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Director del Departamento de Matemáticas de la Universidad de Murcia

INFORMA: Que la Tesis Doctoral titulada “On inner parallel bodies. From the Steiner
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Preface/IntroducciónPreface/Introducción

Brunn-Minkowski Theory is considered the classical center of the Geometry of Convex Bodies
and it can be said that it had its origin in the Ph.D dissertation of H. Brunn in 1887. Nevertheless
the core of the theory is due to H. Minkowski, going back to around the turn of century: in
December of 1900, Minkowski wrote to D. Hilbert informing him that his study on the volume in
R3 was complete. His most important development to this respect was the introduction of a new
concept associated to three convex bodies (compact convex sets) that he named, provisionally, their
mixed volumes.

Brunn-Minkowski Theory may be briefly defined as the result of combining two elementary
notions for sets in the Euclidean space: vectorial addition, +, and volume, V. The vectorial addition,
or Minkowski addition, when combined with the volume, leads to the notion of mixed volumes and
to the fundamental Brunn-Minkowski inequality, which is maybe the most well-known inequality
relating the volume of convex bodies. However, the starting point of this theory can be placed at
the moment in which J. Steiner made the “discovery” of an, in principle, amazing fact: the volume
of the Minkowski sum of a convex body K and an Euclidean ball λBn (the so called outer parallel
body of K at distance λ) can be always expressed as a polinomial in the variable λ, of degree the
dimension of the space and whose coefficients are, up to constants, the so called quermassintegrals
of K, Wi(K):

V(K + λBn) =
n∑

i=0

(
n

i

)
Wi(K)λi.

The quermassintegrals are important functionals associated to the original convex body K and
amongst them, so well-known magnitudes as the volume or the surface area can be found.

An analogous result is obtained in the more general context of the so called Minkowski Relative
Geometry, i.e., when the Euclidean ball Bn is replaced by an arbitrary convex body (with non-
empty interior) E. In this case, the previous notions of outer parallel body and quermassintegrals
are now rewritten relative to the fixed body E and, in particular, the relative Steiner polynomial
provides the volume of the Minkowski sum K + λE:

V(K + λE) =
n∑

i=0

(
n

i

)
Wi(K; E)λi; (1a)

the functionals Wi(K; E) are called relative quermassintegrals of K with respect to E.
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It is natural to consider an operation somehow “opposite” to the addition of convex bodies,
which leads to the so called Minkowski difference, ∼. Thus the inner parallel body of K at distance λ

relative to E is defined as
K ∼ λE = {x ∈ Rn : x + λE ⊆ K}.

Now, on the contrary to what happens with the outer parallel bodies, neither the boundary structure
nor the volume of the inner parallel bodies can be “controlled”, as can be seen in Figure 1a.

Figure 1a: Inner (left) and outer (right) parallel body of a trapezoid relative to B2.

This “geometric” difference allows to pose two questions, in principle of different nature, but
deep down closely related, as we will point out throughout the work gathered in this dissertation.
On one hand, we study the behavior, with regard to the boundary, of the inner parallel body
with respect to the original body (it turns out to be the study of the outer normal vectors at the
boundary points) and, on the other hand, we try to better understand the behavior of the inner
parallel bodies with respect to the quermassintegrals, in general, and to the volume, in particular.
The latter suggests two kinds of problems:

i) Since it is not possible to express the volume (nor the quermassintegrals) of the inner parallel
body by means of a precise formula involving the magnitudes of the original body, it is natural
to look for bounds (from below and from above) for these magnitudes.

ii) In second place, the set of outer and inner parallel bodies of a convex body E (with respect
to E) determines a one-parameter family (with parameter λ) of sets which allows to consider
quermassintegrals as functions depending on one (real) variable,

Wi(λ) =

{
Wi

(
K ∼ |λ|E; E

)
if − r(K; E) ≤ λ ≤ 0,

Wi(K + λE; E) if 0 ≤ λ < ∞,

where r(K; E) = max{r : ∃x ∈ Rn with x+ rE ⊆ K} is the (relative) inradius of K. Clearly,
the functions Wi(λ) are continuous. But, are they differentiable for any convex body K? And,
in the case it is so, does the derivative take the same value inside the interval

[−r(K; E), 0
]

–inner parallel bodies– and inside the interval [0,∞) –outer parallel bodies? The answer is
going to be, obviously, negative, which allows to consider the problem of classifying the convex
bodies depending on the differentiability of their quermassintegrals (in the above mentioned
sense). This problem was originally posed by Hadwiger in R3 and for E = B3.
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On the other hand, the fact that a convex body is uniquely determined by its support function
hK allows to introduce analytic techniques in order to study many problems in Convexity. So,
given a convex body K verifying some particular properties, and a function ψ : Sn−1 −→ R defined
on the unit sphere Sn−1 and of class C2, it is possible to find an ε > 0 small enough so that hK +λψ

is the support function of some convex body Kλ for every λ ∈ (−ε, ε) (this could be thought as
an inner/outer parallel body with respect to ψ). Thus, the volume, the quermassintegrals and any
other functional in this context can be seen as a function F : (−ε, ε) −→ R on the real variable λ

by considering F (λ) = F (hK + λψ).

We can say, roughly speaking, that this dissertation is devoted to the study of the inner parallel
bodies, as well as their relation with the quermassintegrals, in general, and the volume, in particular,
both from a geometric point of view (Chapters 1-4) and from an analytic point of view (Chapter 5).
Next we describe the specific contents of each chapter in which this dissertation has been organized.

The work starts with an introductory first chapter in which we establish the notation and intro-
duce the concepts and results that will be needed further on, both about general Convexity and, in
particular, about mixed volumes and surface area measures. Thus, in a first section, the important
notions, such as Minkowski addition, polytopes, supporting hyperplane, support function, polar
body... are recalled. Next, mixed volumes and mixed surface area measures are introduced, and
we devote a paragraph to the most important inequalities relating them: Aleksandrov-Fenchel in-
equality, Brunn-Minkowski inequality, Minkowski inequalities, isoperimetric inequality... Then, the
chapter is focussed on the in-depth study of the (relative) Steiner polynomial, more precisely, on
the study of its roots. The main idea is to look for the geometric properties of a convex body which
are “hidden” behind the roots of its Steiner polynomial. We prove that the convex bodies in R2 and
R3 can be characterized in a precise way depending on the type of roots of their Steiner polyno-
mial, which constitutes the first original work contained in the dissertation. The above mentioned
classification has a straightforward translation in the Blaschke diagram, providing a significative
progress on the so called Blaschke problem which is, nowadays, still open.

The second chapter is devoted to the study of the original problem by Hadwiger on inner
parallel bodies in the 3-dimensional Euclidean space: to classify the convex bodies in R3 depending
on the differentiability of their quermassintegrals (relative to B3) with respect to the one-parameter
depending family consisting of their inner and outer parallel bodies. Although this problem is going
to be tackled in the most general case (dimension n and with respect to an arbitrary fixed convex
body E) in the next chapter, we devote this second part of the dissertation to the particular case
of R3 and the Euclidean ball B3 because of two concrete reasons: in first place, due to the fact that
this is the original problem that was posed by Hadwiger in 1955; in second place, because of the
close relation of it with the behavior of the roots of the Steiner polynomial. Since in dimension 3
we have at our disposal a precise characterization of convex bodies depending on the type of the
roots of their Steiner polynomial, it is going to make possible to exclude sets from the classes in
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which Hadwiger classifies the convex bodies in R3. In short, the main results in this chapter deal
with the behavior of the inner parallel bodies of a convex body K whose Steiner polynomial has a
particular type of roots.

Convex bodies can be classified, depending on the differentiability of their quermassintegrals,
in the following way. Given a fixed convex body E with non-empty interior, a convex body K is
said to belong to the class Rp, 0 ≤ p ≤ n− 1, if for any 0 ≤ i ≤ p and for every −r(K; E) ≤ λ < ∞
it holds

′Wi(λ) = W′
i(λ) = (n− i)Wi+1(λ),

where ′Wi(λ) and W′
i(λ) denote, respectively, the left and right derivatives of Wi. In the third chap-

ter of this dissertation the convex bodies belonging to the smallest class, Rn−1, are characterized,
and necessary conditions for a convex body K to lie in the remaining classes Rp, 1 ≤ p ≤ n − 2,
are obtained. These conditions are expressed in terms of some mixed surface area measures and
depending on the type of outer normal vectors at the boundary points of K. Specially important
are the so called 0-extreme outer normal vectors, i.e., those normal vectors which cannot be writ-
ten as a linear combination of two linearly independent outer normal vectors at one and the same
boundary point of K.

Thus, the first section of the chapter is devoted to the careful study of the relation between
the 0-extreme normal vectors of the original body K and the ones of, either its inner parallel
bodies, or the so called form body of K, which will play an outstanding role throughout this
work. These results will be fundamental for the following sections in the chapter (as well as in the
fourth chapter), where we fully deal with the in-depth study of the classes Rp. Finally, there is
an especially important class of convex bodies, the so called p-tangential bodies; the last section of
Chapter 3 is devoted to them. As it will be noticed throughout the chapter, these bodies appear
in a natural way as extremal sets in many inequalities and relations.

As we have already mentioned, it is not possible to give an explicit formula for the volume
(analogously, the quermassintegrals) of the inner parallel body of a convex body K. The fourth
chapter in this dissertation is devoted to determine the best possible upper and lower bounds for
the volume of the inner parallel body in terms of the magnitudes of the original body. In the
particular case when K is an outer parallel body of E, it can be proved that

V(K ∼ λE) =
n∑

i=0

(
n

i

)
Wi(K; E)(−λ)i

in the suitable range for λ. So it is natural to look for upper/lower bounds for the volume of
K ∼ λE in terms of the so called alternating Steiner polynomial, i.e., the polynomial obtained
replacing λ by −λ in (1a). Moreover, in [34] Matheron conjectures that the alternating Steiner
polynomial provides always a lower bound for V(K ∼ λE). Using the classes Rp studied in the
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previous chapter, it is proved that the best possible bounds for the volume of the inner parallel
body of a convex body K ∈ Rp are given by functionals of the type

p+2∑

i=0

(
n

i

)
Wi(K; E)(−λ)i ±

(
n

p + 2

)
(n− p− 2)

∫ λ

0

(λ− s)p+2

r(K;E)− s
Wp+2(−s) ds

in which, as it can be noticed, a part of the alternating Steiner polynomial appears; but not
only this one. In fact, in the second section of the chapter it is proved that it is not possible
to bound V(K ∼ λE) in terms of precisely the alternating Steiner polynomial, which shows the
non-validity of Matheron’s conjecture. In the last two sections analogous results are obtained for
the quermassintegrals of a convex body.

Finally, we make a brief comment on the fifth and last chapter in this dissertation. The possi-
bility of identifying a convex body with its support function allows to consider many problems in
Convexity from an analytic point of view. Specifically, given a convex body K ⊂ Rn of class C2

+,
i.e., such that its boundary is a hypersurface of class C2 with Gauss curvature strictly positive at
every point, and a function ψ : Sn−1 −→ R of class C2, we consider the quermassintegrals Wi as
functions on the real variable λ ∈ (−ε, ε), for ε > 0 small enough such that hK + λψ is a support
function. Then Brunn-Minkowski inequality, namely

Wi

(
(1− t)K + tL

)1/(n−i) ≥ (1− t)Wi(K)1/(n−i) + tWi(L)1/(n−i)

for any convex bodies K,L ⊂ Rn, t ∈ [0, 1] and i = 0, 1, . . . , n, ensures that W1/n−i
i is concave

in the variable λ. The concavity of these functions will allow us to obtain certain Poincaré type
inequalities, which is the main aim in this last chapter. First we will work with convex bodies of
class C2

+ and, since every convex body can be approximated (in the Hausdorff metric) by convex
bodies of this type, in the last section of Chapter 5 we will obtain Poincaré type inequalities for
arbitrary convex bodies of Rn.

The original results which are contained in this dissertation can be found in the papers [13, 26,
27, 28, 29, 30, 46].
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Podŕıa decirse que la Teoŕıa de Brunn-Minkowski, centro clásico de la Geometŕıa de los Cuerpos
Convexos, tuvo su origen, como tal, en la Tesis de H. Brunn en 1887, siendo, en su parte más
esencial, creación de H. Minkowski alrededor del cambio de siglo: en Diciembre de 1900, Minkowski
escribió a D. Hilbert informándole de que su estudio sobre el volumen en R3 estaba completo, siendo
su avance más importante la introducción de un nuevo concepto asociado a tres cuerpos convexos
(conjuntos convexos y compactos) que él denominó, provisionalmente, los volúmenes mixtos.

Si queremos definir brevemente la Teoŕıa de Brunn-Minkowski, podŕıamos decir que ésta es el
resultado de combinar y asociar dos nociones elementales para los conjuntos del espacio eucĺıdeo: la
suma vectorial, +, y el volumen, V. La suma vectorial o de Minkowski, combinada con el volumen,
nos conduce a la noción de volúmenes mixtos y a la desigualdad fundamental de Brunn-Minkowski,
quizá la desigualdad más conocida relacionando el volumen de cuerpos convexos. Sin embargo,
podŕıa considerarse como inicio real de toda esta teoŕıa el “descubrimiento” de J. Steiner, en 1840,
de un hecho en principio sorprendente: el volumen de la suma de Minkowski de un cuerpo convexo
K y una bola eucĺıdea λBn, lo que se conoce como conjunto paralelo exterior de K a distancia λ,
viene dado siempre por un polinomio en la variable λ, de grado la dimensión del espacio y cuyos
coeficientes son, salvo constantes, las llamadas quermassintegrales de K, Wi(K):

V(K + λBn) =
n∑

i=0

(
n

i

)
Wi(K)λi.

Las quermassintegrales son funcionales de gran relevancia asociados al cuerpo original K, entre las
que se encuentran medidas tan conocidas como el volumen o el área de superficie.

Un resultado análogo se obtiene en el contexto más general de la llamada Geometŕıa Relativa o
de Minkowski, es decir, cuando la bola eucĺıdea Bn se sustituye por un cuerpo convexo arbitrario
E (con interior no vaćıo); en tal caso, los conceptos anteriores de cuerpo paralelo exterior y quer-
massintegrales se reescriben ahora relativos al cuerpo fijo E y, en particular, el polinomio relativo
de Steiner nos da el valor del volumen de la suma de Minkowski K + λE:

V(K + λE) =
n∑

i=0

(
n

i

)
Wi(K; E)λi; (1b)

los funcionales Wi(K; E) reciben el nombre de quermassintegrales relativas de K respecto a E.
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Por otro lado, resulta natural considerar una operación “opuesta” a la suma de cuerpos convexos,
lo que da lugar a la llamada diferencia de Minkowski, ∼. Aśı, se define el conjunto paralelo interior
de K a distancia λ ≥ 0 respecto a E como

K ∼ λE =
{
x ∈ Rn : x + λE ⊆ K

}
.

Sin embargo, al contrario de lo que ocurre con los conjuntos paralelos exteriores, ni la estructura
de la frontera ni el volumen de los cuerpos paralelos interiores pueden “controlarse”, tal y como
puede apreciarse en la figura 1b.

Figura 1b: Cuerpos paralelos interior y exterior de un trapezoide respecto a B2.

Esta diferencia “geométrica” permite plantear dos cuestiones, en principio de distinta natu-
raleza, pero en el fondo estrechamente relacionadas, como se pondrá de manifiesto a lo largo del
trabajo recogido en esta memoria: estudiar, por un lado, el comportamiento de la frontera del
cuerpo paralelo interior respecto al original (lo que viene a ser lo mismo que estudiar cómo son
los vectores normales exteriores en los puntos de la misma) y, por otro, intentar conocer cómo se
comportan los paralelos interiores con respecto a las quermassintegrales en general, y el volumen
en particular. Esta última cuestión sugiere a su vez dos tipos de problemas:

i) Dado que no es posible expresar el volumen (o quermassintegrales) del conjunto paralelo inte-
rior mediante una fórmula precisa que involucre las medidas del cuerpo original, la pregunta
natural que se plantea es de qué forma acotar (superior e inferiormente) dichas magnitudes.

ii) En segundo lugar, el conjunto de los paralelos interiores y exteriores de un cuerpo convexo
K (respecto a E) es una familia uniparamétrica (con parámetro λ) de conjuntos que permite
ver las quermassintegrales como funciones dependientes de una variable,

Wi(λ) =

{
Wi

(
K ∼ |λ|E; E

)
si − r(K;E) ≤ λ ≤ 0,

Wi(K + λE; E) si 0 ≤ λ < ∞,

donde r(K; E) = max{r : ∃x ∈ Rn con x + rE ⊆ K} es el inradio (relativo) de K. Clara-
mente, las funciones Wi(λ) son continuas. Pero, ¿son diferenciables para cualquier cuerpo con-
vexo? Y, en caso de que lo sean, ¿toma la derivada el mismo valor en el intervalo

[−r(K; E), 0
]

–paralelos interiores– y en el intervalo [0,∞) –paralelos exteriores? La respuesta va a ser,
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obviamente, negativa, lo que permite plantear el problema de clasificar los cuerpos convexos
dependiendo de la diferenciabilidad de sus quermassintegrales (en el sentido anterior), pro-
blema que fue propuesto originalmente por Hadwiger en R3 y cuando E = B3.

Por otro lado, el hecho de que un cuerpo convexo K venga determinado de forma única por
su función soporte, hK , permite introducir técnicas puramente anaĺıticas a la hora de estudiar
estos problemas. Aśı, dados un cuerpo convexo K (verificando ciertas condiciones adicionales)
y, de forma general, una función ψ : Sn−1 −→ R definida sobre la esfera unidad Sn−1, de clase
C2, podemos encontrar un ε > 0 suficientemente pequeño de modo que hK + λψ es la función
soporte de algún cuerpo convexo Kλ para todo λ ∈ (−ε, ε) (lo que vendŕıa a ser un cuerpo paralelo
exterior/interior respecto a ψ). Aśı, el volumen, las quermassintegrales, o cualquier otro funcional
que interese estudiar, puede verse como una función F : (−ε, ε) −→ R en la variable λ de la forma
F (λ) = F

(
hK + λψ

)
.

Podŕıamos decir, a grandes rasgos, que esta memoria está dedicada al estudio de los cuerpos
paralelos interiores, aśı como su relación con las quermassintegrales en general, y el volumen en
particular, tanto desde un punto de vista puramente geométrico (caṕıtulos 1–4) como anaĺıtico
(caṕıtulo 5). A continuación vamos a proceder a describir el contenido espećıfico de cada uno de
los cinco caṕıtulos en que se ha estructurado este trabajo.

La memoria comienza con un primer caṕıtulo introductorio, en el que se establece la notación a
seguir y se presentan brevemente los conceptos y resultados que serán fundamentales en el posterior
desarrollo de los contenidos, tanto de convexidad general, como de los volúmenes mixtos y medi-
das de área en particular. Aśı, en una primera sección, se recuerdan nociones importantes como
suma de Minkowski, politopos, función e hiperplano soportes, etc. A continuación, se introducen
los volúmenes mixtos y las medidas de área mixtas, dedicando un apartado a las desigualdades
más importantes que los relacionan: desigualdad de Aleksandrov-Fenchel, desigualdad de Brunn-
Minkowski, desigualdades de Minkowski, desigualdad isoperimétrica... Seguidamente, el caṕıtulo
se centra en el estudio en profundidad del polinomio (relativo) de Steiner, y más concretamente,
en el estudio de sus ráıces. La idea es buscar qué propiedades geométricas de un cuerpo convexo
“esconden” las ráıces de su polinomio de Steiner. Aśı, en lo que es el primer trabajo original
recogido en la memoria, se demuestra que los cuerpos convexos de R2 y R3 pueden caracterizarse
de forma precisa según el tipo de ráıces que tenga su polinomio de Steiner. Esta clasificación tiene
una traducción inmediata en el diagrama de Blaschke, lo que nos ha permitido avanzar de forma
significativa en el llamado problema de Blaschke, que aún se encuentra abierto en la actualidad.

El segundo caṕıtulo está dedicado al estudio del problema original de Hadwiger en dimensión 3:
clasificar los cuerpos convexos de R3 dependiendo de la diferenciabilidad de sus quermassintegrales
asociadas (relativas a B3) con respecto a la familia (dependiente de un parámetro) de los cuerpos
paralelos interiores y exteriores. Aunque este problema va a ser tratado en su mayor generalidad
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(en dimensión n arbitraria y respecto a un cuerpo fijo E) en el caṕıtulo siguiente, dedicamos esta
segunda parte de la memoria al caso particular de R3 y la bola eucĺıdea por dos razones concretas:
en primer lugar, por ser éste el problema original planteado por Hadwiger en 1955, y en segundo,
debido a la estrecha relación del mismo con el comportamiento de las ráıces del polinomio de Steiner.
Dado que en dimensión 3 disponemos de una caracterización precisa de los cuerpos convexos según
el tipo de ráıces de su polinomio de Steiner, ésta va a permitir excluir conjuntos de las diversas
clases en que Hadwiger clasifica los cuerpos convexos de R3. En definitiva, los resultados principales
que se recogen en este caṕıtulo versan sobre cómo se comportan los paralelos interiores de un cuerpo
convexo cuyo polinomio de Steiner tenga un determinado tipo de ráıces.

Los cuerpos convexos pueden clasificarse, dependiendo de la diferenciabilidad de sus quermassin-
tegrales, del siguiente modo. Fijado E con interior no vaćıo, se dice que un cuerpo convexo K ⊂ Rn

pertenece a la clase Rp, 0 ≤ p ≤ n− 1, si para cualquier 0 ≤ i ≤ p y para todo −r(K; E) ≤ λ < ∞
se tiene que

′Wi(λ) = W′
i(λ) = (n− i)Wi+1(λ),

donde ′Wi y W′
i representan, respectivamente, las derivadas por la izquierda y por la derecha de

Wi. En el tercer caṕıtulo de la memoria se caracterizan los conjuntos convexos pertenecientes a la
clase no trivial más pequeña, Rn−1, y se obtienen condiciones necesarias para que un cuerpo K esté
en cada una de las clases restantes Rp, 1 ≤ p ≤ n− 2. Estas condiciones vienen dadas en términos
de ciertas medidas de área de superficie mixtas y en función del tipo de vectores normales que
tienen los puntos de la frontera de K; de particular interés son los vectores normales 0-extremos,
i.e., aquéllos que no pueden ponerse como combinación lineal de otros dos vectores normales en el
mismo punto, que sean linealmente independientes.

Aśı, la primera sección del caṕıtulo está dedicada a estudiar con detenimiento la relación exis-
tente entre los vectores 0-extremos del cuerpo original y los de, o bien sus paralelos interiores, o
bien el llamado cuerpo forma asociado a K, que jugará un papel relevante en esta memoria. Estos
resultados serán fundamentales en las siguientes secciones del caṕıtulo (aśı como en el caṕıtulo
cuarto) donde se entra de lleno en el estudio minucioso de las clases Rp. Finalmente, una clase de
conjuntos de especial relevancia son los llamados cuerpos p-tangenciales, a los que está dedicada
la última de las secciones del caṕıtulo 3; como se verá a lo largo del mismo, estas figuras van a
aparecer de forma natural como conjuntos extremales en numerosas desigualdades y relaciones.

Como ya hemos comentado, no es posible dar una fórmula expĺıcita para el volumen (análoga-
mente, las quermassintegrales) del paralelo interior de un cuerpo convexo K. Aśı, el cuarto caṕıtulo
de esta memoria está dedicado a la determinación de las mejores cotas posibles, tanto superiores
como inferiores, del volumen del paralelo interior en función de las medidas del cuerpo original. En
el caso particular de que K sea, precisamente, un paralelo exterior de E, se puede demostrar que

V(K ∼ λE) =
n∑

i=0

(
n

i

)
Wi(K; E)(−λ)i,
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en un rango adecuado. Aśı pues, resulta natural intentar encontrar cotas superiores y/o inferiores
para el volumen de K ∼ λE en términos del llamado polinomio alternado de Steiner, es decir,
el polinomio obtenido al sustituir λ por −λ en (1b). Es más, en [34], Matheron conjetura que el
polinomio alternado de Steiner proporciona siempre una cota inferior para V(K ∼ λE). Utilizando
las clases Rp estudiadas en el caṕıtulo anterior, se demuestra que las mejores cotas posibles para el
volumen del paralelo interior de un cuerpo convexo K ∈ Rp, vienen dadas por funcionales del tipo

p+2∑

i=0

(
n

i

)
Wi(K; E)(−λ)i ±

(
n

p + 2

)
(n− p− 2)

∫ λ

0

(λ− s)p+2

r(K;E)− s
Wp+2(−s) ds

en los que, como puede verse, interviene parte del polinomio alternado de Steiner, pero no éste
exclusivamente; de hecho, en la segunda sección del caṕıtulo se demuestra que es imposible acotar
V(K ∼ λE) utilizando sólo el polinomio alternado, lo que prueba, en particular, la no-veracidad
de la conjetura de Matheron. Resultados análogos se obtienen para las quermassintegrales de un
cuerpo convexo en las dos últimas secciones de este caṕıtulo.

Finalmente, un breve comentario sobre el quinto y último caṕıtulo de esta memoria. El hecho
de poder identificar un cuerpo convexo con su función soporte permite dar un tratamiento anaĺıtico
a muchos problemas en Convexidad. Concretamente, dados un cuerpo convexo K ⊂ Rn de clase
C2

+, es decir, tal que su frontera es una hipersuperficie de clase C2 con curvatura de Gauss estric-
tamente positiva en todo punto, y una función ψ : Sn−1 −→ R de clase C2, si consideramos las
quermassintegrales Wi como funciones de la variable real λ ∈ (−ε, ε), para ε > 0 tal que hK + λψ

es una función soporte, la desigualdad de Brunn-Minkowski, a saber,

Wi

(
(1− t)K + tL

)1/(n−i) ≥ (1− t)Wi(K)1/(n−i) + tWi(L)1/(n−i)

para cuerpos convexos cualesquiera K,L ⊂ Rn, t ∈ [0, 1] e i = 0, . . . , n, nos va a asegurar que
W1/(n−i)

i es cóncava, ahora en la variable λ. La concavidad de estas funciones va a permitir obtener
ciertas desigualdades de tipo Poincaré, principal objetivo de este último caṕıtulo. En primer lugar
se trabajará con cuerpos convexos de clase C2

+ y, dado que todo cuerpo convexo puede aproximarse
(en la métrica de Hausdorff) por cuerpos convexos de este tipo, en la última sección del caṕıtulo 5
se van a obtener desigualdades de tipo Poincaré para cuerpos convexos arbitrarios.

Los resultados originales que se encuentran recogidos en esta memoria pueden encontrarse en
nuestros trabajos [13, 26, 27, 28, 29, 30, 46].
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Chapter 1

Preliminaries. The Steiner polynomialPreliminaries. The Steiner polynomial

This first chapter is devoted to the study of the Steiner polynomial of a convex body K focussed
on the behavior and nature of its roots. In the first section we make a brief survey of the main
definitions, properties and results of convex bodies which will be needed for the further study of
the mentioned polynomial.

1.1 Convex bodies and their properties

Throughout this dissertation, we will use the following standard notation. We write Rn to
denote the n-dimensional Euclidean space, endowed with the standard inner product 〈 ·, ·〉 and the
Euclidean norm | · |. The closure of a set Ω ⊆ Rn is denoted by cl Ω, its boundary by bd Ω and
its interior by intΩ. The dimension of a set Ω ⊆ Rn, i.e., the dimension of the smallest affine
subspace containing Ω (its affine hull, aff Ω) is denoted by dim Ω. Regarding the dimension of a
convex set Ω, we write relintΩ and relbd Ω to denote, respectively, the relative interior and the
relative boundary of Ω, i.e., the interior and the boundary of the set Ω relative to its affine hull.

The following definitions and properties are well known and can be found in any book on
Convexity, for instance [8, 15, 21, 49, 54, 56]. We would like to mention also the work [1].

Definition 1.1.1. A (non-empty) set Ω ⊆ Rn is said to be convex if, whenever two points x, y ∈ Ω,
then the convex combination λx + (1− λ)y ∈ Ω, for 0 ≤ λ ≤ 1.

Definition 1.1.2. A convex body K ⊂ Rn is a compact convex set. Moreover, a convex body is
called strictly convex if its boundary does not contain a segment.
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From now on Kn will denote the set of all convex bodies in Rn. The subset of Kn consisting of
all convex bodies with non-empty interior is denoted by Kn

0 . Let Bn(p, r) =
{
x ∈ Rn : |x− p| ≤ r

}

be the (closed) ball of radius r > 0 centered at p ∈ Rn; in particular, we will write Bn = Bn(0, 1)
for the n-dimensional unit ball. Finally, let Sn−1 =

{
u ∈ Rn : |u| = 1

}
be the (n− 1)-dimensional

unit sphere. The Minkowski sum of two convex bodies K, L ∈ Kn is defined by

K + L = {x + y : x ∈ K and y ∈ L},

which is clearly a convex body, and we write λK = {λx : x ∈ K}, for λ ∈ R.

For every set Ω ⊆ Rn, there exists a convex set containing it. The intersection of all convex sets
containing Ω is the convex hull of Ω, and it will be denoted by conv Ω; thus conv Ω is the smallest
convex set containing Ω. The convex hull of a compact set is always a convex body; in particular,
the convex hull of a finite number of points is so and the family of all of them represents a very
important class of convex bodies:

Definition 1.1.3. A polytope is the convex hull of finitely many points in Rn (its vertices).

The space of convex bodies Kn is endowed with the Hausdorff metric, namely

δ(K, L) = min
{
λ ≥ 0 : K ⊆ L + λBn, L ⊆ K + λBn

}
for K,L ∈ Kn,

which allows to consider continuity of functionals and approximation. In this respect, it is well-
known that any convex body can be approximated by polytopes (see [49, Theorems 1.8.13, 1.8.15]),
as well as by convex bodies with differentiable boundaries. Regarding the differentiability, the fol-
lowing notation will be used. We will say that K ∈ Kn is of class Ck, k ∈ N, if its boundary
hypersurface is a regular submanifold (in the sense of differential geometry) that is k-times con-
tinuously differentiable. The following assumption, stronger than Ck, will be important: we say
that K is of class Ck

+ if bdK ∈ Ck (with k ≥ 2) and its Gauss curvature is strictly positive at
every point. The following approximation result will be needed in the last chapter of this work; in
fact, much stronger properties are satisfied by the convex bodies involved there (see [49, Notes to
Section 2.5, p. 119]), but for our purposes the differentiability condition will be enough.

Proposition 1.1.4. For any convex body K ∈ Kn there exists a sequence (Km)m∈N of convex
bodies of class C2

+ converging to K in the Hausdorff metric.

In spite of the fact that many of the following properties and definitions are valid for closed
convex sets, in order to simplify the exposition we will restrict them to compact ones, since we will
always work under the hypothesis of compactness. An important notion is the following one:

Definition 1.1.5. Let K ∈ Kn. A hyperplane H is called a supporting hyperplane of K if H∩K 6= ∅
and K is contained in one of the two halfspaces determined by H, which is called its supporting

halfspace. For each u ∈ Sn−1, the supporting hyperplane and the supporting halfspace to K with
outer normal vector u will be denoted, respectively by H(K, u) and H−(K,u).
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The following classical results concerning supporting hyperplanes will be needed in the following.

Theorem 1.1.6. At every point of the boundary of a convex body K ∈ Kn there exists a supporting
hyperplane of K. Furthermore, for every u ∈ Sn−1 there is a supporting hyperplane of K with outer
normal vector u.

Supporting hyperplanes can be used to characterize convexity, since if K ⊂ Rn is a compact
set with non-empty interior, then K is convex if and only if for every x ∈ bdK there exists a
supporting hyperplane to K. As a consequence, we get that any convex body is the intersection of
its supporting halfspaces.

There is no doubt that convex functions play an important role in the theory of convex bodies.
In this context, the most important one is the so called support function.

Definition 1.1.7. A function f : Rn −→ R is convex if for any x, y ∈ Rn and 0 ≤ λ ≤ 1,

f
(
(1− λ)x + λy

) ≤ (1− λ)f(x) + λf(y).

A function f is concave if −f is convex; or equivalently, if for any x, y ∈ Rn and 0 ≤ λ ≤ 1,

f
(
(1− λ)x + λy

) ≥ (1− λ)f(x) + λf(y).

The following properties of convex functions will be needed later. For references and further
study we refer for instance to [39, 49].

Proposition 1.1.8. Let f : Rn −→ R be a convex (concave) function. Then,

i) f is continuous in int dom f and

ii) if n = 1, the left and right derivatives, denoted respectively by ′f and f ′, do exist at every
point and they are increasing (decreasing) functions. Moreover, ′f ≤ f ′ ( ′f ≥ f ′).

Definition 1.1.9. The support function of a convex body K ∈ Kn in the direction u ∈ Sn−1, denoted
by h(K,u) or hK(u), is the real valued function defined on the sphere by

h(K, u) = max
{〈x, u〉 : x ∈ K

}
.

The radial function of a convex body K ∈ Kn
0 with 0 ∈ intK, denoted by ρK , is the real valued

function defined on Rn\{0} by

ρK(x) = max{λ ≥ 0 : λx ∈ K}.

The support function and the radial function of a convex body K ∈ Kn
0 with 0 ∈ intK are

related by means of the polar body, K◦ =
{
x ∈ Rn : 〈x, y〉 ≤ 1 for all y ∈ K

}
, namely

h(K◦, ·) =
1

ρK(·) . (1.1)

The support function of a convex body may be introduced on Rn, but for our purposes we consider it
defined on Sn−1. It has many useful properties; here we detail just the ones we will need further on.
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Proposition 1.1.10. Let K, L ∈ Kn and u, v ∈ Sn−1.

i) h(K + L, u) = h(K,u) + h(L, u) and h(λK, u) = λh(K, u) for all λ ≥ 0.

ii) If K ⊆ L then h(K, u) ≤ h(L, u).

iii) h(K, λu) = λh(K, u) for all λ ≥ 0.

iv) h(K, u + v) ≤ h(K,u) + h(K, v).

In particular, h(K, ·) is convex. The above last two properties are usually expressed by saying
that h(K, ·) is sublinear, i.e., positively homogeneous –(iii)– and subadditive –(iv). In fact, it turns
out that they characterize support functions:

Theorem 1.1.11. Let h be a sublinear (real-valued) function defined on Sn−1. Then there exists a
unique convex body K ∈ Kn such that h = h(K, ·). Moreover, any convex body K ∈ Kn is deter-
mined by its support function.

On the other hand, if K is a convex body in Rn then

K =
{

x ∈ Rn : 〈x, u〉 ≤ h(K, u) for every u ∈ Sn−1
}

,

or equivalently,
K =

⋂

u∈Sn−1

{
x ∈ Rn : 〈x, u〉 ≤ h(K,u)

}
.

We finish this section by formulating the famous Blaschke selection theorem, which provides a
very useful tool in proving the existence of convex bodies with specific properties.

Theorem 1.1.12 (Blaschke selection theorem). Any bounded sequence of convex bodies in Rn

contains a convergent subsequence (in the Hausdorff metric).

1.2 Mixed volumes and surface area measures. The Steiner formula

The so called (relative) Steiner formula of a convex body K ∈ Kn is nothing else but a polyno-
mial of degree n, which expresses the volume of the (vectorial) sum of K with an homothetic copy
of a fixed body E ∈ Kn with factor λ (the variable of the polynomial). This section is focussed on
the study of this polynomial mostly in the three dimensional case, from an algebraic point of view,
in the sense of searching and studying the geometric properties of its algebraic roots.

In order to introduce the Steiner polynomial and the general setting involving the so called
mixed volumes, we need the following definitions.

Definition 1.2.1. Given a convex body K ∈ Kn, the volume of K is defined as its Lebesgue measure
and will be denoted by V(K).
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Proposition 1.2.2. Let K,L ∈ Kn. The following holds:

i) If dimK = n then V(K) > 0. If dimK ≤ n− 1 then V(K) = 0.

ii) V(λK) = λnV(K) for λ ≥ 0.

iii) The volume V : Kn −→ R+ is a continuous function on the space of convex bodies.

iv) κn := V(Bn) = πn/2/Γ
(
(n/2) + 1

)
, where Γ denotes the usual gamma function.

Combining the notions of volume and Minkowski sum, the concept of mixed volume appears
(as well as the notion of mixed surface area measure). For a deep study of mixed volumes and
mixed surface area measures we refer mainly to [49, Section 5.1].

Theorem 1.2.3. Let K1, . . . , Km ∈ Kn and λi ≥ 0 for i = 1, . . . , m. The volume of the Minkowski
sum

∑m
i=1 λiKi is given by

V

(
m∑

i=1

λiKi

)
=

m∑

i1=1

· · ·
m∑

im=1

λi1 · · ·λinV(Ki1 , . . . , Kin).

The coefficients V(Ki1 , . . . ,Kin) are symmetric in the indices for any permutation, and they are
called the mixed volumes of K1, . . . ,Km.

A kind of reciprocal says that the mixed volume of n convex bodies can be obtained from the
volume of Minkowski sums of those convex bodies:

V(K1, . . . ,Kn) =
1
n!

n∑

k=1

(−1)n+k
∑

1≤i1<···<ik≤n

V(Ki1 + Ki2 + · · ·+ Kik).

For the sake of brevity we will use the abbreviation
(
K1[r1], . . . , Km[rm]

) ≡ (
K1,

(r1). . . , K1, . . . , Km, (rm). . . , Km

)
.

Surface area measures can be viewed as local generalizations of mixed volumes and they can be
defined as follows.

Theorem 1.2.4. Let K1, . . . , Kn−1 ∈ Kn. Then there exists a unique finite Borel measure on Sn−1,
the so called mixed surface area measure S(K1, . . . , Kn−1; ·), such that

V(K,K1, . . . , Kn−1) =
1
n

∫

Sn−1

h(K, u) dS(K1, . . . , Kn−1; u) (1.2)

for any convex body K ∈ Kn.

In particular, Si(K; ·) := S
(
K[i], Bn[n − i − 1]; ·) is called the i-th order surface area measure

of K, for i = 0, . . . , n− 1.

Some useful properties of the mixed volumes and mixed surface area measures are listed in the
following proposition; they will be needed throughout this work.
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Proposition 1.2.5. Let K, L,K1, . . . , Kn ∈ Kn. The following properties hold:

i) V(K, . . . ,K) = V
(
K[n]

)
= V(K).

ii) S(K1, . . . , Kn−1; ·) is symmetric in the indices for any permutation.

iii) For all i = 0, . . . , n− 1, Si(K;Sn−1) = nV
(
K[i], Bn[n− i]

)
.

iv) For all i = 0, . . . , n− 1, S0(K; ·) = Si(Bn; ·) is the usual spherical Lebesgue measure.

v) V(αK + βL, K2, . . . , Kn) = αV(K, K2, . . . , Kn) + βV(L,K2, . . . , Kn) for every α, β ≥ 0, and
S(αK + βL, K2, . . . ,Kn−1; ·) = αS(K,K2, . . . , Kn−1; ·) + βS(L,K2, . . . , Kn−1; ·), i.e., mixed
volumes and surface area measures are linear in each argument.

vi) If K ⊆ L then V(K, K2, . . . ,Kn) ≤ V(L,K2, . . . ,Kn), i.e., they are monotonous (in each
argument).

vii) V(K1, . . . , Kn) ≥ 0. Moreover, V(K1, . . . , Kn) > 0 if and only if there are segments σi ⊂ Ki,
i = 1, . . . , n, with linearly independent directions.

viii) Mixed volumes are continuous functions on (Kn)n and mixed surface area measures are weakly
continuous on (Kn)n−1.

Besides the volume (see Proposition 1.2.5 (i)), other well-known measures of a convex body K

are also particular cases of mixed volumes, namely: nV
(
K[n− 1], Bn

)
= S(K) is the usual surface

area of K, (2/κn)V
(
K,Bn[n − 1]

)
= b(K) is its mean width and nV

(
K[n − 2], Bn[2]

)
= M(K) is

the integral mean curvature of K. Notice that S(K) = Sn−1(K; Sn−1) (cf. Proposition 1.2.5, iii)),
hence the name of surface area measure.

In the particular case of two convex bodies K,E ∈ Kn, the mixed volumes V
(
K[n− i], E[i]

)
, for

i = 0, . . . , n, are called relative quermassintegrals of K (with respect to E) and they are denoted by
Wi(K; E). Moreover, when E = Bn the i-th quermassintegral Wi(K; Bn) := Wi(K) is just called
i-th quermassintegral of K. Taking into account the following definition, the so called relative
Steiner formula or Minkowski-Steiner formula is obtained (cf. Theorem 1.2.3).

Definition 1.2.6. For K ∈ Kn, the outer parallel body (relative to E) of K at distance λ ≥ 0 is the
Minkowski sum K + λE.

Theorem 1.2.7 (The relative Steiner formula). Let K, E ∈ Kn. The volume of the outer
parallel body of K with respect to E at distance λ ≥ 0 can be expressed as

V(K + λE) =
n∑

i=0

(
n

i

)
Wi(K; E)λi. (1.3)

Notice that if E ∈ Kn
0 then the polynomial in the right-hand side of (1.3), the so called relative

Steiner polynomial, has degree n, i.e., the dimension of the space. Steiner [52] derived this result
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in R2 and R3 when E = Bn (then the classical Steiner polynomial is obtained), for polytopes and
convex bodies with boundary of class C2

+.

In fact, taking into account that quermassintegrals are particular cases of mixed volumes, the
following Steiner formulae for the relative quermassintegrals can be obtained.

Theorem 1.2.8 (Steiner formulae for relative quermassintegrals). Let K, E ∈ Kn and let
λ be a positive number. The relative i-th quermassintegral, i = 0, . . . , n, of the outer parallel body
of K (relative to E), K + λE, can be expressed as a polynomial in the parameter λ,

Wi(K + λE;E) =
n−i∑

k=0

(
n− i

k

)
Wi+k(K; E)λk. (1.4)

If E ∈ Kn
0 , then the polynomial in the right-hand side of (1.4) has degree n − i. Throughout

this text the relative Steiner polynomial/formula will be simply called Steiner polynomial/formula.

Before recalling some famous inequalities regarding mixed volumes/quermassintegrals, we in-
clude here a couple of additional definitions that we will use often.

Definition 1.2.9. The relative inradius r(K;E) and relative circumradius R(K; E) of K relative to
E are defined, respectively, by

r(K; E) = max{r : ∃x ∈ Rn with x + r E ⊆ K},
R(K; E) = min{R : ∃x ∈ Rn with K ⊆ x + R E}.

Notice that it always holds
r(K; E)R(E;K) = 1. (1.5)

In the particular case when E = Bn the classical inradius r(K) = r(K; B3) and circumradius
R(K) = R(K; B3) are obtained.

1.2.1 Inequalities for mixed volumes

Mixed volumes satisfy several inequalities. Here we collect some of the most relevant ones,
which will be needed throughout this work. Notice first that

r(K; E) Wi+1(K; E) ≤ Wi(K;E) ≤ R(K; E) Wi+1(K; E), (1.6)

for i ∈ {0, . . . , n − 1}; indeed since, up to translations, r(K; E)E ⊆ K and K ⊆ R(K; E)E these
inequalities are a direct consequence of the monotonicity of the mixed volumes (see Proposition
1.2.5, part vi)). The equality case in these inequalities will be considered and studied in Chapter 3
(see Theorem 3.1.5).

We dare to say that the most important inequality relating mixed volumes is the Aleksandrov-
Fenchel inequality. For a deep study of this inequality we refer to [49, Sections 6.3, 6.6].
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Theorem 1.2.10 (Aleksandrov-Fenchel inequality). Let K1, . . . ,Kn ∈ Kn. Then

V(K1,K2,K3, . . . , Kn)2 ≥ V(K1,K1, K3, . . . ,Kn)V(K2,K2, K3, . . . ,Kn). (1.7)

Clearly, equality holds in (1.7) if K1 and K2 are homothetic. However, the complete classifica-
tion of the equality case has not yet been settled. Only in several special cases the solution is known.

As particular cases of the most general Aleksandrov-Fenchel inequality (1.7) we get the so called
Aleksandrov-Fenchel inequalities for quermassintegrals: for all i = 1, . . . , n− 1,

Wi(K;E)2 ≥ Wi−1(K;E)Wi+1(K;E). (1.8)

The potent extensions of the classical Brunn-Minkowski inequality (some of them very recent)
have a great impact on many different fields in Mathematics (and even further on –the study of
gases, crystals...). Its statement is rather simple: it ensures the concavity of the n-th root of the
volume functional V : Kn −→ R.

Theorem 1.2.11 (Brunn-Minkowski inequality). For convex bodies K, L ∈ Kn and t ∈ [0, 1],

V
(
(1− t)K + tL

)1/n ≥ (1− t)V(K)1/n + tV(L)1/n. (1.9)

If t ∈ (0, 1) then equality holds if and only if either K and L are homothetic or they lie in parallel
hyperplanes.

Brunn-Minkowski inequality has a more general version for measurable sets, as well as an
integral version usually called Prékopa-Leindler inequality. This theorem can be found in any
of the already mentioned books of classical Convexity; but we want to refer specially to [19], a
beautiful survey on this inequality.

There exists also a general Brunn-Minkowski theorem stating an analogous inequality for mixed
volumes (see [49, p. 339]), and in particular, for every (relative) quermassintegral, which we will
need later.

Theorem 1.2.12 (Brunn-Minkowski inequality for quermassintegrals). For convex bodies
K, L, E ∈ Kn, t ∈ [0, 1] and any i ∈ {0, . . . , n},

Wi

(
(1− t)K + tL; E

)1/(n−i) ≥ (1− t)Wi(K;E)1/(n−i) + tWi(L; E)1/(n−i), (1.10)

i.e., the (n− i)-th root of the i-th quermassintegral Wi( · ; E) : Kn −→ R is a concave function. If
t ∈ (0, 1) then equality holds for 0 ≤ i < n− 1 if and only if either K and L are homothetic or they
lie in parallel (n− i− 1)-planes.

These inequalities can be also obtained as consequences of the Aleksandrov-Fenchel inequality
(see [49, Section 6.4]).



1.3 Steiner polynomials in R2 and R3 9

By using the concavity of the n-th root of the volume (i.e., Brunn-Minkowski inequality) and
the fact that the volume of the Minkowski convex combination (1 − t)K + tL is a polynomial in
t ∈ [0, 1], another two important inequalities can be obtained, namely, the first and the second
Minkowski inequalities (see [49, Section 6.2]).

Theorem 1.2.13 (Minkowski inequalities). Let K, L ∈ Kn. Then

V
(
K[n− 1], L

)n ≥ V(K)n−1V(L),

V
(
K[n− 1], L

)2 ≥ V(K)V
(
K[n− 2], L[2]

)
.

(1.11)

For K,L ∈ Kn
0 , equality holds in the first inequality if and only if K and L are homothetic. For

L ∈ Kn
0 , equality holds in the second inequality if and only if either dimK < n−1 or K is homothetic

to an (n− 2)-tangential body of L.

The so called p-tangential bodies, p = 0, . . . , n− 1, will play an important role in this work. In
order to state the definition of these sets we need further notions, and hence we omit it here. They
will be defined and studied in Chapter 3. Notice that second Minkowski inequality is a particular
case of the Aleksandrov-Fenchel inequality (1.7).

By considering the special case where L is the unit ball, first Minkowski inequality in (1.11)
reduces to the famous isoperimetric inequality,

S(K)n ≥ nnκnV(K)n−1. (1.12)

1.3 Steiner polynomials in R2 and R3

From now on E ∈ Kn
0 will be a fixed convex body (with interior points, in order to avoid trivial

situations), and everything will be made relative to E. We will point out when E is some particular
convex body or an additional property of E is needed. We will also write fE(K, λ) to denote the
Steiner polynomial of a convex body K relative to E.

Regarding the Steiner polynomial as a formal polynomial in the complex variable λ, it is a
natural question to wonder about the geometric meaning and the behavior of its algebraic roots.
In this section we give a classification of the 3-dimensional convex bodies in terms of relations,
i.e., equations and inequalities amongst V(K), W1(K; E), W2(K; E) and V(E) with respect to the
algebraic type of the roots. As we will see later, this kind of classification seems to be a rather
useful approach to a well-known open problem in Convexity: the Blaschke problem. The results
we present here can be found in [27], in the case when E = B3.

1.3.1 The Steiner polynomial for a planar convex body

The Steiner polynomial for a planar convex body K is given by A(K)+2W1(K; E)λ+A(E)λ2;
notice that now V(K) is just the area of K, and we denote it in the usual way A(K). In this case
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the retrieval of the roots is trivial,

λ1 =
−W1(K; E)−

√
W1(K; E)2 −A(K)A(E)
A(E)

, λ2 =
−W1(K; E) +

√
W1(K; E)2 −A(K)A(E)
A(E)

,

and then, the following very nice properties can be established easily (see [20], where the case
E = B2 is considered):

(P1) First Minkowski inequality in the plane, namely W1(K; E)2 ≥ A(K)A(E) (see Theorem
1.2.13), is equivalent to the fact that all the roots of the Steiner polynomial are real.

(P2) λ1 ≤ λ2 ≤ 0.

(P3) Characterization of the body E: λ1 = λ2, i.e., the Steiner polynomial has a double real root,
if and only if the body K = −λ1E.

(P4) Since min
{
fE(K, λ) : λ ∈ R}

= fE

(
K,−W1(K;E)/A(E)

)
= A(K)−W1(K;E)2/A(E) ≤ 0,

we can say that first Minkowski inequality is equivalent to min
{
fE(K, λ) : λ ∈ R} ≤ 0.

In the planar case the relative inradius, circumradius and quermassintegrals are related by the
well-known Bonnesen inequality

W1(K;E)2 −A(K)A(E) ≥ A(E)2

4

(
R(K; E)− r(K; E)

)2
. (1.13)

Bonnesen [7] proved this result for E = B2, whereas the proof of the general case is due to Blaschke
[4, pp. 33–36]. In fact (1.13) is an immediate consequence of the stronger relations

A(K) + 2W1(K; E)λ + A(E)λ2 ≤ 0 if − R(K; E) ≤ λ ≤ −r(K; E) (1.14)

(see [4, pp. 33–36] and also [18]). Thus:

(P5) λ1 ≤ −R(K; E) ≤ −r(K; E) ≤ λ2.

Bonnesen’s inequality sharpens (in the plane) the Aleksandrov-Fenchel inequality (1.7) and the
first Minkowski inequality, and there is no known generalization of it to higher dimensions. Notice
that if E = B2 then 2W1(K) = p(K) is the perimeter of K and the classical and well-known
isoperimetric and Bonnesen inequalities are obtained:

p(K)2 ≥ 4πA(K) and p(K)2 − 4πA(K) ≥ π2

4

(
R(K;E)− r(K; E)

)2
.

In this case, the fact that fB2(K, λ) = A(K) + p(K)λ + πλ2 has a double real root provides a
characterization of the ball, and the isoperimetric inequality is equivalent to all its roots are real.

In the following subsection we give a complete characterization of the 3-dimensional convex
bodies, depending on the algebraic type of roots that their Steiner’s polynomial presents. In the
case K = B3 this characterization has a very precise interpretation in the Blaschke problem, which
we will introduce later; from this, interesting consequences can be obtained for the problem. We
also use it for studying the above properties (P1)–(P5).
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1.3.2 The Steiner formula for a convex body in R3

Throughout the rest of this section K ∈ K3 and E ∈ K3
0 will denote convex bodies in R3, with

Steiner polynomial

fE(K,λ) = V(K) + 3W1(K, E)λ + 3W2(K, λ)λ2 + V(E)λ3.

It is clear that now all the possibilities are feasible for its roots: λ1, λ2, λ3 can be real or complex
numbers, which states a first difference with the planar case. Since all the coefficients of the Steiner
polynomial are non-negative, Routh-Hurwitz criterion (see e.g. [33, p. 181]) ensures that fE(K, λ)
is a Hurwitz polynomial, i.e., all its roots lie in the left half plane, if and only if the determinant

∣∣∣∣∣∣∣

3W2(K;E) V(K) 0
V(E) 3W1(K; E) 0

0 3W2(K; E) V(K)

∣∣∣∣∣∣∣
= V(K)

[
9W1(K; E)W2(K;E)−V(E)V(K)

]

is positive. This is obtained as an easy consequence of inequalities (1.8). Notice that if V(K) = 0
then one root is zero and the two remaining ones lie in the left half plane, since the second order
determinant given by the first minor is also positive; and analogously when W1(K; E) = 0. In
fact, using the Routh-Hurwitz criterion and the inequalities (1.8) it can be proved that the Steiner
polynomial is Hurwitz for n ≤ 5, see [25] and [53, p. 103]. There are however counterexamples in
higher dimensions, see [25, 31]. Thus we get that all roots of the 3-dimensional Steiner polynomial
have negative real part, which extends property (P2).

Concerning the algebraic type of its roots, since there always exists a real one, the following
possibilities appear: a triple real root, a double real root and a simple real root, three different real
roots, or two complex roots and a simple real root.

(i) A triple real root. Let us denote by a the triple real root of fE(K, λ). Then, from the identity

V(K) + 3W1(K,E)λ + 3W2(K,λ)λ2 + V(E)λ3 = V(E)(λ− a)3 = V(E)(λ3 − 3aλ2 + 3a2λ− a3),

we obtain that V(K) = −V(E) a3, W1(K; E) = V(E) a2 and W2(K; E) = −V(E) a; hence,
fE(K,λ) will have a triple real root if and only if

a = −W2(K;E)
V(E)

, W2(K;E)2 = V(E)W1(K; E) and W2(K; E)3 = V(E)2V(K).

The convex body E and its homothets are the only sets for which the above two equalities (on the
right) hold, see Theorem 1.2.13. Since a = −W2(K; E)/V(E) we obtain that the homothecy factor
is precisely −a and then we can state a characterization of this figure in terms of the roots of the
Steiner polynomial, which extends property (P3):

Proposition 1.3.1 ([27]). The Steiner polynomial of a convex body K ∈ K3 (relative to E ∈ K3
0)

has a triple real root a if and only if K = −aE (up to translations).
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In arbitrary dimension the characterization of the “fixed body” E as the only one whose Steiner
polynomial has an n-fold real root can be also obtained. In order not to lose the thread of the
argument we are developing here and for the sake of completeness, a proof of this fact will be given
at the end of this section.

(ii) A double real root and a simple real root. If fE(K, λ) has a double real root, this one
is, either its minimum or its maximum. Then, we can find two possible situations (see Figure 1.1),
which will be called Type 1 and Type 2, respectively.

ρ1 = ρ2

ρ1 = ρ2ρ3

ρ3

Type 1

Type 2

Figure 1.1: The Steiner polynomial has a double root and a simple one.

If we want to compute explicitly the roots of the Steiner polynomial, we just have to find its
local extreme values: from f ′E(K,λ) = 3W1(K;E)+6W2(K; E)λ+3V(E)λ2, we get that fE(K, λ)
attains its relative minimum and maximum in

λm =
−W2(K; E) +

√
W2(K; E)2 −W1(K; E)V(E)

V(E)
and

λM =
−W2(K; E)−

√
W2(K; E)2 −W1(K; E)V(E)

V(E)
,

(1.15)

respectively. So, the Steiner polynomial will have a double real root of Type 1 (respectively,
Type 2) if and only if λm (respectively, λM ) is that root; this is also equivalent to fE(K, λm) = 0
(respectively, fE(K, λM ) = 0). But it is easy to see that

fE(K, λm) =
V(E)2V(K)−3V(E)W1(K; E)W2(K;E) + 2W2(K;E)3−2

[
W2(K;E)2−V(E)W1(K;E)

]3/2

V(E)2
.

(1.16)

Therefore, fE(K, λm) = 0 if and only if

2W2(K;E)3 +V(E)
[
V(E)V(K)−3W1(K;E)W2(K;E)

]
−2

[
W2(K;E)2−V(E)W1(K;E)

]3/2
= 0.

(1.17)
Analogously, we obtain fE(K, λM ) = 0 if and only if

2W2(K;E)3 +V(E)
[
V(E)V(K)−3W1(K;E)W2(K;E)

]
+2

[
W2(K;E)2−V(E)W1(K;E)

]3/2
= 0.

(1.18)
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From now on, these two functionals will appear quite often; so, for the sake of brevity, they will
be denoted by φ− and φ+, respectively, i.e.,

φ∓(K; E) := 2W2(K;E)3 + V(E)
[
V(E)V(K)− 3W1(K; E)W2(K; E)

]

∓ 2
[
W2(K; E)2 −V(E)W1(K; E)

]3/2
.

(1.19)

It is a long and tedious calculation to compute the simple real root of the Steiner polynomial in
both cases Type 1 and Type 2: it can be checked that

fE(K, λ) = (λ− λm)

(
V(E)λ2 +

[
2W2(K; E) +

√
W2(K; E)2 −V(E)W1(K; E)

]
λ

+
2V(E)W1(K; E)−W2(K; E)2 + W2(K; E)

√
W2(K; E)2 −V(E)W1(K; E)

V(E)

)
,

since the remainder of fE(K, λ)/(λ − λm) is given by (1.16), which vanishes in our case provided
that λm is a root of fE(K, λ). Thus, the roots of the second degree polynomial at the right-hand
side in the previous expression are λm, which is a double root of fE(K, λ), as needed, and the third
required root,

λ3 =
−W2(K; E)− 2

√
W2(K; E)2 −V(E)W1(K;E)

V(E)
.

Analogously, in the case of a double real root of Type 2, which necessarily is λM , the simple
real one is

λ3 =
−W2(K; E) + 2

√
W2(K; E)2 −V(E)W1(K;E)

V(E)
.

(iii) Three different real roots. Following the notation stated in formula (1.19), it is clear
that fE(K, λ) has three different real roots only if its local maximum is strictly positive, i.e., if
φ+(K; E) > 0, and its local minimum strictly negative, i.e., φ−(K; E) < 0.

(iv) Two conjugate complex roots and a simple real root. It is clear that this case occurs
if and only if either the local minimum of fE(K, λ) is strictly positive, or its local maximum is
strictly negative. So, we find again two possible situations (see Figure 1.2), which will be called,
following the analogy with the case of the double roots, Type 1 and Type 2, respectively.

ρ3 ρ3

Type 1

Type 2

ρm

ρM

Figure 1.2: The Steiner polynomial has two conjugate complex roots and a simple one.
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Therefore the following result has been proved:

Theorem 1.3.2 ([27]). Let K ∈ K3. Then its Steiner polynomial has:

• A double real root of Type 1 if and only if φ−(K;E) = 0.

• A double real root of Type 2 if and only if φ+(K;E) = 0.

• Two conjugate complex roots of Type 1 if and only if φ−(K; E) > 0.

• Two conjugate complex roots of Type 2 if and only if φ+(K; E) < 0.

• Three simple (different) real roots if and only if φ+(K; E) > 0 and φ−(K; E) < 0.

In the case of double real roots, the zeros are explicitly given by

Type 1 : λm =
−W2(K; E) +

√
W2(K; E)2 −W1(K; E)V(E)

V(E)
(double),

λ3 =
−W2(K; E)− 2

√
W2(K; E)2 −W1(K; E)V(E)

V(E)
;

Type 1 : λM =
−W2(K;E)−

√
W2(K; E)2 −W1(K;E)V(E)

V(E)
(double),

λ3 =
−W2(K;E) + 2

√
W2(K;E)2 −W1(K; E)V(E)

V(E)
.

Another characterization of the different types of roots in terms of the functionals V(K),
W1(K; E) and W2(K; E) can also be given. If we denote by λ3 the real root of the Steiner
polynomial which always exists, we can rewrite fE(K,λ) in the following way:

fE(K, λ)=V(E)(λ− λ3)
[
λ2+

(
λ3+

3W2(K; E)
V(E)

)
λ+

(
λ2

3+
3W2(K; E)

V(E)
λ3+

3W1(K; E)
V(E)

)]

= V(E)(λ− λ3)Q(λ).
(1.20)

The discriminant ∆Q of the second degree polynomial Q(λ) is given by

∆Q = −3V(E)
(

V(E)λ2
3 + 2W2(K; E)λ3 + 4W1(K; E)− 3W2(K; E)2

V(E)

)
. (1.21)

Consequently, we can assure that:

• If ∆Q = 0, then fE(K, λ) has a double real root, besides λ3. This is the only case in which a
triple real root can appear.

• If ∆Q > 0, fE(K, λ) has two different simple real roots, besides λ3.

• If ∆Q < 0, fE(K, λ) has two complex roots, and of course, the real one λ3.
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So, we just have to check the meaning of the condition ∆Q = 0 in terms of λ3. But it is clear
that V(E)λ2

3 + 2W2(K; E)λ3 + 4W1(K; E)− 3W2(K;E)2/V(E) = 0 if and only if

λ3 =
−W2(K; E)± 2

√
W2(K; E)2 −W1(K; E)V(E)

V(E)
,

from which we can derive the required characterization:

Theorem 1.3.3 ([27]). Let K ∈ K3 be a convex body whose Steiner polynomial has λ3 as real
root, and we denote by N+(K; E) and N−(K;E) the values

N±(K; E) :=
−W2(K; E)± 2

√
W2(K; E)2 −W1(K; E)V(E)

V(E)
.

Then, the Steiner polynomial of K has:

i) Three different real roots if and only if N−(K;E) < λ3 < N+(K;E); in this case, also the
other two real roots, λ1, λ2 ∈

(
N−(K; E), N+(K; E)

)
.

ii) Two conjugate complex roots of Type 1 if and only if λ3 < N−(K;E).

iii) Two conjugate complex roots of Type 2 if and only if λ3 > N+(K;E).

If one of the roots of the Steiner polynomial is equal to one of the values N−(K; E) or N+(K; E),
then we can assure that fE(K,λ) has double real roots of Type 1 or Type 2, respectively. So,
it suffices to find a real root lying in one of the intervals −∞ < N−(K; E) < N+(K; E) < 0, to
ensure that the other roots are, respectively, complex of Type 1, real, or complex of Type 2.

1.3.3 The planar properties (P1), (P4) and (P5)

In this section we generalize properties (P1) and (P4) which were stated for the roots of the
Steiner polynomial of a planar convex body; for property (P5) it will be not possible.

In the planar case, the main property was first Minkowski inequality, which is equivalent to the
fact that the Steiner polynomial has real roots; now, since there is no unique inequality relating the
corresponding 3-dimensional magnitudes V, W1 and W2 (besides, we know that, at least, one is
missing), the fundamental property for us will be that the Steiner polynomial has only real roots.
So, we will look for characterizations of this fact.

Property (P4) has a trivial generalization. Just considering the values given in (1.15) where the
local minimum and maximum of the Steiner polynomial are reached, and evaluating, the following
characterization is obtained, equivalent to Theorem 1.3.2:

Proposition 1.3.4 ([27]). All roots of the Steiner polynomial of a convex body are real if and
only if min

{
fE(K, λ) : λ ∈ R} ≤ 0 and max

{
fE(K, λ) : λ ∈ R} ≥ 0, simultaneously; the equalities

min
{
fE(K,λ) : λ ∈ R

}
= max

{
fE(K,λ) : λ ∈ R

}
= 0 are attained precisely when K is an

homothetic copy of E.
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Now we study property (P1), which stated the equivalence between first Minkowski inequality
and the fact that the Steiner polynomial has no complex roots. If we denote, as usual, by λ3 the real
root of the Steiner polynomial which always exists, fE(K, λ) can be rewritten again as in (1.20).
Now, we wonder: when is Q(λ) the Steiner polynomial of a planar convex body K ∈ K2 relative to
an E ∈ K2

0? If this is the case, we need to write fE(K,λ) =
(
V(E)/A(E)

)
(λ− λ3)Q0(λ), where

Q0(λ) = A(E)λ2 + A(E)
(

λ3 +
3W2(K;E)

V(E)

)
λ + A(E)

(
λ2

3 +
3W2(K; E)

V(E)
λ3 +

3W1(K;E)
V(E)

)
,

and then the above question is equivalent to ask, when does it hold that

A(E)
(

λ3 +
3W2(K;E)

V(E)

)
= 2W

(2)

1 (K; E) and

A(E)
(

λ2
3 +

3W2(K; E)
V(E)

λ3 +
3W1(K;E)

V(E)

)
= A(K)

for a planar convex body K relative to E ∈ K2
0? Here W

(2)

1 denotes the 1-st quermassintegral
computed in R2. Obviously, it holds if and only if these numbers satisfy first Minkowski inequality,
i.e., if and only if W

(2)

1 (K; E)2 − A(K)A(E) ≥ 0. Notice that the factor A(E) is cancelled, and
then the set E will have no influence in the final result. An easy computation allows to check that
this planar Minkowski inequality is equivalent to the discriminant ∆Q ≥ 0 (cf. (1.21)), and hence
to N−(K; E) ≤ λ3 ≤ N+(K; E) (see argument for Theorem 1.3.3). Now, Theorem 1.3.3 shows that
this condition is equivalent to the fact that the Steiner polynomial has only real roots. Thus, the
following result has been established:

Theorem 1.3.5 ([27]). All roots of the Steiner polynomial fE(K, λ) of a convex body K ∈ K3 are
real if and only if the second degree polynomial Q(λ), obtained by the decomposition of fE(K, λ) by
means of its real root, is the Steiner polynomial of a planar convex body (relative to any convex body).

Finally we deal with property (P5). This one can not be however extended to dimension 3.
In [53] Teissier studied Bonnesen-Type inequalities in Algebraic Geometry and raised the problem
to find extensions of this two dimensional property to higher dimensions (see also [35, p. 103]). In
view of the properties derived from (1.14) in the planar case, in [42] and [45, p. 65] the following
conjecture was posed:

Conjecture 1.3.6. Let K, E ∈ Kn. If γi, i = 1, . . . , n, are the roots of the Steiner polynomial
fE(K, λ) with Re(γ1) ≤ · · · ≤ Re(γn), then

Re(γ1) ≤ −R(K; E) ≤ −r(K;E) ≤ Re(γn) ≤ 0.

Here Re(λ) denotes the real part of the complex number λ. We have already mentioned that
the “negativity property” of the roots does not hold in general. In [25] counterexamples are also
obtained for both the inradius and the circumradius bounds in dimension 3, which shows that it is
impossible to extend property (P5) to R3.
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1.3.4 Appendix: a property of the n-dimensional Steiner polynomial

In this brief appendix, we state the characterization of the fixed body E ∈ Kn
0 in terms of the

type of roots of its Steiner polynomial. More precisely, we prove the following result:

Proposition 1.3.7 ([26]). The Steiner polynomial of a convex body K ∈ Kn (relative to E ∈ Kn
0 )

has an n-fold real root a if and only if K = −aE (up to translations).

This result provides also a characterization of the Euclidean balls, just taking E = Bn. In [26] a
proof similar to the one of the 3-dimensional case (see Proposition 1.3.1) is developed, in the sense
of assuming that we have

∑n
i=0

(
n
i

)
Wi(K; E)λi = (λ−a)nV(E), then identifying the corresponding

coefficients, and finally applying some known inequalities between the relative quermassintegrals.
Here we present however an elegant and shorter proof using Brunn-Minkowski inequality, which is
due to M. Henk (private communication).

Proof. The Steiner polynomial of a convex body K ∈ Kn has an n-fold real root a if and only if
fE(K,λ) = V(E)(λ− a)n. In particular, when λ ≥ 0, we have

V(E)1/n(λ− a) = fE(K, λ)1/n = V(K + λE)1/n ≥ V(K)1/n + λV(E)1/n

by Brunn-Minkowski inequality (see Theorem 1.2.11), i.e., −V(E)1/na ≥ V(K)1/n. On the other
hand, since V(K+λE)1/n = V(E)1/n(λ−a) for any λ ≥ 0, for λ = 0 we get −a = V(K)1/n/V(E)1/n.
Hence we have equality in the previous inequality, or equivalently, we have equality in Brunn-
Minkowski inequality, which implies that K and E are homothetic. Since −a = V(K)1/n/V(E)1/n,
it is clear that the homothecy factor is −a.

1.4 An application: the Blaschke diagram

As we mentioned before, in the case E = B3 the characterization of the convex bodies in terms
of the roots of their Steiner polynomial fB3(K, λ) has an interesting application to the Blaschke
problem. This section is devoted to study this question. First, we will start by introducing the so
called Blaschke problem.

1.4.1 The Blaschke problem

In 1916 Blaschke [3] asked for a characterization of the set of all points in R3 taking the form
(V(K), S(K), M(K)) as K ranges over K3 or, equivalently, for a characterization of the set of all
points in R2 of the form

x(K) =
4πS(K)
M(K)2

and y(K) =
48π2V(K)

M(K)3
.
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The latter set is called Blaschke diagram, and the map K3 −→ [0, 1]2, given by K ;
(
x(K), y(K)

)
,

Blaschke map. Notice that Blaschke map is not injective: because of the choice of the coordinates,
all homothetic copies of a convex body K have the same image; and moreover, except in a few cases
(the balls, the segments and the circles), each point in the diagram is the image of infinite many
different convex bodies. One of the main problems in this context is how to describe the Blaschke
diagram. According to the known inequalities relating V, S and M, i.e.,

Minkowski inequalities (cf. (1.11)):

S(K)2 ≥ 3V(K)M(K) (equality for cap-bodies), (1.22)

M(K)2 ≥ 4πS(K) (equality for balls), (1.23)

M(K)3 ≥ 48π2V(K) (equality for balls), (1.24)

isoperimetric inequality in R3 (cf. (1.12)):

S(K)3 ≥ 36πV(K)2 (equality for balls), (1.25)

isoperimetric inequality for planar sets in R3:

2M(K)2 ≥ π3S(K), where V(K) = 0 (equality for discs), (1.26)

and translating them in terms of the (x, y)-coordinates, it is easy to see that the Blaschke diagram
contains the shaded region in Figure 1.4. We recall that a cap-body (see Figure 1.3) is the convex

hull of the ball (in general, any convex body E) and countably many

Figure 1.3: A cap-body of B3.

points such that the line segment joining any pair of those points
intersects the ball (in general, E); the limit cases of the line segment
and the ball are included. These sets are obtained as extremal sets of
second Minkowski inequality in R3 (see Theorem 1.2.13) since they
are just 1-tangential bodies, as will be seen in Chapter 3. About
inequality (1.26), it is obtained from the classical isoperimetric in-
equality p(K)2 ≥ 4πA(K) just taking into account that if K is a

2-dimensional convex body in R3, its volume is V(K) = 0, its surface area S(K) = 2A(K) and its
integral mean curvature M(K) = (π/2)p(K) (see [45, Property 3.1]).

For instance, inequality (1.22) corresponds to y ≤ x2. Since the cap-bodies are the extremal
sets for this inequality, they are mapped to the points of the parabola y = x2, from (0, 0) –the
segments– to (1, 1) –the balls. Analogously, all planar convex bodies in 3-space are mapped on the
interval [0, 8/π2] of the x-axis because they have volume V = 0, and by inequality (1.26), we get
the upper bound of 8/π2 –the discs. Hence, if 8/π2 < x ≤ 1 then y must be strictly positive. At
the moment, however, it is not known which inequality the bodies in this range have to satisfy.
The corresponding missing curve is known in the literature as the missing boundary of the Blaschke
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diagram. The problem and its higher dimensional versions remain open. Nowadays, there are two
different conjectures, posed by Bieri and Sangwine-Yager. See [23, Section 28] and [44] for a more
detailed explanation.

6

-

(1, 1)

(0, 0) (1, 0)

(

8

π2 , 0
)

y = x
2

Figure 1.4: The Blaschke diagram.

Regarding the interior of the Blaschke diagram, it can be proved that it is, not only connected,
but also simply connected: denoting by (x0, y0) the coordinates, by Blaschke map, of a convex body
K, an easy computation leads to the coordinates (xλ, yλ) of its outer parallel body at distance λ,
namely

xλ =
x0 + 2c + c2

(1 + c)2
, yλ =

y0 + 3x0c + 3c2 + c3

(1 + c)3

where c = 4πλ/M(K), which gives the equation of an algebraic curve connecting, the given point
(x0, y0) of the diagram, with the point (1, 1) (see [23, p. 73–74]). This curve depends continuously
on the initial point (x0, y0), which shows that the Blaschke diagram is simply connected and the
following fact:

Corollary 1.4.1. The interior of the Blaschke diagram can be “filled” with the images of outer
parallel bodies.

From this moment on we will say that a curve or region is filled with the images, by Blaschke
map, of a certain family of sets, if every point of the region can be obtained as the image of a
member of that family. In the following subsection we give some applications to the Blaschke
problem of the classification of the 3−dimensional convex bodies that we have developed in the
previous section.

1.4.2 The Steiner polynomial and the Blaschke diagram

Notice that all the conditions that we have obtained in Section 1.3 for the roots of the Steiner
polynomial of a convex body K ∈ K3, now relative to the ball B3, are given in this case in terms
of its magnitudes V, S and M; hence they have an interesting translation in the Blaschke diagram.
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Thus, if we rewrite the relations φ−(K; B3) = 0, φ+(K;B3) = 0 by means of the Blaschke map, this
is, using the coordinates x = 4πS(K)/M(K)2 and y = 48π2V(K)/M(K)3, we obtain, respectively,

y = 3x + 2(1− x)3/2 − 2, (1.27)

y = 3x− 2(1− x)3/2 − 2; (1.28)

these equations correspond to the curves represented in Figure 1.5. All convex bodies whose Steiner
polynomial has double real roots of Type 1 and Type 2, will be mapped to the points of those
curves, since, according to Theorem 1.3.2, this kind of sets satisfy the equalities φ−(K; B3) = 0
and φ+(K; B3) = 0, respectively.

(1, 1) ≡ triple root

M

Double root 1

k
Complex roots 1

6

-

>
Double root 2

> Complex roots 2

	
3 simple roots

Figure 1.5: Representation in Blaschke diagram of K3, depending on the roots of their Steiner polynomial.

Furthermore, all convex bodies whose Steiner polynomial has complex roots of Type 1 satisfy
φ−(K; B3) > 0, i.e., y > 3x + 2(1− x)3/2 − 2 in terms of x and y. Thus, these bodies are mapped
to the shaded region of the left-hand side, between the (known) boundary of the diagram y = x2

and the curve (1.27) (double real roots of Type 1). Analogously, all convex bodies whose Steiner
polynomial has complex roots of Type 2 have their image by Blaschke map in the shaded region
of the diagram at the right-hand side of the curve (1.28) (double real roots of Type 2), because
this kind of sets satisfies the strict inequality φ+(K; B3) < 0, and hence, y < 3x− 2(1− x)3/2 − 2
in terms of x and y (see Figure 1.5). Finally, since all convex bodies whose Steiner polynomial has
three different simple real roots satisfy both (strict) inequalities φ−(K; B3) < 0 and φ+(K; B3) > 0,
their image by Blaschke map will satisfy simultaneously both relations y > 3x + 2(1 − x)3/2 − 2
and y > 3x − 2(1 − x)3/2 − 2; therefore, all these sets will be mapped to the central region of the
diagram, bounded by the curves (1.27) and (1.28) (see Figure 1.5).

The above argument allows to draw a “map” of the Blaschke diagram (Figure 1.5), distin-
guishing three disjoint regions in which the convex bodies are mapped depending on the roots of
their Steiner polynomial. And, as a consequence, we obtain the following assertion, which states a
necessary condition for the missing boundary of the Blaschke diagram:
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Corollary 1.4.2 ([27]). If a convex body corresponds to a point on the missing boundary of the
Blaschke diagram, then its Steiner polynomial has complex roots of Type 2.

It is interesting to determine families of convex bodies whose Steiner polynomial has, either
simple real roots, either complex roots of Type 1 and Type 2, or double real roots of both types.
And, in this last case, to find a continuous family of sets which is mapped, by Blaschke map, onto
the corresponding curve, y = 3x + 2(1− x)3/2 − 2 or y = 3x− 2(1− x)3/2 − 2. To obtain this, we
start analyzing carefully the functionals φ+(K; B3) and φ−(K;B3):

Lemma 1.4.3 ([27]). Let K ∈ K3. Then, φ+, φ− are constant on the family of outer parallel
bodies of K; i.e., φ+(Kλ; B3) = φ+(K; B3) and φ−(Kλ; B3) = φ−(K; B3), for all λ ≥ 0.

Proof. In the particular case of a 3-dimensional convex body, relations (1.4) are translated into the
following three equalities:

V(Kλ) = V(K) + S(K)λ + M(K)λ2 +
4
3
πλ3, (1.29)

S(Kλ) = S(K) + 2M(K)λ + 4πλ2, (1.30)

M(Kλ) = M(K) + 4πλ. (1.31)

Then, it is easy to compute that

M(Kλ)2 − 4πS(Kλ) =
(
M(K) + 4πλ

)2 − 4π
(
S(K) + 2M(K)λ + 4πλ2) = M(K)2 − 4πS(K),

M(Kλ)3 − 6π
(
M(Kλ)S(Kλ)− 4πV(Kλ)

)
= M(K)3 − 6π

(
M(K)S(K)− 4πV(K)

)
.

Hence,

φ+(Kλ; B3) = M(Kλ)3 − 6π
(
M(Kλ)S(Kλ)− 4πV(Kλ)

)
+

(
M(Kλ)2 − 4πS(Kλ)

)3/2

= M(K)3 − 6π
(
M(K)S(K)− 4πV(K)

)
+

(
M(K)2 − 4πS(K)

)3/2 = φ+(K; B3),

and also, φ−(Kλ; B3) = φ−(K; B3), as required.

Now, before stating the result that fulfills our aim in this section, we deal with the 2-dimensional
sets, characterizing the planar convex bodies of R3 depending on the algebraic type of roots that
their Steiner polynomial has.

If K is a 2-dimensional convex body in R3, we already know that V(K) = 0, S(K) = 2A(K)
and M = (π/2)p(K). Then fB3(K, λ) = λ

(
2A(K) + (π/2)p(K)λ + 4/3πλ2

)
, with roots

λ1 = 0, λ2 = 3
−p(K) +

√
p(K)2 − 128

3π A(K)

16
, λ3 = 3

−p(K)−
√

p(K)2 − 128
3π A(K)

16
.

Thus, we obtain the following classification for the family of planar convex bodies of R3, depending
on whether the above discriminant is positive, negative or zero:
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Lemma 1.4.4 ([27]). If K is a planar convex body in R3, its Steiner polynomial has:

• three different real roots if and only if p(K)2 > 128/(3π)A(K) and A(K) 6= 0;

• a double real root of Type 1 if and only if A(K) = 0; this is, if and only if K is a line
segment. The double real root is λ1 = λ2 = 0;

• a double real root of Type 2 if and only if p(K)2 = 128/(3π)A(K);

• complex roots of Type 2 if and only if p(K)2 < 128/(3π)A(K).

• The Steiner polynomial of K will never have complex roots of Type 1.

As a consequence of these two lemmas, we can easily prove the following theorem, which de-
termines the existence of families of convex bodies which are mapped, by Blaschke map, to all the
points of the curves (1.27) and (1.28); and a bit further:

Theorem 1.4.5 ([27]). If K ∈ K3 is a convex body whose Steiner polynomial has a certain type of
roots (simple real, double real or complex), then all the outer parallel bodies of K verify that their
Steiner polynomial has the same type of roots. In particular:

i) If K is a planar convex body whose Steiner polynomial has double real roots of Type 2, then
the same occurs for all the outer parallel bodies Kλ, and the family {Kλ : λ ≥ 0} is mapped
to all points of the curve (1.28).

ii) Let σ be a line segment. All sets of the family {σλ : λ ≥ 0} satisfy that their Steiner polynomial
has double real roots of Type 1, and are mapped to all points of the curve (1.27).

Proof. It is an immediate consequence of Lemma 1.4.3: if K is a convex body whose Steiner
polynomial has a certain type of roots, then the functionals φ±(K; B3) will verify a precise condition;
since φ±(Kλ; B3) = φ±(K;B3), all the sets Kλ will satisfy the same condition, and therefore, their
Steiner polynomial will have the same type of roots as the original body K.

In particular, if K ∈ K3 is mapped to the point labelled A in Figure 1.6, i.e., it is a planar
convex body whose Steiner polynomial has double real roots of Type 2, then, φ+(K;B3) = 0 holds.
Applying Lemma 1.4.3, φ+(Kλ; B3) = φ+(K; B3) = 0, and hence, all the sets Kλ are mapped to
all the points of the curve labelled α in Figure 1.6.

In order to conclude the proof, we just have to show the existence of a planar convex body K

whose Steiner polynomial has double real roots of Type 2. Lemma 1.4.4 ensures the existence of the
required set: it suffices to find a set K verifying the relation p(K)2 = 128/(3π)A(K). For instance,
the convex hull of two suitable discs with equal radius r =

(
4
√

2/
√

32− 3π2−1
)
/π ≈ 0.846 . . . and

centers at distance apart 1, satisfies this equality.

The same reasoning is useful for ii). The line segment verifies φ−(σ;B3) = 0, i.e., its Steiner
polynomial has double roots of Type 1. Hence, φ−(σλ;B3) = φ−(σ; B3) = 0.
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(1, 1) ≡ triple root

M

(Double root 1 )

k
(Complex roots 1 )

6

-

>
α (Double root 2 )

> (Complex roots 2 )

ª
(3 simple roots)

A

Figure 1.6: Families of convex bodies for each type of roots.

Corollary 1.4.1 ensured that the interior of the Blaschke diagram can be filled with the images
of outer parallel bodies; using Theorem 1.4.5, we can say even more:

Corollary 1.4.6 ([27]). The outer parallel bodies of the planar convex bodies (whose Steiner
polynomial can have real roots or complex roots of Type 2) fill the part of the diagram which
corresponds to the real roots and a part of the complex roots of Type 2, till the curve corresponding
to the outer parallel bodies of the disc.

The outer parallel bodies of the cap-bodies (complex roots of Type 1) fill the part of the diagram
corresponding to complex roots of Type 1.

The outer parallel bodies of the sets corresponding to the missing boundary (complex roots of
Type 2) fill the part of the diagram corresponding to the complex roots of Type 2, till the curve
of the outer parallel bodies of the disc (see Figure 1.7).

(1, 1) ≡ triple root

M

Double root 1

k
Complex roots 1

6

-

>
Double root 2

> Complex roots 2

	
3 simple roots

1

Outer parallel bodies

of the disc

Figure 1.7: How to fill the Blaschke diagram with the outer parallel bodies.
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About the last assertion, let us notice that, for the limit case when the cap-body is a segment σ,
the image curve of its outer parallel bodies is the one corresponding to the double roots of Type 1

(Theorem 1.4.5); it allows us to assure that statement.

Remark 1.1. The different types of roots of the Steiner polynomial of a convex body, lead to a
precise classification of the family K3 of the 3-dimensional convex bodies into three big (mutually
disjoint) classes:

• Convex bodies whose Steiner polynomial has only real roots (simple, double or triple); we
will denote this class by R; in particular we write R1 for double roots of Type 1 and R2 for
double roots of Type 2.

• Convex bodies whose Steiner polynomial has complex roots of Type 1; we will denote this
class by C1.

• Convex bodies whose Steiner polynomial has complex roots of Type 2; we will denote this
class by C2. ♦

It is also easy to determine the type of roots of the Steiner polynomial of particular convex
bodies or certain families of convex bodies. To obtain this, it suffices to know the point or the
curve in the Blaschke diagram which is the image of that set or family of sets; then, depending on
the region where it lies, so the roots of its Steiner polynomial will be. We show now some examples.

Example 1.1. The five platonic solids with circumradius R = 1, have volume, surface area and
integral mean curvature as shown in Table 1.1.

V S M

Tetrahedron 8
√

3/27 8
√

3/3 2
√

6 arccos(−1/3)

Cube 8
√

3/9 8 2
√

3π

Octahedron 4/3 4
√

3 6
√

2 arccos(1/3)

Dodecahedron 2
√

15
(√

5 + 1
)
/9 2

√
10(5−√5) 5

√
3
(√

5− 1
)
arctan 2

Icosahedron 2
√

2(5 +
√

5)/3 2
√

3
(
5−√5

)
3
√

10(5−√5) arcsin(2/3)

Table 1.1: Volume, surface area and integral mean curvature of the regular polyhedrons with R = 1.

Then it is easy to check that the Steiner polynomial of the tetrahedron, the cube and the
octahedron have three different real roots; the one of the dodecahedron has complex roots of
Type 2; and the one of the icosahedron, complex roots of Type 1. ♦
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Example 1.2. The sets of constant width in R3, i.e., those sets with the same width in any
direction, are mapped to the line y = 3x− 2. It follows from an identity due to Blaschke: if K has
constant width b then M(K) = 2πb and 8π2V(K) = 2πM(K)S(K) −M(K)3/3 (see [10, p. 66]).
Notice that this line will never touch the x-axis. It is easy to check that the line y = 3x − 2
lies strictly in the interior of the central region corresponding to “simple roots”; thus the Steiner
polynomials of all constant width sets have three different real roots; the exception, of course, are
the balls, with just a triple real root. ♦

Example 1.3. The circular cylinders with radius, for instance, 1 and height h ∈ [0,∞) have
volume V = πh, surface area S = 2π(h + 1), and integral mean curvature M = π(π + h); hence,

x =
8(h + 1)
(π + h)2

and y =
48h

(π + h)3
.

(1, 1) ≡ triple root

M

Double root 1

k
Complex roots 1

6

-

> Complex roots 2

	
3 simple roots

- Cylinders

Figure 1.8: Image of the family of cylinders.

If we represent these points in the Blaschke diagram, we obtain the curve shown in Figure 1.8.
Hence, we can assure that all cylinders satisfy that their Steiner polynomial has either three real
roots, or complex roots of Type 2: the Steiner polynomial of just one cylinder (up to congruences)
will have double real roots of Type 2, the one with height h = h0 ≈ 1.71065; if h < h0, complex
roots of Type 2 appear; if h > h0, three simple real roots; and only in the limit case of a segment,
double real roots of Type 1 are obtained. The Steiner polynomial of any cylinder will never have
complex roots of Type 1. ♦
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Chapter 2

Hadwiger’s problem on inner parallel

bodies

Hadwiger’s problem on inner parallel

bodies

If we are working with respect to the unit ball, the inner parallel body of a convex body K

at distance λ (for suitable values of λ) turns out to be the intersection of the closed supporting
half-spaces of K moved in a distance λ; although the definition can be stated in a more general
way. When the set of inner and outer parallel bodies of K are considered together under a single
parameter λ, the so called full system of parallel bodies of K arises.

In this chapter we consider the problem of classifying the convex bodies in the 3-dimensional
space depending on the differentiability of their associated quermassintegrals with respect to the
one-parameter-depending family given by the full system of parallel bodies. It turns out that this
problem is closely related to some behavior of the roots of the 3-dimensional Steiner polynomial.
The original work we collect in this chapter can be found in [46].

2.1 Full system of parallel bodies of K relative to E

Definition 2.1.1. Let K ∈ Kn and E ∈ Kn
0 . For 0 ≤ λ ≤ r(K; E) the inner parallel body (relative

to E) of K at distance λ is the set

K ∼ λE =
{
x ∈ Rn : x + λE ⊆ K

}
.

When λ = r(K; E), K ∼ r(K; E)E is the set of (relative) incenters of K, usually called kernel
of K and denoted by ker(K;E). The dimension of ker(K; E) is strictly less than n (see [8, p. 59]).
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Clearly if λ = 0 the original body K is obtained. Moreover,

r(Kλ; E) = r(K; E)− |λ| . (2.1)

As mentioned above, in order to get a rather more geometrical view of the inner parallel body
definition, when E = Bn it can be seen as the intersection of the closed supporting half-spaces of
K moved in a distance λ (see [41, p. 6]). In the general case, a similar interpretation can be given
but a bit more involved: since we need further definitions for it, we will deal with it in the next
chapter. The inner parallel bodies and their properties were studied mainly by Bol [6], Dinghas
[14] (see also [23] and [24]) and later by Sangwine-Yager [41].

Definition 2.1.2. The full system of parallel bodies of K (relative to E) is defined by

Kλ :=

{
K ∼ (−λ)E for − r(K;E) ≤ λ ≤ 0,

K + λE for 0 ≤ λ < ∞.

Figure 2.1: Inner and outer parallel body of a trapezoid relative to B2.

For the sake of brevity we will not write explicitly the convex body E in the notation for the
parallel bodies, in spite of the fact they depend on the convex body E which is fixed. When a
particular set is used it will be made clear.

The following important property can be found in [49, p. 135]:

Lemma 2.1.3. The full system of parallel bodies is a concave family, i.e., it satisfies

(1− µ)Kλ + µKσ ⊆ K(1−µ)λ+µσ (2.2)

for µ ∈ [0, 1] and λ, σ ∈ [−r(K),∞)
.

By using the monotonicity of the quermassintegrals in (2.2) and then applying Brunn-Minkowski
inequality for quermassintegrals (see Theorem 1.2.12) to the sets Kλ and Kσ, the following theorem
is easily obtained.

Theorem 2.1.4. For all i = 0, . . . , n, the (n − i)-th root of the i-th quermassintegral Wi(Kλ; E)
as a real function on λ is a concave function in

[−r(K; E),∞)
.
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2.2 Hadwiger’s problem on inner parallel bodies

2.2.1 Some preliminary facts

We consider here the particular case of 3-dimensional convex bodies and E = B3. Then the
definition of full system of parallel bodies of a convex body K (relative to B3) allows to define the
functionals V, S and M as functionals depending on the parameter λ for −r(K) ≤ λ < ∞. For
the sake of brevity we will use the notation V(λ) = V(Kλ) and analogously for S and M. Thus
Theorem 2.1.4 leads to the following lemma (see Proposition 1.1.8):

Lemma 2.2.1. For any K ∈ K3, the functionals V(λ), S(λ) and M(λ), for −r(K) ≤ λ < ∞, have
left and right derivatives at each point −r(K) ≤ λ < ∞ and they satisfy:

′V(λ) ≥ V′(λ) ≥ S(λ), (2.3)
′S(λ) ≥ S′(λ) ≥ 2M(λ), (2.4)
′M(λ) ≥ M′(λ) ≥ 4π. (2.5)

Moreover, in the case of the volume much more can be said:

Theorem 2.2.2 (Bol [6]). Let K ∈ K3. Then the volume functional V(λ) is always differentiable,
i.e., ′V(λ) = V′(λ), and V′(λ) = S(λ) for λ ∈ [−r(K),∞)

.

Of course if λ ≥ 0, i.e., if we restrict ourselves to the family of outer parallel bodies, then all the
above functionals are differentiable and we have equalities in all the inequalities. So the interesting
problem is to study the behavior of the functionals on the family of inner parallel bodies (λ ≤ 0).

The above lemma and theorem will be established in a more general setting for the n-dimensional
case in Chapter 3. We refer to this chapter for a more detailed explanation.

Inequalities (2.4) and (2.5) and the differentiability of the volume are the starting point of the
problem we are going to develop in the following section.

2.2.2 Hadwiger’s problem

In 1955, Hadwiger [23, Sections 23, 29] posed the problem of classifying the convex bodies in R3

according to the differentiability of the classical functionals V, S, M, defined, as mentioned above,
as functions of the parameter λ of the full system of parallel bodies of K, i.e., V(λ), S(λ), M(λ). He
classified the convex bodies in three different classes, denoted byRα, Rβ, Rγ , depending on whether
equalities hold, respectively, in (2.3), (2.3) and (2.4), or (2.3), (2.4) and (2.5) (see Table 2.1).

From Theorem 2.2.2, the volume is always differentiable and V′(λ) = S(λ), which is equivalent
to the fact that Rα is the whole family of convex bodies K3. So, the question arose to characterize
the convex bodies belonging to the classes Rβ and Rγ .



30 Hadwiger’s problem on inner parallel bodies

If then K lies in
′V(λ) = S(λ) class Rα≡ K3

′V(λ) = S(λ), ′S(λ) = 2M(λ) class Rβ

′V(λ) = S(λ), ′S(λ) = 2M(λ), ′M(λ) = 4π class Rγ

Table 2.1: Classification of K3 in Hadwiger’s problem.

Hadwiger provided a partial solution in the sense that, what it is proved is not a characterization
of the bodies belonging to each class, but of the triples of values (V,S, M) which can be respectively
the volume, surface area and integral mean curvature of some convex body in each class. More
precisely, he proved the following theorem.

Theorem 2.2.3 (Hadwiger [23]). i) Three positive real numbers V, S and M are the (respective)
magnitudes of some convex body belonging to the class Rγ if and only if they verify the inequalities

V ≤ 1
24π2

[
6πMS−M3 + (M2 − 4πS)3/2

]
(2.6)

V ≥ 1
24π2

[
6πMS−M3 − (12− π2)π

(
M2 − 4πS

π2 − 8

)3/2
]

. (2.7)

ii) Three positive real numbers V, S and M are the (respective) magnitudes of some convex body
belonging to the class Rβ if and only if they verify the inequalities

V ≤ S2

3M

V ≥ 1
24π2

[
6πMS−M3 − (12− π2)π

(
M2 − 4πS

π2 − 8

)3/2
]

.

Notice that the first inequality in ii) is just the Minkowski inequality (1.22), which holds for
all convex bodies. So it is proved that if a convex body K ∈ K3 lies in one of the classes, then
the corresponding inequalities on V, S and M hold for V = V(K), S = S(K) and M = M(K). On
the other hand, given K ∈ K3 such that the corresponding triple

(
V(K), S(K), M(K)

)
satisfies the

inequalities in i) or ii), then there exists another convex body L (in principle L 6= K) with volume
V(L) = V(K), surface area S(L) = S(K) and integral mean curvature M(L) = M(K) lying in the
class Rγ or Rβ, depending on the satisfied inequalities. It does not ensure, however, that the body
K with

(
V(K), S(K), M(K)

)
satisfying the inequalities in i) or ii) lies in the corresponding class.

Remark 2.1. Notice also that this result does not characterize the convex bodies lying in each
class because, as we have already seen in Section 1.4, in general to each triple (V, S,M) correspond
several convex bodies. ♦

In the next section we will study the relation between Hadwiger’s problem and the behavior of
the roots of the Steiner polynomial in dimension three.
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2.3 The roots of the Steiner polynomial in Hadwiger’s problem

This section is devoted to prove some results concerning Hadwiger’s problem provided the
relation between it and the behavior of the roots of the Steiner polynomial fB3(K,λ) in R3 studied
in Chapter 1. The work we present here can be found in [46].

In Chapter 3 the question on the differentiability of the quermassintegrals will be studied
in the most general way, and all the results we will obtain there will have a translation to the
original Hadwiger problem in dimension 3. Our aim in this chapter is just to show some results
which establish a nice connection between Hadwiger’s problem and the Steiner polynomial: we will
provide necessary conditions for a convex body to belong to Rβ in terms of the roots of its Steiner
polynomial. Using them it will be possible to determine convex bodies not lying in Rβ. We will
focus on this class since the class Rγ can be characterized in a precise way (see Theorem 3.3.1 for
the general result as well as for its proof):

Theorem 2.3.1 ([29]). The only convex bodies lying in Rγ are the outer parallel bodies of planar
convex bodies, i.e.,

Rγ =
{
K + λB3 : K planar convex body

}
.

Notice that inequality (2.6) is just the condition φ−(K; B3) ≤ 0 which appeared in the char-
acterization of the real roots of the Steiner polynomial, whereas it is easy to see that the equality
in (2.7) corresponds to the curve in Blaschke diagram where all outer parallel bodies of the circle
are mapped. It leads to think that there exists a connection between Hadwiger’s problem and the
behavior of the roots of the Steiner polynomial.

Thus the first question which arises deals with the type of roots of the Steiner polynomial of a
body Kλ of the full system of parallel bodies of K. From Lema 1.4.3 we know that the roots of the
Steiner polynomial of every outer parallel body of K are of the same type as the ones of K. We
will prove that a similar result holds for inner parallel bodies of a convex body K ∈ Rβ but only
for certain type of roots.

Notice that given a convex body K, the functionals φ−(K; B3) and φ+(K; B3), as depending
on V, S and M, can be defined as functionals on the parameter λ ∈ [−r(K),∞)

of the full system
of parallel bodies of K. We start by showing the following lemma, which will be used in the proofs
of the theorems. For the sake of brevity we write

φ±(λ) := φ±(Kλ; B3).

Lemma 2.3.2 ([46]). Let K ∈ K3. If K ∈ Rβ\Rγ then both φ+(λ) and φ−(λ) are strictly
increasing functions in λ ∈ [−r(K), 0

]
.

Proof. Since the convex body K lies in the class Rβ, we have

V′(λ) = S(λ) and S′(λ) = 2M(λ)
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for −r(K) ≤ λ ≤ 0. Then an easy computation gives

φ′±(λ) = 3
[
M(λ)2M′(λ)− 2π

(
M′(λ)S(λ) + 2M(λ)2 − 4πS(λ)

)

± (
M(λ)2 − 4πS(λ)

)1/2(M(λ)M′(λ)− 4πM(λ)
)]

= 3
[(

M(λ)2 − 2πS(λ)
)(

M′(λ)− 4π
)±M(λ)

(
M(λ)2 − 4πS(λ)

)1/2(M′(λ)− 4π
)]

.

Since it always holds M(K)2 ≥ 4πS(K) for any convex body K ∈ K3 (cf. (1.23)) and since by (2.5)
M′(λ) > 4π for K ∈ Rβ\Rγ , we immediately get φ′+(λ) > 0 for every λ ∈ [−r(K), 0

]
, which proves

that φ+(λ) is strictly increasing.

In the case of φ−(λ) we have

φ′−(λ) = 3
(
M′(λ)− 4π

)[(
M(λ)2 − 2πS(λ)

)−M(λ)
(
M(λ)2 − 4πS(λ)

)1/2
]
.

Since M(λ)2 > 2πS(λ), the second term in the above product is positive if and only if

(
M(λ)2 − 2πS(λ)

)2 ≥ M(λ)2
(
M(λ)2 − 4πS(λ)

)
,

i.e., if and only if 4π2S(λ)2 ≥ 0 which is trivially true. Moreover, φ′−(λ) = 0 if and only if equality
holds in the above inequality, i.e., when the surface area S(λ) = 0 for any λ ∈ [−r(K), 0

]
. Since

we have K 6∈ Rγ , we know that K is not a planar convex body and hence S(λ) > 0, which implies(
M(λ)2 − 2πS(λ)

)2
> M(λ)2

(
M(λ)2 − 4πS(λ)

)
. Using again the inequality M′(λ) > 4π we get

φ′−(λ) > 0 for every λ ∈ [−r(K), 0
]
, which proves that φ−(λ) is strictly increasing.

Using this lemma, we can now state and prove the announced relation between Hadwiger’s
problem and the behavior of the roots of the Steiner polynomial. We split it into two theorems
given the different nature of the statements and proofs (see Remark 1.1 for the used notation).

Theorem 2.3.3 ([46]). Let K ∈ K3 with K ∈ Rβ\Rγ.

i) If K ∈ C2 then Kλ ∈ C2 for every λ ∈ [−r(K), 0
]
.

ii) If K ∈ R then Kλ ∈ R ∪ C1 for every λ ∈ [−r(K), 0
]
.

Proof. By Lemma 2.3.2 we know that φ+ and φ− are strictly increasing functions in λ, with
−r(K) ≤ λ ≤ 0, which gives φ+(λ) ≤ φ+(0) = φ+(K; B3) and φ−(λ) ≤ φ−(0) = φ−(K; B3).

i) If K ∈ C2 then by Theorem 1.3.2 we have φ+(K;B3) < 0, and hence φ+(λ) < 0. It shows
that Kλ ∈ C2 for every λ ∈ [−r(K), 0

]
.

ii) If K ∈ R then again by Theorem 1.3.2 we get φ+(K; B3) ≥ 0 and φ−(K; B3) ≤ 0; hence, in
particular we have φ−(λ) ≤ 0. It shows that Kλ ∈ R ∪ C1 for every λ ∈ [−r(K), 0

]
.
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In the case K ∈ C1 no condition is obtained, since the Steiner polynomial of its inner parallel
bodies can have any type of roots.

We recall that K−r(K) = ker(K; B3) and dimK−r(K) ≤ 2; hence Lemma 1.4.4 ensures that
either K−r(K) ∈ R or K−r(K) ∈ C2.

Theorem 2.3.4 ([46]). Let K ∈ K3 with K ∈ Rβ\Rγ.

i) If dimK−r(K) ≤ 1 then Kλ ∈ C1 for every λ ∈ (−r(K), 0
]
.

ii) If dimK−r(K) = 2 and K−r(K) ∈ R then Kλ 6∈ C2 ∪R2 for every λ ∈ (−r(K), 0
]
.

Proof. We prove first i). By Lemma 2.3.2 we know that φ+ and φ− are strictly increasing functions
in λ > −r(K), which gives φ+(λ) > φ+

(−r(K)
)

and φ−(λ) > φ−
(−r(K)

)
. Since dimK−r(K) ≤ 1,

V
(−r(K)

)
= S

(−r(K)
)

= 0 and hence

φ+(λ) > φ+

(−r(K)
)

= 2M
(−r(K)

)3 = 2M(K−r(K))
3 ≥ 0,

φ−(λ) > φ−
(−r(K)

)
= M

(−r(K)
)3 −M

(−r(K)
)3 = 0.

From φ+(λ) > 0 and by Theorem 1.3.2 we can assure that Kλ ∈ R ∪ C1 for all λ ∈ (−r(K), 0
]
.

Moreover, since the inequality is strict, the Steiner polynomial of Kλ cannot have double real roots
of Type 2. From φ−(λ) > 0 and by Theorem 1.3.2 we know that Kλ ∈ C1 for all λ ∈ (−r(K), 0

]
,

i.e., the Steiner polynomial of all its inner parallel bodies has only complex roots of Type 1. It
shows i).

Analogously we get ii). By the strict monotonicity of the function φ+ (in this case φ− plays
no role) we get φ+(λ) > φ+

(−r(K)
)
. Since dimK−r(K) = 2 and we assume K−r(K) ∈ R, we know

(Theorem 1.3.2) that φ+

(−r(K)
) ≥ 0, which gives φ+(λ) > 0. It shows that Kλ 6∈ C2 ∪ R2 for

every λ ∈ (−r(K), 0
]
.

In the case when dimK−r(K) = 2 and K−r(K) ∈ C2, no condition for all inner parallel bodies is
obtained, since their Steiner polynomial can have any type of roots. We can only assure that the
original body K ∈ C1 ∪ C2; in fact, if we suppose that K ∈ R then, by Theorem 2.3.3, part ii), we
conclude that Kλ ∈ R ∪ C1 for all λ ∈ [−r(K), 0

]
, a contradiction since K−r(K) ∈ C2.

2.3.1 Some examples of exclusion of convex bodies from the class Rβ

We show with a couple of examples how some convex bodies can be excluded from the class Rβ

by using the previous theorems.

Example 2.1. We are going to show, as an application of Theorem 2.3.3, that there are no cylinders
in Rβ. The orthogonal cylinders C(r,h) with circular basis of radius r > 0 and height h ∈ [0,∞)
have volume V

(
C(r,h)

)
= πr2h, surface area S

(
C(r,h)

)
= 2πr(r + h), and integral mean curvature
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M
(
C(r,h)

)
= π(πr + h). As we have seen in Example 1.3, the Steiner polynomial fB3

(
C(r,h), λ

)
can

have either three real roots or complex roots of Type 2, depending on the ratio between r and h.

Moreover, the Steiner polynomial of just one cylinder (up to congruences)

r

h = 2r

Figure 2.2: The archime-

dean cylinder.

will have double real roots of Type 2, the one with h = h0r ≈ 1.71065 r;
if h < h0r, complex roots of Type 2 appear; if h > h0r, three simple
real roots; and only in the limit case of a segment, double real roots of
Type 1 are obtained. For instance, the archimedean cylinder (obtained
when h = 2r, see Figure 2.2) verifies C(r,2r) ∈ R\{R1, R2}.

It is easy to check that for any cylinder C(r,h) with h ∈ (h0r, 2r), its
inner parallel bodies C

(r,h)
λ , λ ∈ [−r

(
C(r,h)

)
= −h/2, 0

]
, have

V
(
C

(r,h)
λ

)
= π(r + λ)2(h + 2λ), S

(
C

(r,h)
λ

)
= 2π(r + λ)(r + h + 3λ),

M
(
C

(r,h)
λ

)
= π

(
πr + h + (π + 2)λ

)
,

and for λ < −(h−h0r)/(2−h0), all the inner parallel bodies C
(r,h)
λ ∈ C2, whereas we already know

that C(r,h) ∈ R. Hence by Theorem 2.3.3 we can assure that C(r,h) 6∈ Rβ. ♦
Example 2.2. Theorem 2.3.4 i) allows to exclude from Rβ those convex bodies not lying in C1

with kernel a single point. For instance, if we consider the family of cones with circular basis of
radius e.g. 1 and height h, it is easy to check that for such a cone Kh,

V(Kh) =
π

3
h, S(Kh) = π

(
1 +

√
1 + h2

)
, M(Kh) = π(π + h− arctanh),

and that they can have either real roots, complex roots of Type 1 or complex roots of Type 2

(see Figure 2.3).

(1, 1) ≡ triple root

M

Double root 1

k
Complex roots 1

6

-

>
Double root 2

> Complex roots 2

	
3 simple roots

-
Cones

Figure 2.3: Image by Blaschke map of the family of cones.

Notice that the kernel of any of these cones is a point. Hence, if Kh is a cone with Kh 6∈ C1

(which is obtained for any h ∈ [0, h ≈ 3.37108]), we can assure that Kh 6∈ Rβ. We remark moreover
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that the inner parallel bodies of any cone are homothetic copies of it (cf. Theorem 3.1.4). Then
the Steiner polynomial of the inner parallel bodies will have the same type of roots as the original
cone Kh, i.e., Kh

λ 6∈ C1 for all λ ∈ [−r(Kh), 0
]

if Kh 6∈ C1.

Another illustrative example is provided by the truncated cones. Notice that their inner parallel
bodies are cones for sufficiently small λ (see Figure 2.4 and also Figure 2.1). Hence by the previous
argument for the family of cones, suitable truncated cones can be also excluded from Rβ. ♦

Figure 2.4: The inner parallel body of a truncated cone.

Remark 2.2. These results show the cases in which the type of roots of the Steiner polynomial
are “preserved by inner parallel bodies”, in the following sense: from Lemma 1.4.3 we know that if
K is a convex body whose Steiner polynomial has a certain type of roots (simple real, double real
or complex), then all the outer parallel bodies of K verify that their Steiner polynomial has the
same type of roots. Theorem 2.3.3 and Theorem 2.3.4 show that in the case of the inner parallel
bodies, this can be assured only in particular situations. ♦
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Chapter 3

On differentiability of quermassintegralsOn differentiability of quermassintegrals

This chapter is devoted to study the problem of classifying the convex bodies in Rn, depending
on the differentiability of their associated quermassintegrals (relative to a convex body E ∈ Kn

0

which is fixed throughout the full chapter) with respect to the one-parameter-depending family
given by the full system of parallel bodies in dimension n.

As mentioned in the previous chapter, this problem was originally posed by Hadwiger in the
3-dimensional space when E = B3. In this chapter we characterize one of the non-trivial classes
and give necessary conditions for a convex body to belong to the analogous classes in dimension n

and with respect to the general convex body E. The original work we collect in this chapter can
be found in [28] and mainly in [29].

3.1 Extreme vectors and related notions

In order to establish most of the results contained in this chapter we need some definitions
and known facts about extreme normal vectors and some other related notions associated to the
boundary of a convex body K ∈ Kn ([49, pp. 74–77]). For a given K ∈ Kn we write N(K,x) to
denote the normal cone of K at x ∈ bd K, i.e., the set of all outer normal vectors of K at x (with
the zero vector). Moreover, for u ∈ Sn−1 let x ∈ K ∩ H(K,u) be a boundary point such that u

is an outer normal vector of K at x. Then there exists a unique face of the normal cone N(K,x)
that contains u in its relative interior (see [49, Theorem 2.1.2]). Since this face does not depend
upon the choice of the point x ∈ K ∩ H(K, u) (the normal cone in all the points of the support
set K ∩H(K, u) is the same) the notation T (K, u) will be adopted for it (without reference to the
point x). Usually T (K, u) is called the touching cone of K at u.
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Definition 3.1.1. A vector u ∈ Sn−1 is an r-extreme normal vector of K ∈ Kn if we cannot write
u = u1 + · · · + ur+2, with ui, i = 1, . . . , r + 2, linearly independent normal vectors at one and the
same boundary point of K. We will say that the supporting hyperplane H(K,u) is an r-extreme

(supporting) hyperplane if u is an r-extreme normal vector of K.

Usually 0-extreme normal vectors are called just extreme normal vectors. The set of r-extreme
normal vectors of K will be denoted by Ur(K). It follows immediately from the definition that each
r-extreme normal vector is also an s-extreme one for r < s ≤ n− 1 and so, for every K ∈ Kn,

U0(K) ⊆ U1(K) ⊆ · · · ⊆ Un−1(K).

Remark 3.1. Notice that for K ∈ Kn, if x ∈ bd K is a regular point (i.e., if the supporting
hyperplane to K at x is unique), then dimN(K, x) = 1 and hence the (only) outer unit normal
vector u ∈ N(K,x) is a 0-extreme normal vector of K. ♦

The following characterization of 0-extreme normal vectors in terms of the support function of
K will be needed later on. It can be found in [41, Lemma 2.3].

Lemma 3.1.2. Let K ∈ Kn and u ∈ Sn−1 be an outer normal vector to K. Then u ∈ U0(K) if
and only if for any distinct

u1, u2 ∈ Sn−1 and α > 0, β > 0 such that u = αu1 + βu2, (3.1)

it holds that
h(K, u) < αh(K, u1) + βh(K, u2).

3.1.1 Tangential bodies and form bodies

Extreme normal vectors turn out to be rather useful to approach some properties that we will
study for the full system of parallel bodies of K ∈ Kn. Moreover, extreme (supporting) hyperplanes
lead to pairs of convex bodies that have some, but not all supporting hyperplanes in common. Next
we define two of these pairs of bodies, which will play a central role in this chapter.

Definition 3.1.3. A convex body K ∈ Kn containing the convex body E ∈ Kn
0 is called a p-tangential

body of E, p ∈ {0, . . . , n−1}, if each (n−p−1)-extreme supporting hyperplane of K is a supporting
hyperplane of E for p ∈ {0, . . . , n− 1}.

From the above definition it follows that a 0-tangential body of E is the body E itself, and each
p-tangential body of E is also a q-tangential body for p < q ≤ n−1. There are intuitive reasons (see
[49, p. 76]) for which 1-tangential bodies are usually called cap-bodies, and it can be easily proved
the equivalence with the definition given in page 18 (see Figure 1.3). An (n − 1)-tangential body
will be briefly called tangential body. For further characterizations and properties of p-tangential
bodies we refer to [49, Section 2.2]. The following nice theorem (see [49, pp. 136–137]) shows the
close relation existing between inner parallel bodies and tangential bodies.
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Theorem 3.1.4 (Schneider [49]). Let K ∈ Kn
0 and −r(K; E) < λ < 0. Then Kλ is homothetic

to K if, and only if, K is homothetic to a tangential body of E.

Remark 3.2. More precisely, from the proof of Theorem 3.1.4 it is obtained that Kλ = ρK for a
certain ρ ∈ (0, 1) if and only if K is homothetic to a tangential body of E with homothecy factor
given by |λ| /(1− ρ) = r(K; E). ♦

We will also use the following result, which gives a characterization of n-dimensional p-tangential
bodies in terms of quermassintegrals. It was proved by Favard in [16] (see also [49, p. 367]).

Theorem 3.1.5 (Favard [16]). Let K ∈ Kn
0 with E ⊆ K, and let p ∈ {0, . . . , n − 1}. Then

Wn−p−1(K;E) = Wn−p(K; E) if and only if K is a p-tangential body of E; in this case,

V(K) = W1(K; E) = · · · = Wn−p(K;E).

Remark 3.3. Notice that in the above theorem r(K;E) = 1; if it is not the case, we have that
Wn−p−1(K;E) = r(K; E)Wn−p(K; E) if and only if K is homothetical to a p-tangential body of E

and in this case, V(K) = r(K;E)W1(K; E) = · · · = r(K;E)Wn−p(K; E). ♦

Definition 3.1.6. Let K ∈ Kn
0 . The (relative) form body of K with respect to E, denoted by K∗,

is defined to be the intersection of the supporting half-spaces to E with outer normals vectors in
U0(K), i.e.,

K∗ =
⋂

u∈U0(K)

H−(E, u) =
⋂

u∈U0(K)

{
x : 〈x, u〉 ≤ h(E, u)

}
. (3.2)

For the sake of brevity, the relative form body of K with respect to E will be called just form
body of K, and will be denoted by K∗, without any reference to the convex body E. When E is a
particular convex body or some property of E holds, it will be pointed out.

The form body of K with respect to E is the body constructed by considering the 0-extreme sup-
porting halfspaces, i.e., halfspaces corresponding to 0-extreme hyperplanes, of K and intersecting
them as supporting halfspaces of E (see Figure 3.1).

?

-�

I �

6

-

K

u ∈ U0(K)

K
∗

Figure 3.1: The form body of a half-circle with respect to the circle.
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Remark 3.4. Just from the definition it follows that any form body is a p-tangential body for
some p ∈ {0, . . . , n−1}. Moreover, it can be proved (see [49, p. 321, Theorem 2.2.8]) that a convex
body K ∈ Kn

0 is homothetic to its form body K∗ if and only if K is homothetic to a tangential
body of E. ♦

Remark 3.5. When K is regular, i.e., if every x ∈ bdK is a regular point, Remark 3.1 ensures
that the outer unit normal vector at every x ∈ bd K is a 0-extreme normal vector. Thus, the form
body of a regular convex body (with respect to E) is E itself (see Figure 3.2).

6M �

�
?

U

-

Figure 3.2: The form body of an ellipse with respect to the circle.

In the case of a polytope P (with interior points), the 0-extreme normal vectors of P are the
outer normal vectors to its facets (i.e., (n − 1)-dimensional faces). Hence, the form body of a
polytope is always a polytope. In particular, the form body of P with respect to a regular convex
body E ∈ Kn

0 is another polytope circumscribed about E (i.e., all the facets touch E) whose facets
are parallel to the ones of P (see Figure 3.3). ♦

-
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Figure 3.3: The form body of an orthogonal box with respect to the ball.

Remark 3.6. i) In the planar case, all form bodies are cap-bodies.

ii) For n ≥ 3, any polytope circumscribed about the unit ball Bn is a form body of some convex
body K which is not a cap-body.

iii) When U0(E) ⊆ U0(K), then K∗ = E. For example, in the plane, the form body of a ball
with respect to a square is the square itself. ♦
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3.1.2 0-extreme vectors of inner parallel bodies and the form body

Since we are interested in the behavior of the quermassintegrals with respect to the full system
of parallel bodies of K ∈ Kn, it is natural to look first at the relations among the 0-extreme normal
vectors of the inner and outer parallel bodies (and consequently at their form bodies). If we deal
with outer parallel bodies, the mentioned relation will be trivial in the case we will work on: when
E is regular; indeed, since for the Minkowski sum of two convex bodies K, L ∈ Kn it holds that

U0(K) ∪ U0(L) ⊆ U0(K + L), (3.3)

(this property was proved in [41, Lemma 2.4]), when E is regular then Remark 3.5 ensures that
Sn−1 = U0(K) ∪ U0(E) ⊆ U0(K + λE) = Sn−1.

The following results state a relation between the 0-extreme normal vectors of K ∈ Kn and the
ones of its inner parallel bodies. They can be found in [41, Lemma 4.4 and Lemma 4.5].

Lemma 3.1.7. Let K ∈ Kn, −r(K; E) < λ ≤ 0 and u ∈ U0(Kλ). Then

h(Kλ, u) = h(K, u)− |λ|h(E, u) = h(K, u) + λh(E, u). (3.4)

Lemma 3.1.8. Let K ∈ Kn and −r(K; E) < λ ≤ 0. Then

U0(Kλ) ⊆ U0(K). (3.5)

A first question arising from the above lemma is for which convex bodies the equality holds in
(3.5). With regard to it, we prove the following results.

Lemma 3.1.9 ([28]). Let K ∈ Kn and E ∈ Kn
0 be regular. We write r = r(K; E). If K is a

tangential body of the outer parallel body (K−r)r = K−r + rE, then for any −r < λ ≤ 0,

U0(K) = U0(Kλ). (3.6)

Proof. First we show that for every u ∈ U0(K), h(Kλ, u) = h
(
(K−r)r+λ, u

)
. Notice, on one hand,

that since K is a tangential body of (K−r)r then h(K, u) = h
(
(K−r)r, u

)
for any u ∈ U0(K) and thus

h(Kλ, u) ≤ h(K, u)− |λ|h(E, u) = h(K−r + rE, u)− |λ|h(E, u) = h(K−r, u) + (r + λ)h(E, u).

On the other hand, it is clear from the definition of inner parallel body that since

(K−r)r+λ + |λ|E = K−r +
(
r− |λ|)E + |λ|E = K−r + rE = (K−r)r ⊆ K,

then (K−r)r+λ ⊆ Kλ and hence we have h(Kλ, u) ≥ h(K−r, u) + (r + λ)h(E, u). Thus we obtain
the equality h(Kλ, u) = h

(
(K−r)r+λ, u

)
for any u ∈ U0(K), as required.

Now, in order to prove that U0(Kλ) = U0(K) for every −r < λ ≤ 0, let u ∈ U0(K). Since it
holds that h(Kλ, u) = h

(
(K−r)r+λ, u

)
, the supporting hyperplanes H(Kλ, u) and H

(
(K−r)r+λ, u

)
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coincide. Moreover, we know that (K−r)r+λ ⊆ Kλ. So, at any common point x in the (non-empty)
intersection of the support sets Kλ ∩H(Kλ, u) and (K−r)r+λ ∩H

(
(K−r)r+λ, u

)
, the corresponding

normal cones verify that N(Kλ, x) ⊆ N
(
(K−r)r+λ, x

)
. On the other hand, since clearly (K−r)r+λ

is regular then dimN
(
(K−r)r+λ, x

)
= 1 (see Remark 3.1); hence dimN(Kλ, x) = 1 which proves

that u ∈ U0(Kλ) (see Remark 3.5). Thus U0(K) ⊆ U0(Kλ) and with (3.5) we get the result.

Lemma 3.1.10 ([28]). Let K ∈ Kn be a regular convex body and write r = r(K; E). Then
U0(K) = U0(Kλ) for any −r < λ ≤ 0 if and only if K = K−r + rE.

Proof. If K = K−r+rE then Lemma 3.1.9 gives the result. So, we assume that U0(Kλ) = U0(K) for
all λ ∈ (−r, 0]. Since K in regular, U0(Kλ) = U0(K) = Sn−1 and hence, for all u ∈ Sn−1 = U0(Kλ)
Lemma 3.1.7 ensures that h(Kλ, u) = h(K, u) + λh(E, u). Therefore (see (1.2))

Wn−1(Kλ; E) =
1
n

∫

Sn−1

h(Kλ, u) dSn−1(E; u)

=
1
n

∫

Sn−1

h(K,u) dSn−1(E; u) +
1
n

∫

Sn−1

λh(E, u) dSn−1(E; u)

= Wn−1(K;E) + λWn−1(E;E) = Wn−1(K; E)− |λ|Wn−1(E; E).

Thus we get Wn−1(K; E) = Wn−1(Kλ; E) + |λ|Wn−1(E;E) = Wn−1

(
Kλ + |λ|E)

(linearity of
mixed volumes; see Proposition 1.2.5 part v)), and since it always holds Kλ + |λ|E ⊆ K, we can
conclude that K = Kλ + |λ|E. Notice that we have proved K = Kλ + |λ|E for all λ ∈ (−r, 0],
which implies that K = K−r + rE, as required.

From (3.5) it follows that clU0(Kλ) ⊆ clU0(K) for −r(K; E) < λ ≤ 0, and in general we get

clU0(Kλ) ⊆ clU0(Kρ) (3.7)

for −r(K; E) < λ < ρ ≤ 0.

In the introduction of Chapter 2 it is given a geometrical definition of the inner parallel body
of a convex body K ∈ Kn at distance λ > 0, with respect to the unit ball Bn, namely, that it is
the intersection of the closed supporting half-spaces of K moved in a distance λ. This notion can
be stated in a more general way; in fact, it follows from (3.4) and (3.5) that for a convex body K

with inradius r(K; E), the (relative) inner parallel bodies of K, for −r(K;E) < λ ≤ 0, are given by

Kλ =
⋂

u∈U0(K)

{
x : 〈x, u〉 ≤ h(K, u) + λh(E, u)

}
. (3.8)

Remark 3.7. From the above relation and (3.5) it can be easily seen that the inner parallel body
of a polytope is always a polytope. ♦

Lemma 3.1.8 allows to show the following useful property regarding 0-extreme vectors and the
Minkowski sum, namely, that the set of 0-extreme vectors of the Minkowski sum of two convex
bodies does not depend on the size of the summands involved in it.
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Lemma 3.1.11 ([28]). Let K,L ∈ Kn and λ > 0. Then

U0(K + L) = U0(K + λL).

Proof. First we assume that 0 < λ ≤ 1. Then, K + L = K + λL + (1 − λ)L, i.e., K + λL is the
inner parallel body of K + L with respect to L at distance 1− λ. So, by Lemma 3.1.8 we get

U0(K + λL) ⊆ U0(K + L).

On the other hand, it is clear that U0(λK) = U0(K) and hence U0(λK + λL) = U0(K + L). Since
K + λL = λK + λL + (1 − λ)K, we get that λK + λL is the inner parallel body of K + L with
respect to K at distance 1− λ and thus, using again Lemma 3.1.8, it follows that

U0(K + L) = U0(λK + λL) ⊆ U0(K + λL).

Together with the previous inclusion we get the result, i.e., U0(K + L) = U0(K + λL).

Finally, if λ ≥ 1 (and hence 1/λ ≤ 1) it is enough to consider (1/λ)(K + λL) = (1/λ)K + L.
Since U0(K + λL) = U0

(
(1/λ)(K + λL)

)
= U0

(
(1/λ)K + L

)
we have just to apply the previous

case, interchanging the roles of K and L, to obtain the result.

In the following lemma we prove a relation between the 0-extreme normal vectors of a convex
body K and the ones of its form body K∗ with respect to E. In [41, Lemma 4.6] it is shown that

U0(K∗) ⊆ clU0(K). (3.9)

Here we prove that equality holds under certain restrictions.

Lemma 3.1.12 ([29]). Let E ∈ Kn
0 be regular. Then for any K ∈ Kn

0 it holds

U0(K∗) = clU0(K). (3.10)

Proof. First we prove that U0(K) ⊆ U0(K∗). By using the characterization of 0-extreme normal
vectors stated in Lemma 3.1.2, let u ∈ U0(K) and let u1, u2 ∈ Sn−1 and α, β > 0 as in (3.1). Since
u ∈ U0(K), by the definition of form body (with respect to E) it holds h(E, u) = h(K∗, u). On the
other hand, since E is regular, U0(E) = Sn−1, and then u is also a 0-extreme normal vector of E.
Hence

h(K∗, u) = h(E, u) < αh(E, u1) + βh(E, u2) ≤ αh(K∗, u1) + βh(K∗, u2),

where the last inequality follows from E ⊂ K∗. Using again Lemma 3.1.2 we get u ∈ U0(K∗).

Now we prove (3.10). By (3.9) we just have to see the inclusion U0(K∗) ⊇ clU0(K). Thus, let
u ∈ clU0(K) and suppose that u 6∈ U0(K∗).

We take a sequence (uk)k∈N ⊂ U0(K) with uk → u for k → ∞. Since we already know that
U0(K) ⊂ U0(K∗) then uk ∈ U0(K∗) for all k ∈ N and hence, by definition of form body, we get
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h(E, uk) = h(K∗, uk) for all k ∈ N. Therefore h(E, u) = h(K∗, u) by the continuity of the support
function. It ensures that there exists x ∈ bd K∗ ∩ bd E such that u ∈ N(K∗, x) ∩N(E, x).

Since we suppose that u 6∈ U0(K∗) then by definition of 0-extreme normal vector, u can be
written as u = u1 + u2 with u1, u2 6= u linearly independent normal vectors at the same boundary
point x ∈ bd K∗, which implies that dimN(K∗, x) ≥ 2. Notice however that dimN(E, x) = 1
since u ∈ U0(E) (by the regularity of E, U0(E) = Sn−1 and then u ∈ U0(E)). On the other hand
it is clear that dimN(E, x) ≥ dimN(K∗, x) because E ⊂ K∗. Hence we get dimN(E, x) ≥ 2, a
contradiction. It shows that u ∈ U0(K∗).

Remark 3.8. Notice that there are examples for which U0(K∗) ⊂ clU0(K) strictly if E is not a
regular convex body. In fact, taking E as the unit square in the plane and K = B2 then (B2)∗ = E

(see Remark 3.6), and we get U0(B2) = S1 whereas U0

(
(B2)∗

)
= U0(E) =

{±(1, 0),±(0, 1)
}
. ♦

Remark 3.9. Using an analogous argument as in the proof of Lemma 3.1.12 it is shown that any
u ∈ Sn−1 such that h(K∗, u) = h(E, u) is a 0-extreme normal vector of K∗, for E regular. ♦

3.1.3 Some relations involving inner parallel bodies and the form body

Besides the relations between the 0-extreme normal vectors of K, K∗ and the inner parallel
bodies of K, in order to prove the main results in this chapter, we will need some relations between
(some of) these bodies themselves. In [41, Lemma 4.7] it is proved that, for K ∈ Kn

0 and for every
−r(K;E) ≤ λ ≤ 0, the following holds:

Kλ ⊇ r(Kλ; E)
r(K; E)

K, (3.11)

with equality if and only if K and K∗ are homothetic; notice that in the limit case λ = −r(K; E)
the set 0 ·K is defined just as a point contained in ker(K; E). The following result provides a key
relation between a convex body K, its inner parallel bodies and its form body (see [41, Lema 4.8]).

Lemma 3.1.13. Let K ∈ Kn
0 . For every −r(K; E) ≤ λ ≤ 0 it holds

Kλ + |λ|K∗ ⊆ K. (3.12)

In [28] we characterize the convex bodies verifying the equality in (3.12). Before stating and
proving this result, we make the following observation, which will be needed later.

Since quermassintegrals are particular cases of mixed volumes, as noticed in Section 1.2, and
provided (1.2), the following integral expression for the quermassintegrals of K ∈ Kn holds:

Wi(K; E) =
1
n

∫

Sn−1

h(K, u) dS
(
K[n− i− 1], E[i];u

)
. (3.13)
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Then, it is natural to think that the differentiability of quermassintegrals is related, in a certain way,
with the differentiability of the support function of K ∈ Kn, both with respect to the parameter
defining the full system of parallel bodies of K. The following result can be found in [41, Lemma 4.9],
and provide a first approach to this relation. We will write K∗

λ = (Kλ)∗ to denote the form body
of the inner parallel body of K at distance |λ|.
Lemma 3.1.14. Let K ∈ Kn. For every u ∈ Sn−1, the derivative of h(λ, u) := h(Kλ, u) with
respect to λ exists almost everywhere for −r(K; E) < λ < ∞ and

d

dλ
h(λ, u) ≥ h(K∗

λ, u).

Equality holds if, for every −r(K;E) < λ < ∞,

clU0(Kλ) = U0(Kλ + K∗
λ). (3.14)

Since E ⊆ K∗
λ, it is clear (see Proposition 1.1.10) that

d

dλ
h(λ, u) ≥ h(E, u).

Moreover (see [41, p. 81]), equality holds for all u ∈ Sn−1 if and only if K = K−r(K;E) + r(K; E)E.

Remark 3.10. Notice that since U0(Kλ) ⊆ U0(K) (see Lemma 3.1.8) then it always holds K∗
λ ⊇ K∗

for any −r(K; E) < λ ≤ 0. ♦

Now we prove the announced characterization of the equality case in (3.12).

Theorem 3.1.15 ([28]). Let K ∈ Kn
0 and let E ∈ Kn

0 be regular. We write r = r(K; E). Then
K = Kλ + |λ|K∗ for every −r ≤ λ ≤ 0 if and only if K is a tangential body of K−r + rE verifying
that for all −r ≤ λ ≤ 0,

U0(K) = U0(Kλ + K∗). (3.15)

Proof. We start by assuming that K = Kλ + |λ|K∗ for every −r ≤ λ ≤ 0, in particular, that
K = K−r+rK∗, and we prove that K is a tangential body of K−r+rE. In order to do that, we first
show that K−r+(r+λ)K∗ is the inner parallel body of K at distance |λ|, i.e., Kλ = K−r+(r+λ)K∗,
for any −r ≤ λ ≤ 0.

From (3.12) and using Remark 3.10 we get that, for any convex body K and for −r < λ ≤ 0,

Kλ ⊇ (Kλ)−r(Kλ;E) + r(Kλ; E)K∗
λ = K−r + (r + λ)K∗

λ ⊇ K−r + (r + λ)K∗.

Since when λ = −r we get trivially an identity, we obtain the inclusion Kλ ⊇ K−r + (r + λ)K∗ for
the full interval [−r, 0]. So it remains to be proved the reverse inclusion in the particular case when
K = K−r + rK∗. Notice that

Kλ = (K−r + rK∗)λ =
⋂

u∈U0(K)

{
x : 〈x, u〉 ≤ h(K−r + rK∗, u)− |λ|h(E, u)

}
(3.16)
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(cf. (3.8)). On the other hand, by Lemma 3.1.11, U0(K) = U0(K−r + rK∗) = U0

(
K−r + (r + λ)K∗)

for −r < λ ≤ 0. Hence we can write

K−r + (r + λ)K∗ =
⋂

u∈U0

(
K−r+(r+λ)K∗

)
{

x : 〈x, u〉 ≤ h
(
K−r + (r + λ)K∗, u

)}

=
⋂

u∈U0(K)

{
x : 〈x, u〉 ≤ h

(
K−r + (r + λ)K∗, u

)} (3.17)

Thus if x ∈ Kλ, −r < λ ≤ 0, it lies in the intersection given in (3.16), and in order to show that
x ∈ K−r + (r + λ)K∗ we have to prove that it lies also in (3.17). So for any u ∈ U0(K) it follows

〈x, u〉 ≤ h(K−r + rK∗, u)− |λ|h(E, u) = h(K−r, u) + rh(K∗, u)− |λ|h(K∗, u)

= h(K−r, u) + (r + λ)h(K∗, u) = h
(
K−r + (r + λ)K∗, u

)
,

i.e., x ∈ K−r + (r + λ)K∗, which shows that Kλ ⊆ K−r + (r + λ)K∗ for −r < λ ≤ 0. The case
λ = −r holds trivially.

Thus we have shown that

Kλ = (K−r + rK∗)λ = K−r + (r + λ)K∗ (3.18)

in the full range −r ≤ λ ≤ 0 and on account of Lemma 3.1.11, it follows that

U0(Kλ) = U0

(
K−r + (r + λ)K∗) = U0(K−r + rK∗) = U0(K).

We assume now that K is not a tangential body of (K−r)r = K−r + rE. Then by the definition of
tangential body (see Definition 3.1.3) there exists u0 ∈ U0(K) such that

H
(
(K−r)r, u0

) ∩H(K,u0) = ∅;

in particular, we have that the distance, say µ, between the above two hyperplanes is strictly
positive. On the other hand, since u0 ∈ U0(K) = U0(Kλ) then h(Kλ, u0) = h(K, u0)− |λ|h(E, u0)
for every −r ≤ λ ≤ 0 (see Lemma 3.1.7), and hence the distance between the parallel hyperplanes
H(K,u0) and H(Kλ, u0) is |λ|h(E, u0). Moreover, the distance between the (parallel) hyperplanes
H

(
(K−r)r+λ, u0

)
and H

(
(K−r)r, u0

)
is also |λ|h(E, u0) since the body (K−r)r = K−r + rE is just

the outer parallel body of (K−r)r+λ = K−r + (r + λ)E = K−r +
(
r − |λ|)E at distance |λ|, for

every λ. Thus, the distance between H(Kλ, u0) and H
(
(K−r)r+λ, u0

)
is µ > 0, for every λ. But

this leads to a contradiction, since when |λ| → r, the distance between the hyperplanes H(Kλ, u0)
and H

(
(K−r)r+λ, u0

)
goes to zero.

Thus we already know that K is a tangential body of (K−r)r, and it remains to be proved that
K verifies condition (3.15). But it is a direct consequence of Lemma 3.1.11: for all −r ≤ λ ≤ 0,

U0(K) = U0

(
Kλ + |λ|K∗) = U0(Kλ + K∗).
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Reciprocally, now we assume that K is a tangential body of (K−r)r = K−r + rE verifying
(3.15) for all −r ≤ λ ≤ 0. Since K is a tangential body of (K−r)r, Lemma 3.1.9 ensures that
U0(Kλ) = U0(K) for every −r < λ ≤ 0 and hence K∗ = K∗

λ for −r < λ ≤ 0. We work first in the
semi-opened interval (−r, 0]. Notice that, since E is regular, we can apply Lemma 3.1.12 to get

U0(K) = U0(Kλ + K∗) ⊇ U0(Kλ) ∪ U0(K∗) = U0(K) ∪ clU0(K) = clU0(K) ⊇ U0(K).

Therefore, in particular, U0(K) is closed and clU0(K) = U0(Kλ + K∗). Thus, the above properties
allow to conclude that

clU0(Kλ) = clU0(K) = U0(Kλ + K∗) = U0(Kλ + K∗
λ),

i.e., we get condition (3.14) in Lemma 3.1.14. Then it follows that for all λ ∈ (−r, 0] and u ∈ Sn−1,

d

dλ
h(λ, u) = h(K∗

λ, u) ≡ h(K∗, u).

Now we fix u ∈ Sn−1 and define the function

f(λ) = h(K, u)− h(λ, u) + λh(K∗, u),

which is absolutely continuous (since h(λ, u) is concave in λ, see [21, Theorem 1.1]), almost every-
where differentiable by Lemma 3.1.14 and clearly verifies that f ′(λ) = 0. Thus f is a constant
function and since f(0) = 0 we obtain f ≡ 0, i.e.,

h(K, u) = h(λ, u)− λh(K∗, u) = h(Kλ, u) + |λ|h(K∗, u) = h
(
Kλ + |λ|K∗, u

)
,

for all u ∈ Sn−1. Theorem 1.1.11 allows to conclude that K = Kλ + |λ|K∗ for every λ ∈ (−r, 0]. It
remains to be proved the result for λ = −r. Condition (3.15) for λ = −r can be written as

U0(K) = U0(K−r + K∗) = U0(K−r + rK∗),

where the last equality comes again from Lemma 3.1.11. The above identity together with the fact
that K = Kλ + |λ|K∗ for every λ ∈ (−r, 0] allow to express the sets K and K−r + rK∗ in the
following way:

K =
⋂

u∈U0(K)

{
x : 〈x, u〉 ≤ h

(
Kλ, u) + |λ|h(K∗, u)

}
, for any λ ∈ (−r, 0],

K−r + rK∗ =
⋂

u∈U0(K−r+rK∗)

{
x : 〈x, u〉 ≤ h

(
K−r, u) + rh(K∗, u)

}

=
⋂

u∈U0(K)

{
x : 〈x, u〉 ≤ h

(
K−r, u) + rh(K∗, u)

}
.

By Lemma 3.1.13 we have K ⊇ K−r + rK∗. In order to show the reverse inclusion, let x ∈ K.
Then 〈x, u〉 ≤ h

(
Kλ, u) + |λ|h(K∗, u) for all u ∈ U0(K) and all λ ∈ (−r, 0]. Taking limits when λ

tends to −r, and taking into account that the support function is continuous with respect to the
Hausdorff metric, we get that 〈x, u〉 ≤ h

(
K−r, u)+ rh(K∗, u) for all u ∈ U0(K), i.e., x ∈ K−r +rK∗

due to the above description of this set. It concludes the proof.
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Remark 3.11. It is enough to assume K = K−r + rK∗ in the statement of Theorem 3.1.15, since
it is equivalent to the condition K = Kλ + |λ|K∗ for all λ ∈ [−r, 0]: clearly one direction is trivial;
for the converse just notice that if K = K−r + rK∗ then Kλ = K−r + (r + λ)K∗ (see (3.18)), and
hence, for all λ ∈ [−r, 0],

Kλ + |λ|K∗ = K−r +
(
r− |λ|)K∗ + |λ|K∗ = K−r + rK∗ = K.

We have settled the theorem in this way in order to establish the precise characterization of the
equality case in (3.12). ♦

Remark 3.12. Condition (3.15) can not be omitted: if we write σ to denote a line segment of
length ` ≥ 2 in R3 and we take a point x lying outside the solid cylinder with circular cross section of
radius 1 and axis the line aff σ, the convex body K obtained as the convex hull K = conv{σ+B3, x}
(see Figure 3.4) verifies:

• kerK = σ and r(K; B3) = 1;

• K is a 1-tangential body of σ + B3 = K−1 + B3;

• K∗ is just the convex hull of B3 and a suitable point;

• condition (3.15) does not hold for λ = −1 (the inradius);

hence K 6= K−1 + K∗. ♦

Figure 3.4: A tangential body of K−r + rB3 not verifying (3.15).

Remark 3.13. Notice that for E regular, if K = Kλ + |λ|K∗ for every −r(K;E) < λ ≤ 0 then

d

dλ
h(λ, u) = h(K∗

λ, u) = h(K∗, u)

for all u ∈ Sn−1. ♦

3.1.4 A glance at some conjectures on Aleksandrov-Fenchel equality

Despite the increasing interest in Aleksandrov-Fenchel inequality (see Theorem 1.2.10), as well
as the several new approaches to it, the problem of the complete characterization of the equality
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case remains still open. For a deeper study of this problem we refer to [47, 48, 49, 50]. It turns out
that the study of the differentiability of the quermassintegrals of K ∈ Kn has a connection with this
problem. To be more precise, the notion of r-extreme normal vector admits a generalization, which
we will introduce next, and it turns out to be related with both, the equality case in Aleksandrov-
Fenchel inequality and the problem of the differentiability of the quermassintegrals. In order to
introduce this more general concept, we will need the notion of touching cone, which was already
explained at the beginning of this chapter (see page 37).

Definition 3.1.16. For K1, . . . , Kn−1 ∈ Kn, a vector u ∈ Sn−1 is a (K1, . . . , Kn−1)-extreme normal

vector if there exist (n−1)-dimensional linear subspaces H1, . . . , Hn−1 ⊂ Rn such that T (Ki, u) ⊂ Hi

for i = 1, . . . , n− 1 and dim(H1 ∩ · · · ∩Hn−1) = 1.

In particular, for K ∈ Kn and E ∈ Kn
0 regular, u ∈ Sn−1 is an r-extreme normal vector of K

if and only if u is
(
K[n − 1 − r], E[r]

)
-extreme. For K1, . . . , Kn−1 ∈ Kn, the closure of the set of

(K1, . . . , Kn−1)-extreme unit normal vectors plays a role in the classification of the equality case in
Aleksandrov-Fenchel inequality (1.7). We deal with it in the following. Let K2, . . . , Kn−1 ∈ Kn−1

be a fixed (n− 2)-tuple of convex bodies and let K, L ∈ Kn. In [47, Lemma 2.5] it is proved that if

V(K, K, K2, . . . , Kn−1) > 0, and V(L,L,K2, . . . , Kn−1) > 0

then equality holds in Aleksandrov-Fenchel inequality (1.7) if and only if the mixed surface area
measures S(K,K2, . . . , Kn−1; ·) and S(L,K2, . . . ,Kn−1; ·) are proportional. So it is natural to won-
der what the equality

S(K, K2, . . . ,Kn−1; ·) = S(L,K2, . . . , Kn−1; ·)
means for the convex bodies K and L. It is known (see [47, Lemma 3.4]) that if L is regular and
strictly convex then, for every K ∈ Kn,

supp S(K,K2, . . . , Kn−1; ·) ⊆ supp S(L,K2, . . . , Kn−1; ·).

Here suppµ denotes the support of a Borel measure µ, i.e., the complement of the largest open set
on which the measure vanishes. This shows, in particular, the following lemma, which can be found
in [47, pp.134-135].

Lemma 3.1.17. Let K, L ∈ Kn and E ∈ Kn
0 be regular and strictly convex. If h(K,u) = h(L, u)

for every u ∈ supp S(E, K2, . . . , Kn−1; ·), then S(K,K2, . . . , Kn−1; ·) = S(L,K2, . . . , Kn−1; ·).

The reciprocal of this statement is still an open problem, see [47, Conjecture 3.2]. On the other
hand, the following conjecture (see [47, Conjecture 3.5]) establishes a relation between extreme
normal vectors and mixed surface area measures. In a certain way it is related also with the equa-
lity case in the Aleksandrov-Fenchel inequality, although we will not deal with it here (for further
explanations about it we refer to [47]).
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Conjecture 3.1.18. Let K1, . . . , Kn−1 ∈ Kn. The closure of the set of (K1, . . . , Kn−1)-extreme
unit normal vectors is supp S(K1, . . . ,Kn−1; ·).

There are several cases which are known to be true (see [47, pp. 134–13]); we detail just the
ones we will use in the next section of this chapter.

Proposition 3.1.19. Conjecture 3.1.18 is true in the following cases:

i) if K1, . . . , Kn−1 are polytopes;

ii) if K1 = · · · = Kp and the bodies Kp+1, . . . , Kn−1 are regular and strictly convex for some
p ∈ 0, . . . , n− 1.

There exist some known cases in which equality in Aleksandrov-Fenchel inequality (1.7) holds.
For a deep study of this topic we refer to [49].

3.2 Setting Hadwiger’s problem in dimension n

The problem of studying the differentiability of the quermassintegrals of a convex body K with
respect to the parameter of definition of the full system of parallel bodies of K, in the 3-dimensional
case and with respect to the ball B3, goes back to Hadwiger [23]. In Chapter 2 the development of
this problem can be found, as well as some connections of it with the roots of Steiner polynomial.
In this chapter we state and study the problem in dimension n, with respect to an arbitrary (fixed)
E ∈ Kn

0 (with some additional hypothesis in certain cases). This will lead to n classes of convex
bodies which will be introduced next, in analogy with the 3 classes Rα, Rβ and Rγ appearing in
the classical 3-dimensional case.

We start by stating the problem. From the concavity of the full system of parallel bodies
(Lemma 2.1.3), the concavity of the real functions Wi(λ) := Wi(Kλ; E) (Theorem 2.1.4) and the
polynomial expression for the quermassintegrals of the outer parallel bodies (Theorem 1.2.8), it is
easy to see (see also Proposition 1.1.8) that the analogous result to Lemma 2.2.1 holds in arbitrary
dimension n, namely:

Lemma 3.2.1. For any K ∈ Kn, the functionals Wi(λ) = Wi(Kλ; E) have left and right derivatives
at each point −r(K;E) ≤ λ < ∞ and they satisfy

′Wi(λ) ≥ W′
i(λ) ≥ (n− i)Wi+1(λ), (3.19)

for i = 0, . . . , n− 1.

Again it is well-known (see [6, 34]) that the volume is always differentiable and V′(λ) = nW1(λ)
for −r(K; E) ≤ λ < ∞ (cf. Theorem 2.2.2); notice that in the case λ = −r(K; E) we refer to diffe-
rentiability from the right. Moreover, if λ ≥ 0 then all quermassintegrals are differentiable at λ
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and W′
i(λ) = (n− i)Wi+1(λ). The question arises for which convex bodies equalities hold in (3.19)

for the full range −r(K; E) ≤ λ < ∞. With this notation we introduce the following definition.

Definition 3.2.2. A convex body K ∈ Kn belongs to the class Rp, 0 ≤ p ≤ n−1, if for all 0 ≤ i ≤ p

and for −r(K; E) ≤ λ < ∞ it holds

′Wi(λ) = W′
i(λ) = (n− i)Wi+1(λ). (3.20)

Since V′(λ) = nW1(λ) the class R0 = Kn is the family of all convex bodies in Rn. Moreover
Ri+1 ⊂ Ri, i = 0, . . . , n − 2, and all these inclusions are strict, as will follow from Theorem 3.4.1
(see Remark 3.17).

We finish this section stating a result which establishes a lower bound for the derivative of the
quermassintegrals in terms of a mixed volume involving the form body of the original body K.
This result was proved in [41, Lemma 3.5], and will be needed later on.

Lemma 3.2.3. Let K ∈ Kn. For each 1 ≤ i ≤ n − 1, the derivative of Wi(λ) exists almost
everywhere in −r(K; E) < λ ≤ 0 and

W′
i(λ) ≥ (n− i)V

(
Kλ[n− i− 1],K∗

λ, E[i]
)
. (3.21)

Remark 3.14. From (3.21), the inequalities in the right-hand side of (3.19) follow immediately
provided that E ⊆ K∗, for i = 0, . . . , n− 1, just taking λ = 0. ♦

3.3 Convex bodies lying in the classes Rp

In this section we will determine first the convex bodies belonging to the smallest class, i.e.,
Rn−1. Then, for each of the remaining classes Rp, p = 1, . . . , n − 2, necessary conditions for a
convex body to lie in it will be stated in terms of the support function of the form body of Kλ, the
mixed area measures and the set of p-extreme normal vectors of Kλ, Up(Kλ).

3.3.1 Characterizing Rn−1

We start characterizing the smallest class, i.e., Rn−1. Before stating and proving the result, we
mention that in [34] it was pointed out that if E is a summand of K, i.e., if there exists L ∈ Kn

such that K = E + L, then

Wi(Kλ; E) =
n−i∑

k=0

(
n− i

k

)
Wi+k(K; E)

(− |λ|)k
, (3.22)

for −1 ≤ λ ≤ 0 and i = 0, . . . , n. We present this result here since we will need it for the proof of
the following theorem, although we will deal again with this fact in the next chapter.
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Theorem 3.3.1 ([29]). The only sets in Rn−1 are the outer parallel bodies of k-dimensional convex
bodies, for 0 ≤ k ≤ n− 1, i.e.,

Rn−1 =
{
K = L + λE : L ∈ Kn, dimL ≤ n− 1, λ ≥ 0

}
.

Proof. For the sake of brevity we write r = r(K;E). If K is a k-dimensional convex body, k ≤ n−1,
then r = 0 and the full system of parallel bodies is reduced to the family of outer parallel sets.
Hence the equalities in (3.20) trivially hold for all i = 0, . . . , n − 1 and we have that K ∈ Rn−1.
Thus we suppose that K ∈ Kn

0 , which implies that r > 0.

If K = L + λ0E with L ∈ Kn, dimL ≤ n − 1, and λ0 > 0, then clearly r = λ0 and the inner
parallel body Kλ = L +

(
λ0 − |λ|

)
E for −λ0 ≤ λ ≤ 0. Moreover K−r = L. Then from (3.22) we

get that

Wi(λ) =
n−i∑

k=0

(
n− i

k

)
Wi+k(K; E)

(−|λ|)k =
n−i∑

k=0

(
n− i

k

)
Wi+k(K; E)λk

for all i = 0, . . . , n and −λ0 ≤ λ ≤ 0, and clearly all the quermassintegrals are differentiable and
W′

i(λ) = (n− i)Wi+1(λ), for i = 0, . . . , n− 1. Hence K ∈ Rn−1.

Conversely, if K ∈ Rn−1 we have in particular that the last quermassintegral Wn−1 is differen-
tiable and W′

n−1(λ) = Wn(K;E) = V(E), for all λ ∈ [−r, 0]. Then integration with respect to λ

yields

Wn−1(λ)−Wn−1(−r) =
∫ λ

−r
W′

n−1(s) ds =
∫ λ

−r
V(E) ds = V(E)(λ + r),

for all λ ∈ [−r, 0]. In particular, when λ = 0 we get Wn−1(0)−Wn−1(−r) = rV(E), i.e.,

Wn−1(K; E) = Wn−1(K−r; E) + rWn−1(E; E) = Wn−1(K−r + rE; E), (3.23)

where the last equality follows from the linearity of Wn−1(K; E) = V
(
K, E[n−1]

)
in its first variable

(see Proposition 1.2.5, part v)). Since K−r +rE ⊂ K we get from (3.23) that K−r +rE = K, which
proves the required statement.

In the case of the original Hadwiger problem, i.e., when n = 3 and E = B3, we obtain the
characterization of the so called class Rγ (see Theorem 2.3.1).

As a direct consequence of Theorem 3.3.1 and the remark after Lemma 3.1.14 the following
corollary can be stated:

Corollary 3.3.2. A convex body K ∈ Kn lies in Rn−1 if and only if the derivative

d

dλ
h(λ, u) ≡ h(E, u)

almost everywhere, for all u ∈ Sn−1.
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3.3.2 Necessary conditions for the remaining classes Rp

Throughout all this subsection E ∈ Kn
0 will be a regular and strictly convex body. With this

assumption we state necessary conditions for K ∈ Kn to lie in the class Rp, 0 ≤ p ≤ n − 2. The
main theorem in this part will be the following one:

Theorem 3.3.3 ([29]). Let K ∈ Kn and let E ∈ Kn
0 be a regular and strictly convex body. If

K ∈ Rp\Rn−1, 0 ≤ p ≤ n− 2, then for all λ ∈ (−r(K; E), 0
]

the following holds:

i.a) h(K∗
λ, u) = h(E, u) for all u ∈ supp S

(
Kλ[n− i− 1], E[i]; ·) and i = 0, . . . , p.

i.b) h(K∗
λ, u) = h(E, u) for all u ∈ clUp(Kλ).

ii) If p 6= 0, then S
(
Kλ[n− i− 1], E[i]; ·) = S

(
K∗

λ,Kλ[n− i− 1], E[i− 1]; ·) for i = 1, . . . , p.

iii) supp S
(
K∗

λ[n− 1]; ·) ∪
(⋃p

i=0 supp S
(
Kλ[n− i− 1], E[i]; ·)

)
⊆ clU0(Kλ).

iv) clU0(Kλ) = clU1(Kλ) = · · · = clUp(Kλ).

For the proof of Theorem 3.3.3 we need the following lemma, in which it is proved that all the
above conditions are equivalent for any convex body K ∈ Kn

0 .

Lemma 3.3.4 ([29]). Let K ∈ Kn
0 and let E ∈ Kn

0 be a regular and strictly convex body. For
0 ≤ p ≤ n− 2, the following conditions are equivalent:

i.a) h(K∗
λ, u) = h(E, u) for all u ∈ supp S

(
Kλ[n− i− 1], E[i]; ·) and i = 0, . . . , p.

i.b) h(K∗
λ, u) = h(E, u) for all u ∈ clUp(Kλ).

ii) If p 6= 0, then S
(
Kλ[n− i− 1], E[i]; ·) = S

(
K∗

λ,Kλ[n− i− 1], E[i− 1]; ·) for i = 1, . . . , p.

iii) supp S
(
K∗

λ[n− 1]; ·) ∪
(⋃p

i=0 supp S
(
Kλ[n− i− 1], E[i]; ·)

)
⊆ clU0(Kλ).

iv) clU0(Kλ) = clU1(Kλ) = · · · = clUp(Kλ).

Proof. Property (i.b) is just a reformulation of (i.a). In fact, since E is regular and strictly convex,
supp S

(
Kλ[n− i− 1], E[i]; ·) is the closure of the set of

(
Kλ[n− i− 1], E[i]

)
-extreme normal vectors

(see Proposition 3.1.19), which is the set clUi(Kλ) since u ∈ Sn−1 is an i-extreme normal vector of
Kλ if and only if u is

(
Kλ[n− 1− i], E[i]

)
-extreme (see page 49); i.e.,

supp S
(
Kλ[n− i− 1], E[i]; ·) = clUi(Kλ), (3.24)

i = 0, . . . , p. Since Ui(Kλ) ⊆ Up(Kλ) for all i = 0, . . . , p − 1 we get the equivalence between
properties (i.a) and (i.b).

Now we prove that (i.a) is equivalent to (ii). Since E is regular and strictly convex and i ≥ 1,
Lemma 3.1.17 shows that (i.a) implies that S

(
K∗

λ,Kλ[n−i−1], E[i−1]; ·) = S
(
Kλ[n−i−1], E[i]; ·).

This proves property (ii).
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And conversely, we now assume that for all i = 1, . . . , p, the mixed surface area measures
S
(
Kλ[n − i − 1], E[i]; ·) = S

(
K∗

λ,Kλ[n − i − 1], E[i − 1]; ·). Then using the formula for the mixed
volumes given in (1.2) we get

∫

Sn−1

h(K∗
λ, u) dS

(
Kλ[n− i− 1], E[i]; u

)
= nV

(
K∗

λ,Kλ[n− i− 1], E[i]
)

=
∫

Sn−1

h(E, u) dS
(
K∗

λ,Kλ[n− i− 1], E[i− 1];u
)

=
∫

Sn−1

h(E, u) dS
(
Kλ[n− i− 1], E[i];u

)

and therefore ∫

Sn−1

[
h(K∗

λ, u)− h(E, u)
]
dS

(
Kλ[n− i− 1], E[i];u

)
= 0. (3.25)

Since E ⊆ K∗
λ and hence h(K∗

λ, u) ≥ h(E, u) (see Proposition 1.1.10), we get that (3.25) is equivalent
to h(K∗

λ, u) = h(E, u) for all u ∈ supp S
(
Kλ[n−i−1], E[i]; ·) and i = 1, . . . , p. In order to show (i.a)

for i = 0 notice that supp S
(
Kλ[n− 2], E; ·) = clU1(Kλ) ⊇ clU0(Kλ) = supp S

(
Kλ[n− 1]; ·). Hence

we also obtain h(K∗
λ, u) = h(E, u) for all u ∈ supp S

(
Kλ[n− 1]; ·). This proves (i.a).

Now we show that (i.a) implies (iii). By Lemma 3.2.3 in the particular case when i = 0 we get

V′(λ) ≥ nV
(
Kλ[n− 1],K∗

λ

) ≥ nV
(
Kλ[n− 1], E

)
, (3.26)

where the second inequality follows from the monotonicity of the mixed volumes (Proposition 1.2.5,
part vi)) and E ⊆ K∗

λ. Since the volume is differentiable and V′(λ) = nW1(λ) = nV
(
Kλ[n−1], E

)
,

we have equalities in (3.26), and hence we can assure that any convex body K ∈ Kn
0 satisfies

V
(
K[n− 1], E

)
= V

(
K[n− 1],K∗).

In particular, the above relation applied to the form body K∗
λ ensures that V

(
K∗

λ[n−1], E
)

= V(K∗
λ).

Using again the formula for the mixed volumes given by (1.2) we get that for any K ∈ Kn
0 it holds

that h(K∗
λ, u) = h(E, u) for all u ∈ supp S

(
K∗

λ[n− 1]; ·). This condition joined to (i.a) gives

h(K∗
λ, u) = h(E, u) for all

u ∈ supp S
(
K∗

λ[n− 1]; ·) ∪
(

p⋃

i=0

supp S
(
Kλ[n− i− 1], E[i]; ·)

)
.

(3.27)

On the other hand it is clear that (see Remark 3.9) since E is regular then h(K∗
λ, u) = h(E, u) if

and only if u ∈ U0(K∗
λ). Moreover, by using Lemma 3.1.12 we know that U0(K∗

λ) = clU0(Kλ) and
hence we have h(K∗

λ, u) = h(E, u) if and only if u ∈ clU0(Kλ). From here using (3.27) we get the
required property (iii).

In order to prove (iii) implies (iv) notice that supp S
(
Kλ[n − i − 1], E[i]; ·) = clUi(Kλ), for all

i = 0, . . . , p (cf. (3.24)), since E is regular and strictly convex. Hence we get from (iii) that, in
particular, clUp(Kλ) ⊆ clU0(Kλ). Since it always holds U0(Kλ) ⊆ · · · ⊆ Up(Kλ), we obtain (iv).
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It remains to be shown that (iv) implies (i.a). Using again the identity given in (3.24), i.e., that
supp S

(
Kλ[n− i− 1], E[i]; ·) = clUi(Kλ) for i = 0, . . . , p, we get from (iv) that for all i = 1, . . . , p

supp S
(
Kλ[n− i− 1], E[i]; ·) = supp S

(
Kλ[n− 1]; ·).

On the other hand, since E is regular and using Lemma 3.1.12, we know that h(K∗
λ, u) = h(E, u)

if and only if u ∈ U0(K∗
λ) = clU0(Kλ). Thus if u ∈ supp S

(
Kλ[n− i− 1], E[i]; ·) for i ∈ {0, . . . , p},

then u ∈ supp S
(
Kλ[n − 1]; ·) = clU0(Kλ) (cf. (3.24)), which implies that h(K∗

λ, u) = h(E, u) and
shows (i.a). This concludes the proof of the lemma.

Now we prove Theorem 3.3.3 by showing that K ∈ Rp implies property (i.a). From Lemma 3.3.4
we get the remaining statements.

Proof of Theorem 3.3.3. First notice that by hypothesis K 6∈ Rn−1. Since all k-dimensional convex
bodies, k ≤ n− 1, are contained in Rn−1, we have K ∈ Kn

0 . Hence we can apply Lemma 3.3.4 and
prove just property (i.a).

Since E ⊆ K∗
λ, the monotonicity of the mixed volumes (Proposition 1.2.5, part vi)) implies that

V
(
Kλ[n− p− 1],K∗

λ, E[p]
) ≥ Wp+1(λ) (3.28)

and hence we get from (3.21) that

W′
p(λ) ≥ (n− p)Wp+1(λ).

Thus, if K ∈ Rp then we have equality in the previous inequality and also in (3.28). Moreover
since K ∈ Rp ⊂ · · · ⊂ R0 we get V

(
Kλ[n − i − 1],K∗

λ, E[i]
)

= Wi+1(λ) for all i = 0, . . . , p. Using
the formula for the mixed volumes given by (1.2) we can write

0 = nV
(
Kλ[n− i− 1],K∗

λ, E[i]
)− nV

(
Kλ[n− i− 1], E[i + 1]

)

=
∫

Sn−1

[
h(K∗

λ, u)− h(E, u)
]
dS

(
Kλ[n− i− 1], E[i];u

)
,

which is equivalent to h(K∗
λ, u) = h(E, u) for all u ∈ supp S

(
Kλ[n− i− 1], E[i]; ·), for i = 0, . . . , p.

This proves (i.a) and the theorem.

Remark 3.15. If K ∈ Rp\Rn−1, 1 ≤ p ≤ n− 2, then property (ii) of Theorem 3.3.3 ensures that
the mixed surface area measures S

(
Kλ[n−i−1], E[i]; ·) and S

(
K∗

λ,Kλ[n−i−1], E[i−1]; ·) coincide.
Hence we can rewrite (i.a) as

h(K∗
λ, u) = h(E, u) for u ∈ supp S

(
K∗

λ,Kλ[n− i− 1], E[i− 1]; ·)

for i = 1, . . . , p. We also can write that

clUi(Kλ) = cl
{(

Kλ[n− i− 1], E[i]
)
-extreme normal vectors

}

= suppS
(
Kλ[n− i− 1], E[i]; ·) = supp S

(
K∗

λ,Kλ[n− i− 1], E[i− 1]; ·).
They provide new conditions for a convex body to belong to the class Rp, 1 ≤ p ≤ n− 2. ♦
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Using (1.2) the following corollary is an immediate consequence of ii) in Theorem 3.3.3.

Corollary 3.3.5 ([29]). If K ∈ Rp\Rn−1, 1 ≤ p ≤ n − 2, then for any convex body L ∈ Kn and
for all λ ∈ (−r(K; E), 0

]
it holds

V
(
L,K∗

λ,Kλ[n− i− 1], E[i− 1]
)

= V
(
L,Kλ[n− i− 1], E[i]

)
, i = 1, . . . , p.

Proof. Since K ∈ Rp\Rn−1, Theorem 3.3.3 part ii) ensures that, for all i = 1, . . . , p, it holds that
S
(
Kλ[n− i− 1], E[i]; ·) = S

(
K∗

λ,Kλ[n− i− 1], E[i− 1]; ·). Then using Formula (1.2),

V
(
L,K∗

λ,Kλ[n− i− 1], E[i− 1]
)

=
1
n

∫

Sn−1

h(L, u) dS
(
K∗

λ,Kλ[n− i− 1], E[i− 1]; ·)

=
1
n

∫

Sn−1

h(L, u) dS
(
Kλ[n− i− 1], E[i]; ·)

= V
(
L,Kλ[n− i− 1], E[i]

)
.

Replacing L by Kλ, K∗
λ and E in the expression of Corollary 3.3.5 we get that the relations

Wi+1(λ) = V
(
K∗

λ,Kλ[n− i− 1], E[i]
)

= V
(
K∗

λ[2],Kλ[n− i− 1], E[i− 1]
)

(3.29)

hold for all i = 1, . . . , p. In particular, we have equality in the Aleksandrov-Fenchel inequality for
the convex bodies K∗

λ and E:

V
(
K∗

λ,Kλ[n− i− 1], E[i]
)2 = V

(
K∗

λ[2],Kλ[n− i− 1], E[i− 1]
)
V

(
Kλ[n− i− 1], E[i + 1]

)
.

Theorem 3.3.3 allows to exclude convex sets from the classes Rp. Thus we prove, for instance,
that there are no polytopes lying in Rp, p = 1, . . . , n − 1, when E ∈ Kn

0 is a regular and strictly
convex body.

Corollary 3.3.6 ([29]). There are no (full-dimensional) polytopes in Rp, for all 1 ≤ p ≤ n− 1.

Proof. Since Rn−1 ⊂ · · · ⊂ R1 it is enough to show the assertion for the biggest class, R1. Let
P ∈ Kn

0 be a convex polytope lying in the class R1 and let λ ∈ (−r(P ; E), 0
]
. Theorem 3.3.3, item

i.b), ensures that
h(P ∗

λ , u) = h(E, u) for all u ∈ clU1(Pλ). (3.30)

On the other hand we know that Pλ is also a polytope (see Remark 3.7), and moreover P ∗
λ is a

polytope all whose (n− 1)-faces touch E (see Remark 3.5). Then h(P ∗
λ , u) = h(E, u) if and only if

u is a 0-extreme normal vector of P ∗
λ . Hence from (3.30) we can assure that U1(Pλ) ⊂ U0(P ∗

λ ).

Let u ∈ U1(Pλ)\U0(Pλ). Notice that such a vector u exists since Pλ is a polytope. By definition
of 0-extreme normal vector, u can be written as u = u1 + u2 with u1, u2 6= u linearly independent
normal vectors at the same boundary point of P . Then the 2-dimensional cone determined by u1
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and u2 contains u in its relative interior and it provides a 1-dimensional neighborhood V ⊂ Sn−1 of
the vector u. Moreover V ⊂ U1(Pλ) ⊂ U0(P ∗

λ ). This leads to a contradiction, since we have shown
that there exists a relative 1-dimensional open set V ⊂ Sn−1 of 0-extreme normal vectors of the
polytope P ∗

λ .

Remark 3.16. The only polytopes in Rp, 1 ≤ p ≤ n − 1, have empty interior, and they lie in
Rn−1. Notice also that if we remove the hypothesis of regularity and strict convexity for E then
Corollary 3.3.6 is not true, since trivially there are polytopes in the classes Rp; indeed, just taking
E a polytope then E ∈ Rn−1. ♦

3.4 Tangential bodies in Rp

This section is devoted to study the tangential bodies in connection with the problem of the
differentiability of the quermassintegrals. First we determine the tangential bodies lying in each
class. Then we get a new necessary condition for a convex body K to lie in Rp, now in terms of
the quermassintegrals of K and its form body.

Theorem 3.4.1 ([29]). A tangential body K ∈ Kn of E lies in the class Rp if and only if K is an
(n− p− 1)-tangential body of E.

Proof. Since K is a tangential body of E we have r(K;E) = 1 and we know from Remark 3.2 that
Kλ =

(
1− |λ|)K. Hence

Wi(λ) =
(
1− |λ|)n−iWi(K; E) = (1 + λ)n−iWi(K; E) (3.31)

for all i = 0, . . . , n and then

W′
i(λ) = (n− i)(1 + λ)n−i−1Wi(K; E). (3.32)

We suppose first that K ∈ Rp. Then W′
i(λ) = (n− i)Wi+1(λ), for i = 0, . . . , p and thus

W′
i(λ) = (n− i)Wi+1(Kλ; E) = (n− i)Wi+1

(
(1 + λ)K; E

)
= (n− i)(1 + λ)n−i−1Wi+1(K; E)

for i = 0, . . . , p. The last two expressions for the derivative W′
i(λ) together allow to conclude that

Wi(K;E) = Wi+1(K; E) for all i = 0, . . . , p. Then, Favard’s Theorem 3.1.5 proves that K is a
(n− p− 1)-tangential body of E.

Conversely, if K is an (n − p − 1)-tangential body of E, we have Wi(K; E) = Wi+1(K; E) for
i = 0, . . . , p. Then we get from (3.31) and (3.32) that

W′
i(λ) = (n− i)(1 + λ)n−i−1Wi+1(K; E) = (n− i)Wi+1(λ)

for i = 0, . . . , p, which shows that K ∈ Rp.
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Remark 3.17. Notice that all the inclusions Ri+1 ⊂ Ri, i = 0, . . . , n−2, are strict, as follows from
Theorem 3.4.1 and the fact that there exist (i+1)-tangential bodies of E which are not i-tangential
bodies of E; indeed, it can be easily constructed a centrally symmetric (i.e., such that K = −K)
(i + 1)-tangential body of E which is not an i-tangential body just taking the convex hull of E

and 2(i + 1) suitable chosen points outside E (see also the proof of Theorem 4.2.2, where a –not
centrally symmetric– 2-tangential body which is not a 1-tangential body is constructed). ♦

We finish this section by proving the following theorem. We remark that this result was already
proved for the class R0 in [42, Theorem 9].

Theorem 3.4.2 ([29]). Let K ∈ Kn
0 and write r = r(K; E). If K ∈ Rp, for any 0 ≤ p ≤ n − 1,

then

Wp(K;E)−Wp(K−r; E) ≤ Wp+1(K∗; E)
−1

n−p−1

(
Wp+1(K; E)

n−p
n−p−1 −

[
Wp+1(K; E)

1
n−p−1 − rWp+1(K∗;E)

1
n−p−1

]n−p
)

.
(3.33)

Equality holds if and only if K is homothetic to an (n− p− 1)-tangential body of E.

Proof. Let λ ∈ [−r, 0] with r = r(K; E). By Lemma 3.1.13 we know that Kλ + |λ|K∗ ⊆ K. Then
for all 0 ≤ i ≤ n,

Wi(K;E)
1

n−i ≥ Wi

(
Kλ + |λ|K∗; E

) 1
n−i ≥ Wi(Kλ; E)

1
n−i + |λ|Wi(K∗; E)

1
n−i

= Wi(λ)
1

n−i − λWi(K∗;E)
1

n−i ,

where the last inequality comes from Brunn-Minkowski’s inequality for relative quermassintegrals
(see Theorem 1.2.12). Since K ∈ Rp we have W′

p(λ) = (n − p)Wp+1(λ), and taking i = p + 1 in
the previous inequality we can integrate from −r to 0 with respect to λ:

1
n− p

[
Wp(0)−Wp(−r)

]
=

∫ 0

−r
Wp+1(λ) dλ

≤
∫ 0

−r

(
Wp+1(K; E)

1
n−p−1 + λWp+1(K∗; E)

1
n−p−1

)n−p−1

=
1

n− p

(
Wp+1(K;E)

1
n−p−1 + λWp+1(K∗;E)

1
n−p−1

)n−p

Wp+1(K∗;E)
1

n−p−1

∣∣∣∣∣∣∣

0

−r

,

from which we get directly the required inequality (3.33). Equality holds in this inequality if
and only if both K = Kλ + |λ|K∗ and equality holds in Brunn-Minkowski’s inequality for every
0 ≤ i ≤ p + 1 and −r ≤ λ ≤ 0.

We suppose first that equality holds in (3.33). From the Brunn-Minkowski equality case we
know that K and K∗ are homothetic (see Theorem 1.2.12), and this is the case if and only if K is
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homothetic to a tangential body of E (see Remark 3.4). Since K ∈ Rp Theorem 3.4.1 ensures that
then K is homothetic to an (n − p − 1)-tangential body of E. It just remains to be proved that
any homothetical copy of an (n− p− 1)-tangential body K of E satisfies K = Kλ + |λ|K∗. In fact,
if K is such a set then Kλ =

(
1− |λ|/r

)
K (see Remark 3.2) and clearly K∗ = (1/r)K. Therefore

K =
(

1− |λ|
r

)
K +

|λ|
r

K = Kλ + |λ|K∗.

Conversely, if K is homothetic to an (n− p− 1)-tangential body of E then we already know that
K = Kλ + |λ|K∗ and that K, K∗ are homothetic, which implies equality in Brunn-Minkowski’s
inequality. So we get equality in (3.33).
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Chapter 4

Bounding quermassintegrals of inner

parallel bodies

Bounding quermassintegrals of inner

parallel bodies

There is an essential geometrically intuitive difference between outer and inner parallel bodies of
a convex body K ∈ Kn. On the one hand, the difference lies in the fact that outer parallel bodies
are built just by using a vectorial operation in the Euclidean space, while inner parallel bodies
do not correspond to any such operation. On the other hand it is precisely this difference what
makes the study of inner parallel bodies not only interesting but useful since, as we have seen in
the previous chapter, it is connected with other nice problems for convex bodies. We will provide
several examples of the unruly behavior of inner parallel bodies, for instance with respect to the
boundary structure or the volume, showing so their uncontrollable comportment (see Figure 2.1 in
Chapter 2 or Figure 4.1).

Figure 4.1: Inner parallel body of an ellipse (relative to B2) and a circle (relative to the square).

In the previous chapters it was pointed out that both, the boundary structure and the volume
of the outer parallel bodies of K can be controlled; however in Chapter 3 we have seen that the
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boundary structure of the inner parallel bodies is rather more difficult to control. Motivated by
a conjecture of Matheron, in this chapter we provide bounds for the volume of the inner parallel
body of a convex body K involving the alternating Steiner polynomial of K. As a consequence we
get that this conjecture is not true since, in fact, we prove it is not possible to bound the volume
of the inner parallel body in terms of just the alternating Steiner polynomial itself. Finally we get
also upper and lower bounds for the quermassintegrals of the inner parallel body of K.

The original work we collect in this chapter can be found in [28] and in [30].

4.1 Using classes Rp to bound the volume of the inner parallel body

The volume of the outer parallel body of K with respect to E ∈ Kn
0 at distance λ ≥ 0, Kλ, is a

polynomial of degree n in λ, as already noticed in Chapter 1. Steiner formulae for quermassintegrals
(1.4) provide analogous expressions for the relative quermassintegrals of Kλ, λ ≥ 0. There is
however no explicit formula for the volume nor for the quermassintegrals of the inner parallel
bodies of a convex body K. This leads, in a natural way, to consider the problem of studying
whether it is possible to give lower/upper bounds for the volume of the inner parallel bodies of
K ∈ Kn in terms of the quermassintegrals of the original body.

We recall (see Section 3.3) that when E is a summand of K then

Wi(K−λ; E) =
n−i∑

k=0

(
n− i

k

)
Wi+k(K; E)(−λ)k, (4.1)

for 0 ≤ λ ≤ 1 and i = 0, . . . , n. In fact, Matheron proved in [34] that for 0 ≤ λ ≤ 1 and i = 0, . . . , n

identity (4.1) holds if and only if E is a summand of K, and he conjectured that it was enough to
assume (4.1) just for i = 0, i.e., the case of the volume, and even more:

Conjecture 4.1.1 (Matheron, [34]). Let K ∈ Kn. Then for 0 ≤ λ ≤ 1,

V(K−λ) ≥
n∑

i=0

(
n

i

)
Wi(K;E)(−λ)i. (4.2)

The equality holds if and only if E is a summand of K.

The right-hand side in (4.2) is usually called the alternating Steiner polynomial of K. Matheron
proved Conjecture 4.1.1 for n = 2.

We will see that the classes Rp of convex bodies studied in Chapter 3 allow to give bounds
(upper or lower, depending on the class) for the volume of the inner parallel bodies involving the
alternating Steiner polynomial. As a consequence of these bounds we prove that there exist many
sets for which inequality (4.2) does not hold, proving so the non-validity of Matheron’s conjecture.
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We remark that the non-validity of the conjecture in the 3-dimensional space and for E = B3 was
already mentioned in [43].

In order to prove the main result in this section we need the following lemma which provides
an upper bound for the (left) derivative of the i-th quermassintegral. From now on, E ∈ Kn

0 will
be again a fixed convex body with interior points and we will write, following the notation in the
previous chapter, Wi(λ) = Wi(Kλ;E) for λ ≤ 0 and r = r(K; E) for the sake of brevity, unless it
is not clear from context.

Lemma 4.1.2 ([30]). Let K ∈ Kn
0 and −r < λ ≤ 0. Then for i = 0, . . . , n,

′Wi(λ) ≤ n− i

r + λ
Wi(λ).

Equality holds if and only if K is homothetic to a tangential body of E.

Proof. The inradius of Kλ, −r ≤ λ ≤ 0, is given by r(Kλ;E) = r − |λ| = r + λ (see (2.1)). Then,
by (3.11) it holds that

r + λ

r
K ⊆ Kλ. (4.3)

Let now t ∈ [0, r) such that −r < λ− t ≤ λ ≤ 0, using again (3.11) we have

r + λ− t

r + λ
Kλ =

r(Kλ−t; E)
r(Kλ; E)

Kλ ⊆ Kλ−t

and therefore (
1− t

r + λ

)n−i

Wi(λ) ≤ Wi(λ− t).

Using this inequality we can bound the (left) derivative of Wi:

′Wi(λ) = lim
t→0

Wi(λ)−Wi(λ− t)
t

≤ lim
t→0

[
1− (

1− t
r+λ

)n−i
]
Wi(λ)

t
=

n− i

r + λ
Wi(λ),

which shows the required inequality. In order to prove the equality case, we suppose first that
′Wi(λ)(r + λ) = (n− i)Wi(λ), for i ∈ {0, . . . , n}. Since K ∈ Kn

0 , Wi(λ) > 0 and we can write

∫ 0

λ

′Wi(t)
Wi(t)

dt =
∫ 0

λ

n− i

r + t
dt.

Hence, log Wi(0)− log Wi(λ) = (n− i)
[
log r− log(r + λ)

]
, from which we obtain

Wi(K;E)
Wi(Kλ;E)

=
Wi(0)
Wi(λ)

=
(

r
r + λ

)n−i

,

or equivalently,

Wi(Kλ; E) = Wi

(
r + λ

r
K; E

)
. (4.4)
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From (4.3) and (4.4) we get an equality,

Kλ =
r + λ

r
K

for all λ ∈ (−r, 0]. Then Theorem 3.1.4 ensures that K is homothetic to a tangential body of E.

Conversely, if K is homothetic to a tangential body of E, we know from Remark 3.2 that
Kλ = (1 + λ/r)K. Hence Wi(λ) = (1 + λ/r)n−iWi(K;E) for all i = 0, . . . , n and then

′Wi(λ) = W′
i(λ) = (n− i)

(r + λ)n−i−1

rn−i
Wi(K; E) =

n− i

r + λ

(
r + λ

r

)n−i

Wi(K;E) =
n− i

r + λ
Wi(λ).

It concludes the proof of the lemma.

Thus (cf. (3.19)) we have obtained an upper bound of the derivative of Wi in terms of Wi.
Throughout the rest of this section λ will always be non-negative, λ ≥ 0. Now we prove the main
result in this part.

Theorem 4.1.3 ([30]). Let K ∈ Kn be a convex body lying in the class Rp, 0 ≤ p ≤ n − 1. For
every 0 ≤ λ < r it holds:

i) If p = n− 1 then

V(K−λ) =
n∑

i=0

(
n

i

)
Wi(K;E)(−λ)i. (4.5)

ii) If p is even, 0 ≤ p ≤ n− 2 then

V(K−λ) ≥
p+2∑

i=0

(
n

i

)
Wi(K;E)(−λ)i −

(
n

p + 2

)
(n− p− 2)

∫ λ

0

(λ− s)p+2

r− s
Wp+2(−s) ds. (4.6)

iii) If p is odd, 1 ≤ p ≤ n− 2 then

V(K−λ) ≤
p+2∑

i=0

(
n

i

)
Wi(K;E)(−λ)i +

(
n

p + 2

)
(n− p− 2)

∫ λ

0

(λ− s)p+2

r− s
Wp+2(−s) ds. (4.7)

Equality holds in both inequalities if and only if K is homothetic to an (n− p− 2)-tangential body
of the convex body E.

This theorem is a direct consequence of the following more general result.

Theorem 4.1.4 ([30]). Let K ∈ Kn
0 be a convex body lying in the class Rp, 0 ≤ p ≤ n − 2. For

every 0 ≤ t ≤ λ < r it holds:

i) If p is even, 0 ≤ p ≤ n− 2 then

V(K−λ) ≥
p+2∑

i=0

(
n

i

)
Wi(−t)(t− λ)i −

(
n

p + 2

)
(n− p− 2)

∫ λ

t

(λ− s)p+2

r− s
Wp+2(−s) ds.
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ii) If p is odd, 1 ≤ p ≤ n− 2 then

V(K−λ) ≤
p+2∑

i=0

(
n

i

)
Wi(−t)(t− λ)i +

(
n

p + 2

)
(n− p− 2)

∫ λ

t

(λ− s)p+2

r− s
Wp+2(−s) ds.

Equality holds in both inequalities if and only if K is homothetic to an (n− p− 2)-tangential body
of the convex body E.

Notice that (4.6) and (4.7) in Theorem 4.1.3 are obtained by replacing t = 0 in Theorem 4.1.4,
and equality (4.5) is a direct consequence of Theorem 3.3.1. Notice also that if dimK ≤ n− 1 then
r = r(K; E) = 0 and hence the result in Theorem 4.1.3 is trivial.

Proof of Theorem 4.1.4. We fix 0 ≤ λ < r. For 0 ≤ t ≤ λ we define the function

F (t) = V(−λ)−
p+2∑

i=0

(
n

i

)
Wi(−t)(t− λ)i + (−1)p

(
n

p + 2

)
(n− p− 2)

∫ λ

t

(λ− s)p+2

r− s
Wp+2(−s) ds.

Since K ∈ Rp, by definition Wi is differentiable and W′
i(s) = (n− i)Wi+1(s), for i = 0, . . . , p. Then

it is an easy computation to check that the first derivative of F is

F ′(t) = (−1)p

(
n

p + 1

)
(λ− t)p+1

[
(n− p− 1)Wp+2(−t)−W′

p+1(−t)

+
n− p− 1

p + 2
(λ− t)

(
W′

p+2(−t)− n− p− 2
r− t

Wp+2(−t)
) ]

.

From (3.19) we know that

(n− p− 1)Wp+2(−t)−W′
p+1(−t) ≤ 0. (4.8)

Since W′
p+2(−t) ≤ ′Wp+2(−t), we can apply Lemma 4.1.2 which ensures that

W′
p+2(−t)− n− p− 2

r− t
Wp+2(−t) ≤ 0. (4.9)

Thus if p is even then F ′(t) ≤ 0, whereas for p odd we have F ′(t) ≥ 0. Since clearly F (λ) = 0 and
t ≤ λ, we conclude that:

• for p even it holds F (t) ≥ F (λ) = 0, which proves i);

• for p odd it holds F (t) ≤ F (λ) = 0, which proves ii).

Now we deal with the equality case. We have to show that F (t) is identically zero for every fixed
0 ≤ λ < r if and only if K is homothetic to an (n− p− 2)-tangential body of E. If F (t) ≡ 0 then
equality must hold in (4.8) and (4.9) for all t and λ, 0 ≤ t ≤ λ < r. Since K ∈ Rp, by definition
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equality holds in (4.8) if and only if K ∈ Rp+1. On the other hand, by Lemma 4.1.2 equality holds
in (4.9) if and only if K is homothetic to a tangential body of E. Since, by Theorem 3.4.1, the only
tangential bodies in Rp+1 are the (n− p− 2)-tangential bodies, we get the result.

Conversely, if K is homothetic to an (n − p − 2)-tangential body of E then by Lemma 4.1.2
equality holds in (4.9). On the other hand, we have again that K−t = (1 − t/r)K, which implies
Wp+1(−t) = (1− t/r)n−p−1Wp+1(K;E). Hence

W′
p+1(−t) = (n− p− 1)

1
r

(
1− t

r

)n−p−2

Wp+1(K; E)

= (n− p− 1)
(

1− t

r

)n−p−2

Wp+2(K; E) = (n− p− 1)Wp+2(−t)

since if K is homothetic to an (n − p − 2)-tangential body of E, then the homothecy factor is
r = r(K; E) and Wp+1(K; E) = rWp+2(K; E) (see Theorem 3.1.5 and the remark afterwards). It
concludes the equality case and the proof of the theorem.

Notice that Theorem 4.1.3 provides both upper and lower bounds for the volume of the inner
parallel body of a convex body K lying in the class Rp, p = 1, . . . , n− 2. Since K ∈ Rp ⊂ Rp−1, if
p is even, and hence p− 1 is odd, then

p+2∑

i=0

(
n

i

)
Wi(K; E)(−λ)i −

(
n

p + 2

)
(n− p− 2)

∫ λ

0

(λ− s)p+2

r− s
Wp+2(−s) ds

≤ V (−λ) ≤
p+1∑

i=0

(
n

i

)
Wi(K; E)(−λ)i +

(
n

p + 1

)
(n− p− 1)

∫ λ

0

(λ− s)p+1

r− s
Wp+1(−s) ds

and similarly for the case when p is odd.

As a consequence of this theorem we get the following corollary, which proves the non-validity
of Matheron’s conjecture by showing that there are many sets not verifying inequality (4.2).

Corollary 4.1.5 ([30]). Let K ∈ Kn, n odd, be a convex body lying in Rn−2. Then for 0 ≤ λ < r,

V(K−λ) ≤
n∑

i=0

(
n

i

)
Wi(K;E)(−λ)i. (4.10)

Equality holds if and only if K ∈ Rn−1.

Corollary 4.1.5 is a direct consequence of Theorem 4.1.3, since if the dimension n is odd then
p = n− 2 is so, and hence we get (4.10) from (4.7).

Remark 4.1. Notice that the equality case in Corollary 4.1.5 supports the second conjectured
property in Conjecture 4.1.1; namely that the volume of the inner parallel body K−λ verifies that
V(K−λ) =

∑n
i=0

(
n
i

)
Wi(K; E)(−λ)i if and only if E is a summand of K (cf. Theorem 3.3.1). ♦
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The continuity of the functionals involved in Theorem 4.1.4 allows to assure that this result as
well as Theorem 4.1.3 are true for the limit case when λ = r. Thus we get the following corollary.

Corollary 4.1.6 ([30]). Let K ∈ Kn be a convex body lying in Rp, 0 ≤ p ≤ n− 1.

i) If p = n− 1 then
n∑

i=0

(
n

i

)
Wi(K;E)(−r)i = 0.

ii) If p is even, 0 ≤ p ≤ n− 2 then

p+2∑

i=0

(
n

i

)
Wi(K; E)(−r)i −

(
n

p + 2

)
(n− p− 2)

∫ r

0
(r− s)p+1Wp+2(−s) ds ≤ 0.

iii) If p is odd, 1 ≤ p ≤ n− 2 then

p+2∑

i=0

(
n

i

)
Wi(K; E)(−r)i +

(
n

p + 2

)
(n− p− 2)

∫ r

0
(r− s)p+1Wp+2(−s) ds ≥ 0.

Equality holds in both inequalities if and only if K is homothetic to an (n− p− 2)-tangential body
of the convex body E.

Remark 4.2. Notice that in the case when K ∈ Rn−1, i.e., when K is an outer parallel body of
some convex body, then the inradius r = r(K;E) is a root of the alternating Steiner polynomial.♦

The following two corollaries, which are particular cases of Corollary 4.1.6, allow to establish
new inequalities for an arbitrary convex body K ∈ Kn = R0.

Corollary 4.1.7. For any convex body K ∈ Kn it holds

V(K) ≤ nW1(K; E) r− n(n− 1)
2

W2(K; E) r2 +
n(n− 1)(n− 2)

2

∫ r

0
(r− s)W2(−s) ds.

Equality holds if and only if K is homothetic to an (n− 2)-tangential body of E.

In [42] Sangwine-Yager proves an inequality in terms of the volume, the first and second quer-
massintegrals and the inradius of K, namely

0 ≥ V(K)− nrW1(K;E) + (n− 1)r2W2(K; E),

where equality holds if K is an (n− 2)-tangential body of E.

However a characterization of the equality is not given. The following corollary establishes an
inequality involving the volume, the first and second quermassintegrals and the inradius of K, in
which the equality case is completely characterized.
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Corollary 4.1.8 ([30]). For any convex body K ∈ Kn it holds

(n− 3)V(K) + 2W1(K;E) r− (n− 1)W2(K; E) r2 ≥ 0.

Equality holds if and only if K is homothetic to an (n− 2)-tangential body of E.

Proof. Since, up to translations, r(K−s; E)E ⊆ K−s, the monotonicity of the mixed volumes (see
Proposition 1.2.5, part vi)) implies that (r− s)W2(−s) ≤ W1(−s). Therefore

∫ r

0
(r− s)W2(−s) ds ≤

∫ r

0
W1(−s) ds =

1
n

V(K),

since the volume is differentiable and V′(−s) = −nW1(−s). Hence, using Corollary 4.1.7 we get

V(K) ≤ nW1(K; E) r− n(n− 1)
2

W2(K;E) r2 +
(n− 1)(n− 2)

2
V(K).

Simplifying we get the required inequality. Notice that (r−s)W2(−s) = W1(−s) if and only if K−s

(and hence K) is homothetic to an (n − 2)-tangential body of E (see Theorem 3.1.5 and remark
afterwards). It concludes the proof.

Remark 4.3. We know that the relative in- and circumradius are related by r(K;E)R(E; K) = 1
(see (1.5)). Then, using also that Wi(K; E) = Wn−i(E;K), all the previous inequalities can be
rewritten in terms of the relative circumradius. For instance, the inequality in Corollary 4.1.8 can
be expressed, interchanging E by K in order to write it with the usual notation, as

(n− 3)R(K;E)2V(E) + 2R(K; E)Wn−1(K;E)− (n− 1)Wn−2(K; E) ≥ 0. ♦

4.2 The volume of the inner parallel body and the alternating Steiner

polynomial

In the previous section we have proved that when dealing with convex bodies lying in some of the
classes Rp, it depends on the parity of p that we get an upper or a lower bound in terms of a closely
related function to the alternating Steiner polynomial; just when p = n− 2 the precise polynomial
is obtained. In this section we will show that, except in very particular cases, it is not possible to
bound the volume of the inner parallel body in terms of the alternating Steiner polynomial.

Throughout this section λ will be again non negative, λ ≥ 0. Notice that the alternating Steiner
polynomial of K in the variable λ is just the Steiner polynomial of K in −λ. Following the notation
used for the Steiner polynomial in Chapter 1, we have that fE(K,−λ) =

∑n
i=0

(
n
i

)
Wi(K; E)(−λ)i

is the alternating Steiner polynomial of K ∈ Kn with respect to the fixed convex body E ∈ Kn
0 .

A first approximation to the above mentioned problem using 1-tangential bodies can lead to the
idea that, depending on the parity of the dimension, upper or lower bounds for V(K−λ) in terms
of fE(K,−λ) can be obtained:
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Theorem 4.2.1 ([30]). Let K ∈ Kn
0 be a 1-tangential body of E. If n is odd then inequality (4.10)

holds. If n is even then inequality (4.2) holds. In either case equality holds if and only if K = E.

Proof. If K ∈ Kn
0 is a 1-tangential body of E, Theorem 3.1.5 asserts that V(K) = Wi(K;E), for

all i = 1, . . . , n− 1, and so we can rewrite the alternating Steiner polynomial fE(K,−λ), λ ≥ 0, in
the following way

fE(K,−λ) = V(K)

[
n−1∑

i=0

(
n

i

)
(−λ)i +

V(E)
V(K)

(−λ)n

]
= V(K)

[
(1− λ)n − (

1− α(K)
)
(−λ)n

]
,

where α(K) = V(E)/V(K). Observe that 0 < α(K) ≤ 1 since E ⊆ K. On the other hand, since K

is a tangential body of E we have that r(K; E) = 1 and thus K−λ = (1− λ)K. Hence, the volume
V(K−λ) = (1− λ)nV(K). Therefore

V(K−λ)− fE(K,−λ) =
(
1− α(K)

)
(−λ)n.

Clearly if the dimension n is odd (even) the above difference is negative (positive) and inequality
(4.10) (inequality (4.2)) holds. Equality holds if and only if α(K) = V(E)/V(K) = 1, i.e., only
when K = E.

This first impression is however wrong, since it is also possible to find examples in odd (even)
dimension for which inequality (4.2) (inequality (4.10)) holds, as the following result shows.

Theorem 4.2.2 ([30]). There exist convex bodies in odd (even) dimension for which inequality
(4.2) (inequality (4.10)) holds.

Proof. Let K ∈ Kn
0 be a 2-tangential body of Bn. Then on account of Theorem 3.1.5 we can rewrite

the alternating Steiner polynomial of K as

fBn(K,−λ) = V(K)

[
n−2∑

i=0

(
n

i

)
(−λ)i + n

Wn−1(K)
V(K)

(−λ)n−1 +
V(Bn)
V(K)

(−λ)n

]

= V(K)
[
(1− λ)n − n

(
1− β(K)

)
(−λ)n−1 − (

1− α(K)
)
(−λ)n

]
,

where β(K) = Wn−1(K)/V(K) and α(K) = V(Bn)/V(K). Notice that since K is a 2-tangential
body of Bn, its inradius r(K) = 1, and hence α(K) ≤ β(K) ≤ 1 (see (1.6)). Then, using again
that Kλ = (1− λ)K, we can write the difference V(K−λ)− fBn(K,−λ) as

V(K−λ)− fBn(K,−λ) = V(K)(−λ)n−1
[
n
(
1− β(K)

)− (
1− α(K)

)
λ
]
. (4.11)

For the sake of brevity we write G(λ,K) = n
(
1−β(K)

)−(
1−α(K)

)
λ. Since 0 ≤ λ ≤ 1 = r(K) then

G(λ,K) ≥ G(1,K). Hence, if we construct a 2-tangential body K ∈ Kn
0 of Bn such that G(1,K) ≥ 0
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for any value of the dimension, we get the desired example: when n is odd (even) the above difference
in (4.11) is positive (negative) and therefore inequality (4.2) (inequality (4.10)) holds.

In order to get such a body it is enough to consider the 2-tangential body Kt constructed in
[25, Proof of Theorem 1.2] which we reproduce in the next: let P t ∈ K3

0, t ≥ 2, be the pyramid
over a square basis with vertices

(±t,±t,−1)ᵀ,
(
0, 0, 1 + 2/(t2 − 1)

)ᵀ
.

The coordinates are chosen such that the largest ball contained in P t is B3 and that all 2-faces
(facets) of P t touch B3. Next P t is embedded in the canonical way into Rn for n ≥ 3 and let
Kt = conv{P t, Bn} ∈ Kn

0 . If H is a support plane of Kt which is not a support plane of Bn it must
be a support plane of P t containing no 2-face of P t, since they are, by construction, already tangent
to the ball. So, H may contain only vertices or edges of P t. Thus H is not an (n − 3)-extreme
support hyperplane of Kt, because the outer normal vectors to vertices or edges of a polytope are,
respectively, (n− 1)- and (n− 2)-extreme normal vectors which are not (n− 3)-extreme.

This shows that Kt is a 2-tangential body of Bn. It is easy to see that for the pyramid
P t there exists a constant c such that its 3-dimensional volume is not smaller than c t2. Hence
there exists a constant cn depending only on the dimension such that V(Kt) ≥ cn t2. On the
other hand, the circumradius of Kt is certainly less than 2t and so by (1.6) we have the bound
Wn−1(Kt) ≤ 2tV(Bn). Finally, notice that the inequality G(1,Kt) ≥ 0 is equivalent to the relation
(n− 1)V(Kt) ≥ nWn−1(Kt)−V(Bn), which clearly holds if t is large enough.

Thus, as mentioned before, Corollary 4.1.5, Theorem 4.2.1 and Theorem4.2.2 show that in
general it is hopeless to give upper or lower bounds for the volume of the inner parallel body of a
convex body in terms of exactly the alternating Steiner polynomial. It is necessary to deal with
particular families of sets (cf. Corollary 4.1.5 and Theorem 4.2.1).

4.3 Bounding the quermassintegrals of the inner parallel body

In this section we get some bounds for the relative quermassintegrals of the inner parallel body
in terms of the ones of the original body K. These results improve previous bounds which were
obtained in [9]. For instance, the following lower bound for the relative quermassintegrals of the
inner parallel body of K at distance λ was proved in [9, Theorem 2].

Theorem 4.3.1. Let K ∈ Kn. For −r ≤ λ ≤ 0 and i = 0, . . . , n− 1 it holds

Wi(Kλ; E) ≤ Wi(K; E)− |λ|
n−i−1∑

k=0

V
(
Kλ[k],K[n− i− k − 1], E[i + 1]

)
.
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The key point in the proof of this result is the fact that K−r+rE ⊆ K; thus, it should be possible
to get sharper inequalities using the fact that K−r + rE ⊆ K−r + rK∗ ⊆ K (see Lemma 3.1.13).
Indeed, and by Theorem 3.1.15, we can get better bounds than the ones in Theorem 4.3.1 for the
quermassintegrals of the inner parallel body, providing also conditions for the equality case.

Theorem 4.3.2 ([28]). Let K ∈ Kn
0 and E ∈ Kn

0 be regular and strictly convex. For −r ≤ λ ≤ 0
and i = 0, . . . , n− 1,

Wi(Kλ;E) ≤ Wi(K; E)− |λ|
n−i−1∑

k=0

V
(
Kλ[k],K[n− i− k − 1],K∗, E[i]

)
. (4.12)

If K is a tangential body of K−r + rE verifying condition (3.15) then equality holds in all the
inequalities. Conversely, if equality holds in (4.12) for some i ∈ {0, . . . , n−1} then K is a tangential
body of K−r + rE.

Proof. Using (3.12) and the monotonicity and linearity of mixed volumes (see Proposition 1.2.5)
we get that for −r ≤ λ ≤ 0,

Wi(K; E) = V
(
K[n− i], E[i]

) ≥ V
(
Kλ + |λ|K∗,K[n− i− 1], E[i]

)

= V
(
Kλ,K[n− i− 1], E[i]

)
+ |λ|V(

K∗, K[n− i− 1], E[i]
)

≥ V
(
Kλ,Kλ + |λ|K∗,K[n− i− 2], E[i]

)
+ |λ|V(

K∗,K[n− i− 1], E[i]
)

≥ V
(
Kλ,Kλ,K[n− i− 2], E[i]

)
+ |λ|V(

Kλ,K∗,K[n− i− 2], E[i]
)

+ |λ|V(
K∗, K[n− i− 1], E[i]

)≥ . . .

≥ Wi(Kλ; E) + |λ|
n−i−1∑

k=0

V
(
Kλ[k],K∗,K[n− i− k − 1], E[i]

)
.

Now we deal with the equality case. If K is a tangential body of K−r + rE verifying condition
(3.15), Theorem 3.1.15 ensures that K = Kλ + |λ|K∗ for every −r ≤ λ ≤ 0, and hence equality
holds in (4.12). Conversely, now we assume that equality holds in (4.12) for some i ∈ {0, . . . , n−1}.
Then we have, in particular, that

V
(
K[n− i], E[i]

)
= V

(
Kλ + |λ|K∗,K[n− i− 1], E[i]

)
,

or equivalently, using the formula for the mixed volumes given in (1.2) we get that
∫

Sn−1

h(K,u) dS
(
K[n− i− 1], E[i]; u

)
=

∫

Sn−1

h
(
Kλ + |λ|K∗, u

)
dS

(
K[n− i− 1], E[i]; u

)
.

Since Kλ + |λ|K∗ ⊆ K (see Lemma 3.1.13), we get that the above identity for the integrals is
equivalent to h

(
Kλ + |λ|K∗, u

)
= h(K, u) for all u ∈ supp S

(
K[n − i − 1], E[i]; u

)
. On the other

hand, since E is regular and strictly convex, supp S
(
K[n − i − 1], E[i]; u

)
= clUi(K) ⊇ clU0(K)

(see Proposition 3.1.19). So we get h
(
Kλ + |λ|K∗, u

)
= h(K,u) for all u ∈ clU0(K). Notice that

it implies, in particular, that K is a tangential body of Kλ + |λ|K∗.
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Now observe that, for every u ∈ clU0(K) = U0(K∗) (see Lemma 3.1.12) it holds

h(K, u) = h
(
Kλ + |λ|K∗, u

)
= h(Kλ, u) + |λ|h(K∗, u) = h(Kλ, u) + |λ|h(E, u) = h

(
Kλ + |λ|E, u

)
,

which shows that K is a tangential body of Kλ + |λ|E, for all λ ∈ [−r, 0]; in particular, K is a
tangential body of K−r + rE as required.

Notice that the assumptions of regularity and strict convexity for E are needed just for the
equality case; the inequalities hold for any E ∈ Kn

0 .

The particular case i = 0 provides a new upper bound for the volume of the inner parallel body.

Corollary 4.3.3 ([28]). Let K ∈ Kn
0 and let E ∈ Kn

0 be a regular and strictly convex body. For
−r ≤ λ ≤ 0 it holds

V(Kλ) ≤ V(K)− |λ|
n−1∑

k=0

V
(
Kλ[k],K[n− k − 1],K∗).

If K is a tangential body of K−r + rE verifying condition (3.15) then equality holds. Conversely, if
equality holds then K is a tangential body of K−r + rE.

Notice that in the case λ = −r we get the following lower bound for the volume of K:

V(K) ≥ r
n−1∑

k=0

V
(
K−r[k], K[n− k − 1],K∗).

Remark 4.4. Inequalities in Theorem 4.3.2 allow to give an alternative proof to the fact that the
left derivative of the i-th quermassintegral with respect to λ, −r < λ ≤ 0 is bounded from below
by (n− i)V

(
Kλ[n− i− 1],K∗

λ, E[i]
)
, which was proved in [41, Lemma 3.5] (see Lemma 3.2.3): for

h ≥ 0, using (4.12) and considering that Kλ−h is an inner parallel body of Kλ if λ−h > −r, we get

′Wi(λ) = lim
h→0

Wi(Kλ; E)−Wi(Kλ−h; E)
h

≥ lim
h→0

h
∑n−i−1

k=0 V
(
Kλ−h[k],Kλ[n− i− k − 1],K∗

λ, E[i]
)

h

=
n−i−1∑

k=0

V
(
Kλ[n− i− 1],K∗

λ, E[i]
)

= (n− i)V
(
Kλ[n− i− 1], K∗

λ, E[i]
)
.

Moreover, since E ⊆ K∗
λ for all −r < λ ≤ 0, then we also get ′Wi(λ) ≥ (n− i)Wi+1(Kλ; E). ♦

4.4 Inequalities for convex bodies lying in the class Rp

Under the assumption that the convex body K ∈ Kn
0 lies in the class Rp, we can improve the

previous inequalities.
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Proposition 4.4.1 ([28]). Let K ∈ Kn
0 be a convex body lying in the class Rp and let E ∈ Kn

0 be
regular and strictly convex. For 0 ≤ i ≤ p and for −r ≤ λ ≤ 0 it holds

Wi(Kλ; E) ≥ Wi(K; E)−(n− i) |λ|Wi+1(K; E) + (n− i)
λ2

2
V

(
K[n− i− 2],K∗, E[i + 1]

)

− (n− i)
n−i−2∑

k=1

∫ 0

λ
tV

(
Kt[k],K[n− i− k − 2],K∗, E[i + 1]

)
dt.

(4.13)

If K is a tangential body of K−r + rE verifying condition (3.15) then equality holds in all the
inequalities. Conversely, if equality holds in (4.13) for some i ∈ {0, . . . , p} then K is a tangential
body of K−r + rE.

Proof. If we consider inequality (4.12) in the case of the (i + 1)-th quermassintegral, i = 0, . . . , p,

Wi+1(Kλ; E) ≤ Wi+1(K; E)− |λ|V(
K[n− i− 2],K∗, E[i + 1]

)

− |λ|
n−i−2∑

k=1

V
(
Kλ[k],K[n− i− k − 2],K∗, E[i + 1]

)
,

integrating from λ to 0 we get
∫ 0

λ
Wi+1(Kt; E) dt ≤

∫ 0

λ

[
Wi+1(K; E) + tV

(
K[n− i− 2],K∗, E[i + 1]

)]
dt

+
∫ 0

λ
t

n−i−2∑

k=1

V
(
Kt[k],K[n− i− k − 2],K∗, E[i + 1]

)
dt.

Since K ∈ Rp, we have that W′
i(Kt) = (n− i)Wi+1(Kt) for i = 0, . . . , p, and hence

1
n− i

[
Wi(K; E)−Wi(Kλ;E)

] ≤ −λWi+1(K;E)− λ2

2
V

(
K[n− i− 2],K∗, E[i + 1]

)

+
n−i−2∑

k=1

∫ 0

λ
tV

(
Kt[k], K[n− i− k − 2],K∗, E[i + 1]

)
dt,

which concludes the proof of the inequality. The conditions for the equality case follow directly
from Theorem 4.3.2.

Proposition 4.4.1 for the class R0 leads to the following corollary.

Corollary 4.4.2 ([28]). Let K ∈ Kn
0 and let E ∈ Kn

0 be a regular and strictly convex body. For
−r ≤ λ ≤ 0 we have

V(Kλ) ≥ V(K)−n |λ|W1(K; E)+n
λ2

2
V

(
K[n−2],K∗, E

)−n
n−2∑

k=1

∫ 0

λ
tV

(
Kt[k],K[n−k−2],K∗, E

)
dt.

If K is a tangential body of K−r + rE verifying condition (3.15) then equality holds. Conversely, if
equality holds then K is a tangential body of K−r + rE.
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This inequality strengths the one obtained by Brannen in [9, Corollary 2], namely,

V(Kλ) ≥ V(K)−n |λ|W1(K;E)+n
λ2

2
W2(K; E)+n

n−2∑

k=1

∫ |λ|

0
tV

(
Kt[k],K[n−k−2], E[2]

)
dt. (4.14)

Notice that when λ = −r, Corollary 4.4.2 provides an upper bound for the volume of K:

1
n

V(K) ≤ rW1(K; E)− r2

2
V

(
K[n− 2],K∗, E

)
+

n−2∑

k=1

∫ 0

−r
tV

(
Kt[k], K[n− k − 2],K∗, E

)
dt.

Moreover, in the case n = 3, the above inequality is written as

1
3
V(K) ≤ rW1(K; E)− r2

2
V

(
K,K∗, E

)
+

∫ 0

−r
tV

(
Kt,K

∗, E
)
dt. (4.15)

Since it improves the corresponding inequality by Brannen (4.14) for n = 3 which, in turn, is sharper
than the so called Osserman inequality in the particular case of n = 3 and E = B3 (for a proof of
this assertion see [9, p. 3982]), namely

V(K) ≤ 3r(K)W1(K)− 2r(K)2
(
κ3W1(K)

)1/2

(see [37]), we get thus that (4.15) is a strengthening of Osserman inequality.

Remark 4.5. Before finishing this chapter we would like to point out that in [43, p. 175] it is
proved that for any convex body K ∈ Kn

0 with inradius r = r(K) and for all −r ≤ λ ≤ 0,

V(Kλ) ≥ V(K)− 3 |λ|W1(K) + 2λ2W2(K) + λ2W2(Kλ), (4.16)

where equality holds for all −r ≤ λ ≤ 0 if and only if K is a 1-tangential body of K−r + rB3.
The proof of the equality case is not correct since, in fact, if equality holds in (4.16) then K is
a 1-tangential body of K−r + rB3, but not every 1-tangential body of K−r + rB3 satisfies (4.16);
condition (3.15) is needed (see Figure 3.4). Inequality in Corollary 4.4.2 for n = 3 and E = B3,

V(Kλ) ≥ V(K)− 3 |λ|W1(K) + 3
λ2

2
V(K, K∗, E)− 3

∫ 0

λ
tV(Kt,K

∗, E) dt,

strengths (4.16) (the proof of this fact is analogous to the one in [9, p. 3982]). ♦



Chapter 5

From Brunn-Minkowski to Poincaré type

inequalities

From Brunn-Minkowski to Poincaré type

inequalities

The functional Φ : Kn −→ C(Sn−1) assigning to every convex body K its support function
hK : Sn−1 −→ R maps Kn into the abstract cone Φ(Kn) of functions in C(Sn−1) which are the
support function of some convex body (see Theorem 1.1.11). Thus, in a first step, we can consider
any functional F : Kn −→ R as defined on Φ(Kn).

This map Φ allows also to translate Minkowski sum, and so outer parallel bodies, into C(Sn−1).
From this point of view, if K is a convex body, K +λBn, λ ≥ 0, can be identified with hK +λ (since
hB3(u) = 1 in every direction u ∈ Sn−1). Notice that hK−λ is not, in general, the support function
of the inner parallel body K−λ; however, if K is of class C2

+, for λ ≥ 0 small enough it is easy to
check that hK − λ is the support function of some convex body L. In fact, for any ψ ∈ C2(Sn−1)
and λ small enough in absolute value, hK + λψ is a support function.

Following the spirit of the previous chapters (definition of functionals on convex bodies with
respect to the full system of parallel bodies), for ψ : Sn−1 −→ R of class C2 and K ∈ Kn of class
C2

+, let ε > 0 be small enough such that hK + λψ ∈ Φ(Kn) for any λ ∈ (−ε, ε), i.e., hK + λψ is the
support function of some convex body. Then, in a second step, a functional F : Kn −→ R can be
seen as a function on the variable λ, F : (−ε, ε) −→ R, just taking F (λ) = F

(
hK + λψ

)
.

In this chapter we will be mainly interested in the case of the quermassintegrals Wi. As we
have already seen in Chapter 2, the general Brunn-Minkowski inequality ensures that if K and L

are convex bodies in Rn and t ∈ [0, 1] then

Wi

(
(1− t)K + tL

)1/(n−i) ≥ (1− t)Wi(K)1/(n−i) + tWi(L)1/(n−i)
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for i = 0, . . . , n (see Theorem 1.2.12), i.e., the functional W1/(n−i)
i : Kn −→ R is concave, for

i = 0, . . . , n. The above remarks allow now to consider W1/(n−i)
i as functions of the real variable

λ ∈ (−ε, ε), for ε > 0 small enough. The concavity property of these functions will lead to certain
Poincaré type inequalities, which are the main aim of this chapter.

As mentioned in Chapter 1, the classical version of Brunn-Minkowski inequality (1.9) is one of
the fundamental results in the Theory of Convex Bodies, and it is the starting point of many other
similar inequalities involving mixed volumes of convex bodies. Nevertheless, as it is pointed out
in [19], its role goes beyond the limits of the Theory of Convex Bodies, having connections with
several important inequalities, for instance, in Analysis. Its equivalent functional formulation, the
Prékopa-Leindler inequality, is related to Young’s convolution inequality. Bobkov and Ledoux [5]
gave a proof of the Sobolev and Gagliardo-Nirenberg inequalities with optimal constant, based on
the Brunn-Minkowski inequality.

In [12] an argument leading from the Brunn-Minkowski inequality to a Poincaré-type inequality
on the boundary of smooth convex bodies with positive Gauss curvature is given. The main idea
is based on the fact that the concavity of the functional involved in Brunn-Minkowski inequality
implies that its second variation must be negative semi-definite. At this point it is precisely the
idea of defining the volume as a function on a real variable which provides the key-tool to use the
concavity of the functional. In this chapter the natural continuation of the aforementioned work
[12] is developed and all the results we present here can be found in [13].

5.1 Preliminaries

Let f : Sn−1 −→ R be a function of class C3 on the sphere. Setting {E1, . . . , En−1} a local ortho-
normal frame of vector fields on Sn−1, we denote by fi, fij and fijk, respectively, the first, second
and third covariant derivatives of f with respect to {E1, . . . , En−1}, for i, j, k ∈ {1, . . . , n − 1}.
Thus, writing grad f and Hess f for the gradient and the Hessian of f , respectively, we have
fi = Ei(f) = 〈grad f, Ei〉 = df(Ei), fij = Hess f(Ei, Ej) and fijk =

〈
grad

(
Hess f(Ei, Ej)

)
, Ek

〉
.

For further definitions and properties on this subject we refer for instance to [57, Chapter 1, §2
and §3] or [32].

The following properties on the high order covariant derivatives hold (we write δij to denote
the standard Kronecker symbols). They can be found in [57, Chapter 1, §3].

Lemma 5.1.1. Let f : Sn−1 −→ R be a function of class C3. Then

fij = fji,

fijk = fjik,

fijk = fikj + fjδik − fkδij .
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On the other hand, we denote as usual by div the divergence on the sphere, i.e., for a vector
field X =

∑n−1
i=1 XiEi on Sn−1, the divergence X is given by

div X =
n−1∑

i=1

Ei(Xi).

It is clear from the definition of divergence that for f ∈ C2(Sn−1) and a vector field X on the sphere,
it holds that

div(fX) = 〈grad f, X〉+ f div X. (5.1)

The well-known divergence theorem can be stated in the following way (it can be checked, for
instance, in [57, Chapter 1, Theorem 2.1]):

Theorem 5.1.2 (Divergence theorem). For any orientable compact Riemannian manifold Σ
without boundary and for any vector field X on Σ it holds

∫

Σ
div X = 0.

5.1.1 Elementary symmetric functions

Now we introduce some notions on elementary symmetric functions of the eigenvalues of square
matrices that we will use to prove the main results in this chapter. We refer to [40, Chapter 1] for
a further study of this topic.

Let m ∈ N be a positive integer. For an m×m symmetric matrix A = (aij)ij having eigenvalues
λ1, . . . , λm and for k ∈ {0, . . . , m}, the k-th elementary symmetric function of A is defined as the
k-th elementary symmetric function of its eigenvalues, i.e.,

sk(A) := sk(λ1, . . . , λm) =
∑

1≤i1<···<ik≤m

λi1 · · ·λik , if k ≥ 1,

s0(A) := 1.

In particular, s1(A) = trA and sm(A) = detA are the trace and the determinant of A, respectively.
We also need to consider the following: for A and k as above and i, j ∈ {1, . . . ,m}, let

sij
k (A) =

∂sk(A)
∂aij

.

The matrix consisting of these entries, i.e.,
(
sij
k (A)

)
ij
, is still symmetric and can be considered as

a k-th cofactor matrix of A.

Remark 5.1. Note that in the case k = m, the matrix
(
sij
m(A)

)
ij

is the usual cofactor matrix,

whereas for k = 1 we get sij
1 (A) = δij since the trace does not depend on the form in which the

matrix is expressed. Hence,
(
sij
1 (A)

)
ij

is the m×m identity matrix Im. ♦
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In the sequel we will use some properties of elementary symmetric functions of matrices that, for
convenience, we gather in the following statement. For their proofs and more detailed explanations
we refer to [38] and [40].

Proposition 5.1.3. Let A = (aij)ij be an m ×m symmetric and positive definite matrix and let
i, j, k ∈ {1, . . . , m}. Then the following facts hold:

i) If A is diagonal then
(
sij
k (A)

)
ij

is diagonal.

ii) If λ1, . . . , λm denote the eigenvalues of A, then the eigenvalues of
(
sij
k (A)

)
ij

are given by

sk−1

(
diag(λ1, . . . , λ̂l, . . . , λm)

)
, l = 1, . . . , m.

Here λ̂ means that we omit the value λ.

iii) sk(A) = sm−k(A−1) detA.

iv) The k-th elementary symmetric function

sk(A) =
1
k

m∑

i,j=1

sij
k (A)aij . (5.2)

v) It holds tr
(
sij
k (A)

)
ij

= (m− k)sk−1(A).

5.1.2 Convex bodies of class C2
+

We already know that the functionals W1/(n−i)
i : Kn −→ R are concave in the class of convex

bodies. Throughout this chapter we develop some of the consequences of considering the “heuris-
tically natural” negativity of the second variation of the functional provided by the concavity.

We denote by NK : bd K −→ Sn−1 the Gauss map of K, i.e., for x ∈ bd K, NK(x) is the
outer unit normal vector to bdK at x. If K is of class C2

+ then its Gauss map NK is differentiable
on bdK and its differential dNK is the Weingarten map of bd K. Moreover NK is invertible and
its inverse N−1

K : Sn−1 −→ bdK is also differentiable (hence NK is a diffeomorphism) and the
matrix associated to the linear map dN−1

K is
(
(hK)ij + hKδij

)
ij

(see [22, Section 2]). Moreover,
it is known (see [49, Section 2.5]) that a convex body K is of class C2

+ if and only if its support
function hK ∈ C2(Sn−1) and the (n− 1)× (n− 1) matrix

M−1
K :=

(
(hK)ij + hKδij

)
ij

(5.3)

is positive definite at each point of Sn−1. This implies, in particular, that MK is also positive
definite. We will write M > 0 to mean that a matrix M is positive definite. The eigenvalues of
MK are the principal curvatures of K and so, the eigenvalues of M−1

K are the principal radii of K

(see [49, Section 2.5] for precise definitions and properties).
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Then it follows that the set

S =
{

h ∈ C2(Sn−1) :
(
hij + hδij

)
ij

> 0 on Sn−1
}

consists of support functions of convex bodies of class C2
+; i.e., if h ∈ S, then there exists K ∈ Kn

of class C2
+ such that h = hK , and conversely, for any K ∈ Kn of class C2

+, hK ∈ S.

On the other hand, in Chapter 1 we have seen that the quermassintegrals of K ∈ Kn can be
expressed as an integral, up to a constant, of the support function with respect to the corresponding
mixed surface area measure (cf. (1.2)), namely, for i = 0, . . . , n− 1,

Wi(K) =
1
n

∫

Sn−1

hK dS
(
K[n− i− 1], Bn[i]; ·) =

1
n

∫

Sn−1

hK dSn−i−1(K; ·).

In the particular case when K is a convex body of class C2
+, the mixed surface area measure involved

in this integral expression can be written in terms of the (n−i−1)-st elementary symmetric function
of M−1

K (see [49, (5.3.11), p. 291]), namely, in general

Sk(K; ·) =
(

n− 1
k

)−1

sk(M−1
K )Hn−1, (5.4)

and then it holds

Wi(K) =
1
n

(
n− 1

n− i− 1

)−1 ∫

Sn−1

hKsn−i−1(M−1
K ) dHn−1. (5.5)

Here Hn−1 denotes the usual (n− 1)-dimensional Hausdorff measure.

From now on if h ∈ S we will write Kh to denote the convex body (of class C2
+) whose support

function is h. Then by (5.5) and Theorem 1.2.12 we get the following result.

Proposition 5.1.4. For 0 ≤ i ≤ n− 1, let Fi denote the functional

Fi : S −→ R+, Fi(h) =
∫

Sn−1

h sn−i−1(M−1
Kh

) dHn−1.

Then F
1/(n−i)
i is concave in S.

Proposition 5.1.4 is the first necessary tool we will use in order to prove the results we include
in this chapter.

5.2 A lemma concerning Hessian operators on the sphere

This section is devoted to prove the following lemma, as well as a useful formula which is crucial
for the calculations needed in the main results of the chapter. For any matrix A, we will write[
sij
k (A)

]
j

to denote the vector field defined by the i-th row of the matrix
(
sij
k (A)

)
ij
.
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Lemma 5.2.1 ([13]). Let f ∈ C2(Sn−1) and k ∈ {1, . . . , n − 1}. Let {E1, . . . , En−1} be a local
orthonormal frame of vector fields on Sn−1. Then, for every i ∈ {1, . . . , n− 1},

div
([

sij
k (Hess f + fIn−1)

]
j

)
=

n−1∑

j=1

Ej

(
sij
k (Hess f + fIn−1)

)
= 0.

The case k = n− 1 of the preceding lemma was proved by Cheng and Yau in [11, p. 504]. We
also note that an analogous result is valid in the Euclidean setting, with Hess f + fIn−1 replaced
by Hess f (see, for instance, [38, Proposition 2.1] and [40, Section 2.3]). In order to show it we
follow a similar argument to the one in [40] for the Euclidean case, using some (standard) tools
from Differential Geometry on the sphere Sn−1.

Proof. For k ∈ {0, . . . , n−1}, the k-th elementary symmetric function of a symmetric (n−1)×(n−1)
matrix A = (aij)ij can be written in the following way (see, for instance, [38]):

sk(A) =
1
k

n−1∑

ir,jr=1
r=1,...,k

δ

(
i1, . . . , ik
j1, . . . , jk

)
ai1j1 · · · aikjk

, (5.6)

where the Kronecker symbol δ
(

i1,...,ik
j1,...,jk

)
equals 1 (respectively, −1) when i1, . . . , ik are all distinct

and (j1, . . . , jk) is an even (respectively, odd) permutation of (i1, . . . , ik); otherwise it is 0. Using
the above equality we have

sij
k (A) =

1
(k − 1)!

n−1∑

i,j,ir,jr=1
r=1,...,k−1

δ

(
i, i1, . . . , ik−1

j, j1, . . . , jk−1

)
ai1j1 · · · aik−1jk−1

.

Hence we can write

(k−1)!
n−1∑

j=1

Ej

(
sij
k (Hess f + fIn−1)

)

=
n−1∑

j=1

n−1∑

i,j,ir,jr=1
r=1,...,k−1

δ

(
i, i1, . . . , ik−1

j, j1, . . . , jk−1

)
Ej

(
(fi1j1 + fδi1j1) · · · (fik−1j k−1

+ fδik−1j k−1
)
)

=
n−1∑

j=1

n−1∑

i,j,ir,jr=1
r=1,...,k−1

δ

(
i, i1, . . . , ik−1

j, j1, . . . , j k−1

)[
(fi1j1j + fjδi1j1)(fi2j2 + fδi2j2) · · · (fjk−1ik−1

+ fδik−1jk−1
)

+ · · ·+ (fi1j1 + fδi1j1) · · · (fik−2jk−2
+ fδik−2jk−2

)(fik−1jk−1j + fjδik−1jk−1
)
]
.

(5.7)

In the last sum, for fixed i1, . . . , ik−1, j1, . . . , jk−1, j, we consider the terms

A = δ1(fi1j1j + fjδi1j1)C and B = δ2(fi1jj1 + fj1δi1j)C ,
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where
δ1 = δ

(
i, i1, i2, . . . , ik−1

j, j1, j2, . . . , jk−1

)
, δ2 = δ

(
i, i1, i2, . . . , ik−1

j1, j, j2, . . . , jk−1

)
,

and
C = (fi2j2 + fδi2j2) · · · (fjk−1ik−1

+ fδik−1jk−1
).

Clearly δ2 = −δ1. Moreover by using the relation concerning the third covariant derivatives on
Sn−1 given in Lemma 5.1.1 we get that

A + B = δ1C
(
fi1j1j + fjδi1j1 − fi1jj1 − fj1δi1j

)
= 0.

This argument can be repeated for any other term of the last sum in (5.7); in fact, for any term
A in the above sum, there exists another term B, uniquely determined, which cancels out with A.
This concludes the proof.

As a consequence of this lemma, we can prove the following result, which states that we can
“move” the first covariant derivative from one function to another in the suitable context.

Lemma 5.2.2. Let A be a matrix of the form A = Hess f + fIn−1 for some f ∈ C2(Sn−1). Let
g, φ ∈ C1(Sn−1) and k ∈ {1, . . . , n− 1}. Then, for every i ∈ {1, . . . , n− 1},

∫

Sn−1

g

n−1∑

j=1

φj sij
k (A) dHn−1 = −

∫

Sn−1

φ

n−1∑

j=1

gj sij
k (A) dHn−1.

Proof. Let i, k ∈ {1, . . . , n− 1} be fixed and consider the vector field
[
sij
k (A)

]
j
, for j = 1, . . . , n− 1,

given by the i-th row of the matrix
(
sij
k (A)

)
ij
. By (5.1) it is clear that the divergence of the product

φ
[
sij
k (A)

]
j

gives

div
(
φ

[
sij
k (A)

]
j

)
=

〈
gradφ,

[
sij
k (A)

]
j

〉
+ φdiv

([
sij
k (A)

]
j

)
=

〈
gradφ,

[
sij
k (A)

]
j

〉
,

where the last equality follows from Lemma 5.2.1. Thus we get immediately that

div
(
φ

[
sij
k (A)

]
j

)
=

n−1∑

j=1

φj sij
k (A)

and we can rewrite the integral in the statement as

∫

Sn−1

g
n−1∑

j=1

φj sij
k (A) dHn−1 =

∫

Sn−1

g div
(
φ

[
sij
k (A)

]
j

)
dHn−1.

On the other hand, using again (5.1) we get that

g div
(
φ

[
sij
k (A)

]
j

)
= div

(
gφ

[
sij
k (A)

]
j

)
−

〈
grad g, φ

[
sij
k (A)

]
j

〉
.
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Substituting this expression in the above integral and applying divergence Theorem 5.1.2 we reach
the required result:

∫

Sn−1

g

n−1∑

j=1

φj sij
k (A) dHn−1 =

∫

Sn−1

[
div

(
gφ

[
sij
k (A)

]
j

)
−

〈
grad g, φ

[
sij
k (A)

]
j

〉]
dHn−1

= −
∫

Sn−1

〈
grad g, φ

[
sij
k (A)

]
j

〉
dHn−1 = −

∫

Sn−1

φ
n−1∑

j=1

gj sij
k (A) dHn−1.

5.3 Poincaré type inequalities for convex bodies of class C2
+

The classical Poincaré inequality (with optimal constant) can be established in the following
terms (see, for instance, [36, Section 3]):

Theorem 5.3.1 (Poincaré inequality). Let φ ∈ C1(Sn−1) be such that

∫

Sn−1

φdHn−1 = 0. (5.8)

Then

(n− 1)
∫

Sn−1

φ2 dHn−1 ≤
∫

Sn−1

|gradφ|2 dHn−1. (5.9)

In this section we will get two Poincaré type inequalities for convex bodies which are of class
C2

+. Before stating those theorems, we collect in the following subsection some previous results
which will be needed in the proofs of the main ones.

5.3.1 Some preliminary results

We recall that if K is of class C2
+ then its support function hK ∈ S; and conversely, for any

h ∈ S there exists a (unique) convex body Kh of class C2
+ having h as its support function. We

consider, for k ∈ {0, . . . , n− 1}, the function Fk as defined in Proposition 5.1.4. It is clear that for
φ ∈ C∞(Sn−1), h ∈ S and ε > 0 small enough, hλ = h + λφ ∈ S for |λ| ≤ ε. Following the analogy
with the notation stated in (5.3), we write M−1

λ to denote the matrix M−1
λ =

(
(hλ)ij + hλδij

)
ij

.
Notice that for λ = 0 we get M−1

0 = M−1
Kh

. With this notation we prove the following result.

Proposition 5.3.2 ([13]). Let k ∈ {0, . . . , n − 1}, h ∈ S, φ ∈ C∞(Sn−1) and ε > 0 be such that
h + λφ ∈ S for every λ ∈ (−ε, ε). Let f(λ) = Fk(hλ) for λ ∈ (−ε, ε). Then

f ′(λ) = (n− k)
∫

Sn−1

φ sn−k−1(M−1
λ ) dHn−1. (5.10)
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Proof. Clearly we have

f ′(λ) =
∫

Sn−1

d

dλ

[
hλ sn−k−1(M−1

λ )
]

dHn−1 =
∫

Sn−1

[
φ sn−k−1(M−1

λ ) + hλ
d

dλ
sn−k−1(M−1

λ )
]

dHn−1.

For the sake of brevity we denote by mλ
ij = (hλ)ij + hλδij the entries of the matrix M−1

λ . Since the
elementary symmetric functions of M−1

λ are functions of its entries mλ
ij (see e.g. (5.6)), we can just

apply the chain-rule to get that

d

dλ
sn−k−1(M−1

λ ) =
n−1∑

i,j=1

d

dmλ
ij

sn−k−1(M−1
λ )

dmλ
ij

dλ
=

n−1∑

i,j=1

sij
n−k−1(M

−1
λ )(φij + φδij), (5.11)

and thus

f ′(λ) =
∫

Sn−1

[
φ sn−k−1(M−1

λ ) + hλ

n−1∑

i,j=1

sij
n−k−1(M

−1
λ )(φij + φδij)

]
dHn−1

=
∫

Sn−1

φ sn−k−1(M−1
λ ) dHn−1 +

∫

Sn−1

hλ

n−1∑

i,j=1

sij
n−k−1(M

−1
λ )φij dHn−1

+
∫

Sn−1

hλφ
n−1∑

i,j=1

sij
n−k−1(M

−1
λ )δij dHn−1.

(5.12)

Applying Lemma 5.2.2 twice to the second integral of the sum in (5.12) we obtain
∫

Sn−1

hλ

n−1∑

i,j=1

φij sij
n−k−1(M

−1
λ ) dHn−1 = −

∫

Sn−1

φi

n−1∑

i,j=1

(hλ)j sij
n−k−1(M

−1
λ ) dHn−1

=
∫

Sn−1

φ

n−1∑

i,j=1

(hλ)ij sij
n−k−1(M

−1
λ ) dHn−1.

(5.13)

On the other hand, using the expression of the elementary symmetric function of a matrix given
by (5.2) we get

n−1∑

i,j=1

sij
n−k−1(M

−1
λ ) mλ

ij = (n− k − 1)sn−k−1(M−1
λ ). (5.14)

Then using (5.13) and (5.14) in (5.12) we obtain finally

f ′(λ) =
∫

Sn−1

φ sn−k−1(M−1
λ ) dHn−1 +

∫

Sn−1

φ
n−1∑

i,j=1

sij
n−k−1(M

−1
λ )(hλ)ij dHn−1

+
∫

Sn−1

φ
n−1∑

i,j=1

sij
n−k−1(M

−1
λ )hλδij dHn−1

=
∫

Sn−1

φ sn−k−1(M−1
λ ) dHn−1 +

∫

Sn−1

φ

n−1∑

i,j=1

sij
n−k−1(M

−1
λ )

[
(hλ)ij + hλδij

]
dHn−1

=
∫

Sn−1

φ sn−k−1(M−1
λ ) dHn−1 + (n− k − 1)

∫

Sn−1

φ sn−k−1(M−1
λ ) dHn−1.



84 From Brunn-Minkowski to Poincaré type inequalities

The next result is a straightforward consequence of Proposition 5.3.2.

Proposition 5.3.3 ([13]). Let k ∈ {0, . . . , n − 1}, h ∈ S, φ ∈ C∞(Sn−1) and ε > 0 be such that
h + λφ ∈ S for every λ ∈ (−ε, ε). Let f(λ) = Fk(hλ) for λ ∈ (−ε, ε). Then

f ′′(0) = (n− k)
∫

Sn−1

φ
n−1∑

i,j=1

sij
n−k−1(M

−1
Kh

)(φij + φδij) dHn−1. (5.15)

Proof. Differentiating (5.10) and using again (5.11) we get

f ′′(λ) =
∫

Sn−1

φ
n−1∑

i,j=1

sij
n−k−1(M

−1
λ )(φij + φδij) dHn−1

and substituting by λ = 0 we obtain immediately the required value for f ′′(0).

Finally we establish a lemma which will be needed in the proof of the second main result of
this section.

Lemma 5.3.4 ([13]). Let K ∈ Kn be of class C2
+, φ ∈ C∞(Sn−1) and ψ = φ ◦ NK on bd K. Let

k ∈ {1, . . . , n− 1}. For each u ∈ Sn−1, if we write x = N−1
K (u) then

1
detM−1

K

〈(
sij
k (M−1

K )
)
ij

gradφ, gradφ
〉

(u) =
〈
M−1

K gradψ,
(
sij
n−k(MK)

)
ij

gradψ
〉

(x).

Proof. We fixed u ∈ Sn−1 and let TuSn−1 be the tangent space of Sn−1 at u, i.e., the (n − 1)-
dimensional linear subspace of Rn that is orthogonal to u. Then we can choose an ortonormal basis
{e1, . . . , en−1} of TuSn−1 such that M−1

K (u) is diagonal: it is enough to consider the eigenvectors
of dN−1

K , with corresponding eigenvalues the principal radii of curvature. Throughout this proof
everything will be computed with respect to the above fixed basis.

Thus we can suppose that M−1
K (u) is diagonal, say M−1

K (u) = diag(λ1, . . . , λn−1), and then

MK(x) = diag
(

1
λ1

, . . . ,
1

λn−1

)
.

In particular

gradψ(x) = MK(x) gradφ(u) =
(

1
λ1

φ1(u), . . . ,
1

λn−1
φn−1(u)

)
. (5.16)

Proposition 5.1.3, parts i) and ii), ensures that the matrix
(
sij
k (M−1

K )
)
ij
(u) is also diagonal and its

eigenvalues are given by sk−1

(
diag(λ1, . . . , λ̂l, . . . , λn−1)

)
, for l = 1, . . . , n − 1. Moreover, part iii)

of Proposition 5.1.3 applied to the matrix diag(λ1, . . . , λ̂l, . . . , λn−1) allows to write (notice that in
this case the order of the matrix is m = n− 2)

sk−1

(
diag(λ1, . . . , λ̂l, . . . , λn−1)

)

detM−1
K (u)

=
1
λl

sk−1

(
diag(λ1, . . . , λ̂l, . . . , λn−1)

)

λ1 · · · λ̂l · · ·λn−1

=
1
λl

sn−k−1

(
diag

(
1
λ1

, . . . ,
1̂
λl

, . . . ,
1

λn−1

))
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Thus we get

1
det M−1

K

〈(
sij
k (M−1

K )
)
ij

gradφ, gradφ
〉

(u) =

∑n−1
i,j=1 sij

k (M−1
K ) φiφj

detM−1
K

(u) =
∑n−1

i=1 sii
k (M−1

K ) φ2
i

det M−1
K

(u)

=
n−1∑

i=1

sk−1

(
diag(λ1, . . . , λ̂i, . . . , λn−1)

)

detM−1
K (u)

φ2
i (u)

=
n−1∑

i=1

1
λi

sn−k−1

(
diag

(
1
λ1

, . . . ,
1̂
λi

, . . . ,
1

λn−1

))
φ2

i (u)

=
n−1∑

i=1

1
λi

sii
n−k

(
MK(x)

)
φ2

i (u) =
n−1∑

i,j=1

1
λi

sij
n−k

(
MK(x)

)
φi(u)φj(u)

=
〈
gradφ(u),

(
sij
n−k

(
MK(x)

))
ij

gradψ(x)
〉

=
〈
M−1

K gradψ,
(
sij
n−k(MK)

)
ij

gradψ
〉

(x),

where the last two identities follow from (5.16).

5.3.2 The main results

The following theorem is one of the main results in this chapter, providing a Poincaré type
inequality on the sphere Sn−1; notice that the classical Poincaré inequality (see Theorem 5.3.1) is
obtained in the particular case when K = Bn.

Theorem 5.3.5 ([13]). Let K ∈ Kn be a convex body of class C2
+ and let k ∈ {1, . . . , n− 1}. For

every φ ∈ C1(Sn−1), if ∫

Sn−1

φ sk(M−1
K ) dHn−1 = 0 (5.17)

then

(n− k)
∫

Sn−1

φ2sk−1(M−1
K ) dHn−1 ≤

∫

Sn−1

〈(
sij
k (M−1

K )
)
ij

gradφ, gradφ
〉

dHn−1. (5.18)

Proof. By standard approximation (see e.g. [55, p. 150]) we may assume that φ ∈ C∞(Sn−1). Let
ε > 0 be such that hK + λφ ∈ S for every λ ∈ (−ε, ε). Setting f(λ) = Fn−k−1(hK + λφ) and
defining g(λ) = f1/(k+1)(λ), it follows from Proposition 5.1.4 that g is a concave function in the
interval (−ε, ε) and so

g′′(0) =
1

k + 1

[(
1

k + 1
− 1

)
f(0)

1
k+1

−2f ′(0)2 + f(0)
1

k+1
−1f ′′(0)

]
≤ 0.

Notice that Proposition 5.3.2 ensures that the assumption (5.17) can be rewritten as f ′(0) = 0
and hence the condition g′′(0) ≤ 0 becomes f(0)−k/(k+1)f ′′(0) ≤ 0. Since

f(0) = Fn−k−1(hK) =
1
n

(
n− 1

k

)−1

Wn−k−1(K) > 0
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(K ∈ C2
+ and hence K ∈ Kn

0 ), it follows that f ′′(0) ≤ 0 and using (5.15) we get

∫

Sn−1

φ2
n−1∑

i,j=1

sij
k (M−1

K ) δij dHn−1 ≤ −
∫

Sn−1

φ

n−1∑

i,j=1

sij
k (M−1

K ) φij dHn−1.

By Proposition 5.1.3, part v), we have

n−1∑

i,j=1

sij
k (M−1

K ) δij =
n−1∑

i=1

sii
k (M−1

K ) = tr
(
sij
k (M−1

K )
)
ij

= (n− k)sk−1(M−1
K ),

and thus the previous inequality can be written as

(n− k)
∫

Sn−1

φ2sk−1(M−1
K ) dHn−1 ≤ −

∫

Sn−1

φ
n−1∑

i,j=1

sij
k (M−1

K ) φij dHn−1.

Now we just have to apply Lemma 5.2.2 in the right-hand side of the above inequality to obtain

∫

Sn−1

φ

n−1∑

i,j=1

φij sij
k (M−1

K ) dHn−1 = −
∫

Sn−1

n−1∑

i,j=1

φjφi s
ij
k (M−1

K ) dHn−1

= −
∫

Sn−1

〈(
sij
k (M−1

K )
)
ij

gradφ, gradφ
〉

dHn−1,

which concludes the proof.

The type of hypothesis as the one given in (5.17) is usually called the mean-zero condition of
the problem.

With the help of Lemma 5.2.1 we can establish a Poincaré type inequality, analogous to the one
in Theorem 5.3.5, now on the border of a convex body K of class C2

+.

Theorem 5.3.6 ([13]). Let K ∈ Kn be a convex body of class C2
+ and let k ∈ {1, . . . , n− 1}. For

every ψ ∈ C1(∂K), if ∫

bd K
ψ sk−1(MK) dHn−1 = 0 (5.19)

then

k

∫

bd K
ψ2sk(MK) dHn−1 ≤

∫

bd K

〈(
sij
k (MK)

)
ij

gradψ, M−1
K gradψ

〉
dHn−1. (5.20)

Proof. Let φ = ψ ◦N−1
K on Sn−1. Notice that the Jacobian of the inverse of Weingarten map dN−1

K

is given by detM−1
K (u) > 0, for all u ∈ Sn−1. Moreover, by part iii) of Proposition 5.1.3 we have

sk

(
MK

(
N−1

K (u)
))

=
sn−k−1

(
M−1

K (u)
)

detM−1
K (u)

,
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for all u ∈ Sn−1 and for every k ∈ {1, . . . , n−1}. Hence applying the change of variable φ = ψ◦N−1
K

we get that the integrals
∫

bd K
ψ sk−1(MK) dHn−1 =

∫

Sn−1

φ sn−k(M−1
K ) dHn−1,

∫

bd K
ψ2 sk(MK) dHn−1 =

∫

Sn−1

φ2 sn−k−1(M−1
K ) dHn−1.

(5.21)

On the other hand, using the same change of variable, Lemma 5.3.4 ensures that
∫

bd K

〈
M−1

K gradψ,
(
sij
k (MK)

)
ij

gradψ
〉

dHn−1 =
∫

Sn−1

〈(
sij
n−k(M

−1
K )

)
ij

gradφ, gradφ
〉

dHn−1.

From the first identity in (5.21), our condition (5.19) gives the corresponding hypothesis (5.17) in
Theorem 5.3.5. So we can apply this theorem, second equality in (5.21) and the above relation to
get the final result:

k

∫

bd K
ψ2sk(MK) dHn−1 = k

∫

Sn−1

φ2 sn−k−1(M−1
K ) dHn−1

≤
∫

Sn−1

〈(
sij
n−k(M

−1
K )

)
ij

gradφ, gradφ
〉

dHn−1

=
∫

bd K

〈
M−1

K gradψ,
(
sij
k (MK)

)
ij

gradψ
〉

dHn−1.

5.4 Some Poincaré type inequalities for general convex bodies

In the case k = 1, the results of the previous section can be established for general convex
bodies (not necessarily of class C2

+). We prove the following theorem.

Theorem 5.4.1 ([13]). Let K ∈ Kn
0 . For every φ ∈ C1(Sn−1), if

∫

Sn−1

φdS1(K; ·) = 0 (5.22)

then ∫

Sn−1

φ2 dHn−1 ≤ 1
n− 1

∫

Sn−1

|gradφ|2 dHn−1.

Proof. Proposition 1.1.4 ensures that K can be approximated (in the Hausdorff metric) by a se-
quence (Km)m∈N of convex bodies of class C2

+. For fixed m ∈ N we write hm = hKm to denote the
support function of Km.

By standard approximation (see, for instance, [55, p. 150]) we may assume that the function
φ ∈ C∞(Sn−1). Let ε > 0 be small enough such that hm + λφ ∈ S for |λ| ≤ ε. As usual, we denote
by (Mm

λ )−1 the matrix
(Mm

λ )−1 =
(
(hm + λφ)ij + (hm + λφ)δij

)
ij
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and we consider the function

fm(λ) =
∫

Sn−1

(hm + λφ)s1
(
(Mm

λ )−1
)
dHn−1.

By Proposition 5.1.4, f
1/2
m is concave and hence

2fm(0)f ′′m(0)− f ′m(0)2 ≤ 0. (5.23)

Since Km is of class C2
+ we know by (5.5) and Proposition 5.3.2 that

fm(0) =
∫

Sn−1

hm s1(M−1
Km

) dHn−1 = n(n− 1)Wn−2(K),

f ′m(0) = 2
∫

Sn−1

φ s1(M−1
Km

) dHn−1.

Moreover, using that sij
1 (M−1

Km
) = δij for all i, j ∈ {1, . . . , n− 1} (see Remark 5.1) and by Proposi-

tion 5.3.3, we get

f ′′m(0) = 2
∫

Sn−1

φ
n−1∑

i,j=1

sij
1 (M−1

Km
)(φij + φδij) dHn−1 = 2

∫

Sn−1

φ
n−1∑

i=1

(φii + φ) dHn−1

= 2
∫

Sn−1

φ

(
(n− 1)φ +

n−1∑

i=1

φii

)
dHn−1.

Substituting the above expressions for fm(0), f ′m(0), f ′′m(0) in (5.23) we obtain

n(n− 1)Wn−2(Km)
∫

Sn−1

φ

(
(n− 1)φ +

n−1∑

i=1

φii

)
dHn−1 ≤

(∫

Sn−1

φ s1(M−1
Km

) dHn−1

)2

.

Now, according to (5.4),
∫

Sn−1

φ s1(M−1
Km

) dHn−1 = (n− 1)
∫

Sn−1

φdS1(Km; ·),

and thus

n(n− 1)Wn−2(Km)
∫

Sn−1

φ

(
(n− 1)φ +

n−1∑

i=1

φii

)
dHn−1 ≤ (n− 1)2

(∫

Sn−1

φdS1(Km; ·)
)2

. (5.24)

On the other hand, Proposition 1.2.5, part viii), ensures that
(
Wn−2(Km)

)
m∈N converges to the

value Wn−2(K) as m tends to infinity (continuity of the mixed volumes), as well as the sequence
of measures

(
S1(Km; ·))

m∈N converges weakly to S1(K; ·), which means that

lim
m→∞

∫

Sn−1

φdS1(Km; ·) =
∫

Sn−1

φdS1(K; ·).
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Thus, letting m →∞ in (5.24) we get

nWn−2(K)
∫

Sn−1

φ

(
(n− 1)φ +

n−1∑

i=1

φii

)
dHn−1 ≤ (n− 1)

(∫

Sn−1

φdS1(K; ·)
)2

= 0,

where the last integral vanishes because of our hypothesis (5.22). Moreover, since K has non-empty
interior then Wn−2(K) > 0 and we get

(n− 1)
∫

Sn−1

φ2 dHn−1 ≤ −
∫

Sn−1

φ
n−1∑

i=1

φii dHn−1. (5.25)

On the other hand, by (5.1) we have

〈gradφ, gradφ〉 = div(φ gradφ)− φ div(gradφ) = div(φ gradφ)− φ
n−1∑

i=1

φii,

and taking integrals and using the divergence Theorem 5.1.2 we obtain

∫

Sn−1

|gradφ|2 dHn−1 =
∫

Sn−1

[
div(φ gradφ)− φ

n−1∑

i=1

φii

]
dHn−1 = −

∫

Sn−1

φ

n−1∑

i=1

φii dHn−1.

Together with (5.25) it proves the result.

In order to apply this kind of results it would be useful to understand when a Borel measure µ

on Sn−1 is the 1-st order surface area measure of some convex body. This problem is known as the
Christoffel problem, and we will not deal here with this question, for which we refer, for instance,
to [49, Section 4.3].

We just would like to mention that necessary and sufficient conditions for a measure µ to be
the 1-st surface area measure of some convex body were obtained by Firey [17] and Berg [2] (see
also [49, Section 4.3]), but they are not easy to use in practice. A considerable progress (in a larger
class of problems) has been made by Guan and Ma in [22] and Sheng, Trudinger and Wang in [51],
where a rather simple sufficient condition is found:

Theorem 5.4.2. Let f ∈ C1(Sn−1), f > 0, having Lipschitz first derivatives, and let g = 1/f . If
∫

Sn−1

uf(u) dHn−1(u) = 0

and the matrix (gij + gδij)ij is positive semi-definite on Sn−1, then there exists a convex body K,
uniquely determined up to translations, such that

S1(K; ·) = fHn−1,

i.e., f is the density of the measure S1(K; ·) with respect to Hn−1.
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In order to finish this chapter we intend to prove a new Poincaré type inequality for general
convex bodies, but now with mean-zero condition in terms of their radial function (see Definition
1.1.9). It will be obtained as a consequence of our previous Theorem 5.4.1 and Theorem 5.4.2,
which will play a crucial role in the proof.

Theorem 5.4.3 ([13]). Let K ∈ Kn
0 be a convex body with 0 ∈ intK. If
∫

Sn−1

uρK(u) dHn−1(u) = 0 (5.26)

and for every φ ∈ C1(Sn−1) it holds that
∫

Sn−1

φρK dHn−1 = 0, (5.27)

then ∫

Sn−1

φ2dHn−1 ≤ 1
n− 1

∫

Sn−1

| gradφ|2 dHn−1.

Proof. In order to prove this theorem it suffices to show that if K is a convex body with 0 ∈ intK

verifying (5.26), then there exists another convex body K ∈ Kn such that ρK is the density of
S1(K; ·) with respect to Hn−1 on Sn−1, i.e., such that S1(K; ·) = ρKHn−1. In this case, condition
(5.27) can be rewritten as ∫

Sn−1

φdS1(K; ·) = 0

for every φ ∈ C1(Sn−1), and hence, Theorem 5.4.1 ensures that
∫

Sn−1

φ2 dHn−1 ≤ 1
n− 1

∫

Sn−1

|gradφ|2 dHn−1.

Thus in order to conclude the proof we have to show the existence of such a set K.

We know that the radial function of the convex body K is related with the support function of
its dual K◦ by means of the identity (1.1), namely,

ρK =
1

hK◦
, on Sn−1.

Let (Km)m∈N be a sequence of convex bodies of class C2
+, with 0 ∈ intKm for all m ∈ N, converging

to K◦ in the Hausdorff metric. In particular, setting hm = hKm , we have that hm → hK◦ uniformly
on Sn−1. Moreover, we have the following properties:

i) since hm is the support function of a convex body containing the origin in its interior, it is
clear that 1/hm > 0 for all m ∈ N;

ii) since Km is of class C2
+ we can assure that for every m ∈ N

(
(hm)ij + hmδij

)
ij

> 0 on Sn−1; (5.28)
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iii) moreover, 1/hm ∈ C2(Sn−1) and in particular, it has Lipschitz first derivatives;

iv) by (5.26) it is possible to construct the sequence Km satisfying that
∫

Sn−1

u
1

hm(u)
dHn−1(u) = 0 for all m ∈ N.

The above properties i), ii), iii), iv) ensure that we can apply Theorem 5.4.2 to the functions
f = 1/hm and g = hm for every m ∈ N, obtaining convex bodies Km such that

S1(Km; ·) =
1

hm
Hn−1. (5.29)

On the other hand, since K◦ is a convex body containing the origin in its interior, its support
function is bounded up and below by two strictly positive constants; or analogously, we have that
c1 < 1/hK◦ < c2 for suitable constants c1, c2 > 0. Then, since Km are also convex bodies containing
the origin in its interior for all m ∈ N, and using the uniform convergence of hm → hK◦ , we can
assure the existence of another two constants c1, c2 > 0 (not depending on m) such that

c1 ≤ 1
hm

≤ c2 on Sn−1, for all m ∈ N.

Thus we have obtained a sequence of convex bodies (Km)m∈N such that, for each m ∈ N, the
associated 1-st order surface area measure of Km is given by the function 1/hm (cf. (5.29)) which
is bounded up and below. Then by [22, Lemma 3.1] we get that the support function of Km,
hKm

, is also bounded for all m ∈ N. Hence, the sequence
(
Km

)
m∈N is bounded, and Blaschke

selection Theorem 1.1.12 ensures that, up to a subsequence, it converges to a convex body K in
the Hausdorff metric. Hence, Proposition 1.2.5, part viii), ensures that the sequence of measures
S1(Km; ·) converges weakly to S1(K; ·) as m tends to infinity. Consequently, and by (5.29) we get

S1(K; ·) =
1

hK◦
Hn−1 = ρKHn−1.

Thus we have obtained a convex body K verifying the required properties, which concludes the
proof of the theorem.
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126–135. MR MR0493914 (58 #12874)

[35] T. Oda, Convex bodies and Algebraic Geometry, Ergebnisse der Mathematik und ihrer Gren-
zgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 15, Springer-Verlag, Berlin,
1988, An introduction to the theory of toric varieties, Translated from the Japanese. MR
MR922894 (88m:14038)

[36] R. Osserman, The isoperimetric inequality, Bull. Amer. Math. Soc. 84 (1978), no. 6, 1182–
1238. MR 58 #18161

[37] , Bonnesen-style isoperimetric inequalities, Amer. Math. Monthly 86 (1979), no. 1,
1–29. MR 80h:52013

[38] R. C. Reilly, On the Hessian of a function and the curvatures of its graph, Michigan Math. J.
20 (1973), 373–383. MR MR0334045 (48 #12364)

[39] R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, No. 28, Princeton Univer-
sity Press, Princeton, N.J., 1970. MR 43 #445

[40] P. Salani, Equazioni hessiane e k-convessità, Ph.D. thesis, Università di Firenze, 1997, (Su-
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