerevisiae* proteins that absent in all organisms of the corresponding group. Columns numbered 1-21 represent each a cellular localization. The number shown in the second row for each of these columns indicates the number of *S. cerevisiae* proteins associated to each GOSLIM category. In each column, a green to red colour scale indicates the similarity between the set of proteins associated to the cellular component in *S. cerevisiae* and that of proteins commonly associated to all organisms from the group. Green entries indicate high similarity (low absent), while red entries indicate low similarity (highly absence) between the two sets of proteins. The numbers in each entry indicate the number of *S. cerevisiae* proteins that are absent in all organisms from the group represented in the row.

(See the Table S1.2 I. on next page)

	E13		5	511		m																												GENES	ABSENT																								_	S. CETEV		CELLULARCO
	Microsporidians	oasidiomydetes	Residiaminates	A	FUNG		((erelaced) + 14	(freedoored) or	B 8 (A951(84%))	A.3 (4822(82%))	B.16 (4727(80%))	0.4 (47 L2 (808))		B.11 (4685(80%))	B.15 (4677(80%))	(s, / / TCE) 71'0	Incertain the	R 1 (4413/7921)	B.6 (4408(75%))	B.10 (4393(75%))	B.14 (4363(74%))	A.1 (4209(72%))	E4.4 (4195(71%))	live doced and		F 1 3 /4097/7096//	B.3 (4076(69%))	B.5 (3940(67%))	B.2 (3889(66%))	(ecolume)		B 7 (3697/63%))	E4.5 (3678/63%))	A (3672(62%))	E.4.7 (3616(62%))	B.13 (3256(55 %))	E.4.6 (3157(54%))	8 (2881(49%))	Its refer rate and	E A 3 (D755/A794))	E4.1 (2740(47%))	A & B (2642(45%))	E.4.2 (2603(44%))	E.2.1 (2582(44%))	E.3.4 (2554(43%))	E.2.3 (2540(43%))	E.3.3 (2527(43%))	E 3.2 (2519(43%))	E.Z.2 (2371(40%))	E.2.4 (2185(37%))	E Z (ZUZS) Z Z	E-4 (1978(34%))		E 1 2 (1525/262())	Machicald E =	E S (MORCHON)	F 1 1 /10/0 2%/	E 1 (10/0.292)	F (0(0%))	5880) (5880)		LULAR COMPONENT TERMS
E.2.4	23				2		7007		XX	2191	2138	2157	í	2133	2114	2071		š	1974	1975	1937	1876	1841	ą	i i	ŝ	1826	1730	1733	ą	ŝ	ā i	151	1579	1542	1417	1238	1230	ļ	ŝ	ផ្តី	1084	977	8	1027	984 4	ž	8	ŝ	2779	8	8	4	à i	2 1	2		<i>.</i> .	•	(NES) 8015		-
Vertebrates	Nematodes	Insects	Longood in the second	Echimodeu	ANIMAL		1024 000 10		1647 773 91	1489 820 91	1483 721 9:	1455 /US 9.		1480 716 88	1480 701 90	1402 5/4 80			1388 649 88	1363 637 83	1385 619 88	1330 683 80	1182 766 9	1044 DDD 0.		1076 346 9	1315 593 78	1253 562 78	1284 552 75	20 685 7811	1407 D00 70	1737 577 7	978 691 8	1147 566 78	973 666 84	1105 431 63	931 490 78	988 <u>376</u> 50		7 PCF 332	754 418 70	888 888	702 390 73	688 404 70	714 371 64	681 393 69	712 387 68	595 617	625 357 67	555 315 65	518 283 60	545 274				5 - 5 -			-	1354 1098 1049 (32%) (19%) (18%)		× س
es E.3.4	e E3.3				5		00 00		87	818	208 6	S BUS	8	5	4 804	111			8 760	7 752	8 750	3 735	3 704	100		ž	s Z	4 680	659	0 0//	9.6	9	612	3 651	605	8 545	2 491	7 490	1			62 454	¥ 395	0 400	4 437	8 393	1 404	4 393	8 353	6 328	303	303		, u	n - 1 4 {	8.6				2) 10 (150) 10 10		5
		Т		ļ		EUK	¥.	; ;	ž	ŭ	×,	200	8	314	310	20	{ }	š	ğ	268	279	281	279	ł	1	ž	268	ĽŠĮ	X	290	{ }	5	224	249	242	205	182	180	2	ŧ.	175	175	148	156	167	152	ŝ	Ĩ	133	118	110	107	1	2	4 ;	; ·		• •	- 1	<u> </u>		•
Red algae	Monocotyledons	orgen algae	Group state		PLANTS	EUKARYOTA	8		Ĕ	198 129	235 2	252 2	1	236 2	238 2	255 2			235 2	229 2	229 2	161 2	159 2	200		1	227 2	221 2	218 2	2		212	5	139 2	135	195 2	121	158		8	8 	9	% 	1 1 1	7	8	8	87 1	8	75 1	67 1	70 1		:	: -	.,	J I	u e	- 8	(6 33 16 33		~
sae E.4.4	ons EA.3				E4	A	20		8 X	22	76 28	20	3 - 6 -	76 27	36 28	12 28		7	69 27	63	69 27	55 28	14 21:	20 20		8	59 XX	5 24	SZ 25	5		5 X	8	30 23	84 182	27 21	160	19		10 1 10 1	8 74	8	56 12	80 121	54 146	43 12	90 13	52 140	131 10	117 100	110 50	123 97		1 0		n 6 4 6			- 6	321 318 (6%) (5%)	+	••
4		t					207 0	{ {	ž	N Ng	0 246	294	ę	N.	8 248	241	:	2	231	224	221	239	249	1.74		ž	215	¢ 200	203	210			N N	213	2 213	3 163	155	1 t		2	12	14	3 118	8 120	5 112	123	4 124	2112	4 107	2 92	8	8	1	3					- 8		+	5
	Choan	cellular sime molos		l			100	; ;	ŝ	185	¥	174	1	178	1 8	ŝ		1	ī	ŝ	176	198	100	į	i	ġ	ŧ	Ŕ	100	ş	2	į,	8	12	8	135	8	123	8	5 8	8	8	8	8	R	8	ß	8	8	38	8	\$	2	;	• •	J			•	9 1		Ħ
Diplomonads	Choanoflagellates	sume m	HIVEOIDUS		PR		122	1	126	175	168	173	3	169	171	167	1	ŝ	156	152	161	151	143	8	6 1	6	137	135	129	Ē	3		12	12	124	103	Ē	8	: ;	9	8	2	9	đ	10	75	9	8	2	2	8	8	2	: -	4 4	• •	•		- 6	3	+	R
ads.	ates E.4.7			FAS	PROTISTS		107		-	183 19	180 14	10.5	;	195 12	185 14	10		ĝ t	182 11	18	179	175	194 17	1		ŝ	53 +	195 10	159		9 8 	ĝ i		105	113 9	143	111 7	131 7	2 8 1 8	8 n -	8	128 6	93 7	8 7	107 7	82	101 6	103 6	8	72 6	8	72 5		0 a	; ·	4 0			- 8	204 198 (4%) (3%)	+	5
2	4	+	+	11			12		g te	51 17	45 174	10	;	8 5	12	21		ñ 1	8 19	8 19	36 17	*	18			7 - 1 2	7	9 21	11	i i		5 1	s é	96 152	s 102	0 110	8	8	: 0 : 0	8 .	8	9 95	2 73	0 72	3 79	2 68	8 72	4 66	7 63	د 28	7 53	45		2 0 2 0	 				- 8	2) 20 (9) 10 (9) 10	+	* 5
Paraba salids		cosiciona	En la norma				100		Ř	146	137	1.58		100	144	142	; ;	ő.		146	1 139	134	1 118	120			tie tie	T T S	127	12		12	8	126	2 97	5 110	8	8	ا	t t	8	2	2	3	73	2	8	8	8	8	23	8	8						- 8) } }	+	5
W.									-	ŝ	8	i inte	8	1	107	THE O		1	Ŕ	18	12	12	Ŗ	i	:	2	8	8	8	8	8 8	8	8	9	z	8	8	77	1 2	2	8	3	\$	\$	ន	8	8	8	8	ч	8	8		; 1		. e			- 8	<u> </u>		ť
	A4	: 8	N 1	3	A 1	A	ş	1	Ż	¥	97	ŝ	1	8	93	97	; ;	R	8	8	¥	87	8	2	:	ß	2	8	79	8	3 :	ង :	ħ	Ħ	ŧ	8	đ	8) 8	8	4	8	38	ä	3	¥	4	8	X	K	ß	b							-	2		5
	Nano		5		2	AR	2	: :	5	8	2	2	\$	87	88	8	1	8	5	8	5	93	83	2	: :	:	9	87	76	8	8	2	8	2	8	66	2	59	3	3	8	59	ß	£	6	ß	79	8	8	78	77	73	; :	2	3		. .		- 8	<u>)</u> 8	-	t
	Nanoarchaeota	Norarchaeoca	Konschuert		Crenarchaeota	ARCHEA	50		8	8	2	8	8 :	8	2	R) {	2	2	8	51	33	8	8		5	8	8	8	8	8 8	8 i	8	8	*	8	8	t:	: 8	# 1	¥	₿ 	8	8	*	37	37	8	8	2	by	2		3 4					- 4	98570) (981) 20 20	+	2
85	ota B.4	_			B.1	œ			5	8	00	8	3	ō	ō	- CC		4	ō	ō	Ø	ō	8			0	7	4	S	0	0 (7	00	7	ō	N	8 2	8		:	5 12	1 1	6	5		8	2 12	4	5			13						•	•	<u>8</u> 8		2
•		╈	1	,																																						odl cortex	8	Solgi	nem	oytos	vacuale	nude	mitoo	endo	duron	nbos						andens meericite				
Oyanobacteria 8.10	Chlamydia B	bacteroides b.o	Rotaroidar B	ation benefit B	Acidobacteria B.6																																dracellular region	nicrotubule organizing center		1	ovtoplasmic membrane-bounded vesicle	ortex	ellular bud	iolgi apparatus	embrane fraction	toskeleton	ř	feolus	itochondrial envelope	ndomembrane system	romosome	ome	population removality				torbondring		lasm			
10	B.9	, e	» ÷	87	6																																	center			e-bounded v								ň	3												
Green sulfur bacteria	Green nonsulfur bacteria	ruso	F	ņ	Deinococcus-Thermus	BACTERIA		3	2		:		0	8	4					2 5						4															reside																					
	acteria	rusobacteria			hermus	RIA		represented in the row.	CENEVISIA			sent), wi	ganisms	mponen	e similar	on Gost					at column					noi-m-																																				
B 15	B.14			5	B.11			d in the	ac prote			hile red o	from the	tin S. ce	ity betw	Two cares					n indica	-ISamo	and and and	- Aler		tion Tab																																				
Synergistetes	Spirochete	Floreopaciena	Protochortacio	Distance	Hyperthermophilic bacteria			TOW.	cereviside proteins that are absent in all organisms from the group	the second process of the number of the second products of the number of	tains The numbers in each ont	ibsent), while red entries indicate low similarity (highly absence) between	organisms from the group. Green entries indicate high similarity (low	component in S. cereviside and that of proteins commonly associated to all	the similarity between the set of proteins associated to the cellular	such GUSLIM category. In each column, a green to red color scale indicates		the second indicates the sumble of Company in the second low hot could be	againstitute for all the particular the particular the second rout for each ,	inter contains intercent the number of a concentrate proteins which wants in an	the group is identified in contains 2: the manufacts shown in parentificates on that column indicate the number of 9 convicing moteins that absent in a	doorm ontoopy: carrier of represents a group nom a given domain of me	commiss, singuones of physic, cossined by central inclandation monitories	domains binadows or about charitized by callular localization from the	and those of organisms from	Supplementary Table I fill Summary of the comparison between S																																				
tes	te		3- 6		'n				sms from the group	indicate the manual of	windicate the number of	highly absence) between	high similarity (low	ommonly associated to all	ted to the cellular	o red color scale indicates	or proteins associated to		the second court operation	proteins discussed and	moteins that absent in all	Sector Contain of Inc.		in animation from the	different aroun for	nison hetween S																																				

Table S1. 3Summary of the comparison between S. cerevisiae sequences and those of
organisms from different groups for domains, kingdoms or phyla,
classified with the different KEGG pathways.

(See the Tables S1.3 A-C. as following)

Table S1.3. A S. cerevisiae Orthology analysis with Pathways of KEGG

Each row represents a pathway, while each column represents a group from a given domain of life. The numbers shown in parenthesis on the first row of each column indicate the number of *S. cerevisiae* proteins that have orthologs in all organisms of the corresponding group. Rows numbered 1-106 represent each a pathway term and their included proteins of *S. cerevisiae*. In each row, a green to red color scale indicates the similarity between the set of proteins associated to the KEGG pathway in *S. cerevisiae* and that of proteins commonly associated to all organisms from the groups. Green entries indicate high similarity, while red entries indicate low similarity between the two sets of proteins. The numbers in each entry indicate the number of orthologs to *S. cerevisiae* proteins that are common to all organisms from the groups represented in the columns.

(See the Table S1.3 A. on next page)

Saccharomyces cerevisiae as a Model Organism

BACTERIA::Tenericutes (0 (0%))	•		0	• •	•	0	0	0 0	• •	0	• •	• •	0	• •	, o	• •	• •	• •	• •	0	0	• •	0	•		• •	•
BACTERIA (0 (0%))		• •	2	• •	0	2	٩	• •	• •	•	• •	• •	2	• •	• •	•	• •	• •	• •	•	•	• •	•	•	• •	• •	•
реокарутся (0 (0%))			Ĉ		-	Ĉ	Ĉ	0 0	• •	-	•	• •	ĉ		, o	•	• •	• •	• •	-	2	0 0	-	•	• •	• •	2
BACTERIA::Proteobacteria (11 (0.2 %))			Ĉ	• •	-	Ĉ	Ĉ	0 0	· •	Ĩ	• •	• •	Ĉ		, o	•	• •	• •	• -		2	0 0	-	-	• •	• -	•
BACTERIA::Firmicutes (96 (2%))		<u>ء</u>	, °	~ •	о <u>с</u> о	-	ĉ	0 0	÷	۵	•	о ю	٦.	• `			• •			-	2	• •	-	•	• •	• •	°
ARCHEA (103 (2%))		8	*	<u>ہ</u> م	i lo	Ϋ.	•	• •	9	=	~ •	• -	2	9	•	•	0	•	• •	-	2	• •	1	•	-		•
BACTERIA::Spirochete (138 (2%))	75	87 ~	٦.	۰ •	• • •	2	9	•	ب	8	• •	o lo	2	• •		~ *	۱°	~ •		•	-	• ^	0	•	• •	-	•
BACTERIA:::Actinobacteria (146 (3%))	2 3	2 0	-	₽ ^	•	•	÷	0 0	-	۵	• •	о ю	۵	° "	• •	~ ~	• •	~ *		-	2	0 %	•	•	• •	•	•
((%£) 8 1 1) etosechsechaeda::АЗЮЯА	ۍ ع	8 8	*	₽ ^	۰ m	•	*	• •	=	9	~ •	• -	•	~ ~	1 M	- 4	• •		• •	-	٩	• ^	•	•	• 7	• •	•
ARCHEA::Crenarchaeota (164 (3%))	8	8 8	۵	ہ م	=	•	÷	• •	e e	\$	~ ~	v -	•	۰ م	. e	~ •	• •	• •		-	•	• ~	•	•		• •	•
((%E) 102) stops (201 (3%))	8	₽ \$	۵		9	•	•	• •	2	\$	<u>ه</u>		-	9 -		• •	• •	• •	• •	-	•	• •	•	•		• •	•
BACTERIA::AIRIA::AIRIA::AIRIA::AIRIA::AIRIA::AIRIA::AIRIA::AIRIA::AIRIA::AIRIA::AIRIA::AIRIA::AIRIA::AIRIA::AIR	₽ 7	- +	•	с и	=	-	₽	• •	5	ω	- \$	2 B	ø	0 M	, e	~ .	, .	e •	v 0		-	~ 6	•	~	0 v	• •	ø
BACTERIA::Bacteroides (236 (4%))	120	2 N	•	<mark>ه</mark> ۷	2	•	9		5	ω		о ю	N	0 4	• ~	+ 0	, .		- ~		-	• •		-	• •	- v	•
BACTERIA::Cyanobacteria (263 (5%))	€ 3	2 -		5		•	4		5	ω	• •	• •	9	- •	, o	<u>م</u>	4 0	<u></u> +	v 0		-	ه <mark>م</mark>	•	+	0 v	• -	
Е ПКАRYOTES (263)) П	136	o +	\$. <u> </u>	с	-	₽ e			~ ~	•	•			• •				-			•	•			•
0 ۱۱%s)	8			9 <mark>8</mark>	2	-	ę	• •	s <mark>8</mark>	ω		ه م			<u>م</u> ہ			9 0	· •		Ŧ	- «	•	-		- N	4
(5%) BACTERIA::Hyperthermophilic bacteria (275	8 9	<u>д</u> 6		5 N	5		12		₽			- 6	6	• •					v . e		•	0 N		N	•	- ~	
PACTERIA::Synergistetetes (319 (5%)) BACTERIA::Green nonsulfur bacteria (279		t +			2		é		. 8				6			= 4		=			0			~			~
E ((%6) LAE (%6) An Utfur bacteria (%6) LAE (%6) LAE (%6) LAE (%6) An Utfur bacteria (%6) A				2 20 c	15		23		5		_				2 =	e .				_	_	_ 6					
Si										6																	
AADHE ((%۲) لـ 409 فات المعامنة (%۲) فات المعامنة (%۲) AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		2 *		° 8	#		27	•						۰.	2 #		, •	=	. 4		2	- *		.		, _Ш	Ĩ
		22 23	8	8 *	9 ₽		\$		25	5	4		8	5 E	2 =	~ ·	•					-	Ĉ	~	0 G	о ю -	2
0000 ВАСТЕЯІА::Fusobacteria (419 (7%))		5 v		8	9	•	22	• •	58			6	Ŧ	• «	, ω	<mark>о</mark> -	•	₽ 4	о ю _		8	0	l °	۵		- ю	°
((%u) 5/5) 257616379/ ((%8) 080) АММИА О ((%8) 080) АММИА О ((%8) 080) АММИА		8 ¥	21	* *	• •			ф н		8	~ •	о ю	9	° "	~~	* *	ы сч (с и И	o ₽	-	~		°	8	• ~	ه ۱	~
8		27	5	* 9			5		° -	2	~ 9	2 0	2	° "	, œ	* *	• •	+ 4	• =	-	e.			2	• ~	9	4
		3 <mark>7</mark> 2	24	e e		5 15	ت •		₽ ₽			= ₽		*		0 P		ο o <u>p</u> u	• •		•	• •		-	-	· -	•
BACTERIA::Planctomyces (632 (11%))			17 K	* *		15 15	3 24	0 <mark>-</mark>			~ 9	2 D	25 17		: 81 12						9	+ 0	Ľ				~
<u>م</u>		5 5 5 5		0 - 0 -		16	о М	ت م					2			- 1											
											_								о <u>к</u> а				Ĭ			Ŭ	Ĩ
				-					25			а С		φ					• •		٠.	· ·			- 0	, -	4
ti ((%∂⊥) 629) sbenomolqiG::T2ITOЯ9		to to		9 10 10 10		4	\$	₽ •		3	₽ .	9 12	۵ ا	5 2	· @	*	2 -	6 G	о ю 	Ľ	*	* 6		*	о 6	о ю.	4
C ((%12) 7221, 2220, 2200, 200, 200, 200, 200, 200	909	92 8	42	8	ġ	₽	\$	25	° 8	25	4	2 ²	0	5 -	• •		2 0	б 9	2 00	9	œ	∞ ~	•	2	~ ~	, –	8
ूत् ((%12) 722.1) sbiles edeneq::12110.99	749	¥	8	8 4	8	₽	2	8 •	8	22	≠ <	2 8	9	£ a	~	= #	2 9	£ 5	⊻ =	~	9	₽ ∝	•	۵	• •	۰w	б
2 ((%22) ፲82.L) ၹၭႍၮၜ႞ၛၟu∃::T2ITO Я٩	787 787	<mark>8</mark> ≡	ŧ	2 8	ਲ	ŧ	8	26 6	55 25	27	₽ 8	\$ ₽	8	8 9	2 =	ç: ≎	<u>ہ</u>	£ 3	t 🖸	-	2	~ ~	-	o	с и	• ~	9
((%SS) 006L) edeometra3::T2ITOA9	792 45.0	₽ 8	47	<mark>≋</mark> ≆	24	24	24	8 9	s 5	8	φ -	8	-	^ي 2	•	e :	: o	e 9	<u>e</u> 5	4	2		e	4	ہ <mark>م</mark>	1 4	-
PLANTS (13%))	755 Arr	200 125	42	\$ 8	8	8	8	8 -	đ	8	<u>م</u>	2 ¥	8	8 4	2 😐	≭ 9	2 7	φ	2 9	9	4	9 <mark>4</mark>	2	12	- 4	y o	Ħ
((%SS) Seet) sebotemeN::JAMINA	977 178	112	¥	8 4	8	8	53	8 <mark>9</mark>	<mark>≥</mark> ਲ	24	₽ 3	3 8	8	8 F	2 =	= 0	4	8 ¢	- #	ھ	얻	9 m	~	4	ب 0	• •	4
PLANTS::Green algae (1644 (30%))	950	282	4 6	8 8	\$	₽	8	8 <mark>9</mark>	2 ≅		रु ह	3 8	8	8 ¥	2 22	# 8	•	£ €	2 12	ю	ø	4		¥	0 2	: £	15
ANIMAL::Insects (۲۲) (%ک))	1038	800 800	8	<u>ت</u> م	8	8	\$	8 8	8 8	8	₽ (5 5	54	5 #	: 8	9 ¥	2 ≢	8 8	2 g		8	z 2	-	12	4 r	- თ	₽
((%0E) 997.L) эɛglɛ bəЯ::ZTNA.Iq	1003	2 E	23	2	\$	₽		8 9	2 8	8	₽ 8	9 ¥	25	ন ন	5 K	5. S	2 =	⊼ ¥	2 #	2	~	54 E	2	ŧ	- 4	12	9
((%PC) 700S) عوامله (%DC) (%PC) (%PC) (%PC)	1134	372 126	8	8 4	\$	53		8 •	- 8	8	ສີ	3 8	8	8 9	8	57 ¥	2 ∓	8 9	0 ₽	~	≌	∞ ⊭	+	\$	4 É	2 12	9
((%)E) C012) sətəəymoəs A::IDNUT	14.01	5 <mark>8</mark> 8	8	8 6	8	8	32	8 3	± 8	8	₽ 7	5 8	5	8 9	2 22	8 9	2 12	¢ ¥	e te	#	ß	₽ ₽	~~~	ŧ	2	2 😂	ŧ
PROTIST::Cellular slime molds (2174 (37%))	10.05	37.8 126	8	8 4	4	25	8	8 S	3 8	8		\$ %	52	\$ \$	9	रू । इ	9	8 9	e ta	2	₽	\$P \$	с ID	Ż	= «	• #	15
((%8E) 402S) emiebonido3::JAMINA	1367	10 10	3	2 3	\$	25	32	* 8	8		93 B	3 8	8	9 9	- 12	8 8	3 @	92 P	2 S	9	3	9 9	•	2	≓ σ	• E	£
((%8E) A4SS) anobelytoponoM::2TNAJ9	100 A	n 10 10	28	3 5	\$	24	\$	7 8	3 8		8 8	3 8	52	93 - S	5	ø 9	2 22	8 8	3 8	σ	5	t	ß	2	∞ ¥	2 E	₽
((%65) 692S) anobelytooild::2TNAJ9	-	₽ 8 9	8	3 4	4	24	40	8 2	2 8	8	8 8	3 8		ಸ್ಥ	2 2	£ \$	2 22	ಸ್ ಇ	2 8	Z	=	9 1	ω	2	= 9	2 (C	Þ
FUNGI::Basidiomycetes (2310 (39%))		8 E	8	5 C	9	8	\$	88	27	8	<mark>8</mark>	3 8	8	24	: K	8 :	= <mark>2</mark>	<mark>₽</mark> 8	3 8	9	2	<mark>85</mark> 8		8	¥ <mark>۵</mark>	2 2	4
Frequency of S. cerevisiare genes found orthologs in phylogenetic groups Frequency of S. cerevisiare genes distributed in KEGG pathways	1 (4571 (77.7%)	2 (610 (10.4%)) 3 (142 (2.4%))	4 (115 (2.0%))	5 (89 (1.5%)) 6 (76 (1.3%))	7 (69 (1.2%))	8 (55 (0.9%))	9 (48 (0.8%))	10 (44 (0.7%)) 11 /0/0 7%)	12 (39 (0.7%))	13 (35 (0.6%))	14 (34 (0.6%)) 15 (22 (0.6%))	16 (33 (0.6%))	17 (33 (0.6%))	18 (30 (0.5%)) 19 (29 (0.5%))	20 (29 (0.5%))	21 (29 (0.5%)) 22 (29 (0.5%))	23 (28 (0.5%))	24 (28 (0.5%)) 25 (27 (0.5%))	(12) (2) (2) (2) (2) (2) (2) (2) (2) (2) (27 (23 (0.4%))	28 (23 (0.4%))	29 (23 (0.4%)) 30 (23 (0.4%))	31 (23 (0.4%))	32 (22 (0.4%))	33 (22 (0.4%)) 34 (22 (0.4%))	35 (20 (0.3%))	36 (19 (0.3%))

		<mark>-</mark>
<mark>.</mark>		<mark>.</mark> <mark>.</mark>
• <mark>+</mark> • <mark>+</mark> • • • • • • • • • • • • • • • •	* • • • • • • • • • • • • • • • • • • •	<mark>.</mark> <mark>.</mark>
	• • • • • • • • • • • • • • • • • • •	-
- N M M + O O O O O O O O O O O O		
. + . <mark>+</mark>	<mark>.</mark> .	<mark>.</mark>
N + + 6 + 0 0 0 0 + + 0 0 0 0 0		
• • • <mark>=</mark> • • • • • • • • • • • • • • •		
	N 0 0 N 0 + N + 0 N 0 + 0 + 0 0	- ~ - ~
	• • • • • • • • • • • • • • • • • • •	
0 0 + 0 1 0 0 0 0 + 0 - 0 0 0	• • • • • • • • • • • • • • • • • • •	a - o a a a a a a a a a a a a a a a a a a
<mark>० ∧ ∧ <mark>० ० ∧ ०</mark> ० <mark>∧ ० ∞</mark> ∧ ० ०</mark>	0 0 0 0 <mark>0 0 0 0 0 0 + 0 + 0 + 0</mark>	<mark></mark>
• • • • <mark>• • • • • • • • • • • • • • • </mark>	·· a <mark>a a a</mark> - + - a a a	<mark>ᢁ</mark> ᠬᢦᠬᢦ ᠃ ᠖ᢦᡊ᠆ᢦ <mark>᠐᠐</mark> ᢦ᠃ᢩ᠐᠆
+	~ <mark> </mark>	<mark> </mark>
。。。	× + + + + + + + + + + + + + + + + + + +	<mark>•</mark> • • • • • • • • • • • • • • • • • •
	<mark> </mark>	<mark>6 - 0 0 0 0 0 0 0 0 0 , 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</mark>
• • • • • • • • • • • <mark>\$</mark> • • • • • •	• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •
<mark>∞ </mark>	<mark>.</mark> .	• • • • • • • • • • • • • • • • • • •
0 - 1 / 1 <mark>0 - 1 - 1 0 0 0 0 0 - + 2</mark> 0	2 0 4 4 0 7 4 0 0 0 1 0 0	••••••••••••••••••••••••••••••••••••••
○ 〒 → 일 ○ 〒 ○ 	· · · · · · · · · · · · · · · · · · ·	<u> </u>
- 01000 - 00 - 00 <mark>2 0 1</mark>		~ ~ ~ ~ ~ ~ ~ ~ <mark>~</mark> ~ ~ ~ ~ ~ ~ ~ ~
<mark>。</mark>	••••••••••••••••••••••••••••••••••••••	0 0 <mark>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </mark>
<mark>< 0% 1 + 0 + - 0 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ </mark>	<u> </u>	° ° + ° ° + ° ° <mark>°</mark> ° + ° ° * ° ° *
<mark>ᆕ</mark> ᅅ <mark>ᅇᅇᅇᆠ</mark> ᅅᅌᆠᅅᅌᆠᅆᅅ <mark>ᅇ</mark> ᅋ	* • <mark>•</mark> • • • • • • • • • • • • • • • • •	~ • • ~ • • • • • <mark>~</mark> • <mark>~</mark> • • • • • • •
9 <mark>= = 9 0 0 0 + 4 0 0 0 +</mark> = 4 0 0 0		<mark>。 </mark>
<mark>େ ଅଭିଦ୍ୟ ଜ୍ୟ ମାହର</mark> ସେ ଅ <mark>ଭ</mark> ାମ	<mark>a n o - 😫 o</mark> - o <mark>o a - n o o o a</mark>	• • • • • • • • • • • • • • • • • • •
ວ <mark>ວນ</mark> ທ ທ ທ ທ <mark>ຈ + - ດ ວ ດ</mark> ນ ນີ້ <mark>ວ</mark> ວ	• • • • • • • • • • • • • • • • •	<mark>- </mark>
ဥပၤမုပ္စ <mark>က</mark> ္ <mark>က</mark> ္က က က က က က က က က က က က	<mark>a n - n + a a a a a n + - + - + a</mark>	<mark>,</mark>
ᅙᆍ ᆂ <mark>ᅙ</mark> ᅙᆍᅆᇢ <mark>ᅙ</mark> ᆞᆞᆞᅇᅇᇢᅋ <mark>ᆕ</mark> ᇢ	• • • • • • • • • • • • • • • •	,
ᆍᅕᅆᅕ <mark>ᆞᆂᅇᅇᅆ</mark> ᅇᄽᅇᇟᇚᇏ <mark>ᅇ</mark> ᅇ		
ㅎ = = <mark>+</mark> = 	σ <mark>σ ω <mark>=</mark> σ <mark>σ = ω = +</mark> ω = ► ο <mark>α</mark> ω</mark>	a n + n a n + a n + a n + n = n = n
ႜႍၕႜဨႜၜ <mark>ၜၖ</mark> ႜ <mark>ႜ</mark> ၜၜၜၓ <mark>ၣ</mark> ႋႜႜႜၜ႙ႍၓႍၜ	a n n n <mark>a c a a a a n a a a</mark>	• • • • • • • • • • • • • • • • • • •
<u>ବଳ କ<mark>ଟିହ</mark>ାର <mark>+</mark> ସା<mark>ଜ</mark>ାସ ସାଭ<mark>ାୟ ଟ</mark>ି କାସ ସ</u>	<u>ມ ຊ</u> ພ ພ ຕ ຕ ຊ <mark>ມ ມ ຕ </mark> ຕ ຫ ພ <mark>ອ ຈ</mark> ພ	<mark>a +</mark> → a // + ∞ + a <mark>→</mark> a a <mark>∞</mark> a a ⊆
∞ ≌ ፰ ːːː ∞ ːː ∞ ːː ∞ ːː ∞ ːː ∞ ːː ∞ ːː	<mark>。 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~</mark>	* ^ • • • • • • • • • • • • • • • • • •
	ᆍ <mark>ᆃᅙᆕ</mark> ᅆ <mark>ᆞ</mark> 월ᅇ <mark>ᅮᅄᆍᅇ</mark> ᅇᇬᆄᅇ	• • • • • • • • • • • • • • • • • • •
· · · · · · · · · · · · · · · · · · ·	9 <mark>+ 0 0 0 - </mark> 9 - + + 9 = 0 0 + ~	
∓ № № ₽ ₫ ► ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽ ₽	<mark>ຉຉຉຉ</mark> ຉຉ <mark>−</mark> ຉຌ∢ຉຉ <mark>ຑ</mark> ຌ	
= E & & = = = = = = = = = = = = = = = =	♀ <mark>~</mark> ~~ ~ ○ ~ ○ ○ ○ ○ ○ ○	2 6 6 7 7 8 7 8 7 8 7 8 9 7 8 9 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
∞ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆ ☆	<mark>∞</mark> ∓ ∽ ∽ ∽ ♀ ♀ ♀ <mark>∾</mark> ∞ ∞ ∞ ∞ ∾ ∾ ∾	2 ~ 0 <mark>* 0</mark> ~ ~ 0 ~ * 0 <mark>0</mark> ~ 0 ~ 0 0
	23%) 23%) 22%) 22%) 22%) 22%) 22%) 22%)	
37 (19 (0.3%)) 38 (19 (0.3%)) 39 (18 (0.3%)) 39 (18 (0.3%)) 40 (18 (0.3%)) 41 (17 (0.3%)) 42 (17 (0.3%)) 43 (16 (0.3%)) 44 (16 (0.3%)) 45 (16 (0.3%)) 46 (16 (0.3%)) 46 (16 (0.3%)) 46 (16 (0.3%)) 47 (16 (0.3%)) 46 (16 (0.3%)) 47 (16 (0.3%)) 48 (15 (0.3%)) 49 (15 (0.3%)) 40 (15 (0.3%)) 52 (15 (0.3%)) 53 (14 (0.2%)) 53 (14 (0.2%))	94 (14 (0.2%)) 55 (13 (0.2%)) 56 (13 (0.2%)) 58 (13 (0.2%)) 59 (13 (0.2%)) 59 (13 (0.2%)) 61 (12 (0.2%)) 62 (11 (0.2%)) 65 (11 (0.2%)) 66 (10 (0.2\%)) 66 (10	70 (10 (0.2%)) 72 (9 (0.2%)) 73 (9 (0.2%)) 75 (8 (0.1%)) 75 (8 (0.1%)) 76 (8 (0.1%)) 76 (8 (0.1%)) 77 (8 (0.1%)) 78 (8 (0.1%)) 78 (8 (0.1%)) 78 (1 (0.1%)) 82 (7 (0.1%)) 85 (7 (0.1%)) 86 (7 (0.1%))
33 33 33 33 33 33 33 33 33 33 33 44 42 42 44 42 42 42 42 42 42 42 42 52 53 53 53 53 53 53 53 54 54 54 54 54 54 54 54 54 54 54 54 54	55 55 55 55 55 55 55 55 55 55 55 55 55	70 73 75 75 75 75 75 75 76 78 88 88 88 88 88 88 88 88 88 88

Supplementary Table S1.3 A [continued....]

																										-
		_																								
	 			+	+				-	-	+	+	+			+	+			+			-			
<mark>-</mark>										iesis																
.										synth																
										e bio																
				•	ersio	u l				uinon	_					- lion	e 000	ε		e						
			ation			ligat				oid-q	bolisr				Ē	- ox		abolis		puou						
			egrad		e inte	a CoA	lism			rpen	meta		5			a hyd		met	grada	nitoc	tion		_	sis		
			ine de	<u>ج</u> :	onate	ion vi	etabo	ism	E	her te	ogen	esis	adatic	E I		ion vi		urine.	e de		grada	5	datio	/nthe	ç	
		olism	d pine	ilode		radat	cid m	etabo	aboli	nd otl	lestr	synth	degr	tabol		radat	uegu	ypota	enzer	ngatic	te de	adatio	degra	bios	adatio	
		etabo	ne an	e met	and	e deg	onic a	id me	e met	one al	n and	d bio	Jzene	e l	ualoi	e deg		u pue		d elo	eozua	degr	ycan (glycan	degra	
		tin m	Joner	than		nzoat	achido	ier lip	amin	iquino	droge	ty aci	ylber	oic ac		nzoat	. 19	irine.		ty aci	orop	ranio	her gl	ptido	rene	
			_						_	_	_	_	_		_	_	_					<u>8</u>	<u>4</u>	5 Pe	06 Sty	
		80	×	20	ici ad	80	õ	ö	6	6	6	ő	<u>6</u>	6	5	6	ñ	<u>6</u>	8	2	2	9	9	9	9	
													5											: P450		
								hesis			ation)	sb	radati			dation								rome		
	0 0 0		s			sis		osynt	hesis		D2 fix	tty aci	e degi			egrad	egrad	_			P45(nes		ytoch		
			thesi			ynthe		can bi	osynt		le (CC	ed fat	exane	ing i		cine d		datio	E I		lone	enzyr		s by c		Vitamin B6 metabolism
• • • • • • •	• • •		iosyn	ε -		bios	lism	vlg-N	oA bi	lism	te cyc	turat	ycloh	ioi-bi		soleu		degra	: abo	olism	ytoch	ther		biotic		Ë.
• - • • • • <mark>-</mark>	• • •	hesis	/can b	abolis		chone	etabo	type	and C	etabo	oxyla	unsa	loroc	ns en		andi		acid		letab	- Es	0 - us	hesis	xeno		Vitamin B6 metabolism
• • • • • • <mark>-</mark>	• • •	synt	syl gly	: met	tabo	d back	id m	nose	nate	te m	carb	sis of	exact	ogolo	- u	ncine		crylic	uo ac	ine n	aboli	aboli	synth	sm of	xport	90 -
∾ - o o o <mark>-</mark>		ne bio	anno	flavin		Denoi	erolip	-man	tothe	panoa	uctive	ynthe	H-eu	und la	- Niala	le, le	-7 pu			-Alan	met	met	te bio	aboli	ein e	nin B
• <mark>-</mark> • • • • <mark>-</mark>							_		-	_	_	_	_	_			_	_	_	_	_	_	_			
	• • •	55	26	5	8 8	+	61	62	63	64	65	99	67	8	69	<u>۶</u> i	5	2	2	74	75	76	1	78	79	8
						hesis	lesis																			
						osynt	synt																			
				msilo .		horbi	an bio						hesis						_		is					
			_	etabo)-and	toph						osynt					:	polisn		etabo			stem		
• - • • • • •			bolisn	n al		ol(GPI	d tryp			_	ism		ne bi						meta		tem		olism	ing sy		
- ~ ~ ~ ~ ~	• • •	_	meta			nosit	ne an		m	natio	tabol		pleuci			Nae			bhy	Ē	oxyla		etabo	signali		:
- « - ° ° ° -		bolisn	bidilo	and th	abolis	atidyli	yrosi	olism	tabol	omb	id me	_ :	si pue	pair		toph		nolism :		taboli	dicarb	olism	ate m	sitol	hesis	Lysosome
	• - •	meta	ospho	rine	meta	osphi	nine, t	hetab	e me	us rec	no ac	repai	cine	on re	, meta	ofau	TEDE	netat	and c	nme	and	netab	osphä	dylino	osyntl	
• • • • • • •		ctose	roph	ne, se		hdlyso	iylalar	sine n	athior	ologo	noam	i atch	e, leu	excis		ation				topha	vylate	diner	tol ph	phati	bid bid	Lysosome
N - 0 0 0 - N	• • •				Buta	Glyco	Pher	Tyro	Gluta	Hom	Selei	Misn	Valin	Base	Fatt	Regu	L VS			Tryp	Glyo	Histi			Ster	
∾ o - o -		28	29	8	5 8	8	34	35	36	37	8	8	6	41	42	÷	\$	_		47	48	49	20		52	ŝ
N - O - O - N																			olism						bolisn	
~ ~ • • • -	• - •																		netab		Ē				metal	_
- 0 0 0 -	• - •							st		is.	ε								nate r	E S	taboli				ugar	olism
~ ~ - ~						5		- yea	lesis	teolys	bolis	hesis		-=					lutan	tabol	e me			yewr	tide s	netak
~ ~ ~ ~ ~ ~	• - •		ş			rylati	olism	thway	eogei	d pro	metä	osynt		de l	(a)		Ē	•	andg	e me	nin		esis	e patl	ucleo	lose r
N N F O F O F		ATED	thway	•		ohqa	etabu	ng pat	lucon	diate	crose	NA b.		xcisio.	ICA		tabol	5	rtate	prolit	meth	ase	with	sphat	and n	manı
~ ~ ~ ~ ~ ~		INOT	lic pa	e	netah	re pho	ine m	ignali	is / G	in me	nd su	cyl-tR	ome	ide e	cycle	osis		plicat	, aspa	e and	e and	hmei	n bios	s pho	ugar	Fructose and mannose metabolism
N N N 0 - 0 -	• • •	DT_AI	etabo	bosor	rine r	cidativ	rimid	APK s	ycolys	biquit	archa	ninoa	oteas	ucleot	trate	docyt	ruvar	NA re	anine	ginin	stein	VA po	Glyca	intos	nino	uctos
N N N 0 0 0 -		1 N	N N		_	ô 9	7 PV	N N	5			12 AI						0 8	19 A	20 AI		22 RI	Ż			26 Fn
		Η								*1										•••				••	••	
9 ((2 (0.0%)) 98 (2 (0.0%) ((0.0%) (2) (0.0%) (0.0%) (2) (0.0%) 100 (1) (0.0%) 101 (1) (0.0%) 101 (1) (0.0%)	(%0.0) (%0.0) (%0.0)																									
					$ \begin{bmatrix} 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 1 1 <th1< th=""> 1 <th1< th=""> <th1< th=""></th1<></th1<></th1<>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 2 2 2 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\mathbf{x} x	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	222 <th2< th="">22222<th2< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td></td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>1 1</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></th2<></th2<>	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1 1	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

 Table S1.3. B
 S. cerevisiae Homology analysis with Pathways of KEGG

Each row represents a pathway, while each column represents a group from a given domain of life. The numbers shown in parenthesis on the first row of each column indicate the number of *S. cerevisiae* proteins that have homologues in all organisms of the corresponding group. Rows numbered 1-106 represent each a pathway term and their included proteins. In each row, a green to red color scale indicates the similarity between the set of proteins associated to the KEGG pathway in *S. cerevisiae* and that of proteins commonly associated to all organisms from the groups. Green entries indicate high similarity, while red entries indicate low similarity between the two sets of proteins. The numbers in each entry indicate the number of homologues to *S. cerevisiae* proteins that are common to all organisms from the groups represented in the columns.

(See the Table S1.3 B. on next page)

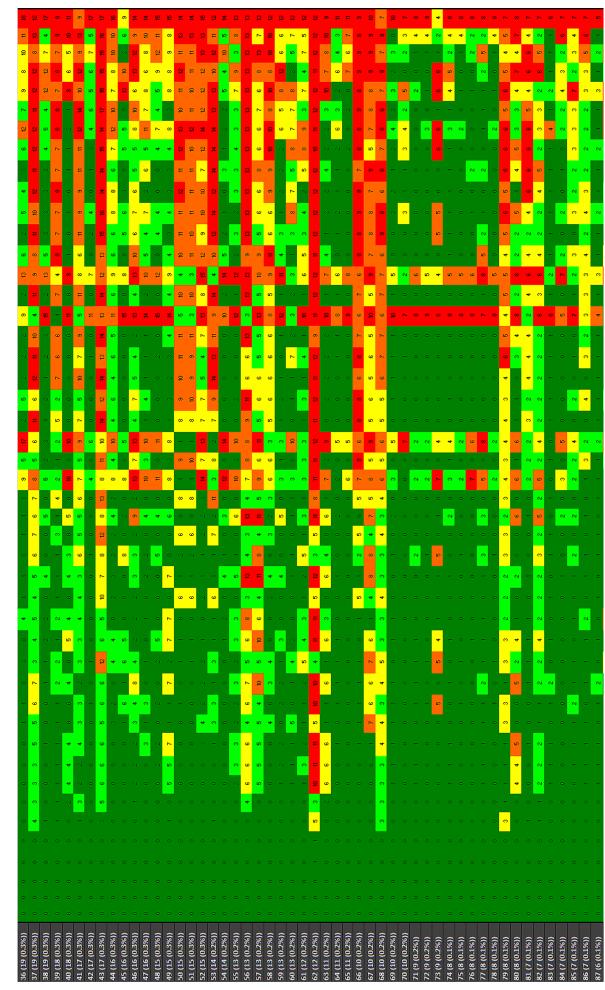
Saccharomyces cerevisiae as a Model Organism

	BACTERIA (0 (0%))	•	0	0		0	•	• •	, o	•	• •		0	•		• •	•	• •	• •	•		0	•	• •		0 0	•	0 0
	реокавтотез (0 (0%))	•	•	• •	• =		•			•	• •	• •	•	•		• •	•			•			•	• •	• •	• •	•	• •
	FUNGI::Ascomycetes (0 (0%))	•	۰	• •	• •	• •	•	• •	• •	•	• •	• •	•	•		• •	۰	• •	• •	•		• •	•	• •	• •	• •	•	• •
	Enagi (d (d%))	•	۰	• •	• •	• •	•	• •	• •	•	• •	• •	•	•		• •	۰	• •	• •	•		• •	•	• •	• •	• •	•	• •
	EUKARYOTES (0 (0%))	•	۰	• •	• •	• •	•	• •	• •	•	• •	• •	•	•		• •	•	• •	• •	•		• •	•	• •	• •	• •	•	• •
	BACTERIA::Proteobacteria (1 (0.01 %))	•	•	• •	• •	• •	•	• •		•	• •		•	•		• •	•	• •		•	• •	• •	•	• •	• •	• •	•	• •
	BACTERIA::Firmicutes (8 (0.1%))	٥	۰	• •	• •	• •	•	• •	• •	•	- <	• -	•	•	• -		۰	• •	• •	•		• •	•	• •	• •	• •	-	• •
	АВСНЕА (18 (0.3%))	0	•	~ (• •	• •	•	• •		•	~ <	⊳ ∾	•	•	• •		•	• •		•	• •	• •	•	• •	• •	• •	•	• •
	((%č.0) 05) stosednisviu∃::A∃HD8A	9	*	ю			•			-		- ~	•	•	• •	• -	•			•			•	• •			•	o o
	8ACTERIA::AIRECTER (0.6%)	22	•	ъ		~~	•			-			•	•			•	• •		•			•	• •			•	0 0
	BACTERIA:::Actinobacteria (34 (0.6%))	24	e	е с	- د	• •	-			-	• •	⊳ <	•	•	• •	J 0	•	• •		•	• •	0	•	• •	• •	• •	•	• •
	((%7.0) £4) T2IT0 A9	6	•	• •	v c		•			•	• •		•	•	• •		•	• •		•			•	• •		• •	•	• •
	BACTERIA:::Apirochete (64 (1%))	\$	9	~ •			~	• ^		-		• ∾	•	•	• •		-	• •		0	• •		2		• •	• •	•	• •
KEGG	((%t) t8) 14WINA	42	e	• •	v c		-			-	•		•	0			•			•			•	• •			•	0 0
FKE	((%L) 28) stoe shorenerD::A3HD8A	8	53	б о			e -				~ <	v e	•			2	-			-	• •	· -	-			+ -	~	∞ 0
YS 0	BACTERIA::Cyanobacteria (89 (2%))	48	5	б о (ω	-			-	+ (.	e			, 4	-		• -	-			-				-	• •
HWA	BACTERIA::Bacteroides (104 (2%))	62	₽	g (u e		-		, -				-		~ 4		_							~ ∘				
PAT	((%S) ZSL) səterdətrəV::JAMINA	80	2				_	~ ⊂	, .								_								o ∾			
ИТН	((%E)	2		*			N			~			N		N 0) -	0			N	N 0		N	N .			N	0 0
SIS V	BACTERIA:: Green nonsulfur bacteria (156	0	¥											_							.							_
VALY	((%E) 00L) aibymahD::AIRRAC		~	÷ '					Ĩ					Ĭ							•							
YA	(1%6) Million (1%6) (186 (189 (189 (189 (189 (189 (189 (189 (189	16	~	~ 1		. ∾ ■ 1		~ -	. ~	_	•	· ·					•	• •	•••		• •		_	~ •	• ~·	• •		<u> </u>
able 1.3 (B). <i>S cerevisia</i> e HOMOLOGY ANALYSIS WITH PATHWAYS OF	PLANTS (253 (4%)) BACTERIA::Hyperthermophilic bacteria (251	8 142	4 54	24	* 10		*			4	2	- ~	-	0	~ "	а С	4	۵ ۵ مار	' -	6	9 0 0 0		00 100	~ ~	" –	- e	8	° -
МОН	BACTERIA::Green sulfur bacteria (260 (4%)) PLATERIA::Green sulfur bacteria (260 (4%))	54 10	55 2						۲ م	Ň	<u>.</u>				ຸ 		•• +						~					
siae	ARGHEN::Nanoarchaeota (310 (5%))	8	42	8.4	0 <u>0</u>	1 1~	2	~ -			± r	~ ~	-						<mark>م د</mark>		~ ~	. –						
erevi	BACTERIA::Deinococcus-Thermus (326 (6%))		20	Б i		0		+ <mark>≎</mark>	<mark>.</mark> ~	4		- +	~	•	o u	. 4	+	ωr	J —	+	.		en l	o م	v 0		9	<mark></mark>
. S.c	BACTERIA::Synergistetes (343 (6%))	199	7	5 <mark>2</mark>	• •	<u>م</u> 1	ю	<u>د</u>		~	₽ <	• •	F.	-	<u>ہ</u> م	م	ы			4	<u>ہ</u> م			ہ م	۰ o	- <mark>م</mark>	ы	N 2
3 (B)	FUNGI::Basionyrottes (%8) (%8)	400	24	- 4	e	•	~ ·	~ - 10		-		v -	~			• -	-	• •	o ∾	-		• •	-	~ •	•	• •	-	
ble 1	BACTERIA::Fusobacteria (491 (8%))	291	E	<u>स्</u> र	2 0	₽	₽	0 <mark>-</mark>	~		თ (م د	4	•	= «	> ±	=	<mark>თ</mark> ი	. <u>-</u>	+				₽	• -	∾ -	~	0 ≈
	((%LL) قواه (%LL) (%L	501	8		t a		6	ب س	- Б	2		- 0			~ ~	4		<mark>ہ م</mark>			- u	<mark>ی</mark> د	ß		у 4		+	
Supplementary	((%11) 86ð) втоэвпознож::АЗНОЯА	385	83	ę s	2	j 00	ន	9 9	2 00	-	е .	<mark>₀</mark> ല	σ	•		. ₽		= s	2 01	ø	ی د	. ~	4	*		= -	w	o <mark>⊳</mark>
plem	((%LL) 8E3) stoszni::JAMINA	512	67	ю ;	- 14		~	0 N				- LO		_	~ ~			<mark>ه -</mark>	8		N 10				<mark>ი →</mark>	~ 4		ω -
Sup	((%SI) E00) səbotaməN::JAMINA		56		2 m		*	<mark>ہ ہ</mark>	a a	e B		y 9		~			ы					9						
	((%CL) 269) so so naigu 3:: T 21T 099																			ت د								
			1 72		- 43	œ	*	ю ю	•		우 ·	2 10		œ ا			*			Ű	- ~		~	<u>ه</u>	- 0			4 0
	BACTERIA::Planctomyces (712 (12%))		5 10	4 .		. E	0	2 2		4	* (-			00 P	<mark>۵</mark>	*	2	1	~	∞ ≇	Ĩ	9	<u>ہ</u>	* •		~	2
	BACTERIA::Acidobacteria (740 (13%))		5	24	-			* =		2	o -	Θ			•••••		=	-	4	2	r~ 0			~ .	, 0	00 - 9	=	~ 0
	((%EI) 947) ansibinoqeoniM::IDNUT		69		3 ⊊	2 8	~	6 6		ъ	ic I		•	~	4		-		• •	4	6	2	~	ω (- + v	~ "	Γ.	- ~
	((%£1) ZZT) sbenomolqiO::T2IT0A9		28	22	5 5	2 @	÷	م م)	-	σ I	~ ~	*	<mark>م</mark>	9	• •	*	~ 4	• •	ις,			~	ю и 1	0 4	6	~	© N
	PROTIST:Entamoeba (945 (16%))		103	а С	4 C	2 10	Ŧ	<u>ه</u>	2 9	-	<mark>∞</mark>	7	a ا		= «		9	<u>к</u> и		ω	6 9		-	ω .	ი თ	9 m	· •	° -
	((%81) 1201) 96gls b991::21NAJ9		7	00 X	5 ¥	2 Q	₽ ₽	r- σ	`	~	∾	=	4	=	ء م	, ~	ω.	<u></u> и и		е 	ი თ		=	ω .	99		9	<u>ہ</u>
	((%02) 4201) sbiles edered::T2IT0.99		107	2	a ù	0	*	σ 2	: =	ω	₽ ·	* 2	ω		т с	~ ~	*	с і и		#	* *		4	ю н		· ·	*	· -
	(%8L) ZT01) amaboning:://www.amaboning		87		2	2		9 =	Ю	4	~ °	n 60	~	4	~ ~	· ~	ω	* *	5		~ ~		•	~ ~		с ч	~~~	6
	((%et) 1.001) snobelytoconoM::2TNAJ9	Ĩ	94	12	2	- ω	8	60 G		2	- (V 00	•	•	с с	۰ °	~	~ *	1 4	~	- "	б	9	ic u	o 9	+ 4	~	د
	PROTIST::Cellular silime molds (L156 (20%)) PLANTS::Dicotyledons (L147 (20%))		16 21	0 10	ŭ ∓	= 00 	=	r 9	9 9	=	~ (× ►		P		2 4	*	н и н и	2	0	~ <u>~</u>			*	n	6 4	~	- م م
	(%02) كالتا: (%02) sətaləşafonaçı (%05) عاليله عليانه (%05) (%20)		103 107	8 5	1 2	: ∞ 2 σ	∓ ≇					- w	е 9		<mark>ю</mark> -	- α	° 9	* 4 ~ 4			0 0 1 7		0	• •	• £	9 0 9 0	е С	<mark>≁</mark> 0
									~		2			2	2		2	2						2				
	Frequency of S. cerevisiae genes found orthologs in phylogenetic groups Frequency of S. cerevisiae genes distributed in KEGG pathways	(4571 (77.7%))	(610 (10.4%))	(142 (2.4%))	(180.2) (17.68)	(76 (1.3%))	(69 (1.2%))	(55 (0.9%))	0 (44 (0.7%)	(40 (0.7%))	(39 (0.7%))	((%9'0) cc) c1 ((%9'0) c2) c1	15 (33 (0.6%))	(33 (0.6%))	.7 (33 (0.6%)) 8 (30 (0 5%))	(29 (0.5%)	(29 (0.5%)	((%5'0) 62) IS ((%5'0) 62) 23	(28 (0.5%))	(28 (0.5%))	25 (27 (0.5%)) 26 (27 (0.5%))	(23 (0.4%))	28 (23 (0.4%))	29 (23 (0.4%)) (0.4%) 23	ou (23 (0.4%) 31 (23 (0.4%))	32 (22 (0.4%)) 33 <i>(22</i> (0.4%))	34 (22 (0.4%))	35 (20 (0.3%)) 36 (19 (0.3%))
	Frequest S. Cever S. Cever S. Cever Branch Frequest S. Cever distr patt	(457)	(610	3 (142	68	(76 () 69)	s (55 (0 (44		12 (39 12 035	14 (34	5 (33	16 (33	L7 (33 8 (30	19 (29	20 (29	67) I.	23 (28	24 (28	25 (27 06 (97	27 (23	8 (23	29 (23	1 (23	32 (22	4 (22	55 (20 66 (19
		- ()	- (1)	- (1) S	- U	u 1997		•••••••			- 1							4	CL (M)		~ 6	(T (N)	N	- N	- m			

• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • •	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	
• • <mark>•</mark> • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •
- + • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·
• • <mark>•</mark> • • • • • • • • • • • • • • • •	<mark>.</mark> .
• • • • • • • • • • • • • • • • • • •	
<mark>··</mark> - • • • • • • • • • • • • • • • • • •	· - • • • • • • • • • • • • • • • • • •
	• <mark>• •</mark> • • • • • • • • • • • • • •
N 0 <p< td=""><td></td></p<>	
- <mark>· · · · · · · · · · · · · · · · · · ·</mark>	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
<u> </u>	
+ • • • • • • • • • • • • • • • • • • •	• • • • • • • • <mark>-</mark> • • • • • • •
- 0 0 + 0 0 + 0 + 0 0 + 0 0 0 0 + 0 + 0 0 + 0 + 0 0 + 0 + 0 + 0 0 +	× + • × • • • • • • • • • • • • • • • •
<u> </u>	• - <mark>-</mark> • • • • • • • • • • • • • •
<u>, , , , , , , , , , , , , , , , , , , </u>	0 <mark>10</mark> 00000-000-000
<mark>, , , , , , , , , , , , , , , , , , , </mark>	• • • • • • • • • • • • • • • •
· · · · · · · · · · · · · · · · · · ·	
N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	· · · · · · · · · · · · · · · · · · ·
<u>, , , , , , , , , , , , , , , , , , , </u>	• <mark></mark>
- <mark>^ - 0 - 0 - 0 0 0 0 0 0 0 0 0 </mark>	• • • • • • • • • • • • • • • • • • •
-	0 + 0 + 0 0 <mark>0 0 + 0 0 + 0 0 0 0 0 0 0 0</mark>
• • • • • • • • • • • • • • • • • • •	•
 	0 <mark>0 4</mark> 0 0 0 0 - - - <u>0 0 0 4 -</u>
+	• • • • • • • • • • • • • • • • • • •
, , , , , , , , , , , , , , , , , , ,	
+ ~ ~ ~ ~ <mark>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~</mark>	
- ^ ^ N N O O O O O O O O O O O O O O O O	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
N + + ∩ ∩ N <mark>+ ∩</mark> + − N O N + − − N + W B ∩ N + + − − O + + − + 0 ∩ ∩	N - - N <mark>N</mark> - N <mark>N N</mark> - O - C
<mark>· · · · · · · · · · · · · · · · · · · </mark>	• • • • • • • • • • • • • • • • • • •
<mark>, , , , , , , , , , , , , , , , , , , </mark>	<mark>+ - </mark>
37 (19 (0.3%)) 38 (19 (0.3%)) 40 (18 (0.3%)) 41 (17 (0.3%)) 42 (17 (0.3%)) 43 (17 (0.3%)) 44 (16 (0.3%)) 44 (16 (0.3%)) 45 (16 (0.3%)) 56 (13 (0.3%)) 56 (13 (0.3%)) 56 (13 (0.3%)) 56 (13 (0.3%)) 56 (13 (0.2%)) 56 (13 (0.2%)) 56 (11 (0.2%)) 56 (10 (0.2%)) 56 (10 (0.2%)) 56 (10 (0.2%)) 57 (13 (0.2%)) 56 (10 (0.2%)) 56 (10 (0.2%)) 57 (13 (0.2%)) 56 (10 (0.2%)) 56 (10 (0.2%)) 56 (10 (0.2%)) 57 (13 (0.2%)) 56 (10 (0.2%)) 56 (10 (0.2%)) 57 (13 (0.2%)) 56 (10 (0.2%)) 56 (10 (0.2%)) 57 (13 (0.2%)) 57 (13 (0.2%)) 58 (10 (0.2%)) 59 (10 (0.2%)) 50 (10 (0.2%)) 50 (10 (0.2%)) 51 (10 (0.2%)) 51 (10 (0.2%)) 52 (13 (0.2%)) 53 (10 (0.2%)) 54 (10 (0.2%)) 54 (10 (0.2%)) 55 (13 (0.2%)) 56 (10 (0.2%)) 56 (10 (0.2%)) 56 (10 (0.2%)) 57 (10 (0.2%)) 58 (10 (0.2%)) 59 (10 (0.2%)) 50 (10 (0.2%)) 50 (10 (0.2%)) 50 (10 (0.2%)) 51 (10 (0.2%)) 51 (10 (0.2%)) 52 (10 (0.2%)) 53 (10 (0.2%)) 54 (10 (0.2%)) 54 (10 (0.2%)) 55 (10 (0.2%)) 55 (10 (0.2%)) 56 (10 (0.2\%)) 56 (10	2 (9 (0.2%)) 3 (9 (0.2%)) 4 (8 (0.1%)) 5 (8 (0.1%)) 5 (8 (0.1%)) 7 (8 (0.1%)) 7 (8 (0.1%)) 8 (1.0.1%) 9 (8 (0.1%)) 8 (1
$\begin{array}{c} 37 \left(19 \right) \\ 38 \left(19 \right) \\ 48 \left(16 \right) \\ 55 \left(13 $	72 (9 (0.2%)) 73 (9 (0.2%)) 75 (8 (0.1%)) 76 (8 (0.1%)) 77 (8 (0.1%)) 77 (8 (0.1%)) 78 (8 (0.1%)) 79 (8 (0.1%)) 80 (8 (0.1%)) 81 (7 (0.1%)) 83 (7 (0.1%)) 84 (7 (0.1%)) 85 (7 (0.1%)) 85 (7 (0.1%)) 85 (7 (0.1%)) 86

:
×.
<u> </u>
•=
-
[conti
-
~
$\underline{\neg}$
_
B
B
61
S1.3
02
le
able
5
Ta
5
mentary
1
3
-
- E
Z
1
5
ľ
1
D
-
\mathcal{O}

1 1			_			_					SI		3a	ΓĮ	0	eı	d	/10			as	e	sia	evi	er	omyces o	Saccharon		hapter 2.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			_	_																						, o o o o	 		
			Τ																										
																	thesis												
										s							oiosyn												
										bodie	5						none t					sions	, m						
							ondria	5	bolism	etone	oxylat	_				olism	id-qui				igatio		etabo	ion					
$ \begin{array}{ $			sis	_		ion	nitoch	radati	metal	n of k	hydro	bolisn		=		netab	rpeno			nsi I	CoA	inter	ide m	gradat					
		Ę	/nthe	dation	5	gradat	nin	le deg	urine	adatio	ion viā	meta	ism	adatio	esis	ogen r	her te	m	is I	etabol	ion vi	onate	tinam	ne de					
$ \begin{array}{ $		adatic	n bios	degra	radati	ate de	ngatic	enzer	ypota	degr	gradat	nic acid	etabol	e degr	synth	d estr	ind ot	taboli	etabo	cid m	gradat	glucur	nicolli nicolli	d pine	olism				
		e degr	oglyca	glycan	ol deg	penzo	cid elc	hlorot	and l	sis and	ite de	inoler	acid m	nzen	cid bic	gen an	one a	ne me	ipid m	donica	ite de	e and	ne me late ar	ene an	metab				
		tyren	eptid	Other	<u>ierani</u>	luoro	atty a	l,4-Dic	aurine	ynthe	Benzoa	I-ehdl	ipoic a	thylbe	atty a	Androg	Ibiqui	hiami	ther	Arachio	Senzoa	entos	Vicotin	imon	Siotin	<mark>.</mark>			
10101010010010121010010010101201010101010101001111111101010100000000000000010000000000000001000		106	105	104	103			100			_	_		_	_	_			-	-	_			_					
10101020010010123101001001010120101010101010110010101010101011000000000000000100000000000000001000 <td></td> <th></th> <td>• <mark>-</mark> • • • •</td> <td></td> <td></td>																											• <mark>-</mark> • • • •		
10101020010010123101001001010120101010101010110010101010101011000000000000000100000000000000001000 <td></td> <td></td> <td>P450</td> <td></td> <td>=</td> <td></td> <th>·</th> <td></td> <td></td> <td>• • • • - •</td>			P450											=												·			• • • • - •
23132231333123111111111112311111111111123111 <td></td> <td></td> <td>ome</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ation</td> <td>ation</td> <td></td> <td></td> <td>adatio</td> <td>sk</td> <td>tion)</td> <td></td> <td></td> <td>hesis</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <th></th> <td></td> <td>• • • • <mark>•</mark> • • •</td> <td></td>			ome							ation	ation			adatio	sk	tion)			hesis									• • • • <mark>•</mark> • • •	
23132231333123111111111112311111111111123111 <td></td> <td></td> <td>ytoch</td> <td></td> <td>nes</td> <td>P450</td> <td></td> <td></td> <td>_</td> <td>egradi</td> <td>legrad</td> <td></td> <td></td> <td>e degr</td> <td>tty aci</td> <td>D2 fixe</td> <td></td> <td>hesis</td> <td>losynt</td> <td></td> <td>sis</td> <td></td> <td></td> <td>8</td> <td></td> <th></th> <td></td> <td></td> <td></td>			ytoch		nes	P450			_	egradi	legrad			e degr	tty aci	D2 fixe		hesis	losynt		sis			8					
23132231333123111111111112311111111111123111 <td></td> <td></td> <td>cs by c</td> <td></td> <td>enzyı</td> <td>hrome</td> <td>_</td> <td>olism</td> <td>adatio</td> <td>lene d</td> <td>ucine o</td> <td>ε</td> <td>ining</td> <td>hexan</td> <td>ted fa</td> <td>cle (C</td> <td></td> <td>iosynt</td> <td>/can b</td> <td></td> <td>synthe</td> <td></td> <td></td> <td>nthesi</td> <td></td> <th></th> <td></td> <td></td> <td></td>			cs by c		enzyı	hrome	_	olism	adatio	lene d	ucine o	ε	ining	hexan	ted fa	cle (C		iosynt	/can b		synthe			nthesi					
23111 <th< td=""><td>olism</td><td></td><td>obioti</td><td>2</td><td>other</td><td>cytoc</td><td>bolisn</td><td>netabo</td><td>degn</td><td>phtha</td><td>isolet</td><td>abolis</td><td>of-pua</td><td>ocyclol</td><td>satura</td><td>ate cy</td><td>olism</td><td>CoA b</td><td>e N-gl</td><td>olism</td><td>le bio</td><td></td><td></td><td>biosy</td><td></td><th></th><td></td><td></td><td></td></th<>	olism		obioti	2	other	cytoc	bolisn	netabo	degn	phtha	isolet	abolis	of-pua	ocyclol	satura	ate cy	olism	CoA b	e N-gl	olism	le bio			biosy					
23110231102110<	Vitamin B6 metabolism	t	of xen	nthesi	olism -	olism -	e meta	acid n	rlic acio	thylna	ne and	le met	gous e	achlor	of un	rboxy	metak	te and	se typ	metak	ackbor	olism	metal	glycan	nthesi				
23111 <th< td=""><td>. B6 r</td><td>n expo</td><td>olism</td><td>biosy</td><td>netab</td><td>netab</td><td>Vanine</td><td>amino</td><td>roacry</td><td>2-Me</td><td>, leuci</td><td>lalanin</td><td>omolo</td><td>a-Hex</td><td>thesis</td><td>tive ca</td><td>noate</td><td>thenat</td><td>Janno</td><td>olipid</td><td>d bion</td><td>metal</td><td>m un m</td><td>lyson</td><td>biosy</td><th></th><td></td><td></td><td></td></th<>	. B6 r	n expo	olism	biosy	netab	netab	Vanine	amino	roacry	2-Me	, leuci	lalanin	omolo	a-Hex	thesis	tive ca	noate	thenat	Janno	olipid	d bion	metal	m un m	lyson	biosy				
23111 <th< td=""><td>Vitam.</td><td>Protei</td><td>Metab</td><td>Folate</td><td>Drug</td><td>Drug n</td><td>beta-A</td><td>Cyano</td><td>3-Chlo</td><td>1- and</td><td>Valine</td><td>Pheny</td><td>Non-h</td><td>gamm</td><td>Biosyn</td><td>Reduc</td><td>Propa</td><td>Panto</td><td>High-n</td><td>Glycer</td><td>Terpel</td><td>Sulfur</td><td>Sphing</td><td>0-Mar</td><td>Lysine</td><th></th><td></td><td>. <mark>-</mark></td><td>- o o o <mark>o</mark> o</td></th<>	Vitam.	Protei	Metab	Folate	Drug	Drug n	beta-A	Cyano	3-Chlo	1- and	Valine	Pheny	Non-h	gamm	Biosyn	Reduc	Propa	Panto	High-n	Glycer	Terpel	Sulfur	Sphing	0-Mar	Lysine			. <mark>-</mark>	- o o o <mark>o</mark> o
	8		_				_				_			-					-								<mark>-</mark>		
																				esis	hesis					, o o <mark>-</mark> o	•• <mark>•</mark> •••		• • • • • •
																				osynth	iosynt								
						olism		ε						thesis						han bi	chor b			:					<mark></mark>
			systen	_		netab		abolis						biosyn						yptop	PI)-an		r trans	E .					• • • • •
			aling	bolisn		ylate r		/II met						ucine		olism	tion			and tr	sitol(G		sicula	taboli		<mark>.</mark> .	0 0 0 0	<u></u> .	v o oo o
		sis	tol sign	e meta	n s	arbox	olism	proph	isn'	_	phag	lism	Ŀ.	d isole		metal	nbina	bolism	Ë	osine	dylino	olism	s in ve	id m	lism	<mark>.</mark>		• • • • •	
		ynthe	linosit	sphate	etabol	nd dic	metal	nd chlo	etabol	adatio	ofauto	etabo	n repa	ne an	epair	o acid	s reco	meta	taboli	ne, tyr	sphati	netab	ne an	pholi	etabo		<mark>.</mark>	• • • • •	<mark>.</mark> .
	Lysosome	id bios	hatidy	ol pho	ine m	ylate ā	ophan	yrin a	gen m	e degra	ation	acid m	excisio	e, leuci	atch re	oamin	logou	thione	neme	/lalani	sylpho	oate r	e, ser E inter	ohdo	ose m	<mark>.</mark>	• - - • - •	• 	<mark>4 -</mark> - o o •
2 2 <td>Lysosome</td> <td>Stero</td> <td>Phosp</td> <td>Inosit</td> <td>Histid</td> <td>Glyox</td> <td>Trypt</td> <td>Porph</td> <td>Nitro</td> <td>Lysine</td> <td>Regul</td> <td>Fatty</td> <td>Base (</td> <td>Valine</td> <td>Mism</td> <td>Selen</td> <td>Homo</td> <td>Gluta</td> <td>Tyros</td> <td>Pheny</td> <td>Glyco</td> <td>Butan</td> <td>SNAR</td> <td>Glyce</td> <td>Galact</td> <th></th> <td></td> <td></td> <td>• • • • • • •</td>	Lysosome	Stero	Phosp	Inosit	Histid	Glyox	Trypt	Porph	Nitro	Lysine	Regul	Fatty	Base (Valine	Mism	Selen	Homo	Gluta	Tyros	Pheny	Glyco	Butan	SNAR	Glyce	Galact				• • • • • • •
2 2 2 2 1 1 1 2 1 2 1 1 0 1 2 1 2 1 1 0 1 2 1 2 1 2 1 0	53		51	50	49	48	47		45	44	43	42	41	6	39	88	37	36	35	34	33	33	31	29	28			- ~ ~ ~	• • • •
2 2 2 2 2 2 1 0 1 1 0 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2		abolisr						bolisn																			<mark></mark>		-
on on biolism in tick and the set of the set of the set	ε	r met				olism		meta																			N − 0 0 0 0	· • - • -	<mark>,</mark>
	abolis	e suga	Å			hetabo	olism	amate							sis	lism	lysis	s	east										· · · · · ·
	e met	eotide	athwa			nine n	metak	d glut				e	epair		ynthe	etabo	roteo	genes	vay - y	ε	ation						<mark>-</mark>		v + ~ + o ·
× + + + + + + + + + + + + + + + + + + +	annos	d nuc	hate p	thesi	e	ethio	oline	ate an	_	bolism		CA cyc	ision r		A bios	ose m	ated p	coneo	pathv	tabolis	phory	lism		ways	8		• • <mark>-</mark> • • •		• • • • • • •
2 Section 1 Section 1 Section 2 S	and m	igar an	phosp	biosyr	meras	and m	and pr	aspart	ication	meta	sis	/cle (T	de exc	a	yl-tRN.	d sucr	medi	s / Glu	naling	le met	soud :	etabo	- veas	c path	NOTA			• <mark></mark> •	• • • • •
232222100111001110023100111100233221001221001222100221001211100111000000000111100 </td <td>Fructose and mannose metabolism</td> <td>nino su</td> <td>ntose</td> <td>Blycan</td> <td>A poly</td> <td>teine</td> <td>ginine</td> <td>nine, i</td> <td>A repl</td> <td>uvate</td> <td>locyto</td> <td>rate cy</td> <td>cleotic</td> <td>teaso</td> <td>inoac</td> <td>rch an</td> <td>quitin</td> <td>colysis</td> <td>VPK sig</td> <td>imidin</td> <td>idative</td> <td>ine m</td> <td>l cvcle</td> <td>taboli</td> <td>TAN</td> <th>· • • • •</th> <td></td> <td>• <mark></mark> •</td> <td>• • • • •</td>	Fructose and mannose metabolism	nino su	ntose	Blycan	A poly	teine	ginine	nine, i	A repl	uvate	locyto	rate cy	cleotic	teaso	inoac	rch an	quitin	colysis	VPK sig	imidin	idative	ine m	l cvcle	taboli	TAN	· • • • •		• <mark></mark> •	• • • • •
2 3 1 4 2 4 2 4 2 4	26 Fru								8 N								id U	_	_	-	_	-	_			0 0	• • • • • • •	• • • • •	v o v v o <mark>m o</mark> v
	CN	2	CN .	~	~	~	~	F	-	-	-	-	F	-	7	7	-					-							
87 (6 (0.1%)) 88 (5 (0.1%)) 90 (5 (0.1%)) 91 (5 (0.1%)) 92 (4 (0.1%)) 95 (5 (0.0%)) 96 (2 (0.0%)) 99 (2 (0.0%)) 101 (1 (0.0%)) 102 (1 (0.0%)) 102 (1 (0.0%)) 102 (1 (0.0%)) 103 (1 (0.0%)) 106 (1																										%0.0) %0.0) %0.0)	(%0.0) (%0.0) (%0.0) %0.0)	(0.1%) (0.1%) (0.1%) (0.1%) (0.0%)	(0.1%) (0.1%) (0.1%) (0.1%) (0.1%)
887 (6) 99 (5) 99 (5) 99 (5) 99 (2) 99 (2) 100 (1) 100																										103 (1 104 (1 105 (1	97 (2 98 (2 99 (2 100 (1 101 (1 102 (1	93 (4 93 (4 94 (3 95 (3 96 (2	88 (5 89 (5 91 (5 91 (5


Table S1.3. C S. cerevisiae Absent genes analysis with Pathways of KEGG

Each row represents a pathway, while each column represents a group from a given domain of life. The numbers shown in parenthesis on the first row of each column indicate the number of *S. cerevisiae* proteins that are absent in all organisms of the corresponding group. Rows numbered 1-106 represent each a pathway term. In each row, a green to red color scale indicates the similarity between the set of proteins associated to the KEGG pathway in *S. cerevisiae* and that of proteins commonly associated to all organisms from the kingdom or phylum. Green entries indicate high similarity (low absent), while red entries indicate low similarity (highly absence) of proteins between the two sets of proteins. The numbers in each entry indicate the number of *S. cerevisiae* proteins that are absent in all organisms from the groups represented in the columns.

(See the Table S1.3 C. on next page)

Saccharomyces cerevisiae as a Model Organism

			1																								_		_
) etosechneoneN::A3HD8A	t 429	Ê	† 0	8	88	\$ °	2 4	₹.	÷	~ i	<u>₽</u> 8	8	8	5 5	8.8	୧ଅ	\$	88	8 5	3 8	~	8 3	88	18	2 2	; e	2
		BACTERIA::Fusobacteria (4	1	360	2 ¢	50	25	2 8	2 2	37	8	*	R 8	8	8	<mark>=</mark> 23	~ \$	= צ	23	5	2 9	2 8	8	თ (∞ ç	2 8	≠ 5		œ
	((%Z8)ZZ:	84) stosedoreroX::A3HD8A	400	380	t 9	45	8	ਲ \$	20	₽.	8	* 4	<u>₽</u> ₩	4	8	6 Q	ωş	2 2	÷	8 3	7 ¥	2 #	8	φ (2	۲ 8	* 12	9	ω
	((%08) ZZ	RA CTERIA:: Tenericutes (47	3884	356	<u> </u>	8	\$	8 8	8 ~	\$	24	- 8	8 8	20	8	<mark>ہ</mark> 22	e 9	⊻ ∞	8	5 ×	¥ 0	2	8	~ (n 4	• 8	~ 5	9	4
	((%08) Z	LT4) sibymsid:::AI93TDA8	3874	347	≝ ≋	25	8	4 8	8 =	8	28	- 8	8 8	ω	8	5	÷.	<u>t</u> 8	8	54	+ ¥	=	8	•	n ∓	8	<mark>ه م</mark>	a i	ω
	C 604) B1933B0 300	BACTERIA::Hyperthermop (%0%)	3890	583 583	2 8	64	8	\$ i	5 10	₽	8	• 8	R 🛯	9	8	6 9	ю н	ο ω	8	8	> <mark>∓</mark>	. ∞	8	ы (2	2	~ 5	ی ا	4
		BACTERIA::Synergistetes (2887	302	30 36	52	69	\$	5 5	Ş	8	- 8	R 18	12	8	20		• •	8	5	= =		22	ی م	22 u	, S	<u>ه</u>	م ;	~
	((%ZZ) ZTSb	BACTERIA::Planctomyces (748	12	22 SS	4	52	4 8	8 00	35	25	+ 5	8 18	~	8	∞ 2	ω	. w	53	8	o 7		52	~ (2 ·	3 22	+ 5	ي	4
) sitetaedobioA::AI8ETDA8	87	246	N 00	~		~ <	e +		*		88			~ ~			23	~	о <u>с</u>	2 0	_		2 0		- 4		
			5 36	8		4				Ő	~				~														
	((%SZ) 80 77) snuuər	BACTERIA::Deinococcus-Tl	128	8	₫ 8	\$	46	8 8	5 *	8	\$	•	8 8	4	28	0	ω		23	20		! œ	22	ω	<u></u>	, 2		*	4
6	cteria (4393 (75%))	BACTERIA::Green sulfur ba	3674	248	84	\$	44	32	₹ +	8	3	•	ឌ ឌ	ß	8	e <mark>t</mark>	<i>с</i> (0 00	23	5	م ا	2 @	8	б (n °	3 1	0	*	4
(EG(((%t/L) E9	BACTERIA::Spirochete (436	3686	215	2 <u></u> 8	\$	46	8 5	8 e	8	₽	- 3	ន ន	4	8	2	ω		8	₽ ·	- «	•	8	~	<u>ہ</u> و	8	- 5	~	-
OF	((%ZL) 60Z1	AR CHEA:: Crenarchaeota (4	3623	235	<mark>54</mark> 24	59	#	₽ \$	8 0	8	₽	- 4	o o	+	8	0 0	• •	+ 10	₽	∞ 9	2 2	: 2	₽	ي ھ	e -	8	- 5	, N	e
AVS	((%tz) s6	14) sbenomolqiQ::T2IT099	3457	424	2 8	4	8	8	8 8	¥	8	*	_ ∞	27	ф 2	6	9 9	2 2	₽	55	= 8	} ⊨	8	₽ :	2 2	2 22	92 D	: <u>@</u>	5
THW		((%TZ)	541	203	92	42	43	5 2	t ω	8	₽	- 5	8 8	**	12	- 9		· +	8	8	14	0 0	22	<mark>ہ م</mark>	n 0	. 2	- 2		
H PA		PUNGI::Microsporidians (4) BACTERIA::Green nonsulfu	22	8	<mark>t 2</mark>			~ <	59 K	₽	27		o o		œ	21 LO	<u>ه</u> م	9 8	on l		<u>с</u> 5	! ±		+ /					
NITH			<u> </u>		N 6	4		N ≤ 1		-					-	~	~ ~	V (V				-		-					
NON-HOMOLOGY (ABSENT GENES) ANALYSIS WITH PATHWAYS OF KEGG		BACTERIA::Bacteroides (40		181	2 2	8	4	8 5	8 -	8	σ		5 R	4	28	÷ P			N	ф С	5 a		21		n c	Ň		*	-
IALY	((%29) 0 7 6E)	BACTERIA::Cyanobacteria	3325	190	5 P	8	44	8 3	\$ 0	8	₽	•	2	6	28	∾ <mark>₽</mark>	- •		22	4	- 1	œ :	8	<u> </u>	∞ -	2	- 8	0	0
s) Ar	((%99) 688E)	BACTERIA::Actinobacteria	3325	170	8 8	ŧ	\$	8 3	5 O	8	=	• (= z	+	\$	• #			8	<mark>⊊</mark> •	- «	o io	~	~	» -	8		~	N
ENE	((%59) 208	E) etoeedarchaeota (3	3307	187	<mark>7</mark> 8	5	42	£ 3	5 N	8	ŧ	• ;	± 0	6	36	0 6		- -	₽	∞ •	e و	2 00	8	+		2	- 2	4	0
NTG	((%£9) Z	895) sətucimif:::AIABTCA8	314.8	148	8 F	8	8	8 5	8 -	8	ω	• 2	8 8	+	38	e 🛱	ο,	- ~	N	£ .			8	•	+ -	2	0 8	•	-
ABSE	((%E9) s	3785) sd9omstn3::T2IT099	280	359	4	4	5	8 <mark>8</mark>	8 ≠	1~	5	** *	+ 22	24	ю	≈ ~	<u></u> 약 9	2 9	ę	е ;	<mark>ע</mark> ע		12	~ •	n ¥	2 =	험		
GY (J		((%29) 2795) АЗНОЯА	215 3	12	2 99	50 50	88	± 5	2 0	8	5	• ;	± φ	**	8	0 +		v 64	ø	φ	о т		4	+		2	- 9	2 01	~
olo	((%Z9) 9T	36) sbilles edereq::T2IT099		35	» <mark>≎</mark>	ę			R ≠	15	22	ы.	+ 2	54	ω	<mark>≭</mark> 0	<u>е</u> ;	± φ	6	. <mark>ہ</mark>	+ =	: QI	Ŧ	+	∞ ⊊	2 2	<u>∞</u> 7	ž	ω
MO		BACTERIA::Proteobacteria		े ह्यू ३	2 7	8			5 0	æ		• 5	8 E	~	5	ے م				<u>р</u>			₽					-	
H-NO		CLE) so zonalgu3::T2IT089	<u> </u>	5	+ 9 + 9	27			5 N	~	59	en s	• ₽	*	*	+ +	+ L	o 🛌	on la	=	4 V		2	.		5 2	~ 9	*	
		BACTERIA (2881 (49%))	-	5	2 K			8 5		24	*	-	± φ		8				0	<u>د</u>			16			9	- y	-	
S.cerevisiae	((∞/+)cc/z)s	9761936fbonsorD::T2IT089		4	- 5			£4 8			5	_				~ *				<u>د</u>			12		<mark>e</mark> .		+ ₽	,	
cere																													
). S.	((%217)	047S) səfdoəvlA::T2IT089	9 243	144	2 <u>1</u> 6	54	26	8	- ⁻	~	đ		· +	*	6	4 10		*	~	• •	5 H	• •	Ħ		2	- ²¹	- o	~	-
.3 (C	(РВОКАВҮОТЕS (2642 (45%)	2346	8 (2	4	8	= ⁸	s -	24	*	•	2 #	~	#	• *	. • •	• •	~	9 ×	-	• •	얻	•		9	0 2	-	•
ole 1	((% bb) E092) sp	PROTIST::Cellular slime mo	2355	125	8	÷	24	₽ 7	<mark>ی</mark> د	ю	9		× ~	~	-	- 10	- •	+ +	*	ω	- =	: w	÷	۰ a	* *	• ∓		4	N
y Tal	85 (44 %))	ZS) sm19bonit23::JAMINA	2309	137	2 8	*	50	9 9	2 S	ю	÷	5	v o	φ		е N	С. с.		ω	~ <	7	•	~	- 1	۰ ×	12		. <u>p</u>	~
intar	((%E1	4) 4 222) э6gle b9위::2TNAJ9	294	8.	- 22	₽	50	₽ 8	о 1	ю	2				ю		ω,	v (v	9	ω.	+ u	. +	**	N (, g	0 2	N	~
Supplementary Table 1.3 ((Incol)	0F2S) səbotsməN::JAMINA	88	<mark>. 5</mark>	N 8		5		3 +	10					_	N - 0	01	+								, "			
lqqu	-(()/02/)	2005) 2500 2000 2000 2000 2000 2000 2000	~	-			10	_																					
S			~	2	3 ×	8	61 		~ <mark>8</mark>																	Ű			
		9LANTS::Green algae (2519		8 <	N 8	12	24	• •	8 -	4	ຶ		° +	4	ις Γ			u • +	ŵ	ω (.		- 1	۰ -	ິ			-
	((%	904) TTES) atoeani::JAMIMA	2162		2 K	4	4	ω 8 8	8 8	4	5	•	- 0	~		5 +		ч ю	a		N C		-	- (0 F	- n		=	~
	((%ZE) S	8LS) sətərdətrəV::JAMINA	1995	8 <	2 2	ø	₽	ۍ م	₽ ∾	ю	9		N +			~ -	• •	- w		с ·			-	- <	N 6	۰ o	- 9	₽	-
		((%t/E) 82.02) 14WIN4	1867	8 ×	N Ø	σ	≠	+ 9	2 ~	4	2	•		~		~ +	•			с ·				-		9	- 9	•	-
		((%t/E) 82 ег) т 2110 яч	1860	\$	2 2	15	₽	ω	5 O	ю	15			-	-					ب م			-			6	- 9	*	•
	((%9Z) SZ	FUNGI::Basidiomycetes (15	1457	5	N 😂	ω		ۍ م		*		• •				• -			*										-
	((%s) a	282) ano belytooi (]:: 21 MAJ9	265					• •	+ 0	-	÷																• -		•
		((%S) 241) 2TNAJ9	132	ۍ ص		0		• •	N 0	-	•				•	• •	0.0	• •	0	- (• •		•
	((%Z'	FUNGI::Ascomycetes (10 (0																											•
		ниеі (то (от.))																											•
		елкאвтотеs (0 (0%))	_	•		•	•	• •		•	•	•		•	•	• •	• •	• •	•	• •			•	•			• •	•	•
	cy of siae und ss in netic s	cy of siae s G ys	.7%))	()	() ()					(()	(() ()	(()	<u>ę</u> ę	()	(()	@		Ş	((%	()	()	()	()	() ()	((%
	Frequency of S. cerevisiae genes found orthologs in phylogenetic groups	Frequency of S. <i>cerevisiae</i> genes distributed in KEGG pathways	((%1.17.1%))	(610 (10.4%))	3 (142 (2.4%)) 4 (115 (2.0%))	5 (89 (1.5%))	6 (76 (1.3%))	7 (69 (1.2%)) 7 (69 (1.2%)	((%6:0) cc) ((%8:0) 84)	10 (44 (0.7%))	(40 (0.7%)	(),7%) (),7%) (),7%)	((%9.0) cc) c1 ((%9.0) c2) c1	15 (33 (0.6%))	((%9'0) (2%))	17 (33 (0.6%)) 18 (30 (0.5%))	(%50) (0.5%)	((%5.0) 62) 03 ((%5.0) 62) 12	(0.5%)	23 (28 (0.5%)) 24 (26 (0.5%))	((%5'0) 27) 57	26 (27 (0.5%))	27 (23 (0.4%))	28 (23 (0.4%))	((%+)) 52) 62 30 733 (0.4%))	31 (23 (0.4%))	32 (22 (0.4%)) 33 (22 (0.4%))	34 (22 (0.4%))	35 (20 (0.3%))
	Fred S. C gen orth phyl g	Fred S. ce fi dist in pa	1 (45	2 (61	3 (14 4 (11	5 (89	6 (76	7 (69	cc) o	10 (4	11 (4	12 (3	14 (3-	15 (3	16 (3	17 (3 18 (3	19 (2	21 (2	22 (2	23 (2	24 (2	26 (2)	27 (2	28 (2	2) 67	31 (2)	32 (2 33 (7)	34 (2)	35 (2)

Supplementary Table S1.3 C [continued....]

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
No.
0 0
Note
000
IIIII111 <t< td=""></t<>
III<
0 0
Image: Sector
3 3 1 0 1 3 1 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0

Supplementary Table S1.3 C [continued....]

Chapter 2.

Table S1.4 A comparison of dynamic and adaptive responses of different organisms with S. cerevisiae

We find the organisms that are more distant to *S. cerevisiae* in **Figure 2.2-Figure 2.5**, (Supplementary **Figure S1.2-Figure S1.5**) with respect to some biological process also have phenotypic behavior that is more different from the yeast than those that are predicted to be closer with respect to that process.

Pathway/ Biological Process	Reference behavior in S. cerevisiae	Closer Organism	Behavior of process in closer organism	More distant organis m	Behavior of process in more distant organism
	Ideal temperature for Pheromone stimulated growth is between 24° C and 37° C. [100 , 101]			Candida albicans	Pheromone causes smoothing, the initial step in the mating process, only in a/a cells expressing the opaque phenotype. Does not grow at 37° C.
Cell wall organization	Glycosidase-I does not play role in outer chain formation or mannosylation and elongation of oligosaccharide residues in cell wall organization. [102 , 103]			Candida glabrata	Glycosidase-I or Glycosidase-II play important role in mobility of β -N- acetylhexosaminidase to initiate outer-N-chain elongation in cell wall organization.
Meiosis	<i>S. cerevisiae</i> has two silent mating cassettes (HML & HMR) and an active MAT locus. The morphogenesis is regulated by MAPK signaling pathway. [100, 104-106]	Candida glabrata	<i>C. glabrata</i> has two silent mating cassettes and an active MAT locus and undergoes mating-type interconversions via a Ho-type endonuclease, regulated by a MAP kinase cascade.	Candida albicans	<i>C. albicans</i> has one MAT locus and a mating-type pleiotropic switching event is required for mating to occur.

Table S1.4 [continued...]

Pathway/ Biological Process	Reference behavior in S. cerevisiae	Closer Organism	Behavior of process in closer organism	More distant organism	Behavior of process in more distant organism
Meiosis [continued]	Ideal temperature for Pheromone stimulated growth is between 24° C and 37° C. [100 , 101]			Candida albicans	Pheromone causes smoothing, the initial step in the mating process, only in a/a cells expressing the opaque phenotype. Does not grow at 37° C.
	Only diploid cells of <i>S. cerevisiae</i> shows bipolar budding pattern. [107 , 108]	Kluyveromyces lactis	Both haploid and diploid cells of <i>K</i> . <i>lactis</i> shows bipolar budding pattern.	Candida albicans	Axial budding pattern.
Pseudohyphal growth	Switching from axial to bipolar mode is required for germ tube emission. [108]	Candida albicans	Switching from axial to bipolar mode is required for germ tube emission because the mechanism requires a polar budding pattern.	Yarrowia lipolytica	Switch from axial to bipolar mode is not necessary because <i>Y. lipolytica</i> shows budding pattern in haploid and diploid form.
Thiamine metabolism	Thiamine biosynthetic pathway component plays dual role, cooperating with repair mechanisms in mitochondria. [109-111]	Arabidopsis thaliana	Thiamine biosynthetic pathway component probably plays dual role, cooperating with repair mechanisms.	Pseudomonas fluorescens	Thiamine biosynthetic pathway component does not play any role in repair mechanisms.

Table S1.4 [continued...]

Pathway/ Biological Process	Reference behavior in S. cerevisiae	Closer Organism	Behavior of process in closer organism	More distant organism	Behavior of process in more distant organism
	Haploid strain performs NHEJ efficiently and diploid strain performs NHEJ inefficiently. [112, 113]	Candida glabrata		Kluyveromyces lactis	NHEJ transcription is not regulated by cell type (both haploid and diploid show same efficiency in repair).
Non-homologous end-joining	Illegitimate recombination (IR) by NHEJ pathway occurs at rate of 1-5 transformants/µg [113]	Candida glabrata		Kluyveromyces lactis	Illegitimate recombination (IR) by NHEJ pathway occurs 1000 fold faster than in <i>S.</i> <i>cerevisiae</i> .
(NHEJ) recombination	IR mechanism is based on microhomology and the target site is near to the consensus sequence for TOP1 binding (Topoisomerase-1). [110, 114, 115]	Candida glabrata	IR mechanism is based on microhomology and the target site is near to the consensus sequence for TOP1 binding.	Kluyveromyces lactis	IR mechanism is not based on microhomology and the target site is not specific to the consensus sequence for TOP1 binding. [14, 59,70]
	Mitotic and ORF IR are equally compromised by HR (homologous recombination) and NHEJ. [113]	Candida glabrata	Mitotic and ORF IR are equally compromised by HR and NHEJ.	Kluyveromyces lactis	Mitotic (cell cycle error) IR occurs 6 folds more frequently than in ORFs (transcription error).

Table S1.4 [continued...]

Pathway/ Biological Process	Reference behavior in S. cerevisiae	Closer Organism	Behavior of process in closer organism	More distant organism	Behavior of process in more distant organism
Isoleucine biosynthesis	1-butanol production flux comes mostly from an intermediate of the isoleucine biosynthesis pathway produced through the use of threonine. [116-119]	Escherichia coli	1-butanol production flux comes mostly from an intermediate of the isoleucine biosynthesis pathway produced through the use of threonine.	Laptospira interrogans, Methanococcus jannaschii, Geobacter sulfurreducens	1-butanol production is only observed when threonine- mediated isoleucine biosynthesis is shut down and pyruvate mediated isoleucine biosynthesis is overexpressed. [5, 29, 56, 68]
One carbon pool by folate	One-carbon pool in cytoplasm required for synthesis of purines, thymidylate and regeneration of methionine. [120-122]	Rattus norvegicus	One-carbon pool in cytoplasm required for synthesis of purines, thymidylate and regeneration of methionine.	Arabidopsis thaliana	One-carbon pool in cytoplasm is only requiring for regeneration of methylation. It is not required for purine synthesis.

2.7.4. Supplementary File containing the ScCOGs

A text formatted file², in which, each *S. cerevisiae* proteins of the ScCOGs (see first column NCBI Reference ID), and its orthologs (rows) from the corresponding 704 organisms (columns) are provided. If any corresponding organism does not find ortholog of the reference *S. cerevisiae* protein, it is provided with dashed line.

2.7.5. Supplementary File containing the ScCHGs

A text formatted file³, in which, each *S. cerevisiae* proteins of the ScCHGs (see first column NCBI Reference ID), and its homologous (rows) from the corresponding 704 organisms (columns) are provided. If any corresponding organism does not find homologous of the reference *S. cerevisiae* protein, it is provided with dashed line.

2.8. Acknowledgments

We acknowledge the reviewer's work and thank him and the editor for helping us focus this work and improve its quality.

2.9. Author Contributions

Conceived and designed the experiments: HK, RA.

Performed the experiments: HK, RA.

Analyzed the data: HK RA EV AS.

Contributed reagents/materials/analysis tools: HK, RA.

Wrote the paper: HA, RA, EV, AS.

² The text file is available in the CD with file name "ScCOGs.txt".

³ The text file is available in the CD with file name "ScCHGs.txt".

Chapter 3. A human centric comparison of eukaryotic proteomes

Chapter 3. A human centric comparison of eukaryotic proteomes: Implications for the study of human biology

3.1. Abstract

In Chapter 2 we proposed a methodology to assist in the choice of appropriate model organisms for the study of specific biological processes and networks in large classes of organisms. We applied that methodology to analyze the adequacy of *S. cerevisiae* as a model to study various biological phenomena at the molecular level.

In this chapter we apply the same methodology to study the human proteome and compared it to that of other eukaryotes with fully sequenced genomes in order to reveal the unique differences between humans and other organisms at the protein level. A more detailed analysis of the comparison between the proteomes of primates reveals both, proteins that are unique to humans and which primates appear to be more closely related to human with respect to the sets of proteins associated to various biological phenomena.

We find that the proteome of gorilla is functionally closer to that of human than the chimp and monkey proteomes. In addition, at the sequence level, a significant fraction of the proteins of gorilla are more similar to those of human than the corresponding orthologs from chimp proteins. Our analysis also identifies which animals could be good model organism to study of the physiology of different human tissues, such as brain, bone and muscle. We also identify lower eukaryotes that could be good models to study different aspects of human biology. For example, *C. elegans* is likely to be suitable for studying EGFR mediated MAPK pathways regulatory processes.

3.2. Introduction

"Cogito ergo sum." [123] With this short sentence Descartes was in a way trying to answer the question of what makes human different from other living beings. In recent years Descartes views have been somewhat disputed by Damasio, which placed more emphasis on the synthesis of reason and emotion [124]. In both cases the brain and its activity is placed at the center of what makes us different from other organisms. However, recent studies in animal metacognition make it apparent that some animals are capable of abstract reasoning, tool building and using, and making social and emotional ties that are similar to those made by humans [125-129]. Therefore, the question of what makes humans human is still very much under debate.

An answer to the question of what makes us unique is more likely to be found in the combination of physiological and developmental processes that allow human being to exist and survive. Understanding the molecular mechanisms that lead to such uniqueness will require identifying the differences between humans and other organisms at the molecular level. Such identification can only be done by systematically comparing the molecular components of human to those of other species. Given the availability of full genome sequences for more than 1000 different species, comparative genomics allows us to perform these comparisons. In addition, such comparisons will also provide information about the emergence and evolution of the differences one will find [19, 130-134].

Many of the important differences found between the different genomes exist at the regulatory level, in parts of the genomic sequences that do not code for expressed genes [135-140]. However, another part of the differences is also bound to be found in the varying set of proteins encoded in each genome and in the functional interactions that occur between the proteins coded in those genes [141-145].

Hence, comparing the complete proteome of humans to that of other organisms with fully sequenced genomes is bound to identify the protein(function)s that are specific to human. In addition, because functional annotations also associate proteins to specific biological processes and circuits, one can also get a measure of the differences between other organisms and humans with respect to those processes and circuits [146]. Such a human-centric proteome comparison is likely to identify some of the molecular components and processes that make us what we are.

In addition, it will also identify those organisms that are likely to be more similar to us with respect to important biological processes and circuits, by pinpointing the species with a set of proteins involved in those processes and circuits that is the most similar to the corresponding human set. This has immediate implications for the understanding of human biology and biomedicine. If one knows the set of human proteins involved in specific biological processes or pathologies, one can then identify the organism with the set of proteins that is more similar to that of humans. This organism or set of organisms are then likely to be reasonable models to study that pathology [**147**].

A study such as the one described in the previous paragraph requires performing several tasks. First, one should consider individual protein function. Then, one should consider the processes, pathways, and circuits in which each protein is involved, thus defining the sets of proteins for each process. Afterwards, and because not all organisms have the same quality and exhaustiveness in the functional annotation of their proteomes, one should also have a way to transfer functional annotation from the better annotated organisms to the others. Finally, one should be able to integrate all this information and study how these functions are conserved between the different organisms.

In this paper we performed such a human centric proteome comparison between 55 eukaryotic organisms with fully sequenced genomes. To do so we downloaded different levels of functional annotation for the human proteome, and developed methods to integrate the different levels and transfer that annotation, when needed, to other organisms.

Performing such transfer at a multigenomic scale can only be effectively done through sequence comparisons. Using BLAST, we systematically compared the proteome of humans to that of other eukaryotes with fully sequenced genomes. Through these comparisons we were able to identify the proteins that are unique to humans, and establish ranks of similarity between the sets of proteins involved in different biological processes and circuits in humans and in the other eukaryotes. We identify what is unique of the human proteome with respect to different eukaryotic organisms and clades and pinpoint the most likely eukaryotes to be good model organisms in which to study specific biological processes and phenomena that have biological and biomedical relevance.

3.3. Results

As stated above, the goal of this work is to identify what unique in the human proteome and in its sets of proteins, associated to different biological processes and phenomena. To do so we start by systematically comparing the complete human proteome to that of 54 other eukaryotes with fully sequenced genomes (Figure 3.1). This is done by BLASTing the human proteome with each of the other proteomes and separating the results into four main groups: clusters of Absent (A) proteins that are unique to each of the organisms with respect to human; clusters of general homologues (S), which include proteins that have at least some low sequence similarity to a given human protein; clusters of exclusive Homologues (H), which include proteins that only have low sequence similarity to a specific human protein; clusters of general orthologs (Og), which include proteins that have strong similarity to a specific human protein in at least a fraction of its sequence; clusters of Domain orthologs (D), which have strong similarity to a specific human protein only in a fraction of its sequence; and clusters of Orthologs $(\mathbf{0})$, which have strong similarity to a specific human protein over the entire length of both proteins. In addition, clusters of Functional Orthologs (FO) were further identified and analyzed within the *O*-clusters. *FO*-clusters are subset of the *O*-cluster that contains only one human protein and at most one protein from each of the other eukaryotes. This protein is deemed to be the most likely functional ortholog of the human protein in the relevant eukaryote, based on similarity of the sequences. Other proteins that pass the filtering procedure to identify likely functional orthologs (see methods) are considered to be paralogs and analyzed in a protein duplication study (see below). The procedure to identify the different types of clusters is summarized in Figure 3.1.

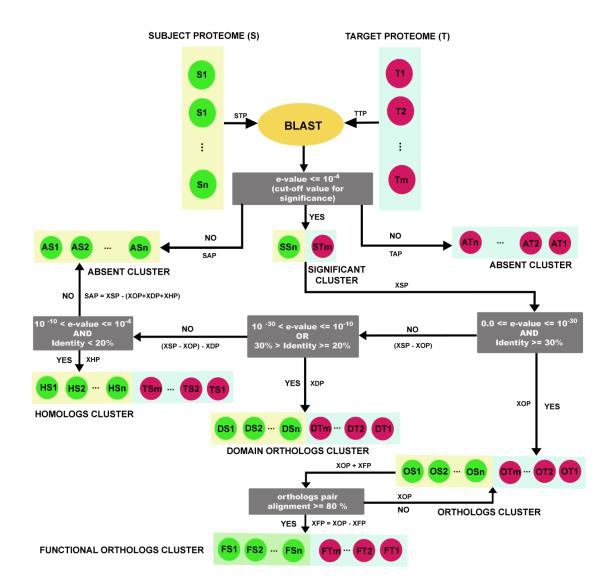


Figure 3.1 Method for the human centric proteome comparisons - The human proteome is blasted against the proteome of each organism from Table 3.1. Protein from one proteome that do not match any protein in the other proteome with $e - value \ge 10^{-4}$ are declared as being absent in the later proteome (A-clusters). If a match with $e - value < 10^{-4}$ the pair is added to an S-cluster. S-clusters are further categorized into H-clusters (protein pairs that match with $10^{-4} < e - value \le 10^{-10}$), D-clusters (protein pairs that match with $10^{-10} < e - value \le 10^{-30}$ OR 20% \le sequence identity < 30%), O-clusters (protein pairs that match with $e - value \le 10^{-30}$, AND 30% \ge sequence identity) FO-clusters (the human-target protein pair with highest sequence similarity in a given O-cluster, that align $\ge 80\%$ to the total length human protein). See results and methods for details. For each abbreviation terms of the figure, see Box 3.1 in the next page.

Box 3.1	
SAP – Absent Proteins in Subject proteome (S)	TAP – Absent Proteins in Target proteome (T)
SSn – 'n' number of significant proteins in Subject.	<i>TSm</i> – 'm' number of significant proteins in Target.
DSn – 'n' number of Domain ortholog proteins Subject.	DTm - 'm' number of Domain ortholog proteins in Target
<i>HSn</i> – 'n' number of Homologous proteins in Subject.	HTm – 'm' number of Homologous proteins in Target
OSn – 'n' number of Ortholog proteins in Subject.	OTm – 'm' number of Ortholog proteins in Target
<i>FSn</i> - 'n' number of Functions ortholog proteins in Subject.	FTm - 'm' number of Functional ortholog proteins in Target
ASn - 'n' number of Absent proteins in Subject.	ATm – 'm' number of Absent proteins in Target
<i>XSP</i> – Pairs of Significant Proteins, ($\mathbf{X} = SSn \leftrightarrow STm$).	<i>XFP</i> – Pairs of Significant Proteins, $(X = FSn \leftrightarrow FTm)$
<i>XOP</i> – Pairs of Ortholog Proteins (X = $OSn \leftarrow \rightarrow OTm$).	XDP – Pairs of Domain ortholog Proteins ($X = DSn \leftrightarrow DTm$)
<i>XHP</i> – Pairs of Homologous Proteins ($\mathbf{X} = HSn \leftarrow \rightarrow HTm$)	

3.3.1. Large Scale Proteome Comparisons

As one would expect, the proteome of human is most similar to that of other vertebrates. The vertebrate with a proteome having the least similarity to that of human is the African clawed frog. 28% of all human proteins are absent in this animal. In contrast, only 7% of the frog's proteins are absent in human. On the opposite end of the scale, and to our surprise, gorilla has the proteome that is the most similar to that of human. 97% of the human proteins have at least one homologue in gorilla. In addition, only 5% of the gorilla proteins are absent in the human proteome.

The non-vertebrate animal with a proteome that is closest to that of human is *Drosophila melanogaster*, while the multicellular animal with the least similar proteome is *Brugia malayi* (filaria). Only 64% of the human proteins have at least one homologue in *B. malayi*, while 40% of this organism's proteins are absent in human.

In decreasing order of proteome similarity with respect to humans, the eukaryotic clades are: Animals, Fungi, Plants and Protista. *Giardia lamblia* is the eukaryotic organism with a proteome that is the most dissimilar to that of human, with only 15% of its proteins being present in human. Interestingly, only 1250 human proteins form *S*- clusters that include sequences from all 55 eukaryotes (see **Figure 3.2. B**). In addition, 180 proteins are unique to human and absent in all other eukaryotes. Details can be found in **Figure 3.2-Figure 3.5**, and in Supplementary **Figure S2.1**.

(See the Table 3.1 and Figure 3.2 on following pages)

Table 3. 1Human centric comparison of full proteomes for 54 eukaryotes with fully sequenced
genomes. 20125 human proteins were considered. Columns: HSP – number of human proteins making S-
clusters with the proteome of the target organism. HTP – total number of human proteins. TTP – total number
of proteins in target genome. HSP – number of human proteins making S-clusters with the proteome of the
target organism. TSP – number of target proteins making S-clusters with the proteome. HFP – number
of human proteins making FO-clusters with the proteome of the target organism. TFP – number of target
proteins making FO-clusters with the proteome of the target organism. TPP – number of target proteins making Og-clusters
with the proteome of the target organism. TOP – number of target proteins making Og-clusters with the human
proteome. HDP – number of human proteins making D-clusters with the proteome of the target organism. TDP
– number of target proteins making D-clusters with the proteome of target proteins making H-clusters with the proteome of the target organism. TPP – number of target proteins making H-clusters with the proteome of the target proteins making H-clusters with the proteome of target proteins making H-clusters with the proteome of target proteins making H-clusters with the proteome.

Chlamydomonas reinhardtii

Dictyostelium discoideum (cellular slime mold)

Monosiga brevicollis

Trypanosoma cruzi

Entamoeba histolytica

Tetrahymena thermophila

Trvpanosoma bruce

Plasmodium yoelii

Leishmania major

Theileria annulata

Theileria parva

Giardia lamblia

Trichomonas vaginalis

Plasmodium falciparum 3D7

Cryptosporidium parvun

Cryptosporidium hominis

Table 3.1

HDP HAP TDP THP OrgName HTP HSP HFP HOP HHP TTP TSP TFP TOP TAP Phylum Domain 25680* Homo sapiens (human) ANIMAL Vertebrates Gorilla gorilla ANIMAL Vertebrates Mus musculus (mouse) ANIMAL Vertebrates Pan troglodytes (chimpanzee) ANIMAL Vertebrates Rattus norvegicus (rat ANIMAL Vertebrates Macaca mulatta (rhesus monkey) Vertebrates ANIMAL Ros taurus (cow ANIMAL Vertebrates Canis familiaris (dog ANIMAL Vertebrates ANIMAL Danio rerio (zebrafish) Vertebrates Monodelphis domestica (opossum) ANIMAL Vertebrates Xenopus tropicalis (western clawed frog) ANIMAL Vertebrates Drosophila melanogaster (fruit fly) ANIMAL Insects Xenopus laevis (African clawed frog) Vertebrates ANIMAL Drosophila pseudoobscura pseudoobscura Insects ANIMAL Aedes aegypti (yellow fever mosquito) Insects ANIMAL Strongylocentrotus purpuratus (purple sea urchin) Echinoderms ANIMAL Caenorhabditis elegans (nematode) ANIMAL Nematodes Brugia malayi (filaria) Nematodes ANIMAL Neurospora crassa FUNGI Ascomycetes Aspergillus nidulans FUNGI Ascomycetes Basidiomycetes Laccaria bicolor FUNGI FUNGI Aspergillus orvzae Ascomycetes Cryptococcus neoformans B-3501A FUNGI Basidiomycetes Debaryomyces hansenii FUNGI Ascomvcetes Schizosaccharomyces pombe (fission yeast) FUNGI Ascomycetes Pichia stipitis FUNGI Ascomycetes Candida glabrata FUNGI Ascomycetes Fusarium graminearum Ascomycetes FUNGI Cryptococcus neoformans JEC21 Basidiomycetes FUNGI Ustilago mavdis **Basidiomycetes** FUNGI Magnaporthe grisea Ascomycetes FUNGI Kluvveromvces lactis FUNGI Ascomycetes Saccharomyces cerevisiae (budding yeast) FUNGI Ascomvcetes Candida albicans FUNGI Ascomycetes FUNGI Encenhalitozoon cuniculi Microsporidians Arabidopsis thaliana (thale cress) PLANTS Dicotyledons Oryza sativa japonica (Japanese rice) PLANTS Monocotvledons Ostreococcus lucimarinus PLANTS Green algae Cyanidioschyzon merolae Red algae PLANTS

PLANTS

PROTISTS

PRO TIS TS

PRO TIS TS

PRO TISTS

PRO TISTS

PRO TISTS

PRO TISTS

PRO TISTS PRO TISTS

PROTISTS

PROTISTS

PRO TIS TS

PROTISTS

PROTISTS

PRO TISTS

Green algae

Choanoflagellates

Cellular slime molds

Euglenozoa

Entamoeba

Euglenozoa

Alveolates

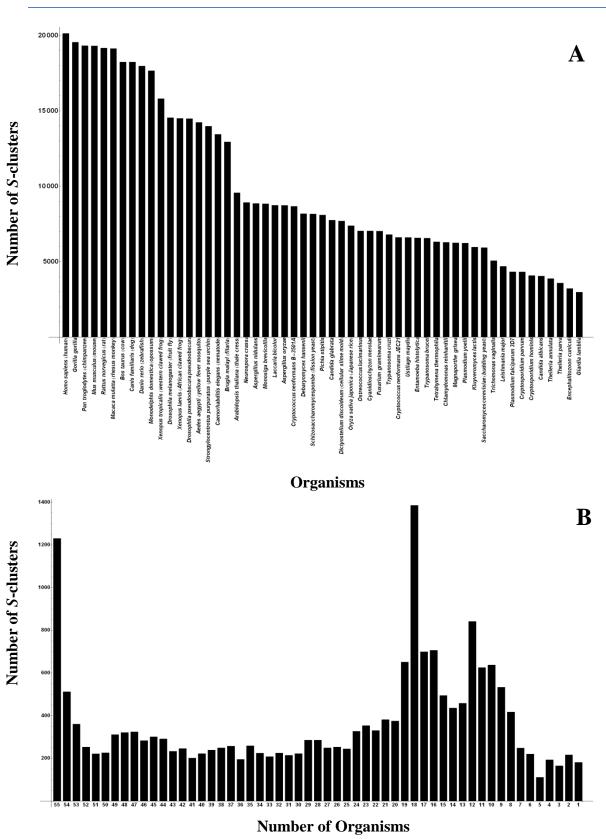
Alveolates

Parabasalids

Euglenozoa

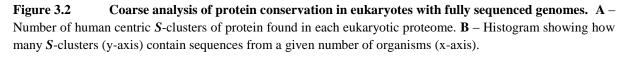
Alveolates

Alveolates

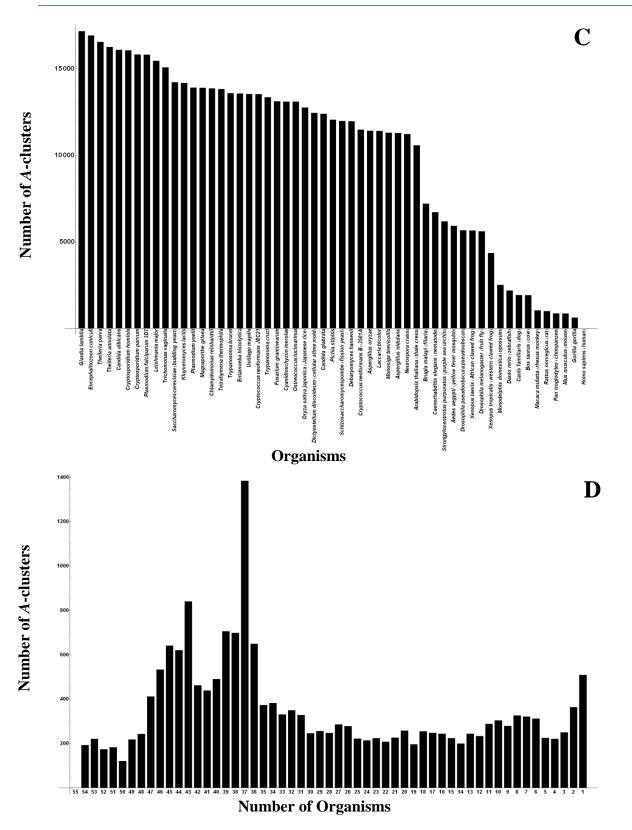

Alveolates

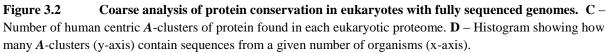
Alveolate

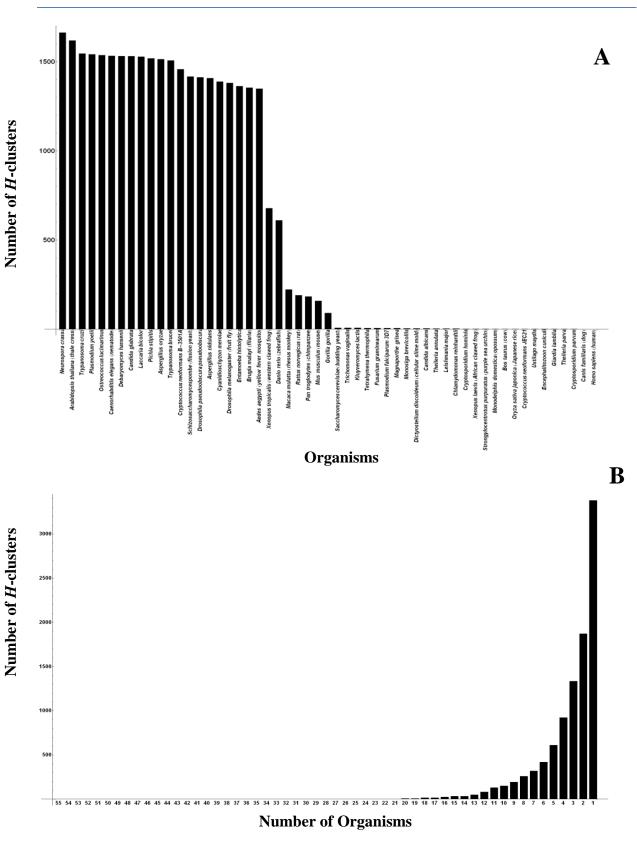
Alveolates


Diplomonads

*The complete downloaded human proteome had 25680 proteins. This number reduces to 25125 non/redundant proteins acording to the November 2011 genome version deposited in NCBL




Chapter 3. A human centric comparison of eukaryotic proteomes



3.3.2. Large Scale Comparison of Clusters of Homologues

To study conservation of proteins at high granularity, we analyze the set of protein pairs in the S- and H-cluster sets. The protein pairs from the first set have a reciprocal BLAST hit with $e - value \le 10^{-4}$ in the pairwise comparison between the human and the target proteomes. This includes all protein pairs that have some level of sequence conservation, whether that level is high or low. The protein pairs from the second set have a reciprocal BLAST hit with $10^{-10} \le e - value \le 10^{-4}$ and thus are only distantly related. Because this criterion is not very stringent, one finds proteins that only have at most the same general function within a given *H*-cluster. For example, oxidases with different substrate and product specificities would most likely be found in the same *H*-cluster. Therefore a comparison of *H*clusters between proteomes will only provide information about functional conservation at a high level of granularity. A plot of the number of S-clusters vs. the number of organisms included in those clusters is shown in Figure 3.2. Approximately 1200 human proteins form S-clusters with all eukaryotes. Another set of approximately 1400 proteins forms S-clusters with all 18 eukaryotes, amongst them, Monodelphis domestica (opossum) form the highest number of significant clusters with human proteins (1368), while an additional 6 proteins form S-clusters with all Fungi and Protists.

To analyze the human proteins that only have distant relatives in the other eukaryotes we plot the number of *H*-clusters *vs*. the number of organisms included in those clusters (**Figure 3.3**). No human protein forms *H*-clusters with more than 21 eukaryotes and only 2 human proteins form *H*-clusters simultaneously with the 21 eukaryotes. Approximately 3400 human proteins simultaneously form *H*-clusters with at least one eukaryote, amongst these, 23% proteins with Protists, 18% proteins with Plants, 14% proteins with Fungi and 44% proteins with Animal forms the *H*-clusters. The two organisms with the highest number of proteins forming *H*-clusters with the human proteome are *Neurospora crassa* (627 proteins forming clusters with 1664 human proteins) and *Arabidopsis thaliana* (1922 proteins forming clusters with 1619 human proteins).

Figure 3.3 Coarse analysis of protein conservation in eukaryotes with fully sequenced genomes. A – Number of human centric *H*-clusters of protein found in each eukaryotic proteome. **B** – Histogram showing how many *H*-clusters (y-axis) contain sequences from a given number of organisms (x-axis).

3.3.3. Large Scale Comparison for Clusters of Domain Orthologs

To study conservation of protein function at intermediate granularity, we analyze both the *Og*- and the *D*-clusters. *Og*-clusters include all protein pairs that have a reciprocal BLAST hit with $e - value \le 10^{-10}$. These protein pairs have a closer sequence relationship than that for the *H*-cluster pairs. *D*-clusters include all protein pairs that are matched with $10^{-30} \le e - value \le 10^{-10}$ and an identity between 20% and 30%. These exclude all protein pairs that are more likely to be true functional orthologs.

Because the criteria defined for both clusters are more stringent than those defined for the S- and H-clusters, we expect to find proteins that have functions that are somewhat more similar than those found in S- and H-cluster. Therefore a comparison of Og- and D-clusters between proteomes will provide information about functional conservation at an intermediate level of granularity.

A plot of the number of Og-clusters vs. the number of organisms included in those clusters is shown in **Figure 3.4**. Approximately 1200 human proteins simultaneously form Og-clusters with all eukaryotes. Another set of approximately 1400 proteins forms the highest number of of Og-clusters simultaneously with 18 eukaryotes. Approximately 3400 human proteins simultaneously form *H*-clusters with atleast one eukaryote. 214 human proteins found unique to human that do not form Og-clusters with any of the eukaryotes.

To analyze the human proteins that only have relatives in the other eukaryotes at the D-cluster level, we plot the number of D-clusters vs. the number of organisms included in those clusters (**Figure 3.5**). On average, 13% human proteins form D-clusters with any given eukaryotic organism. *Caenorhabditis elegans* (Nematode) is the organism with the highest fraction of D-clusters, at 21% of the human proteome, whereas gorilla is the organism with the lowest fraction of D-clusters, at only 2% of the human proteome. Only 3 human proteins form D-clusters simultaneously with 49 eukaryotes. 2600 human proteins form D-clusters with an eukaryote. Amongst these, 72% form D-clusters with one animal, 4% of the proteins form D-clusters with a Plant, 7% of the proteins form D-clusters.

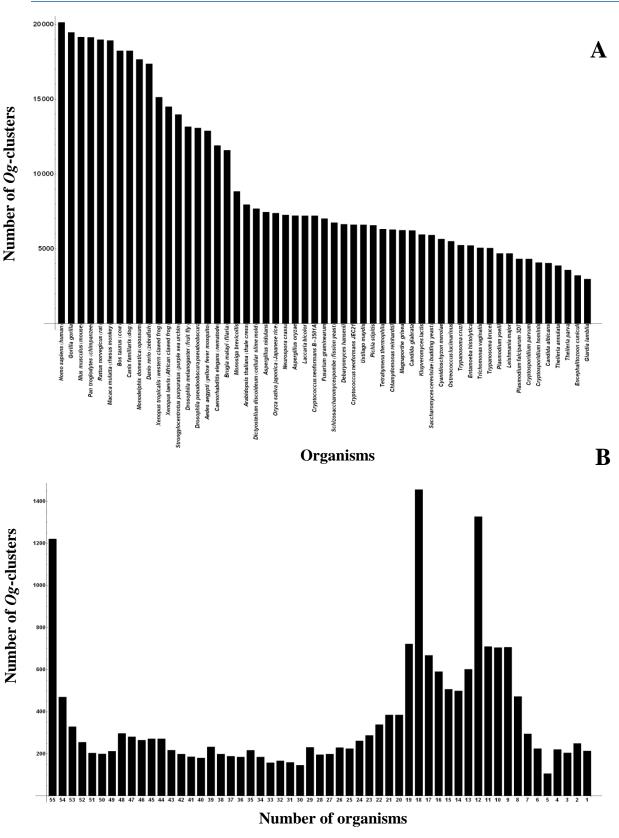
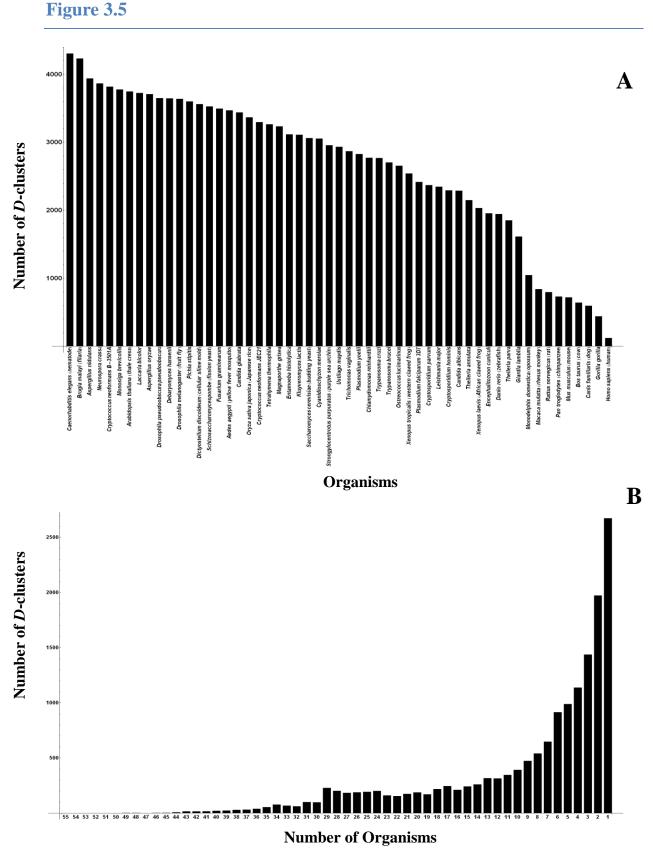
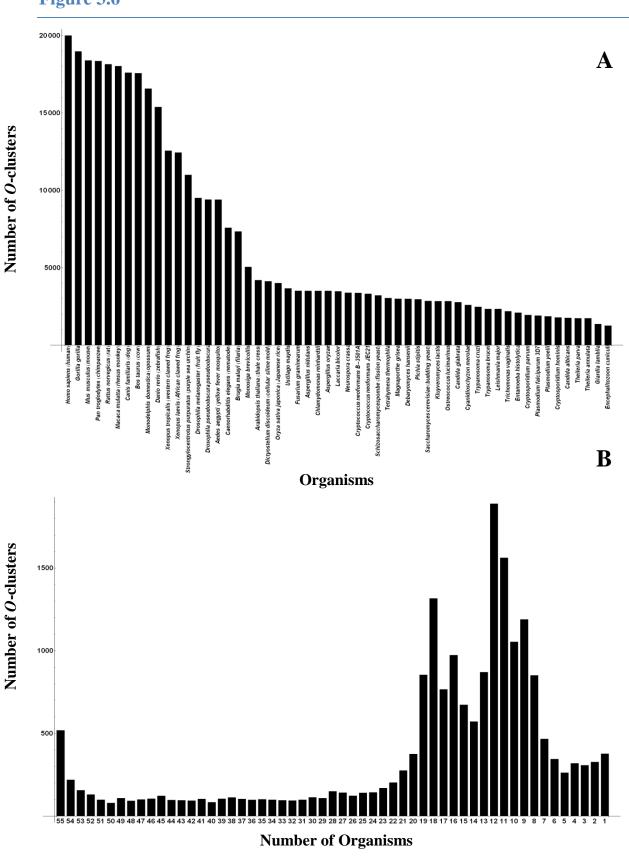



Figure 3.4 Analysis of protein conservation in eukaryotes with fully sequenced genomes. A – Number of human centric Og-clusters of protein found in each eukaryotic proteome. B – Histogram showing how many Og-clusters (y-axis) contain sequences from a given number of organisms (x-axis).

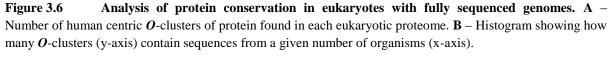
Figure 3.5 Analysis of protein conservation in eukaryotes with fully sequenced genomes. A – Number of human centric *D*-clusters of protein found in each eukaryotic proteome. **B** – Histogram showing how

many **D**-clusters (y-axis) contain sequences from a given number of organisms (x-axis).


3.3.4. Large Scale Comparison for Clusters of Orthologs

To study conservation of protein function at low granularity, we analyze the *O*-clusters. *O*-clusters include all protein pairs that have a reciprocal BLAST hit with $e - value \le 10^{-30}$ and an identity equal to or larger than 30%. True functional orthologs are included in these clusters.

Approximately 500 human proteins form *O*-clusters with all eukaryotes, while 380 human proteins form no *O*-clusters with any other eukaryotes (**Figure 3.6**). Approximately 9% of all human proteins form *O*-clusters with all animals. Somewhat surprisingly, both gorilla and mouse proteins form a larger number of *O*-clusters with human proteins than chimp proteins. On the opposite side of the scale, *Giardia Lambia* and *Encephalitozoon cuniculli* form the smallest number of pairs in the *O*-clusters with the human proteome.


3.3.5. Large Scale Comparison for Clusters of Functional Orthologs

Finally, we study the *FO*-clusters. These clusters include only those protein pairs that are more likely to be true functional orthologs between humans and the organism of interest (see methods). The same number of human protein form *O*- and *FO*-clusters (**Figure 3.6**). The difference is that while *O*-clusters can include more than one hit between a human protein and the proteome of the eukaryote being analyzed (or vice versa), *FO*-clusters will include only the best of these hits. *FO*-clusters can be compared to *O*-clusters in order to get a picture of functional duplication and evolution between human and the other eukaryotes. We do so in more detail below.

Chapter 3. A human centric comparison of eukaryotic proteomes

3.3.6. Large scale comparative analyses of functional conservation

Because proteins in the *FO*-clusters are those that are more likely to have the same function in different organisms, these clusters permit studying functional conservation between organisms at a higher confidence level. This enables identifying the best alternative organism(s) on which to study a given process that cannot be studied, for whatever reason, in human. Such identification relies on the assumption that the dynamics and regulation of a given process will be the most similar between organisms whose set of proteins involved in the process is the most similar [147, 148].

To perform this type of analysis we first downloaded the functional annotation for the human proteome with respect to: (I) GO (Gene Ontology) categories i.e., biological processes, molecular functions and localizations [149], (II) catalytic proteins (Enzymes), (III) substrate proteins, that are modified by enzymes in signaling pathways [150], (IV) receptors [151-153], (V) ligands [152], (VI) proteins that are involved in various biological circuits [154], and (VII) human proteins that specifically express in tissues or organs [155].

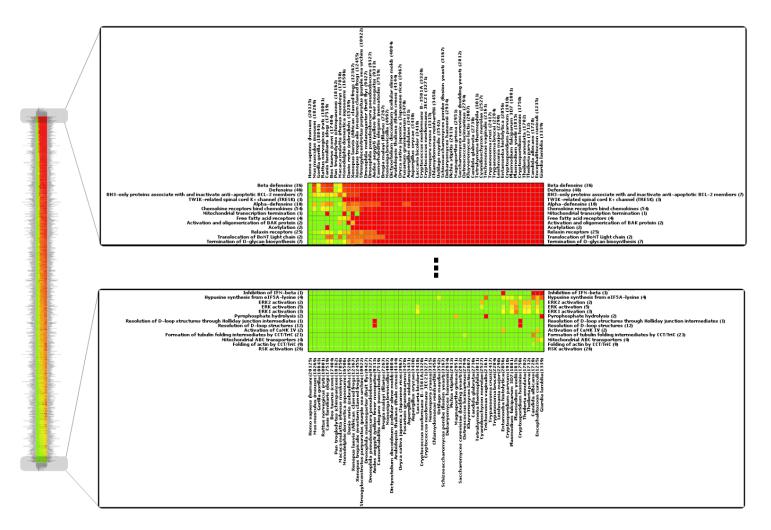
Then, to compare the differences between the set of proteins involved in a given process or circuit between humans and other eukaryotes we proceeded in the following way. First, we identified the set of proteins involved in the process, both in humans and in the other eukaryotes. Second, each protein function was coded as an element in a vector of functions. Third, the vector of the protein functions was compared between human and the relevant eukaryotic organism of interest, by calculating the Normalized Hamming Distance (*NHD*) between the human and eukaryotic vectors (see methods for details). The smaller this distance is, the more similar the relevant sets of proteins being compared are. Finally, organisms were ordered by increasing order of average *NHD*, considering all functional categories. Results are summarized in **Figure 3.7**.

Interestingly, gorilla is, on average, the organism with proteins sets associated to specific biological processes that are more similar to those of human. Mice, rats, and chimps also have protein sets that are quite similar to those of human, as have other animals. On the opposite end, *G. lamblia* is the organism in which the smallest fraction of human proteins forms *FO*-clusters.

The functional category with the highest degree of protein conservation between human and each of the other eukaryotes is that of catalytic proteins, followed by the substrate proteins functional category. Conservation of protein functions in this set is very high among animals, and decreases between animal and more distant phyla, suggesting that the metabolism of animals is, in general terms, quite similar. In fact, the fraction of human proteins from the catalytic protein set that is absent from all other eukaryotes is minimal (<15% of the total human catalytic proteins; [results not shown]).

In contrast, functional categories receptors, immunologic proteins, and ligands have the lowest degree of protein conservation between human and the other eukaryotes. This argues for the specificity of these proteins and for their importance in making humans different from other organisms.

We now focus our analysis of functional conservation on specific sets of human proteins that are involved in a few important biological processes and categories. These processes and categories were chosen for their involvement in the following important biological phenomena:


- (a) Tissue specific roles,
- b) Regulating interactions with the environment (ligands and receptors),
- c) Association with specific phenotypic responses in health and disease.

To perform that analysis at a high level of confidence we focus on the *FO*-cluster, because the pairs of proteins in these clusters are the likeliest to be functional orthologs.

3.3.7. Conservation of the human tissue-specific proteome

In this analysis we can a) identify organisms that might be appropriate models to study tissue specific diseases, and b) provide a protein centric view of how tissue-specific functionality evolved in eukaryotes.

For example, proteins that are specific to the olfactory tract have some degree of conservation in a large fraction of eukaryotic organisms (**Figure 3.7** and Supplementary **Figure S2.2**). The proteins annotated as being specific to these tissues are few. Such conservation is further indication that the mechanisms for nutrient detection and environmental recognition evolved from an original rudimentary set of proteins, as suggested in [130].

Figure 3.7 Summary of protein conservation for the human proteome associated to specific tissues. Each column summarizes the results for an eukaryotic organism. Each row summarize summarizes the results for a broad functional category of the proteome. The greener the square, the more similar the protein set associated with the functional category of the row in the organism of the column is to the correspondent human protein set. The redder the square, the less similar the protein set associated with the functional category of the correspondent human protein set. The redder the square, the less similar the protein set associated with the functional category of the analysed in Supplementary Figure S2.2.

Human "tissues" with large specifically associated proteomes that have the highest degree of conservation in eukaryotes are the lacrimal gland (452 proteins) and tears (459 proteins). The proteins from these "tissues" have functional orthologs in all animals and some lower eukaryotes. Interestingly, functional orthologs for the human proteins CACNA1D, KCNH4, KCNN3, and PRR4 are present in all animals but the African clawed frog.

The first three proteins regulate calcium and potassium channels and their activities, while the last appears to play a role in protecting the human eye [156]. The pattern of conservation for PRR4 suggests that the eye-protection systems may have evolved in frogs in ways that are different from other animals. Consistent with that view is the fact that the

secretory glands frogs have behind their eyes produce venomous liquids that protect them from predation and are absent in vertebrates [157, 158].

The set of proteins associated with most types of reproductive tissues of humans is highly conserved in mammals. For example, PAEP progestagen-associated endometrial protein (gene id 5047) is conserved in all mammals. This is a glycoprotein that contributes for making the uterine environment suitable for reproduction and is used for predicting pregnancy following an IVF (*in-vitro* fertilization) cycle [159]. In contrast, protein sets from the urethra, the human scalp, and the seminal vesicle are only highly conserved in primates.

Overall, Gorilla and monkey are the animals that share the largest fraction of common *FO*-clusters for each tissue specific protein set. This was somewhat surprising, as we were expecting that role to fall on chimps. On the other hand, as expected, *Giardia lamblia* is the organism that contains less functional orthologs that are specifically annotated in human tissues.

There are some interesting differences between primates with respect to conservation of some individual proteins. For example GHRL (ghrelin/obestatin prepropeptide, gene-ID: 51738) is annotated as being specifically expressed in vena cava. This proteins is absent in chimps and present in the other primates. It regulates growth hormone release and is involved in inhibiting thirst and anxiety [160]. It is also a good marker for studying type-2 diabetes [150], ischemic stroke [161], cardiovascular functions [162] and Rett syndrome [160]. Its absence in chimp could be telling us that the other primates would be better models to study some aspects of those diseases.

There are also proteins that are specific to human alone. For example, the STATH statherin protein (gene-ID: 6779) from the enamel pellicleis absent at the *FO*-cluster level from all non-human eukaryotes. This protein appears to be crucial in the maintenance of tooth enamel integrity and health. It is involved in lubrication, maintenance of mineral homeostasis, and early phases of microbial colonization [148]. Our result suggest that studies involving this protein should be done in humans because it is absent from other eukaryotes.

3.3.8. Conservation of the human ligand/receptor-specific proteome

A set of ligand and receptor proteins was previously identified and annotated [156]. We further added information of textual annotations to this set of proteins by manually searching

for the terms "receptor", "receptor associated", "ligand" and "ligand associated" in the text of annotated human protein entries in NCBI. By analyzing the conservation of these human proteins in other eukaryotes we gain perspective about how different human cells are from those of other eukaryotes with respect to signal sensing and response and about how these processes may have evolved in eukaryotes. This is so because this set of proteins can be taken as a proxy of the mechanism that human cells use to sense and respond to environmental cues.

By and large, proteins involved in MAPK and TOR signaling, in AKT1 apoptotic pathways, in heat shock response, and in myosin mechanic-sensing are conserved in the eukaryotic domain (**Figure 3.8** and Supplementary **Figure S2.3** and **Figure S2.4**). The DOCK family of dedicator proteins, involved in cytokinesis is present in all animals but not in the African frog. Other proteins that are specific to mammals are TLR4-like receptors, some interferons and interleukins, and other immune system related proteins.

The most conserved receptor in all eukaryotes is TNF receptor associated protein 1 (gene-ID: 10131). In contrast tumor necrosis factors have a variety of conservation patterns. TNFRSF17, which plays roles in cell survival and proliferation, B-cell maturation and inflammation [163], is conserved in human, gorilla, mouse and rat, whereas TNFRSF10A and TNFRSF10B are conserved in gorilla, cow, monkey, mouse and chimpanzee. TNFRSF10C and TNFRSF10D, which mediate stress induced apoptosis [164], are present in gorilla, cow, monkey, and chimpanzee. This result suggests an intricate evolutionary pattern for TNF families in vertebrates that could be associated with specialized functions for each TNF. This view is consistent with previously reported results about the diversification of function in TNF families [165]. Some experimental results also support a functional specialization, even within the same TNF family (see for example [166]).

Overall, gorilla is the organism with a larger number of receptor proteins that have FO in the set of human receptors, followed by mouse, cow, rat, monkey, dog and chimpanzee. Opossum is the mammal with the smaller number of FO-cluster with respect to human receptors. All non-human primates have a fairly similar high number of FO to human ligand proteins. Taken together, these results seem to indicate that ligand proteins are functionally more conserved than receptor proteins in mammals. Why this is so is unclear, but it indicates that signals (ligands) are more conserved than the mechanisms and pathways through which those signals are transduced. The entry points to the later are the receptors and

Chapter 3. A human centric comparison of eukaryotic proteomes

Figure 3.8

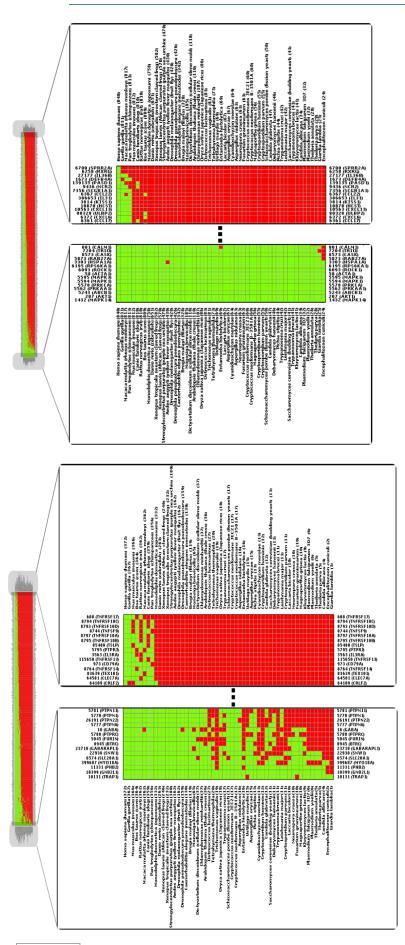


Figure 3.8. A Summary of protein conservation for the human proteome associated to specific ligand functions. Each column summarizes the results for an eukaryotic organism. Each row summarizes the results for a ligand category of the proteome. The greener the square, the more similar the protein set associated with the ligand function category of the row in the organism of the column is to the correspondent human protein set. The redder the square, the less similar the protein set associated with the ligand function category of the row in the organism of the column is to the correspondent human protein set. The complete results can be analysed in Supplementary Figure S2.3.

Figure 3.8 B. Summary of protein conservation for the human proteome associated to specific receptor functions. Each column summarizes the results for an eukaryotic organism. Each row summarizes the results for a receptor category of the proteome. The greener the square, the more similar the protein set associated with the ligand function category of the row in the organism of the column is to the correspondent human protein set. The redder the square, the less similar the protein set associated with the receptor function category of the row in the organism of the column is to the correspondent human protein set. The complete results can be analysed in Supplementary Figure S2.4. such increased variation can provide additional fine tuning to a variety of cellular responses. The full comparative study is shown in Supplementary **Figure S2.3** and **Figure S2.4**.

There are some primate specific receptors/ligands. IL-36ß is conserved only in human, gorilla and monkey and absent in chimp, while DEFB4A is conserved in human, monkey and chimp and absent in gorilla. The former protein is involved in in regulation of dendritic and T-cell activity, while the later protein is a *"Defensing"* that is also associated with bone innate immunity [167]. These results suggest that chimp would not be as good a model as the other primates to study regulation of human dendritic and T-cell activity, while gorilla should be disfavored as a model to study some aspects of bone innate immunity. KISS1, a protein that specifically suppresses metastasis in melanomas and breast cancer [168-171] is also specific to primates, probably indicating a recently evolved mechanism for cancer control in this lineage.

There are also human specific receptor/ligands. An example is SPRR2A, a small proline-rich protein 2A that functionally interacts with IL6 and regulates biliary epithelial cell modifications in response to stress [172]. This result suggests that the results of some experiments regarding the effect of IL6 done in mice should be extrapolated to humans with great care.

3.3.9. Conservation of human metabolism-specific proteome

We also analyzed the set of human proteins annotated to specific metabolic pathways [154]. With this comparison we can a) identify organisms that might be appropriate models to study pathway specific diseases, or b) provide a protein centric view of how pathway-specific functionality evolved in eukaryotes.

The proteins involved in many human pathways are highly conserved throughout all eukaryotes. These pathways include "RSK activation", "folding of actin by CCT/Tric", "mitochondrial ABC transporter", "folding of intermediated by CCT/Tric", and "activation of CaMK IV" (Figure 3.9 and Supplementary Figure S2.5). Interestingly, among the highly conserved pathways, functional orthologs of human proteins involved in "resolution of Dloop structure" and "holiday junction intermediates" are absent from yellow fever mosquitos and Cryptosporidium hominis. In addition, these proteins are also absent from Og- and Dclusters in the mosquitos. One of the absent proteins is LIG1 ligase I (Gene ID-3978), which is associated to "DNA replication" and "base excision repair functions" in humans. These results suggest that the proteins involved in such functions in mosquitos may have significantly diverged from those of other eukaryotes. If this so, mosquitos could be an interesting model to study these biological processes in order to identify alternative mechanisms for their regulation and execution. In addition, four proteins from "translation synthesis by HREV 1" are absent as functional orthologs in monkey, although they are present in the other higher animals. This pinpoints other animals in which it is likely that some line specific evolutionary events led to different ways of resolving recombinationrelated DNA repair problems.

Some human pathways appear to be specific for animals, while others are specific for primates. Many of the later are related to immunological responses. This conservation agrees with the tissue-specific analysis made above. For example, proteins from the Defensins related pathways are conserved only in primates. These proteins are engaged in host defense against a broad spectrum of bacterial, fungal and viral pathogens [173-175].

Another surprising result from our analysis is that, overall, there is a larger fraction of human metabolic proteins conserved at the *FO* level in mouse, followed by gorilla, rat, dog, cow, chimpanzee and monkey. Full details of the comparison are given for all the eukaryotes in Supplementary **Figure S2.5**.

Figure 3.9

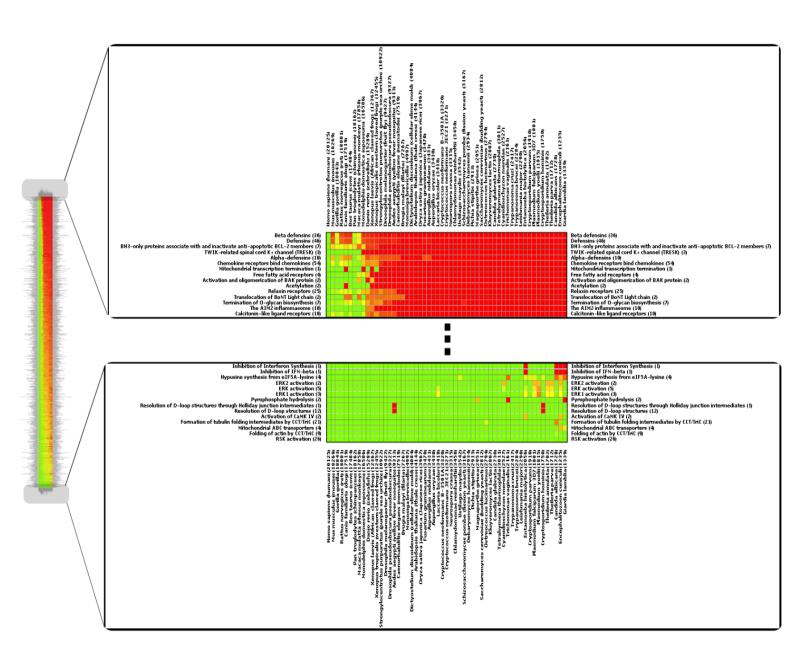
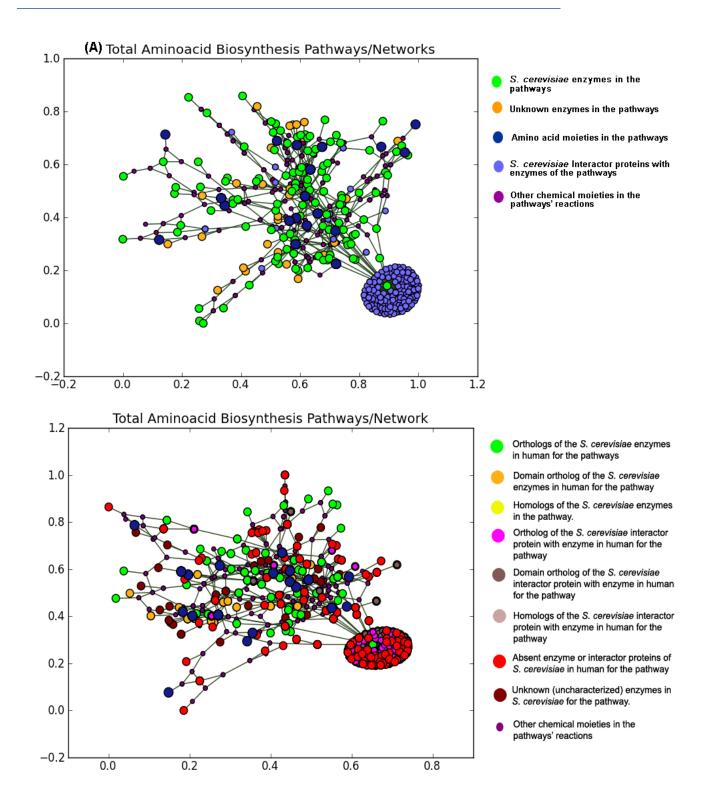


Figure 3.9 Summary of protein conservation for the human proteome associated to specific metabolic functions. Each column summarizes the results for an eukaryotic organism. Each row summarize summarizes the results for metabolic functional category of the proteome. The greener the square, the more similar the protein set associated with the functional category of the row in the organism of the column is to the correspondent human protein set. The redder the square, the less similar the protein set associated with the functional category of the column is to the correspondent human protein set. The redder the square, the less similar the protein set associated with the functional category of the column is to the correspondent human protein set. The reganism of the column is to the correspondent human protein set. The reganism of the column is to the correspondent human protein set. The reganism of the column is to the correspondent human protein set. The reganism of the column is to the correspondent human protein set. The reganism of the column is to the correspondent human protein set. The reganism of the column is to the correspondent human protein set. The reganism of the column is to the correspondent human protein set. The complete results can be analysed in Supplementary Figure S2.5.


3.3.10. Conservation of the amino acid biosynthesis-specific proteome between humans and *Saccharomyces cerevisiae*

It is well known that humans depend on diet to supply the essential amino acids. This is so because we do not synthesize them. In contrast, *S. cerevisiae*, an organism that is used as a model to study many processes, can synthesize all twenty amino acids. Therefore, we wanted to compare the generalized amino acid metabolism between the two organisms.

To do so we manually identified the proteins that are involved in amino acid biosynthesis, based on the information from SGD [88, 89] and separated them into two classes: (a) enzymes that are involved in the core catalytic processes, and (b) interacting proteins to the enzymes that are involved in regulation of the catalysis. Then, we searched for each of these yeast proteins in the different levels of protein clusters generated in our study. The human proteins were assumed to have the same function as the yeast protein in the relevant *FO*-cluster. The reconstruction of the amino acid biosynthesis network in both organisms is shown in **Figure 3.10** and analyzed in **Table 3.2**. Supplementary **Figure S2.6** shows results for the biosynthesis of the individual amino acids.

Overall, 268 *S. cerevisiae* proteins are involved in amino acid biosynthesis. 114 are enzymes and 154 are interaction proteins. 100 out of the 268 proteins are absent in human. Out of these 48 are enzymes and 54 are interaction proteins. 113 yeast proteins are found in the O-clusters (51 enzymes and 62 interaction proteins), while 53 additional yeast proteins are found in the DO-clusters (15 enzymes and 38 interaction proteins). No yeast protein was found in the H-clusters. Our results are in total agreement with what is known about amino acid biosynthesis in humans. For example, 40% of the enzymes for the biosynthesis of methionine are absent in humans.

Figure 3.10

Figure 3.10 Summary of comparative study of protein conservation between *S. cerevisiae* and human proteomes associated to all 20 amino acid biogenesis pathways.

Chapter 3. A human centric comparison of eukaryotic proteomes

Table 3.2Frequency of enzymes and their regulatory interactor proteins associated with amino
acid biogenesis pathways in S. cerevisiae and that found as orthologs and absent in
human.

Comparison of all amino acid biogenesis pathways involved enzymes and interacting proteins between Yeast and Human						
Amino acid biogenesis pathway	S. cerevisiae		Human			
	Enzymes	Interactor	Orthologs		Absent	
			Enzymes	Interactor	Enzymes	Interactor
Alanine	3	1	3	0	0	1
Arginine	18	5	15	3	3	2
Asparagine	4	2	4	1	0	1
Aspartate	9	2	4	1	5	1
Cysteine	6	148	6	91	0	57
Glutamate	4	4	3	2	1	2
Glutamine	6	4	5	2	1	2
Glycine	4	1	3	1	1	0
Histidine	7	2	0	1	7	1
Isoleucine	9	4	7	1	2	3
Leucine	10	4	6	2	4	2
Lysine	11	4	4	3	7	1
Methionine	25	153	15	97	10	56
Phenylalanine	9	5	3	3	6	2
Proline	6	3	6	2	0	1
Serine	14	3	13	2	1	1
Threonine	6	5	1	5	5	0
Tryptophan	8	8	0	5	8	3
Tyrosine	11	6	4	4	7	2
Valine	7	5	4	3	3	2
Total	177	369	106	229	71	140

3.3.11. Conservation of developmental proteins

Our study also permits analyzing the role of the protein complement of man in making us different from other organisms, as opposed to the role of differences at the genome sequence and gene expression levels. For such an analysis we focus on the *FO*-clusters for protein that are annotated as participating in the development of some of the tissues and organs that do have large phenotypical differences between us and other animals: cancer associated proteins, immune system, bone, muscle and brain.

Some proteins from the energy metabolism (UQCR10, UQCR11), cell adhesion (TIMM8A) and proliferation (RXRG, FOXP1), and circadian rhythms (STRA13) appear to be unique to humans, *FO*-wise. Thus, these proteins make promising targets to study and

identify protein-dependent differences between human and other animals, rather than regulatory dependent differences.

For example, RXRG is a retinoid X nuclear receptor (RXR) family member, mediating anti-proliferative effect of retinoic acid (RA) [176, 177]. RXR proteins appear to have evolved in vertebrate through 2 rounds of duplications [178]. Although other RXR family members have *FO*-clusters in primates, the human RXRG only has *H*-clusters, showing similarity with respect to the other family member only in the first 17 amino acids of the protein. Thus, our results suggest that extrapolating the specific role of RXRG in human brain development from the roles of other RXR family members [179] should be done with care. Another example, FOX1P, has variable roles and it either promotes or suppresses tumor progress in different cancers [180]. This protein has recently been shown to mediate regulation of miRNA processing in response to cytokines [180]. Our results suggest that this role might have uniquely evolved in the human lineage.

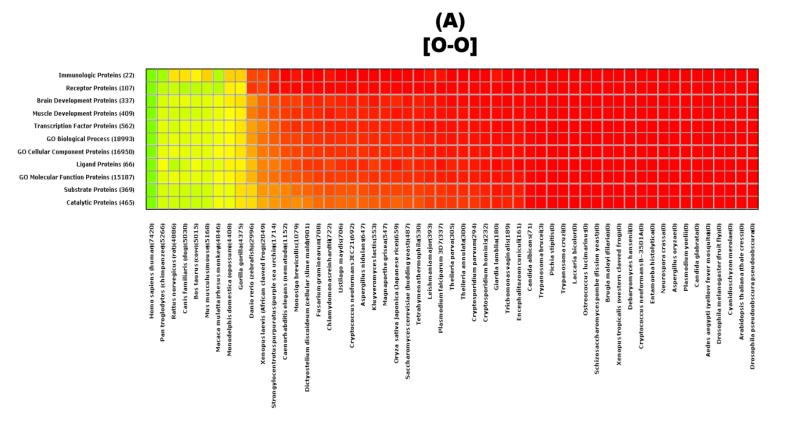
TMSB4X, USMG5, PLN and SLN (muscle), STATH and CEMP1 (teeth/bone), HMHB1, CD24 and CD52 (immune system) are proteins that are also specific to humans (supplementary figures S6-S8). This fact suggests that these proteins may have unique contributions to the developmental events that differentiate humans from other animals. Such an interpretation is consistent with results found in [181], where the authors report major differences in the receptors of killer T-cells between human and other primates.

Some proteins, such as Phospholamban (PLN), are common to all primates. This protein mediates the β-adrenergic effect and has role in heart failure associated with dilated cardiomyopathy etiology [182], suggesting that primates could be a good model to study this type of disease. The complete list of these proteins can be seen in Supplementary **Figure S2.7**, **Figure S2.8** and **Figure S2.9**.

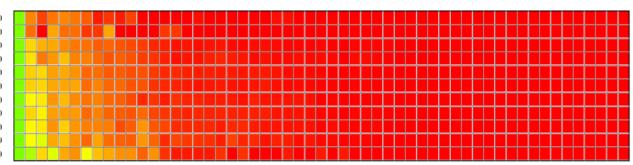
3.3.12. Comparative analysis of functional duplication

As stated above, the eukaryotic proteins forming *FO*-clusters are those that are deemed more likely to be functional orthologs to a corresponding human protein. Because of this, it is important to understand how such orthologs are conserved and/or have been duplicated during evolution. To perform such an analysis we further divided the *FO*-clusters into four protein groups. The first group is that of proteins that have a single copy in each organism (One to one group *[O-O]*). The second group is that of protein that have a single

copy in humans and more than one copy in the other eukaryote (One to many group [O-M]). The third group is that of protein that have more than one copy in humans and a single copy in the other eukaryote (Many to one group [M-O]). The fourth group is that of protein that have more than one copy in both humans and in the other eukaryote (Many to many group [M-M]).

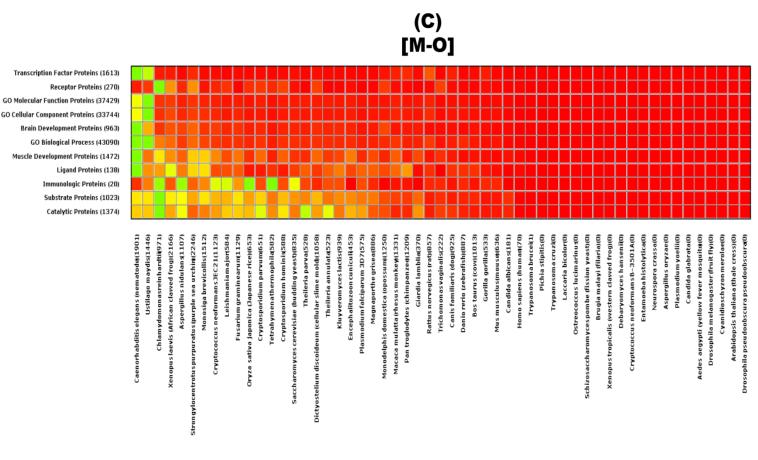

37% of all human proteins form O-O-clusters with other eukaryotes. Based on these clusters, the organism that has the most similar pattern of protein conservation with respect to humans is the chimp (**Figure 3.11. A**). This analysis also reveals that only 25% of all human proteins have no paralogs in the human proteome. 22% of the human proteins form O-O-clusters with the proteome of gorilla, 26% of the human proteins form O-O-clusters -with the proteome of *M. mullatta*, and 37% of the human proteins form O-O-clusters -with the proteome of chimp.

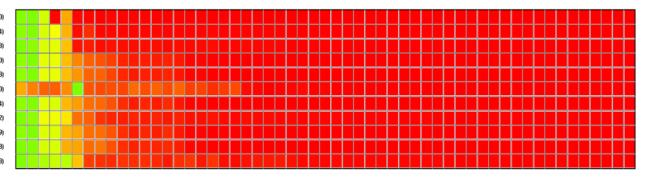
Approximately 10% of the human proteome only forms *O-M*-clusters. Analyzing these clusters shows that gorilla has the highest number of duplicated proteins with respect to unique proteins of human (Figure 3.11. B).


Approximately 63% of the human proteome form *M*-*M*-clusters with at least one eukaryote. Gorilla is again the organism with the highest similarity to human, when these clusters are analyzed, with chimp coming in at a close second (**Figure 3.11. D**). 62% of the gorilla proteome is involved in *M*-*M*-clusters as opposed to 57% in chimp.

We find that the functional categories of proteins that have patterns of orthology and duplication that are more specific to human are Receptors and Immunological proteins. 28% of the human receptors and 52% of the human immunological proteins form no *FO*-clusters with other organisms. Transcription factors, proteins involved in brain development, muscle development, and ligand proteins also have patterns of orthology and duplication that is very specific to human.

Figure 3.11




Receptor Proteins (107) Immunologic Proteins (22) Transcription Factor Proteins (562) Muscle Development Proteins (409) GO Biological Process (18993) GO Cellular Component Proteins (16550) Brain Development Proteins (15187) GO Molecular Function Proteins (15187) Substrate Proteins (369) Catalytic Proteins (465)

> Danio rerio (zebrafish)(939) Strongylocentrotuspurpuratus(purple sea urchin)(973) Mus musculus(mouse)(756) Xenopus laevis (African clawed frog)(659) Rattus norvegicus (rat)(808) Bos taurus (cow)(487) Macaca mulatta (rhesus monkey)(607) Canis familiaris (dog)(430) Pan troglodytes (chimpanze@(459) Monodelphis domestica (opossum)(373) Oryza sativa japonica (Japanese rice)(315) Candida albicans(191) Trichomonasvaginalis(153) Caenorhabditis elegans (nematode)(126) Dictyostelium discoideum (cellular slime mold)(96) Fusarium graminearum(81) Tetrahymen athermophila(102) Saccharomyces cerevisiae (budding yeast)(92) Chlamydomonasreinhardtii(82) Aspergillus nidulan g75) Magnaporthe grisea(78) Leishmaniamajor(78) Monosiga brevicollis(53) Cryptococcus neoformansJEC21(43) Kluyveromyces lactis(38) Ustilago maydis(32) Plasmodium falciparum 3D7(12) Cryptosporidium hominis(9) Encephalitozoon cunicul(3) Theileria parva(9) Theileria annulata(8) Cryptosporidium parvum(8) Homo sapiens (human)(15) Giardia lamblia(4) Pichia stipitis(0) Trypanosoma cruzi(0) Laccaria bicolor(0) Ostreococcus lucimarinus(0) Schizosaccharomycespombe (fission yeast)(0) Brugia malayi (filaria)(0) Xenopus tropicalis (western clawed frog)(0) Debaryomyces hanseni(0) Cryptococcus neoformansB-3501A(0) Entamoeba histolytica(D) Trypanosoma bru cei(0) Neurospora crassa(0) Aspergillus oryzae(0) Plasmodium yoelii(0) Candida glabrata(0) Aedes aegypti (yellow fever mosquito)(0) Drosophila melanogaster (fruit fly)(0) Cyanidioschyzon merolae(0) Arabidopsis thaliana (thale cress)(0) Drosophila pseudoobscura pseudoobscura(0) Gorilla gorilla(1808)

Figure 3.11 [continued...]

(D) [M-M]

Receptor Proteins (270) Catalytic Proteins (1374) Substrate Proteins (1023) GO Biological Process (43090) Transcription Factor Proteins (1613) Immunologic Proteins (20) GO Cellular Component Proteins (33744) Muscle Development Proteins (1472) GO Molecular Function Proteins (37429) Brain Development Proteins (378) Ligand Proteins (138)

> Aspergillus nidulang(1468) Homo sapiens (humar)(12535) Pan troglodytes (chimpanzeė(11025) Danio rerio (zebrafish)(9994) Rattus norvegicus (rat)(11146) Aedes aegypti (yellow fever mosquito)(7329) Drosophila pseudoobscura pseudoobscura(7396) Canis familiaris (dog)(10788) Drosophila melanogaster (fruit fly)(7479) Monodelphis domestica (opossum)(10126) Brugia malayi (filaria)(5971) Bos taurus (cow)(10650) Xenopus laevis (African clawed frog)(7266) Arabidopsis thaliana (thale cress)(3086) Caenorhabditis elegans (nematode)(4055) Monosiga brevicollis(2171) Trichomonas vaginalis(1512) Trypan osom a cru zi(1922) Tetrahymen athermophila(1672) Trypanosoma bru cei(1833) Oryza sativa japonica (Japanese rice)(2192) Dictyostelium discoideum (cellular slime mold)(1906) Entamoeba histolytica(1726) Schizosaccharomycespombe (fission yeast)(2415) Aspergillus oryzae(2659) Laccaria bicolor(2632) Cryptococcus neoformansB-3501A(2549) Candida glabrata(2172) Pichia stipitis(2285) Chlamydomonasreinhardtii(1564) Neurospora crassa(2560) Debaryomyces hansenii(2298) Leishmaniamajor(1174) Fusarium graminearum(1441) Candida albicans(1241) Cryptococcus neoformansJEC21(1304) Plasmodium yoelii(1495) Magnaporthe grisea(1268) Giardia lamblia(735) Cryptosporidium parvum(895) Cryptosporidium hominis(860) Theileria parva(802) Encephalitozoon cuniculi(585) Gorilla gorilla(11847) Macaca mulatta (rhesus monkey)(10759) Mus musculus(mouse)(11405) Xenopus tropicalis (western clawed frog)(9526) Strongylocentrotuspurpuratus(purple sea urchin)(5682) Ostreococcus lucimarinus(2122) Cyanidioschyzon merolae(2005) Saccharomyces cerevisiae (budding yeast)(1323) Kluyveromyces lactis(1201) Ustilago maydis(1308) Plasmodium falciparum 3D7(868) Theileria annulata(808)

Figure 3.11 Summary of protein conservation of unique and duplicated proteins in *FO*-clusters. Each column summarizes the results for an eukaryotic organism. Each row summarize summarizes the results for a broad functional category of the proteome. The greener the square, the more similar the protein set associated with the functional category of the row in the organism of the column is to the correspondent human protein set. The redder the square, the less similar the protein set associated with the functional category of the correspondent human protein set. The redder the square, the less similar the protein set associated with the functional category of the correspondent human protein set. A – *O*-*O*-clusters. B – *O*-*M*-clusters. C – *M*-*O*-clusters. D – *M*-*M*-clusters.

Macaca mulatta stands out as the primate where less duplication of receptor proteins occurred, when compared to the human proteome. That primate has the highest number of receptor *O-O*-clusters and the lowest number of receptor *M-O-*, *O-M-*, and *M-M*-clusters. A similar statement can be made about gorilla in the immunological protein category.

3.3.13. Conservation study of HIV-Tat regulated human proteins with the FO clusters of eukaryotes

As a final example of the possibilities for this type of analysis, we focus on the proteins that are either regulated by or regulate the HIV-Tat protein in human (*TAT*-Set). This set of proteins was downloaded from NCBI [183] and combined with the experimental *TAT*-human interactome data previously published [184]. *TAT* is a protein that binds to various host proteins, indirectly and directly causing a diversity of post translational modifications in those proteins. These modifications lead to strong increases in the level of transcription of HIV dsDNA, which facilitates spreading of the infection. In addition, Tat appears to be exported by HIV infected cells and have a role in the HIV disease process [185, 186].

The proteins involved in the HIV-Tat regulated processes were mapped to the FOclusters of all the eukaryotes (Figure 3.12). The conservation of proteins in the different categories is quite extensive in most vertebrates. In other eukaryotes, a smaller number of these proteins is conserved. A striking result regards the 16 subunits of human tubulin. When *Tat* binds tubulin, it leads to disruption of microtubule polymerization. All subunits are fully conserved in all eukaryotes but *Candida albicans*. *C. albicans* is a common intestinal fungus that invades mucosal tissues and becomes an opportunistic parasite in immune compromised hosts [187-189]. A protein that is absent in human, DUR31, is required for establishment of *C. albicans* microcolonies after mucosal invasion [188]. The absence of human tubulin orthologs together with the absence of DUR31 in humans makes us think that, by studying the process of mucosal invasion by *C. elegans* one could gain a better understanding of what happens upon disruption of tubulin polymerization by Tat in Humans. In addition, it is also known that microtubules in *C. albicans* and *S. cerevisiae* hyphae use similar tubulin subunits. These are different from the tubulin that *S. cerevisiae* uses in normal growth situations [190, 191]. Hence, studying the transition between normal growth and hyphal growth in *S. cerevisiae* could provide useful information regarding what happens in human cells after tubulin disruption by Tat binding.

Another interesting finding is that the importins that mediate nuclear import of Tat to the nucleus are absent from the genomes of *T. vaginalis* and *E. histolytica. T. vaginalis* is believed to disrupt the urogenital monolayer and activate local immune T-cell load in order to increase viral replication [192]. This could provide mechanistic explanation to the observation that patients infected with STDs are more likely to become infected by HIV upon contact with an HIV-carrying partner [193]. The parasite could be using HIV's importin proteins. Furthermore, 173 and 114 various human proteins respectively up-regulate and down-regulate under the effect of HIV-Tat. Pathways associated with the genomic deregulation may be an important area from the drug discovery and diagnostic point of view during AIDS development in human. For these, all vertebrate appear to be good model organisms for human.

187 human proteins were experimentally determined to bind to Tat from Figure 3.13. Out of these, 183 interact with HIV in the nucleus. Surprisingly, gorilla has the highest number of proteins (142, of which 111 belong to the nuclear interaction subset) that form *FO*-clusters with those in the *TAT*-set. In contrast only 113 chimp proteins (52 nuclear) and 98 *M. mulatta* proteins (33 nuclear) are present in the *FO*-clusters for the 187 human proteins. A more detailed analysis of the conservation of the *TAT*-Set in primates is provided in Supplementary Figure S2.10. This analysis suggests that that gorilla is more adequate as a model to study the role of Tat in HIV infection than chimps.

Figure 3.12

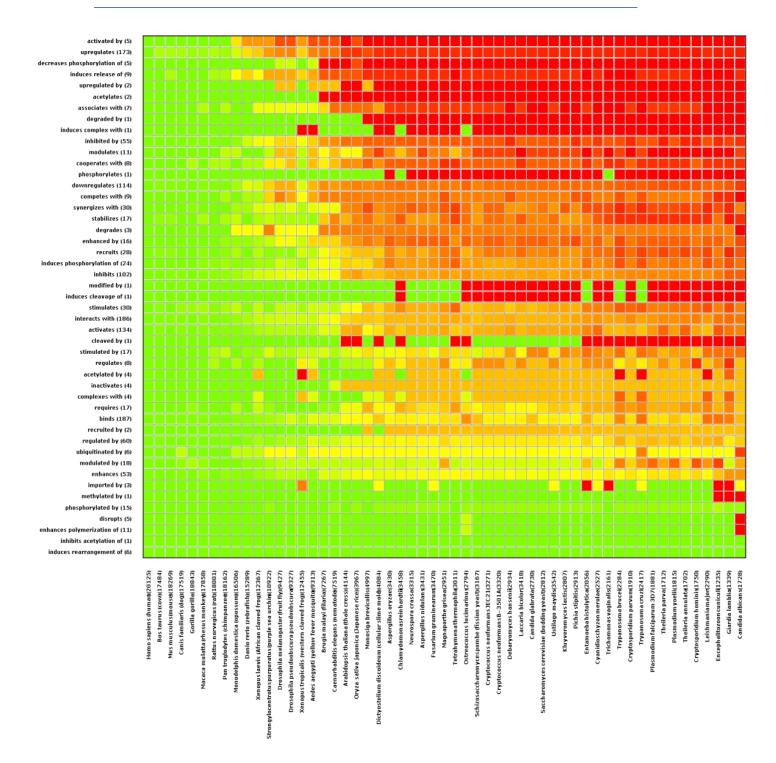


Figure 3.12 Summary of protein conservation in *FO*-clusters for proteins associated to HIV-Tat proteins. Each column summarizes the results for an eukaryotic organism. Each row summarize summarizes the results for a broad functional category of the proteome. The greener the square, the more similar the protein set associated with the functional category of the row in the organism of the column is to the correspondent human protein set. The redder he square, the less similar the protein set associated with the functional category of the correspondent human protein set.

3.4. Discussion

In this article we systematically compare the human proteome to that of other eukaryotes in order to identify the proteins that are unique to human. We also analyze how similar the sets of proteins that participate in different biological phenomena are between human and each of the other eukaryotes. With these comparisons we hope to partially contribute to answer two questions. The first question is what makes *H. sapiens* unique among the eukaryotes. The second is what eukaryotes are likely to be the best model organisms to study different biological aspects of human biology.

There are technical challenges involved in answering these questions. One challenge is that of identifying proteins that are either unique in the human proteome or unique in the proteome of the eukaryote of interest. The only effective way to do so is by comparing the sequences of each protein from one of the proteomes to each of the sequences of the other. Another challenge is that of identifying the most likely functional ortholog pairs when comparing two proteomes. The final challenge is that of comparing the proteomes from a functional perspective.

We address the first challenge at the level of sequence similarity. If no sufficient similarity is found either between a human protein and any protein in the other eukaryote or a eukaryotic protein and any human protein, the protein is said to be unique.

We also address the second challenge at the level of sequence similarity. One can also identify the proteins in one proteome that are conserved in the other, based on the sequence similarity. Similar proteins between proteomes can be organized into clusters, classified in different categories. If the similarity between sequences is low, the proteins within a cluster are termed homologues. If the similarity is high over the entire sequence the proteins within a cluster are termed orthologs. The protein in a given eukaryote that is the most similar to a given human protein is termed its functional ortholog. Using sequence to infer such functional orthology was shown to be more accurate than using structure or a number of other protein features [194]. Various methods to identify orthologs are available [147, 195-198]. Of these we choose the one described in methods. A benchmark of this method done by comparing the human and the baker's yeast proteomes with themselves shows that this method identifies the real ortholog 100% of the times (data not shown).

The third challenge is addressed by taking advantage of the annotation of full proteomes with respect to different functional categories (tissue-specific, GO categories, enzymes, receptors, ligands, reactome, pathways, circuits). By integrating these different categories and comparing functional orthologs between human and any of the other organisms, we identify those organisms that have the set of protein is more similar to human in any given functional category.

The curated human proteome has 20125 proteins. 37% of all human proteomes are absent in at least one of the analysed eukaryotes. The set of human proteins that is more highly conserved in all other eukaryotes is that of catalytic proteins. In contrast, the sets of proteins that have the highest fraction of unique proteins in human are immunological proteins and receptors.

The organisms with functional protein sets that are the most similar to those of human are chimp and gorilla. The proteome of gorilla is 7% larger and that of chimp 2% smaller. When comparing humans with these closely related primates we find that 3% of the human proteins are absent in gorilla and 4% are absent in chimp. Many of the absent proteins are receptors or ligands involved in the immune system, although there are also some proteins from other categories that differ. In addition, we find that, for many functional categories and subgroups, the gorilla proteome is more similar to that of human than the chimp proteome. This is consistent with previously published results chimpanzee [199]. However, the pattern of gene (protein) duplication has diverged more between human and gorilla than between human are *O-O*-clusters while only 59% fall in this category for the comparison between human and gorilla. In summary, *O-O*-clusters between human and chimp are more numerous than between human and gorilla. In contrast, the gorilla proteome forms the highest number of *O-M-* and *M-M-*clusters with the human proteome.

Our analysis also identifies lower eukaryotes that could be good models to study different aspects of human biology. For example, *C. elegans* is likely to be suitable for studying EGFR mediated MAPK pathways regulatory processes. In fact this organism was used to investigate the role of one specific domain of CDC25 in cancer prevention and development [200]. Fungi are also identified as being likely to be a suitable model to study role of bioactive peptides or neuropeptides in regulation and fine-tuning of metabolism, as was already done [201]. A final example can be found again in fungi, which are again likely

to be suitable models to study the role of small peptides in regulation of host-pathogens interactions [202, 203]. Another aspect of this analysis which we chose not to focus on is that of identifying proteins in eukaryotic parasites that could mediate the effect that the parasites have in humans. These proteins would be those that are more similar to their functional orthologs in human in the functional categories that are involved in the disease phenotype [204]. The methodology presented here could be used to study other organism in similar fashion [147]. In addition our results could have strong implication regarding the use of primates or other eukaryotes to study disease/related issues that cannot be studied in humans due to ethical, scientific or legal issues. It is expected that the more similar the protein set that is involved in a given biological process in a specific organism is to that of human, the more likely it is that the results of studying this process in that organism can be extrapolated to human. Hence, to study that process one should consider this issue in conjunction with technical considerations before choosing the model organism for the study.

3.5. Methodology

3.5.1. Proteome sequences

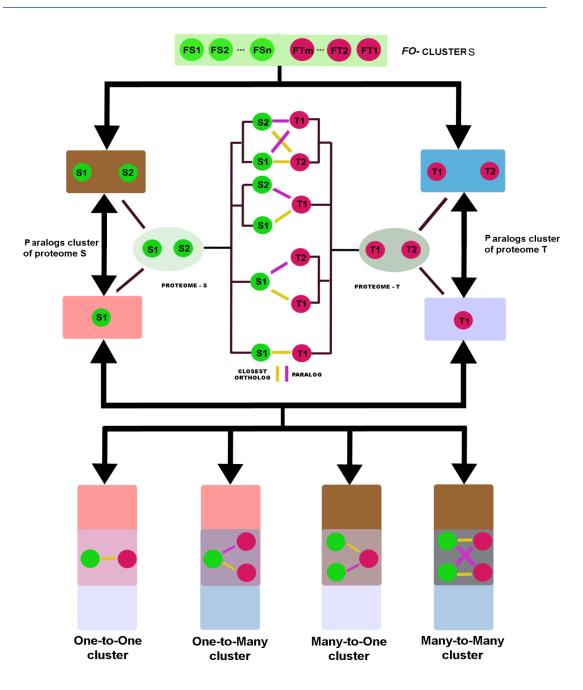
The complete proteomes of *Homo sapiens* (25679 proteins), *Pan troglodytes* (24732 proteins), and *Macaca mulatta* (23272 proteins) were downloaded from NCBI. The complete proteome from *Gorilla gorilla* (27335 proteins) was downloaded from Ensemble (version 66.31). The complete proteomes of 51 eukaryotic organisms with fully sequenced genomes (**Table 3.** 1) was downloaded from the KEGG database (December 2009), cross-referenced and complemented with the corresponding proteomes found in the NCBI database.

3.5.2. Homology analysis

BLAST+ version 2.2.26 was downloaded from NCBI and used locally. All protein sequences were formatted using FormatDB. A pipeline that identifies various levels of homology (orthologs, domain orthologs, homologues) and classifies two proteomes relative to each other based on these relationships was developed and implemented using Python 2.7, Numpy (Numerical Python), Scipy and Matplotlib.

3.5.3. Proteome Comparison and Classification

The comparison between the complete proteomes of any two organisms was done as described previously [147]. In short, first the proteomes are BLASTed against each other. Afterwards, orthologs and homologues pairs are separated based on e-value, identity of residues between the two aligned sequences and fraction of the total protein sequences that align to each other. **Figure 3.1** details the different groups of proteins that are generated from this analysis.


Each protein of the total proteome from a reference organism R is blasted against the entire proteome of a target organism T. The result set S includes all protein pairs that generate a hit with $e - value \le 10^{-4}$, with one S-cluster per human protein. All proteins from R that do not generate positive hits in the proteome of T are grouped in absent protein clusters (A-cluster). All proteins from T that do not generate positive hits in R are also grouped in A-clusters.

Each pair of sequences in S is further analyzed in order to identify homologues, domain orthologs, and orthologs. General homologues are defined as all pairs of proteins that

are matched with $e - value \leq 10^{-4}$ and identity smaller than or equal to 20%. Because it is important to identify those protein pairs that are distantly related, for the analysis of functional evolution, we also separate the set of exclusive homologue pairs. These are defined as all pairs of proteins that are matched with $10^{-10} \leq e - value \leq 10^{-4}$ and identity smaller than or equal to 20%. These are used to build the protein set H. Exclusive domain orthologs are defined as all pairs that are matched with $10^{-30} \leq e - value \leq$ 10^{-10} and an identity between 20% and 30%. These are used to build the protein set D. Orthologs are defined as all pairs that are matched with $e - value < 10^{-30}$ and an identity larger than 30%. These are used to build the protein set of general orthologs, O_g , defined as the union set between D and O. This set is important for the analysis of functional evolution.

Chapter 3.

Figure 3.13

Figure 3.13 Classification of human centric *FO*-clusters. *FO*-clusters can be of several types. One-toone (*[O-O]*) clusters include one human protein and one protein from the target eukaryote. One-to-many (*[O-M]*) clusters include one human protein and more than one protein (set of paralogous proteins) from the target eukaryote. Many-to-one (*[M-O]*) clusters include more than one human protein (set of paralogous proteins) and one protein from the target eukaryote. Many- to-many (*[M-M]*) clusters include more than one human protein and more than one protein from the target eukaryote.

3.5.4. Functional orthology and duplication analysis

Cluster of Functional Orthologs (FO) are defined as a subset of O. FO includes all protein pairs of the O protein set that share an alignment for more than 80% of the proteins' lengths. There can be four types of FO-clusters (Figure 3.13). A one-to-one FO-cluster (F[O-O]) is composed of one protein from S and one protein from T. A one-to-many FO-cluster (F[O-M]) is composed of one protein from S and more than one protein from T. A many-to-one FO-cluster (F[M-O]) is composed of more than one protein from S and only one protein from T. A many-to-many FO-cluster (F[M-M]) is composed of more than one protein from Sand more than one protein from S

Given that FO-clusters are composed of proteins that are very close, sequence-wise, such clusters can be analyzed to infer information about duplication of proteins and protein function. Whenever the FO-cluster has more than one protein from any of the organisms (F[O-M], F[M-O], and F[M-M] clusters) we use a function score **F**, defined in [147], to predict which pair of proteins within the cluster is more likely to include true functional orthologs. This score is given by:

$$F = (F1 + F2) - F3$$
 Eq. 1

Factor *F1* is calculated as follows.

$$F1 = 1 - (S - I)/S$$
 Eq. 2

In Eq. 2, **S** represents the similarity residues of amino acids found over the alignment, and **I** represent the identical residues found over the alignment. Both these values are outputs of BLAST. *F1* is always between zero and 1.

Factor *F2* is calculated as follows.

$$F2 = (AL - G1 - G2)/PL$$
 Eq. 3

In Eq. 3 GI is the number of gaps within the aligned region of the query sequence, G2 is the number of gaps within the aligned region of the target sequence, AL represents the length of the alignment, and *PL* is the total length of the query sequence. F2 is always between zero and 1.

Factor *F3* is calculated as follows.

$$F3 = (G1/L1) + (G2/L2)$$
 Eq. 4

In Eq. 4 L1 is the length of the query sequence, and L2 is the full length of the target sequence. F3 is always between 0 and 2.Hence, F is always between 0 and 2.

The pair of proteins with the highest *F*-score in each *FO*-cluster is considered to be the one including the real functional orthologs.

We have benchmarked this assumption by BLASTing the human genome against itself and the baker's yeast genome against itself. In every single case, the highest F-score is that of a protein with itself. Unlike the e-value, the F-score provides a measure that is symmetric between two proteomes. The highest F-score pair for a FO-cluster between two organisms is always the same, whether the target genome is S or T.

3.5.5. Functional re-annotation of the human proteome

To attribute function to human and baker's yeast proteins, we downloaded the GOSLIM classification for human and baker's yeast from the GO database [88, 89], including categories for biological process, molecular functions and cellular localization. This information was used to re-annotate function in the remaining eukaryotic proteomes under comparison. If not annotated, the protein from a specific eukaryote with the highest *F*-score with respect to a given human protein was attributed the same GO classification as that of the human.

3.5.6. Calculating the difference between corresponding sets of proteins in different organisms

We wanted to compare how different the set of proteins involved in a given biological function is between different organisms. To do so we calculate the Hamming Distance (HD) between the vector $\overrightarrow{V1}$ of protein functions associated to a specific process, localization or pathway in humans and the vector $\overrightarrow{V2}$ of corresponding protein functions in another organism. *HD* is given by $HD = \sum_{i=1}^{n} (1 - \delta_i)$, where δ_i is the Kronecker delta. δ_i is 1 if the elements in position *i* of both vectors are homologue and 0 otherwise. *HD* is normalized (*NHD*) by dividing it by the maximum *HD* between corresponding vectors of all organisms.

The smaller *NHD* is, the more similar the two vectors are and the more similar is the set of functions executing a specific process in both organisms. Consequently, the smaller *NHD* is, the more likely it is that the process of interest works in a similar way in the organisms being compared.

All calculations were performed using Mathematica [91].

3.6. Supporting Materials

3.6.1. Supporting Figures

Figure S2.1

Domain clade level frequency representation of proteins that linked in functional orthologs (*HFP-TFP*), orthologs (*HOP-TOP*), domain orthologs (*HDP-TDP*), homologous (*HHP-THP*), significant (*HSP-TSP*) and absent (*HAP-TAP*) clusters of human and all the eukaryotes.

(See the all figures of the clusters in next pages)

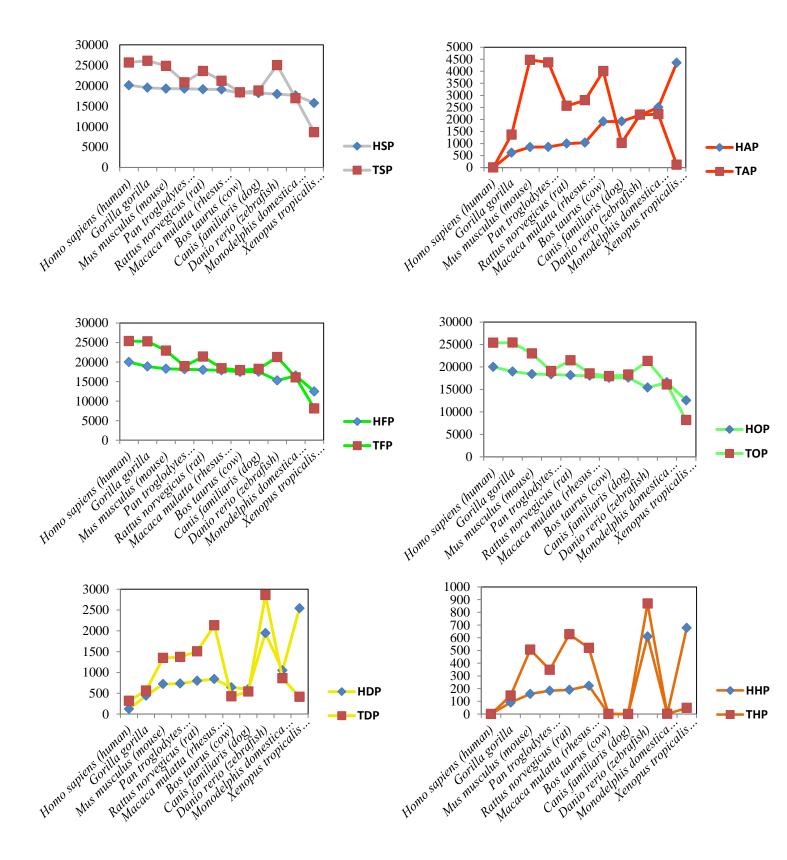
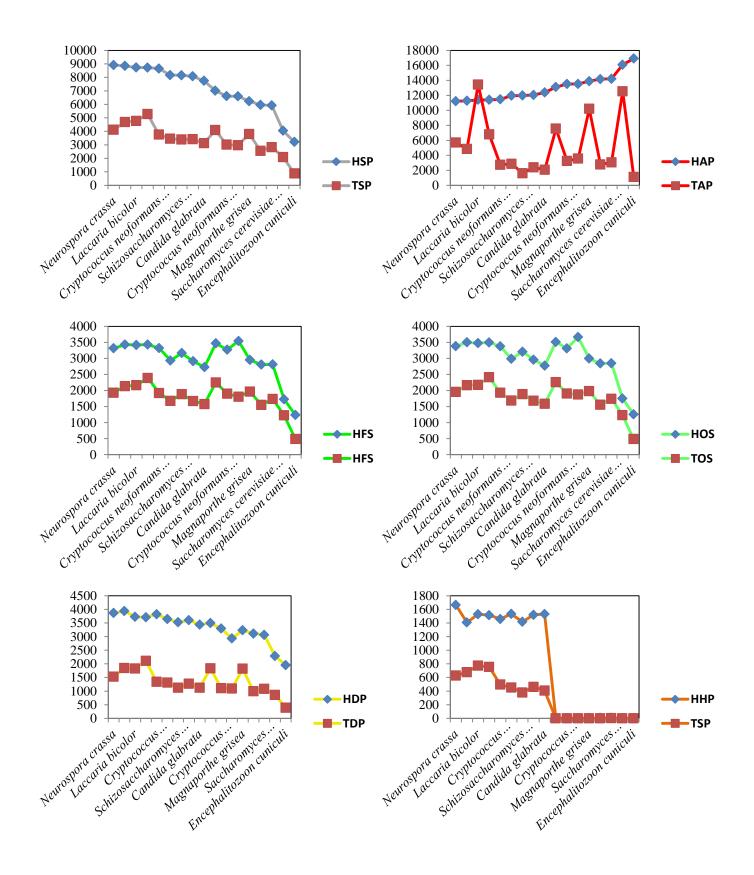
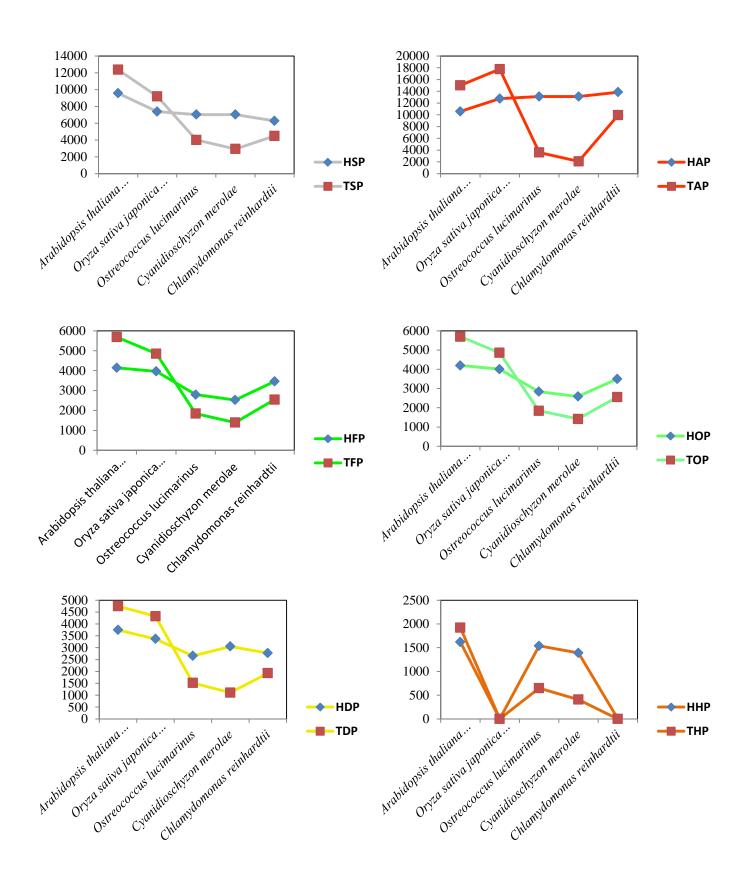




Figure S2.1. A

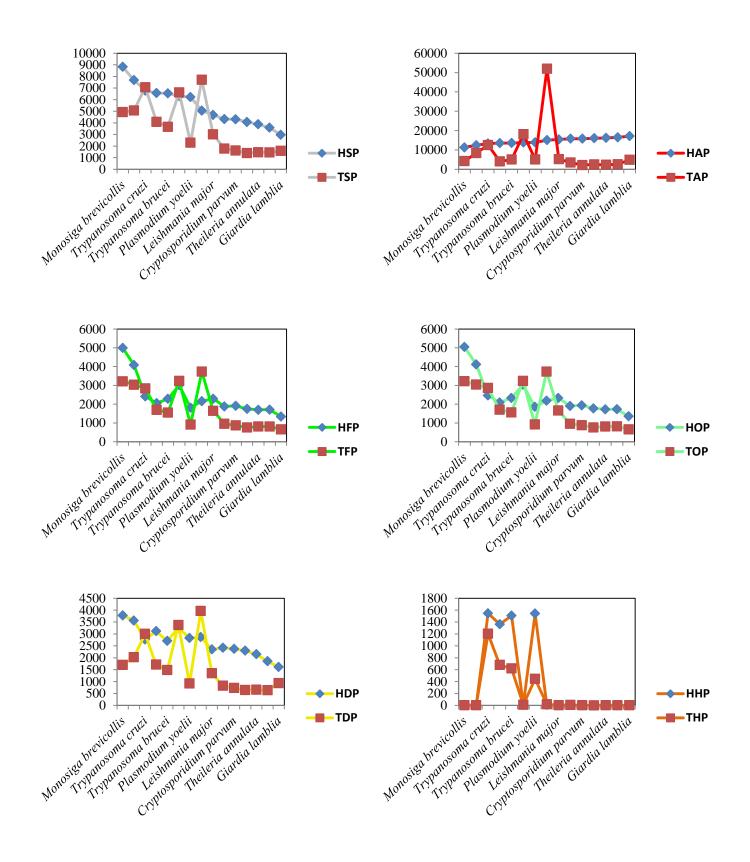

Frequency of proteins found from **Human and Vertebrates** in the clusters of Functional orthologs (*HFP-TFP*), Orthologs (*HOP-TOP*), Domain orthologs (*HDP-TDP*), Homologous (*HAP-TAP*), Significance (*HSP-TSP*) and Absent (*HAP-TAP*).

Figure S2.1. B Frequency of proteins found from **Human and Fungi** domain in the clusters of Functional orthologs (*HFP-TFP*), Orthologs (*HOP-TOP*), Domain orthologs (*HDP-TDP*), Homologous (*HAP-TAP*), Significance (*HSP-TSP*) and Absent (*HAP-TAP*).

Figure S2.1. C Frequency of proteins found from **Human and Plant** domain in the clusters of Functional orthologs (*HFP-TFP*), Orthologs (*HOP-TOP*), Domain orthologs (*HDP-TDP*), Homologous (*HAP-TAP*), Significance (*HSP-TSP*) and Absent (*HAP-TAP*).

Figure S2.1. D Frequency of proteins found from Human and Protist domain in the clusters of Functional orthologs (*HFP-TFP*), Orthologs (*HOP-TOP*), Domain orthologs (*HDP-TDP*), Homologous (*HAP-TAP*), Significance (*HSP-TSP*) and Absent (*HAP-TAP*).

Chapter 3. A human centric comparison of eukaryotic proteomes

Figure S2.2*

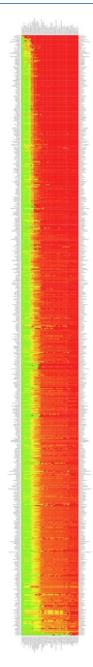


Figure S2.2 Complete heat map for comparison of proteome associated to human tissues and that found conservation at functional orthologs levels in the [FO] clusters with 56 eukaryotes. Each row corresponds to specific term of tissue in which the human protein(s) are expressed and each column corresponds to one of the eukaryotes under analysis. The numbers between parentheses indicate the number of proteins associated to that category in human tissue (rows) and in the other eukaryotes (columns). The protein of the tissues is sorted by increasing average network distance between human and each of the other eukaryotes. The organisms are sorted by increased average distance of the networks for all tissue categories between the organisms represented in the column and human. Distance is calculated as described in methods. Red color indicates dissimilar sets of proteins with respect to human. ***Enlarged figure is available as Figure S2.2 in the CD that is provided with this thesis.**

Chapter 3.

Figure S2.3*

Figure S2.3 Complete heat map for comparison of proteome associated to ligand activity in human and that found conservation at functional orthologs levels in the [FO] clusters with 56 eukaryotes. Each row corresponds to a ligand protein (NCBI Gene ID) of human and each column corresponds to one of the eukaryotes under analysis. The text in parentheses represent gene symbol of the ligand proteins of human (rows) and in the other frequency of total functional orthologs found for the total human ligands in eukaryotes (columns). The ligand proteins are sorted by increasing average network distance between human and each of the other eukaryotes. The organisms are sorted by increased average distance of the networks for all the ligands between the organisms represented in the column and human. Distance is calculated as described in methods. Red color indicates dissimilar sets of proteins with respect to human. ***Enlarged figure is available as Figure S2.3 in the CD that is provided with this thesis.**

Chapter 3. A human centric comparison of eukaryotic proteomes

Figure S2.4*

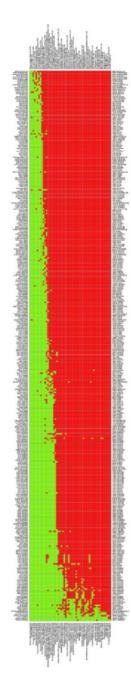


Figure S2.4 Complete heat map for comparison of proteome associated to receptor activity in human and that found conservation at functional orthologs levels in the [FO] clusters with 56 eukaryotes. Each row corresponds to a receptor protein (NCBI Gene ID) of human and each column corresponds to one of the eukaryotes under analysis. The text in parentheses represent gene symbol of the receptor proteins of human (rows) and in the other frequency of total functional orthologs found for the total human receptors in eukaryotes (columns). The receptor proteins are sorted by increasing average network distance between human and each of the other eukaryotes. The organisms are sorted by increased average distance of the networks for all the receptors between the organisms represented in the column and human. Distance is calculated as described in methods. Red color indicates dissimilar sets of proteins with respect to human. ***Enlarged figure is available as Figure S2.4 in the CD that is provided with this thesis.**

Chapter 3.

Figure S2.5*

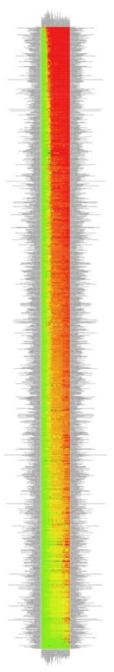


Figure S2.5 Complete heat map for comparison of proteome associated to specific reactions in metabolic or signaling pathways of human and that found conservation at functional orthologs levels in the [FO] clusters with 56 eukaryotes. Each row corresponds to specific term of the reaction pathways in human and each column corresponds to one of the eukaryotes under analysis. The numbers in parentheses represent human proteins that are associated with each of the reaction pathways (rows) and in the other frequency of total functional orthologs found in eukaryotes (columns). The reacting proteins are sorted by increasing average network distance between human and each of the other eukaryotes. The organisms are sorted by increased average distance of the networks for all the reactions between the organisms represented in the column and human. Distance is calculated as described in methods. Red color indicates dissimilar sets of proteins with respect to human. Green color indicates similar sets of proteins with respect to human. ***Enlarged figure is available as Figure S2.5 in the CD that is provided with this thesis.**

0.7

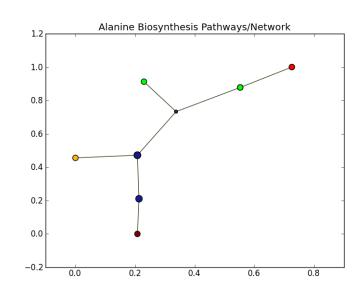
Figure S2.6

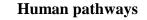
1.2

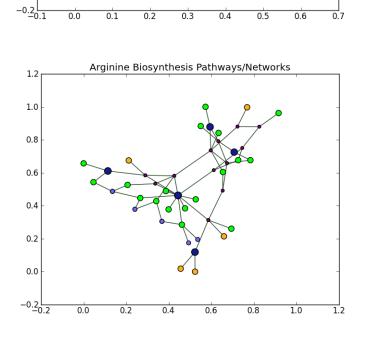
1.0

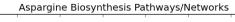
0.8

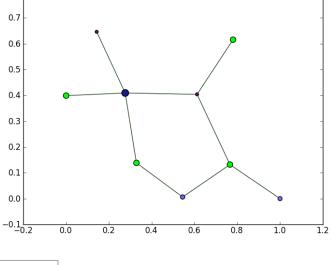
0.6

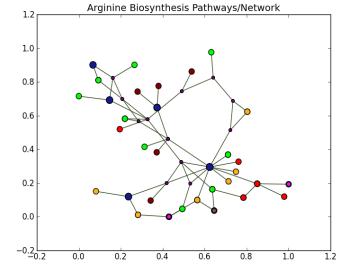

0.4

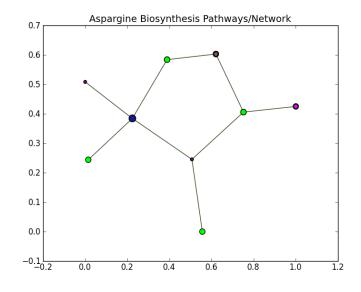

0.2

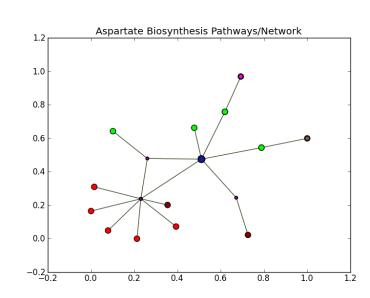

0.0

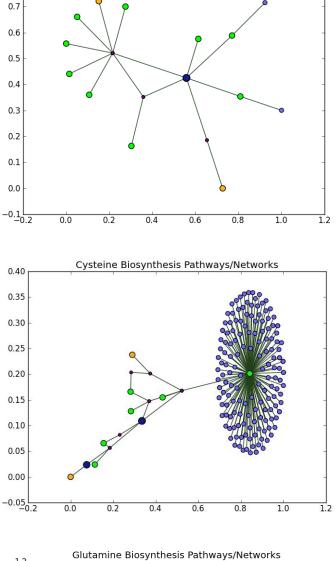

Saccharomyces cerevisiae pathways

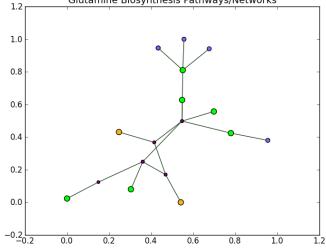

Alanine Biosynthesis Pathways/Networks

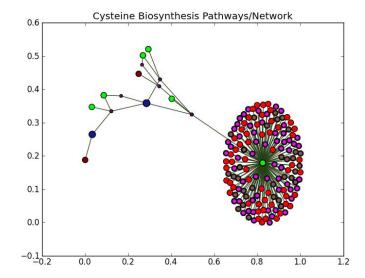


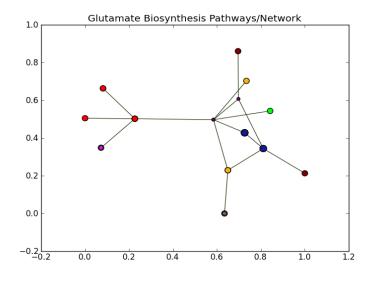


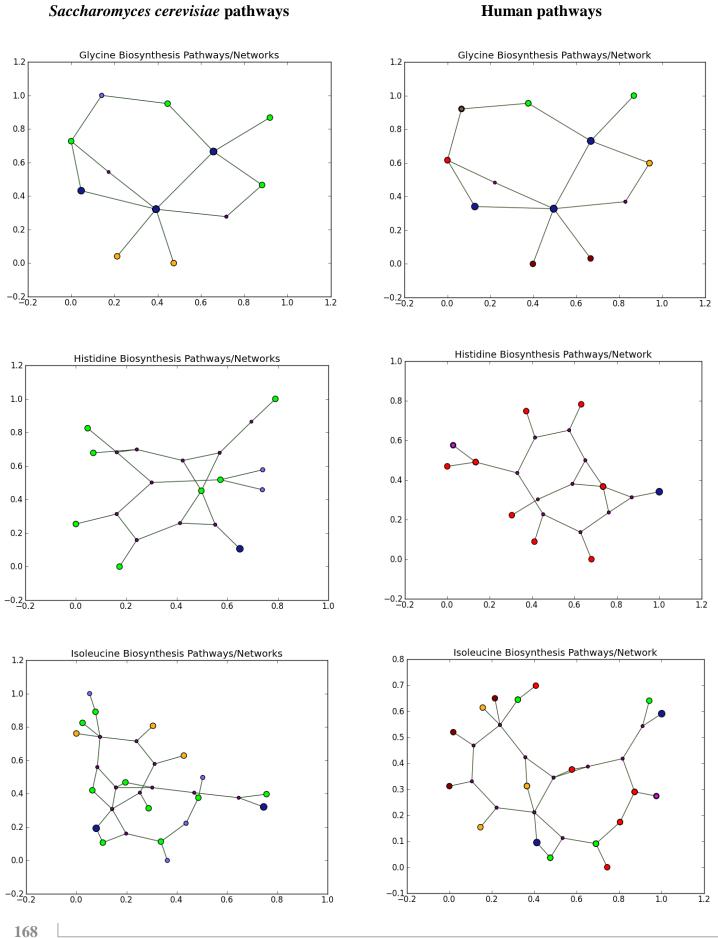

0.8


0.8


Figure S2.6 [continued...]

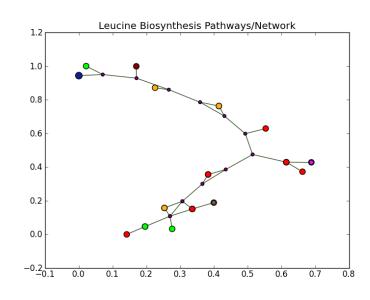

Saccharomyces cerevisiae pathways

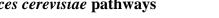

Aspartate Biosynthesis Pathways/Networks

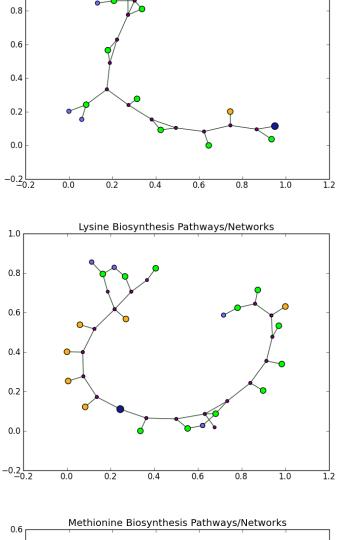


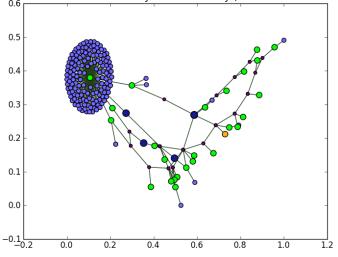
Human pathways

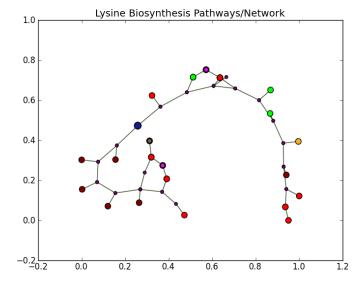
Human pathways

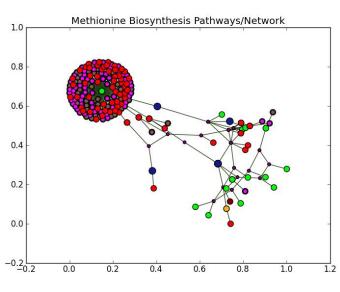

1.2


1.0


Figure S2.6 [continued...]


Saccharomyces cerevisiae pathways


Leucine Biosynthesis Pathways/Networks



Human pathways

169

Saccharomyces cerevisiae pathways

Phenylalanine Biosynthesis Pathways/Networks

0.8

0.6

0.4

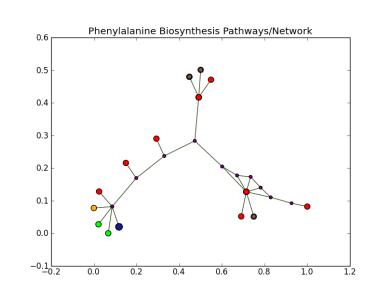
0.2

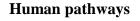
0.0

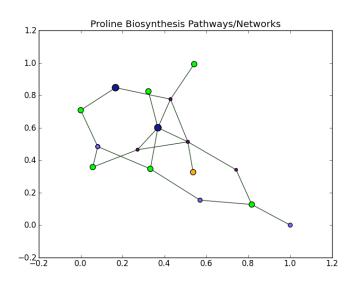
-0.2

0.0

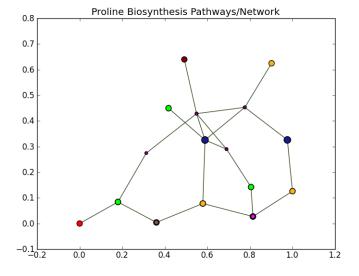
0.2

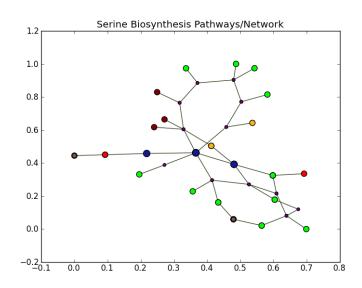

0.4

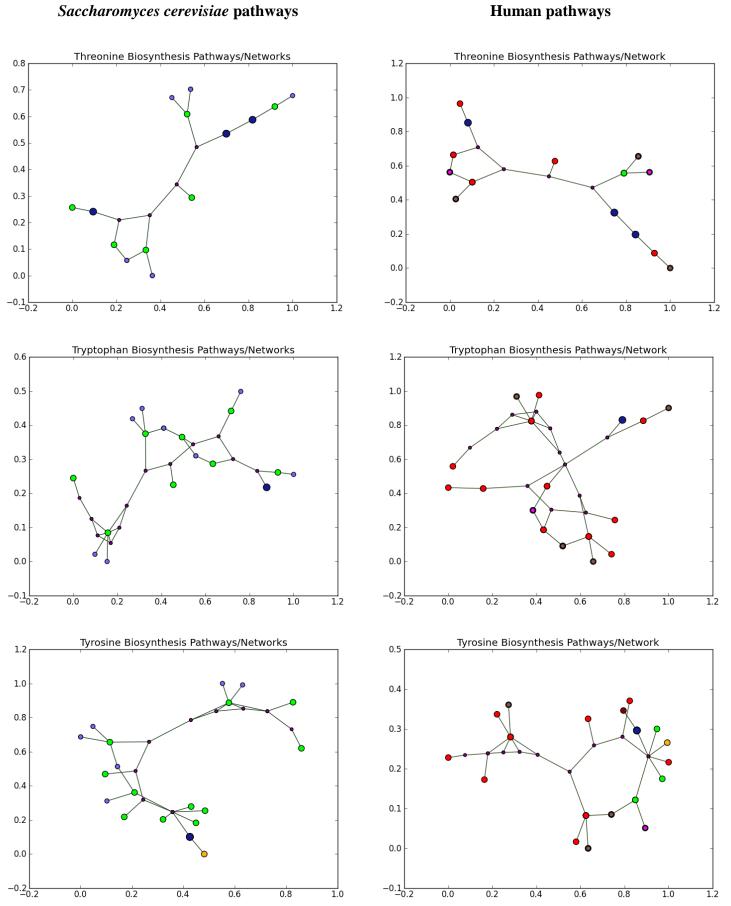

0.6


0.8

1.0


1.2





170

Human pathways

1.0

0.8

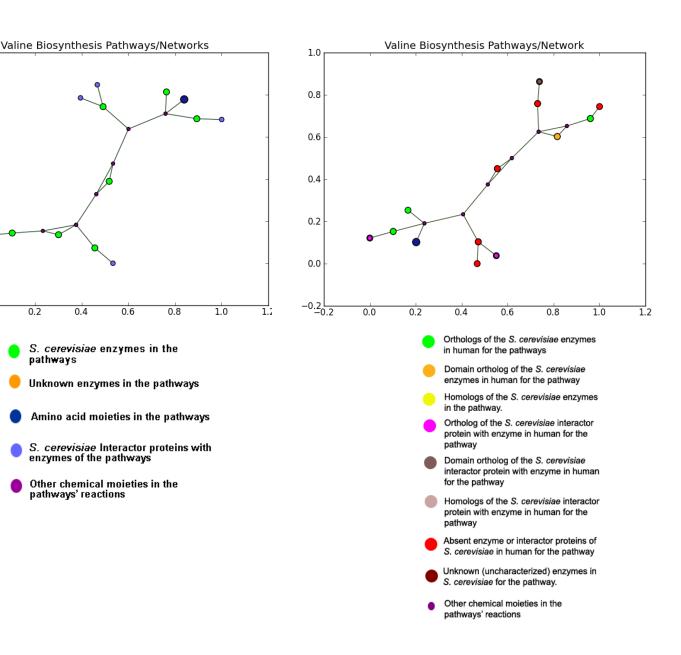
0.6

0.4

0.2

0.0

-0.2└ -0.2


0.0

0.2

pathways

0.4

Saccharomyces cerevisiae pathways

Comparative study of regulatory catalytic processes in each of the 20 amino acid Figure S2.6 biogenesis pathways between S. cerevisiae and human. Each node represents total molecules that are involved in module of an amino acid biogenesis pathway, manually separated from KEGG database. Color of the node represents type of the molecule i.e., enzyme, interactor protein, undefined protein, intermediate metabolite and amino acid moiety. The colored node also represent whether the same proteins of S. cerevisiae found as orthologs, domain orthologs, homologs or absent in human.

Human pathways

Chapter 3.

Figure S2.7*

Figure S2.7 Complete heat map for comparison of proteome associated to bone development of human and that found conservation at functional orthologs levels in the [FO] clusters with 18 animals. Each row corresponds to proteins (NCBI Gene ID) that are associated with human bone development and each column corresponds to one of the animals under analysis. The numbers in parentheses represent human protein frequency (rows) and in the other frequency of total functional orthologs found in animals (columns). The bone development proteins are sorted by increasing average network distance between human and each of the other animals. The organisms are sorted by increased average distance of the networks for all the bone proteins between the organisms represented in the column and human. Distance is calculated as described in methods. Red color indicates dissimilar sets of proteins with respect to human. ***Enlarged figure is available as Figure S2.7 in the CD that is provided with this thesis.**

Figure S2.8*

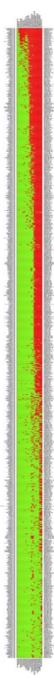


Figure S2.8 Complete heat map for comparison of proteome associated to muscle development of human and that found conservation at functional orthologs levels in the [FO] clusters with 18 animals. Each row corresponds to proteins (NCBI Gene ID) that are associated with human muscle development and each column corresponds to one of the animals under analysis. The numbers in parentheses represent human protein frequency (rows) and in the other frequency of total functional orthologs found in animals (columns). The muscle development proteins are sorted by increasing average network distance between human and each of the other animals. The organisms are sorted by increased average distance of the networks for all the bone proteins between the organisms represented in the column and human. Distance is calculated as described in methods. Red color indicates dissimilar sets of proteins with respect to human. ***Enlarged figure is available as Figure S2.8 in the CD that is provided with this thesis.**

174

Chapter 3. A human centric comparison of eukaryotic proteomes

Chapter 3.

Figure S2.9*

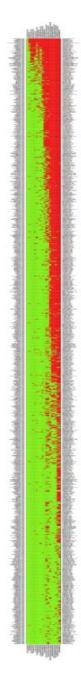


Figure S2.9 Complete heat map for comparison of proteome associated to brain development of human and that found conservation at functional orthologs levels in the [FO] clusters with 18 animals. Each row corresponds to proteins (NCBI Gene ID) that are associated with human brain development and each column corresponds to one of the animals under analysis. The numbers in parentheses represent human protein frequency (rows) and in the other frequency of total functional orthologs found in animals (columns). The brain development proteins are sorted by increasing average network distance between human and each of the other animals. The organisms are sorted by increased average distance of the networks for all the bone proteins between the organisms represented in the column and human. Distance is calculated as described in methods. Red color indicates dissimilar sets of proteins with respect to human. ***Enlarged figure is available as Figure S2.9 in the CD that is provided with this thesis.**

Figure S2.10*

Figure S2.10 Complete heat map for comparison of human proteome associated to HIV-Tat binding activity and that found conservation at functional orthologs level in the [FO] clusters with 3 primates.

Each row corresponds to human proteins (NCBI protein name) that physically bind to HIV-Tat protein and each column corresponds to one of the three non-human primates under analysis. The numbers in parentheses represent frequency of regulatory functions those are associated with the HIV-Tat interactions (rows) and in the other frequency of total functional orthologs found in the primates (columns). The interacting proteins are sorted by increasing average network distance between human and each of the other primates based on sequence proximities found between protein pairs of the FO-clusters. The proximities were calculated by F-scores (see methods). The organisms are sorted by increased average distance of the networks for all the interacting proteins between the organisms represented in the column and human. Distance is calculated as described in methods. Red color indicates relatively absent sets of the sequence proximities between proteins with respect to human. Green color indicates similar sets of the closest sequenced proteins with respect to human. *Enlarged figure is available as Figure S2.10 in the CD that is provided with this thesis.

Chapter 4. Homol-MetReS: An integrated framework tool to study evolutionary molecular systems biology

4.1. Abstract

Model organisms facilitate the study of other species that may be hard to analyze directly. However, the ability to characterize a given process in specific organisms does not ensure that those organisms will be appropriate models for the way the process works in the organism one is interested in. Recently, a method that compares the set of proteins involved in a given process in different organisms was proposed as a way to identify specific organisms that are likely to be appropriate models of the way a process works in larger classes of living beings.

Here, we report the development of this method into a web application, Homol-MetReS, that will allow the users to efficiently apply the method to compare molecular circuits between any numbers of organisms. To facilitate such comparisons, the tool permits functional (re)annotation of proteomes, to properly identify both, the individual proteins that are involved in the process(es) of interest, and their function. It also permits direct comparison of the sets of proteins involved in the process(es) in different organisms.

In order to illustrate the automation of the tool, we apply it to compare the whole proteome of *Saccharomyces cerevisiae* to that of 57 other eukaryotes and compare these results with those presented in chapter 2. We thus better identify the processes and organisms for which the yeast is likely to be a good model. In addition we apply the tool to analyze and compare the full proteomes of different malaria parasites, identifying the differences in the enzyme complement of those parasites. Those differences are then related to the disparities in the virulence and drug sensitivity of the various parasites.

4.2. Introduction

Understanding at the molecular level how an organism responds to an environmental stimulus or executes a specific biological process requires a laborious research process. A critical step of this process is identifying the proteins and genes that mediate the response. Once this is done, their individual functions must be established. In addition, the physical and functional interactions between the different proteins that coordinate the process of interest must also be understood. Integrating all this information facilitates reconstructing the molecular network that regulates the process. In principle, that reconstruction can be used to predict how the network will respond in different situations and to alternative stimulus, for example through the use of mathematical models. If the predictions are confirmed and a sufficient level of understanding is achieved, the organism may become a model to study the way in which that process might work in other living beings.

Model organisms facilitate the study of other species that may be hard to analyze directly because of one or more of the following reasons [147]:

- a) They are technically hard to experiment upon,
- b) Ethical issues hinder experimentation, or
- c) The developmental processes and time scale of the organism's response is too slow.

However, characterizing a given process in specific organisms does not provide any guidance about which of these organisms to choose as a model for the same process in an organism that may be hard to study.

Recently, a method was proposed to choose appropriate model organisms to study a specific biological process [147] (as defined in Chapters 2 and 3). This method consists in first identifying the proteins that participate in the processes of interest in the different organism. Then, a comparison of the network of protein functions between the different organisms is performed. Finally, we select the organism with a set of proteins as similar as possible to that of our organism of interest and with the possibility of being experimented upon. The method was applied to study the adequateness of *Sacharomyces cerevisiae* as a model organism to study different processes in approximately seven hundred organisms.

To efficiently apply that method to other cases, users need a tool that simultaneously allows them to

- a) Properly identify both, the individual proteins that are involved in the network(s) of interest and their function, and
- b) Compare the networks of interest between different organisms.

Proper functional identification of genes on a full genome scale and for all organisms with fully sequenced genomes is only possible by using the functional information that is available for proteins in other genomes. Such functional information is transferred to the proteins in the new genomes through the use of sequence homology. In short, orthology (and homology) between an uncharacterized protein and another with known function is used to transfer, either partially or in full, the functional annotation of the latter protein to the former [205, 206]. This procedure relies on the ortholog conjecture [207]. Using additional information, such as synteny [208], or metagenomics context can improve the accuracy of this information transfer [209]. The information transfer process is often automated and its accuracy critically depends, among other things, on the correctness of the functional annotation that is available. Manual partial re-annotation of functional information by researchers often improves that accuracy. Even though many high quality tools and workflows are available for proteome/genome (re)annotation [210-218], using them typically require programming skills that experimental scientists often lack the time to develop. Proper comparison of networks on a large scale is, as far as we know, not a functionality that is available on widely used genome analysis tools and needs to be done almost manually, for example using PathBlast [219], KEGG [220], or MetaCYC [81]. In addition, no tool that we are aware of permits simultaneous large scale re-annotation, functional integration and network comparisons.

In this work we aimed at developing and testing a prototype web application that would enable researcher to apply the method described in [147], by providing the functionality discussed in the previous paragraph. This web application, Homol-MetReS, is available at **http://homolmetres.udl.cat**. It was designed to provide a user-friendly pipeline of methods to re-annotate or transfer functional annotation between proteomes, and to evaluate how similar the networks of proteins involved in a specific biological process are between different organisms. The application implements functionality for

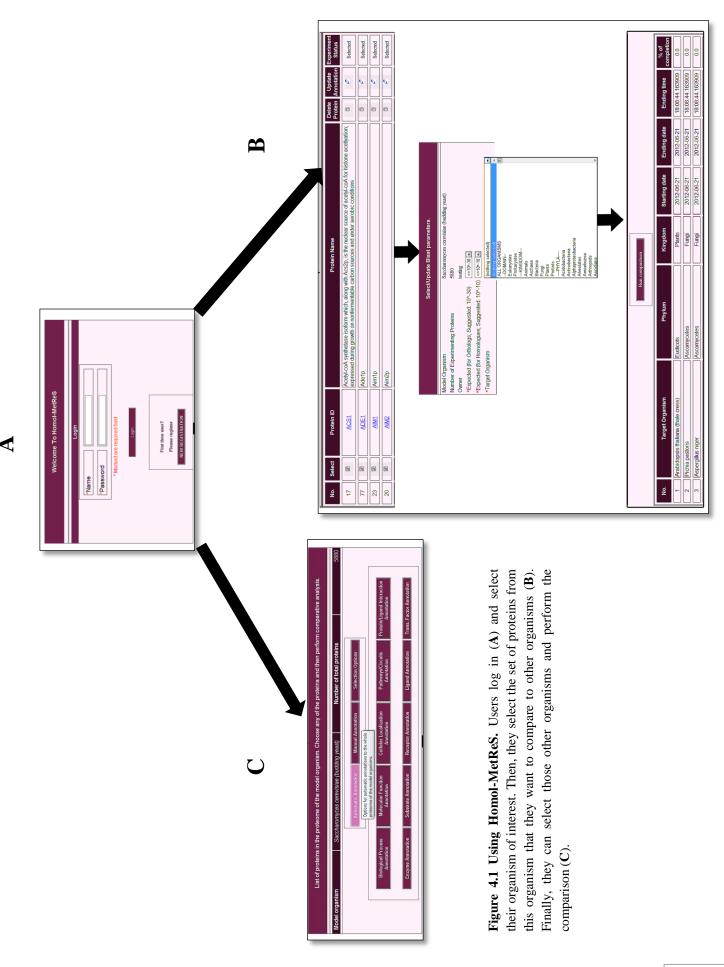
- a) Comparing full proteomes using sequence homology,
- b) Functionally (re)annotating the relevant proteins of said proteomes,
- c) Generating heat maps that easily rank the similarity between organisms in a list with respect to the set of proteins that may be associated to the relevant functions, reactions or biological processes and pathways/networks.

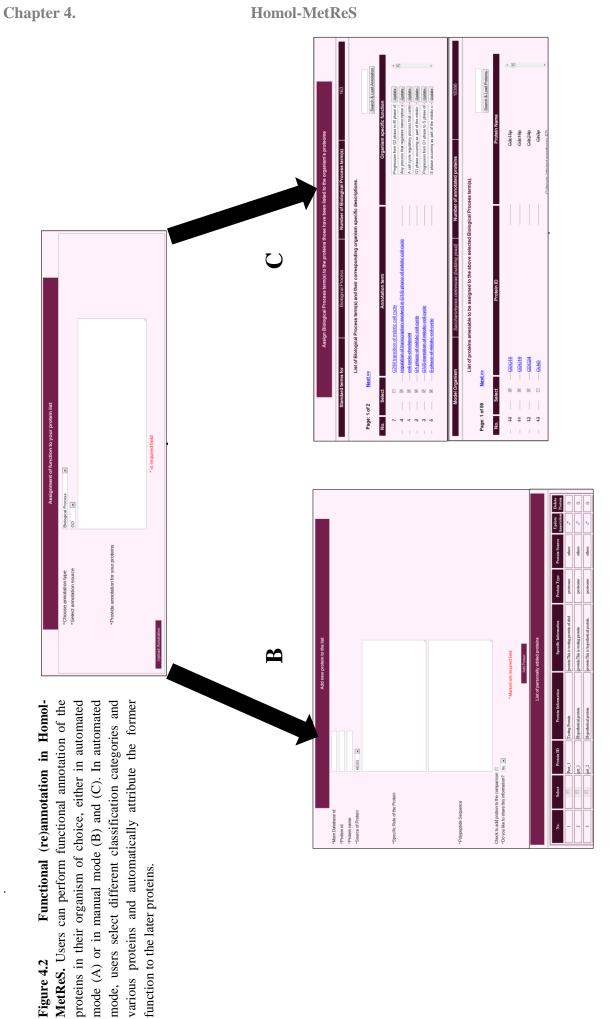
We verify the accuracy of the prototype by reanalyzing two previously published case studies and deriving new information from the comparisons in each of them.

4.3. Results

4.3.1. Homol-MetReS

Homol-MetReS is a web application that enables rationally identifying appropriate model organisms in which to study the functioning of a specific function, biological process or circuit and from which to extrapolate the results to other organisms where that function or process is hard to study. The method to identify appropriate model organisms requires that at least some of the alternatives being considered have a reasonably accurate functional annotation of the proteins that participate in the process or circuit of interest. As explained in more detail in [147], the method compares the set of proteins that participate in the relevant process(es) in the group of organisms being considered and identifies the organism in which the network is the most similar to that of one's organism of interest. Doing so requires that Homol-MetReS provides distinct functionality to the user in a tightly integrated manner. In order to facilitate this task, Homol-MetReS provides three modular, yet integrated, central functionalities to the user.


First, users can (re)annotate the function of each of the proteins in the proteome of an organism of interest with respect to many different classifications of biological function: GO [221], Pathways [220], EC Number [222], Protein name, Interactions [223], Receptor function [224], Ligand function [224], and Substrate [222]. In addition, the application provides a category for personal functional classification definitions. Homol-MetReS includes manual and automated functional annotation modes (**Figure 4.1**).


Second, users can compare the sequences of the individual proteins from their proteome of interest to those of the full proteome from more than 1200 other organisms that have fully sequenced and annotated genomes. This functionality can be integrated with that for (re)annotation. Functional information from one organism can be transferred to another by the user, based on sequence homology. The application also permits identifying candidate proteins for missing functions, proteins that are absent in specific organisms and gene duplication events. The process for doing this is illustrated in .

Third, users can graphically compare the network of proteins that participate in a given set of functional categories between alternative organisms, in order to identify which organism have networks that are more similar to all others within each category **Figure 4.3**. This functionality can be integrated with the other two and permits the navigation between graphical representations of the analysis for different functional categories. It also visually identifies the organisms that could be appropriate models to study a process of interest in an organism in which that process is hard to study. Data can also be downloaded in zipped format.

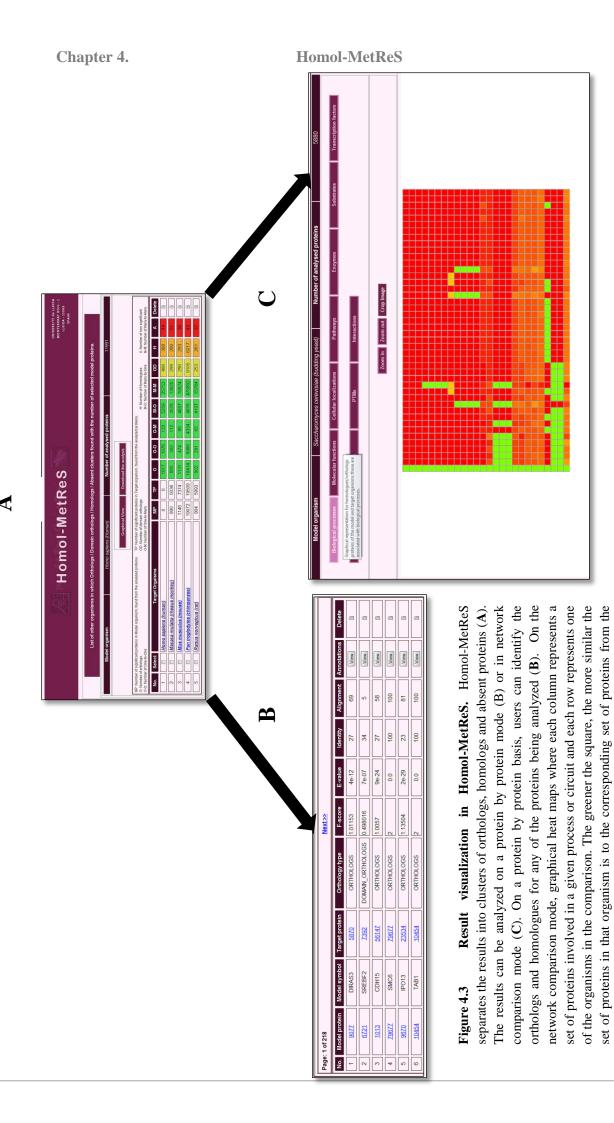

4.3.2. Using Homol-MetReS

Figure 4.1, Figure 4.2 and **Figure 4.3** (see above) represent a summary of what users can expect in Homol-MetReS. To facilitate both, security and experiment management, one needs to register to use the application for the first time. This allows the server to create a set of directories where the results of all experiments developed by that user will be stored. Once registered, the user can login into the application (**Figure 4.1 A**) and create different projects. Each project corresponds to the analysis and comparison of an organism of interest to other organisms from the database. Once a specific organism is chosen, the user can select any set of proteins that are of interest in the full proteome of that organism (**Figure 4.1 B**). The application provides a search facility to identify the different proteins of interest. If a (set of) protein(s) is either not included in the database or not properly annotated, the user has the option of adding or annotating that (set of) protein(s) to be used in subsequent proteome comparisons. At this stage, users can set about to perform the comparison of the proteins from their organism with the proteome of other organisms that they also must select (**Figure 4.1 C**).

 \mathbf{A}

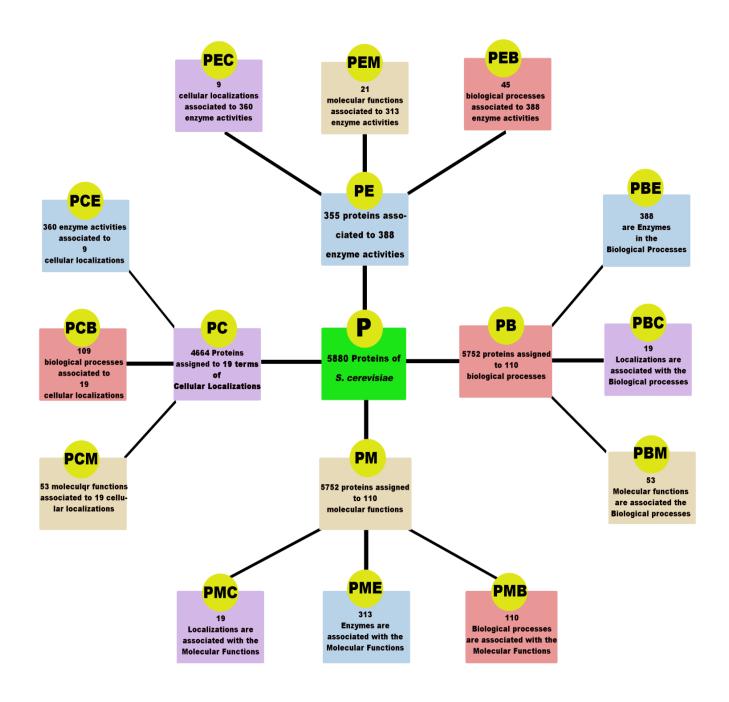
original organisms of interest.

To perform the comparison, the user should select cut-off values for what are to be considered orthologs and homologs. Users should also select the threshold value below which no sequence similarity is considered as significant between organisms. Although such values are case specific, a default value of 10^{-30} for the e-value and 30% for the identity appears to work well in most cases for the ortholog selection. For homologue selection, reasonable default values are 10^{-10} for the e-value and 20% for the identity. Once the comparison is set and running, the user can log off. Homol-MetReS will send a message to the registered e-mail once the comparison is fully done.

Alternatively, before performing the comparison, users can provide functional annotation for the proteins in their organism of interest (**Figure 4.2. A**, **B**). They can do so in automated (**Figure 4.2. A**) or in manual mode (**Figure 4.2 B**). In automated mode, the user will be able to associate the protein(s) of interest to different subcategories within the categories mentioned above, simply by clicking on boxes and saving the result. In manual mode, users provide a tab or coma separated text where each protein is identified with its NCBI entry, followed by the functional annotation. This annotation can be done with respect to the following categories: GO ontology, Pathways and circuits, Transcription Factors, Receptor and/or Ligand functions, Enzymes and/or Substrates, Interactions, and Post Translational Modifications. Homol-MetReS automatically verifies if the entry is already present and avoids storing repeated entries.

Once the comparison is done (**Figure 4.3 A**) the user can analyze the results for each protein individually, looking for gene duplications/deletions between organisms (**Figure 4.3 B**). This provides useful information about the relative evolution of the organisms being compared. In addition, users can transfer functional annotation between organisms. Finally, the user can visualize the results in different forms. Pie charts display information about the percentage of proteins that is found for each functional category in the genomes of the comparison. In addition, heat maps are used to represent the differences between the sets of proteins that participate in specific process/circuit/other biological functional category in different organisms (**Figure 4.3 C**). A green colored square indicates high similarity, while a red colored square indicates low similarity. At this stage the user can decide which alternative organism is the best for performing experiments.

Homol-MetReS is highly modular and efficient when it comes to comparing different organisms. Comparisons are centered on modular categories of biological function (GO,


Enzymes, Interactions, Pathways, etc.). When a comparison is done in the functional context of one of those categories, for example Pathways, Homol-MetReS permits transferring the sequence relationships that are found to a different comparison between the same organisms, now in the context of another category, for example GO Biological Function. This saves significant time because BLAST does not have to be run again for comparison of proteins that simultaneously belong to different modular categories. All the results are stored in the user's folder for 7 days. These results can be downloaded in ZIP format. After 7 days, the application considers the results to be obsolete and automatically deletes them.

4.3.3. Case studies in Homol-MetReS: Saccharomyces cerevisiae

In order to benchmark Homol-MetReS we have repeated a subset of the analysis reported in [147] and compared the results obtained then with the results obtained automatically through the use of the Homol-MetReS application. In the previous analysis we had analyzed Saccharomyces cerevisiae as a model organism for different biological processes and pathways in bacteria, archaea and eukaryotes. Here we update only the eukaryotic part of the comparison. As S. cerevisiae is widely used as a model organism to study many different molecular aspects of eukaryotic cell behavior, this analysis is important to establish the appropriateness of that use. The analysis using Homol-MetReS found 5880 proteins in the most recent version of the S. cerevisiae proteome. The assignment of biological function for the whole proteome was done for five functional categories: Enzyme assignments, Biological process assignments, Pathway assignments, Molecular function assignments, and Localization assignments. The functional annotation for the proteome was downloaded from SGD (Saccharomyces Genome Database), and introduced into the S. cerevisiae database in Homol-MetReS using automatic annotation (see supplementary figures for details). The frequency of the subcategories in the whole proteome is shown in **Figure 4.4**. In the case study we annotated terms for 388 enzymes, 110 biological processes, 53 molecular functions, and 19 localizations to the full proteome of the S. cerevisiae. Within each of these functional categories, Homol-MetReS provides graphical pie chart representation of each of the functional categories for percentage frequency occurrence of each protein that are attributed to the corresponding terms.

Supplementary Figure S3-S5 of [147] (Figure S1.3-Figure S1.5 of the Chapter 2) analyze how similar the networks for circuits involved in different biological processes, molecular functions and pathways are between *S. cerevisiae* and 704 other organisms. In the

current work we performed a similar comparison of the proteome of *S. cerevisiae* to that of the 57 eukaryotes that were analyzed in [147]. The organisms that have biological circuits predicted to be more similar to those of *S. cerevisiae* are humans, rhesus monkeys, and chimpanzees. This can be seen in Supplementary **Figure S3.3-Figure S3.9**. As it was described in [147] *S. cerevisiae* is likely to be a reasonable model to study processes like "Cytoplasmic translocation" (168 proteins), "Translational elongation" (38 proteins), "RNA modification" (84 proteins), and iron sulfur cluster assembly (5 proteins) in primates. In contrast, *S. cerevisiae* is less likely to be a good model to study the following processes in primates: "vitamin metabolic process" (47 proteins), "amino acid transport" (44 proteins), "mitochondrial translation" (115 proteins), "cell wall organization" (219 proteins), among others.

Figure 4.4 Integration of functional annotation for the 5880 proteins in the *Saccharomyces cerevisiae* proteome. Homol-MetReS permits integrating the functional annotation of these proteins between different classification schemes. For example, out of the total 5880 proteins in the yeast proteome (P), 355 proteins are enzymes (PE), spawning 388 different enzyme activities. These enzymes are further distributed into 21 different molecular functions terms (PEM), 9 cellular localization terms (PEC) and 45 biological process terms (PEB). The same way molecular function attributed proteins (PM) integrated with the localizations (PMC) and biological processes (PMB). Such an integrated analysing can start at the level of any functional category.

In general the results of these comparisons are similar to those in Chapter 2 [147]. Differences are due to two factors. First, Homol-MetReS uses the more detailed full GO classification, as opposed to the previous analysis, which relied on GOSLIM. The later, simpler, classification has 32 biological processes, 21 molecular functions and 21 cellular component terms, while the full GO has 20912 biological processes, 9812 molecular function and 2931 cellular component terms. Second, more proteins in the proteome of S. cerevisiae have functional annotation in our current database than when the analysis reported in Chapter 2 [147] was done. In that paper 71%, 53% and 82% of all S. cerevisiae proteins had functional annotation respectively for biological process, molecular functions and localizations. Now, the corresponding numbers are 98%, 89% and 79%. It must be remarked that in the current analysis we used only eukaryotes (57 organisms), whereas in the chapter 2, 700 organisms were used. In addition, the current study also compares the enzyme complement of the different organisms directly. As in chapter 2, we ranked the organisms based on the proportion of homologues, domain orthologs, orthologs and duplications that they have in the various functional categories with respect to S. cerevisiae, . The organisms that are more similar to S. cerevisiae for each of those categories are summarized in Figure **4.5**.

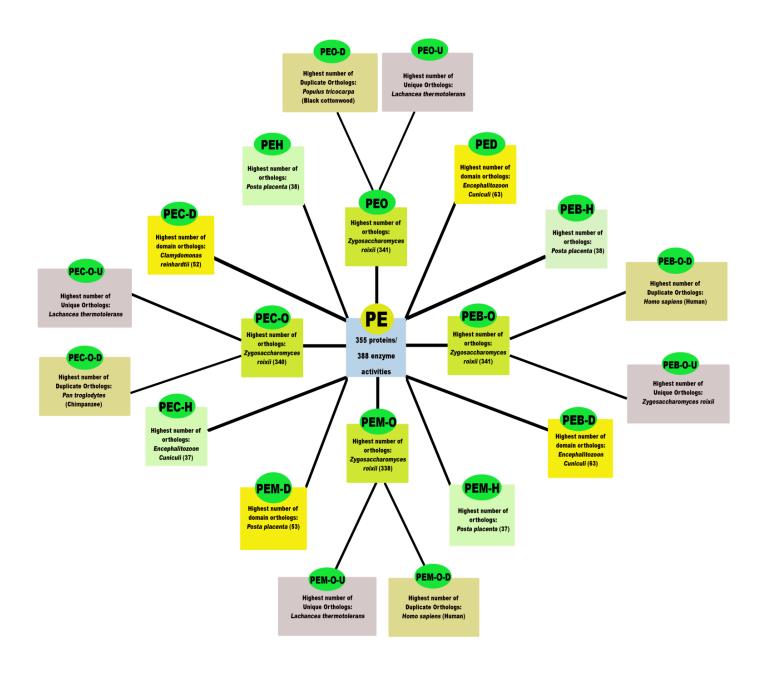


Figure 4.5 Comparative functional analysis of the integrated enzyme component of the yeast proteome with other eukaryotes at different homology levels. Homol-MetReS permits an integrated visualization of the homology and duplication patterns of yeast proteins in other organisms, accounting for the functional information associated to the proteins. We show the results of such an analysis for the enzyme component (**PE**) of the proteome from *S. cerevisiae*, annotated in the Figure 4.4. Orthologs (*O*); Domain ortholog (*D*); Homologues (*H*); proteins with orthologs that are unique (*O*-*U*); proteins with orthologs that are duplicated (*O*-*D*). In addition to this, Homol-MetReS automatically associates this information to proteins' localization (**PEC**), molecular function (**PEM**) and biological process (**PEB**) information terms.

During the process of analysis Homol-MetReS permits correlating different functional aspects of the proteins. For example, the annotated enzyme complement of *S. cerevisiae* contains 388 enzyme activities (EC numbers), and it appears to be 30% similar to that of primates (see Supplementary Figure S3.6 for more details). Many of the enzymes that are not conserved between the yeast and primates are involved in *S. cerevisiae* processes that are also not well conserved in primates with respect to the yeast (Figure 4.5 for summary, Supplementary Figure S3.9 for complete comparison with respect to different functional classifications). One of those processes is "Vitamin Metabolic process" (Supplementary Figure S3.3), with 40 proteins annotated as participating in *S. cerevisiae*. Out of these 47 proteins, 17 are enzymes. These enzymes are absent from the enzyme complement of primates (Supplementary Figure S3.6). This example illustrates how the Homol-MetReS platform can be used to perform and facilitate such comparisons, enabling the correlation between different functional classifications together.

4.3.4. Case studies in Homol-MetReS: Malaria Parasites

Parasites from the *Plasmodium* genus are responsible for malaria, a disease with an enormous human and economic worldwide impact. Several species cause the disease, with different etiologies. *Plasmodium falciparum* appears to be the most lethal, while *Plasmodium vivax* is less lethal but more recurrent [225]. Here, we select some of these parasites as a case study to further illustrate the usefulness of Homol-MetReS. The application is used to compare the proteomes of the different *Plasmodium* species and strains with fully sequenced genomes. The results of this comparison can help understand the varying effects of some anti-malaria drugs on different parasites. In addition, we also compare their genomes with those of human and chimp, suggesting explanations for some differences in the etiology of the disease between the two primates.

We anchor the study in *Plasmodium vivax*, which is the malaria parasite more frequently associated with recurring malaria. The latest version of *P. vivax*'s genome has 5393 proteins in its full proteome. 222 enzyme terms are automatically identified using the text mining facilities available in Homol-MetReS. These are used to identify the proteins with an associated E.C. number in the annotation of their sequences, which are stored in FASTA format. These 222 distinct enzymes are associated with 314 proteins in the *P. vivax* proteome.

The difference in numbers is a consequence of enzymes that are composed by more than one subunit and of enzyme activities that can be performed by more than one protein.

After the enzymes annotation stage is over, we compare the full proteome of *P. vivax* to those of *Plasmodium berghei*, *Plasmodium chabaudi*, *Plasmodium falciparum 3D7*, *Plasmodium falciparum Dd2*, *Plasmodium falciparum HB3*, *Homo sapiens* (human), and *Pan troglodytes* (chimpanzee). Some of the results are summarized in **Figure 4.6**. The comparative analysis for the complete enzyme list is available in **Figure S3.10** (the **Figure S3.10** is provided in the CD of the thesis). Most of the identified enzyme activities are common to all *Plasmodium* parasites in the comparison. The ones that are specific to some of the species or strains could be used as markers for understanding physiology of host-pathogen relationships. A few examples of how this can be done will now be discussed.

"Adenylosuccinate synthetase" (EC: 6.3.4.4) is the first enzyme in the purine salvage pathway of *Plasmodium*. This pathway is involved in the salvaging of the host's purines for the synthesis of DNA by the parasite [226], and it is an important target pathway for drugs that kill the parasite [227]. That enzyme is absent in *Plasmodium falciparum Dd2*, a clone from Indochina/Laos. It is well established that the *P. falciparum Dd2* strain is more resistance to chloroquine than the HB3 strain [228, 229]. There is also evidence that the Dd2 clone has a high propensity to acquire resistance against drugs that target the purine salvage pathway, whereas *P. falciparum* HB3 does not [230, 231]. Given that these drugs are high affinity analogues of the transition state of an enzyme in the pathway, the absence of enzyme orthologs in the pathway implies that there is either an alternative salvage pathway or an alternative enzyme that replaces the one working in other *P. falciparum* strains.

(See Figure 4.6 on next page)

Figure 4.6*

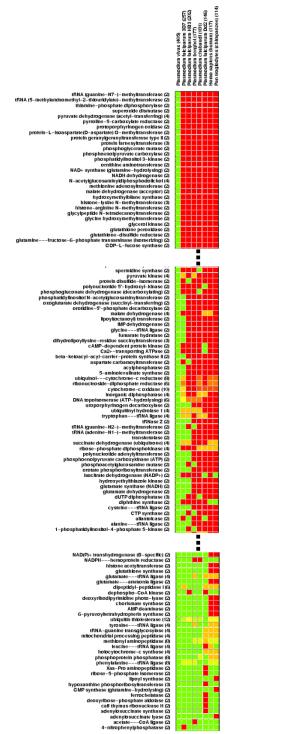


Figure 4.6 Comparing the enzyme complement of different organisms from the *Plasmodium* genus. Humans and chimps are also included in the comparison. This figure shows a detail of the enzymes that are not common to each of the organisms. Enzymes were annotated using the automated annotation mode of Homol-MetReS. *P. vivax*, has 314 annotated enzymes and was used as the central organism in the comparison. Orthologs for that enzyme set were searched in the other organisms. Red colour indicates that the sequence ortholog is absent in an organism, while green colour suggests presence of the enzyme. The complete analysis is shown in Supplementary Figure S3.10. *Enlarged figure is available as Figure S3.10 in the CD that is provided with this thesis.

"Porphobilinogen synthase" (EC: 4.2.1.24) is an enzyme that is involved in heme biosynthesis. It is present in all Plasmodium species but *Plasmodium falciparum* HB3, where it is absent. The *Plasmodium* enzyme localizes to various compartments of the parasite (apicoplast, mitochondria and cytosol). It has a low catalytic efficiency when compared with the corresponding enzyme of the host [232]. In fact, it was reported that the parasite can import the host enzyme and use it for heme biosynthesis during the intraerythrocytic stage of infection [233, 234]. Thus, it is conceivable that the HB3 strain has completely lost the gene coding for this enzyme and that this strain only uses the protein when imported from the host. We also note that the low catalytic efficiency of the parasitic enzyme is probably due to the fact that it has more than one enzyme activity [232]. This leads us to speculate that there may be some other enzyme with multiple activities that could replace the native "*Porphobilinogen deaminase*" when the parasite is not infecting a host.

Our analysis also reveals interesting results with respect to enzymes that are usually involved in energy metabolism. First, it was found that both subunits of "*Pyruvate dehydrogenase*" (EC: 1.2.1.51), which is localized in apicoplast and involved in lipoylation of proteins [235, 236], are absent only in the genome of *P. chabaudi*. This enzyme appears to be important only in the late stages of the development of the disease in liver [237, 238]. *P. chabaudi*, together with *P. yoelii* are mouse specific malaria parasite. Previous experiments show that mice that are deficient in enzymes related to pyruvate metabolism are more resistant to infection by *P. chabaudi* [239]. Taken together, these observations suggest that *P. chaubadi* might be using the host's enzymes to perform the function that its cognate PDH should perform.

Second, "Aspartate transaminase" (EC: 2.6.1.1) is absent from the genome of *P. chabaudi*. How this correlates to any phenotype that is *P. chabaudi*-specific is unknown. However, given that fumarate is generated as a side product of the purine salvage pathway and that tricarboxilic acid cycle related enzymes appear to function in a biosynthetic capacity in the malaria parasites [240], it could well be that some less specific enzyme replaces this activity in *P. chabaudi*.

4.4. Discussion

In this work we present a web application, Homol-MetReS, whose purpose is two-fold. On one hand it aims at facilitating whole proteome functional (re)annotation. On the other, it aims at using this annotation, combined with sequence comparison, to predict how similar the network of proteins involved in a given biological process is between different organisms. Together, these two features facilitate identifying an appropriate model organism to study a given process, if for some reason that process cannot be appropriately studied in one's organism of interest. This identification is done through the comparison of the set of proteins involved in the same process in the different organisms.

Such comparisons are possible because of the accumulation of fully sequenced and annotated genomes since 1995. The methods implemented in the application have been previously developed and tested manually using *S. cerevisiae* as a case study [147]. In this earlier work *S. cerevisiae* was thoroughly analyzed and compared to 700 other organisms in order to identify the biological processes and pathways in each of those organisms for which the yeast might be a good study model [147]. In this paper we update the analysis from that study considering only eukaryotes, as a benchmark to ensure that Homol-MetReS is working appropriately. We find that results are similar, yet more accurate and specific, as we now use more detailed functional classifications. In addition, the application saves approximately 80% of the time it would take to perform the same study in a similar way as in [147]. This is partially due to the fact that earlier sequence comparisons remain stored and need not be performed again.

We have also performed a comparative analysis of the proteomes of various malaria parasites among themselves. They were also compared to the human and chimp proteomes. Interestingly, some differences are found in the enzyme complement of the different parasites and, in some cases, those differences can be correlated with differences between the different strains of malaria parasites in their infectious behavior or resistance to treatments.

Because Homol-MetReS does not focus on the genome, but rather on the proteome, it is useful for understanding the comparative functional evolution between the proteins of different organisms. The comparison method used by the application permits differentiating between paralogs and orthologs. This differentiation is crucial for appropriate functional comparison. However, our network comparison is robust to mistakes in that differentiation, because as long as one of the paralogs is a real functional ortholog, the network being compared will be similar.

Homol-MetReS has partial functional overlap with other tools [81, 195, 219, 241-255]. A list of some of the most widely cited is shown in **Table 4.1**. A comparative summary of their functionality is shown in **Table 4.2**. Homol-MetReS is unique in allowing users to define new functional categories and re-annotate preexisting ones. This is a plus for those users that need to reduce semantic gaps in between existing and required functional definitions. Because such personalized functional annotation could also hinder use by others, Homol-MetReS separates these personal functional definitions and keeps them user-specific. This avoids clashing definitions between different users.

 Table 4.1
 Summary of functional comparison of other web applications and Homol-MetReS.

Tool	Method for sequence comparison	Classification Schemes	Organims in database
COG	Pairwise sequence analysis using Blastp	Protein names, EC numbers, GO Biological processes	66, Eukaryotes + Prokaryotes
OrthoMCL	Pairwise sequence analysis using Blastp	Protein names	150 Eukaryotes
Homologene	Pairwise sequence analysis using Blastp	Protein names	Eukaryotes
InParanoid	Pairwise sequence analysis using Blastp	Protein names, Interactions	100 Eukaryotes
PHOG	Pairwise and Global sequence analysis	Protein names	25 Eukaryotes
TreeFam	TreeFam infers homology analysis by mean of gene trees	Protein names	28 Eukaryotes
Homol-MetReS	Pairwise sequence analysis using Blastp	Protein names, EC numbers, Full GO ontology, KEGG Pathways, Interactions, Substrates, Receptors, Ligands, Transporters, Post translational modifications	1257, Eukaryotes + Prokaryotes
DODO	Using Domain information and rpsBlast	Protein names, Full GO ontology	
MicrobesOnline	Pairwise sequence analysis using Blastp	Protein names, EC numbers, Full GO ontology, KEGG Pathways	3705, Eukaryotes + Prokaryotes
EggNOG	Non supervised orthologs grouping	Proteins names, based on COG and KOG	630 Eukaryotes + Prokaryotes
Roundup	Reciprocal Smallest Distance (RSD) algorithm	Protein names, Full GO ontology	1501 Eukaryotes + Prokaryotes
ОМА	Co-occurence of orthologous genes in different genomes	Protein names, Chromosome locus, Full GO classification, KEGG Pathways, COG	352 Eukaryotes + Prokaryotes
YETI	Pairwise sequence analysis using Blastp	Protein names, GO Biological process, Molecular functions, Localizations, Interactions, Pathways	
PathBlast	Protein-protein interaction network based pair wise analysis	Protein names, KEGG Pathways, Interactions	
BioCyc, MetaCyc, Pathway Tools	Manually curated Pairwise sequence analysis	Protein names, EC numbers, Full GO ontology, KEGG Pathways, Interactions, Substrates, Receptors, Ligands, Transporters, Post translational modifications	>1000, Eukaryotes + Prokaryotes
PROCOM	Pairwise sequence analysis using Blastp		32 Eukaryotes
NetAligner	Pairwise sequence analysis using Blastp	Protein name, Interactions and Pathways	Eukaryotes and E. coli
PROMPT	Pairwise sequence analysis using Blastp	Protein names, EC numbers, Full GO ontology	
Negative Proteome Database	Pairwise sequence analysis using Blastp	Protein name	Eukaryotes

f other web emploations and Hemel-MotDeC	I OUTED WED applications and ITOMOI-METVED.	
o mosticon of	o most reduino	
of functional ,	ULLULULULULULULULULULULULULULULULULULU	
Cummon v	Summary	
,	1	

Table 4.2

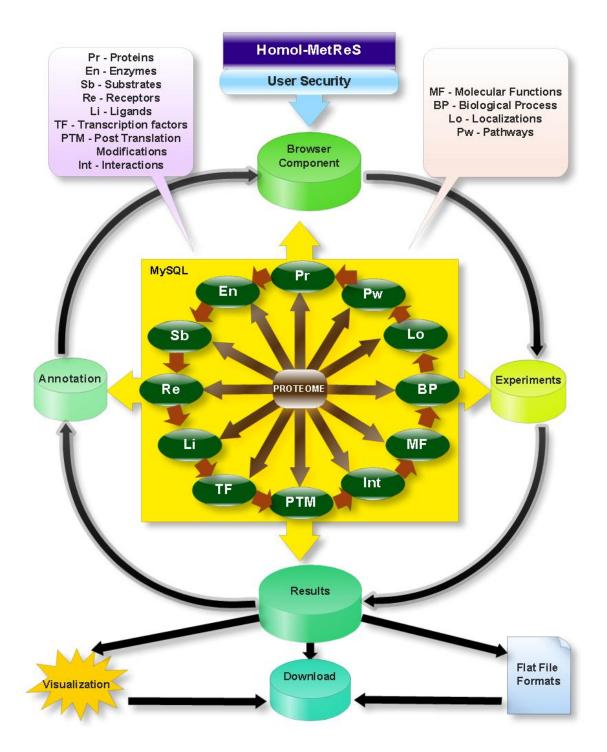
Tool	Multiple full proteome comparisons	Discriminates various levels of homology	Detects missing proteins	Functional (re)annotation by user	Integrates various classifications	Graphical representation of analysis	Comparison of functional networks	Allow users to manage their own definition of proteins and functions
COG	•	•						
OrthoMCL		•	•	•				
Homologene				•	•			
InParanoid		•		•	•			
ЭОНА		•		•				
TreeFam								
Homol-MetReS	•	•	•	•	•	•	e e	•
DODO		•		•				
MicrobesOnline	•	•		•	•			
EggNOG		•		•		•		
Roundup			•	•	•			
OMA					•			
YETI		•		•	•	•		
PathBlast			•	•	•	•	•	
BioCyc, MetaCyc, Pathway Tools			•	•	•	•	•	
PROCOM	•	•						
NetAligner			•		٠	•	•	
PROMPT	•				•			
Negative Proteome Database	•		•					

^a As opposed to the other tools, Homol-MetReS permits simultaneous comparison of multiple networks in multiples organisms.

With the exception of Pathway Tools, BioCyc and MetaCYC [81, 256], none of the other tools permits integrating functional information using all the different classification schemes that are available in Homol-MetReS. In addition, the only tool that permits comparing pathways or circuits using homology search is PathBlast [219]. However, doing this in PathBlast requires manually identifying the proteins involved in a specific process and comparing those proteins to only one other organism. In Homol-MetReS this type of comparison can be done in large scale and automatically. An important feature of Homol-MetReS is that it identifies proteins that are absent between any pair of organisms chosen for comparison. This feature is shared with PathBlast [219], the BioCYC suite of applications [81, 256], Netaligner [245] and OrthoMCL [248].

Some tools integrate the determination of homologues or orthologs clusters with the functional annotation of the proteins in the clusters. Homol-MetReS is one of them. However, in Homol-MetReS, this integration covers a wider range of functional classifications than any other we are aware of. In addition, Homol-MetReS permits comparing as many organisms simultaneously as the user decides.

In short, Homol-MetReS provides a wider range of functionality than other comparable tools. It facilitates full proteome annotation and comparison, enabling the identification of appropriate model organisms from which the results of studying specific biological phenomena can be more securely extrapolated to other organisms of interest.


4.5. Materials & Methods

4.5.1. Homol-MetReS implementation

Homol-MetReS runs remotely through a web service on a Linux cluster, under TOMCAT. It is a modular application that is built using Zope 3.0 [257], Python [258], MySQL [259], and Mathematica [260]. It can be accessed using any or the major web browsers, from any of the major operating systems. The application uses MathematicaTM to compare the similitude of networks and build the graphical representation of those comparisons.

4.5.2. Internal database

Underlying and supporting Homol-MetReS, there is a database that was designed and developed specifically for this application (**Figure 4.7**). This database contains all the information for each of the more than 1200 fully sequenced and annotated proteomes available in the tool. In brief, a series of different tables store the information of a list of available organisms, the proteome of each organism, and the functional information about the different categories in GO classification, pathways and circuits, EC numbers, transcription factors, post-translational modifications and interactions. When an individual organism is analyzed, a new database that is organism-specific is automatically created. All information about the proteome of this organism is then stored into this new database to make analysis more efficient. Each protein entry in the proteome table of an organism is connected to the adequate function in those tables, whenever that information is available. Users can insert additional annotation information for proteins that will then be included in the organism-specific database. A summary of this information is shown in **Figure 4.7**.

Figure 4.7 Summary of database structure and connectivity between functional modules in Homol-MetReS. Each project starts with an organism. The functional information about the different aspects of the proteome of the organism is stored in the central database. This information includes sequences, GO ontology, EC numbers, transcription factors, receptors, ligands, substrates, interactions, pathways and posttranslational modifications. This information can be retrieved and updated through the annotation modules, to facilitate functional (re)annotation of proteins in an integrated manner with any of the annotated information. Once appropriate functional annotation is ready, the comparison modules can be used to perform proteome scale sequence comparisons. The results module accesses the results of the comparison. These can be analysed either protein-by-protein, in individual lists, or in bulk, through the analysis of orthologs homologues and absent genes. The results are accessible to the Visualization Module, which can generate heat maps that compare networks of proteins classified as having similar functionality in different organisms. The enzyme information terms come from BRENDA [261]. The receptor and ligand information terms are obtained from IUPHAR-DB [224]. The GO ontology information terms about biological process, molecular functions and cellular localization terms are downloaded from the GO database [221, 262]. The pathways information terms are obtained from KEGG [263]. The post translational modification information terms are derived from the Human Protein Reference Database [155]. Because there is no standard general classification for transcription factors, users are not provided with such a standard table. However, they can define such a classification themselves.

Homol-MetReS currently contains 1207 organisms with fully sequenced genomes, together with the functional annotation for each of the genes from any of that organisms. Each organisms are classified based on domain (2 domains: Prokaryotes- 1082, Eukaryotes- 129), kingdom (6 kingdoms: Bacteria-999, Animals-46, Archaea-79, Fungi-43, Plants-11, Protists-29), phylum (54 phyla) and class (447 classes). The master databases for standard functional terms include Pathways (KEGG), GO (gene ontology terms: biological processes – 20912, molecular function – 9812, cellular components - 2931), Enzymes (Brenda enzyme terms - 4253), Receptor (IUPHAR receptor terms - 558), Ligand (IUPHAR ligand terms - 2756), and Chemical compounds (KEGG compound terms - 14774).

4.5.3. Proteome Comparison

Comparison of individual protein sequences is done using BLAST [264, 265], which is downloaded from NCBI and incorporated into Homol-MetReS. The comparison of proteomes is done using a pipeline that implements the methodology described in [147] and classifies proteins into clusters of orthologs, homologs, and absent proteins. In brief, this pipeline uses the following process to identify the different types of protein clusters. First, the selected proteins of the organism of interest are blasted against the entire proteome of the target organisms selected by the user. Then, for each individual protein in a proteome, only proteins that have appropriate user-defined e-value, identity and coverage in another proteome are flagged and appended to the cluster of orthologs of the original protein. If more than one protein is identified as being a possible ortholog, a metric described below is used to identify which of them is more likely to be the "true ortholog" of the query protein. This metric, **F**, is used to further classify cluster of orthologs into four different types:

One-to-One Clusters: only one protein in the target organism matches the protein of the organism of interest according to the orthology criteria defined by the user.

One-to-Many Clusters: more than one protein in the target organism matches the protein of the organism of interest, according to the orthology criteria defined by the user.

Many-to-One Clusters: only one protein in the target organism matches more than one protein of the organism of interest, according to the orthology criteria defined by the user.

Many-to-Many Clusters: multiple query proteins in the organism of interest match multiple proteins in a target proteome, according to the orthology criteria defined by the user.

If proteins meet only some of those user-defined criteria, they are appended to the cluster of homologs for the original protein. If homology is further identified in only a portion of the homologous proteins, these are further classified as domain homologues. Proteins of one proteome that have no homologues in another proteome are classified as clusters of absent proteins. At the end of the comparison, clusters of orthologs, domain orthologs, homologs, and absent proteins are provided. This implements the methods described in [147].

4.5.4. Metric for prediction of orthologs

The set of all proteins from a target organism that are appended to the cluster of orthologs of a specific protein from the organism of interest are ranked using a score function F, as defined in [147]. The protein with the highest score function is predicted to be the ortholog of the query protein in the target organism, while the remaining proteins are flagged as inparalogs of that ortholog and used for gene duplication analysis. F is calculated as follows:

$$F = (F1 + F2) - F3$$
 Eq. 1

Factor *F1* is calculated as follows.

$$F1 = 1 - (S - I)/S$$
 Eq. 2

In Eq. 2, S represents the similarity score of the alignment (combined score of identical and similar amino acid residues in the alignment), and I represent the identity score of alignment. Both these values are outputs of BLAST. F1 is always between zero and 1.

Factor *F2* is calculated as follows.

Chapter 4.

$$F2 = (AL - G1 - G2)/PL$$
 Eq. 3

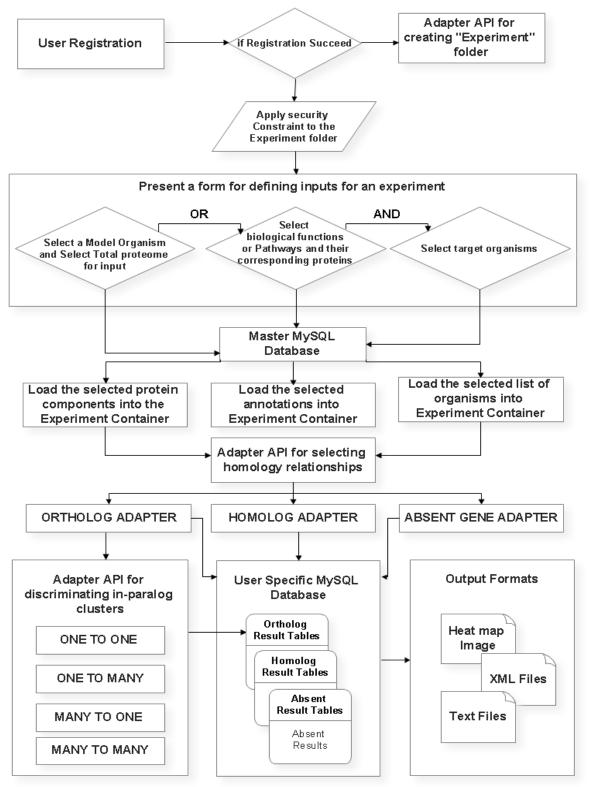
In Eq. 3 AL represents the length of the alignment and PL is the total length of the query sequence, G1 and G2 represent number of gaps within the aligned region of the query and target sequence, respectively. F2 is always between zero and 1.

Factor *F3* is calculated as follows.

$$F3 = (G1/L1) + (G2/L2)$$
 Eq. 4

In Eq. 4, G1 is the number of gaps within the aligned region of the query sequence, L1 is the length of the query sequence, G2 is the number of gaps within the aligned region of the target sequence, and L2 is the full length of the target sequence.

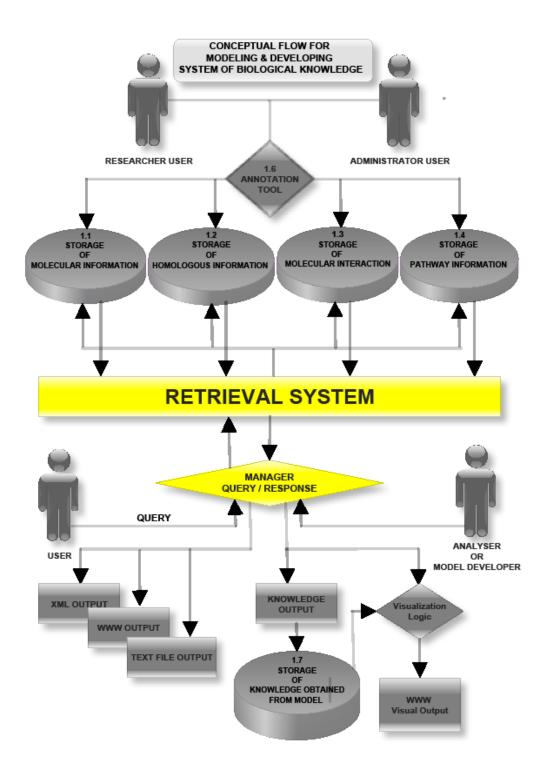
Theoretically, $-\infty \le F \le 2$. However, in practice its value is always found to be between 0 and 2, if reasonable cut-off values for e-value and identity are chosen.


4.5.5. Network Comparison

One of the purposes of Homol-MetReS is to identify alternative organism on which to study a given process that cannot be studied, for some reason, in the organism one is interested in. The application identifies such alternatives by comparing how similar the set of proteins that execute a given process or participate in a specific circuit is between our organism of interest and the organisms to which it is being compared. Doing this accurately requires that at least some of the organisms one is comparing have appropriate functional annotation associating proteins to the relevant biological process or circuit. A vector V_{HDPi} containing all proteins types associated to the process is created for each proteome P_i in the comparison. Each entry in the vector is one of the protein types. Next, each P_i is individually searched for orthologs to each of the protein types. When a protein type has an ortholog in P_i, the entry corresponding to that protein type is set as 1; otherwise it is set as 0. Subsequently, the Hamming Distance (HD) between the vector of the organism of interest and that of the alternative organisms is calculated using the formula $HD = \sum_{i=1}^{n} \delta_{i,i}$. Here, $\delta_{i,i}$ is a kronecker delta. It takes the value one if the elements in position *i* of both vectors is the same and zero otherwise. The smaller HD, the more similar the two vectors are and the more similar the set of proteins executing a specific process or functions from the biological component in both organisms, referenced to the organism of interest. Consequently, the more likely it is that the model organism is a good model to study the relevant function or process and generalize the results for the other organism. Graphical representation of the network similarity data is done using Mathematica [260].

4.5.6. Management of Homol-MetReS jobs and user-specific information

On top of the application structure, each user is provided with their own environment, where they can create independent workspaces that are organism specific. When a user starts a session, the information regarding that organism's workspace is transferred from the MySQL database and temporarily stored into a ZODB (Zope Object Database), which enables faster access times and better memory management. This ZODB is specifically created for each individual session and user. The user has total control over the information generated and stored in this ZODB during each experiment. The whole architecture and procedure is summarized in **Figure 4.8**.


CONCEPTUAL VIEW OF THE WEB TOOL

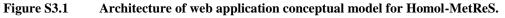


Figure 4.8 Flow chart for Homol-MetReS functioning. Users must register, before logging in and creating their organism centric *in silico* proteome comparison. The application retrieves the data for a central MySQL database and performs the sequence comparison between the organisms of choice and any other organism(s) in the database. Results for the comparison are sorted in different clusters of proteins. These can be visualized as xml files, heat maps, or text files. The detail of the implementation is provided in **Appendix 2**.

4.6. Supporting Materials

4.6.1. Appendix 2 - Details for implementation of Homol-MetReS Overall conceptual implementation of Homol-MetReS

Homol-MetReS is a common platform that includes various applications. It can be used for annotation, searches, sequence comparisons, information management and visualization of proteome organization from different organisms in an integrated manner. The overall implementation is shown in the **Figure S3.1**.

Homol-MetReS uses a central algorithm to integrate different applications at variable computation/communication granularity. It is designed with a user-centric, organism-centric perspective, permitting the comparison of the proteome organization between two or more organisms, considering different levels of biological function and taking one of the organisms as the reference. The platform is user-centric because user specific tasks are independent from one user to others. In addition, the analysis must be anchored to a specific organism, which also makes the platform organism-centric. The proteome of each organism is stored in a central database and tightly coupled with functional annotation components, such as enzyme, substrate, pathways, etc. When a user compares a model organism with another organism(s), the two proteomes can be coupled via sequence comparison.

To deal with such a multilevel complexity in Homol-MetReS requires appropriate software engineering approaches to address interoperability, maintenance, and software composition challenges. At the same time the architecture of the platform and its underlying database should optimize performance and scalability to variable levels of parallelism. Considering these factors, Common Component Architecture (CCA) was adopted as a technology for building the Homol-MetReS applications as a collection of reusable interfaces that were implemented to components and provided plug-and-play environment for highperformance computing that encapsulate the required fundamental algorithms, solvers, and methods.

Common Component Architecture in Homol-MetReS

Typically in a web application, one will have the concept of a model layer, where the data model is described and implemented. The model layer is separate from the View (presentation layer) and the Template layers. In Homol-MetReS a model layer is typically defined as inheriting from proteome analysis functional classes that inherits from three top levels of components of Grok. These are (a) Application, (b) Container and (c) Model.

The application schemas in Homol-MetReS are part of a general Object Relation Mapper (ORM) that is used with the Python objects generated during the utilization of the server. Consider three sources of Python objects which contain and deal with data: a Model object which is stored in a database, a Form object which is submitted from an HTTP Request and a call to an Adapter object which pulls data from a Container object that receives relational information from the backend database and returns it to the application. The user will then receive the results via HTTP Response. All these types of objects contain data, so it is helpful to be able to use the same system for formally describing the data in any object of the Homol-MetReS.

Architecture for database model in Homol-MetReS

Homol-MetReS employs client-server architecture to communicate between user-specific database and the central server's database. The design of the databases considers both how and what type of data is to be acquired, presented, edited, and entered. At the server-side, information is stored in relational model, MySQL. In addition, the session-specific information updates are performed under the access control of a ZODB (Zope Object Database), an object oriented data-access that is coupled to the relational database by ORM. Homol-MetReS applications work as interfaces by which the object oriented architecture and the relational database can communicate in order to provide flexible access to data and to prevent major changes in the application when a schema change occurs during the evolution of the Homol-MetReS system.

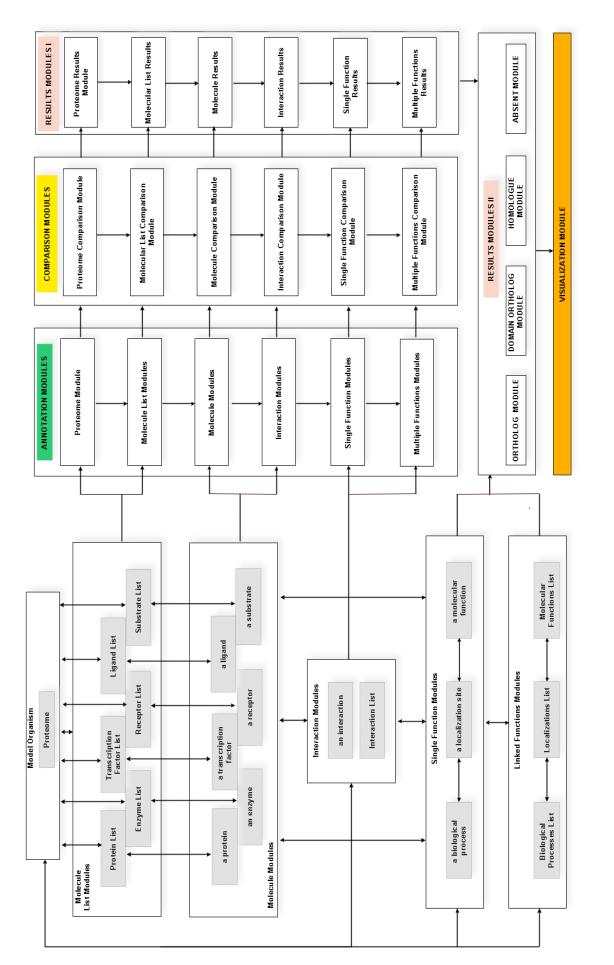
In Homol-MetReS there are three types of functional components (I) Proteome, (II) Annotations and (III) Results. The proteome component (Container component) contains the complete set of proteins of any selected organism. Each selected model organism leads to the creation of an independent database. There are six classified proteome subcomponents, implemented in form of tables in the database model: (i) Molecular entities, (ii) Functions, (iii) Processes, (iv) Localizations, (v) Interactions and (vi) Pathways. Each of the components is then further separated and organized into categories and subcategories. For example, Functions are separated into Enzymes, Receptors, Ligands, Substrates, Transcription Factors and Post Translation Modification categories. All these components and categories are tightly connection in a biological hierarchy (see **Figure 1.1** of **Chapter 1**). **Figure S3.2** shows how all the components are connected within three top level working bins.

Functionally, a protein is polymorphic molecule and different aspects of its functional description are emphasized by different people. Keeping this in mind, the Annotation

component was implemented to automatically coordinate different annotation terms that are attributed to common set of proteins by different users. If a given user annotates a given subcomponent for a set of proteins, Homol-MetReS automatically checks within other functionally categorized proteome subcomponents and integrates both subcomponents.

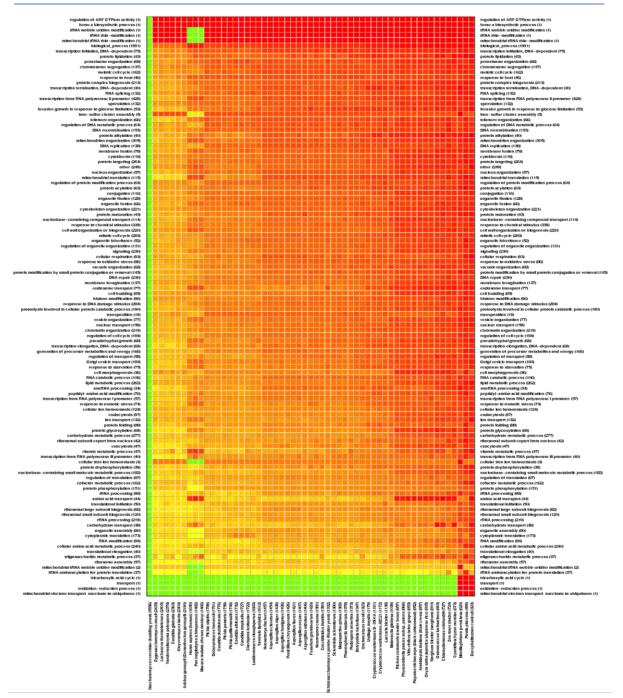
Results can be of two types in Homol-MetReS: (i) annotation results and (ii) sequence comparison results. Annotation results retrieve information from all the Annotation subcomponents of the list of selected proteins. Sequence comparison results access proteins from other organisms and classify these proteins based on sequence similarity. Results are sent to applications that perform the analysis and visualization tasks.

Clustering implementation in Homol-MetReS

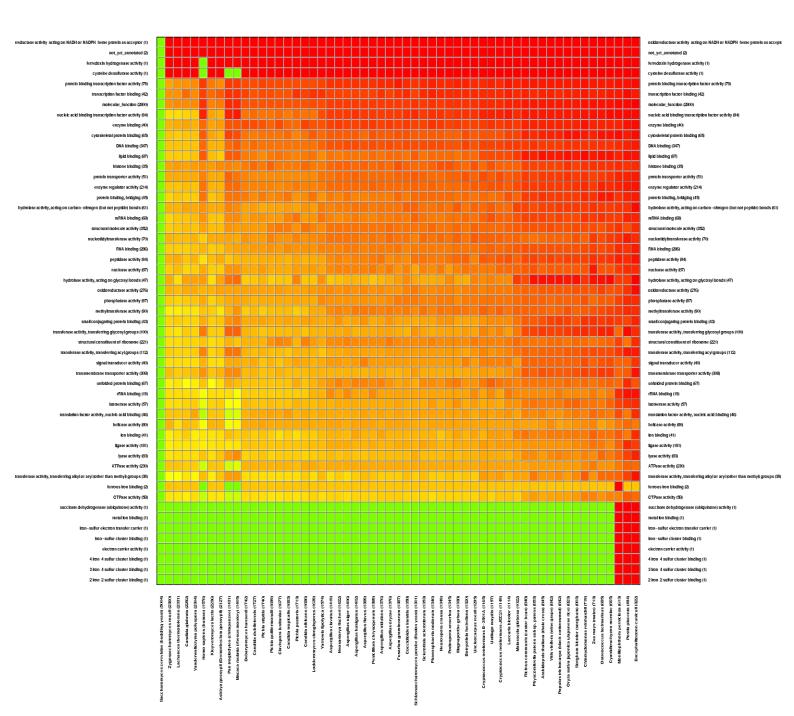

An intermediate list is used to create sequence similarity-based protein clusters during the analysis. This list contains protein sets from corresponding functional modules and it is loaded whenever users need to access it, either for annotation or for sequence comparison.

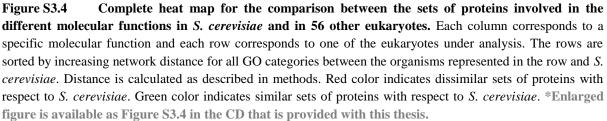
Integration implementation in Homol-MetReS

One of the major concepts behind component architecture is to divide different types of functionality into different components in order to keep the amount of functionality provided by a single component and integrate them as on demands. Such coupling-decoupling way of component interaction needs to work within a well-defined framework and is achieved using adapters that are designed for identifying the functional context of the protein annotation. **Figure S3.2** summarizes this integration. Two classes of adapters were developed and built into Homol-MetReS: (i) Application functionality adapters and (ii) Web publishing adapters. The Web publishing adapters adapts any of the data model to the visualization model. For example if an application is showing graphics of orthology of Enzymes, in next page the same data model adapts to visualization adapters to show pie chart of the enzymes.


Utilities in Homol-MetReS

The architecture of Homol-MetReS includes "utilities". Like adapters, such utilities provide specific sets of functionality to the platform. The difference between adapters and utilities is that utilities do not operate on other data components. They simply provide a specific service, such as database connectivity, indexing, searching, mail delivery, browser session etc.


4.6.2. Supplementary Figures


Figure S3.3*

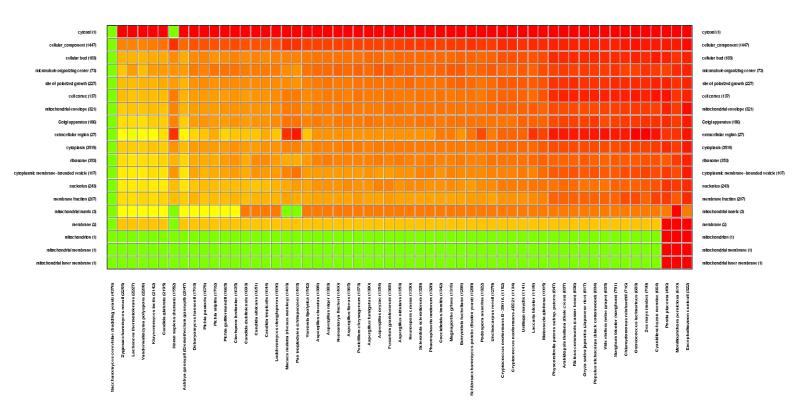

Figure S3.3 Complete heat map for the comparison between the sets of proteins involved in the different biological processes in S. cerevisiae and in 56 other eukaryotes. Each column corresponds to a specific biological process and each row corresponds to one of the eukaryotes under analysis. The rows are sorted by increasing network distance for all GO categories between the organisms represented in the row and *S. cerevisiae*. Distance is calculated as described in methods. Red colour indicates dissimilar sets of proteins with respect to *S. cerevisiae*. Green colour indicates similar sets of proteins with respect to *S. cerevisiae*. ***Enlarged figure is available as Figure S3.3 in the CD that is provided with this thesis.**

Figure S3.4*

Figure S3.5*

Figure S3.5 Complete heat map for the comparison between the sets of proteins involved in the different localizations in *S. cerevisiae* and in 56 other eukaryotes. Each column corresponds to a specific localization and each row corresponds to one of the eukaryotes under analysis. The rows are sorted by increasing network distance for all GO categories between the organisms represented in the row and *S. cerevisiae*. Distance is calculated as described in methods. Red color indicates dissimilar sets of proteins with respect to *S. cerevisiae*. Green color indicates similar sets of proteins with respect to *S. cerevisiae*. ***Enlarged figure is available as Figure S3.5 in the CD that is provided with this thesis.**

Figure S3.6*

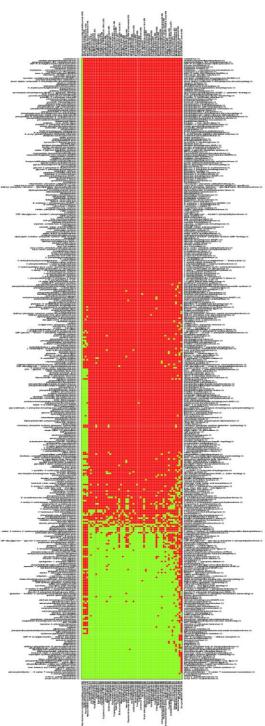
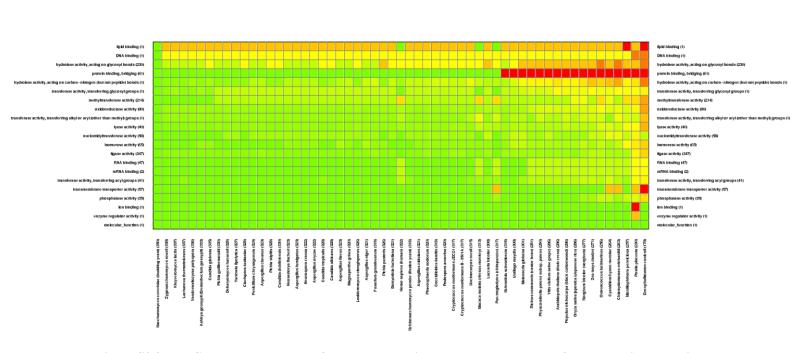
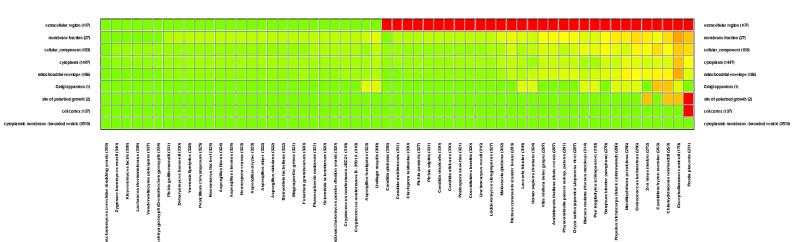



Figure S3.6 Complete heat map for the comparison between the sets of enzymes in *S. cerevisiae* and in 56 other eukaryotes. Each column corresponds to a specific enzyme activity as defined in the EC classification and each row corresponds to one of the eukaryotes under analysis. The rows are sorted by increasing network distance for all the enzyme categories between the organisms represented in the row and *S. cerevisiae*. Distance is calculated as described in methods. Red color indicates dissimilar sets of proteins with respect to *S. cerevisiae*. Green color indicates similar sets of proteins with respect to *S. cerevisiae*. ***Enlarged figure is available as Figure S3.6 in the CD that is provided with this thesis.**

Figure S3.7*



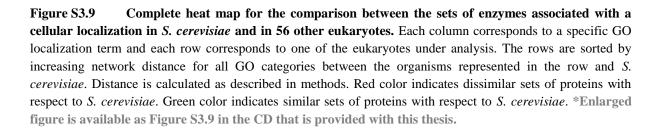

Figure S3.7 Complete heat map for the comparison between the sets of enzymes involved in biological processes in *S. cerevisiae* and in 56 other eukaryotes. Each column corresponds to a specific GO biological process in which the sets of enzymes are involved and each row corresponds to one of the eukaryotes under analysis. The rows are sorted by increasing network distance for all GO categories between the organisms represented in the row and *S. cerevisiae*. Distance is calculated as described in methods. Red color indicates dissimilar sets of proteins with respect to *S. cerevisiae*. Green color indicates similar sets of proteins with respect to *S. cerevisiae*. ***Enlarged figure is available as Figure S3.7 in the CD that is provided with this thesis.**

Figure S3.8 Complete heat map for the comparison between the sets of enzymes involved in molecular functions in *S. cerevisiae* and in 56 other eukaryotes. Each column corresponds to a specific GO molecular function term in which the sets of enzymes involved and each row corresponds to one of the eukaryotes under analysis. The rows are sorted by increasing network distance for all GO categories between the organisms represented in the row and *S. cerevisiae*. Distance is calculated as described in methods. Red color indicates dissimilar sets of proteins with respect to *S. cerevisiae*. The row are sorted by available as Figure S3.8 in the CD that is provided with this thesis.

Figure S3.9*

4.6.3. Supplementary Tables

Table S3.1 Current Statistics of Homol-MetReS Database

Number of Organisms		1207
Kingdom of Organisms	Bacteria	999
	Archaea	79
	Fungi	43
	Plants	11
	Animals	46
Number of Protein Sequences		5337216
Number of Annotation Categories		10
Number of standard Enzyme terms		4253
Number of standard Receptor terms		558
Number of standard Ligand terms		2753
Number of standard Biological Process terms		20912
Number of standard Molecular Function terms		9813
Number of standard Cellular Component terms		2931
Number of standard Chemical Compounds terms		14733

Chapter 5. Final Discussion

5.1. Overview

Systems Biology ultimately aims at understanding how the molecular components of organisms work in an integrated manner, reacting to the environment and keeping the organism alive and healthy. Currently, the question is what we wish to accomplish in modern Systems Biology. Do we want to understand less about more, using a systems biology approach to understand global networks at the expense of mechanistic detail, or do we go on understanding more about less, using reductionist approaches aimed at understanding the mechanistic details of molecular machineries at the expense of comprehensive analysis. Each approach clearly has its strengths and limitations, depending on what biological question needs to be answered. However, the real issue is how we can use both together.

High-throughput approaches, such as whole genome gene expression measurements, proteomics (quantification and identifications of protein & their modifications), and metabolomics (quantification of metabolites) provide only a part of the cellular picture. Comparing the dynamic changes between different experiments and/or environmental conditions allows the generation of molecular or genetic networks of interdependence. This information can provide usefull insights into the dynamics of the genetic and proteomic programs of the cell. However, the information can provide few mechanistic details of how that dynamics is regulated. Such details can only be obtained through reductionist approaches.

Thus, to fully understand the workings of a biological system in detail, both approaches are needed, because they provide complementary data. The key issue is how to provide a flexible solution that enable biologists to combine them, taking into account the development of new experimental technologies and the large amounts of data that are already publicly available to reconstruct the proteome of both, new and well known organisms.

This thesis contribute to the development of such solutions by developing a methodological pipeline that integrates high-throughput and mechanistic datasets and uses the integration for detailed comparisons between the proteomes of different organisms. The Homol-MetReS platform implements the pipeline and makes it available to other researchers.

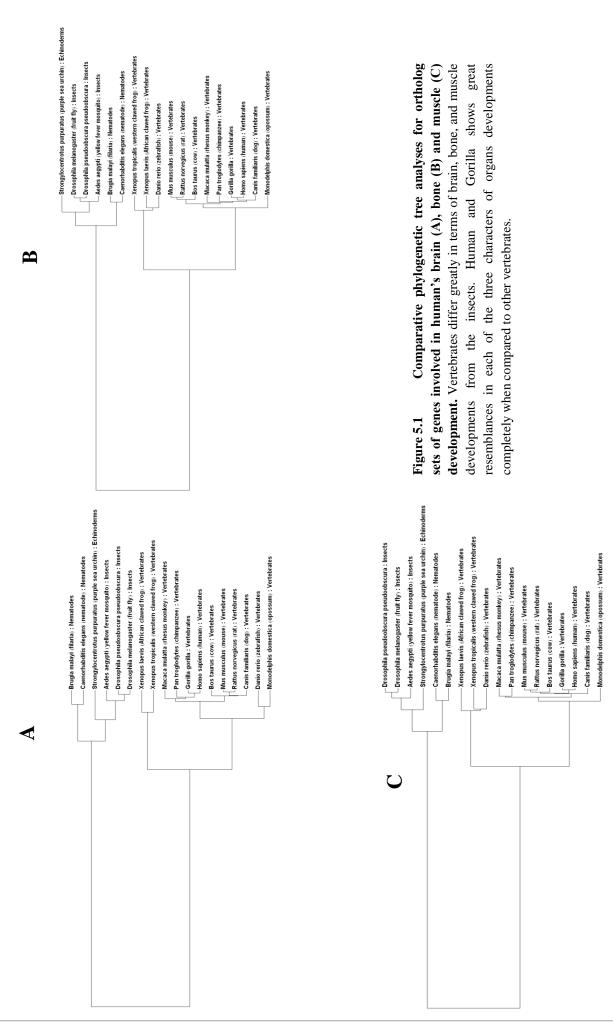
In the remainder of this discussion we will focus on providing an integrated discussion of the work presented in the previous chapters, highlighting how the work presented here can contribute to the progress of systems biology. We will conclude by proposing several lines of research that could be taken to further develop the research presented here.

5.2. General discussion and future perspectives

Because proteome reconstruction is a central issue of the thesis, integration of the various types of functional information about proteins is necessary. An appropriate integration enables easy updates of the tool as new information becomes available. Homol-MetReS transfers information between well annotated and new proteomes by using sequence similarity between proteins using BLAST results and combining the e-value, (%) identity or similarity scores, and gaps in the alignment to build a composite score. This score helps identifying the most likely functional ortholog of any given protein in a new organism. The accumulation of fully sequenced and annotated genomes facilitates the use of such sequence comparison to reconstruct maps of metabolic, signal transduction, and gene circuits in new genomes.

For example in Chapter 2, *Saccharomyces cerevisiae* was compared as model organism with 704 other organisms from almost all clades of life. Amongst these, *Yarrowia lipolytica* (Ascomycetes) is another yeast, with a poorly annotated genome. This complete proteome was compared to that of *S. cerevisiae*. That comparison led to the reconstruction of 102 different metabolic pathways in *Y. lipolitica*. The results (see **Figure S1.2**) reveal that 3459 genes of *S. cerevisiae* were found to be mapped with orthologs in the *Y. lipolitica* proteome. Such type of mapping of pathways/process provide further insights about comparison of physiologies of two organisms, helping in identifying the function of proteins that were previously not characterized at the functional level.

When no homology is found between a gene in newly or uncharacterized sequenced genome and previously characterized genes with know function, sequence based annotation is not possible. However, if structural information is available, structural homology comparisons may facilitate attributing general or specific functions to individual genes, for example using classification such as SCOP or CATH. Integrating such structural information in Homo-MetReS is one of the possible ways in which its functionality could be extended in the future.

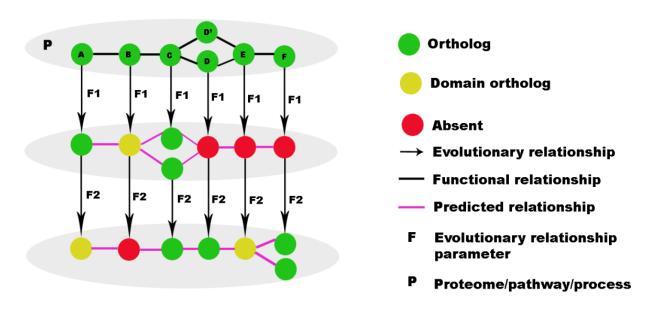

When no structural or sequence homology exists between a gene/protein and other of known function, similar patterns of co-occurrence of this protein with others of known

Final Discussion

function in large numbers of organisms could also provide some functional information. The logic behind phylogenetically conserved group prediction of function is as follows. If a set of homologous proteins with unknown function is present (absent) in the same genomes when compared to proteins of known function, then it is possible that evolution acted simultaneously on both sets of proteins because somehow they share a function. This could allow the researcher to predict that some genes are involved in the same processes, although their individual function(s) may remain uncertain. Nevertheless, it should be emphasized that functionally related proteins do not necessarily coevolve, and functional modules need not behave as evolutionary modules.

Homol-MetReS also provides an alternative to building phylogenetic trees. By considering the sets of proteins that have orthologs, homologs or are absent between organisms one can cluster that organisms in the following way. First, construct a meta-proteome that contains *O*-clusters for all proteins of interest to the researcher from all organisms of interest. Then, build a matrix where each row represents one cluster and each collumn represents an organism. Finally, cluster the organisms with respect to their row similarity. Examples of this are discussed in the results of **Chapter 2** and **Chapter 3**. Such trees are more likely to provide information about how close the organisms are with respect to the specific processes in which the proteins of interest are involved than about the global information history of the organism set.

An example is shown in **Figure 5.1** for 18 animals. The proteins chosen to build these trees are involved in the development of brain (**Figure 5.1. A**), bone (**Figure 5.1. B**), and muscle (**Figure 5.1. C**). One can see that such an analysis clearly separates vertebrates from non-vertebrates with respect to brain development. Furthermore, and because this tree is similar to the corresponding phylogenetic tree found in NCBI, one can assume that the pattern of conservation for proteins involved in brain development is reasonably close to of the global evolution for this set of organisms. The same can not be said about the trees built using proteins involved in muscle and bone development. For example, with respect to bone development, dog forms an ingroup with human and gorilla, with monkey and chimpanzee as outgroup. This suggests that the protein networks involved in human bone and muscle development are more similar to that of dogs and gorilla and somewhat less similar to that of chimp and monkey.



Final Discussion

Homol-MetReS also allows users to perform a comparative analysis of protein duplication/deletion between organisms. This is an important aspect of genome analysis, as many genomes underwent several round of whole genome duplication during their evolution. What duplicate proteins were retained through evolution and which were lost can provide important insights into how the environment modulates such evolution. For example, we observe that the percentage of human receptors that have been duplicated and remain active throughout evolution is larger than that of other types of proteins. Given that such receptors sense how the environment changes, such duplications could be associated to adaptation to a wider range of environmental conditions.

Homol-MetReS can be used to compare how the network of proteins responsible for a given process, pathway, or circuit have evolved in groups of different organisms. This can be done by comparing the network of protein from a reference organism to that of other organisms and identifying which proteins have been retained and lost in the different organisms. This also allows users to identify protein fusion and domain shuffling events.

Figure 5.2 shows a schematic example of such a comparison for a hypothetical pathway in three organisms.

Figure 5.2 Molecular network/pathways alignment at evolution levels. P1, P2, and P3 represent three alternative organisms. The pathway has six steps (A-F), with step four being executed by two alternative proteins. The events represented here can be interpreted in the following way. The first step is conserved in P2 and partially conserved in P3. The second step is partially conserved in P2 and absent in P3. The third step was duplicated in P2 and is conserved in P3. The last three steps of the pathway are absent in P2 and partially conserved and/or duplicated in P3.

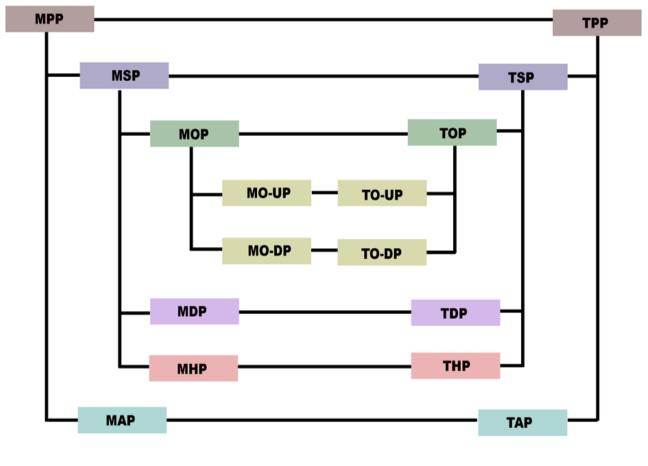
With all its functionality, Homol-MetReS is adequate for identifying appropriate model organisms to study various biological phenomena. This application was further developed and illustrated in **Chapters 2** and **3**. In **Chapter 3** we further illustrate how this analysis can identify those proteins that are unique to each organism by identifying the unique proteins of human.

Homol-MetReS provides functional annotation that integrates information of standard terms from GO, BRENDA, KEGG, NCBI, and HPRD. However, one aspect where Homol-MetReS is lacking is that of transcription factor (TF) classification. To our knowledge, there is no global classification that considers all possible types of TF. Once such a classification is made available, it could be promtly integrated into the central database that underlies the application and tightly coupled with the other functional classifications already being considered. This would improve the functionality of the application with respect to the reconstruction of gene circuits. Nevertheless, the functionality that Homol-MetReS provides allows for users to define their own functional classification of TF (or other types of proteins) and rely on them for (manual or automated) protein functional annotation and circuit reconstruction. This functionality also permits users to modify preexisting functional classifications to better suit their research.

Another limitation of Homol-MetReS is that it does not provide quantitative information regarding physical-chemical properties of proteins, metabolites, or mRNAs, levels of protein abundance, or correlation between changes in gene expression and protein activity. This is important information from the systemic point of view. However, reliable data about these aspects at the genome scale are still limited. Subsequent iterations of Homol-MetReS will consider including such data if and when it becomes widely available. In fact, users can include some of that information in the manual (re)annotation that they can perform in the application.

Two alternative ways in which Homol-MetReS can be improved were already suggested. On one hand, it could be improved with a general transcription factor classification. On the other it could include quantitative information about different aspects of the molecular components of cells. Another aspect in which Homol-MetReS could be imporved is by including a text mining tool [268] to permit automated extraction of functional and quantitative information about proteins and circuits from the scientific literature.

Final Discussion


A final suggestion that would significantly improve Homol-MetReS is to include functionality that permits semi-automated creation of mathematical models to study the dynamic behavior of reconstructed protein circuits. Such models provide a systematic way for integrating genetic and biochemical information. Including this functionality is a big challenge, as it would require also including information about parameter values and regulation of biological processes that is scarce. One way around this limitation is by allowing users to manually modify models and include that information. Simulation and analysis of those models provides a deeper understanding of the organization and complexity of biological systems with respect to different aspects of biology. For example, they can be used to study principles of organization and operation in the adaptive response of organisms and identify the constraints that shape those principles. When Homol-MetReS includes such functionality, it should come coupled with the capacity to export models in SBML or CelML formats that would allow users to take those models and analyze them in other software applications. It might also be useful to develop a Molecular Systems Markup Language (MSML) to more easily integrate functional annotation of proteins/genes in the context of model building.

5.3. Possible pitfalls and how to avoid them

There are several pitfalls that could hinders Homol-MetReS' future development. First, the amount of new data to be included in the central database could become unmanageable. To avoid that, data should be stored in an organized structure in order to allow efficient data mining. In addition, the quality of genome wide experimental data and functional annotation should be improved if Homol-MetReS-like tools are to become even more useful. Second, as new types of large scale data becomes available, the pipeline on which Homol-MetReS relies should be modified and updated in such a way to maintain its cohesiveness and permit an accurate and flexible semi-automated construction of mathematical models. Third, to maintain and develop its functionality in such a way, that it is useful to both, researchers interested in proteome wide analysis and researchers interested in the analysis of smaller subsets of that proteome. The conciliation of both currents is not trivial, remaining one of the most challenging aspects in the development of methods for analysis of genetic, biochemical, signal transduction processes from systemic perspective.

5.4. Final Remarks

The work presented in this thesis contributes to the functional understanding of molecular circuits and their organization. It seems to us that a time should come when a complete hierarchy of integration molecular networks will be identified. If this is so, we believe that the work presented in this thesis constitutes a very encouraging head start towards the goal of such classification. A skeleton for such a hierarchy is shown as an example in **Figure 5.3**.

MPP - Model Proteome Proteins MSP - Model functional Significant Proteins MOP - Model Ortholog Proteins MO-UP - Model Ortholog Unique Proteins MO-DP - Model Ortholog Duplicated Proteins MDP - Model Domain ortholog Proteins MHP - Model Homolog Proteins MAP - Model Absent Proteins **TPP - Target Proteome Proteins**

TSP - Target functional Significant Proteins

TOP - Target Ortholog Proteins

TO-UP - Target Ortholog Unique Proteins

TO-DP - Target Ortholog Duplicated Proteins

- **TDP Target Domain ortholog Proteins**
- THP Target Homolog Proteins
- **TAP Target Absent Proteins**

Figure 5.3 Integration of relational scheme used to link protein information of cells and evolution.

Chapter 6. Conclusions

- **1.** We developed a methodology for functional comparison of full proteomes among organisms with fully sequenced genomes.
- 2. Our methodology classifies any two complete proteomes into distinct clusters of Significant, Orthologs, Domain orthologs, Homologs and Absent proteins.
- **3.** We propose a score function that appears to be appropriate to distinguish between orthologs and paralogs of protein function.
- 4. Our method proposes ways to identify appropriate model organisms to study the dynamics of different biological processes and pathways in specific organisms, as long as the proteins that participate in the processes are known.
- 5. The method we propose here could be especially relevant to assist in the choice of appropriate model organisms for both, the study of human specific biological processes and the characterization of a specific biological phenomenon in a large class of organisms.
- **6.** We provide Homol-MetReS to the community, an application where the method is implemented.
- 7. Homol-MetReS can accurately identify duplications or deletion of protein coding genes and reconstruct a form of functional phylogeny over the set of proteins involved in specific processes in selected organisms.

- 8. Applying our methods shows that *Saccharomyces cerevisiae* is good general model to study: DNA replication, metabolic pathways, purine metabolism, and amino acyl t-RNA synthesis.
- **9.** Human is one of the top six non-fungal organisms whose proteome is the most similar to that of *S. cerevisiae*.
- 10. Through our methodology we identified the proteins that are unique to humans, and establish ranks of similarity between the sets of proteins involved in different processes, functions, localizations, biochemical circuits and tissue components in humans and in the other eukaryotes.
- **11.** We pinpointed the most likely eukaryotes to be good model organisms in which to study specific biological processes and phenomena that have biological and biomedical relevance in human.
- **12.** We provide a first complete functional characterization of the gorilla proteome.
- 13. We find that the proteome of gorilla is functionally more similar to that of human than the chimp proteome, at the *FO* level. A more detailed analysis reveals that the *O-O* clusters of *FO* between human and chimp are more numerous than between human and gorilla. In contrast, the gorilla proteome forms the highest number of *O-M* and *M-M* clusters with the human proteome.

Bibliography

Bibliography

- 1. Ideker, T., T. Galitski, and L. Hood, *A new approach to decoding life: systems biology*. Annu Rev Genomics Hum Genet, 2001. **2**: p. 343-72.
- 2. Ishii, N., et al., *Multiple high-throughput analyses monitor the response of E. coli to perturbations*. Science, 2007. **316**(5824): p. 593-7.
- 3. Villoslada, P., L. Steinman, and S.E. Baranzini, *Systems biology and its application to the understanding of neurological diseases*. Ann Neurol, 2009. **65**(2): p. 124-39.
- 4. Albulescu, L.O., et al., *A quantitative, high-throughput reverse genetic screen reveals* novel connections between Pre-mRNA splicing and 5' and 3' end transcript determinants. PLoS Genet, 2012. **8**(3): p. e1002530.
- 5. Brush, G.S., et al., Yeast IME2 functions early in meiosis upstream of cell cycleregulated SBF and MBF targets. PLoS One, 2012. 7(2): p. e31575.
- 6. Gifford, M.L., et al., *Cell-specific nitrogen responses mediate developmental plasticity*. Proc Natl Acad Sci U S A, 2008. **105**(2): p. 803-8.
- Calvano, S.E., et al., A network-based analysis of systemic inflammation in humans. Nature, 2005. 437(7061): p. 1032-7.
- Chen, S., et al., *Structure of N-terminal domain of ZAP indicates how a zinc-finger protein recognizes complex RNA*. Nature structural & molecular biology, 2012. 19(4): p. 430-5.
- 9. Bender, R.A., A NAC for regulating metabolism: the nitrogen assimilation control protein (NAC) from Klebsiella pneumoniae. J Bacteriol, 2010. **192**(19): p. 4801-11.
- 10. Del Vecchio, D., A.J. Ninfa, and E.D. Sontag, *Modular cell biology: retroactivity and insulation*. Mol Syst Biol, 2008. **4**: p. 161.
- Reitzer, L., *Nitrogen assimilation and global regulation in Escherichia coli*. Annu Rev Microbiol, 2003. 57: p. 155-76.
- Hartwell, L.H., et al., From molecular to modular cell biology. Nature, 1999.
 402(6761 Suppl): p. C47-52.
- 13. Noble, D., *Claude Bernard, the first systems biologist, and the future of physiology.*Exp Physiol, 2008. **93**(1): p. 16-26.
- 14. Al-Nuaimi, Y., et al., *A prototypic mathematical model of the human hair cycle*. Journal of theoretical biology, 2012.
- Hughes, M.W., et al., In search of the Golden Fleece: unraveling principles of morphogenesis by studying the integrative biology of skin appendages. Integr Biol (Camb), 2011. 3(4): p. 388-407.

- Savageau, M.A., R. Metter, and W.W. Brockman, Statistical significance of partial base-pairing potential: implications for recombination of SV40 DNA in eukaryotic cells. Nucleic Acids Res, 1983. 11(18): p. 6559-70.
- Savageau, M.A., *Regulation of differentiated cell-specific functions*. Proc Natl Acad Sci U S A, 1983. 80(5): p. 1411-5.
- Salvado, B., et al., *Two component systems: physiological effect of a third component*.
 PLoS One, 2012. 7(2): p. e31095.
- Salvado, B., et al., Methods for and results from the study of design principles in molecular systems. Math Biosci, 2011. 231(1): p. 3-18.
- 20. Ideker, T., et al., *Integrated genomic and proteomic analyses of a systematically perturbed metabolic network*. Science, 2001. **292**(5518): p. 929-34.
- Li, M., et al., Chemotaxis kinase CheA is activated by three neighbouring chemoreceptor dimers as effectively as by receptor clusters. Mol Microbiol, 2011. 79(3): p. 677-85.
- 22. Amin, D.N. and G.L. Hazelbauer, *Chemoreceptors in signalling complexes: shifted conformation and asymmetric coupling.* Mol Microbiol, 2010. **78**(5): p. 1313-23.
- 23. Hazelbauer, G.L. and W.C. Lai, *Bacterial chemoreceptors: providing enhanced features to two-component signaling*. Curr Opin Microbiol, 2010. **13**(2): p. 124-32.
- Amin, D.N. and G.L. Hazelbauer, *The chemoreceptor dimer is the unit of conformational coupling and transmembrane signaling*. J Bacteriol, 2010. **192**(5): p. 1193-200.
- Atkinson, M.R. and A.J. Ninfa, *Role of the GlnK signal transduction protein in the regulation of nitrogen assimilation in Escherichia coli*. Mol Microbiol, 1998. 29(2): p. 431-47.
- 26. Liu, E.T., Systems biology, integrative biology, predictive biology. Cell, 2005. 121(4): p. 505-6.
- 27. Ng, P., et al., *Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation.* Nat Methods, 2005. **2**(2): p. 105-11.
- 28. Wei, C.L., et al., *Transcriptome profiling of human and murine ESCs identifies divergent paths required to maintain the stem cell state.* Stem Cells, 2005. **23**(2): p. 166-85.
- 29. Constante, M., R. Grunberg, and M. Isalan, A biobrick library for cloning custom eukaryotic plasmids. PLoS One, 2011. 6(8): p. e23685.

- Quackenbush, J., *Extracting biology from high-dimensional biological data*. J Exp Biol, 2007. 210(Pt 9): p. 1507-17.
- Junker, B.H., C. Klukas, and F. Schreiber, VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinformatics, 2006. 7: p. 109.
- 32. Shah, S.P., et al., *Atlas a data warehouse for integrative bioinformatics*. BMC Bioinformatics, 2005. **6**: p. 34.
- 33. Ruebenacker, O., et al., *Integrating BioPAX pathway knowledge with SBML models*. IET Syst Biol, 2009. 3(5): p. 317-28.
- 34. Shen, S.Y., F. Bergmann, and H.M. Sauro, *SBML2TikZ: supporting the SBML render extension in LaTeX.* Bioinformatics, 2010. **26**(21): p. 2794-5.
- 35. Matsuoka, Y., et al., *Payao: a community platform for SBML pathway model curation*. Bioinformatics, 2010. **26**(10): p. 1381-3.
- 36. Swainston, N. and P. Mendes, *libAnnotationSBML: a library for exploiting SBML annotations*. Bioinformatics, 2009. **25**(17): p. 2292-3.
- 37. Lander, E.S., et al., *Initial sequencing and analysis of the human genome*. Nature, 2001. 409(6822): p. 860-921.
- Celniker, S.E., et al., *Finishing a whole-genome shotgun: release 3 of the Drosophila melanogaster euchromatic genome sequence.* Genome biology, 2002. 3(12): p. RESEARCH0079.
- Leone, G., L. Fianchi, and M.T. Voso, *Therapy-related myeloid neoplasms*. Curr Opin Oncol, 2011. 23(6): p. 672-80.
- 40. Bench, A.J., *The role of molecular genetic analysis within the diagnostic haematooncology laboratory*. Int J Lab Hematol, 2012. **34**(1): p. 21-34.
- 41. Cronin, M. and J.S. Ross, *Comprehensive next-generation cancer genome sequencing in the era of targeted therapy and personalized oncology*. Biomark Med, 2011. 5(3): p. 293-305.
- 42. Oricchio, E., et al., *Mouse models of cancer as biological filters for complex genomic data*. Dis Model Mech, 2010. **3**(11-12): p. 701-4.
- 43. Maciejewski, J.P., R.V. Tiu, and C. O'Keefe, *Application of array-based whole genome scanning technologies as a cytogenetic tool in haematological malignancies*. Br J Haematol, 2009. 146(5): p. 479-88.
- 44. de Leval, L. and P. Gaulard, *Pathobiology and molecular profiling of peripheral T-cell lymphomas*. Hematology Am Soc Hematol Educ Program, 2008: p. 272-9.

- 45. Wilkins, M.R., et al., *From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis.* Biotechnology (N Y), 1996. **14**(1): p. 61-5.
- 46. Saqi, M.A. and D.L. Wild, *Expectations from structural genomics revisited: an analysis of structural genomics targets*. Am J Pharmacogenomics, 2005. 5(5): p. 339-42.
- 47. Gevaert, K. and J. Vandekerckhove, *Protein identification methods in proteomics*. Electrophoresis, 2000. 21(6): p. 1145-54.
- 48. Steen, H. and A. Pandey, *Proteomics goes quantitative: measuring protein abundance*. Trends Biotechnol, 2002. **20**(9): p. 361-4.
- 49. Jabbour, R.E., et al., A protein processing filter method for bacterial identification by mass spectrometry-based proteomics. Journal of proteome research, 2011. 10(2): p. 907-12.
- 50. Basle, E., N. Joubert, and M. Pucheault, *Protein chemical modification on endogenous amino acids*. Chemistry & biology, 2010. **17**(3): p. 213-27.
- 51. Png, E., et al., A new method of high-speed cellular protein separation and insight into subcellular compartmentalization of proteins. Anal Bioanal Chem, 2011. 400(3): p. 767-75.
- 52. Claydon, A.J. and R.J. Beynon, *Protein turnover methods in single-celled organisms: dynamic SILAC*. Methods Mol Biol, 2011. **759**: p. 179-95.
- 53. Altmann, K., M. Durr, and B. Westermann, *Saccharomyces cerevisiae as a model* organism to study mitochondrial biology: general considerations and basic procedures. Methods Mol Biol, 2007. **372**: p. 81-90.
- 54. Beck, H., D. Dobritzsch, and J. Piskur, *Saccharomyces kluyveri as a model organism to study pyrimidine degradation*. FEMS Yeast Res, 2008. **8**(8): p. 1209-13.
- 55. Cogburn, L.A., et al., *Functional genomics of the chicken--a model organism*. Poult Sci, 2007. **86**(10): p. 2059-94.
- 56. Jin, T., et al., How human leukocytes track down and destroy pathogens: lessons learned from the model organism Dictyostelium discoideum. Immunol Res, 2009.
 43(1-3): p. 118-27.
- 57. Jonsson, K.I., *Tardigrades as a potential model organism in space research*. Astrobiology, 2007. **7**(5): p. 757-66.

- Meyer, M. and J. Vilardell, *The quest for a message: budding yeast, a model organism to study the control of pre-mRNA splicing.* Brief Funct Genomic Proteomic, 2009. 8(1): p. 60-7.
- 59. Veldman, M.B. and S. Lin, Zebrafish as a developmental model organism for pediatric research. Pediatr Res, 2008. **64**(5): p. 470-6.
- 60. Siva, N., 1000 Genomes project. Nat Biotechnol, 2008. 26(3): p. 256.
- 61. Ellegren, H., Comparative genomics and the study of evolution by natural selection. Mol Ecol, 2008. 17(21): p. 4586-96.
- Tettelin, H., et al., *Comparative genomics: the bacterial pan-genome*. Curr Opin Microbiol, 2008. 11(5): p. 472-7.
- 63. Alves, R., E. Vilaprinyo, and A. Sorribas, *Integrating bioinformatics and computational biology: Perspectives and possibilities for in silico network reconstruction in molecular systems biology.* Current Bioinformatics, 2008. **3**(2): p. 98-129.
- 64. Murakami, C. and M. Kaeberlein, *Quantifying yeast chronological life span by outgrowth of aged cells.* J Vis Exp, 2009(27).
- 65. Biddick, R. and E.T. Young, *The disorderly study of ordered recruitment*. Yeast, 2009. **26**(4): p. 205-20.
- 66. Hohmann, S., M. Krantz, and B. Nordlander, *Yeast osmoregulation*. Methods Enzymol, 2007. **428**: p. 29-45.
- 67. Nasheuer, H.P., et al., *Initiation of eukaryotic DNA replication: regulation and mechanisms*. Prog Nucleic Acid Res Mol Biol, 2002. **72**: p. 41-94.
- 68. Brocard-Masson, C. and B. Dumas, *The fascinating world of steroids: S. cerevisiae as a model organism for the study of hydrocortisone biosynthesis*. Biotechnol Genet Eng Rev, 2006. **22**: p. 213-52.
- 69. Lopez-Mirabal, H.R. and J.R. Winther, *Redox characteristics of the eukaryotic cytosol*. Biochim Biophys Acta, 2008. **1783**(4): p. 629-40.
- Owsianowski, E., D. Walter, and B. Fahrenkrog, *Negative regulation of apoptosis in yeast*. Biochim Biophys Acta, 2008. **1783**(7): p. 1303-10.
- 71. Miller-Fleming, L., F. Giorgini, and T.F. Outeiro, *Yeast as a model for studying human neurodegenerative disorders*. Biotechnol J, 2008. **3**(3): p. 325-38.
- Foury, F., *Human genetic diseases: a cross-talk between man and yeast*. Gene, 1997. **195**(1): p. 1-10.

- 73. Smith, B., et al., *The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration.* Nat Biotechnol, 2007. **25**(11): p. 1251-5.
- 74. Caspi, R.R., *Tregitopes switch on Tregs*. Blood, 2008. **112**(8): p. 3003-4.
- 75. Dwight, S.S., et al., Saccharomyces Genome Database (SGD) provides secondary gene annotation using the Gene Ontology (GO). Nucleic Acids Res, 2002. 30(1): p. 69-72.
- 76. Jensen, L.J., et al., *Prediction of human protein function according to Gene Ontology categories*. Bioinformatics, 2003. **19**(5): p. 635-42.
- Buza, T.J., et al., *Gene Ontology annotation quality analysis in model eukaryotes*. Nucleic Acids Res, 2008. 36(2): p. e12.
- Hu, J.C., et al., What we can learn about Escherichia coli through application of Gene Ontology. Trends Microbiol, 2009. 17(7): p. 269-78.
- 79. Scheer, M., et al., JProGO: a novel tool for the functional interpretation of prokaryotic microarray data using Gene Ontology information. Nucleic Acids Res, 2006. 34(Web Server issue): p. W510-5.
- Arakawa, K., et al., *KEGG-based pathway visualization tool for complex omics data*.
 In Silico Biol, 2005. 5(4): p. 419-23.
- Caspi, R., et al., *The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases*. Nucleic Acids Res, 2008.
 36(Database issue): p. D623-31.
- Novak, B. and J.J. Tyson, *Design principles of biochemical oscillators*. Nat Rev Mol Cell Biol, 2008. 9(12): p. 981-91.
- 83. Tyson, J.J. and B. Novak, *Temporal organization of the cell cycle*. Curr Biol, 2008.
 18(17): p. R759-R768.
- 84. Lee, I., et al., *Predicting genetic modifier loci using functional gene networks*. Genome Res, 2010.
- McGary, K.L., et al., Systematic discovery of nonobvious human disease models through orthologous phenotypes. Proc Natl Acad Sci U S A, 2010. 107(14): p. 6544-9.
- 86. Pena-Castillo, L., et al., *A critical assessment of Mus musculus gene function prediction using integrated genomic evidence*. Genome Biol, 2008. **9 Suppl 1**: p. S2.
- 87. Abascal, F. and A. Valencia, *Clustering of proximal sequence space for the identification of protein families*. Bioinformatics, 2002. **18**(7): p. 908-21.

Bibliography

- Hirschman, J.E., et al., Genome Snapshot: a new resource at the Saccharomyces Genome Database (SGD) presenting an overview of the Saccharomyces cerevisiae genome. Nucleic Acids Res, 2006. 34(Database issue): p. D442-5.
- 89. Hong, E.L., et al., *Gene Ontology annotations at SGD: new data sources and annotation methods.* Nucleic Acids Res, 2008. **36**(Database issue): p. D577-81.
- 90. Okuda, S., et al., KEGG Atlas mapping for global analysis of metabolic pathways.
 Nucleic Acids Res, 2008. 36(Web Server issue): p. W423-6.
- 91. Wolfram, S., *The Mathematica Book*. 4th ed1999: Cambridge University Press.
- 92. Dacks, J.B. and M.C. Field, *Evolution of the eukaryotic membrane-trafficking system: origin, tempo and mode.* J Cell Sci, 2007. **120**(Pt 17): p. 2977-85.
- 93. Keeling, P., Five questions about microsporidia. PLoS Pathog, 2009. 5(9): p. e1000489.
- Barbrook, A.C., et al., Organization and expression of organellar genomes. Philos Trans R Soc Lond B Biol Sci, 2010. 365(1541): p. 785-97.
- 95. Martin, W., et al., *Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus.* Proc Natl Acad Sci U S A, 2002. **99**(19): p. 12246-51.
- 96. Raven, J.A. and J.F. Allen, *Genomics and chloroplast evolution: what did cyanobacteria do for plants?* Genome Biol, 2003. **4**(3): p. 209.
- 97. Keeling, P.J., *The endosymbiotic origin, diversification and fate of plastids*. Philos Trans R Soc Lond B Biol Sci, 2010. **365**(1541): p. 729-48.
- 98. Martin, W., Evolutionary origins of metabolic compartmentalization in eukaryotes.
 Philos Trans R Soc Lond B Biol Sci, 2010. 365(1541): p. 847-55.
- 99. Poole, R.L., The TAIR database. Methods Mol Biol, 2007. 406: p. 179-212.
- Lockhart, S.R., et al., Alpha-pheromone-induced "shmooing" and gene regulation require white-opaque switching during Candida albicans mating. Eukaryot Cell, 2003. 2(5): p. 847-55.
- Xue, C.B., et al., A covalently constrained congener of the Saccharomyces cerevisiae tridecapeptide mating pheromone is an agonist. J Biol Chem, 1989. 264(32): p. 19161-8.
- 102. Mora-Montes, H.M., et al., Endoplasmic reticulum alpha-glycosidases of Candida albicans are required for N glycosylation, cell wall integrity, and normal host-fungus interaction. Eukaryot Cell, 2007. 6(12): p. 2184-93.

- 103. Tsai, P.K., et al., Isolation of glucose-containing high-mannose glycoprotein core oligosaccharides. Proc Natl Acad Sci U S A, 1984. 81(20): p. 6340-3.
- Herskowitz, I., *MAP kinase pathways in yeast: for mating and more*. Cell, 1995.
 80(2): p. 187-97.
- Srikantha, T., S.A. Lachke, and D.R. Soll, *Three mating type-like loci in Candida glabrata*. Eukaryot Cell, 2003. 2(2): p. 328-40.
- 106. Strathern, J.N., et al., *Homothallic switching of yeast mating type cassettes is initiated by a double-stranded cut in the MAT locus.* Cell, 1982. **31**(1): p. 183-92.
- 107. Gimeno, C.J., et al., Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell, 1992. **68**(6): p. 1077-90.
- Herrero, A.B., et al., Candida albicans and Yarrowia lipolytica as alternative models for analysing budding patterns and germ tube formation in dimorphic fungi. Microbiology, 1999. 145 (Pt 10): p. 2727-37.
- 109. Machado, C.R., et al., *Thi1, a thiamine biosynthetic gene in Arabidopsis thaliana, complements bacterial defects in DNA repair.* Plant Mol Biol, 1996. **31**(3): p. 585-93.
- 110. Schiestl, R.H., M. Dominska, and T.D. Petes, Transformation of Saccharomyces cerevisiae with nonhomologous DNA: illegitimate integration of transforming DNA into yeast chromosomes and in vivo ligation of transforming DNA to mitochondrial DNA sequences. Mol Cell Biol, 1993. 13(5): p. 2697-705.
- 111. Jin, H., et al., Characterization of the SOS response of Pseudomonas fluorescens strain DC206 using whole-genome transcript analysis. FEMS Microbiol Lett, 2007.
 269(2): p. 256-64.
- 112. Astrom, S.U., S.M. Okamura, and J. Rine, *Yeast cell-type regulation of DNA repair*. Nature, 1999. **397**(6717): p. 310.
- Kegel, A., et al., Genome wide distribution of illegitimate recombination events in Kluyveromyces lactis. Nucleic Acids Res, 2006. 34(5): p. 1633-45.
- 114. Cormack, B.P. and S. Falkow, *Efficient homologous and illegitimate recombination in the opportunistic yeast pathogen Candida glabrata*. Genetics, 1999. **151**(3): p. 979-87.
- Zhu, J. and R.H. Schiestl, *Topoisomerase I involvement in illegitimate recombination* in Saccharomyces cerevisiae. Mol Cell Biol, 1996. 16(4): p. 1805-12.
- 116. Xu, H., et al., Isoleucine biosynthesis in Leptospira interrogans serotype lai strain 56601 proceeds via a threonine-independent pathway. J Bacteriol, 2004. 186(16): p. 5400-9.

- 117. Atsumi, S., T. Hanai, and J.C. Liao, *Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels*. Nature, 2008. **451**(7174): p. 86-9.
- 118. Howell, D.M., H. Xu, and R.H. White, (*R*)-citramalate synthase in methanogenic archaea. J Bacteriol, 1999. **181**(1): p. 331-3.
- 119. Risso, C., et al., *Elucidation of an alternate isoleucine biosynthesis pathway in Geobacter sulfurreducens.* J Bacteriol, 2008. **190**(7): p. 2266-74.
- Christensen, K.E. and R.E. MacKenzie, Mitochondrial one-carbon metabolism is adapted to the specific needs of yeast, plants and mammals. Bioessays, 2006. 28(6): p. 595-605.
- 121. Pasternack, L.B., D.A. Laude, Jr., and D.R. Appling, Whole-cell detection by 13C NMR of metabolic flux through the C1-tetrahydrofolate synthase/serine hydroxymethyltransferase enzyme system and effect of antifolate exposure in Saccharomyces cerevisiae. Biochemistry, 1994. **33**(23): p. 7166-73.
- 122. Prabhu, V., et al., 13C nuclear magnetic resonance detection of interactions of serine hydroxymethyltransferase with C1-tetrahydrofolate synthase and glycine decarboxylase complex activities in Arabidopsis. Plant Physiol, 1996. 112(1): p. 207-16.
- 123. Descartes, R., A discourse of a method for the well guiding of reason, and the discovery of truth in the sciences (1649), 1649 (2011), EEBO Editions, ProQuest.
- 124. Damasio, A., Descartes' Error: Emotion, Reason, and the Human Brain2005: Penguin.
- Smith, J.D., *The study of animal metacognition*. Trends Cogn Sci, 2009. **13**(9): p. 389-96.
- 126. Beran, M.J. and J.D. Smith, *Information seeking by rhesus monkeys (Macaca mulatta)* and capuchin monkeys (Cebus apella). Cognition, 2011. **120**(1): p. 90-105.
- 127. Redford, J.S., Evidence of metacognitive control by humans and monkeys in a perceptual categorization task. J Exp Psychol Learn Mem Cogn, 2010. 36(1): p. 248-54.
- Rutz, C., et al., *The ecological significance of tool use in New Caledonian crows*. Science, 2010. **329**(5998): p. 1523-6.
- 129. Emery, N.J. and N.S. Clayton, *The mentality of crows: convergent evolution of intelligence in corvids and apes.* Science, 2004. **306**(5703): p. 1903-7.
- Ye, K. and Z. Gu, *Recent advances in understanding the role of nutrition in human genome evolution*. Adv Nutr, 2011. 2(6): p. 486-96.

- 131. Nakashima, H., K. Nishikawa, and T. Ooi, *Differences in dinucleotide frequencies of human, yeast, and Escherichia coli genes.* DNA Res, 1997. **4**(3): p. 185-92.
- Noonan, J.P., Neanderthal genomics and the evolution of modern humans. Genome Res, 2010. 20(5): p. 547-53.
- Lieschke, G.J. and P.D. Currie, Animal models of human disease: zebrafish swim into view. Nat Rev Genet, 2007. 8(5): p. 353-67.
- 134. Hughes, J.F., et al., *Strict evolutionary conservation followed rapid gene loss on human and rhesus Y chromosomes.* Nature, 2012. **483**(7387): p. 82-6.
- 135. Somel, M., et al., *MicroRNA-driven developmental remodeling in the brain distinguishes humans from other primates.* PLoS Biol, 2011. **9**(12): p. e1001214.
- 136. Molaro, A., et al., *Sperm methylation profiles reveal features of epigenetic inheritance and evolution in primates.* Cell, 2011. **146**(6): p. 1029-41.
- 137. Crisci, J.L., et al., On characterizing adaptive events unique to modern humans. Genome Biol Evol, 2011. 3: p. 791-8.
- 138. McLean, C.Y., et al., *Human-specific loss of regulatory DNA and the evolution of human-specific traits*. Nature, 2011. **471**(7337): p. 216-9.
- 139. Pai, A.A., et al., A genome-wide study of DNA methylation patterns and gene expression levels in multiple human and chimpanzee tissues. PLoS Genet, 2011. 7(2): p. e1001316.
- 140. Paar, V., et al., Large tandem, higher order repeats and regularly dispersed repeat units contribute substantially to divergence between human and chimpanzee Y chromosomes. J Mol Evol, 2011. 72(1): p. 34-55.
- 141. de Lichtenberg, U., et al., *Dynamic complex formation during the yeast cell cycle*.Science, 2005. **307**(5710): p. 724-7.
- 142. Pache, R.A. and P. Aloy, *A novel framework for the comparative analysis of biological networks*. PLoS One, 2012. **7**(2): p. e31220.
- Ideker, T. and N.J. Krogan, *Differential network biology*. Mol Syst Biol, 2012. 8: p. 565.
- 144. Bandyopadhyay, S., et al., *Rewiring of genetic networks in response to DNA damage*. Science, 2010. **330**(6009): p. 1385-9.
- 145. Beltrao, P. and L. Serrano, *Specificity and evolvability in eukaryotic protein interaction networks*. PLoS Comput Biol, 2007. **3**(2): p. e25.
- 146. Srivas, R., et al., Assembling global maps of cellular function through integrative analysis of physical and genetic networks. Nat Protoc, 2011. **6**(9): p. 1308-23.

- 147. Karathia, H., et al., *Saccharomyces cerevisiae as a model organism: a comparative study*. PLoS One, 2011. **6**(2): p. e16015.
- 148. Helmerhorst, E.J., et al., Mass spectrometric identification of key proteolytic cleavage sites in statherin affecting mineral homeostasis and bacterial binding domains. Journal of proteome research, 2010. 9(10): p. 5413-21.
- 149. Carbon, S., et al., *AmiGO: online access to ontology and annotation data*. Bioinformatics, 2009. 25(2): p. 288-9.
- 150. Oz, O., et al., *Effect of sitagliptin monotherapy on serum total ghrelin levels in people with type 2 diabetes.* Diabetes Res Clin Pract, 2011. **94**(2): p. 212-6.
- 151. Harmar, A.J., et al., *IUPHAR-DB: the IUPHAR database of G protein-coupled receptors and ion channels.* Nucleic Acids Res, 2009. **37**(Database issue): p. D680-5.
- Maglott, D., et al., *Entrez Gene: gene-centered information at NCBI*. Nucleic Acids Res, 2005. 33(Database issue): p. D54-8.
- 153. Kandasamy, K., et al., *NetPath: a public resource of curated signal transduction pathways.* Genome Biol, 2010. **11**(1): p. R3.
- 154. Matthews, L., et al., *Reactome knowledgebase of human biological pathways and processes*. Nucleic Acids Res, 2009. **37**(Database issue): p. D619-22.
- Mishra, G.R., et al., *Human protein reference database--2006 update*. Nucleic Acids Res, 2006. 34(Database issue): p. D411-4.
- 156. Fung, K.Y., et al., *Characterization of the in vivo forms of lacrimal-specific prolinerich proteins in human tear fluid.* Proteomics, 2004. **4**(12): p. 3953-9.
- 157. Daly, J.W., et al., *Individual and geographic variation of skin alkaloids in three species of Madagascan poison frogs (Mantella)*. J Chem Ecol, 2008. **34**(2): p. 252-79.
- 158. Saporito, R.A., et al., *Alkaloids in the mite Scheloribates laevigatus: further alkaloids common to oribatid mites and poison frogs.* J Chem Ecol, 2011. **37**(2): p. 213-8.
- 159. Bentin-Ley, U., et al., Glycodelin in endometrial flushing fluid and endometrial biopsies from infertile and fertile women. Eur J Obstet Gynecol Reprod Biol, 2011.
 156(1): p. 60-6.
- Hara, M., et al., Ghrelin levels are reduced in Rett syndrome patients with eating difficulties. Int J Dev Neurosci, 2011. 29(8): p. 899-902.
- Kantorova, E., et al., Leptin, adiponectin and ghrelin, new potential mediators of ischemic stroke. Neuro Endocrinol Lett, 2011. 32(5): p. 716-21.

- 162. Ledderose, C., S. Kreth, and A. Beiras-Fernandez, *Ghrelin, a novel peptide hormone in the regulation of energy balance and cardiovascular function*. Recent Pat Endocr Metab Immune Drug Discov, 2011. 5(1): p. 1-6.
- 163. Alexaki, V.I., et al., *B-cell maturation antigen (BCMA) activation exerts specific proinflammatory effects in normal human keratinocytes and is preferentially expressed in inflammatory skin pathologies.* Endocrinology, 2012. **153**(2): p. 739-49.
- 164. Park, K.J., et al., Death receptors 4 and 5 activate Nox1 NADPH oxidase through riboflavin kinase to induce reactive oxygen species-mediated apoptotic cell death. The Journal of biological chemistry, 2012. 287(5): p. 3313-25.
- 165. Wiens, G.D. and G.W. Glenney, *Origin and evolution of TNF and TNF receptor superfamilies*. Dev Comp Immunol, 2011. **35**(12): p. 1324-35.
- 166. Copeland, S., et al., *Acute inflammatory response to endotoxin in mice and humans*. Clin Diagn Lab Immunol, 2005. **12**(1): p. 60-7.
- 167. Stockmann, P., et al., Increased human defensine levels hint at an inflammatory etiology of bisphosphonate-associated osteonecrosis of the jaw: an immunohistological study. J Transl Med, 2011. 9: p. 135.
- 168. Nash, K.T., et al., *Requirement of KISS1 secretion for multiple organ metastasis* suppression and maintenance of tumor dormancy. J Natl Cancer Inst, 2007. **99**(4): p. 309-21.
- 169. Cho, S.G., et al., *KiSS1 suppresses TNFalpha-induced breast cancer cell invasion via* an inhibition of RhoA-mediated NF-kappaB activation. J Cell Biochem, 2009. 107(6): p. 1139-49.
- 170. Ohtaki, T., et al., *Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G*protein-coupled receptor. Nature, 2001. **411**(6837): p. 613-7.
- 171. Nash, K.T. and D.R. Welch, *The KISS1 metastasis suppressor: mechanistic insights and clinical utility.* Front Biosci, 2006. **11**: p. 647-59.
- 172. Demetris, A.J., et al., *Small proline-rich proteins (SPRR) function as SH3 domain ligands, increase resistance to injury and are associated with epithelial-mesenchymal transition (EMT) in cholangiocytes.* J Hepatol, 2008. **48**(2): p. 276-88.
- 173. Lisitsyn, N.A., et al., *Enteric alpha defensins in norm and pathology*. Ann Clin Microbiol Antimicrob, 2012. 11: p. 1.
- 174. Semple, F. and J.R. Dorin, *beta-Defensins: Multifunctional Modulators of Infection, Inflammation and More?* J Innate Immun, 2012.

- 175. Arnett, E. and S. Seveau, *The multifaceted activities of mammalian defensins*. Curr Pharm Des, 2011. 17(38): p. 4254-69.
- 176. Huang, J.K., et al., *Retinoid X receptor gamma signaling accelerates CNS remyelination*. Nat Neurosci, 2011. **14**(1): p. 45-53.
- 177. Papi, A., et al., *RXRgamma and PPARgamma ligands in combination to inhibit proliferation and invasiveness in colon cancer cells.* Cancer Lett, 2010. 297(1): p. 65-74.
- 178. Philip, S., et al., Adaptive evolution of the Retinoid X receptor in vertebrates. Genomics, 2012. **99**(2): p. 81-9.
- 179. Dawson, M.I. and Z. Xia, *The retinoid X receptors and their ligands*. Biochim Biophys Acta, 2012. 1821(1): p. 21-56.
- 180. Yang, M.H., et al., Connective tissue growth factor modulates oral squamous cell carcinoma invasion by activating a miR-504/FOXP1 signalling. Oncogene, 2012.
 31(19): p. 2401-11.
- 181. Abi-Rached, L., et al., Human-specific evolution and adaptation led to major qualitative differences in the variable receptors of human and chimpanzee natural killer cells. PLoS Genet, 2010. 6(11): p. e1001192.
- 182. Medeiros, A., et al., *Mutations in the human phospholamban gene in patients with heart failure*. Am Heart J, 2011. **162**(6): p. 1088-1095 e1.
- 183. Fu, W., et al., *Human immunodeficiency virus type 1, human protein interaction database at NCBI*. Nucleic Acids Res, 2009. **37**(Database issue): p. D417-22.
- 184. Gautier, V.W., et al., *In vitro nuclear interactome of the HIV-1 Tat protein*. Retrovirology, 2009. 6: p. 47.
- 185. Barboric, M. and B.M. Peterlin, *A new paradigm in eukaryotic biology: HIV Tat and the control of transcriptional elongation*. PLoS biology, 2005. **3**(2): p. e76.
- 186. Hetzer, C., et al., *Decoding Tat: the biology of HIV Tat posttranslational modifications*. Microbes and infection / Institut Pasteur, 2005. **7**(13): p. 1364-9.
- 187. Correa, S.G., et al., High dissemination and hepatotoxicity in rats infected with Candida albicans after stress exposure: potential sensitization to liver damage. Int Immunol, 2004. 16(12): p. 1761-8.
- 188. Mayer, F.L., et al., *The novel Candida albicans transporter Dur31 Is a multi-stage pathogenicity factor*. PLoS pathogens, 2012. **8**(3): p. e1002592.
- Odds, F.C., *Pathogenesis of Candida infections*. Journal of the American Academy of Dermatology, 1994. **31**(3 Pt 2): p. S2-5.

- 190. Finley, K.R. and J. Berman, *Microtubules in Candida albicans hyphae drive nuclear dynamics and connect cell cycle progression to morphogenesis*. Eukaryotic cell, 2005.
 4(10): p. 1697-711.
- 191. Yin, H., et al., *Stulp is physically associated with beta-tubulin and is required for structural integrity of the mitotic spindle*. Mol Biol Cell, 2002. **13**(6): p. 1881-92.
- 192. Guenthner, P.C., W.E. Secor, and C.S. Dezzutti, *Trichomonas vaginalis-induced* epithelial monolayer disruption and human immunodeficiency virus type 1 (HIV-1) replication: implications for the sexual transmission of HIV-1. Infection and immunity, 2005. **73**(7): p. 4155-60.
- 193. Wasserheit, J.N., Epidemiological synergy. Interrelationships between human immunodeficiency virus infection and other sexually transmitted diseases. Sex Transm Dis, 1992. 19(2): p. 61-77.
- 194. Jensen, L.J., et al., *Prediction of human protein function from post-translational modifications and localization features*. J Mol Biol, 2002. **319**(5): p. 1257-65.
- 195. Chen, T.W., et al., DODO: an efficient orthologous genes assignment tool based on domain architectures. Domain based ortholog detection. BMC Bioinformatics, 2010.
 11 Suppl 7: p. S6.
- 196. Lee, Y., et al., *Cross-referencing eukaryotic genomes: TIGR Orthologous Gene Alignments (TOGA).* Genome Res, 2002. **12**(3): p. 493-502.
- 197. Shi, G., M.C. Peng, and T. Jiang, *MultiMSOAR 2.0: an accurate tool to identify ortholog groups among multiple genomes.* PLoS One, 2011. **6**(6): p. e20892.
- 198. Shi, G., L. Zhang, and T. Jiang, MSOAR 2.0: Incorporating tandem duplications into ortholog assignment based on genome rearrangement. BMC Bioinformatics, 2010.
 11: p. 10.
- 199. Scally, A., et al., *Insights into hominid evolution from the gorilla genome sequence*. Nature, 2012. 483(7388): p. 169-75.
- 200. Modzelewska, K., et al., An activating mutation in sos-1 identifies its Dbl domain as a critical inhibitor of the epidermal growth factor receptor pathway during Caenorhabditis elegans vulval development. Mol Cell Biol, 2007. 27(10): p. 3695-707.
- Boonen, K., J.W. Creemers, and L. Schoofs, *Bioactive peptides, networks and systems biology*. Bioessays, 2009. **31**(3): p. 300-14.
- 202. Amaya, M., A. Baranova, and M.L. van Hoek, *Protein prenylation: a new mode of host-pathogen interaction*. Biochem Biophys Res Commun, 2011. **416**(1-2): p. 1-6.

- 203. Stolf, B.S., et al., *Protein disulfide isomerase and host-pathogen interaction*. ScientificWorldJournal, 2011. **11**: p. 1749-61.
- 204. De Jesus, J.B., et al., A further proteomic study on the effect of iron in the human pathogen Trichomonas vaginalis. Proteomics, 2007. **7**(12): p. 1961-72.
- 205. Kirichenko, E.B., Y.V. Orlova, and D.V. Kurilov, Component composition of the essential oil of the Artemisia lerchiana Web. from the southeastern Russia. Dokl Biochem Biophys, 2008. 422: p. 292-5.
- 206. Mikriakov, V.R., M.A. Stepanova, and D.V. Mikriakov, [Dependence of the infestation intensity of zope Abramis ballerus with Dactylogyrus chranilowi Bychowsky, 1931 on the level of antimicrobial effect of the host's blood serum]. Parazitologiia, 2011. 45(1): p. 50-3.
- 207. Le Naour, F., et al., *Tetraspanins connect several types of Ig proteins: IgM is a novel component of the tetraspanin web on B-lymphoid cells*. Cancer Immunol Immunother, 2004. 53(3): p. 148-52.
- 208. Berkowicz, D.A., G.O. Barnett, and H.C. Chueh, *Component architecture for web* based EMR applications. Proc AMIA Symp, 1998: p. 116-20.
- 209. Myers, D.L., K.S. Culp, and R.S. Miller, Use of a Web-based process model to implement security and data protection as an integral component of clinical information management. Proc AMIA Symp, 1999: p. 897-900.
- Zhang, H., et al., Quantifying aggregation dynamics during Myxococcus xanthus development. J Bacteriol, 2011. 193(19): p. 5164-70.
- 211. Xie, C., et al., Statistical image analysis reveals features affecting fates of Myxococcus xanthus developmental aggregates. Proc Natl Acad Sci U S A, 2011.
 108(14): p. 5915-20.
- 212. Tiwari, A., et al., *Bistable responses in bacterial genetic networks: designs and dynamical consequences.* Math Biosci, 2011. **231**(1): p. 76-89.
- Narula, J. and O.A. Igoshin, *Thermodynamic models of combinatorial gene regulation* by distant enhancers. IET Syst Biol, 2010. 4(6): p. 393-408.
- 214. Chaudhury, S. and O.A. Igoshin, *Dynamic disorder in quasi-equilibrium enzymatic systems*. PLoS One, 2010. **5**(8): p. e12364.
- 215. Tiwari, A., et al., *The interplay of multiple feedback loops with post-translational kinetics results in bistability of mycobacterial stress response*. Phys Biol, 2010. 7(3): p. 036005.

- 216. Narula, J., et al., Modeling reveals bistability and low-pass filtering in the network module determining blood stem cell fate. PLoS Comput Biol, 2010. 6(5): p. e1000771.
- 217. Eswaramoorthy, P., et al., Single-cell measurement of the levels and distributions of the phosphorelay components in a population of sporulating Bacillus subtilis cells. Microbiology, 2010. 156(Pt 8): p. 2294-304.
- 218. Ray, J.C. and O.A. Igoshin, *Adaptable functionality of transcriptional feedback in bacterial two-component systems*. PLoS Comput Biol, 2010. **6**(2): p. e1000676.
- 219. Kelley, B.P., et al., *PathBLAST: a tool for alignment of protein interaction networks*. Nucleic Acids Res, 2004. **32**(Web Server issue): p. W83-8.
- 220. Kanehisa, M., et al., *KEGG for integration and interpretation of large-scale molecular data sets*. Nucleic Acids Res, 2012. **40**(Database issue): p. D109-14.
- 221. Ashburner, M., et al., *Gene ontology: tool for the unification of biology. The Gene Ontology Consortium.* Nat Genet, 2000. 25(1): p. 25-9.
- 222. Enzyme nomenclature. Report on the recommendations (1964) of the International Union of Biochemistry on Nomenclature and Classification of Enzymes. Science, 1965. 150(3697): p. 719-21.
- 223. Stark, C., et al., *The BioGRID Interaction Database: 2011 update*. Nucleic Acids Res, 2011. **39**(Database issue): p. D698-704.
- 224. Sharman, J.L., et al., *IUPHAR-DB: new receptors and tools for easy searching and visualization of pharmacological data*. Nucleic Acids Res, 2011. 39(Database issue): p. D534-8.
- 225. Wikipedia. Malaria. Available from: http://en.wikipedia.org/wiki/Malaria.
- Alves, R. and M.A. Savageau, *Extending the method of mathematically controlled comparison to include numerical comparisons*. Bioinformatics, 2000. 16(9): p. 786-98.
- 227. Xia, X.Q., M. McClelland, and Y. Wang, *TabSQL: a MySQL tool to facilitate mapping user data to public databases*. BMC Bioinformatics, 2010. **11**: p. 342.
- 228. Ursos, L.M., S.M. Dzekunov, and P.D. Roepe, *The effects of chloroquine and verapamil on digestive vacuolar pH of P. falciparum either sensitive or resistant to chloroquine*. Molecular and biochemical parasitology, 2000. **110**(1): p. 125-34.
- 229. Dzekunov, S.M., L.M. Ursos, and P.D. Roepe, *Digestive vacuolar pH of intact intraerythrocytic P. falciparum either sensitive or resistant to chloroquine*. Molecular and biochemical parasitology, 2000. **110**(1): p. 107-24.

- 230. Smith, R.P., et al., *EST Express: PHP/MySQL based automated annotation of ESTs from expression libraries.* BMC Bioinformatics, 2008. **9**: p. 186.
- 231. McDonald, A.G., et al., *ExplorEnz: a MySQL database of the IUBMB enzyme nomenclature*. BMC Biochem, 2007. **8**: p. 14.
- 232. Nagaraj, V.A., et al., *Unique properties of Plasmodium falciparum porphobilinogen deaminase*. The Journal of biological chemistry, 2008. **283**(1): p. 437-44.
- 233. Sato, S., et al., Enzymes for heme biosynthesis are found in both the mitochondrion and plastid of the malaria parasite Plasmodium falciparum. Protist, 2004. 155(1): p. 117-25.
- 234. Padmanaban, G., V.A. Nagaraj, and P.N. Rangarajan, *An alternative model for heme biosynthesis in the malarial parasite*. Trends in biochemical sciences, 2007. **32**(10): p. 443-9.
- 235. Gunther, S., et al., *Apicoplast lipoic acid protein ligase B is not essential for Plasmodium falciparum.* PLoS pathogens, 2007. **3**(12): p. e189.
- 236. Morgans, D. and P.R. Carroll, A direct acting adrenergic component of the venom of the Sydney funnel-web spider, Atrax robustus. Toxicon, 1976. **14**(3): p. 185-9.
- 237. Pei, Y., et al., *Plasmodium pyruvate dehydrogenase activity is only essential for the parasite's progression from liver infection to blood infection*. Molecular microbiology, 2010.
- 238. Ray, J.C., J.J. Tabor, and O.A. Igoshin, *Non-transcriptional regulatory processes shape transcriptional network dynamics*. Nat Rev Microbiol, 2011. **9**(11): p. 817-28.
- 239. Lundberg, J.G., et al., A major food web component in the orinoco river channel: evidence from planktivorous electric fishes. Science, 1987. 237(4810): p. 81-3.
- 240. Bulusu, V., V. Jayaraman, and H. Balaram, *Metabolic fate of fumarate, a side product* of the purine salvage pathway in the intraerythrocytic stages of Plasmodium falciparum. The Journal of biological chemistry, 2011. **286**(11): p. 9236-45.
- 241. Tatusov, R.L., et al., *The COG database: an updated version includes eukaryotes.*BMC Bioinformatics, 2003. 4: p. 41.
- 242. Schneider, A., C. Dessimoz, and G.H. Gonnet, *OMA Browser--exploring orthologous relations across 352 complete genomes.* Bioinformatics, 2007. **23**(16): p. 2180-2.
- 243. Schmidt, T. and D. Frishman, *PROMPT: a protein mapping and comparison tool*.BMC Bioinformatics, 2006. 7: p. 331.
- 244. Reiter, L.T., et al., *Accentuate the negative: proteome comparisons using the negative proteome database.* Fly (Austin), 2007. **1**(3): p. 164-71.

- 245. Pache, R.A., A. Ceol, and P. Aloy, NetAligner--a network alignment server to compare complexes, pathways and whole interactomes. Nucleic Acids Res, 2012.
 40(Web Server issue): p. W157-61.
- 246. Ostlund, G., et al., *InParanoid 7: new algorithms and tools for eukaryotic orthology analysis*. Nucleic Acids Res, 2010. **38**(Database issue): p. D196-203.
- 247. Orton, R.J., W.I. Sellers, and D.L. Gerloff, *YETI: Yeast Exploration Tool Integrator*. Bioinformatics, 2004. 20(2): p. 284-5.
- 248. Li, L., C.J. Stoeckert, Jr., and D.S. Roos, *OrthoMCL: identification of ortholog groups for eukaryotic genomes.* Genome Res, 2003. **13**(9): p. 2178-89.
- 249. Li, J.B., et al., *Procom: a web-based tool to compare multiple eukaryotic proteomes*. Bioinformatics, 2005. 21(8): p. 1693-4.
- 250. Li, H., et al., *TreeFam: a curated database of phylogenetic trees of animal gene families*. Nucleic Acids Res, 2006. **34**(Database issue): p. D572-80.
- 251. Jensen, L.J., et al., *eggNOG: automated construction and annotation of orthologous groups of genes.* Nucleic Acids Res, 2008. **36**(Database issue): p. D250-4.
- 252. Homologene, N., Available from: http://www.ncbi.nlm.nih.gov/homologene. 2011.
- 253. Deluca, T.F., et al., *Roundup: a multi-genome repository of orthologs and evolutionary distances.* Bioinformatics, 2006. **22**(16): p. 2044-6.
- 254. Dehal, P.S., et al., *MicrobesOnline: an integrated portal for comparative and functional genomics*. Nucleic Acids Res, 2010. **38**(Database issue): p. D396-400.
- 255. Datta, R.S., et al., *Berkeley PHOG: PhyloFacts orthology group prediction web server*. Nucleic Acids Res, 2009. **37**(Web Server issue): p. W84-9.
- 256. Karp, P.D., et al., Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology. Brief Bioinform, 2010. 11(1): p. 40-79.
- 257. Gordon, R.S., Zope 3 developer's handbook. Library Journal, 2005. **130**(8): p. 114-114.
- Igoshin, O.A., R. Alves, and M.A. Savageau, *Hysteretic and graded responses in bacterial two-component signal transduction*. Mol Microbiol, 2008. 68(5): p. 1196-215.
- 259. Gordon, R.S., *MySQL: The complete reference*. Library Journal, 2004. **129**(20): p. 152-152.

- 260. Sun, W., et al., *The crystal structure of Aquifex aeolicus prephenate dehydrogenase reveals the mode of tyrosine inhibition*. The Journal of biological chemistry, 2009.
 284(19): p. 13223-32.
- Scheer, M., et al., *BRENDA, the enzyme information system in 2011*. Nucleic Acids Res, 2011. **39**(Database issue): p. D670-6.
- 262. Barrell, D., et al., *The GOA database in 2009--an integrated Gene Ontology Annotation resource.* Nucleic Acids Res, 2009. **37**(Database issue): p. D396-403.
- 263. Chaudhury, S. and O.A. Igoshin, *Dynamic disorder-driven substrate inhibition and bistability in a simple enzymatic reaction.* J Phys Chem B, 2009. **113**(40): p. 13421-8.
- 264. Altschul, S.F., et al., *Gapped BLAST and PSI-BLAST: a new generation of protein database search programs*. Nucleic Acids Res, 1997. **25**(17): p. 3389-402.
- 265. Altschul, S.F., et al., *Basic local alignment search tool*. J Mol Biol, 1990. 215(3): p. 403-10.

Index

Index

A

Absent 22, 23, 24, 37, 39, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 79, 85, 91, 101,
116, 117, 130, 132, 135, 136, 138, 140, 145,
146, 148, 150, 152, 158, 173, 184, 194, 195,
196, 197, 201, 203, 204, 205, 218, 220
<i>A</i> -clusters116, 121, 152
Alignment 37, 38, 155, 205, 206, 217, 220, 244
Amino acid biosynthesis138
Analogous processes
Annotation7, 9, 34, 35, 54, 114, 129, 150, 180,
182, 183, 184, 186, 188, 189, 191, 192, 194,
195, 196, 198, 199, 201, 202, 203, 204, 206,
210, 212, 217, 221, 222, 231, 235, 236, 240,
245, 247
Annotations211
Average distance 163, 164, 165, 166, 174, 175,
176

В

Biological pathways13, 18, 35, 42, 240
Biological phenomena .21, 112, 130, 149, 201,
221
Biological process assignments189
Biological process proteome13
Biological processes7, 13, 18, 19, 20, 21, 22,
23, 24, 27, 34, 35, 36, 37, 40, 43, 49, 52, 54,
112, 113, 114, 115, 129, 130, 136, 183, 189,
191, 192, 198, 204, 222, 226, 227
Biological response3
Biological system4, 7, 216
BLAST37, 39, 114, 122, 124, 127, 152, 155,
189, 204, 205, 217
BLASTing115, 156
Bottom-up6

С

Catalytic processes138, 173
CATH217
Cellular component33, 54, 87, 89, 91, 192
Cellular proteome12
Circuits.7, 9, 13, 20, 22, 40, 41, 113, 114, 129,
150, 180, 188, 189, 201, 202, 217, 221, 222,
223, 227

Closeness of processes
Closest organism
Clustering tree53
Complete proteome11, 12, 13, 37, 113, 152,
217
Complete proteome12
Complete proteomes
Conservation 29, 53, 130, 133, 136, 138, 140,
145
Container component211

D

D -clusters116, 118, 124, 126
Degrees of coincidence 27, 29, 31, 33, 57, 58,
59
Domain orthologs 115, 159, 160, 161, 162
Domains
Dynamic 6, 21, 33, 35, 36, 37, 105, 216, 222,
233
Dynamic system theory6
Dynamic systems

E

EC Number	183
Environmental stimulus	181
Enzymatic proteome	12
Enzyme assignments	189
Enzymes 129, 140, 188, 189, 196, 204, 1	211,
212, 245	
Evolution . 8, 54, 113, 127, 142, 153, 188,	198,
211, 218, 220, 223, 234, 235, 236, 238,	239,
241, 242, 243	
Evolutionary pattern	133

F

FO-clusters 116, 127, 129, 132, 142, 145, 146,
147, 150, 154
<i>F</i> -score
Functional category 130, 131, 137, 145, 147,
150, 188, 191
Functional comparison23, 24, 41, 49
Functional conservation 122, 124, 129, 130
Functional integration182
Functional interactions113, 181
Functional modules2, 6, 7, 203, 212, 218

Functional Orthologs	115, 127, 155
Functional proteome	12
Functional specialization	133

G

Gene Ontology22, 41, 129, 235, 236
Gene Regulatory proteome12
General Systems Theory4, 6
Good model18, 23, 25, 35, 40, 46, 51, 112,
114, 141, 146, 180, 190, 207, 227
GOSLIM 29, 31, 33, 40, 58, 59, 75, 77, 79, 81,
83, 85, 87, 89, 91, 156
Graphical representations184
Grok

Н

I

In-paralogs	38, 205
Interacting proteome	13

K

KEGG 22, 24, 25, 27, 34	, 36, 37, 40, 41, 42,
49, 56, 57, 93, 97, 101, 1	52, 173, 182, 204,
221, 235, 236	
Kingdoms	75, 93, 204

L

Ligand proteome12
Ligands211
Localization11, 22, 24, 40, 41, 52, 54, 59, 75,
87, 89, 91, 156, 191, 193, 204, 243
Localization assignments
Localized proteome12

Μ

Many to many group142
Many to one group142
Many-to-Many Clusters
Many-to-One Clusters
Mathematica
Metabolic fluxes9
Metabolomics
MetaCYC22, 182, 201
Methodological pipeline
<i>M-M</i> -clusters
Model organisms
Modules
Molecular biology
Molecular components6, 7, 113, 216, 221
Molecular function assignments
Molecular functions 24, 40, 45, 46, 52, 129,
156, 189, 191, 192, 204
Molecular mechanisms
Molecular network
Molecular organization2, 3
Multigenomic scale
MySQL 202, 207, 208, 211, 245, 247, 248
• • • • • • • •

N

NCBI 37, 41, 49, 109, 133, 145,	152, 164, 165,
174, 175, 176, 188, 204, 218, 2	221
Network comparison	198
Network comparisons	
Networks20, 21, 23, 24, 112,	163, 164, 165,
166, 174, 175, 176, 182, 183,	184, 189, 202,
203, 216, 223, 232, 235, 239, 2	243, 244, 245
New physiology	6
NHD25	6, 40, 129, 156
Normalized Hamming Distance .	25, 129

0

Object Relation Mapper	210
<i>O</i> -clusters 116, 118, 127, 128,	142, 145, 150,
218	
Og 115, 118, 124	, 125, 136, 153
<i>O-M</i> -clusters	
Omics	
One to many group	
One to one group	
One-to-Many Clusters	
One-to-One Clusters	

42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 54, 75, 81, 87, 93, 109, 112, 115, 124, 127, 130, 132, 136, 140, 141, 146, 149, 150, 151, 152, 155, 156, 158, 159, 160, 161, 162, 163, 164, 165, 166, 173, 174, 175, 176, 188, 192, 193, 195, 198, 201, 203, 204, 205, 206, 217, 218, 226, 247

Р

PathBlast
Pathways 18, 21, 22, 24, 25, 29, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51,
52, 53, 54, 56, 93, 112, 114, 129, 133, 135, 136, 139, 140, 150, 166, 167, 168, 169, 170,
171, 172, 173, 183, 189, 198, 201, 202, 203, 204, 210, 217, 220, 226, 227, 235, 236, 237,
238, 247
Pathways proteome
Personal functional definitions199
Phenomena114, 115, 227
Phenotypic3, 33, 34, 36, 105, 130
Phyla 18, 23, 42, 44, 45, 46, 47, 48, 50, 75, 93,
130, 204
Physiology3, 112, 195, 230
Post Translation Modification211
Post-translational modified proteome13
Predictive Biology7
Proteome11, 117, 152, 204, 211
Proteome comparison152, 204
Proteome component
Proteomes3, 7, 12, 14, 111, 112, 114, 115,
118, 122, 124, 131, 139, 149, 150, 152, 156,
180, 182, 183, 194, 198, 202, 204, 210, 216,
217, 226, 233
Proteomics4, 11, 12, 216, 233
Proxy18, 20, 34, 133

Q

Quantitative Biology.....7

R

Re-annotation	156, 182
Receptor proteome	
Receptors	
Reference organism	35, 152, 220
Regulating interactions	
Regulatory . 2, 7, 33, 35, 36, 47, 1	12, 113, 140,
141, 150, 173, 239, 246	

S

Т

Target organism. 21, 27, 29, 31, 33	3, 57, 58, 59,
118, 152, 205	
Text mining	194, 221
Tissue specific roles	130
Top-down	6
Transcription Factors	188, 211

Ζ