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Summary

Trends in battery-operated portable applications require further miniaturization
and eventually on-chip integration of power processing circuits along with their
optimum power management control circuits, considered as key components in
on-chip power subsystems which have a high impact upon the overall system in
terms of size and efficiency.

On-chip power management subsystems, both in regulation and more sophis-
ticated functionalities as wideband tracking, are ideally based on power switch-
ing converters, paradigm of high efficiency circuits. These subsystems, due to
their nonlinear switched dynamic nature, can exhibit various instabilities which
are mainly classified as slow-scale and fast-scale instabilities, the latter also
known as subharmonic oscillations. The prediction of slow-scale instabilities
can be carried out by conventional averaged dynamic models, which are derived
form a simple mathematical circuit analysis and have a clear design-oriented
standpoint, but due to their averaged nature, they fail to predict fast-scale
instabilities. Alternatively, the prediction of the overall stability boundaries
within the complete design space, encompassing fast-scale subharmonic oscil-
lations, has hitherto been addressed from an analytic standpoint based on the
discrete-time model, which are based on complex analysis that yields accurate
prediction results but lacks of a circuit standpoint and hence are not aligned
with a design-oriented use.

In this thesis the effect of different system parameters upon the stability
boundaries is explored, demonstrating that trends towards integration, namely
the reduction of reactive component size or a decrease of the relative switching
frequency compared to the converter natural dynamics leads to the exhibition
of fast-scale instabilities. As far as characterization is concerned, a two-fold
approach has been considered both exploring the complete parameter design
space of the switching regulator and categorizing it in terms of which type of
nonlinear dynamic performance the circuit exhibits (design space characteriza-
tion), as well as providing a novel characterization of the electrical behaviour
for the different dynamic modes in terms of electrical performance metrics con-
natural to a power processing circuit, such as voltage ripple, average switching
frequency and spectra (electrical characterization).

With the aim of having a design-oriented circuit-based model for predicting
subharmonic instabilities, the thesis proposes a novel approach based on consid-
ering the ripple component at the PWM modulator input as an index to predict
the fast-scale stability boundary -in the particular case of a voltage-mode buck
converter in continuous conduction mode, a representative case of widespread
use in battery-operated applications-. This ripple-based instability index has
been validated both from the instantaneous nonlinear dynamic state equations



solved numerically as well as through experimental prototypes. Finally a bridge
between the ripple-based index approach and the discrete-time model is estab-
lished though relating the ripple and the control signal slope at the switching
instant. The approach has been extended to the discontinuous conduction-
mode and to current-mode control, demonstrating the general purpose of the
ripple-based fast-scale instability prediction approach. A design-oriented com-
prehensive frequency domain model able to concurrently predict both slow scale
and fast scale instabilities through the combined application of averaged models
and the ripple-based approach closes this part.

Complementarily to the prediction of fast-scale stability boundary, fast-scale
instability controllers or chaos controllers are studied, first revisiting the oper-
ating principle of already existing delay-based controllers, afterwards proposing
and analyzing simpler implementation-friendly chaos controllers. Under the in-
tegrated power management perspective, the thesis extends them taking into ac-
count other power processor metrics such as output ripple or transient response,
thereby proposing a novel controller that, apart from improving fast-scale stabil-
ity boundary, allows reducing reactive components size and the output voltage
ripple.

Finally, the thesis tackles the fast-scale instabilities in more advanced topolo-
gies and functionalities, which are representative of advanced power manage-
ment circuits. First, for a multilevel converter, demonstrating that its inherent
lower ripple behaviour makes it less prone to exhibit fast-scale instabilities and
hence a better candidate to integration, and second for a wideband switching
power amplifier, exploring its nonlinear dynamic phenomena and demonstrat-
ing that in the case of a single-tone modulation with a frequency close to the
filter and switching frequencies, the fast scale stability boundary condition for
regulation application is a sufficient condition to guarantee stability over the
entire reference period for tracking applications.



Chapter 1

Introduction

Trends in portable applications such as mobile terminals for next generation
communications proceed in the direction of increasing the computational load
(voice and data communications) while concurrently reducing size and enhanc-
ing operating life time.

Both trends require to investigate on complex power management archi-
tectures and circuits (considered to be key enabling technologies), which make
possible the development of new features according to the aforementioned trends
to develop high-density and high-efficiency portable systems.

Fig. 1.1 shows the system block diagram of a telecommunication battery-
operated portable device, such as a mobile phone, where multiple subsystems
can be identified, such as microprocessor, audio interface, display, baseband pro-
cessing and Radio-Frequency (RF) subsystems. Such subsystems are properly
supplied energy by means of different so-called Point of Load (PoL) voltage reg-
ulators, but there is also power management at system-level, which carries out
energy management of the battery to achieve improved overall efficiency and
therefore to improve the battery operation time.

Figure 1.1: Architecture of a battery-operated portable device (mobile phone).
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The major power consumers that can be identified in the system are the
Radio Frequency power amplifier (RFPA), baseband digital circuitry, display
and analog circuitry.

It is foreseen that the next generation of portable devices will increase their
energy consumption due to the increased functionality. This fact, along with
the slower increase of battery capacity, yields to an increased need and interest
on the power management subsystems, continuously pushed for more miniatur-
ization and higher power density.

1.1 Key enabling technologies for power man-
agement subsystems

Trends in portable applications are associated with the improvement on integra-
tion and miniaturisation of power electronics circuits along with their optimum
power management control, hence being subsystems that guarantee the system
efficiency in terms of energy and that have a high impact upon the system in
terms of size.

These trends are a line of convergence for the future systems in the field of
portable and autonomous battery-supplied devices, where power management
subsystems are one of the key factors that limits the system performance in
terms of ergonomy and life time.

It is possible to identify two trends in modern power management subsys-
tems:

• Integration and miniaturisation of power subsystems, which allow a system
size reduction, increasing reliability and lowering cost.

• Advanced power management, taking into account system-circuit inter-
actions (such as adaptive power supply of microprocessors or RF polar
transmitters for digital communications).

Power subsystems, both in regulation and more advanced power manage-
ment applications, are ideally based on switching power converters, paradigm of
high efficiency power processing circuits. Such converters structure is composed
of a set of reactive components (inductors and capacitors) along with switching
devices (MOSFET, diodes), which by proper driving, control and moddulation,
allow to deliver efficiently the energy from the source to the load.

Integration and miniaturization

The target scenario is a fully on-chip integration of the power managment sub-
system (circuit and control) together with the load circuits in the same silicon
chip substrate resulting in a complete Powered System on Chip (PSOC).

The common trend towards the miniaturization target is the size/value re-
duction of passive components. This is usually associated with integration since
smaller passive components implies easier integration in MOS technology so
that both miniaturization and integration techniques are usually set in the same
group.

First steps made in integration techniques addressed the active parts (Stratakos
et al., 1994), (Jung et al., 1999) and (Kursun et al., 2004), such as MOSFET

2



switch and drivers, while passive components were externally placed out of the
integrated circuit. Subsequently, some works were carried out on passive com-
ponents integration. As regards the inductor, the integration main drawback is
due to the planar nature of MOS technology and the lack of ferromagnetic ma-
terial in a standard process. With the evolution of MEMS processes some works
have been carried out in the monolithic integration of the inductor, such as in
(Ahn et al., 1996), (Iyengar et al., 1999). Other techniques are based on planar
CMOS inductors and others on bond-wire based inductors (Mohan et al., 1999).
As for output capacitance integration, the most common alternative relies on
the parallel plates approach (Aparicio and Hajimiri, 2002).

The circuit-level design-space aimed to integration is limited by three per-
formance metrics (Villar et al., 2003): area, efficiency η and ripple. Then,
reducing the inductance and capacitance parameter values result in a decrease
of the area, but also increases the natural frequency of the implicit low-pass fil-
ter of the DC/DC converter, so that the ratio between the switching frequency
and the natural frequency decreases, hence yielding to high ripple. In order to
increase such ratio and reduce the ripple, which is limited by the load specifica-
tion, the switching frequency is usually increased, but this implies increasing the
switching losses, hence decreasing the overall converter efficiency. The tradeoff
between these three performance metrics is shown in Fig. 1.2

Figure 1.2: Design-space of performance metrics limitations for integration:
Area, Efficiency η and ripple. Two cases are illustrated: low area high-ripple
and low-ripple high-area by keeping constant switching frequency.

It is worth mentioning that the converter performance can also be measured
from other complementary performance metrics, such as transient response set-
tling time due to a load change, but this will not only depend upon converter
parameters but also upon the controller and modulator strategy.

Advanced functionality power management circuits

Switching power converters have hitherto mainly been used in regulation ap-
plications, where it is required to supply a constant voltage to a load. This
regulation function requires a fast reaction in front of a load step change, which
demands to investigate new topologies and control techniques to improve tran-
sient response, and therefore bandwidth, to meet the stringent requirements of
the new generation power loads (such as GHz-clocked microprocessors).
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A further complexity has been added in the functionality of the switching
power converters, using them as tracker of wide band time-varying reference
signals. This is the case of RFPA, in which the necessity of increasing commu-
nication rates implies to use of more complex modulation strategies established
by communications standards. These modulation strategies use the spectrum
more efficiently via using non-constant envelopes, requiring a high-density mod-
ulation constellation, such as OFDM, QPSK or CDMA, among others. The
necessity of using non-constant envelope does not allow RF power amplification
by a high efficiency RF switching amplifier (class E/F), because of its nonlinear
amplitude response, but by means of linear amplifiers (class A) which achieve
very limited maximum efficiency.

The interest in developing new wide band adaptive power management cir-
cuit comes from the necessity of implementing high-efficiency high-linearity RF
transmitters.

One architecture proposed long ago to wide-band power supply RF amplifiers
is the so-called Envelope Elimination and Restoration (EER) technique (Raab
and Rupp, 1994). It separates digitally-modulated complex signals into envelope
and phase, and after efficient power amplification of both polar paths, they are
combined before transmitting the signal to the antenna. The envelope is tracked
and amplified by a switching power converter, based on buck-based switching
converter, as it is shown in Fig. 1.3.

Figure 1.3: EER technique including wide band switching power converter as
adaptive power supply.

Although switching power converters used as wide band envelope track-
ers inherently result in tracking errors (both in-band and out-of-band-errors),
higher switching frequencies leads to reduced tracking errors. Nevertheless, high
switching frequencies also yield to an increase of switching losses, resulting in
an error-efficiency tradeoff.

1.2 Modern power management approaches

In order to make feasible both aforementioned trends, key enabling technologies
have been developed, composed of more complex architectures approaches that
take into account different topology, control and functionality considerations.
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1.2.1 Non-conventional switching power converter topolo-
gies

This section attempts to review the main non-conventional topologies, usu-
ally derived from classical conventional ones (Erickson and Maksimovic, 2001),
used with the aim of achieving better ripple, faster-response and/or smaller
passive components. Most of the reviewed topologies in this section, and fur-
ther in this thesis work, are based on a step-down buck converter, since within
the portable battery-operated low-power scenario the supply voltage, such as a
4.2 V Lithium-Ion battery, is usually higher than the required load voltage, for
instance a digital CMOS load microprocessor (around 1 V).

Figure 1.4: Parallel connected (interleaving) topology based on buck converter.

One of the most common topology is the interleaving converter (Stanley
and Ronald, 1995), which is widely used in high-current low-voltage voltage-
regulator module (VRM) applications among others. The topology is based on
using multiple parallel-connected converter topologies as it is shown in Fig. 1.4
for two connected converters. Its main advantages are its wider bandwidth
tracking and lower output ripple compared to single converter topology whereas,
on the other hand, it has complex control and higher implementation area.

Another less common non-conventional topology is the multi-level converter,
shown in Fig. 1.5. They have been historically used for high-voltage DC-AC
applications, due to both reduced blocking voltages and improved distortion
performance (Meynard et al., 2002). By properly controlling the switches, the
topology could achieve constant (regulation) or non-constant (amplification)
output waveform with low output ripple.

Other more advanced topologies have been developed as hybrid solutions, as
it is the case of the Linear-Assisted (LA) topology (Yousefzadeh et al., 2006a)
in which the switching converter is used usually for high efficiency, despite it
exhibits a nonlinear switched response, besides the ripple. On the other hand,
linear regulators are very accurate and wideband but not efficient. In the LA
topology, the switching power converter is used to process the major part of the
energy, whereas the linear regulator is used to reject the ripple and upper-band
of the signal spectrum, thereby is only managing a small part of energy, avoiding
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Figure 1.5: Multilevel (2-cell, 3-levels) topology based on buck converter.

a severe impact on the overall efficiency.

1.2.2 Non-conventional control

The control architecture consists of generating the different driving signal (de-
pending upon the feedback state variable), the compensator, and the modulation
strategies.

Conventional control architectures are based on either voltage-mode control
(VMC) or current-mode control (CMC) along with using a high DC-gain am-
plifier combined with low gain PWM, as it shown in Fig. 1.6. It uses fixed
switching frequency with variable duty cycle and the control signal is obtained
by comparing a saw-tooth waveform with the control signal proceeding from the
error amplifier.

PWM VMC controller advantages are that they can be used in most con-
verter topologies and exhibit a good DC regulation. On the other hand, they
have slow response to input voltage or load perturbations, and require precise
feedback dynamics compensation.

Another common technique to control the converter is CMC, in which the
inductor current is used as feedback variable and acts as saw-tooth signal mod-
ulator (Deisch, 1978). With this technique, faster response is achieved by using
inductor current instantaneous waveform. This technique is usually comple-
mented with an outer voltage-feedback loop, as it is shown in Fig. 1.6, in order
to regulate the output voltage according to load demands.

In a similar way as in CMC, in which the inductor current is directly feedback
to the comparator, there is a variety of techniques, so-called ripple regulators
(Wester, 1990) and (Redl and Sun, 2009), based on not using error amplifiers
on the feedback path but high-gain duty-ratio modulators. These instanta-
neous control techniques do not require feedback dynamics compensation and
have faster response to load and input perturbations by using the switching
information given by the output ripple. On the other hand, depending upon its
implementation, the switching frequency can not be easily determined, which
makes difficult the components design, among other drawbacks such as potential
exhibition of instabilities exhibition or poor DC-regulation.

All aforementioned control methods are based on analog domain (time-
frequency) design, but there also exists the possibility of implementing these
controllers in the discrete-time domain, yielding to more reconfigurable systems,
but with added nonlinear dynamics because of the analog-to-digital conversion.
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(a)

(b) (c)

Figure 1.6: (a) Conventional PWM modulator scheme (b) VMC and (c) CMC

The feasibility of high-frequency, high-performance digital controller DC-
DC applications started to be considered in the last decade. Based on custom
architectures and microelectronic realizations of the key building blocks (see
Fig. 1.7), including high-resolution high-frequency digital pulse-width modu-
lator (DPWM)), simplified discrete-time compensators scheme (Gc(z)), and
analog-to-digital A/D converters, such controllers offer the advantage of lower
sensibility to parameter variation, programmability, and reduction and elimi-
nation of external passive components, without compromising dynamic perfor-
mance, simplicity and cost.

Figure 1.7: Block diagram of a digital controller.

First works on digital control in a boost converter via a digital-signal pro-
cessor (DSP) was presented in (Tse and Tam, 1994), obtaining however a low
dynamic performance converter. Its switching frequency was around 3 kHz,
restricted by the DSP operating frequency, number of instructions and delay.
While that paper attempted to explore digital control with not so good reg-
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ulation, in (Dancy and Chandrakasan, 1997) an ultra low power controller is
reported, achieving a 88% efficiency and switching frequency of 330 kHz for a
buck converter. Subsequently in (Prodic et al., 2001) a complete design imple-
mentation is presented with more complex control functions at 1 MHz switching
frequency. A different DPWM approach has been studied in (Syed et al., 2004)
in order to improve the performance (delay, resolution and silicon area), while
in (Corradini and Mattavelli, 2008) the effect of multi-sampling technique in the
A/D converter is analyzed, leading to increasing the bandwidth of the converter.

The digital framework adds further complexity in the dynamic performance
of converters by discretitzation of the feedback variable (through A/D con-
verter) and the control PWM signal (through DPWM) along with adding ad-
ditional nonlinearities to the converter, i.e. the sample-and-hold effect of the
A/D converter. A notable effort has been done to establish stability criteria
in (Peterchev and Sanders, 2003) and (Peng et al., 2004) considering DPWM
and A/D converter resolution. Furthermore, in (Maksimovic and Zane, 2007)
a discrete-time model is derived exploring the effect of discretization upon the
frequency response.

1.2.3 Functionality: from regulation to tracking

Power switching converters have usually been used as regulator circuits which
have a fixed output voltage/current. Non-regulation applications have the aim
of dynamically supplying energy to the load following a time-varying reference
(tracking).

A conventional application where non-regulation power switching convert-
ers are considered, is in AC-DC or DC-AC converters, due to the necessity of
shaping the input current in Power Factor Correction (PFC) circuits or output
voltage (inverters) respectively, at very low mains frequency (50 Hz). Hence
switching power converters act as a quasi-static signal tracker.

In the early 90’s, the interest in switching converters grew in audio amplifier
applications. Several companies and laboratories started to investigate on such
topic, taking advantage of the previous knowledge about switching converters
on regulation applications and their properties. As for audio amplifiers, the
switching power converters have to amplify the audiofrequency range (from DC
to 20 kHz).

So far, in the switching amplification field, all studies have been restricted
to low frequency (audio bandwidth). As it was mentioned for the key enabling
technology of RF transmitters with fast adaptive power supplies, in Section 1.1,
interest is nowadays centred on wider bandwidth frequency range. This implies
following a high bandwidth signal in order to amplify it, namely in the order of
MHz (3G) or tens of MHz (WLAN).

Bandwidth analysis to produce a determined error on output signal by using
EER topology based on the buck converter is suggested in (Marco et al., 2006).

1.2.4 Modern power management architectures case ex-
amples

Different applications considered combination of account non-conventional func-
tionality, topology and control revisited in the previous section. This section
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carries out a review of recent proposed architectures, based on switching convert-
ers, targeting performance improvement toward miniaturization and integration
as well as power amplifier functionality.

A first example of a non-conventional approach in the RF adaptive power
supply power amplifier field is given (Yousefzadeh et al., 2005; Rodriguez et al.,
2009) in which a three-level buck-based converter is proposed as an RF power
amplifier power supply. In both cases, the control is implemented digitally. Fur-
thermore, the combination of RF power amplifier along with digital control for
enhanced dynamics is studied in (Yousefzadeh et al., 2006b) where the digitally
controlled buck converter is used as RFPA supply.

Complimentarily to efforts to reduce passive components in DC-DC convert-
ers by using different material/structure technologies (revisited in Section 1.1),
there are some approaches at converter topology level that facilitate integration
while preserving other performance metrics. For instance, in (Schrom et al.,
2004) a multi-phase converter is controlled by a hysteretic (ripple) controller in
order to reduce passive components while improving transient response. In a
similar way, in (Corradini et al., 2009), a digital hysteretic controller is used in
order to improve the system resolution.

Furthermore, in (Villar and Alarcon, 2008) a multilevel converter is used for
full monolithic integration of a DC-DC converter taking advantage of its low
ripple performance, that allows to reduce the inductor size. The flexibility of
digital control has been used in (Bergveld et al., 2008) to implement a simple
zero-voltage switching (ZVS) technique, in order to improve efficiency and to
facilitate the converter integration.

The modern power management architectures presented in this section imply
the use of advanced topologies, control and functionalities, hence increasing the
complexity of their dynamical analysis. The next section revisits the different
dynamic behaviors that can be exhibited by a switching power converter and
discusses the available stability models to predict the boundary between such
dynamic behaviors.

1.3 Dynamics and stability models of switching
power converters

The previous review was focused on the state-of-art of key technologies pur-
suing to allow future power subsystems requirements. With this aim in sight,
it is important to characterize in terms of dynamics these power management
circuits in order to guarantee their proper dynamic behavior and performance.

Switching power converters, due to their switching nonlinear nature, are
prone to exhibit diverse types of nonlinear phenomena.

1.3.1 Overview of nonlinear dynamical systems

Roughly speaking, any system that has a set of independent state variables and
a deterministic relation between them and the system’s inputs, constitutes a
dynamical system. Such dynamic system can be described mathematically as:

ẋ(t) = f(x(t), µ) (1.1)
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where x(t) is the evolution in time of the state-variables, f is the connecting
function, and µ is a vector of external system parameters. If the vector field f
does not depends upon time, the system is called non-autonomus. Otherwise,
the system is called autonomous. Examples of non-autonomous systems are
classical fixed-frequency (PWM) power converters while free-running converter
such as hysteretic converters are autonomous systems.

In such systems, so-called deterministic systems, the exact way that the state
variable follows can be determined by the vector field. For linear systems, given
an initial condition to state-variables, the solution, also known as trajectory, is
completely determined and a closed-form solution can be found.

However, in nonlinear systems, the development of trajectories and the
closed-form solution requires of higher complexity analysis. The system, after
an initial transient, enter its steady-state. The steady-state solution to which
the system converges is called an attractor. In nonlinear systems, the conver-
gence to an attractor will depend upon the initial condition of state-variables.
Thus, to determine the steady-state behavior of the system, it is necessary to
know the possible attractors:

• Equilibrium point : The stedy-state solution is a point in the state-space.

• Limit cycle of a periodic orbit : The steady-state trajectory moves along
a closed path in the state-space.

• Quasi-periodic attractor : The steady-state trajectory moves on the surface
of a torus.

• Chaotic attractor : The steady-state trajectory appears to be random in
the state-space.

Examples of a periodic orbit and a chaotic attractor are shown in Fig. 1.8,
obtained from numerical simulation of the Lorenz system.
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Figure 1.8: Trajectories from the Lorenz system ẋ = 10(y−x), ẏ = x(r−z) and
ż = xy − 3z. (a) Limit cycle in steady-state with r=160 (b) Chaotic attractor
in steady-state with r=25. Initial conditions x=0.1, y=0.1 and z=0.1.

If parameters in a nonlinear system are varied, then the system may abandon
one solution and become attracted to another one. This phenomenon, namely
the sudden change of qualitative behavior when a parameter is changed, is called
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a bifurcation. Bifurcations can be classified according to the type of qualitative
change that takes place.

• period-doubling : This type of bifurcation is characterized by a sudden
doubling of the period of the stable periodic orbit.

• Hopf bifurcation: This type of bifurcation is characterized by a sudden
expansion of the stable equilibrium point to a stable limit cycle.

• Saddle-node: This type of bifurcation is characterized by a sudden loss or
acquisition of a stable equilibrium.

The aforementioned types of bifurcation do not involve structural changes
and they are called smooth bifurcations. However, there are other instabilities
that occur due to a structural change in the system, called Border collision
bifurcation or non-smooth bifurcations.

Considering the described possible bifurcation types and equilibrium points,
different behaviors can be exhibited by varying a parameter. Depending on the
precursor state, different routes to chaos can be distinguished:

• Route to chaos via period-doubling : as one parameter is modified, the
system may undergo a period-doubling bifurcation, which is repeated as
the bifurcation parameter is moved further and eventually ending up in
chaotic behavior.

• Route to chaos via quasi-periodicty : as a parameter is modified, the system
may undergo a Hopf bifurcation and by continuing varying such parameter
the periodicity of the limit cycle is also modified.

1.3.2 Switching power converters dynamics and modeling

Switching power converters can exhibit the different kinds of instabilities in-
troduced in the previous section due to their nonlinear behavior. The most
well-known, Hopf bifurcation or also called slow-scale instability (SSI) within
the switching power converter context, leads to exhibit low frequency oscillations
(El Aroudi et al., 1999). However, switching power converters can also exhibit
other kinds of instabilities. Exhibition of chaotic instabilities and subharmonic
oscillations in switching power converters, called fast-scale instabilities (FSI),
have been reported in the early 80’s in (Redl and Novak, 1981) for the case of
a buck converter under CMC. The SSI and FSI terms were first introduced in
the power electronics field in (Mazumder et al., 2001).

The converter state variables, namely inductor current and capacitor voltage,
and the control signal at the modulator input as a function of time, along with
the spectral domain and phase portrait of each attractor are shown in Fig. 1.9.

The first observations of FSI in switching power converters were just justified
as instabilities. It is later where the concept of chaotic behavior or subharmonic
oscillation came from the Physics discipline, such as in (Deane and Hamill, 1989)
for the case of buck and boost topologies.
These first steps, based on mere observations and experimental corroboration
(Wood, 1989; Krein and Bass, 1990), opened a new branch of dynamic models
of switching power converters able to predict all the dynamics of the converter.
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Figure 1.9: Capacitor voltage, inductor current and modulator input waveforms
along with phase portrait and frequency domain representation, being Pv(f) =
20 log(|VC(f)|), in a VMC buck converter with PI control for the occurrence of
different attractors (a) period-one (b) low frequency oscillation (SSI) and (c)
period-doubling bifurcation (FSI).

The modeling and prediction of the aforementioned instabilities in switching
power converters, necessary to guarantee the stability of the design (or define
robustness of the system), have been tackled from different standpoints during
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Figure 1.10: Discrete time model illustration by sampling a two configuration
system with period T .

the last decades.
On the one hand, obtaining an accurate model of the system, which implies

the use of more sophisticated mathematical tools, hence losing simplicity and
the circuit standpoint. On the other hand, looking from a design and circuit
perspective, which allows simplicity as well as proper synthesis of the controller,
but assuming certain inaccuracy. Both trends were set out by Middlebrook and
his coworkers Packard and Wester in the late 70s.

The first one develops discrete-time models (Packard, 1976), which require
to abandon the continuous-time domain, and somehow lack a design-oriented
perspective but can accurately characterize the switching power converter dy-
namics. The second model is based on a time-averaged power stage model
(Wester and Middlebrook, 1972), which is time-invariant and design-oriented,
but fails to predict the occurrence of FSI.

Both works are considered the origin of two trends in switching power con-
verter dynamic models, although the first one has been later biased to approx-
imated models, so-called sampled-data models, that allow a frequency domain
understanding which is more related to a design-oriented perspective.

This section presents a review of both the averaged and discrete models.
The state of art shows models from basic switching converters to more ad-
vanced topologies as presented in the previous section.

1.3.3 The discrete-time models

The discrete-time model of switching power converters was first presented in
(Packard, 1976). The model is based on concatenating the evolution of state
variables during each switching subinterval, as it is shown in Fig. 1.10, in order
to accurately obtain the evolution of the state variables during the switching
period.

xn+1 = f(xn, µ) (1.2)

where xn is the state variable vector, f is the connecting function and µ is the
external parameter vector.

From the discrete-time model, the stability analysis is carried out by study-
ing the local (linearized) behavior in the vicinity of the steady-state thereby

13



(a) (b)

(c)

Figure 1.11: Classification of eigenvalues (λ) crossing the unit circle: (a)
Neimark-Sacker bifurcation occurrence (b) period-doubling bifurcation and (c)
Saddle-node bifurcation occurrence.

extracting the Jacobian matrix, whose eigenvalues (λ) allow to identify the type
of instability occurrence depending on their value when they cross the unit cir-
cle: if they have imaginary term, the Hopf bifurcation, so-called Neimark-Sacker
bifurcation in discrete-time systems, occurs. If crossing at -1 period-doubling
bifurcation, so-called flip bifurcation in discrete-time systems, occurs, and if
crossing at 1 saddle-node bifurcation occurs. These three categories are shown
in Fig. 1.11.

While the first authors working in this area (developing the sampled-data
models, which will be reviewed in next Section 1.3.3) came from an engineering
background, almost one decade later, similar models were re-developed from au-
thors coming form the nonlinear dynamics community, giving a mathematical
standpoint, without referring to previous aforementioned works. This perspec-
tive was first reported by (Hamill and Jeffries, 1988) for the case of a CMC
buck converter, in (Deane and Hamill, 1990) for a first order (without output
capacitor) VMC buck converter and in (Deane and Hamill, 1991), where a sim-
plified model is proposed for a CMC buck converter. In (Hamill et al., 1992)
a general review of the model is presented. These works are the first to talk
about period-doubling and chaotic behavior.

Works dealing with discrete-time models continued their development be-
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cause of the necessity to full characterize the complete dynamics of more so-
phisticated switching power converters.

The first exact discrete model, based on a linear ripple assumption, is pre-
sented in (Deane, 1992) for the case of a Boost converter with CMC. Subse-
quently, it is in (Tse, 1994a) where a buck converter is addressed in DCM. It is
relevant to note that these first analysis are made in CMC or DCM, since both
are one-dimensional state-variable circuits.

The first analysis of a VMC buck working in CCM and under a proportional
gain is carried out in (Fossas and Olivar, 1996). Later, the VMC buck converter
with a PI compensator is analyzed in (Papafotiou and Margaris, 2002). While
a VMC buck with proportional gain only exhibits FSI, with a PI compensator,
it could also exhibit SSI, yielding to possible interaction between both kind of
instabilites. This interaction is also analysed in (Mazumder et al., 2001) for a
buck converter with a second-order input filter.

As regards the boost converter under VMC, in (Tse, 1994b) it has been
analysed working in DCM by means of a one-dimensional discrete-time model.
Later in (El Aroudi et al., 1999)(Toribio et al., 2000) it is characterized the
stability regions, proving, by numerical simulations and measurements, that the
converter only exhibits FSI instability in DCM.

Further improvements of the models were developed by adding more realistic
effects on the model. It is the case of (Banerjee and Chakrabarty, 1998), where
a model including parasitic components is analysed. The authors also present a
design space exploration encompassing input voltage and load variation, which
are of special interest for regulation applications. In (Parui and Banerjee, 2003),
it has been investigated the stability when the converter operating mode changes
from CCM to DCM as a result of load fluctuations. Subsequently, in (Banerjee
et al., 2004) the inherent switch delay of a power converter is taken into account
in the discrete-time model.

A summary of analysis for nonlinear phenomena by means of a discrete-
time model for buck, boost and buck-boost topologies has been reported in
(di Bernardo et al., 1997) and a new asynchronous discrete-time model is de-
veloped in (di Bernardo et al., 1998). From the analysis of such map, the
authors find a closed-form expression for period-doubling condition and point
that this bifurcation is related to the value of the derivative at the switching
instant. Subsequently, further elaboration of discrete-time models for predicting
bifurcations and chaos in DC-DC switching power converters are presented in
(di Bernardo and Vasca, 2000), (Banerjee et al., 2000a), (Banerjee et al., 2000b)
and (El Aroudi et al., 2005).

Most of the works related to the stability analysis in switching power con-
verters have hitherto been focused in a basic regulation application with con-
ventional topologies. The next paragraphs discuss more complex architectures
as discussed in Section 1.2.

Stability of advanced power management architectures and applica-
tions from discrete-time modeling

In (Tse et al., 2003a) a first work in which it is considered slow variation of the
input voltage is presented. The work presents a PFC stability analysis based
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on parametric sweep by varying the input voltage amplitude and phase.

Subsequently, a varying reference is added by coupling a spurious signal in
(Tse et al., 2003b) yielding the converter to exhibit of a phenomenon so-called
intermittent chaos. By analogy to a moving reference, moving borders of the
the PWM modulator have been explored in (Ma et al., 2004). Recently in (Dai
et al., 2007), (El Aroudi et al., 2008a) SSI is studied in single-stage isolated PFC
converters.

As regards non-conventional topologies discussed in Section 1.2.1, there are
various works for the case of interleaving-converters. Chaos exhibition is re-
ported in (Iu and Tse, 2000) for the case of parallel connected master-slave
buck converters and in (Batchvarov et al., 2002) for the case of interleaving
boost converters. Furthermore, in (Iu and Tse, 2005) an interleaved buck under
CMC is explored, proving that the period-doubling phenomenon is not exhib-
ited in this case. Further analysis upon boundaries between SSI and FSI have
been carried out in (Huang et al., 2007) for an interleaved buck-based converter
by means of a discrete-time model.

As regards to multilevel or multicell topologies, they have only been recently
analysed by developing discrete-time models in (El Aroudi and Robert, 2006)
and (El Aroudi et al., 2008b).

In non-conventional control methods, there exist few works related to discrete-
time models. Most works have been focused in CMC (Verghese et al., 1989).
Recently in (Redl and Sun, 2009) different types of ripple controllers have been
reviewed and their stability has been analyzed. Besides, in (Calvente et al.,
1996) sliding-mode controlled boost converter is analyzed under PI compen-
sator. Subsequently, in (Magauer and Banerjee, 2000) sliding-mode control is
applied to an AC inverter and its stability is analysed by means of discrete-time
models and experimentally validated.

Discrete-time models have been recently naturally reconsidered in digital
control, due to their inherent discrete-time nature via the use of z-transform,
very common in the domain of digital design. In (Van de Sype et al., 2004)
a frequency domain model is given in the z-domain for a first-order buck con-
verter, starting from modeling the effect of different modulators. Besides, in
(Maksimovic and Zane, 2007) a new small signal model of digitally controlled
DC-DC converters is given, taking into account sampling, modulator effects and
delays in the control loop. The model is based on obtaining discrete-time mod-
els in the z-domain. In addition, simpler models have been previously found in
(Maity et al., 2007), which derives an exact discrete model for the case of a buck
with a PWM-1 modulation which is based on adding a sample and hold module
in the feedback loop before the PWM modulator. The work demonstrates the
different types of border collision bifurcation that may occur in the system.

From discrete-time models to frequency domain representation: sampled-
data models

While the discrete-time models accurately capture the dynamics of the con-
verter, their main drawback is the lack of a design-oriented standpoint that
facilitates the proper design of controllers to avoid undesired unstable behavior.
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With this aim in sight there have been some attempts to transform and simplify
such discrete-time models into the frequency domain.

As it was mentioned before, the discrete-time model was extended by mixing
both the averaged and the discrete models, yielding to the so-called sampled-
data models (Brown and Middlebrook, 1981), that combines the continuous form
of the averaged state equations and the accuracy of the discrete-time model. It
is based on adding the sampling effect due to the pulse-width-modulator in the
context of averaged small signal models. Subsequently, there appeared more
elaborated studies on sample-data models in (Verghese et al., 1986, 1989) and
(Fang and Abed, 1999).

Following this approch, a new continuous-time frequency model was obtained
for a buck converter under CMC in (Ridley, 1989) through approximating the
discrete-time model. The work obtained an s-domain transfer function, shown
in Fig. 1.12, that approximates the sampling action thereby allowing to obtain
the control-to-output transfer function, including the effect of the compensating
ramp, which is widely used in CMC controllers to control instabilities. It is
worth to note that the work concludes that the instability may occur, even for
duty cycles D lower than 0.5 (D <0.5) due to the outer voltage-loop (in general,
it is assumed that under pure CMC, FSI only is exhibited for D >0.5).

A further generalized approach for modeling CMC converters has been pro-
posed in (Tan et al., 1995) and a similar development has been carried out in
(Bryant and Kazimierczuk, 2005) for the case of boost under peak-CMC. In all
cases the sampling effect of the discrete-time model is simplified in the s-domain
taking advantage of the sample and hold nature of CMC.

Limits of such models have been explored in (Pavljasevic and Maksimovic,
1997) while in (Sun et al., 2000a) the link between discrete-time and continuous
time models is explored for different transformations from the z-domain to the
s-domain.

1.3.4 Design-oriented circuit-based models: The average
model

The models presented in the previous section characterize accurately the con-
verter dynamics and can predict all instabilities that can be exhibited. However,
these models lack a design-oriented use that facilitates the stability analysis and
quantifies easily propensity the converter is to exhibit instabilities.

The most common design-oriented model is the averaged model proposed in
(Wester and Middlebrook, 1972). It is based on averaging the converter wave-
forms directly, whereby all manipulations are performed on the circuit diagram
and hence it gives a more physical interpretation. The model is based on re-
placing the converter switches (MOSFET and diodes) by voltage and current
sources, to obtain a time-invariant circuit topology, and then obtain a small-
signal linearized model, as it is shown in Fig. 1.13 for a buck converter.

Subsequently, a model based on state-space averaging approach was devel-
oped in (Middlebrook and Cuk, 1976), giving a unified approach to modeling
DC-DC converters. Both models achieve the same small-signal equivalent circuit
by two equivalent ways, although the first one has a more circuital standpoint.

These models allow an easy development of Laplace s-domain analysis for
small-signal models, yielding to obtain simple stability conditions by means of
Bode frequency domain representations or Nyquist plots.
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Figure 1.12: The control-to-output transfer function Hd(s), in the frequency
domain, considering the effect of the compensating ramp mc obtained from
the expression and values proposed in (Ridley, 1989), D=0.4545, L=37.5 µH,
C=400 µF, R=1 Ω and fs=50 kHz.

Figure 1.13: Small-signal averaged model of buck converter.

The main problem of the average model is that it is based on an approxi-
mation, due to its intrinsic averaging process, and then it can only predict low
frequency oscillation lower than one half of the switching frequency so that it

18



does not include switching frequency information.
Posterior improved averaged models try to solve the shortcomings of the

original model, especially focusing on switching information which allows to
improve the model performance and eventually predict FSI. Note that the sim-
plification of such sampling information and translation into the s-domain was
the main objective of the work shown in previous Section 1.3.3.

In (Lehman and Bass, 1996) the switching frequency effects are considered
by adding periodic ripple functions to the classical averaged model for the case
of a boost converter under CMC. By adding such periodic ripple functions, the
model provides a more accurate transient response.

Most of the works presented before are focused in improving the model for
the CMC case (this trend is also observed in discrete-time models) since it is only
composed of one state variable hence allowing a simpler analysis. However, there
is a lack of models that address the prediction from a design-oriented standpoint
for VMC converters.

So far, design-oriented tools conceived to predict subharmonic oscillation are
based on a mere design-space exploration such as in (Chakrabarty et al., 1996)
or (Cheng et al., 2003). In a similar way, in (Wu et al., 2005) this exploration
has been carried out for a single stage PFC converter.

A complementary approach for predicting FSI occurrence is presented in
(Fang and Abed, 2001), so-called harmonic balance, which consist on the deriva-
tion of Fourier series in both period-one and period-doubling regimes. From
such analysis, it is possible to derive a closed-form inequality for predicting
the stability boundary, but the analysis requires certain complexity and lacks a
design-oriented standpoint.

This section has revisited the different approaches for modeling the dynamics
of switching power converters. Whereas most of the approaches have been done
though discrete-time formulation, thereby obtaining an accurate model of the
system but missing a design-oriented standpoint, the averaged model, which can
be derived from a circuit-based approach and gives a design-oriented standpoint,
has an important limitation in predicting FSI. The intermediate solution from
which it is possible to obtain frequency domain models, namely sample-data
models, still lacks a circuit-based approach and is mainly limited to CMC.

The section unveils a gap regarding the prediction of FSI not only in ad-
vanced architectures but also in classical VMC. It is worth to note that the
VMC is widely used in regulation application, even in CMC, due to the neces-
sary output regulation.

1.4 Chaos control methods

The previous section has carried out a review of the state of the art of different
models to predict instability of different topologies aiming power management
applications. However, as it has been observed, most of models, especially in
VMC and other more advanced architectures are addressed from a discrete-time
perspective, hence lacking a design-oriented standpoint and therefore challengin
the synthesis of proper controllers.

The research on control methods not only to reject chaotic behavior, but
also to induce it, so-called anti-control (Morel et al., 2004), has been a focus of
study in recent years.
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The interest in anti-control, comes from the potentially advantageous proper-
ties of chaotic modes, especially because of its spread-spectrum property (Deane
et al., 1999). Switching power converters are an important source of electro-
magnetic interference (EMI), so that chaotic regimes could be used as an EMI
reduction technique (Hamill et al., 1997), (Giral et al., 2001), (Morel et al.,
2004) and (Mukherjee et al., 2005).

The control methods of chaos could be classified into different types accord-
ing to (Chen et al., 1993). Although such work classifies the methods for a
generic nonlinear system it could be used for the particular case of switching
converters: via external force or via feedback control techniques.

1.4.1 Via external force

The option of adding an external signal to ensure stability has been widely
used in the power converter area, especially in CMC, where FSI is exhibited in
principle when the duty cycle of the control signal is above 0.5. A common way
of avoiding subharmonic oscillations and chaotic regimes is by means of adding
a compensating ramp to the feedback control signal (Murdock, 1987) and (Tse
and Lai, 2000).

Complementarily to adding a ramp, other techniques have been used such
as adjusting some parameter of the system, which was initially proposed in
(Pettini and Lima, 1990). Some articles have extended such idea into the power
switching converter field, by moving external parameters such as the reference
signal. It is the case explored in (Zhou et al., 2005) for the case of CMC
buck-boost converter. The paper explores the effects of the reference signal
parameters (amplitude and phase) upon the FSI boundary.

1.4.2 Via feedback techniques

Feedback control is understood as time or frequency based techniques applied
by adding a specific circuit to the system feedback loop to ensure the control
of instabilities, including chaotic regimes. Whereas these techniques are very
common to control SSI due to the availability of design-oriented models allowing
a frequency domain representation and a simple stability analysis (Nyquist con-
ditions), compensators to control FSI are more based on studying discrete-time
models or Lyapunov exponents than in a design-oriented circuit-based under-
standing.

Well-known techniques are based on Time-delay feedback control (TDFC)
(Pyragas, 1992) and (Chen and Yu, 1999) techniques. From such works, the
delay-based control techniques have been translated into the power converter
area (Batlle et al., 1997) and (Toribio and Gaston, 2001).

The controller called Time-Delay AutoSincronization (TDAS), is shown in
Fig. 1.4.2, uses a control signal conformed with the difference between the cur-
rent state and the state delayed by one period. The main drawback of this
technique has to do with the implementation of the delay in the analog domain
and the difficulties to understand the effect upon stability boundary depending
on the value of its parameters. Note that due to its discrete nature it can very
useful for digital application as it has been recently used in (Corradini et al.,
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2008) and (Kaouba et al., 2010). Since chaotic behavior can be found in dif-
ferent kinds of systems, work within the field of chaos control has been also
considered in other disciplines such as laser stabilization(Blakley et al., 2004).

Figure 1.14: TDFC (β = 0)and its extenstion version (ETDFC) schemes.

More simple implementation of a TDFC has been proposed from a frequency
domain in (Wei-Guo et al., 2010) but using a notch and a high-pass filter in
a buck-based converter. In (Athalye and Grantham, 1995) and (Ahlborn and
Parlitz, 2006) a simple notch filter is used to control chaos in Duffing’s oscillator
and laser, respectively. A complementary technique is based on developing
more practical (but complex) circuits, such as (Poddar et al., 1995) for a CMC
boost converter, based on detecting and stabilizing the chaotic attractor by
memorizing the last cycle value, which is equivalent to adding a delay.
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Chapter 2

Complex behavior of VMC
buck converter:
characterization

The previous chapter has reviewed trends in advanced power management archi-
tectures, considering different converters, controllers and functionalities, along
with revisiting the available models to predict the dynamics of such architec-
tures.

This chapter is focused on exploring and characterizing the different behav-
iors that can be exhibited in a switching power converter under a VMC in two
ways. On the one hand the interest is centered on exploring the effect of the
whole design-space parameters upon system dynamics by dividing the multidi-
mensional design space in different stability regions. On the other hand, it is
focused on characterizing the dynamic behavior in such regions from specific
power-oriented metrics in order to quantify whether or not they are of interest
depending on the front-end application.

2.1 Design-space characterization of a voltage-
mode buck converter

A switching power system is composed of different nature parameters, encom-
pass those of the converter, controller and modulator.

This section is focused on characterizing the dynamic regimes in different
regions of such parametric space starting from a VMC buck converter under a
PI control and PWM modulator, shown in Fig. 2.1. The PI controller can be
expressed in the frequency domain as:

Gc(s) = kp
s+ ωz1

s
(2.1)

Considering this system, which is simple but representative of classical voltage-
mode regulation, its complete design-space W is 9-dimensional:

W (Vg, Vref , L, C,R, kp, ωz1, Vm, fs) ∈ R (2.2)
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Figure 2.1: VMC buck converter with a control Gc(s) and PWM modulator
controller

Where Vg is the input voltage, Vref is the voltage reference, L is the induc-
tance, C is the output capacitance, R is the output resistance value, kp is the
proportional gain, ωz1 is the zero of the PI compensator, Vm is the PWM ramp
amplitude and fs is the PWM ramp frequency (coinciding with the switching
frequency in stable regime).

In switching power converters, the design-space W can be categorically split
into two regions since they can work in two different conduction modes which
fundamentally alter the switching process and hence the resulting dynamics.
The boundary between both modes is determined by the condition resulting in
a zero current at the of a switching period. Boundary between both modes is
well known, and, for a buck converter and assuming low-output ripple, it can
be expressed as:

D

D
=

2Lfs
R

(2.3)

where D is the duty cycle of the PWM signal. The next sections are centered on
characterizing the effect of the whole design-space upon the system dynamics
and the boundaries between the different dynamical behavior.

Dynamics in VMC buck converter working in CCM

In general, the different kinds of dynamics that can be exhibited in a switch-
ing power converter can be classified according to their periodicity, as it was
mentioned in section 1.3.1: period-one, in which the system periodicity is the
switching frequency, FSI, including period-doubling, subharmonic oscillations
and chaotic behavior, and SSI, characterized by the exhibition of low-frequency
oscillation.

A qualitative map, considering the whole CCM design-space WCCM and the
possible kinds of behaviors and the related trajectories among them ~vCCM, is
shown in Fig. 2.2. Note that within the generic FSI and SSI regions, each
of them could be subdivided and consist of more complex behaviors, thus be-
ing possible to find different dynamics such as period-doubling, period-four, or
chaotic behavior in the case of the FSI region.
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Figure 2.2: Descriptive map in CCM.

The numerical characterization in Fig. 2.3, Fig. 2.4 and Fig. 2.5 show one-
dimensional trajectories by sweeping one parameter of the design-space WCCM.
Such dynamic routes are plotted by means of bifurcation diagrams, which con-
sist of sampling one state variable at the switching frequency which allows to
identify the periodicity of the behavior hence classifying it. The parameter
values used in this chapter, corresponding to the starting point WCCM∗

, are:
Vg=6 V, Vref=3 V, R = 2.5 Ω, L=66 nH, C=20 nF, fs=50 MHz, Vm=1 V,
kp=3 and ωz1=10 Mrad/s. These values correspond to a miniaturized converter
aiming on-chip integration (Villar and Alarcon, 2008).

Note that the previous diagrams lead to exhibit different kinds of instabilities
depending upon which parameters is swept.

Starting from a stable point in period-one (P1) within the CCM region
WCCM∗

P1 , it is possible to define different routes depending upon the initial and
final states.

Observing the previous bifurcation diagrams, we can identify two possible
routes: ending up in FSI region ~vCCM

P1,FS or ending up within SSI region ~vCCM
P1,SS.

According to the previous nomenclature and with the previous simulation
results, the routes starting from a stable period-one behavior within CCM region
WCCM

P1 can be split as:

~vCCM
P1,FS(L,C, fs, Vg, Vref , kp) (2.4)

~vCCM
P1,SS(R,C, ωp1) (2.5)

The trajectories shown in the bifurcation diagrams are only valid for the
given starting point WCCM∗

P1 and moving along one dimension, and hence they
can not be considered univocal for the other points within WCCM. Therefore, it is
considered an alternative exploration of such design-space in order to determine
the possible trajectories. The exploration of the design-space pair (kp, ωz1),
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(a) (b)

(c)

Figure 2.3: Bifurcation diagrams obtained by sweeping different converter pa-
rameters.

which is shown in Fig. 2.6, unveils complex boundaries dependency of both
parameters.

Further exploration shows that other parameters can lead to both kinds of
behavior depending upon the starting point. For instance, this occurs in the
case of proportional gain kp or modulation amplitude Vm which can lead to
either SSI or FSI depending on other parameters of the system such as R, C or
ωz1.

While the previous routes were only carried out in a one-dimensional space,
limiting the exploration of the dynamics, the definition of more complex routes,
depending on multiple swept parameters, allows characterizing the whole dy-
namic behavior in a more flexible way, such as the transition between different
dynamics regimes and stability regions, which by exploring as a function of only
one parameter can not be reached.

Therefore, given the n-dimensional design-space W , composed of n param-
eters pi (for i = 1 to n), it is possible to define a trajectory ~vy(y) depending
on only one variable (y), which compresses the variation of other parameters pi
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(a) (b)

Figure 2.4: Bifurcation diagrams obtained by sweeping the input and the refer-
ence voltages Vg and Vref respectively.

(a) (b)

(c) (d)

Figure 2.5: Bifurcation diagrams obtained by sweeping controller parameters (a)
proportional gain kp (b) PI zero ωz1 and modulator parameters (c) switching
frequency fs and (d) ramp amplitude Vm.
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Figure 2.6: (a) Bifurcation diagram obtained by sweeping proportional gain kp
with ωz1=21 Mrad/s (b) Stability boundary characterization over the space (kp,
ωz1) along with possible routes.
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Figure 2.7: Route ~vCCM
FS,SS by plotting the bifurcation diagram as a function of y.

(a) P=5 and (b) P=6.

into one route:

pi = fi(y) for i = 1 to n (2.6)
~vx(p1, p2, p3...pn) = M → ~vy(y) = P (2.7)

Note that different routes will be defined as a function of the parameter P,
namely constant level variable.

As a simple example, a linear route from SSI to FSI ~vCCM
FS,SS, shown in Fig. 2.6,

is defined over the parametric space by the pair proportional gain-compensator
zero (kp, ωz1), with starting point (3, 25 Mrad/s) and end point (5, 10 Mrad/s).
Therefore, under such condition, the route can be expressed as:

~vCCM
FS,SS = f(kp, wz1) = P → kp +

2
15

(ωz110−6 − 10) = P (2.8)

The trajectory ~vCCM
FS,SS(kp, ωz1) intends to explore the transition from FSI to

SSI regions.
Finally, the trajectory can be expressed only as a function of such variable

y:
f(kp, ωz1, P ) ≡ f(y,P) (2.9)

in which each parameter can be expressed as a function of variable y:

ωz1(y) = y106 (2.10)

kp(y, P ) = P − 2
15

(y − 10) (2.11)

The trajectory as a function of the y variable is shown in Fig. 2.1, obtaining
a bifurcation diagram that characterizes the transition between FSI and SSI
regions. Note that the boundary is abrupt, without coexistence of attractors.
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Figure 2.8: Descriptive map in DCM and CCM along with routes between
modes and behaviors.

Dynamics in VMC buck converter operating in DCM

The next characterizations explore the effect of DCM upon the dynamic be-
havior, especially centered on the effect of crossing the boundary between both
modes of the system. The parameters values used in this section are Vg=6 V,
Vref=3 V, R = 6 Ω, L =45 nH, C=50 nF, fs=25 MHz, Vm=1 V, kp=2.5 and
ωz1=1 Mrad/s.

It is worth observing that having thoroughly explored the design-space in
DCM, it has not been identified the exhibition of SSI. Then, considering only
the existence of two behaviors in DCM, namely period-one and FSI, along with
the abrupt nature of DCM boundary, the set of routes within the whole design-
space and the dynamic analysis complexity is increased, as it is shown in the
descriptive map in Fig. 2.8, depending on which parameters are swept.

Considering the boundary expression between the operating modes, shown
in Eq. (2.3), the trajectory from CCM to DCM is:

~vCCM,DCM(L, fs, R,D) (2.12)

The numerical simulation in Fig. 2.9 shows the effect of crossing from CCM
to DCM considering different routes, obtained by sweeping different parameters
and starting from different CCM conditions.

Different behaviors can be observed depending on which parameter is swept.
The decrease of switching frequency may turn the converter into DCM and,
once in DCM, it can lead to exhibit FSI in a similar way as it occurs in CCM.
Regarding the inductance, the effect is opposite to its effect in CCM, since, as it
is decreased, it cancels the period-doubling behavior once in DCM. Furthermore
the effect of the load resistance on the SSI bifurcation is similar to the inductance
since it also ends up canceling the instability once in DCM, firstly leading to
FSI and subsequently leading to period-one behavior if it is decreased. Finally,
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Figure 2.9: Different bifurcation diagrams obtained by crossing from CCM to
DCM (a) ~vCCM,DCM

FS,P1 (fs) as a function of switching frequency fs (b) ~vCCM,DCM
FS,P1 (L)

as a function of inductance L (c) ~vCCM,DCM
P1,FS (Vref ) as a function of voltage refer-

ence Vref with kp = 2 (d) ~vCCM,DCM
SS,P1 (R) as a function of output resistor R and

with ωz1 = 10 Mrad/s.

it can also occur that crossing the conduction boundary from period-one in
CCM leads to an abrupt jump into FSI, as it is shown by sweeping the voltage
reference Vref .

The effect of other parameters, which do not imply a change into DCM, such
as the proportional gain kp, are shown in Fig. 2.10 showing a similar effect as
in the CCM case.

To summarize, we can observe that a VMC buck converter considering both
conduction modes can be very complex, especially when the DCM is considered.
This section has demonstrated that the different behaviors depend upon differ-
ent parameters and that the same parameter can lead to different attractors de-
pending upon the combination with other parameters of the multi-dimensional
space. Furthermore, such complexity is increased when the route crosses the
conduction mode boundary, which can lead to an abrupt transition in dynam-
ics.

While hitherto it has been carried out a qualitative characterization of the
system behavior focus on pointing out the rich dynamic behavior of the switch-
ing power converter and exploring the effect of different nature parameters
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Figure 2.10: Bifurcation diagram by sweeping the proportional gain kp.

within the design-space, the next section is focused on a quantitative char-
acterization of such dynamic behavior by establishing a set of power-oriented
metrics that allow relating converter behavior properties to power application
requirements for a given dynamic regime encountered in the design space.

2.2 Power-oriented electrical metrics character-
ization of VMC buck converter dynamics

This section is focused on a quantitative characterization of the instabilities
that can be exhibited by a switching power converter, unveiling the impact they
can have upon the system performance, with special attention on power-oriented
electrical metrics, such as ripple, switching frequency or spectral behavior, which
affect the overall power converter performance.

Most of the previous works regarding the study of stability boundaries have
been focused on predicting the exhibition of the different dynamic behaviors,
but usually ignore evaluating the impact of such behaviors upon the system per-
formance taking into account their final application. In such works, instabilities
are analyzed from a qualitative standpoint, hence representing the bifurcation
diagram or the state-plane, in which it is possible to observe the evolution of
the state variables.

A complementary approach from an engineering standpoint, has been ini-
tially proposed in some works focusing on the effect of such instabilities in the
spectrum (Banerjee et al., 2002; Deane and Hamill, 1996; Giral et al., 2001), in
order to reduce electromagnetic interference of switching power converters. The
idea is based on taking advantage of the well-known spread spectrum feature of
chaotic behavior to reduce the harmonics at high frequencies.

However, the work presented in this section, addresses the characterization
of the different instabilities not only on spectral performance, but also taking
into account other power-oriented metrics, including output ripple and averaged
switching frequency.

The fact that chaotic behavior can be exhibited (pseudo-random process)
requires to use a statistical tools, in a similar way as it has been done in (Woy-
wode et al., 2003) in order to properly characterize metrics. Therefore the chosen
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metrics are:

• The standard deviation of the output voltage waveform σvc
, in a steady-

state period of time, as a measure of output ripple. Note that considering
the average value 0, the RMS value coincides with the variance of the
signal.

• The averaged switching frequency < fs >, understood as the average
number of switching events per ramp period T = 1/fs.

Note that while the previous characterization, in spectrum or state-variable
is based on taking a photography under a given dynamic regime, the availability
of such metrics allow to build an extended bifurcation diagram, showing the
evolution of each metric by sweeping a given parameter of the parameter space.

The first exploration attempts to distinguish and compare the qualitative
difference between both SSI and FSI. This is shown in Fig. 2.11 and Fig. 2.12
respectively.
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Figure 2.11: (a) Bifurcation diagram as function of kp (b) Standard deviation σvc

(solid) and averaged switching frequency < fs >(dashed). Representative time-
domain waveform, histogram and spectrum (calculated within 1000 periods) of
the output voltage for (c) kp=3 (period-one) (d) kp=5 (period-doubling) and
(e) kp=7 (chaotic regime) with D = 0.5.

In Fig. 2.11 the bifurcation diagram is shown by sweeping the proportional
gain kp, which ends up in chaotic behavior. The bifurcation diagram is comple-
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Figure 2.12: (a) Bifurcation diagram as function of ωz1 (b) Standard devia-
tion σvc

(solid) and average switching frequency (dashed) < fs >. Representa-
tive time-domain waveform, histogram and spectrum (calculated within 1000
periods) of the output voltage for (c) ωz1=10 Mrad/s (period-one) and (d)
ωz1=25 Mrad/s (SSI) with D = 0.5.

34



mented with the evolution plot of the averaged switching frequency < fs > and
standard deviation of output voltage σvc

. The exploration shows that when
period-doubling is exhibited, the ripple steadily increases. Once into chaotic
regime the ripple starts decreasing, but on the other hand the averaged switch-
ing increases. This can be understood because of the exhibition of other insta-
bilities (border collision) such as sliding behavior that entails multiple crossing
of the ramp signal in one PWM ramp period. The spectrum of the different
stages of the route to chaos entails the exhibition of subharmonics and, once
into chaotic behavior, the well-known spread spectrum effect.

On the other hand, the effect of SSI into power metrics is different as it is
possible to observe in Fig. 2.12. The exhibition of SSI leads to high reduction
of the switching frequency and then a high increase in terms of ripple.
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Figure 2.13: (a) Bifurcation diagram as a function of kp (b) Standard devia-
tion σvc

(solid) and average switching frequency < fs >(dashed). Representa-
tive time-domain waveform, histogram and spectrum (calculated within 1000
periods) of the output voltage for (c) kp = 3 (period-one) (d) kp = 4 (period-
doubling) and (e) kp = 7 (Chaotic behavior) with D = 0.25.

In addition, in Fig. 2.13 it is shown that the bifurcation diagram can vary
depending upon the other parameters of the converter such as the duty cycle,
which modifies the characteristic route of chaos: it is still composed of period-
doubling exhibition, but it has different power metrics. Numerical simulations
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show that the averaged switching frequency is kept under the ramp frequency
once within the chaotic behavior and the ripple tends to decrease. This can
be explained by the fact that being the duty cycle different of 0.5, the voltage
applied to the inductor is unbalanced (in average) and this causes the system
to exhibit skipping cycle phenomena hence reducing the number switching per
cycle.

This chapter has focused on characterizing the different dynamic behaviors
that a VMC buck converter with PI controller can exhibit. First, the chapter
has indentified the multidimensional design space and characterized the depen-
dencies of the stability boundaries upon the design-space parameters. Numer-
ical simulations based on the exact instantaneous state equations have shown
a rich and complex dynamic phenomena depending upon which parameter is
swept. Furthermore, the chapter has discussed that trends towards miniaturiza-
tion, namely reducing reactive components value or the switching frequency, can
make the converter more prone to exhibit FSI, hence validating the interest on
being able to predict such instabilities from a design-oriented standpoint and to
synthesize improved dynamic controller, which are the aims of this work. ?Fi-
nally, the chapter has quantified how the different dynamic regimes affect the
switching converter from a power management perspective, by characterizing
different power processing performance metrics such as the output voltage ripple
(related to the quality of the DC-DC conversion), spectral behavior (related to
EMI aspects) and average switching frequency (related to efficiency through the
dominant switching losses).
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Chapter 3

Design-oriented models for
predicting instabilities in a
buck switching power
converter

The previous chapter has identified and have explored the fact that trends to-
wards integration and miniaturization of switching power converters, such as
reducing reactive component parameters or the switching frequency, can lead
the system to exhibit FSI, as it has also been previously observed in (Villar
et al., 2002) and (Allard et al., 2004).

This fact reactivates a renewed interest in the need of analytical tools for
predicting such instabilities, especially for VMC, for which there is a lack of
design-oriented stability models despite its widespread use in regulation appli-
cations. Beyond the fact that there has been a considerable effort in character-
izing the FSI stability boundary by means of discrete-time models (Fossas and
Olivar, 1996), (di Bernardo et al., 1997), these models only allow a parametric
characterization of the stability boundary neglecting the system-circuit inter-
pretation. In parallel, the existing models derived from a circuit interpretation,
such as the averaged models, can not predict FSI due to their averaging nature
and hence the lack of switching information, as it will be shown at the beginning
of this chapter.

A ripple-based stability condition for a buck converter is proposed in this
chapter. This index captures the effect of different nature converter parameters
upon the FSI boundary, thereby allowing a compact design-oriented circuit-
based stability criterion and facilitating further investigation in enhanced chaos
controllers oriented to avoid these instabilities.

First, the averaged model -with its benefits in modeling the system from a
design-oriented circuit-based standpoint-, and the discrete-time model,-with its
capability to predict the overall stability are compared.

Subsequently, having demonstrated the unability for predicting FSI of the
averaged model, an alternative ripple-based index is presented for predicting
FSI from a circuit-based standpoint. First, the approach is validated for a
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VMC buck converter in a wide design space by means of numerical simulation
of the exact state equations numerical simulations, through experimental mea-
surements and comparing both with discrete-time model results. Furthermore,
it is demonstrated that the ripple index can also be derived from such discrete-
time model, hence giving mathematical support to extend the approach to other
controls. The novel stability index has been combined along with the averaged
model leading to fully characterize the stability boundaries of the system. Sub-
sequently, the ripple-based index is also extended to the DCM case and to the
CMC buck converter, further proving the benefits of the approach and its general
purpose applicability. Finally, the chapter concludes by providing a frequency
domain model, based on building a new modulator transfer function, capable to
predict the overall stability margin without losing the simplicity/circuit stand-
point, thereby also facilitating the derivation of new controllers, that will be
tackled in further chapters.

3.1 Design-oriented averaged model: benefits and
limitations

Averaged models can be obtained starting from a circuit bottom-up approach
in which the circuit state variables, inductor current and capacitor voltage, are
averaged during each switching period and then linearized (small-signal model)
with respect to the system external variables such as the input voltage or driving
signal duty cycle (Middlebrook and Cuk, 1976).

Figure 3.1: Circuit diagram of a DC-DC VMC buck converter with a PWM.

The closed-loop stability analysis of the whole system can be carried out
from the total loop transfer function Tavg(s) which requires to take into account
the converter control-to-feedback and modulator small-signal transfer functions,
Hd,avg(s) and Hm,avg(s) respectively, along with the compensator frequency
response Gc(s):

Tavg(s) = Hd,avg(s)Gc(s)Hm,avg(s) (3.1)

For the particular case of a VMC buck converter case under a PI compensator
and constant switching frequency PWM modulator, shown in Fig. 3.1, these
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Figure 3.2: Bode plot of total loop gain Tavg(s) of a buck converter under PI
compensator. (a) magnitude and (b) phase.

transfer functions are given by:

Hd,avg(s) = Vg
ω2

0

s2 + ωRCs+ ω2
0

(3.2)

Gc(s) = kp
s+ ωz1

s
(3.3)

Hm,avg(s) =
1
Vm

(3.4)

where ω0 = 1/
√
LC and ωRC=1/(RC) are supposed to be smaller than ωs=2πfs

the angular switching frequency of the ramp modulator.
The averaged model is naturally expressed in the s-domain, which allows a

frequency domain representation, such as the Bode diagram shown in Fig. 3.2
which consists of independently plotting the magnitude and phase of Tavg(s),
hence facilitating the stability analysis by means of the Nyquist stability condi-
tions:

∠Tavg(jωp) > −180o when |Tavg(jωp)| = 1
|Tavg(jωg)| < 1 when ∠Tavg(jωg) = −180o (3.5)

The Nyquist stability conditions lead to establish two metrics to quantify
the propensity to exhibit instabilities, namely phase margin and gain margin.
The first one is the phase difference to −180o when the gain is 0 dB. The second,
complementary to the first one, is the loop gain magnitude respect to 0 dB when
the phase reaches −180o.

Furthermore, apart from such fundamental stability analysis, the frequency
representation facilitates a clear design standpoint hence allowing to indepen-
dently address the synthesis of the transfer function of each system block from
a pole-zero interpretation so as to properly adjust them to the system stability
and dynamics requirements.

Despite all these benefits, due to the averaged nature of the model, it has
an important limitation in predicting the complete instability phenomena, since
it is not able to predict FSI boundary as it is shown in Fig. 3.3 where results
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from such model are compared to the ones from the discrete-time model, devel-
oped in the Appendix A. The figures show the accuracy of the averaged model
for predicting the SSI boundary but also its incapability to predict the FSI
boundary.

The value of the parameters used for Fig. 3.3 are Vg = 6 V, Vref = 3 V,
R = 2.5 Ω, L = 66 nH, C = 20 nF, fs = 50 MHz, Vm = 1 V, ωz1=10 Mrad/s
and kp=3. These values correspond to a miniaturized converter aiming on-
chip integration (Villar and Alarcon, 2008), but the selection is representative
-through scaling- of any converter exhibiting moderately large ripple (∼50 mV).

(a)

(b)

Figure 3.3: Overall stability boundary map in the design parameter space (a)
ωz1, kp and fs (b) Vm, R and L obtained from the discrete-time mode (dash-
dot) and results from the averaged model using the Nyquist stability criterion
(solid).

Despite the aforementioned clear benefits of the frequency representation, it
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Figure 3.4: Bode plot by reducing the inductance L: L=66 nH (solid) L=25 nH
(dashed) (c) Eigenvalues evolution from the system discrete-time model by
sweeping the inductance (values are in nH).

can be difficult to identify the effect of the system parameters upon stability
boundaries.

Let us study the effect of the inductance upon stability due to its interest for
integration. From the Bode plot, shown in Fig. 3.4, it can be observed that by
reducing the inductance value, it has an influence on both magnitude and phase,
hence being difficult to know its effect upon stability boundary. An alternative
representation of the system stability is by means of plotting the eigenvalues
of the Jacobian matrix of the discrete-time model of the system in the unit
circle. By exploring it, it is possible to observe that the inductance only affects
the phase of the eigenvalues but not their magnitude when these eigenvalues
have an imaginary part, hence it can only lead to FSI exhibition, but not to
SSI exhibition (recall that SSI are exhibited when unit circle is crossed with
imaginary eigenvalues). While from the discrete-time model it can be easily
anticipated that reducing the inductance will never lead to SSI exhibition, with
the averaged model it is more difficult to infer.

In order to know the effect of each parameter upon stability, a complemen-
tary representation is proposed starting from the s-domain loop gain Tavg(s)
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given in Eq. (3.1) and the Nyquist stability criteria (Eq. (3.5)). For a VMC
buck converter under a PI controller:

|T (s)| = kp
Vm

Vg
1− LCω2

g

< 1 (3.6)

ωg =

√
1

LC − L
Rωz1

(3.7)

Finally, it can be expressed in a closed-form index expression for predicting SSI
stability boundary, in which it is possible to implicitly observe which parameters
can lead to the occurrence of such instabilities. The SSI index is given by:

ρSS :=
kp
Vm

Vg

(
ωz1
ωRC

− 1
)

(3.8)

and the stability condition is ρSS < 1. The index-based stability condition is
simpler than the Bode diagram and does not provide any information about the
frequency domain response of the system or its dynamic behavior but, implicitly,
it gives the impact of each parameter upon the stability boundary. Then, from
Eq. (3.8), it is possible to observe that the SSI would only occur provided that
ωz1 > ωRC , and, in that case, parameters such as kp or Vg would have the same
impact on stability boundary. Note that there is no effect of the inductance on
such stability boundary, which is aligned with the discrete-time model results.

The simplicity of the analysis in both cases, through the Bode representation
or though the stability index ρSS , facilitate the circuit designer to understand
the effect of each system parameter, thereby allowing to choose the proper
parameter values to guarantee the stability or certain dynamics requirements.

However, there is still an open challenge regarding the prediction of FSI using
a design-oriented standpoint, especially in VMC converters. Aligned with that
aim, a harmonic balance approach has been proposed in (Fang and Abed, 2001),
based on a Fourier analysis of both period-one and period-doubling waveforms,
in which a stability closed-form condition is obtained, but unfortunately it is
still away from a simple design-oriented approach.

The next section proposes a design-oriented ripple-based index which can
capture the effect of different parameters of the converter upon the FSI bound-
ary, as in the case of SSI index given in Eq. (3.8), allowing a circuit-level stand-
point prediction and paving the way to further investigation in more adequate
controllers oriented to avoid these instabilities.

3.2 Ripple-based design-oriented index: hypoth-
esis for predicting FSI

With the aim of deriving a design-oriented model to predict FSI, a ripple-based
index is proposed for VMC converters, as a complementary tool to the average
model. This index ρ is defined as the scaled ripple amplitude V̂con of the control
signal vcon(t) with respect to the modulator amplitude Vm, therefore compress-
ing the different nature converter design parameters, such as the parameters of
the reactive components, control coefficients and modulator paramters into a
single parameter given by

ρ :=
V̂con
Vm

=
F V̂C
Vm

(3.9)
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where F models the effect of the controller upon the ripple amplitude V̂C of
the output capacitor voltage vC . The ripple index hypothesis is based on the
observation that when the ripple instability index (Eq. 3.9) reaches a critical
value ρcrit, FSI is exhibited. Then the stability condition is:

ρ < ρcrit (3.10)

The next section validates this ripple-based index hypothesis for the VMC buck
converter under a simple PI compensator.

3.2.1 Validation of the ripple-based approach by means of
the switched model

Figure 3.5: Circuit diagram of a VMC DC-DC buck converter with a compen-
sator frequency response Gc(s) and under a fixed frequency PWM strategy.

The most widespread configuration, namely a buck converter with PI feed-
back compensator, shown in Fig. 3.5, has been chosen to illustrate the validity of
the ripple-based approach. Let kp be the proportional gain of the controller and
ωz1 its real zero. The parameter ωz1 is located at low frequency (ωz1 < ωRC),
in order not to induce SSI (see Eq. 3.8). Hence, the effect of the controller
upon the converter output voltage ripple is constant (F = kp) for all frequen-
cies larger than ωz1. This choice of the dynamic controller parameters will allow
to independently analyze the effect of the proportional gain kp and the average
value of the control signal on stability.

Although different expressions for the amplitude of the output voltage ripple
may be used, the following simple expression is chosen in order to keep the
design-oriented standpoint (Erickson and Maksimovic, 2001):

V̂c :=
VgDD

8LCf2
s

(3.11)

where D is the steady state duty cycle of the PWM driving signal q(t) (See
Fig. 3.5) and D = 1−D. Accordingly, ρ given in Eq. (3.9) can be expressed as
a function of design parameters as:
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ρ(Vg, L, C, kp, fs, D, Vm) :=
kp
Vm

VgDD

8LCf2
s

(3.12)

Fig. 3.6 shows different bifurcation diagrams, obtained from the exact switched
state equations, by considering parameters of different nature as bifurcation pa-
rameters. In all cases, an exhibition of FSI occurs, namely period-doubling
cascade which ends, eventually, to chaotic behavior. The value of the fixed cir-
cuit parameters used for Fig. 3.6 are Vg=6 V, Vref= 3 V, R=2.5 Ω, L=66 nH,
C=20 nF, fs=50 MHz, Vm=1 V, kp=3 and ωz1=1 Mrad/s.

It can be observed in Fig. 3.6 that by representing the bifurcation diagrams in
terms of the corresponding ripple-based index ρ defined in Eq. (3.12), the bifur-
cation boundary remains practically constant (dashed line in Fig. 3.6(d),(e),(f)),
independently of the swept parameter, being the FSI critical value ρcrit ≈ 0.245
in all figures. Further validation of the ripple-based index approach is carried
out in Fig. 3.7 for a wide design parameter space. This figure shows the stabil-
ity boundary obtained from numerical simulations of the circuit state equations
contrasted with those obtained from the ripple based index. Although the error
increases for low values of the load resistance R, the relatively low error ob-
tained for the rest of the design parameter space validates this design-oriented
approach for predicting FSI. The approach is only considered for the system
working in the CCM, then the design parameter space is limited by the DCM
condition. Further extension to DCM will be tackled later.

Having explored thoroughly the design parameter space, it is obtained that
ρcrit is constant, save as dependence upon the duty cycle D. The evolution of
ρcrit in terms of the duty cycle is shown in Fig. 3.8. Therefore, the stability
condition to avoid FSI exhibition, in terms of the system parameters, can finally
be expressed as:

ρ(Vg, D, L,C, kp, fs, Vm) < ρcrit(D) (3.13)

This stability condition given in Eq. (3.13) shows the benefit of the ripple-based
approach, which allows compressing most of the design-space parameters into a
single ripple-based index ρ, providing a design-oriented tool for predicting the
effect of each parameter upon stability.

3.2.2 Experimental validation

This section validates the ripple-based FSI prediction approach using an ex-
perimental prototype. While the previous section parameter values correspond
to a miniaturized on-chip converter, in this section these values are chosen to
facilitate the implementation of the prototype. In Appendix B it is demon-
strated that by scaling both the parameters of the reactive elements and the
switching frequency, the relative dynamics of the converter remains equivalent.
An equivalent set of parameter values used previously and which has been used
for the experimental prototype is: Vg=6 V, R=2.5 Ω, L=33 µH, C=10 µF,
fs=100 kHz, Vm=1.8 V and Vref= 3 V.

In Fig. 3.9 the waveforms of the control signal and the PWM ramp voltage
just before and just after the exhibition of FSI in the experimental prototype
are shown. The dynamics of the system are checked by sweeping the feedback
gain kp and the switching frequency fs in Fig. 3.9(a)-(b) and Fig. 3.9(c)-(d)
respectively. In both cases the measured value of the ripple-based index just

45



(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Bifurcation diagrams obtained by sweeping different nature parame-
ters (a) the switching frequency fs, (b) the inductance L and (c) the proportional
gain kp and its equivalent representation as a function of the ripple-based index
ρ (d), (e) and (f), respectively. ρcrit ≈ 0.245 (dashed line).
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(a) (b)

(c) (d)

Figure 3.7: FSI boundary surfaces obtained from the switched model (black
dots) and from the ripple-based index condition given in Eq. (3.10) with
ρcrit=0.245 (mesh surface), as a function of (a) inductance L, output resis-
tance R and proportional gain kp and (b) output capacitance C, the switching
frequency fs and proportional gain kp. The error between both surfaces is shown
in (c) and (d), respectively.

at the boundary of stability is found to be ρcrit ≈ 0.27, which is very close to
the critical value of the ripple-based index obtained from numerical simulations.
Regardless of the slight difference between the experimental and the numerical
value of ρcrit, which can be attributed to parasitic effects, a deeper exploration
of the design parameter space in Fig. 3.10 shows that the measured critical
ripple ρcrit for which FSI occurs remains almost the same within a wide range
of the parameters.

3.3 Discrete-time model stability analysis. Re-
lationship with the ripple-based index

This section reviews the discrete-time model and its usefulness in predicting FSI
boundary in DC-DC converters with the aim to validate and compare numer-

47



0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1

0.15

0.2

0.25

ρ
c
r
i
t

D

Figure 3.8: FSI boundary curve, represented in ρcrit terms and obtained from
numerical simulations using the switched model, as a function of the duty cycle
D.

ically the results from the ripple-based approach, but also as a starting point
for giving a mathematical support for extending the hypothesis to other topolo-
gies. For this purpose, in this section it will be shown that the ripple at the
modulator input can be included in the expression of the Jacobian matrix of
the discrete-time model of the system.

3.3.1 The discrete-time model

The stability analysis using the discrete-time approach is based on constructing
a map, by sampling the dynamics of the converter at each switching period. In
order to keep simple expressions, a proportional controller will be used instead
of a PI controller in the analysis. In our case, as ωz1 < ωRC , and as mentioned
in (Giaouris et al., 2009), an integral term in the controller will not affect the
stability boundary of FSI. This is because the zero of the PI controller is placed
at low frequencies, and in this case the effect of the integral term is just to
correct the steady state error while the fast dynamics remains equivalent to
those obtained from a proportional controller because one of the eigenvalues
remains close to 1. In CCM, the dynamical behavior can be described by the
following linear state equations corresponding to each state (ON and OFF) of
the switch S driven by the signal q(t) (See Fig. 3.5)

ẋ(t) = A1x(t) + B1 if S is ON (q(t) = 1)
ẋ(t) = A2x(t) + B2 if S is OFF (q(t) = 0)

The switch S is in the ON state at the beginning of the switching period and
switches to OFF at instant dn such that vcon(dn) = h(dn), where dn is the duty
cycle, defined as the fraction of time during which the first configuration (ON)
holds. For a linear system with constant state matrix Ak and input vector Bk

and with initial time ti and final time tf , an exact solution can be obtained and
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(a) (b)

(c) (d)

Figure 3.9: Control signal vcon(t) and modulator ramp h(t) waveforms just
before and just after FSI occurrence by sweeping (a)-(b) the proportional gain
kp and (c)-(d) the switching frequency fs. Measured critical ripple amplitude
at modulator input normalized to the ramp amplitude is ρcrit ≈ 0.27 for both
cases.

it is given by the following expression

x(tf ) = eAk(tf−ti)x(ti) +
∫ tf

ti

eAkθBkdθ (3.14)

The map P that relates consecutive samples, namely the state variables xn at
the beginning of the cycle to xn+1 at the end of the same cycle, can be obtained
by stacking up the corresponding solutions during each switching cycle, and it
can be expressed as (El Aroudi et al., 2005):

xn+1 = P(xn) = Φxn + Ψ (3.15)

where the matrix Φ and vector Ψ are given by

Φ = Φ2(d̄nT )Φ1(dnT ),Ψ = Φ2(d̄nT )Ψ1(dnT ) + Ψ2(d̄nT )
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Figure 3.10: FSI boundary surfaces obtained from experimental measurements
(black dots) and using the ripple-based index (ρcrit = 0.245) (mesh surface)
over the design parameter space kp, fs and C.

being

Φk(tk) = eAktk , Ψk(tk) =
∫ tk

0

eAkθdθBk for k = 1, 2 (3.16)

and d̄n = 1 − dn. Additionally, the switching condition, which depends upon
the control voltage and the sawtooth modulator h(t), can be expressed as

σ(dnT ) = K(Xref − Φ1(dnT )xn)− h(dnT ) (3.17)

where K = (kv, ki) is the vector of feedback gains and Xref = (Vref , Iref )t.
Note that kv = kp, ki = 0 and Iref = 0 for a VMC converter with proportional
compensator.

3.3.2 Stability analysis using the discrete-time model

The stability analysis is carried out by studying the local behavior of the map in
the vicinity of steady-state x∗, thereby extracting the Jacobian matrix J, whose
eigenvalues give the amount of expansion and contraction near this fixed point
(El Aroudi et al., 2005):

J = Jx − JdJ−1
σd

Jσx (3.18)

where all the terms appearing in Eq. (3.18) are given by

Jx =
∂P
∂xn

∣∣∣∣
dn=D

= Φ1(DT )Φ2(DT ) (3.19)

which is the product of the two state transition matrices corresponding to each
switching interval and which models the effect of a small change of the state vari-
ables of the system at the beginning of a switching cycle, on the state variables
at the end of the same cycle.

Jd =
∂P
∂dn

∣∣∣∣
dn=D,xn=x∗

= Φ2(DT )∆ẋT (3.20)
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which corresponds to the effect of the state transition matrix Φ2 on the discon-
tinuity of the vector field ∆ẋ, and which models the effect of a small change of
the value of the duty cycle on the state variables at the end of the cycle.

Jσd
=

∂σ

∂dn

∣∣∣∣
dn=D,xn=x∗

= (−Kẋ(DT−)−mc)T (3.21)

which corresponds to the difference between the slope −Kẋ(DT−) of the control
signal vcon(t) and mc = Vmfs, that of the PWM sawtooth signal h(t). This is
the small signal model of the original nonlinear switching condition given in
Eq. (3.17). Finally,

Jσx =
∂σ

∂xn

∣∣∣∣
dn=D

= −KΦ1(DT ) (3.22)

which models how an initial small change in the state variables affects the switch-
ing condition in Eq. (3.17) from cycle to cycle. In the previous equations, it
was assumed that in steady state, xn = x∗, dn = D, D = 1 − D. Besides,
ẋ(DT−) = A1x(DT ) + B1, ẋ(DT+) = A2x(DT ) + B2. For the VMC buck
converter, x = (vC , iL)t and the matrices Ak and vectors Bk (k = 1, 2) are
given by

A1 = A2 =


− 1
RC

1
C

− 1
L

0

 ,B1 =

 0

Vg
L

 ,B2 = 0 (3.23)

and ∆ẋ = ẋ(DT−)− ẋ(DT+) can be obtained as follows

∆ẋ = (A1 −A2)x(DT ) + (B1 −B2) =

(
0
Vg
L

)
(3.24)

Moreover,

Kẋ(DT−) = K(A1x(DT ) + B1) = kpv̇C(DT−) (3.25)

It can be observed that the final expression of the Jacobian matrix is composed
mainly by transition matrices of each configuration but it also includes infor-
mation about the left and the right time derivative at the switching instant and
the slope mc of the sawtooth PWM signal h(t).

3.3.3 Condition for FSI

The characteristic polynomial equation of the Jacobian matrix J is given by

p(λ) := det(J− λI) = 0 (3.26)

In the two-dimensional system case, Eq. (3.26) becomes,

p(λ) = λ2 − tr(J)λ+ det(J) = 0 (3.27)
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where det(·) and tr(·) stand for the trace and the determinant respectively.
Eq. (3.27) can be algebraically developed as:

p(λ) := λ2 − λ tr(Φ) + λJσd
tr(Φ2∆ẋKΦ1) + det(Φ) = 0 (3.28)

where Φ = Φ2Φ1. Then, isolating the term Jσd
:

Jσd
=
λ2 − λ tr(Φ) + det(Φ)

tr(Φ2∆ẋKΦ1)
=
λ2 − λ tr(Φ) + det(Φ)

KΦ∆ẋ
(3.29)

It is known that FSI occurs when one of the eigenvalues crosses the unit circle
at the point (-1,0) in the complex plane, as it was explained in Section 1.3.3
Therefore, the FSI boundary can be obtained by forcing λ=-1 in Eq. (3.29),
hence, obtaining:

Jσd
=

1 + tr(Φ) + det(Φ)
K∆ẋΦ

(3.30)

Solving this equation for a certain design parameter, the FSI stability boundary
corresponding to this parameter can be obtained.

Having presented the nonlinear discrete-time model and its Jacobian matrix
for the VMC buck converter, it is possible to compare the results obtained from
it with those obtained from the ripple-based index. According to Appendix B,
the whole converter design parameter space can be explored by sweeping only
two parameters, namely, τ = fsRC = fs/ωRC and Γ = LCf2

s = f2
s /ω

2
0 .

Fig. 3.11 shows a comparison between the boundary surfaces obtained from
both approaches in such normalized design parameter space. Note that, for
low values of τ , the error increases, which is in good concordance with the re-
sults previously obtained in Fig. 3.7 stating that the ripple-based index is not
accurate enough for low values of R.

3.3.4 Stability analysis including the ripple amplitude

After validating that the ripple-based index approach and the discrete-time
model give similar stability boundaries in terms of FSI, this section will establish
a relationship between the ripple at the input modulator and the Jacobian
matrix of the discrete-time model. In (Lehman and Bass, 1996), the ripple of
the state-variable was added to the averaged model to improve the prediction
of its dynamic response. In Appendix C, it is demonstrated that the slope
of the control volatge at the switching instant and the ripple amplitude are
proportional and they are related by the following relationship:

v̇C(DT−) = 4fsV̂C (3.31)

Revisiting the different terms composing the Jacobian matrix given in Eq. (3.18),
it is possible to observe that Jσd contains the derivative of the state variables at
the switching instant, and therefore, from Eq. (3.31), it also contains the ripple
information.

Fig. 3.12 shows the stability surfaces obtained from the discrete-time model
and imposing FSI condition in Eq. (3.27), by using, on the one hand, the ex-
act value of the derivative at the switching instant and on the other hand, the
expression in Eq. (3.31), which includes the feedback ripple as its indirect esti-
mate. The error between both surfaces is very small, hence demonstrating the
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(a)

(b)

Figure 3.11: (a) FSI boundary surfaces obtained from the discrete-time model
(white) and from ripple-based index approach (black) as a function of the pro-
portional gain kp, Γ, and τ . (b) Error between both surfaces.

53



accuracy of the ripple as an estimate of the time derivative at the switching
instant. Note that the approximation error starts to increase for low values of
τ but depends slightly upon Γ.

3.4 Design-oriented ripple-based index mathe-
matical demonstration

3.4.1 Revisiting the state transition matrices

The previous section has validated the ripple approach through contrasting the
results with the discrete-time model, and also unveiled that the ripple can be
included in the Jacobian matrix through its relation with the PWM switching
condition. Nevertheless, it is also apparent that this approach involves sophis-
ticated analysis, that is not of practical engineering use. On the other hand,
the ripple-based approach, which has been validated in-depth for the complete
design space in Section 3.2, is based on a starting hypothesis and lacks a solid
mathematical justification. This section will derive the ripple-based FSI index
approach from the discrete-time model, taking advantage of the fact that the
previous section has demonstrated that the ripple of the control signal can be
included in the Jacobian matrix of this model. The aim of such demonstration
is to give a mathematical support to obtain a closed-form expression for the
stability boundary and to examine the accuracy of such approach. The sim-
plification of this matrix is carried out for the particular case of a VMC buck
converter with a simple proportional feedback gain. Note that in the previous
works (for example (di Bernardo et al., 1997)), which also addressed the issue
of obtaining a closed-form expression, the derived expressions are complicated
since practical considerations were not used, thus making difficult their inter-
pretation to derive useful design criteria for practical engineering use. In this
section such practical considerations will be taken into account in deriving the
state transition matrix, corresponding to each linear configuration used by the
converter, and therefore in obtaining simplified, but accurate enough, practical
expressions for the Jacobian matrix. First, the state transition matrix Φk(t),
which relates the final state x(tf ) to the initial conditions x(ti) during each
time interval, is obtained. Using the expression of Eq. (3.14), although very
accurate, does not allow to obtain clear design conditions. Instead of using an
exact expression of the transition matrix, an approximated expression consid-
ering practical circuit conditions will be used. Let us first consider the solution
in its general form as follows:

x(tf ) = x(ti) +
∫ tf

ti

(Akx(θ) + Bk)dθ, k = 1, 2 (3.32)

By particularizing for the buck converter of Fig. 3.5, and considering the ON
configuration (k = 1), the following expression of the solution can be derived:(

vC(tf )
iL(tf )

)
=
(
vC(ti)
iL(ti)

)
+
∫ tf

ti

(
iL(θ)
C
− vC(θ)

RC
Vg − vC(θ)

)
dθ (3.33)

The simplified transition matrix will be obtained by taking into account the
DC-DC buck converter circuit considerations i.e, low output voltage ripple with
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(a)

(b)

Figure 3.12: FSI boundary surfaces obtained from the exact discrete-time model
(black) and by approximating the derivative of the output voltage at the switch-
ing instant v̇C(DT−) for ripple amount V̂C according to Eq. (3.31) (white) as a
function of the proportional gain kp, Γ and τ . (b) Error between both surfaces.
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respect to the inductor current ripple. Note that the well-known exponential
matrix simplification based on the Taylor expansion eAkt = I+Akt+(Akt)2/2!+
. . . does not make such a distinction between the two state variables. This
circuit-based consideration allows to obtain a considerable simplification, but
with high accuracy, by reducing the number of terms in the final expression of
the state transition matrices involved in the Jacobian matrix. In the case of the
buck converter, an approximated expression of Φk(t) is given by

Φ̃k(t) =


1− t

RC

t

C
− t2

2RC

− t
L

1− t2

2LC

 (3.34)

Also, A1 = A2, which implies Φ1(t) = Φ2(t) and therefore the matrix Φ=Φ2(DT )Φ1(DT )
in Eq. (3.18) can be approximated by a simpler matrix Φ̃ given by

Φ̃ =


1− T

RC

T

C
− T 2

2RC

−T
L

1− T 2

2LC

 (3.35)

Each term involved in the expression of the Jacobian given in Eq. (3.18) is
reviewed according to the previous simplification. Finally, from the same ex-
pression as in Eq. (3.30), a closed-form expression for predicting FSI boundary
is obtained:

Jσd
= −kpv̇C(DT−)− Vmfs = −kpVgPv

4LCfs
(3.36)

where Pv is given by the following expression

Pv =
2ω2

0ωRCT
3D2D̄2 + 4T 2(ω2

RC − ω2
0)DD̄2 + 8− 4TωRC

T 4ω4
0D

2D̄2 − 4T 2(ω2
RC − ω2

0)DD + 8− 4TωRC
(3.37)

Furthermore, the expression given in Eq. (3.36) can be rewritten as a func-
tion of the output voltage ripple V̂C taking into account the relationship be-
tween the derivative at the switching instant and such ripple magnitude given
in Eq. (3.31):

− 4kpfsV̂C − Vmfs = −kpVgPv
4LCfs

(3.38)

3.4.2 Critical ripple expression

The closed-form expression given in Eq (3.38) still lacks a design-oriented stand-
point. With the aim of obtaining a simpler expression, the ripple amplitude is
approximated as in Eq. (3.11), which has been validated for the complete de-
sign parameter space in Appendix D, along with considering Pv = 1. Then,
Eq. (3.38) can be rewritten as:

kpVg
4LCfs

− 4kpfsV̂C = Vmfs (3.39)

kpVg
4VmLCf2

s

(1− 2DD) = 1 (3.40)
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(a)

(b)

Figure 3.13: (a) FSI boundary surfaces obtained from the discrete-time model
(white) and from the ripple-based condition given in Eq. (3.41) Pv = 1(black)
as a function of the proportional gain kp, Γ and τ . (b) Error between both
surfaces.
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Figure 3.14: FSI boundary curves obtained from the discrete-time model
(Eq. (3.18), dots) and from ripple-based condition given in Eq. (3.41) (solid)
with Pv = 1 as a function of the duty cycle D and the proportional gain kp with
τ=2.5 and Γ=3.3.

To make this expression consistent with the ripple-based approach given in
Eq (3.12), let us multiply both sides of Eq. (3.40) by DD and divide them
by 2(1 − 2DD), thereby obtaining the following final stability condition for
predicting FSI occurrence:

kpVgDD

8VmLCf2
s︸ ︷︷ ︸

ρ

=
DD

2− 4DD︸ ︷︷ ︸
ρcrit

(3.41)

The system will be stable if ρ < ρcrit. The left side of this equation is the defined
ripple-based index ρ while its right side gives the critical ripple value ρcrit for
which the system will exhibit FSI. Note that ρcrit depends only on the duty cycle
D and its dependence in terms of this parameter is as it is shown previously
in Fig. 3.8 which was obtained from numerical simulations. The stability curve
obtained from the exact Jacobian matrix given in Eq (3.18) together with those
obtained from the ripple-based index condition given in Eq. (3.41) are shown in
Fig. 3.13 by sweeping the parameters kp, τ and Γ. The results show that the
error produced by the approximation is negligible in a wide range of the design
parameter space. The stability curve obtained from the exact Jacobian matrix
and the approximated Jacobian with Pv = 1 by sweeping D and calculating
the critical value of the feedback gain kp is depicted in Fig. 3.14 showing the
accuracy of the closed-form expression for the whole practical range of duty
cycles.

3.4.3 Ripple-based index approach limitations

The previous section has given a consistent mathematical demonstration of the
ripple-based index approach for predicting FSI. However, this approach is not
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accurate enough in predicting the FSI boundary when some design parameters,
namely Γ and τ , are relatively low, as it is shown in Fig. 3.13. This is considered
to be a penalty to having a simplified expression with the important advantage
of being oriented to design. This total error due to the different approximations
done in the process of obtaining the closed-form expression for predicting FSI
stands from different error sources. First, the ripple has been included in the
discrete-time model as an estimate of the derivative of the state variable at the
switching instant. As it can be observed in Appendix C, τ is the parameter that
produces a major error (although it is only of 1%). Note that τ is related to the
output load of the converter, so that low values of τ (τ << 1) indicates that it
is no more valid the assumption, which has been used for relating the output
voltage ripple to the derivative of such signal at the switching instant, that
the inductor ripple current flows mostly through the output capacitor, hence
notably increasing the error when using the ripple-based approach. On the
other hand, in order to keep the design-oriented formulation, the ripple has been
approximated by Eq. (3.11). In Appendix C (Fig. D.2) it has been demonstrated
that both parameters have an impact on this approximation, but the error is
very low (< 2%). Finally, the last approximation has been done by simplifying
the Jacobian matrix using circuit considerations. This is the approximation
which introduces more error, since both Γ and τ have an important impact on
the approximation of the discrete-time model and when these parameters are
low ( Γ < 1 and τ < 1), the error increases as it is shown in Fig. 3.13 and
starting to lose the approach validity.

3.5 A design-oriented combined approach for pre-
dicting overall stability boundaries

The previous section has demonstrated that the voltage ripple amount at the
PWM modulator input allows to quantitatively predict the FSI exhibition in a
buck DC-DC converter. This approach compresses the complete multidimen-
sional parameter space into a single index, thereby providing a design-oriented
parameter space characterization in terms of FSI. It has been shown that, in-
dependently of the parameter varied, when the ripple at the PWM modulator
exceeds a critical value, the system exhibits subharmonic oscillations. In this
section, the approach is combined with the SSI index given in Eq. (3.8), in
order to completely divide and classify the design parameter space in different
stability areas. The combined design-oriented stability conditions are:

• Stability condition for avoiding SSI occurrence:

ρSS :=
kp
Vm

Vg

(
ωz1
ωRC

− 1
)
< 1 (3.42)

• Stability condition for avoiding FSI occurrence:

ρFS :=
kp
Vm

VgD(1−D)
8LCf2

s

< ρcrit(D) (3.43)

The design-oriented stability map within the parametric space composed of
ωz1, kp, fs and R, Vm, L is shown in Fig. 3.15. The results obtained from the
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concurrent application of both instability indexes aiming to predict both SSI
and FSI are superimposed and show a strong correlation to those obtained from
the conventional and mature method based on the discrete-time model, hence
validating the approach.
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Figure 3.15: Overall stability map obtained from the discrete-time model (dash-
dots) compared with design-oriented models: SSI boundary (solid blue) from
Eq. 3.42 and FSI boundary (solid green) from ripple-based index given in Eq.
3.43 with ρcrit(0.5)=0.245. The obtained results as a function of (a) ωz1, kp
and fs (b) R, Vm and L.

3.6 Extension to discontinuous conduction mode

The characterization of dynamics and the effect of the parameters on the sta-
bility boundary has been addressed in Section 2.1 showing that, in VMC buck
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converter working in DCM and under a PI controller, the dependence of the
stability boundary upon the system parameters is more complex. The deriva-
tion of a closed-form stability condition for the VMC buck converter working
in DCM has been previously tackled in (Tse, 1994a) but the work assumes, a
sample and hold action in the feedback to simplify the analysis. Therefore al-
ternatively to this work, this section attempts to extend the stability analysis
from a ripple-based perspective to the DCM case, hence illustrating the gen-
eral purpose applicability of this index and obtaining a common framework to
compare both conduction modes in terms of stability. Therefore, according to
the ripple hypothesis given in Eq. (3.10) the stability condition for a VMC buck
converter working in DCM is:

ρDCM :=
kp
Vm

V̂C,DCM < ρcrit,DCM (3.44)

The condition for the system to be working in this mode can be expressed
as a function of the converter parameters as:

KDCM < 1−M (3.45)

where M = Vo/Vg is the voltage conversion ratio and KDCM is given by:

KDCM :=
2Lfs
R

(3.46)

The stability analysis in terms of the ripple-based index is more complex than
in the CCM case, since the ripple in DCM has a more complex expression than
in CCM (Erickson and Maksimovic, 2001):

V̂C,DCM :=

(
Vg − VoM

Lfs
− Vo
R

)2

2C(Vg − Vo)ML
(3.47)

Moreover, the duty cycle also depends upon KDCM:

DDCM(KDCM,M) = M

√
KDCM

1−M (3.48)

Note that at KDCM = 1 −M (boundary between DCM and MCC) the duty
cycle coincides with the conversion ratio M .

The following simulation addresses the validation of the ripple-index ap-
proach for DCM and the disclosure of the ρcrit dependence. The parameters
in this section are, as in the previous sections, oriented to miniaturization:
Vg = 6 V, Vref=3 V, R = 6 Ω, L = 15 nH, C = 50 nF, fs=50 MHz, Vm=1 V,
kp=2.5 and ωz1=1 Mrad/s.

Note that the parameters that appear in the ripple expression but not in
KDCM (Eq. (3.46)) neither in DDCM (Eq. (3.48)) are the output capacitance C,
the proportional gain kp and the modulator ramp amplitude Vm. The charac-
terization in Fig. 3.16 shows that, by sweeping kp or C, the stability boundary,
expressed in ripple terms ρ, remains almost constant for high C values while
the stability boundary ρcrit,DCM improves for low values of C.

Furthermore, Fig. 3.17 demonstrates that by keeping KDCM constant, de-
spite using different values of L, fs or R, the stability boundary is kept constant,
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Figure 3.16: (a) Bifurcation diagram by sweeping the proportional gain kp and
(b) the FSI boundary ρcrit(kp) as a function of output capacitance C.

expressed in ripple terms, and comparing with results in Fig. 3.16. A similar
characterization case has been carried out by keeping constant the voltage con-
version ratio, but varying the input and output voltages. Further extension is
carried out by using the results from the discrete-time model derived in Ap-
pendix A showing that the stability boundary remains almost invariable, hence
demonstrating that by keeping the duty cycle DDCM(KDCM,M) constant, the
stability boundary ρcrit,DCM is constant, which agrees with the results in CCM.

Finally, once it has been demonstrated that the stability boundary ρcrit,DCM

is not modified provided that KDCM and M are kept constant, the simulation
in Fig. 3.18 shows the effect of both variables upon such boundary by means of
the discrete-time model.

In Fig. 3.18, it is possible to observe that the effect of KDCM is different
from that of M . On the one hand, KDCM tends to increase the stability region
by increasing the critical ripple ρcrit,DCM, whereas the voltage conversion ratio
M tends to decrease the stability region by reducing such critical boundary.
Besides that, there is a discontinuity between CCM and DCM, which has been
already pointed out in Section 2.1.

The validation of the ripple index approach has been carried out in this
section for the DCM, but its benefits are limited by the fact that the duty cycle
depends upon many parameters of the converter, as it is shown in Eq. (3.48), and
that there is a discontinuity in the stability boundary between both conduction
modes, hence entailing that the stability analysis is more complex. Finally, the
ripple-based index stability condition for avoiding FSI exhibition working in
DCM, as a function of system parameters, can be expressed as:

ρDCM(L,C,R, Vg, Vref , Vm, fs, kp) < ρcrit,DCM(DDCM(KDCM,M)) (3.49)
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(a) (b)

(c)

Figure 3.17: Bifurcation diagrams by sweeping the proportional gain kp with
(a) KDCM=0.375, as in Fig. 3.16, but with different parameter values L=45 nH
fs=25 MHz R=6 Ω (b) the same M = 0.5, but with different parameters values
Vg=8 V Vref=4 V. (c) FSI boundary obtained from the discrete-time model
by concurrently sweeping the inductance value L and the switching frequency
fs = KDCMR/(2L), hence keeping constant KDCM, and concurrently sweeping
the voltage reference value Vref and the input voltage Vg = Vref/D, hence
keeping constant M .

3.7 Extension to full-state-feedback controller

Modeling of CMC switching power converters has been widely explored in the
past (Ridley, 1989), (Deane, 1992), (Bryant and Kazimierczuk, 2005) due to
their propensity to exhibit FSI (Redl and Novak, 1981). Most of the derived
models take advantage of the fact that the regulator can be modeled as a first-
order system, hence allowing to derive, considering piecewise linear approxima-
tions of the inductor current, a simple closed-form expression to predict the
stability boundary.

In an elementary CMC converter, considering only the current loop, a well-
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Figure 3.18: Stability curve ρcrit,DCM(kp) as a function of (a) KDCM, for M=0.5
and M=0.25 and (b) voltage conversion ratio M , for KDCM=0.625 (L=25 nH,
fs=50 MHz, R= 4 Ω) and KDCM=0.375 (L=15 nH, fs=50 MHz, R= 4 Ω).

known condition for predicting the exhibition of FSI can be written in a simple
equation as a function of the slope before and after the switching instant, m1

and m2 respectively, and the external added ramp slope mc (Erickson and Mak-
simovic, 2001):

kim2 −mc

kim1 +mc
< 1 (3.50)

For the case of a buck converter, assuming triangular inductor current wavform,
the slopes can be approximated as:

m1 ' VgD

L
(3.51)

m2 ' VgD

L
(3.52)
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Then, the stability condition can be expressed as:

kim2 −mc

kim1 +mc
< 1⇒ ki

Vg(2D − 1)
2L

< mc (3.53)

Note that without external ramp (mc=0), Eq. 3.53 implies that m1 > m2 and
that the maximum duty cycle for ensuring stability is D=0.5. With an external
ramp and in the worst case, namely D=1, the minimum required ramp slope to
avoid FSI exhibition is mc = kiVg/2L.

Regardless the simplicity of the obtained stability conditions in both cases,
most of the works neglect in the system dynamics that CMC requires a volt-
age feedback loop in order to properly regulate the output voltage under load
changes, which indeed can produce that FSI occurs even for duty cycles below
0.5, as it was pointed out in (Ridley, 1989). The main aim of this section is to
explore the combination of both current/voltage loops and give a closed-form
expression to predict the FSI boundary, without abandoning the ripple perspec-
tive proposed in this thesis. A CMC buck converter with a voltage feedback
loop is shown in Fig. 3.19.

Figure 3.19: CMC buck converter with voltage feedback loop.

Following a similar procedure to that of the case of a VMC buck converter
in Section 3.4, but considering in this case, the additional current feedback path
in Eq. (3.21) and Eq. (3.22), namely including the proportional current gain in
the vector gain K = [kv ki], it is possible to derive a closed-form expression for
predicting FSI boundary in a similar way as in Eq. (3.36), composed in the left
side of the derivative just before the switching instant of the feedback variables:

Jσd
= −kv v̇C(DT−)− kii̇L(DT−) =

−kvVgPv
4LCfs

− kiVgPi
2L

+mc (3.54)
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where Pv is the same as in Eq. (3.37) and Pi is:

Pi =
2T 2ω2

0D
2D

2
+ 2T 3ωRCω

2
0D

2D + 4T 2(ω2
0 − ω2

RC)DD + 8− 4TωRC
T 2ω2

0D
2D

2
+ 4T 2(ω2

0 − ω2
RC)DD + 8− 4TωRC

(3.55)
Note that Jσd

is composed of two kinds of terms, one depending on the
inductor current and the other one on the capacitor voltage, hence increasing
the complexity of the critical stability boundary. Therefore, with the aim of
simplifying the final expression, Eq. 3.54 can be rewritten as:

kv v̇C(DT−) + kii̇L(DT−) +mc '
kvVg

4LCfs
+
kiVg
2L

(3.56)

where Pv and Pi have been approximated by 1. Then, the voltage and current
terms are respectively joined in both sides of the equation and the derivative
of the output voltage at the switching instant is replaced by the output voltage
ripple V̂C :

− kv4fsV̂C +
kvVg

4LCfs
= mc + kim1 −

kiVg
2L

(3.57)

kvVg
4LCf2

s

(
1− 2DD

)
=

mc

fs
+
ki
fs

(
m1 −

Vg
2L

)
(3.58)

Finally, it is possible to derive a unified stability condition for predicting the
FSI stability boundary valid for the combined voltage and current loops. The
stability condition can be expressed as:

ρv < ρcrit,CMC (3.59)

where

ρcrit,CMC = ρcrit,VMC

(
1 +

ki
Vmfs

(
m1 −

Vg
2L

))
(3.60)

being ρv and ρcrit,VMC the ripple-based index and its critical value, respectively
for the VMC case, rewritten here:

ρv =
kv
Vm

VgDD

8LCf2
s

(3.61)

ρcrit,VMC =
DD

2− 4DD
(3.62)

The expression can be particularized for a VMC buck converter, by forcing
kv = kp, ki = 0 and considering the PWM ramp Vm ≥0 V, or for a CMC buck
converter by adjusting current gain, feedback voltage gain, and the external
ramp (Vm =0 V without external ramp). The validation of the accuracy of the
new design-oriented stability condition in CMC, with voltage loop but without
external ramp, is shown in Fig. 3.20. This figure shows that FSI can be exhibited
even for duty cycles lower than 0.5, depending on the amount of voltage ripple
in the modulator, which is not possible to be predicted by the stability condition
of Eq. (3.50). Furthermore, in Fig. 3.21 the stability condition is also validated
with an external ramp by sweeping the current gain ki. The parameters used
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Figure 3.20: Bifurcation diagram by sweeping kp in a CMC buck converter with
ki = 2, mc=0 and Vref=1.5 V. ρcrit,CMC = 0.1364 obtained from Eq. (3.60).

Figure 3.21: Bifurcation diagram by sweeping ki with Vref=4.5 V, kp=3 and
mc=100 V/s with Vm=2 V and fs=50 MHz. From the CMC stability condition
in Eq. (3.59) bifurcation occurs at ki=2.5.

in this section are the same as for the pure VMC case: Vg=6 V, Vref=1.5 V,
R=2.5 Ω, L=66 nH, C=20 nF, fs=50 MHz and Vm=1 V.

The stability condition implies that the current loop modifies the critical
stability boundary and that by increasing the effect of the current slope m1, for
instance by increasing the current gain ki, the FSI stability boundary is shifted
away. However, this improvement upon the stability boundary will strongly
depend upon the duty cycle D, as it is shown in Fig. 3.22 and Fig. 3.23. For low
values of the duty cycle, there is a stability improvement compared to the VMC
case, although it is reduced when the duty cycle D increases. The higher the
duty cycle is, the lower the output voltage ripple is required to keep the stable
behavior and for D >0.5 the critical boundary ρcrit,CMC is negative, hence being
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Figure 3.22: Stability boundary by sweeping the duty cycle D in a CMC. Re-
sults obtained from the discrete-time model (dots) and from the design-oriented
approach of Eq. 3.59 (solid) with ki=2. Additionally, the stability boundary in
VMC ρcrit,VMC obtained for ki=0 is shown. A and B points are simulated and
shown in Fig. 3.23.

imperative to consider an external ramp to obtain a stable period-one behavior.
The obtained expression from Eq. (3.59) and Eq. (3.60) when no voltage

feedback loop is considered, hence kv=0 and m1 given in Eq. (3.51), is:

ki
mc

Vg
2L
−m1 < 1⇒ ki

Vg(2D − 1)
2L

< mc (3.63)

Despite the mathematical formulation is different, the results are the same as
the ones obtained in Eq. (3.53). Note that the term Vg/(2L) can be interpreted
as a particular case of m2 for D=0.5, which coincides with the maximum value
that system will be stable according to the simple stability condition given in
Eq. 3.50.

Furthermore, apart from the general applicability of the stability condition
given in Eq. 3.59 to VMC or CMC and with and without external ramp, the
new stability condition also allows to unveil the effect of converter parameters
in all these different cases. For instance, parameters such as the proportional
gain kp or the output capacitor C, which only modify the voltage ripple, will
clearly lead to FSI exhibition when the variation of these parameters leads to
increase the voltage ripple in the feedback loop. Moreover, under no external
ramp condition (Vm = 0), the inductance will not have any effect upon FSI
stability boundary since it appears in both sides of the stability condition with
the same proportion (this fact also occurs in the case of input voltage Vg) while
the switching frequency will have more impact on the ripple than on the current
slope, and hence decreasing its value may lead to the occurrence of FSI.

This section has extended the ripple-based index for predicting FSI boundary
to the CMC buck converter, by giving a simple closed-form stability condition
hence demonstrating that this condition has a dependency on the amount of
the voltage ripple added by the voltage-feedback loop apart from the inductor
slopes.
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Figure 3.23: Time simulation in VMC buck converter (ki=0 and mc = Vmfs) (a)
and (c) and in CMC buck converter (ki=2 and mc=0) (b) and (d) respectively.
Conditions are those indicated in point A and point B in Fig. 3.22.
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3.7.1 Extension to the PID compensator

The PID compensator adds a phase lead, hence improving stability margins
regarding SSI. The PID compensator description in the time and frequency
domains are:

vcon(t) = kpve(t) + kdv̇e(t) + kI

∫ t

−∞
ve(θ)dθ (3.64)

Gc(s) =
vcon(s)
ve(s)

= G
(s+ ωz1)(s+ ωz2)

s
(3.65)

where ve(t) = Vref −vC(t) is the output voltage error. The equivalence between
time domain coefficients and frequency domain coefficients is:

kp = G(ωz1 + ωz2) (3.66)
kd = G (3.67)
kI = Gωz1ωz2 (3.68)

Starting from the time domain description, it is possible to rewrite the control
voltage as a function of the capacitor voltage and the inductor current, since
v̇e(t) indeed includes the inductor current, hence allowing a similar analysis to
that carried out in the precedent section:

v̇e = −v̇C = − iL
C

+
vC
RC

(3.69)

Thus, the feedback gains kv and ki which multiply the feedback variables vC
and iL respectively are:

kv = kp −
kd
RC

= G(ωz1 + ωz2 − ωRC) (3.70)

ki =
kd
C

=
G

C
(3.71)

Note that, from the previous analysis in Eq. (3.70), it is possible to derive that
the second zero ωz2 should remain above ωRC in order to obtain kv > 0, thus
ensuring the negative feedback regulation, but below ω0 = 1/

√
(LC) in order

to obtain the desired improvement upon the phase margin.
The addition of a derivative-related second zero in the compensator, apart

from improving the phase margin and therefore the stability in terms of SSI, can
also improve the FSI stability boundary by analogously adding the equivalent
to a current term to the feedback, regardless the fact that it will have a strong
dependency upon the duty cycle of the converter as it is shown in Fig. 3.24. This
figure also demonstrates the validity of the previous design-oriented equation
for full-state-feedback, given in Eq. (3.59), for the case of a PID compensator
including the external ramp of the PWM modulator.

From a design standpoint, the interest is to also know the effect of the second
pole that appears in a realistic PID, the s-domain representation of which can
be expressed as:

Gc(s) = G
(s+ ωz1)(s+ ωz2)

s(s+ ωp2)
(3.72)
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Figure 3.24: Stability curve as a function of G by sweeping the duty cycle
D. The results are obtained from the discrete-time model (dashed) and from
design-oriented equation (solid) given in Eq. (3.59).

The second pole ωp2 is usually limited in order to reduce the effect of noise in
the circuit. Note that for ωz1 < ω < ωz2 and ω > ωp2, G is equivalent to a
proportional gain.

In Fig. 3.25, the effect of ωp2 on the FSI stability boundary is shown as a
function of the switching frequency fs and the duty cycle D. The stability curve
has been obtained by sweeping the switching frequency or the duty cycle and
obtaining the value of Gcrit that leads to FSI exhibition. The FSI boundary is
represented by ρcrit,PID, which is defined as:

ρcrit,PID =
Gcrit
Vm

VgDD

8LCf2
s

(3.73)

From these results, it can be observed that when the switching frequency is
fixed well above the second pole ωp2, the stability boundary in a proportional
VMC buck converter is asymptotically obtained. If the switching frequency is
fixed well below such pole, then the stability boundary can be derived from the
previous PID case (without additional pole), thereby strongly depending on the
duty cycle and the current gain.

This section has addressed the prediction of the FSI boundary in a full-
state feedback (voltage and current loops) buck regulator providing a simplified
expression that joins both control loops. The analysis of this expression allows
to know the effect of each parameter upon the stability boundary. However,
the main limitation of such index-based approach is that it lacks a frequency
domain representation, which is of strong interest to synthesize new controllers
and compensators. The next section will develop a frequency domain model
that eventually can lead to understand in a more comprehensive way the FSI
phenomena and to synthesize new FSI controllers.
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Figure 3.25: ρcrit,PID(G) as a function of the PID pole ωp2 and (a)-(b) the
switching frequency fs and (c)-(d)-(e)-(f) the duty cycle D. Controller parame-
ters: ωz1=100 krad/s, ωz2=1 Mrad/s with Vref=3 V and ωs=2πfs=314 Mrad/s
and other parameters are the same as in the CMC case.
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3.8 A frequency domain model for overall sta-
bility boundary

The previous sections have tackled the prediction of the FSI boundaries starting
from the ripple-based index approach. As it was mentioned in Section 3.5, this
approach has the advantage that it is possible to directly derive from it the
dependence of the FSI boundary upon circuit parameters hence providing a
design-oriented closed-form expression for predicting the boundary of unstable
behavior. However, starting from such index, it is not possible to obtain a
frequency-domain representation that facilitates the synthesis of new controllers
to avoid instability.

This section addresses the prediction of the FSI boundary from a frequency
domain standpoint for a buck converter, with the final aim of synthesizing new
controllers in subsequent chapters. The frequency domain model will be de-
rived from the discrete-time model and will take advantage of the relationship
between the ripple of the control signal and the modulator gain demonstrated
in Appendix C.

Starting from the discrete-time model derived in Section 3.3, the recursive
state-equations in terms of the state variable perturbation x̃n and of the control
signal duty cycle perturbation d̃n along with their associated small-signal state-
matrix Jx, given in Eq. (3.19), and the input vector Jd, given in Eq. (3.20), can
be expressed as:

x̃n+1 = Jxx̃n + Jdd̃n (3.74)

The expression can expressed in the z-domain as:

zx̃n = Jxx̃n + Jdd̃n (3.75)

Defining the feedback variable yn = CΦ1(DT )xn, with C being a unit vector de-
pending on which is the feedback state variable (C=[1 0] for a VMC converter),
the z-domain transfer function is:

Hd,dis(z) =
ỹn

d̃n
= CΦ1(DT )(zI− Jx))−1Jd (3.76)

Furthermore, from the description of the switching surface σd in Eq. (3.17) for
a VMC converter, it is possible to calculate the feedback loop gains:

Hc,dis(z) =
σ̃

ỹn
= kv (3.77)

Hm,dis(z) =
d̃n
σ̃

= J−1
σd

= (kvCẋ(DT−) +mc)−1fs (3.78)

where kv is the gain of the feedback voltage. Finally, the complete loop transfer
function of the system Tdis(z), shown in Fig. 3.26, can be expressed as a function
of the controller and modulator gains:

Tdis(z) = Hm,dis(z)Hc,dis(z)Hd,dis(z) = J−1
σd

Jσx(zI− Jx)−1Jd (3.79)

The term Jσx = kvCΦ1(DT ) is given in Eq. (3.21).
The poles of the closed loop system, from which it is possible to carry out a

stability analysis, can be obtained from:

1 + Tdis(z) = 0 (3.80)
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Figure 3.26: Equivalent block diagram of the VMC converter in the discrete-
time model domain.

Note that this equation is equivalent to the characteristic polynomial equation
of the Jacobian matrix given in Eq. (3.26).

The loop transfer function in a VMC with proportional feedback can be
easily defined according to the converter Hd,dis(z), the controller Hc,dis(z) and
the modulator Hm,dis(z) transfer functions:

Hd,dis(z) = CΦ1(DT )(zI− Jx)−1Jd (3.81)
Hc,dis(z) = kp (3.82)

Hm,dis(z) =
(
kpv̇C(DT−) + Vmfs

)−1
fs (3.83)

Note that Hd,dis(z) depends upon all converter parameters, but it is possible to
demonstrate that, for a buck converter, it does no depend upon the duty cycle
D:

Hd,dis(z) = CΦ1(DT )[zI− Φ(T ))−1Φ2(DT ]∆ẋT

= CΦ1(DT )
adj(zI− Φ(T ))
det(zI− Φ(T ))

Φ2(DT )∆ẋT

= C
Φ(T )

det(zI− Φ(T ))
∆ẋT (3.84)

being Φ(T ) = Φ1(DT )Φ2(DT ) = Φ1(DT ) adj(zI−Φ(T ))Φ2(DT ). On the other
hand, the controller and the modulator transfer functions are constraints that
do not depend upon the z variable.

3.8.1 Discrete-time model: From z-domain to frequency
domain representation

The z-domain model derived in the previous section has been also called sampled-
data model in the literature (Lau, 1987), (Tymerski, 1993), (Verghese et al.,
1986).

Having obtained the z-domain transfer function of the buck switching power
converter Tdis(z), its frequency response Tdis(ejωT ) can be easily derived by
substituting, z = ejωT (Oppenheim et al., 1999), therefore obtaining:

Tdis(ejωT ) = Hm,dis(ejωT )Hc,dis(ejωT )Hd,dis(ejωT ) (3.85)
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Note that this frequency response considers a zero order hold effect. This trans-
formation has been used in (Ridley, 1989) for a CMC case since it can be
demonstrated that, in such a case, the PWM action can be approximated by
a sample-and-hold, although this statement is not valid for the case of VMC.
Alternative z-domain to frequency domain transformations are explored in (Sun
et al., 2000b).

In the case of Hd,dis(ejωT ), the transfer function can easily be obtained
from the z-domain by means of the aforementioned transformation. The com-
plete feedback transfer function in the frequency domain will be completed by
the controller frequency response Hc,dis(ejωT ) = kp and the modulator gain
Hm,dis(ejωT ), which can be considered as a simple constant gain in the fre-
quency domain. As it was demonstrated in Appendix C, the output voltage
ripple V̂C is proportional to its derivative at the switching instant, so that:

Hm,dis(ejωT ) =
1

4kpV̂C + Vm
(3.86)

The final frequency domain response Tdis(ejωT ) is depicted in Fig. 3.27, and
the FSI condition in the frequency domain can be expressed as:

|Tdis(ejωsT/2)| = 1 (3.87)

This can be explained because at ω = ωs/2, the variable z = −1 (equiva-
lent to obtaining λ = −1 in the characteristic polynomial equation) and then
from the condition given in Eq. (3.80), the only possible solution in which in-
stability will occur is given by Tdis(ejωsT/2) = |Tdis(−1)| = −1, equivalent to
|Tdis(−1)| = 1 and ∠(Tdis(−1)) = −180o. The validation of the frequency
domain representation and FSI prediction is shown in Fig. 3.27 for Vg=6 V,
Vref= 3 V, R=2.5 Ω, L=66 nH, C=20 nF, fs=50 MHz, Vm=1 V, kp=3 and
ωz1=1 Mrad/s. It can be observed that for the set of parameter values for which
Tdis(-1)=-1, one of the eigenvalues of the Jacobain matrix is equal to -1.

3.8.2 The averaged model and the discrete-time model
frequency domain discrepancies

This section shows in a frequency domain representation the discrepancies be-
tween the averaged model, which has been discussed in Section 3.1, and the
discrete-time model. While in both models the controller is assumed constant
and equal to Gcjω) = Hc,dis(ejωT ) = kp there are discrepancies regarding to the
modulator and output-to-control transfer function. The difference between con-
verter control-to-output transfer functions in the averaged and the discrete-time
model, Hd,avg(jω) and Hd,dis(ejωT ) respectively, is shown in Fig. 3.28.

From this figure, it is possible to observe that at low frequency both transfer
functions are consistent, while they differ close to half of the swithing frequency
due to the switching action being eliminated in the averaged model.

Despite the difference within the high-frequency band, our interest is just
centered in the frequency response at half of the switching frequency due to its
implication in the prediction of the FSI boundary, as it was demostrated in the
previous section.

The difference between both models at half of the switching frequency are
quantified in Fig. 3.29. Note that the error is almost constant in terms of the
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Figure 3.27: Representation of Tdis(ejωT ) and the validation of the prediction
of FSI boundary with discrete-time model. VMC buck converter with kp=4.3,
being in the boundary of FSI, and obtaining |Tdis(ejωsT/2|) ≈ 1 and the system
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Figure 3.28: Bode plots of Hd,avg(jω)(dashed) given in Eq. (3.2) and
Hd,dis(ejωT ) (solid) given in Eq. (3.81).

design-space parameters Γ and τ . Therefore, the maximum error between both
models at half of the switching frequency can be approximated by 8 dB, being
this quantity a conservative limit.

The exploration of the design-space as a function of the duty cycle makes no
sense since neither the averaged model Hd,avge

(jωT ) nor the discrete-time model
Hd,dis(ejωT ) depend on this parameter, as it was demonstrated in Eq. (3.84).

Regarding the modulator transfer functions, note that both models consider
a constant, but have diferent expressions. Then, using the discrete-time model
modulator gain Hm,z(ejωT ) into the averaged model will impliy a distortion
of the SSI boundary prediction. Therefore the appropriate modeling of the
modulator is a key element for the frequency model to be able to predict the
overall stability boundary in the frequency domain.
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Figure 3.29: Error (in dB) in the magnitude between Hd,avg(jωs/2) and
Hd,dis(ejωsT/2).

3.8.3 The modulator frequency response

While in the discrete-time model the modulator gain is just a constant, including
the voltage ripple and the ramp slope, this simple expression neglected the real
nature of the modulator, since, indeed, the modulator gain has a dependency
on the control signal waveform vcon(t).

Note that the modulator transfer function is obtained by sampling the
derivative of the control signal, whose period is the same as the discrete-time
model sampling period hence being a constant from the discrete-time model
standpoint. However, any controller that affects the control signal will affect
this gain, hence it can be considered that there is an associated frequency re-
sponse to such modulator. Therefore, it must depend upon the other system
transfer functions, namely the converter and the controller.

Works in order to obtain the small-signal PWM modulator model in (Tymer-
ski and Li, 1993; Vorperian, 1990) exist, but they are mainly based on complex
mathematical analysis.

However, with the aim of not losing the design-oriented standpoint, this
section proposes a simple frequency domain model for the modulator starting
from the observation that the feedback signal slope at the switching instant
v̇C(DT−) is proportional to the converter output ripple amplitude V̂C for the
case of a VMC buck converter.

While the ripple amplitude V̂C of the output voltage is just a measure of
the time-domain output voltage waveform vC(t), it has an important advantage
since it is highly correlated with the first harmonic of the the ripple waveform
vc(t).

This can be demonstrated from the Fourier series of the PWM square-wave
driving signal q(t) with the duty cycle D:

q(t) = a0 +
∞∑
n=1

an cos(nωst) +
∞∑
n=1

bn sin(nωst) (3.88)
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where

a0 =
1
T

∫ T

0

q(t) = DVg (3.89)

an =
2
T

∫ T

0

q(t) cos(nωst) =
Vg
πn

sin(2πnD) (3.90)

bn =
2
T

∫ T

0

q(t) sin(nωst) =
Vg
πn

(1− cos(2πnD)) (3.91)

The output voltage ripple waveform vC(t) can be expressed as a function
of the PWM Fourier series expression and the frequency response of the buck
converter low-pass filter Gp.

vC(t) = co +
∞∑
n=1

cn cos(nωst+ ϕn) (3.92)

where cn = An|Gn|, Gn=Gp(jnωs) is the attenuation of the LC filter at the har-
monic n of the switching frequency andAn =

√
a2
n + b2n and ϕn = − arctan(bn/an).
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Figure 3.30: Comparison in % for the output waveform harmonic amplitude cn:
c1 (solid) c2 (dash-dot) and c2 (dots) with output ripple measure V̂c.

Fig. 3.30 compares the amplitude of each harmonic cn with the total ripple
magnitude V̂C/2 (peak), showing that both measures are very coincident (over
90%). This implies that the ripple magnitude can be approximated by the first
harmonic level due to the intrinsic low-pass filter of the converter, and hence
any effect (attenuation or amplification) on such harmonic c1 can be directly
applied on the ripple magnitude V̂C . Therefore, the output voltage ripple ṽc(t)
can be expressed as:

ṽC(t) ≈ A1|G1| cos(ωst+ ϕ1) ≈ V̂C
2

cos(ωst+ ϕ1) (3.93)

where
A1 =

2Vg
π

sin(πD) (3.94)
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Then, the associated frequency domain representation can be expressed as:

ṽC(ω) ≈ A1G1δ(ω − ωs) ≈
V̂C
2
δ(ω − ωs) (3.95)

where δ is the Dirac delta impulse function.
Having demonstrated that the ripple magnitude is highly correlated with

the first harmonic amplitude of the control signal, and that such harmonic
can be easily represented in a frequency domain, a new small-signal modulator
frequency response can be constructed:

Hmf (jω) =


1
Vm

if ω 6= ωs

1
4kpV̂C + Vm

if ω = ωs

The new small-signal modulator transfer function frequency response de-
pends upon the control signal, through the ripple magnitude at the switching
frequency. This is in agreement with previous studies that demonstrated that
averaged model modulator gain, namely 1/Vm, is valid up to one half of the
switching frequency.

The modulator frequency response magnitude is illustrated in Fig. 3.31,
showing that it is constant for the all of frequencies except at the switching
frequency where there is a tone the amplitude of which is proportional to the
ripple magnitude. Therefore, only the effect of a compensator Gc(jω) upon such
transfer function at the switching frequency is of interest.
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Figure 3.31: Modulator transfer function |Hmf (jω)| with constant gain in all
the frequency range below fs (Vm=1 V) and a tone at the switching frequency.

3.8.4 Extended discrete-time model

The modulator small-signal transfer function frequency response developed in
the previous section can be applied in both discrete or averaged models. In the
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first case, the feedback transfer function Tdis(ejωT ) can be modified as:

Tdisf (ejωT ) = Hc(ejωT )Hd,dis(ejωT )Hmf (jω) (3.96)

The frequency response of the new discrete-time model, including the ripple-
based modulator transfer function, is shown in Fig. 3.32.

Note that the new stability criterion, instead of just ensuring that the gain
at one half the swithing frequency is lower than 0 dB, as it was established
in Eq. (3.80), will impliy to compare the loop response at two frequencies.
In particular, the magnitude of Tdisf (ejωT ) at half of the switching frequency
must be lower than its magnitude at the switching frequency to ensure stability.
Therefore, it is possible to define a new FSI stability margin (SMFS) as:

SMFS = 20 log(|Tdisf (ejωsT )|)− 20 log(|Tdisf (ejωsT/2)|) > 0 (3.97)

Note that Tdisf (ejωT ) = Hmf (jωs) = 1/(Vm + 4Gc(ω)V̂C).
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Figure 3.32: (a) Frequency response of Tdisf (ejωT ), in this representative ex-
ample the system being at the boundary of FSI conditions, with kp=4.31 and
SMFS=0.01 dB.

In Fig. 3.33 it is shown the stability boundary obtained from the exact
discrete-time model and by using the FSI stability margin given in Eq. (3.97)
from the frequency domain model, which are certainly very similar, thereby
demonstrating the accuracy of the new model. Furthermore, note that the
stability boundary as a function of the duty cycle is not a perfect parabola (in
agreement with what was observed for the ripple-based index approach) since
Hmf (jω) has an independent term at the switching frequency that does not
depend upon any system parameter hence the stability boundary is not directly
proportional to the ripple magnitude.

Note that these results are equivalent to the ones obtained in Section 3.3.4
using the ripple within the discrete-time model for predicting FSI boundary
(since both include the same kind of assumptions).
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Figure 3.33: Stability boundary obtained from the discrete-time model and
from the FSI condition given in Eq. (3.97) (a) as a function of parameters Γ
and τ (b) as a function of the duty cycle D.

Whereas the stability conditon in Eq. 3.97 implies that the ripple has to be
kept within a certain threshold to ensure stability to avoid FSI, according to
the ripple-based index approach, developed in Section 3.2, the input modulator
ripple has to be kept under a certain level to avoid exhibition of the same
instability.

In principle this seems a contradiction but the key point is to analyze the
procedure that has been carried out to obtain the ripple-based index stability
condition from the discrete-time model. Note that in Eq. (3.38), both sides of
the analytical equation depend upon the same the system parameters, hence a
common factor was isolated and then transformed into the ripple-based index.
On the other hand, the frequency model represents independently both sides of
the same equation. Indeed, the ripple-based index approach captures, indirectly,
and expresses in a simple condition, the condition for which the harmonic at the
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switching frequency is equal to the harmonic at half of the switching frequency.
Whereas the ripple-based index has a clear usefulness for prediction of the

FSI boundary, the frequency domain has the clear aim of facilitating the syn-
thesis of new controllers. From such frequency domain representation, it is
possible to derive that the control of such instabilities can be tackled either by
attenuating the harmonic at half of the switching frequency standpoint or by
amplifying the switching frequency harmonic. New FSI controller synthesis will
be addressed in the next chapter taking advantage of this observation.

3.8.5 Complete design-oriented frequency domain model

Although the modulator transfer function based on the ripple representation in
the frequency domain has a clear design-oriented purpose, the model given in
the previous section still requires to develop the discrete-time model to obtain
Hd,dis(ejωT ), which lacks a of bottom-up circuit derivation standpoint.

The design-oriented standpoint of the averaged model along with the sim-
plicity of the modulator transfer function Hmf (jω), which depends only upon
the ripple, facilitates the derivation of a new design-oriented small signal com-
plete loop transfer function Tavgf (jω) for predicting both SSI and FSI.

Tavgf (jω) = Hd,avg(jω)Gc(jω)Hmf (jω) (3.98)

The magnitude frequency response of Tavgf (jω) is shown in Fig. 3.34. Taking
into account that in Section 3.8.2 it has been demostrated that the difference
between the control-to-ouptut transfer function in the discrete-time model and
the averaged model at half of the swithing frequency is of a maximum of 8 dB,
it is possible to rewrite the stability condition given in Eq. (3.97) as:

SMFS = 20 log(Tavgf (jωs)− 20 log(|Tavgf (jωs/2)|) > 8 dB (3.99)
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Figure 3.34: (a) Frequency domain representation of Tavgf (jω) at the boundary
of FSI conditions with kp=4.31, with SMFS=7.8 dB.
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In Fig. 3.35 the FSI boundary, obtained from the discrete-time model and
from the stability condition given in Eq. 3.99, is shown. It can be observed that
the new model along with the stability condition gives a conservative boundary
for predicting FSI.

Figure 3.35: (a) FSI boundary surface obtained from the discrete-time model
(black) and from the frequency domain model stability condition given in
Eq. (3.99) (white). (b) Error between both surfaces in %.

3.8.6 Extension to a PI compensator

In the previous section, an approximated design-oriented circuit-based model for
a buck converter under a proportional control has been obtained. This section
extends the approach to a PI compensator in order to be able to explore the
usefulness of the approach for concurrently predicting both FSI and SSI stability
boundaries (since with a proportional controller only FSI can be exhibited).

The development of the discrete-time model of a VMC buck converter under
a PI compensator, requires to proceed as in the case of a proportional control,
increasing the number of state variables and adjusting properly the gain vector
(see Appendix A.1) hence implying a certain complexity.

However, an alternative approach can be obtained from the previous model,
by using the averaged model along with the ripple-based modulator transfer
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Figure 3.36: Frequency domain magnitude response of Tavgf (jω) obtained by
joining the averaged model of a VMC buck converter, under a PI compensator,
along with the modulator transfer function Hmf (jω).

function. The PI compensator frequency response is:

Gc(jω) = kp
jω + ωz1

jω
(3.100)

Then, the total loop transfer function Tavgf (jω) is shown in Fig. 3.36.
In this case, two conditions have to be satisfied: on the one hand, the Nyquist

stability condition to predict SSI occurrence, and on the other hand, the stability
condition given in Eq. (3.99) for predicting FSI occurrence.

Fig. 3.37 shows the stability boundary obtained from the discrete-time model
and from the complete design-oriented frequency domain model, by sweeping
the proportional gain kp and the PI zero ωz1. The model is able to very accu-
rately predict the SSI stability boundary, since it directly includes the averaged
model, and gives an accurate conservative limit for predicting the FSI stabil-
ity boundary, hence demonstrating the benefits of this combined approach for
predicting both FSI and SSI .
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Figure 3.37: Overall stability boundary obtained from the discrete-time model
(dash-dot) and results from the frequency domain model (solid), using the
Nyquist stability criterion (phase and gain margin) along with the FSI sta-
bility condition given in Eq. (3.99), over the design parameter space (a) ωz1 and
kp
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This chapter has presented an approach to predict the occurrence of FSI based
on the ripple magnitude. The ripple-based index allows compressing different na-
ture parameters into a single index hence facilitating the quantitative prediction
of the FSI occurrence considering the complete parameter design-space. The
accuracy of this approach has been contrasted with the results obtained from the
consolidated discrete-time models hence demonstrating its validity. Furthermore,
the chapter has demonstrated that, by using a small-signal model for the modu-
lator, the ripple component explicitly appears within such discrete model hence
allowing to derive a closed-form expression that mathematically validates the
ripple-index approach. The approach has also been validated for DCM. Further-
more, the approach has been also extended to CMC obtaining a simple stability
condition that allows predicting the stability boundary taking into account the
outer voltage feedback loop and the external ramp slope. The work has also
validated the general applicability of the CMC stability condition for a PID con-
troller case. Finally, the chapter has proposed a new modulator frequency re-
sponse that, along with the averaged model, is able to predict the overall system
stability boundaries. Beyond the fact of having a single model for concurrently
predicting both kinds of instability, the obtained frequency representation allows
to address the synthesis of new controllers. The next chapter will revisit FSI
controllers proposed up to now and will improve their performance elaborating
from the results obtained from the frequency model proposed in this chapter.
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Chapter 4

Control of fast-scale
instabilities in switching
power converters

4.1 Introduction

The previous chapter has addressed the prediction of FSI in a VMC buck con-
verter, directly relating it to the ripple magnitude at the modulator input.
Beyond the fact of being able to quantitatively predict such stability boundary
from a ripple-based approach, the chapter puts forward the fact that the de-
sign trends towards miniaturization, namely low area and low relative switching
frequency, which directly implies an increase upon ripple, is indirectly limited
by the exhibition of FSI. With this interest in sight, this chapter tackles the
synthesis of FSI (chaos) controllers from an engineering standpoint, hence facil-
itating its design and implementation and understanding its impact upon overall
stability.

Figure 4.1: VMC buck converter with a compensator Gc(s) along with a FSI
controller GFS(s).

88



This section considers a VMC buck converter with a PI compensator along
with an additional circuitry, namely FSI controller GFS(s) to avoid the exhi-
bition of FSI, as it is shown in Fig. 4.1. The nominal parameters used in this
chapter are the same as in the previous one: Vg= 6 V, Vref = 3 V, fs=50 MHz,
Vm=1 V, L=66 nH, C= 20 nF, R=2.5 Ω, kp= 3 and ωz1=1 Mrad/s. The bi-
furcation diagram by sweeping kp of such converter, without any FSI controller
is illustrated in Fig. 4.2.

Figure 4.2: Bifurcation diagram by increasing kp in a VMC buck converter with
a PI compensator showing the route to chaos via period-doubling. kp,crit=4.3.

The starting point will be revisiting the existing chaos controllers. Their
main drawbacks are, on the one hand, the fact that they are mainly analyzed
from a mathematical standpoint (Lyapunov exponent) (Pyragas, 1992), (Pyra-
gas, 1995), (Batlle et al., 1997) but avoiding an engineering standpoint that
facilitates their design.

The chapter analyzes different chaos controllers from a frequency domain
standpoint which allows to understand their principle of operation and gives
way to propose alternative implementation-aware approaches. Subsequently,
these controllers are extended focusing on facilitating miniaturization, thereby
rejecting instabilities but at the same time also improving the power-related
performance metrics, namely area, efficiency and ripple.

Finally, the chapter ends up by comparing the stability margins obtained by
the different controllers, its capability to extend the power-related performance
metrics and their impact upon dynamics metrics such as the system transients.

4.2 Time-delay-based chaos controllers

This section revisits time-delay feedback controllers in order to describe their
operation principle and the effect of their parameters upon stability. One of
the most studied chaos controller categories in the literature is the Time-Delay
Feedback Controller (TDFC) and its extension (ETDFC) (Batlle et al., 1997;
Angulo et al., 2007), whose block diagrams are shown in Fig. 4.3.

From the controller structure, the generic TDFC Laplace-domain transfer
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Figure 4.3: Time-delay feedback control scheme.

function can be expressed as:

GFS(s) = 1− γ e
sT − 1
esT − β (4.1)

where β is zero for the TDFC and it takes a non-zero value in the case of
ETDFC.

4.2.1 The time-delay feedback controller

This section explores the frequency response of the TDFC, obtained from par-
ticularizing the transfer function given in Eq. (4.1) for β=0.
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Figure 4.4: Bode diagram representation (magnitude and phase) of the TDFC
with γ=0.2 (dashed) γ=0.5 (solid) and γ=0.6 (dot-dashed) showing the switch-
ing frequency (vertical dashed line).

The frequency-domain representation depicted in Fig. 4.4, for different values
of the parameter γ, shows that the controller provides a frequency-selective
comb-filter which attenuates the harmonics at half of the switching frequency
and its integer multiples. Note that the controller has a non-invasive nature
since it does not modify neither the DC component, nor the harmonic at the
switching frequency. As it is possible to observe, by increasing γ the attenuation
increases (only for γ up to 0.5), and adds an additional phase lag.
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(a) (b)

(c)

Figure 4.5: Bifurcation diagram by sweeping γ in a VMC buck converter with
TDFC for different values of proportional gain kp (a) kp= 5 (in period-doubling
without TDFC) (b) kp=6.2 (in period-four without TDFC) (c) kp=7 (chaos
without TDFC).
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(a) (b)

Figure 4.6: Bifurcation diagram by sweeping the proportional gain kp in a VMC
buck converter with TDFC for different values of γ (a) γ=0.05 (b) γ=0.1.

The effect of γ upon exhibition of FSI is shown in Fig. 4.5. This figure
shows that the controller leads to improve the FSI boundary (even avoiding
the chaotic behaviour), but with some strong limitations within the design-
space. Namely, on the one hand, there exists a critical minimum value of γ to
avoid FSI exhibition, which depends upon the amount of ripple in the converter,
considering the direct relationship between stability and ripple demonstrated in
the previous chapter. On the other hand, simulation results show that for a
certain critical value of γ (which does not depend upon the ripple) the TDFC
yields to exhibit SSI. This is in agreement with the phase response given in
Fig. 4.4 for which higher values of γ lead to adding a phase lag to the loop
gain, hence making the converter prone to exhibit SSI. This fact, detrimental
to SSI, opposes to the controller benefits in terms of FSI hence compromising
the overall stability of the system.

Fig. 4.6 shows the bifurcation diagram as a function of kp for different values
of γ. As it was pointed out before, by using a too much high value of γ, SSI is
exhibited limiting the potential advantages of the controller.

4.2.2 Extended time-delay feedback controller

The Extended Time-Delay Feedback controller (ETFDC) includes an additional
feedback inner loop depending upon a new parameter β as it is shown in Fig. 4.3.

Fig. 4.7 shows the effect of such parameter upon its frequency response.
By increasing the value of β and keeping γ constant, the phase response is
smoothed, but on the other hand the attenuation at half of the switching fre-
quency decreases. In fact, this trade-off allows to use higher values of γ than in
the TDFC case, as it is shown in Fig. 4.8, hence improving the FSI boundary,
but requiring a higher minimum value of γ to control it.

Fig. 4.9 shows the stability boundary surface, obtained from numerical sim-
ulations, by sweeping both γ and β parameters in order to be able to guarantee
the overall stability margin (considering both FSI and SSI). For low values of
β and high values of γ, SSI is exhibited, whereas, as β is increased, the system
is more prone to exhibit FSI. The figure also shows the bifurcation diagram for
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Figure 4.7: Bode diagram representation (magnitude and phase) of the ETDFC
with γ=0.5 and β=0.2 (solid) β=0.5 (dash) and β=0.6 (dot-dash) showing the
switching frequency (vertical dashed-line).

(a) (b)

Figure 4.8: Bifurcation diagram by sweeping γ in a VMC buck converter with
ETDFC for different values of β (a) β=0.2 and (b) β=0.5. kp=6.2 (period-four
without controller).

the most optimum stable conditions in terms of FSI, namely γ=0.2 and β=0.5.
Regardless of the stability improvement in the ETDFC, both time-delay-

based controllers have some important limitation in terms of design and imple-
mentability. The first one arises because of the trade-off between SSI and FSI
exhibition, which requires a proper selection of γ and β parameters to avoid
these instabilities. The lack of a clear criteria to set up these parameters values
leads to require a proper exploration as it has been carried out in this section.
The second one arises from the implementation difficulties of time-delay-based
controllers since both of them are based on a delay module, the implementation
of which is challenging in the analog domain.
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(a)

(b)

Figure 4.9: (a) FSI boundary surface, obtained from numerical simulations, in
a VMC buck converter with ETDFC as a function of β and γ. FSI (white) and
SSI (black) boundaries are shown. (b) Bifurcation diagram by sweeping kp with
γ=0.2 and β=0.5.

4.3 Notch-based chaos controllers

The chaos controllers studied in the previous section are based on eliminating
the sub-harmonic components from the feedback path to avoid the exhibition of
FSI, by means of a delay-based structure, which has implementation difficulties
in the analog domain. In (Wei-Guo et al., 2010) the time-delay magnitude of
the TDFC controller has been replaced by a notch and a high-pass filter in order
to simplify its implementability but the structure remains equal, hence being
blind to the design-standpoint.

Delay-time-based approaches are based on an additional feedback loop to
create a frequency response GFS(s), which provides a comb-like filtering starting
with a notch filter at half of the switching frequency. The previous section has
characterized that their frequency response can be modulated as a function of
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γ and β parameters.
This section explores the effect of a stop-band filter in the feedback path,

the generic transfer function of which is:

GFS,notch(s) =
s2 + 2ξ1ωn + ω2

n

s2 + 2ξ2ωn + ω2
n

(4.2)

Note that for the case of ξ1=0, the transfer function corresponds to a pure
notch filter which only depends upon the parameter ξ2, being the notch resonant
frequency ωn tuned to half of the switching frequency ωn = ωs/2.

The bifurcation diagram in Fig. 4.10 shows that the effect of the parameter
ξ2 leads the converter to exhibit SSI, even for low values of ξ2 (high quality
factor) because of the phase lag. Note that the bifurcation point kp=4.2 is very
close to the one obtained without controller, as it is shown in Fig. 4.2, but in
this case exhibiting SSI instead of FSI.

Figure 4.10: Bifurcation diagram by sweeping the proportional gain kp in a
VMC buck converter with a pure notch filter ξ1=0, tuned at half of the switching
frequency with ξ2=0.001.

Alternatively and in a similar way as it has been carried out for ETDFC,
it is possible to smooth the magnitude and the phase of the transfer function
by moving the zeros of the expression in Eq. (4.2) (for ξ1 6= 0). The transfer
function in the frequency domain is shown in Fig. 4.11, in which the design-
space can be described as a function of ξ2 and the attenuation at half of the
switching frequency ∆ξ = ξ1/ξ2 (∆ξ <1).

The exploration of the FSI stability surface in Fig. 4.12, obtained from
the discrete-time model given in Appendix A, unveils similar results as in the
ETDFC case, this is, the FSI boundary depends upon the attenuation ∆ξ and
narrowness of the stop-band. The higher the attenuation is, the better stability
is obtained in terms of FSI, but, on the other hand, the system is more prone
to SSI exhibition. Besides that, by increasing the stop-band (equivalently to
increase ξ2) the tendency to exhibit SSI is reduced. It is worth mentioning that
by increasing ξ2, hence increasing the attenuation band, the results are close
to those obtained from a simple PI compensator buck converter without chaos
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Figure 4.11: Bode diagram representation (magnitude and phase) of the stop-
band controller as a function of ξ2 keeping constant the attenuation ∆ξ=0.8
with ξ2=1 (dash-point), ξ2=2 (solid) and ξ2=4 (dash).

controller, the critical proportional gain of which, before FSI is exhibited, is
k′p,crit = kp,crit/∆ξ.

4.4 Repetitive chaos controllers

The previous controllers are based on attenuating the frequency content at half
of the switching frequency to extend the stability margin in terms of FSI.

However, the use of a so-called repetitive controller, shown in Fig. 4.13, has
been also used for chaos control purpose (Escobar et al., 2006; Corradini et al.,
2008). The s-domain representation of such a repetitive controller as a function
of parameter γ is:

GFS(s) =
esT + γ

esT − γ (4.3)

The frequency response of a repetitive controller is shown in Fig. 4.14. Note
that comparing with a simple TDFC, apart from attenuating the harmonic at
half of the switching frequency, the controller is amplifying not only at the
switching frequency harmonics but also at the DC component, hence losing the
non-invasive nature that previous controllers had.

The bifurcation diagrams as a function of γ and the proportional gain kp
are shown in Fig. 4.15, which can be compared with the TDFC in Fig. 4.5 and
Fig. 4.6 respectively, showing that the repetitive controller is less stable in terms
of SSI but more stable in terms of FSI. Regarding the SSI observed results, they
agree with the frequency domain interpretation, in which more phase lag is
added by the controller. However, in terms of FSI, the improvement of the
stability margin compared to TDFC can be only attributed to the amplification
of switching frequency harmonic.

This results are in agreement with what was observed in the frequency model
derived in Section 3.8, in which the obtained stability condition (Eq. (3.97))
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(a)

(b)

Figure 4.12: (a) FSI boundary surface, obtained from the discrete-time model,
in a VMC buck converter with a notch controller tuned at half of the switching
frequency, as a function of attenuation ∆ξ and ξ2. FSI (white) and SSI (black)
boundaries (b) Bifurcation diagram as a function of the proportional gain kp
with parameters ξ1=1.2, ξ2=2 and ∆ξ=0.6.

points out that the system is stable if the harmonic level at the switching fre-
quency (proportional to voltage ripple) is higher than the level of the harmonic
at half of the switching frequency.
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Figure 4.13: Feed-forward repetitive controller structure.
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Figure 4.14: Bode diagram representation (magnitude and phase) of the repet-
itive controller with γ=1 (solid) and γ=0.5 (dash).

(a) (b)

Figure 4.15: Bifurcation diagram by sweeping (a) γ and (b) the proportional
gain kp in a VMC buck converter with a repetitive controller.
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4.5 Narrow band amplifier chaos controller

The previous sections, along with the frequency model derived in Section 3.8,
suggest that FSI control can be accomplished not only by attenuating the har-
monic at half of the switching frequency but also amplifying the switching fre-
quency harmonic.

Thus, this section is focused on providing the FSI control functionality from
a feasible implementation of such harmonic amplification. This is carried out
by usingÊa narrowband amplifier (NBA) centered at the switching frequency.
The complete block diagram is shown in Fig. 4.16. Note that in (Redl and
Sun, 2009) , enhanced ripple regulators are proposed based on adding a single
feedback path with an amplifier that improves the DC regulation while also
“amplifies and shapes” the ripple voltage. The work points out that by means
of such amplifier, based on a PID, the controller can improve the FSI. However,
in that work it is not justified why FSI is eliminated (a clear cause of the effect
of such amplifier upon the FSI is not provided) and the approach is not applied
for PWM.

Figure 4.16: (a) VMC buck converter with a NBA FSI controller.

The transfer function of the FSI chaos controller GFS(s) can be described as
in the case of a notch filter in Eq. (4.2) but with ∆ξ >1 and the center frequency
tuned to the switching frequency, ωn = 2πfs. The magnitude and phase of such
transfer function in the frequency domain is shown in Fig. 4.17. Apart from the
amplification at the switching frequency harmonic, a key additional advantage
is the fact that it notably improves the SSI boundary by adding a phase lead
before the switching frequency (note that no additional phase is added at the
switching frequency).

Its effect upon FSI boundary is characterized in Fig. 4.18, which shows the
stability boundary surface as a function of ∆ξ and ξ2. The surface has been
obtained from the discrete-time model derived in Appendix A. On the one hand,
the parameter ξ2, which has a direct effect upon the width of the amplification
band, has an important effect upon the stability boundary so that as it increases
the FSI boundary is worsened. On the other hand, it is possible to observe that
the higher the amplification is, the more stable the system is in terms of FSI.

The discussion and characterization of chaos controllers has been hitherto
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Figure 4.17: Bode diagram representation (magnitude and phase) of a NBA
tuned to the switching frequency (vertical dashed-line) with ∆ξ=2 and ξ2=0.1
(solid) and ξ2=0.5 (dash).

limited to the proportional gain kp since it is one of the parameters that affects
high-frequency magnitude but without modifying the phase. As it was men-
tioned at the beginning of this chapter, the indirect aim of a chaos controller,
apart from obviously improving the stability margin, is that such improvement
allows to expand the design-space towards miniaturization (for instance reduc-
ing the inductance value, which is related to the system area), without losing
stability.

Simulations in Fig. 4.19 show the stability boundary as a function of the
inductance (related to area/volume occupancy) and switching frequency (related
to efficiency). Note that both surfaces are similar and the stability boundary is
clearly improved when ξ2 <1 and ∆ξ > 0 (a narrow band amplification) with
regards to the case of not using such controller.

Finally, in the previous chapter, it has been shown that the FSI boundary
strongly depends upon the duty cycle. Exploration of the effect of such pa-
rameter as a function of the inductance has been carried out in Fig. 4.20 from
the discrete-time model. The results show that major benefits of such con-
troller are shown for a duty cycle of 0.5 (note that the inductance can reach
the boundary between continuous and discontinuous conduction mode without
losing stability). The results are in agreement with the results in a conventional
buck converter that in D=0.5 case, is where the system is more stable.

Compared to the precedent chaos controllers, the NBA shows benefits in
terms of overall stability, considering both FSI and SSI boundaries.

100



(a)

(b)

Figure 4.18: (a) Bifurcation diagram by sweeping the proportional gain kp of a
VMC buck converter with a NBA controller (∆ξ=2 and ξ2=0.1). (b) Stability
surface, obtained from the discrete-time model as a function of the proportional
gain kp and parameters ξ2, and∆ξ.

4.6 Towards a low-ripple high-stability regula-
tion: combining chaos controller with out-
put ripple reduction

The improvement in stability terms when a chaos controller is used implies
a clear step forward towards circuit miniaturization without losing stability.
However, this will imply an increase in the converter output ripple, which is
not desirable in order to keep the DC-DC nature of the system. Therefore,
the advantage of the NBA chaos controller could be invalidated because of the
expansion of the design-space, namely area or switching frequency reduction
could be limited by load specifications in terms of ripple.

101



(a)

(b)

Figure 4.19: FSI boundary surfaces, obtained from the discrete-time model, of
a VMC buck converter with a NBA as a function of parameters ∆ξ, ξ2 and (a)
the inductance L and (b) the switching frequency fs.

The natural way for tackling this excess of ripple would be to add a ripple
attenuation module to the converter output, but this is not trivial since this
should be based on modifying the switching frequency harmonic, which is the
same work principle of the NBA chaos controller, and hence it could cancel the
advantage of such approach.

This section proposes a joint approach to obtain high stability margin in term
of FSI, that allows reducing the converter reactive components, and at the same
time reducing the output voltage ripple to accomplish low-ripple performance
as required by DC-DC converters.

Two possible configurations with the aim of reducing the output ripple are
shown in Fig. 4.21. The first one is based on adding an impedance zero at the
switching frequency, hence attenuating the ripple. However this effect can cancel
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Figure 4.20: FSI boundary curves, obtained from the discrete-time model, of a
VMC buck converter with a NBA (solid) with ξ2=0.1 and ∆ξ=2 and without
using the NBA controller (dash) as a function of the inductance L and the duty
cycle D. LDCM=12.5 nH.

(a) (b)

Figure 4.21: Two possible configurations to reduce the output voltage ripple:
(a) low impedance at the switching frequency from output to ground (b) high
impedance at the switching frequency from the feedback sensing point to load.

the amplification at the switching frequency carried out by the chaos controller.
A controller, based on this approach, will be tackled in the next section.

Alternatively, the other approach is based on the elimination of output rip-
ple by adding a high output impedance notch at the switching frequency. One
possible implementation of this configuration is shown in Fig. 4.22. The ap-
proach does not modify the frequency response from the feedback standpoint
and reduces the converter output ripple. The benefits of such output notch con-
figuration in terms of area/ripple have been discussed in (Alarcon et al., 2004)
as a solution to reduce the reactive component size.

The converter transfer function from the LC filter input vd to the feedback
voltage vC and from the LC filter input vd to the output vo, namely Gv(s) and
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Go(s) respectively, are:

Gv(s) :=
vC
vd

=
ω2

0

s2 + ωRC
R

Zo(s)
s+ ω2

0

(4.4)

Zo(s) :=
vC
iR

= R
s2 +

s

CnR
+ ω2

n

s2 + ω2
n

(4.5)

Go :=
vo
vd

= Gv(s)
R

Zo
(4.6)

where ωn = 1/
√
LnCn = 2πfs (notch tuned at the switching frequency).

Both the input-to-feedback Gv(s) and the input-to-output Go(s) transfer
functions are shown in Fig. 4.23, in which it is shown that the output notch
does not affect the feedback transfer function but adds a notch in the output
transfer function hence reducing the amount of ripple delivered to the load.
Additionally the NBA will be added as a chaos controller in the feedback loop.

In Fig. 4.24 results from using only the NBA (obtained in the last section)
and this approach are compared. The results are obtained from the discrete-
time model developed in Appendix A. Note that a similar stability boundary is
obtained as a function of the duty cycle, but the output voltage ripple is largely
reduced by canceling the harmonic at the switching frequency.

The main drawback of this proposed configuration is its additional required
circuitry: the NBA plus the reactive components of the output notch. In ad-
dition, the notch inductor should drive all the output current hence requiring
large area and the circuit also requires accurately controlling the center fre-
quency and the gain of the amplifier and the output notch since a mismatch
between both center frequencies (such as due to the effect of temperature or
parasitic elements) could limit benefits of the approach in both output voltage
ripple and fast-scale stability terms.

Figure 4.22: VMC buck converter with a NBA chaos controller along with an
output notch filter.
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Figure 4.23: Bode diagram representation (magnitude and phase) of a VMC
buck converter with the output notch filter shown in Fig. 4.22. (a)-(c) input-to-
feedback transfer function Gv(s) and (b)-(d) input-to-output transfer function
Go(s).

4.6.1 The LC divider: combining the low ripple and FSI
controller

An alternative approach to avoid FSI and to improve the output voltage ripple is
explored in this section. The starting point is based on adding a low-impedance
notch filter at the output of the converter, as it was shown in Fig. 4.21.

However, an output notch at the switching frequency directly connected to
the same point as where the feedback voltage is sensed will reduce the voltage
ripple at the output but also in the feedback loop, hence canceling the amplifying
effect and limiting the stability benefits.

However, the approach proposed in this section, shown in Fig. 4.25 is based
on filtering the output ripple by means of an LC divider, so that it consists
of a notch filter function from the output voltage standpoint and, at the same
time, changes the feedback voltage sensing point so that the harmonic at the
switching frequency is amplified respect to the harmonic at half of the switching
frequency, hence improving the FSI boundary.
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Figure 4.24: (a) FSI boundary curves, obtained from the discrete-time model,
of a VMC buck converter with a NBA controller and output notch filter (solid)
and only with a NBA controller (dash) as a function of the inductance L and
the duty cycle D and (b) the output voltage ripple V̂o as a function of the duty
cycle D. Ln=2 nH Cn=5 nF, ξ2=0.1 and ∆ξ=2.

In this scheme, it is not required any amplifier and only two reactive compo-
nents are added to the system. Furthermore, the output inductor of the notch
impedance does not drive all the output current thus facilitating its integration.
The system parameter values used in this section are Vg= 6 V, Vref=1.2 V,
Vm=1 V, fs=50 MHz, R=2.5 Ω, kp=3, L=66 nH, C=20 nF, ωz1 =1 Mrad/s
and Ln =2 nH and Cn=5 nF.

The transfer function of both paths, from the LC filter input vd to the output
voltage vo and from the LC filter input vd to the feedback voltage vCn, Go(s)
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Figure 4.25: VMC buck converter by sensing the output voltage ripple through
an LC divider.

and Gc(s) respectively, are given by:

Go(s) :=
vo
vd

=
ω2

0

s2 + ωRCω0
R

Zo(s)
s+ ω2

0

(4.7)

Zo(s) :=
vC

iLn + iR
= R

s2 + ω2
n

s2 +
R

Ln
s+ ω2

n

(4.8)

Gv(s) :=
vCn
vd

= Go(s)
ω2
n

s2 + ω2
n

(4.9)

where ωn = 1/
√
LnCn = 2πfs (notch tuned to the switching frequency).

The frequency domain representation of these transfer functions are depicted
in Fig. 4.26.

The output transfer function Go(s) includes a notch at the switching fre-
quency, hence reducing the output ripple, whereas in the feedback path Gv(s)
the harmonic at the switching frequency is amplified relative to the harmonic
at half of the switching frequency.

The benefits of the controller in terms of FSI exhibition are depicted in
Fig. 4.27, in which it can be observed that the controller clearly improves the
stability boundary as a function of kp. Note that due to the effect of the proposed
controller, another type of instability is exhibited instead of the classical period-
doubling behavior.

As it was demonstrated during this chapter, the improvement in FSI bound-
aries allows varying some parameters without losing stability, such as the in-
ductance value or the switching frequency, which are of especial interest for
miniaturization.

The FSI boundary surface, obtained from the discrete-time model derived in
Appendix A, as a function of the inductance L and the duty cycle D is shown
in Fig. 4.28 and it is compared to the one obtained from a conventional buck
converter (without any FSI controller). Note that the LC divider approach result
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Figure 4.26: Bode diagram representation (magnitude and phase) of a VMC
buck converter with the LC divider in Fig. 4.25. (a)-(c) input-to-feedback trans-
fer function Gv(s) and (b)-(d) input-to-output transfer function Go(s).

in better stability boundaries, allowing to reduce the inductance value without
losing stability and being its minimum value limited by the DCM border in a
wide range of duty cycles. Similar exploration as a function of the switching
frequency demonstrates similar benefits of such controller. Note that modifying
the switching frequency implies also modifying the LC divider (notch) resonant
frequency.

Furthermore, Fig. 4.28 also shows a comparison between the output ripple
obtained from LC divider buck converter and from a conventional buck con-
verter showing clear benefits that will facilitate the reduction of the reactive
components parameter values or the switching frequency.

One of the main drawbacks of such compact structure is the dependence
that both metrics, ripple and stability, can have upon the reactive components
tolerance and quality factor.

The effect of the tolerance on the ripple and the stability is characterized in
Fig. 4.29 in which parameters Ln and Cn are modified with a tolerance of 5%.
Regarding the stability, it is possible to observe that as the feedback resonant
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Figure 4.27: (a) Bifurcation diagram by sweeping the proportional gain kp of
a VMC buck with an LC divider. (b) Control signal at the modulator input
waveform vcon after bifurcation takes place. kp,crit=3.22 (without LC divider).

peak is closer to the switching frequency, the system is more stable in terms of
FSI (this corresponds to an increase of parameters values Cn and Ln), but if
this accurate resonant frequency can not be reached, due to frequency drifts,
temperature among other factors, the stability surface is very flat, almost not
affecting such boundary. Regarding the effect of reactive components tolerance
upon the output voltage ripple, it can be considerable, as it is shown in Fig. 4.29.
At nominal values there is a minimum of the output ripple and a variation on
both sides leads to its increase. Despite this, note that the output voltage ripple
is still considerably low compared to the output voltage ripple this converter
would have without an LC divider structure.

Furthermore, the effect of the reactive components quality factor (QCn, QLn)
is also characterized in Fig. 4.30. The quality factor of both reactive components
are defined as:

QCn =
1

ωsRCnCn
(4.10)

QLn =
ωsLn
RLn

(4.11)

Note that the quality factors of both reactive components have a similar
effect upon the stability margin.

4.6.2 Application to CMC

The application of the LC divider chaos controller to the CMC case is consid-
ered in this section, instead of using an external ramp. The circuit diagram is
illustrated in Fig. 4.31.

Fig. 4.32 shows an example in which FSI is exhibited in a CMC buck con-
verter. As it can be observed, the LC divider, apart from attenuating the output
voltage ripple, maintains the system stable. The parameters are the same as
the previous ones but with Vref=1.5 V and current gain ki=2.

As it was demonstrated in Section 3.7, the FSI in CMC has a strong depen-
dence upon the duty cycle. Therefore in Fig. 4.33, it is explored the effect of such

109



0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

60

70

L
[n

H
]

D

Stable

FSI
unstable

(a)

0.2 0.3 0.4 0.5 0.6 0.7 0.8
5

10

15

20

25

30

35

40

45

50

f
s

[M
H

z]

D

FSI unstable

Stable

(b)

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.01

0.02

0.03

0.04

0.05

0.06

V̂
C

[V
]

D

(c)

Figure 4.28: FSI boundary curves, obtained from the discrete-time model, of
a VMC buck converter with an LC divider (solid) and without the LC divider
(dash) as a function of the duty cycle D and (a) inductance L and (b) switching
frequency fs (c) the output ripple V̂C as a function of the duty cycle D.
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(a)

(b)

Figure 4.29: (a) FSI boundary surface, obtained from the discrete-time model,
and (b) the output voltage ripple V̂C as a function of the tolerance of the reac-
tive component parameters. Nominal values Cn=5 nF Ln=2 nH. kp,crit=3.22
(without controller).

parameter upon the stability boundary, obtained from the discrete-time model
developed in Appendix A.6, as a function of the voltage-feedback proportional
gain kp.

It can be observed that the stable behaviour is reached by increasing the
proportional gain kp. Then, for duty cycles below 0.5, the effect of the LC divider
cancels the possibility of FSI exhibition, hence not requiring any feedback gain.
When the duty cycle is higher than 0.5, the control of such instabilities requires
increasing the proportional gain to reach a stable behavior. This trend can be
observed in Fig. 4.33, in which it is shown the bifurcation diagram by sweeping
the proportional gain for Vref=4 V.

Note that the fact that increasing the proportional gain leads the converter
to be more stable is opposite to what was observed in Section 3.7, in which
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Figure 4.30: FSI boundary surface, obtained from the discrete-time model, as
a function of the quality factor of reactive component parameters. Nominal
values Cn=5 nF, Ln=2 nH. kp,crit=3.22 (without LC divider controller).

Figure 4.31: CMC buck converter by sensing the output voltage ripple through
an LC divider.

the increase of the feedback voltage ripple led to FSI. This discrepancy can be
understood by analyzing the equation used to derive the closed-form stability
condition in CMC, given in Eq. 3.57. Such stability boundary equation (without
considering the ramp slope) can be written as:

kv4fsV̂c −
kvVg

4LCfs
+ kii̇L(DT−)− kiVg

2L
= 0⇒ ∆v −∆i = 0 (4.12)

where,

∆v =
kvVg
LCfs

(
DD

2
− 1

4

)
(4.13)

∆i =
kiVg
L

(
1
2
−D) (4.14)
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Figure 4.32: Time-domain waveforms of the state variables in a CMC buck
converter without (top) and with (bottom) LC divider chaos controller and
kp=3 (left) and kp = 4 (right).

The stability condition is ∆v − ∆i > 0. Note that for D <0.5, ∆v < 0 and
∆i > 0, the current loop is compensating the voltage loop and improving the
stability. On the other hand, for D >0.5 both parameters are negative and
hence the system becomes unconditionally unstable in terms of FSI and thus
it requires an external ramp to obtain a stable behavior. However, if the LC
divider is added (or an equivalent NBA), which amplifies the feedback voltage
ripple, ∆v would be higher than 0, and then for D <0.5 both terms will be
positive, so that the system becomes unconditionally stable independently of
the system parameters, and for D >0.5 the system becomes stable provided
that the gain added by the control makes ∆v to be high enough to compensate
the negative value of ∆i, hence requiring to increase the feedback voltage ripple.

4.7 Stability margins and power metrics com-
parative between controllers

Up to now, different FSI controller approaches have been explored individually
in terms of stability. This section combines all approaches and compares them
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(a)

(b)

Figure 4.33: (a) Stability boundary obtained from the discrete-time model by
sweeping the duty cycle D, (b) Bifurcation diagram by sweeping the propor-
tional gain kp in a CMC buck converter with Vref=4 V.
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not only in terms of stability, but also in terms of power metrics, namely area,
efficiency, ripple, and dynamic regulation. The parameters used in this section
are the same as in the previous sections: Vg=6 V, Vref=1.2 V, C= 20 nF,
L=66 nH, R=2.5 Ω, kp=3, ωz1=1 Mrad/s, fs=50 MHz and Vm=1 V.

The stability boundaries comparison, obtained by numerical simulations
along with the discrete-time model, of TDFC, ETDFC, notch-based controller,
NBA and LC divider is shown in Fig. 4.34. This comparison has been carried
out by sweeping the PI compensator parameters, namely the proportional gain
kp and the zero ωz1, due to their capability to explore a wide design-space range
including both FSI and SSI boundaries.

The exploration shows that delay-time-based controllers have a limited ben-
efits, because of their negative effect upon SSI boundary, hence reducing their
advantage in overall stability terms. It is interesting to observe that the notch-
based approach, which has been derived from such time-delay-based controllers,
by properly adjusting the damping factors (ξ1 and ξ2), can result in improved
behavior.

The alternative approaches based on amplifying the switching frequency
harmonic show a better behavior in terms of overall stability. The simple NBA
is the only controller that concurrently improves both stability boundaries and
the LC divider, reaches a considerable improvement in terms of FSI boundary,
although the SSI boundary is slightly worsened.
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Figure 4.34: Stability boundaries, obtained from the respective discrete-time
model and numerical simulations, of a VMC buck converter as a function of
the PI compensator parameters kp and ωz1 by using different FSI controllers,
adding a TDFC with γ=0.05; a ETDFC with γ = 0.2 and β=0.5; a notch with
ξ1=1.2 and ξ2 = 2; a NBA with ξ1 = 0.1 and ξ2 = 0.4, and an LC divider with
Ln= 2 nH and Cn=5 nF.

FSI controller can not be only observed as “controllers” just affecting the
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stability but also as key low-ripple low-area enabling controllers so that they
can facilitate the integration of switching power converters by means of ensuring
stability for low-area and low switching frequency frameworks.

A controller with improved FSI behaviour is not only affecting the stability
region, but it indeed expands the parameter space of feasible designs, thereby
allowing to trade off stability vs ripple vs occupied area, so that these controllers
can be interpreted as a means of facilitating the miniaturization and integration
of switching power converters by way of ensuring stability for low area occupancy
and low switching frequency.

However, a design shift towards miniaturization cannot be considered feasi-
ble if such occupied area or switching frequency reductions do not go along with
a reduction of output voltage ripple. Therefore, a 3-metrics map is carried out
in Fig. 4.35 to compare the design-space, obtained as a function of the induc-
tance value (Area), the switching frequency (related to efficiency through the
dominant switching losses) and the output voltage ripple (V̂C) for the applica-
tion of the different alternative controllers. These surfaces have been obtained
by fixing the switching frequency and obtaining the minimum value of induc-
tance before transiting to DCM or losing stability. Comparing the NBA and
the conventional cases, it is worth observing that the NBA controller design-
space surface is already extended, which indeed allows using lower inductance
values without losing stability, but the ripple is equivalent in both controllers.
However, observing the outcomes of the LC divider controller case, it can be
stated that it clearly improves the overall performance as compared to the other
counterpart controllers by extending the surface in a similar way as in the NBA,
but at the same time reducing the output voltage ripple magnitude.

Figure 4.35: Power metrics design-space surface as a function of switching fre-
quency (efficiency), inductance (area) and ripple for different chaos controllers:
a conventional buck converter; a NBA with ξ1 = 0.1 and ξ2 = 0.4 and an LC
divider with Ln= 2 nH and Cn=5 nF.
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Beyond metrics such as steady-state stability or output voltage ripple, in
regulation applications, it is very important to evaluate the dynamic response
of the converter in front of a load change of demand.

The simulation in Fig. 4.36 tackles the characterization of the controller per-
formance from a dynamics standpoint. The interest is to qualitatively evaluate
the response of the converter to output current step.

Fig. 4.36 unveils that chaos controllers are not only of interest because of
their fast-scale stability boundary improvement, but also since they can reduce
the settling time when a load step occurs. As it can be observed, the NBA and
LC divider controllers have a better transient response than the conventional
buck regulator with the same parameter values, while the notch-based controller
gives a similar performance.
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Figure 4.36: Transient response of the VMC buck converter in front of an output
current step from R−=2.5 Ω to R+=1.25 Ω at t0=100 µs for a conventional buck
(red) and different FSI controllers: (a) notch-based controller with ξ1=1.2 and
ξ2 = 2; (b) NBA with ξ1 = 0.1 and ξ2 = 0.4 and (c) LC divider with Ln= 2 nH
and Cn=5 nF.
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This chapter has addressed the synthesis of FSI controllers from an engi-
neering design-oriented standpoint together with the aim of improving their in-
terpretation so as to be able to enhance their performance and facilitate their
implementation.

First, the previously reported delay-based controllers have been revisited and,
by characterizing that they are based on comb filtering tuned to half of the switch-
ing frequency and its multiple harmonics, it has been shown their limitations
regarding overall stability, since controlling FSI is detrimental to the SSI bound-
ary, as well as the difficulties in implementation. An alternative proposal has
been proposed by simplifying them to a simple notch filter tuned at half of the
switching frequency, for which even improved stability performance is obtained
as compared to time-delay-based controllers.

Subsequently, a complementary approach has been proposed inspired in repet-
itive controllers, which has shown that by also amplifying the switching frequency
harmonic, the FSI can be better controlled. An implementation-aware controller
has been proposed based on an NBA, which not only improves FSI but also SSI
boundaries. The controller allows notably reducing different parameters such as
the inductance (related to system area) or switching frequency (related to system
efficiency) whilst guaranteeing stability.

From the knowledge of such FSI controller, the study has been extended by
taking into account other power processing performance metrics such as the
output voltage ripple, with the ultimate aim of facilitating converter miniatur-
ization. This chapter has proposed two approaches to improve overall stability at
the same time as reducing the output voltage ripple. While the first one requires
two independent modules to address the combined improvement in terms of both
stability and ripple, the second one is based on a compact LC divider circuit
structure which achieves both objectives

The LC divider shows improved performance regarding both an enhancement
of the stability region and a reduction in the output voltage ripple, hence resulting
in an expansion of the region of potential designs which results in improved
performance in terms of miniaturization, namely, low area, high-efficiency and
low-ripple.
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Chapter 5

Extension to alternative
topologies and
functionalities aiming power
management integrated
circuits

The previous chapters have focused on addressing, respectively, the characteri-
zation, prediction and control of dynamic instabilities in a basic buck converter
due both to its widespread use as well as its interest as a core topology for
miniaturization. This chapter further explores and extends these approaches
to more advanced topologies and applications, as encountered in an integrated
power management context.

The first section addresses the characterization and prediction of FSI in a
multilevel multiphase converter, a natural candidate for further miniaturization
due to its inherent improvement of the ripple and switching frequency trade-
off. The study unveils that this topology can enhance the overall performance
as compared to a conventional buck converter in terms of fast-scale stability,
although these benefits can be limited if the floating capacitor is reduced.

Subsequently, the chapter addresses the characterization of fast-scale insta-
bilities in a buck-based switching converter in a wideband tracking application,
in particular focusing on the extended parameters in the design space, namely
the modulating frequency. Furthermore, it provides a discrete-time map model
for the tracking scenario, which allows reducing the computation time to charac-
terize instabilities in the switching amplifier. Finally, it compares the results of
the wideband switching amplifier in terms of stability boundaries with the regu-
lation case, demonstrating that the stability boundary in regulation constitutes
a conservative limit to ensure stability in tracking applications.
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5.1 The three-level buck-based converter: char-
acterization, modeling and prediction of in-
stabilities

The floating-capacitor multilevel converter (Meynard et al., 2002), also called
multi-cell, is a good candidate both for miniaturization/on-chip integration (Vil-
lar and Alarcon, 2008) and for wideband tracking applications (Yousefzadeh
et al., 2005) due to its inherent enhanced performance within the design space
composed by the ripple, the reactive component size, the switching frequency
and the bandwidth (Yousefzadeh et al., 2005). However, common to any other
switching power converter, the multilevel converter might exhibit various insta-
bilities, in particular FSI, depending on the values of the design-space parame-
ters.

The three-level buck converter, shown in Fig. 5.1, is based on four switches
and an additional floating capacitor Cx. The figure also shows the time-domain
waveforms of the LC-filter input vx and the floating capacitor voltage vcx. It
is worth identifying the two kinds of periods that this converter has: on the
one hand the system period Tcycle, which is the external ramp period, and
the interval of time in which the system dynamic is repeated. On the other
hand, the switching period T = 1/fs, which is the interval of time within which
commutation occurs, in which the control signal vcon hits any of both ramp
waveforms, hence changing from a energy supplied to free-running configuration.
As it can be observed in Fig. 5.1, Tcycle = 2T .

The parameters values of this case study are: Vg= 6 V, Vref=3 V, Vm=1 V,
fs=50 MHz, R=2.5 Ω, L=66 nH, C=20 nF, Cx=200 nF and ωz1 =0.1 Mrad/s.

The three-level converter reduces the output ripple (for the same L, C, fs),
compared to an elementary buck converter, by reducing the input voltage vx
that is applied to the LC filter .

The output voltage control is carried out by means of the voltage feedback
loop, but to ensure that the converter works properly, it is also required that the
average floating capacitor voltage remains at half of the input voltage, which can
not be directly guaranteed upfront by means of such output voltage feedback.
The natural balancing of such capacitor voltage has been tackled in previous
works (Wilkinson et al., 2006) by using a frequency domain standpoint. The
analysis of such natural balancing of the floating voltage in a three-level buck-
based converter can be addressed by distinguishing between two cases: for the
output voltage being below one half of the battery voltage and above such limit.

In the first case (Vo < Vg/2), the voltage balance does not require any
external control to compensate such capacitor voltage since, inherently, due to
the multilevel operation, such voltage is regulated.

This is illustrated in Fig. 5.2, in which it is shown the control voltage in a
open-loop configuration (applying constant duty cycles) by fixing the floating
capacitor voltage slightly over one half of the battery vcx > Vg/2. In this case, it
can be observed that the resulting control waveform looks like a period-doubling
behavior, but it is not related to a system instability. This behavior results in
a decrease of the duty cycle D1 of the PWM waveform q1(t) and an increase
the value of the duty cycle D2 of the second PWM waveform q2(t). This fact,
indeed, leads to regulate the floating capacitor voltage since decreasing D1 and
increasing D2 entails reducing such voltage.
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(a)

(b)

Figure 5.1: (a) VMC three-level buck-based converter with controller Gc(s) and
PWM control. (b) (top) Time-domain waveform of floating capacitor voltage
(vcx) and LC-filter input signal (vx) and (bottom) PWM modulator input and
ramp.

An equivalent compensation occurs when the floating capacitor voltage is
fixed slightly below one half of the battery, hence naturally regulating it. How-
ever, for output voltages over one half of the battery, this inherent regulation of
the floating capacitor does not occur hence requiring to take into account the
floating capacitor voltage to the control loop. The following section will focus
on the study of the instabilities in the naturally balanced multilevel converter.
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Figure 5.2: Multilevel converter driven in open-loop with Vcon = 0.5 being a
DC external source voltage applied to the modulator input, with unbalanced
floating capacitor (vcx > Vg/2) where vcon,OL = Vcon + kp(Vref − vC) would be
the control voltage at the modulator input.

5.1.1 Characterizing instabilities in a three-level buck con-
verter

In Fig. 5.3 the bifurcation diagram of the three-level converter by sweeping kp
is shown, obtained by sampling at the switching frequency the state variables
(output capacitor and floating capacitor voltages) in steady-state regime.

By contrasting the behavior exhibited in Fig. 5.3 with that of the elemental
buck converter bifurcation diagram shown along the thesis, the simulation shows
the absence of classical period-doubling behavior. Such instability is character-
ized in Fig. 5.4, unveiling that the unstable behavior consists of SSI, as it can
be observed in both time and spectral domains. Note that additional period-
doubling-like behavior that coexists with the SSI can be due to the inherent
behavior that the converter has when the floating capacitor voltage is not equal
to Vg/2, previously shown in Fig. 5.2. Observing the associated spectra, it can
be observed that while there is a harmonic spike at the switching frequency, ad-
ditional harmonics components appears around half of the switching frequency.

5.1.2 Low capacitance value of the floating capacitor

Due to the demand for miniaturization, which implies the use of low values of
the reactive components, it is of especial interest to characterize the effect of
low values of the floating capacitance upon the stability.

Fig. 5.5 shows the bifurcation diagram for Cx=20 nF along with a charac-
terization of the maximum proportional gain kp in order to ensure the stable
period-one behavior as a function of the floating capacitance Cx. This numerical
simulation-based characterization (and further analysis in the following sections)
shows that decreasing the floating capacitance value Cx implies a reduction of
the stability margin.
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(a)

(b)

Figure 5.3: Bifurcation diagram, sampled at the switching frequency fs, by
sweeping the proportional gain kp for the multilevel converter with Cx=200 nF
(a) output voltage vC (b) floating capacitor voltage vcx.

5.2 Experimental Results

This section explores FSI behavior and stability margins in an experimental
prototype of a three-level buck converter. While in the previous section the
component values were oriented to on-chip integration, in this section compo-
nent values have been chosen to facilitate the implementation of the prototype,
namely Vg= 10 V, Vref=2.5 V, Vm=0.935 V, fs=50 kHz, R=2.5 Ω, kp=4,
L=33 µH, C=10 µF, Cx=10 µF and ωz1 =1 krad/s.

Fig. 5.6 shows the time and frequency domain experimental representation
of the three-level converter before and after the instability is exhibited. The
spectra show the existence of subharmonics at half of the switching frequency,
even before instability is exhibited. This is not related to any instability but
to the mismatching between both control phases in the multilevel converter,
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Figure 5.4: (a) Time-domain waveform of VMC three-level control voltage
vcon, floating capacitor voltage vcx and ramp (b) Output waveform spectrum
with kp=9 and Cx=200 nF

leading to slightly unbalanced floating capacitor voltage and then exhibition of
small topology-inherent period-doubling. As it can be observed in the spectra
domain, this undesired harmonic is negligible compared with the first harmonic
at the switching frequency, whereas it is comparable when instability occurs.

Furthermore, this section experimentally characterizes the effect of the float-
ing capacitance value Cx upon the stability boundary, as it is shown in Fig. 5.7.
It is possible to observe that the lower Cx is, the smaller the critical proportional
gain becomes, which agrees with the simulation results in Fig. 5.5.
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Figure 5.5: (a) Bifurcation diagram by sweeping kp and Cx=20 nF (b) Stabil-
ity boundary curve as a function of the proportional gain kp and the floating
capacitance Cx (semilog x-axis).

5.3 Three-level buck converter discrete-time model
for FSI prediction

In a similar procedure as it has been carried out in Appendix A for the con-
ventional buck-based configuration cases, this section develops the discrete-time
model for a three-level converter, shown in Fig. 5.8 which is composed of four
possible topology configurations, and the whole switching cycle (Tcycle = 2T )
is composed of two consecutive switching periods (T = f−1

s ), each of them
composed by two configurations:

ẋi = A1,ixi + B1,i for t ∈ [iT, iT + di] for i = 1, 2

where di is the fraction of time (duty cycle) during which the first configuration
(A1,i) is applied.
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Figure 5.6: Time-domain waveform and spectra representation from an experi-
mental prototype before and after FSI takes place for Cx=10 µF.
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Figure 5.7: Stability boundary curve as a function of the proportional gain kp
and the floating capacitance value Cx (semilog x-axis).
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Figure 5.8: Discrete-time model definition of a three-level buck converter.

The three-level discrete-time model P that relates consecutive samples, namely
the state variables at the beginning of the cycle xn to those at the end of the
same cycle xn+1, can be expressed as a composed function of two switching
periods:

xn+1 = P2(P1(xn)) (5.1)

where,
Pi = Φi(di)xi + Ψi(di) for i = 1, 2 (5.2)

and Φi(di) = Φ2,i(d̄iT )Φ1,i(diT ), being d̄i = 1− di and

Φ1,i(tk) = eA1,itk ,Φ2,i(tk) = eA2,itk (5.3)
Ψi(di) = Φ2,i(d̄iT )Ψ1,i(diT ) + Ψ2,i(d̄iT ) (5.4)

being Ψm,i(tk) =
∫ tk
0
eAm,iτdτBm,i.

Additionally, there are two switching conditions σi, which depend upon the
control law and the saw-tooth PWM modulator ramp signal h(t):

σi(diT ) = K(Xref − Φ1,i(diT )xi)− hi(diT ) for i = 1, 2 (5.5)

being K the feedback gain vector corresponding to each state variable and hav-
ing h1(t) and h2(t) a phase shift of 180o as it is shown in Fig. 5.1.

The stability analysis is carried out by studying the local behaviour of the
model in the vicinity of steady-state x∗, thereby extracting a Jacobian matrix
DP using the chain rule:

DP = DP2DP1 (5.6)

where,
DPi = Jx,i − Jd,iJ−1

σd,i
Jσx,i (5.7)

Each one of these terms can be expressed as:

Jx,i = Φ2,iΦ1,i,Jd,i = Φ2,i∆ẋi (5.8)
J−1
σd,i

= −Kẋi(DT−)−mc,Jσx,i
= −KΦ1,i(DT ) (5.9)

In the previous equations, it is assumed that, in steady state, dn = D, D = 1−D
and ∆ẋi = ẋi(DT−)− ẋi(DT+), being ẋi(DT−) the time derivative, in steady-
state xi = x∗, just before the switching instant DT , and mc corresponds to the
slope of the PWM saw-tooth ramp signal.
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For the case of Vo < Vg/2 and xT =
[
vc iL vcx

]
, the state matrices are:

A1,1 =


−1
RC

1
C

0
−1
L

0
−1
L

0
1
Cx

0

 ,A1,2 =


−1
RC

1
C

0
−1
L

0
1
L

0
−1
Cx

0

 (5.10)

A2,1 = A2,2 =


−1
RC

1
C

0
−1
L

0
1
L

0 0 0

 (5.11)

B1,1 =

 0
Vg
L
0

 ,B1,2 = B2,1 = B2,2

 0
0
0

 (5.12)

Figure 5.9: Eigenvalues loci from the discrete-time model of VMC three-level
buck converter by sweeping kp and Cx.

The family of root loci obtained by sweeping the feedback gain kp and Cx
is shown in Fig. 5.9. The eigenvalues cross the unit circle having an imaginary
part different from 0 due to the effect of the floating capacitance Cx, which
agrees with the aforementioned exhibition of SSI. Note that even for very high
values of Cx, the eigenvalues never cross the unit circle from 1.

Despite its powerful instability prediction capability, this approach requires
complex mathematical tools which yields a map the parameters of which can be
swept for stability characterization, but lacks a circuit-centric design-oriented
perspective.
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5.4 Ripple-based design-oriented index for fast-
scale instability prediction

In this section, the ripple-based index condition presented in Chapter 3 is pro-
posed for predicting the occurrence of the bifurcation boundary for a three-level
buck converter, thereby demonstrating the general-purpose applicability of this
approach. Note that, despite in the previous chapter the ripple-based index has
been used to predict FSI boundary, both systems stability boundaries should be
equivalent since in the case of a very large floating capacitance value, both the
three-level buck converter (3L) and the elementary buck converter are equivalent
save the voltage applied to the low-pass filter.

ρ3L :=
kp
Vm

V̂C,3L < ρcrit,3L (5.13)

where the three-level buck converter ripple V̂C,3L, can be approximated by the
same expression as in a conventional buck converter given in Eq. (3.11), but the
battery voltage divided by 2:

V̂C,3L :=
VgDD̄

16LCf2
s

(5.14)

Fig. 5.10 shows the bifurcation diagram by sweeping various parameters. In
all cases, there is an exhibition of SSI, which eventually leads to chaos exhibition.
In this figure, it can also be observed that, by obtaining the bifurcation diagram
as a function of their associated ripple-based index ρ, the bifurcation boundary
remains almost constant, independently of the swept parameter.

Further characterization in Fig. 5.11 shows that ρcrit varies with the voltage
conversion ratio, in accordance with previous results for the conventional buck
converter. The figure contrasts results for a three-level VCM buck converter with
those for a conventional (two-level, 2L) VCM buck converter, demonstrating
that due to its inherent lower ripple, and depending on the voltage conversion
ratio, the three-level converter can have a wider stability range. It can be
observed that, for Vref/Vg '0.25, the three-level converter is further away from
the stability boundary (ρ3L < ρcrit,3L), whereas close to Vref/Vg '0.5, the
conventional buck converter is further away from FSI boundary (ρ2L < ρcrit,2L).

More validation of the ripple-based approach has been carried out in Fig. 5.12
by contrasting the outcome of the discrete-time model, from Section 5.3, with
results from the ripple condition (Eq. (5.13)). Regardless of the fact that the
error increases for low values of the output resistor R and low values of the
inductance L, which also occurs in the ripple-based index validation for the
conventional buck converter in Chapter 3, the low approximation error in the
rest of the design-space allows to conclude the appropriateness of this design-
oriented approach for predicting FSI. Note that the explored portion of the
design-space as a function of these parameters is limited by the DCM.

Effect of low floating capacitor and integration limits

As discussed previously, it is of especial interest to explore the effect of low Cx
upon the stability. The availability of the ripple-based approach, which joins the
effect of different parameters into a single index, facilitates comparing within the
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Figure 5.10: Bifurcation diagram obtained by sweeping parameters (a) L, (c)
fs and (e) kp and its equivalent representation as a function of the ripple-index
ρ3L (b), (d) and (f), respectively. ρcrit,3L = 0.245 (dashed-line) with Cx=1 µF.

complete design-space, the advantages and disadvantages in terms of stability
for both topologies.

The effect of Cx upon ρcrit is shown in Fig. 5.13, clearly reducing the stability
boundary for low values of Cx.

This behavior can entail that the three-level converter can be more prone
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Figure 5.11: Stability boundary ρcrit and ripple-based index ρ for a for three-
level VMC buck converter (3L, solid) and for an conventional buck converter
(2L, dashed line) as a function of voltage conversion ratio Vref/Vg.

than the conventional buck converter to exhibit instability in the cases of very
low values of Cx. This critical value of the floating capacitance Cx boundary
has been explored in Fig. 5.14 under the best stability case condition, namely
Vref/Vg '0.25, showing that for low values of the floating capacitance value Cx,
the three-level has worse stability boundary than a conventional buck converter.
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(a)

(b)

Figure 5.12: Stability boundary surface obtained from the discrete-time model
(black) and ripple-based index condition (white), given in Eq. (5.13) with
ρcrit=0.245 as a function of (a) inductance L, output resistance R and the
proportional gain kp.
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Figure 5.13: Stability boundary ρcrit,3L as a function of voltage conversion ratio
Vref/Vg and the floating capacitance value Cx.
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Figure 5.14: Stability boundary ρcrit as a function of floating capacitance Cx
and Vref=1.5 V.
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5.5 Buck-based switching power amplifier: mod-
eling and characterization

The work in the field of FSI analysis in switching power converters have hith-
erto been mainly focused on regulation applications. The work in this section
focuses instead of on the effect of the reference dynamics (this is, a time-varying
reference tracking application), upon the FSI boundary.

Figure 5.15: VMC Buck converter with time-varying sinusoidal Vref (t) refer-
ence.

A classification of representative cases of tracking applications could include
four categories, namely a) Quasistatic variation of the reference voltage b) Low-
frequency sinusoidal reference variation, c) High-frequency sinusoidal reference,
close to filter and switching frequency and d) Noise-like wideband signal. Al-
though the latter corresponds to actual applications, this work focuses on the
three first simple representative cases. The parameter values considered in
this section are: Vg= 6 V, Vref=3 V, Vm=1 V, fs=50 MHz, R=2.5 Ω, kp=3,
L=66 nH, C=20 nF, ωz1 =0.1 Mrad/s.

The simplest case consists of a quasi-static variation of the output voltage
level of the converter depending on system-level power requirements. Represen-
tative application-level examples include a slow case of dynamic voltage scaling
DVS for supplying microprocessors depending on computing workload, and qua-
sistatic system-level control of supply voltage in RFPAs. Therefore its stability
will depend on the output level required in each instant. Fig. 5.16 shows the
output voltage for different reference voltage levels by maintaining converter
and feedback parameters. Note that in case of high or low voltage levels, the
converter is more prone to exhibit instability.

An example that is conceptually similar to case b) of a quasistatic dynamic
reference in power switching power converter is presented in (Tse et al., 2003a),
(Wu et al., 2005), (Li et al., 2008), where the stability of power factor correction
(PFC) is evaluated by a reference sinusoidal supply voltage, the frequency of
which is very low (∼50 Hz).
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Figure 5.16: Steady-state output voltage waveform for different voltage refer-
ences in a buck converter . Vref=1.5 V, 2.25 V, 3 V, 3.75 V, 4.5 V.

This work focuses on the analysis of the stability boundary for the nonlinear
switched system in the context of high frequency tracking applications, repre-
sentative of audio amplifiers, envelope trackers in polar RF transmitters and
line drivers for Power Line Communications (PLC). In these cases, the refer-
ence has a wide-band characteristic (the ratio of the switching frequency fs to
the modulation frequency fm is relatively high) and its amplitude covers the
converter output voltage range.

5.5.1 Buck-based switching power amplifier instabilities:
design-space exploration

Switching power amplifiers demand a voltage time-varying reference, which
should be tracked by the switched system, hence sophisticating the system with
more complex dynamics. As a representative case of such wide band signal, a
single tone is initially considered in this section:

vref (t) = Vref +Aref sin(2πfmt) (5.15)

Adding an external reference extends the number of parameters in the design-
space, as observed in Fig. 5.17, in which it is shown the frequency domain rep-
resentation of the output voltage along with the frequency response of the LC
filter of the buck converter. From such representation, the new design param-
eter space can be described with a compressed set of parameters, namely the
ratio of the three frequencies in the system:

Γs =
fs
f0

Γm =
f0
fm

(5.16)

where f0 = 1/(2π
√
LC). In addition, the reference amplitude Aref should be
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Figure 5.17: Frequency representation of buck LC filter (dashed) and harmonic
composition of PWM waveform (centered at fs) modulated by a sinusoidal
reference (at fm).

considered also in the design parameter space, while Vref (offset of the reference
signal) will be considered constant in the next characterization and centered at
half of the voltage source Vg to maximize the dynamic range. The nominal
values in this section are: Aref=0.5 V and fm=1 MHz.

To initially illustrate the nonlinear dynamic behavior, Fig. 5.18 shows the
output voltage waveform both when the switching amplifier is stable and when
FSI is exhibited, this is, the feedback loop forces the output to track the sinu-
soidal reference on average, but period-one constant switching frequency oper-
ating is lost. It is complemented with a sampled map, obtained by sampling the
output voltage synchronously to the PWM switching frequency fs. The output
voltage manifests FSI during some time interval of the waveform.

To comprehensively characterize the design-space, the first studied parame-
ters are the proportional gain kp, the inductance L, and the switching frequency
fs. Fig. 5.19 shows a sampled waveform obtained by sampling the control wave-
form vcon. By reducing the inductance value or switching frequency, or in-
creasing the proportional gain, FSI is exhibited. Note that these trends are
qualitatively the same as it has been observed in regulation application.

In Fig. 5.20, the load resistance has been considered, showing a slight impact
upon FSI boundary (note that simulations are carried out very close to the
stability boundary in order to be able to observe the effect of such resistance)
in a similar way as in a static reference regulator application, in which the
resistance has negligible effect upon FSI (except for low values).

To conclude this section, it is considered the effect of the modulation fre-
quency fm and modulation amplitude Aref in Fig. 5.21. Note the singularity of
both parameters since they are particular to signal tracking applications.

From this characterization, it is possible to observe that the higher the am-
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(a) (b)

(c) (d)

Figure 5.18: Time-domain output voltage and reference (dash) for (a)
fs=50 MHz (b) fs=40 MHz. Associated sampled map at the switching fre-
quency fs in (c) and (d), respectively.
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Figure 5.19: Sampled waveforms at the switching frequency for different values
of (a) the proportional gain kp with kp=3 (dash-dot) and kp=6 (dots), (b) the
inductance value L with L=66 nH (dash-dot) and L=44 nH(dots) (c) and the
switching frequency fs with fs=50 MHz and fs=40 MHz.
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Figure 5.20: Sampled waveforms at the switching frequency for different values
of output resistor R with R=1 Ω (dash-dot) and R=2.5 Ω (dots) with kp= 4.5.

plitude Aref is, the more prone to exhibit FSI the system becomes, which is in
agreement with what was observed in regulation applications, since this param-
eter directly implies increasing the duty cycle ranges. Conversely, the effect of
the modulator frequency fm is very small, even improving the system stability
in terms of FSI.

5.5.2 Qualitative characterization of instabilities in a buck-
based power switching amplifier with time-varying
sinusoidal reference

While in regulation applications the FSI produce an undesirable increase in
the time-domain output voltage ripple, in power amplification applications the
focus is on characterizing the effect of FSI upon the spectrum, since applica-
tions such as adaptive RF power amplifier supply are subject to strict spectral
masks. Furthermore, the section also studies the effect of FSI upon the effective
switching frequency of the converter. This parameter is of especial interest in
wide-band power supplies since, due to the high bandwidth signal, the need
of using higher switching frequency has an important detrimental impact on
efficiency through switching losses. As it has been shown in Section 2.2 in reg-
ulation, chaotic behavior can decrease the average switching frequency hence
improving the efficiency.

The evolution of the time and frequency domain behavior under different
representative conditions is shown in Fig. 5.22 by sweeping the switching fre-
quency fs. The main interest of sweeping this parameter is to know the effect
of reducing the ratio between the modulator and switching frequency.

The switching amplifier exhibits period-doubling behavior that ends up in a
chaotic regime. The exhibition of such chaotic behavior produces low-frequency
noise-like harmonics with a similar level as the switching frequency, limiting the
potentials benefits of the spectral distribution carried out by chaotic behavior.
Furthermore, as it can be observed in Fig. 5.24, this chaotic behavior has asso-
ciated time-domain multiple switching or multiple pulsing phenomenon hence
increasing the average switching frequency. Note that after the chaotic behavior
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Figure 5.21: Sampled waveforms at the switching frequency for different values
of the modulator frequency fm, with fm=1 MHz (dash-dot) and fm=0.5 MHz
(dots) and the modulator amplitude Aref with Aref=0.5 V and Aref=1 V. With
kp= 4.3.

occurs, by continuously decreasing the switching frequency, a new period-one
behavior window takes places, as it is shown in Fig. 5.23.
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(a)

(b)

(c)

Figure 5.22: Time domain (left) and spectra (right), being P = 20 log(|Vc(f)|),
with (a) fs=50 MHz (b) fs=40 MHz and (c) fs=25 MHz.

142



Figure 5.23: Time domain (left) and spectra (right), being Pv(f) =
20 log(|Vc(f)|), with (a) fs=10 MHz.

Figure 5.24: Average switching frequency fs,avg versus the switching frequency
fs.

5.5.3 Description of the switching amplifier dynamics by
a discrete-time model

Being characterized by two different forcing periods, two kinds of discrete-time
modeling for the system can be obtained. If concerned with the dynamics of
the system within the switching cycle, the first order discrete-time model can be
defined from the current switching cycle to the next one. This is the mapping
that relates the state variables from the beginning to the end of a switching
cycle. If looking for the dynamics of the system during a reference cycle fm
then the second order discrete-time model is considered. Next, we will obtain
the first order discrete-time model as an extension of what has been done in the
Appendix A for regulation cases.

The system configuration during each switching sub-interval is linear and
time-varying as it is mentioned earlier. During the ON phase the trajectory of
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the system, starting from the initial condition xn, is expressed by:

x(t) = eA(t−nTs)xn +
∫ nTs+t

nTs

eAτB1(τ)dτ (5.17)

At the time instant dnT , the system switches from ON phase to OFF phase.
This instant can be determined from the equation resulting from the crossing
of the ramp signal vramp(t) with the control voltage vcon(t). This equation can
be written as follows:

σ(dnT ) = K(Xref (dnT )− Φ1(dnT )xn)− h(dnT ) (5.18)

where Xref (t) = (Vref +Aref sin(ωmt) 0 0)T is a vector that depends upon
time. At the instant (n + 1)T the system switches to ON phase again. The
state of the system at time instant (n+ 1)Ts is given by:

xn+1 = eATsxn + eA(1−dn)Ts
∫ (n+dn)Ts

nTs
eAτB1(τ)dτ

+
∫ (n+1)Ts

(n+dn)Ts
eAτB2(τ)dτ

(5.19)

It is worth noting here that (5.18) is a transcendental equation and that a root-
finding algorithm must be applied in order to obtain the duty cycle for each
switching period. In order to simplify the writing of the first order map, let us
write it in the following form:

xn+1 := P(xn, n) = Φxn + Φ2Ψ1(n) + Ψ2(n) (5.20)

where

Φ = eAT , Φ1 = eAdnT , Φ2 = eA((1−dn)T )

Ψ1(n) =
∫ (n+dn)T

nT
Φ1B1(τ)dτ,Ψ2(n) =

∫ (n+1)T

(n+dn)T
Φ2B2(τ)dτ

(5.21)

Note that the vectors Ψk(n) are time-dependent, making the first order Poincaré
map time-varying. Once the matrices Φk are obtained, an expression for ma-
trices Ψk(n) can be found from Eq. (5.21). For simplicity of integration of
the system equations during each phase, let us write the vectors B1(t) and
B2(t) as the sum of a constant term Ba and a Tm−periodic time-varying term
Bb sin(ωmt) :

B1(t) = Ba,1 + Bb sin(ωmt),B2(t) = Ba,2 + Bb sin(ωmt) (5.22)

where

Ba,1 =

 0
Vg
L

Vref

 , Ba,2 =

 0
0

Vref

 and Bb =

 0
0

Vref

 (5.23)

By computing the integral term in (5.17), Ψ1(n) can be expressed as:

Ψ1(n) = (A2 + ω2
mI)−1[ωmΦ1Bb cos(nωmTs)

+Φ1ABb sin(nωmTs)− ωmBb cos((n+ dn)ωmTs)
ABb sin((n+ dn)ωmTs)] +

∫ (n+dn)T

nT
eAτdτBa,1

(5.24)
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The vector Ψ2(n) can be obtained in the same way. Note that different
expressions for Ψk (k = 1, 2) had been obtained if the reference voltage would be
considered constant (quasi-static approximation). Note also that the function
Ψk corresponding to a constant reference voltage can be obtained by forcing
fm = 0 in Eq. (5.24). Once we get both of Φk and Ψk(n) and combining with
Eq. (5.18), the expression of P is obtained from Eq. (5.20). P is the mapping
that relates the vector of the state variables xn at the beginning of the switching
cycle to xn+1, those at the end of the same cycle. Note that it is a nonlinear map
in the state variables and periodically time-varying in the discrete-time domain.
This nonlinear time-varying map has a periodic orbit (not a fixed point) as a
nominal operating regime. The period N of this discrete-time periodic orbit is
Γm/Γs if this ratio is an integer number. If Γm/Γs is a rational number, the
period will be the denominator of this number. If the periodic orbit is stable,
and starting from a point x0 belonging to this periodic orbit, the map will take
entirely N periods to return to the same point.
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Figure 5.25: Voltage and current waveforms of a buck-based switching amplifier
from the discrete-time model (dots) and state equations numerical simulations
showing normal periodic stable behavior with fs=50 MHz.

Numerical simulations are carried out using this map in a MATLAB code
and an iterating procedure to generate the discrete-time waveforms. The re-
sults are obtained by using the same parameter values for their corresponding
time-domain simulations from the switched model. Simulations corresponding
to these cases are shown in Fig. 5.25 and Fig. 5.26. Fig. 5.25 corresponds to the
stable operation of the system while Fig. 5.26 corresponds to the subharmonic
oscillations at the switching period resulting from a period-doubling bifurca-
tion. As it can be observed, there is a perfect agreement between the results
obtained from the numerically integrated switched model and the derived ana-
lytical discrete-time model. However, the results obtained from the latter model
are obtained much faster than those obtained by using the switched model as
it is always more easy to iterate a recurrence equation than to numerically
integrate a differential equation.
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Figure 5.26: Voltage and current waveforms of a buck-based switching amplifier
from the discrete-time model (dots) and state equations numerical simulation
showing period doubling bifurcation with fs=40 MHz.

5.5.4 Characterizing the stability boundary from the dis-
crete time model

In this section we will obtain the useful region (region of stable periodic behav-
ior) of the buck-based switching amplifier in the parameter space.

As design parameters we will now choose Γm, Γs in addition to the gain of
the PI controller kp and the reference amplitude Aref .

We vary Γm and Γs in a suitable grid and for each point in this grid we
increase the value of kp till obtaining a bifurcation. The results are shown in
Fig. 5.27, obtained from the discrete-time model due to its faster processing
time. Note that the reference frequency fm is swept from low frequencies to
the resonance frequency fo since higher frequencies will results in inadequate
tracking in average. Regarding the stability boundary variation with Γm, it
is worth noting the slight stability improvement by increasing this parameter.
Therefore, low frequencies, in which the design-oriented index ripple approach
without consideting the Γm is valid, could be considered a conservative limit
that guarantees that at higher reference frequencies, the output is stable even
near the resonance frequency.

The simulations also show a higher influence of the Γs compared to that of
the modulating frequency. Fig. 5.28 shows the variation of the maxium kp as a
function of Γs and compares it with the dependency in regulation application,
almost showing similar trends. However, the stability curve changes when the
reference of the amplitude is increased.

A thorough study of the impact of the reference amplitude has been carried
out in Fig. 5.29. Note that its influence upon stability agrees with what has
been observed in the regulation case, for which stability boundary has a strong
dependency upon duty cycle. Therefore, it is also compared with the stability
limit obtained by sweeping such reference amplitude and its equivalent stability
boundary in regulation. From such comparison, it is possible to observe that

146



(a)

0 0.2 0.4 0.6 0.8 1
0.5

1

1.5

2

2.5

3

3.5

4

4.5

k
p

Γm

Γs=11.4

Γs=6.7

(b)

Figure 5.27: (a) Stability boundary as a function of parameters Γm, Γs, and
the proportional gain kp. (b) 1-D cut as a function of Γm and kp.

the regulation stability boundary, indeed, is a conservative limit.
Finally, to sum up, and after having explored the design-space extended for

the switching amplifier by considering the reference amplitude Aref and fre-
quency fm, it is possible to conclude that under a sinusoidal external reference,
by guaranteeing the fast-scale stability in regulation, it is also possible to ensure
it in sinusoidal tracking application.
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Figure 5.29: Stability boundary as a function of Aref and kp by using mod-
ulation frequency fm=1 MHz and fm=0 (regulation), for a constant voltage
reference Vref=3 V+Aref .
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Chapter 6

Conclusions

This PhD thesis is framed in the study of nonlinear dynamic instability phe-
nomena in switching power converters, with emphasis in fast-scale subharmonic
instabilities in route to chaos. Prompted by the new breed of power manage-
ment circuits, with stringent demands in terms of miniaturization, bandwidth
and advanced functionalities, and the related novel topologies and control meth-
ods required to address such high performance, the thesis focuses in a novel
approach to characterize, predict and counteract fast-scale instabilities, initially
for a conventional switching power regulator and subsequently applied to ad-
vanced power management circuits.

The thesis outcomes encompass four main contributions, which constitute
the four core chapters. First, chapter 2 addresses the open questions of char-
acterizing the various dynamic instabilities potentially occurring in a switching
power regulator. A two-fold approach has considered both exploring the com-
plete parameter design space of the switching regulator and categorizing it in
terms of which type of nonlinear dynamic performance the circuit exhibits (de-
sign space characterization), as well as providing a novel characterization of the
electrical behavior of each of such dynamics regimes, in terms of electrical per-
formance metrics natural to a power processing circuit, such as voltage ripple,
average switching frequency and spectra (electrical characterization). Second,
chapter 3 proposes, explores and validates a novel design-oriented analytical ap-
proach for predicting fast-scale instability for the simple but representative case
of a switching buck converter, which complements conventional average models.
The approach, based on the use of the ripple component of the feedback control
signal as an index for predicting subharmonic oscillations, is initially validated
for the complete design space. The chapter afterwards revisits the stability
analysis technique based on the nonlinear discrete-time model, demonstrating
that such ripple-based index can be included within this model, out of which
closed-form expressions of stability boundaries are derived. A design-oriented
comprehensive frequency domain model able to concurrently predict both slow
scale and fast scale instabilities through the combined application of average
models and the ripple-based approach closes this contribution. Subsequently,
once the various nonlinear dynamic phenomena in the design space are char-
acterized and a method for predicting their border of occurrence is available,
chapter 4 addresses methods to guarantee stability by rejecting fast-scale in-
stabilities through chaos controllers. This chapter revisits previously proposed
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chaos controllers from a frequency domain perspective, out of which a novel
family of band-selective chaos controllers are synthesized which are easier to
implement and can even concurrently improve fast-scale instability and ripple
performance. Last, chapter 5 extends the work by applying characterization and
mainly prediction of subharmonic instabilities to advanced converter topologies
and functionalities, namely for a multilevel multiphase converter and for a buck
converter in wideband tracking applications.

In particular, Chapter 2 contributions cover:

• It has been presented the full design-space characterization of the various
instabilities for a voltage-mode buck converter under a PI compensator,
identifying a 9-dimensional design space which includes the converter, con-
troller, and modulator parameters, and is divided as well by the continuous
and discontinuous conduction mode.

• Within the continuous conduction mode, it has been identified the set of
parameters that leads to the exhibition of both fast-scale and slow-scale
instabilities. It has also been explored the boundary between different
unstable behaviours by means of a multi-variable bifurcation diagram.

• In discontinuous condition mode, it has been explored the effect upon
stability behaviour of crossing the conduction boundary, demonstrating
that this can lead to an abrupt abandoning of the stable behaviour.

• In all explored cases, trends toward miniaturization, namely, reducing
the reactive components parameters values or decreasing the switching
frequency, lead to exhibit fast-scale instabilities, hence motivating the aim
for this thesis.

• It has been developed an electrical characterization of both kinds of in-
stabilities, in terms of ripple, averaged switching frequency and spectrum,
and observed that chaotic behaviour can be of interest in spectral terms,
due to its well-known spread spectrum properties, but also in terms of the
average switching frequency, which would potentially increase converter
efficiency.

The contributions of Chapter 3 encompass:

• It proposes a design-oriented method for predicting fast-scale instabilities
based on a ripple-based index, which measures the ripple magnitude at the
modulator input normalized to the ramp amplitude, hence compressing
the different nature converter design parameters, such as the values of the
reactive components, control coefficients and modulator parameters into
a single parameter.

• The approach has been validated for the complete design-space by means
of state-equations numerical solving, experimentally and thorough the
discrete-time model, the latter based on the previous work hitherto car-
ried out for fast-scale instability prediction. This validation unveils that
the critical level of ripple component before subharmonic instability is
exhibited depends only upon the duty cycle.

150



• It has been demonstrated that the ripple index and its associated inequal-
ity to predict fast-scale instability is inherently included in the discrete-
time model as an indirect observer of the control signal derivative at the
switching instant.

– This result has been carried out by obtaining an exact ripple time-
domain expression in steady state, obtained by applying s-domain
analysis, which allows comparing the slope at the switching instant
and the exact ripple magnitude.

– Moreover, this exact ripple expression facilitates the validation of a
simplified ripple expression used along the thesis to keep the design-
oriented nature of the index.

• The discrete-time terms have been simplified by taking into account the
DC-DC buck converter circuit considerations such as low output voltage
ripple, that along with the aforementioned ripple component and control
waveform slope relation, allows to obtain a closed-form expression which
is in agreement and validates the ripple-based index hypothesis.

• An index for predicting slow-scale instability index has been obtained from
the averaged model and the Nyquist stability criteria, from which, com-
bined with the ripple-based index, the stability boundaries within the com-
plete design space have been characterized from a design-oriented stand-
point.

• The ripple index has been extended to discontinuous conduction-mode,
demonstrating the validity of the approach.

– In this case, the duty cycle, which affects the critical stability bound-
ary in terms of ripple, depends upon most of the parameters of the
system, hence difficultating the stability analysis

• The ripple-index approach has also been extended to a general purpose
design-oriented stability condition, considering full state feedback.

– The general ripple-based expression has been validated for voltage-
mode control, current-control mode with and without voltage loop
and including an external ramp.

– It has been observed that the outer voltage feedback loop required
in current-mode control can lead to exhibit fast-scale instabilities
due to its voltage ripple, even for duty cycles below 0.5 or with a
compensation ramp.

– Taking into account the equivalence between current-mode and PID,
the general ripple-index closed-form has been extended to such com-
pensator, showing its validity in the design of such controller. By
extending the stability analysis to a realistic PID (with an additional
high frequency pole in the compensator), it show that the ripple index
can be considered as a conservative limit by locating the switching
frequency after such pole.
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• It has been proposed a design-oriented comprehensive frequency domain
model able to concurrently predict both slow scale and fast scale instabil-
ities through the combined application of average models and the ripple-
based approach.

– The design-oriented model is based on proposing an approximated
modulator frequency-domain gain, obtained from the frequency do-
main representation of the control signal and its associated ripple.

– The stability condition for this frequency-domain model, implies the
comparison of the total loop gain magnitude at half of the switch-
ing frequency harmonic and an certain value that includes the rip-
ple level at the switching frequency, which facilitates the prediction
of fast-scale instabilities occurrence and subsequently facilitates the
synthesis of novel controllers based on this result.

In chapter 4, contributions regarding chaos controllers include:

• Time-delay-based controllers are explored form a frequency domain repre-
sentation, illustrating that they are based on a comb notch filter starting
at the half of the switching frequency.

– This study unveils that the attenuation at such harmonic determines
the control of fast-scale instabilities whereas additional phase lag of
the control increases the tendency to exhibit slow-scale. This fact,
detrimental to slow-scale instabilities, opposes to the controller bene-
fits in terms of fast-scale instabilities hence compromising the overall
stability of the system.

• An implementation-aware controller has been proposed based on a single
notch filter at half of the switching frequency. By properly adjusting the
attenuation, better stability conditions can be obtained as compared to
delay-time based controllers.

• Repetitive controllers have also been studied, demonstrating that they are
based on concurrently attenuating the harmonic at half of the switching
frequency while also amplifying the harmonic at the switching frequency,
obtaining an improvement regarding fast-scale stability boundary, and
worsening results as regards slow-scale stability boundary. Results are
aligned with the previously proposed design-oriented comprehensive fre-
quency domain.

• It has been proposed an implementation-aware controller based on a nar-
rowband amplifier tuned at the switching frequency.

– This approach improves both fast-scale and slow-scale stability bound-
aries, by increasing feedback ripple and adding a phase lead at the
switching frequency.

• A circuit-based controller combining amplification in the feedback loop for
fast-scale stability and attenuation of the output ripple for better electrical
behaviour is proposed, based on a simple LC-divider, aiming to reduce
the main reactive component sizes and concurrently reduce the converter
output ripple.
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– The LC-divider improves fast-scale stability boundary and slightly
worsen the slow-scale stability boundary.

– The LC-diviser has been validated also in a current-mode controller
scheme, demonstrating it can give unconditional fast-scale stability
for duty cycle below 0.5, and that can avoid fast-scale instabilities
even for duty cycles higher than 0.5, without requiring the ramp
compensation.

• It has been also demonstrated that from a dynamical standpoint, the chaos
controller based on amplifying the ripple improves the transient response
in front of a load change.

Finally, in Chapter 5 the main contributions comprise:

• It has been characterized and predicted the instabilities in a three-level
buck converter

– It has been shown the exhibition of slow-scale instabilities coexisting
with unconventional fast-scale instabilities. This phenomenon can
be explained due to the inherent period-doubling-like behaviour that
occurs when the floating capacitor is not balanced at half of the input
voltage source.

– The stability boundary of this instability can be predicted by the
ripple approach for large values of the floating capacitance. Results
has been validated by state-equation numerical simulations and by
means of a derived high-order discrete-time model.

– It has been shown that depending the duty cycle stability boundary
can be better in a conventional buck. Also it has been demonstrated
that for low values of the floating capacitor the stability boundary
is reduced hence limiting the benefits of the multilevel converter in
terms of fast-scale stability.

• It has been characterized and predicted the instabilities in a buck-based
switching power amplifier tracking a high-frequency tone.

– A time-varying discrete map has been carried out, hence facilitating
faster simulation of such system.

– By exploring the parametric design-space, including the tracking ref-
erence signal parameters, it has been demonstrated that guaranteeing
the stability in regulation conditions is a conservative stability con-
dition in tracking mode.

Future lines of work can be identified from the results carried out in this
thesis involve:

• Extending the ripple-based index to other topologies such as boost, buck-
boost or higher order converters in order to be able to characterize the
effect of system parameters upon stability boundaries.

• Generalize the comprehensive frequency domain model so that it is able
to establish stability criteria and synthesize new controllers that can be
used for a full-state feedback case.
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• Extend the proposed chaos controllers to advanced topologies such as mul-
tilevel and switching power amplifiers in order to control the exhibition of
fast-scale instabilities.

• Explore the design-space for a digitally controlled converter, which presents
a more complex behaviour due the additional sampling and quantization
effects.

• Establish design-oriented criteria to avoid instabilities as well as investi-
gating the effect of new or existing chaos controllers, such as time-delay
based due to its discrete nature, upon quantization-induced limit cycles
in digitally-controlled converters.

• Addressing the instabilities in non-constant switching frequency ripple-
controllers and obtaining stability criteria which facilitate the design of
these controllers.
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Appendix A

Development of
discrete-time map

In Section 3.3 the discrete-time models has been developed for a general case,
and the particularized for a VMC buck converter under a proportional control.
Indeed, the particularizing for other kinds of control requires to change:

• the number of state-variables

• the state matrices

• the feedback gain vector, depending of which state-variables are added in
the feedback loop

In the following subsections derived are derived the discrete-time models for
the systems considered in this thesis.

A.1 PI controller in a VMC or CMC buck con-
verter

The s-domain PI controller transfer function is::

Gc,PI(s) = kp
s+ ωz1

s
(A.1)

Equivalently,

Gc,PI(t) = kp(Vref − vC(t)) + kI

∫ t

−∞
Vref − vC(θ)dθ (A.2)

Therefore, the state-variable vector is x = (vC iL vI)
T , where vI =

∫ t
−∞ Vref − vc(θ)dθ

and the system state matrices are:

A1 = A2 =


−1
RC

1
C

0
−1
L

0 0

1 0 0

 ,B1 =

 0
Vg
L
Vref

 ,B2 =

 0
0

Vref

 (A.3)
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The associated vector gain is:

K =
[
kv ki kI

]
(A.4)

where kI = kpωz1, ki is the current gain for the CMC case and kv = kp.
Note that by adjusting the voltage or current gains by modyifing kv and

ki respectively, the converter can be a CMC or VMC. Equivalently to a CMC
PI controller, the PID compensator case can be also written as a function of
voltage and current gains as it has been carried out in Section 3.7.1.

A.2 Realistic PID controller in a VMC buck
converter

The transfer function of a realistic PID is:

Gc,PID(s) = G
(s+ ωz1)(s+ ωz2)

s(s+ ωp2)
(A.5)

The system state matrices, including an additional order due to the new pole
ωp2, are:

A1 = A2 =


−1
RC

1
C

0 0
−1
L

0 0 0

−kI/ωz2 0 0 0
−kv −ki ωp2 ωp2

 , (A.6)

B1 =


0
Vg
L

kI

ωp2
Vref

kpVref

 ,B2 =


0
0

kI

ωp2
Vref

kpVref

 (A.7)

where, kv, ki and kI are the same as in the PID. The feedback gains vector can
be expressed as:

K =
[

0 0 0 1
]

(A.8)

A.3 DCM in a VMC buck converter under PI
controller

The DCM implies an additional configuration during certain periods of time in
which no current flows through the inductor. The system state matrices are
given by:

ẋ = A1x + B1 for t ∈ [nT, nT + dn]
ẋ = A2x + B2 for t ∈ [nT + dn, nT + dn,2]
ẋ = A3x + B3 for t ∈ [nT + dn,2, nT + T ]
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where

A1 = A2 =


−1
RC

1
C

0
−1
L

0 0

1 0 0

 ,B1 =

 0
Vg
L
Vref

 , (A.9)

A3 =


−1
RC

0 0

0 0 0
1 0 0

 ,B2 = B3 =

 0
0

Vref

 (A.10)

Due to the additional configuration, the discrete-time model of a converter
working in DCM, requires revisiting the terms of the Jacobian (Eq 3.18):

DP = Jx − JdJ−1
σd

Jσx = Φ(D2T )(I− J2)Φ(T −D2T )(I− J1)Φ(D1T ) (A.11)

where D1 is the duty cycle of the PWM control signal and D2T is the period of
time in which the inductor current is discharged, being J1 and J2:

J1 =
∆ẋK

Kẋ(D1T−)−mc
(A.12)

J2 =
∆ẋ2K2

K2ẋ(D1T +D2T−)
(A.13)

(A.14)

where

∆ẋ = ẋ(D1T
−)− ẋ(D1T

+) (A.15)
∆ẋ2 = ẋ(D1T +D2T

−)− ẋ(D1T +D2T
+) (A.16)

(A.17)

and, finally:

K =
[
kv ki kI

]
(A.18)

K2 =
[

0 1 0
]

(A.19)
(A.20)

A.4 Notch/Amplifer narrow band chaos controller
in a VMC buck converter under a PI com-
pensator

The generic transfer function encompassing both notch and narrowband ampli-
fiers is :

Gc,notch(s) =
s2 + 2ξ1ωn + ω2

n

s2 + 2ξ1ωn + ω2
n

(A.21)

Note that depending the value of ξ1 and ξ2 the transfer function can at-
tenuate (ξ1 < ξ2) or amplify (ξ1 > ξ2) at the center frequency ωn. The state
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matrices for buck converter under this controller are given by:

A1 = A2 =



−1
RC

1
C

0 0 0
−1
L

0 0 0 0

0 0 0 ω2
n 0

1 0 1 −2ξ2ωn 0
−kI 0 0 kI(ξ2 − ξ1)2ωn 0

 (A.22)

B1 =


0
Vg
L
0
0

kIVref

 ,B2 =


0
0
0
0

kIVref

 (A.23)

and the feedback gains vector can be expressed as:

K =
[
−kp 0 0 kp(ξ2 − ξ1)2ωn 1

]
(A.24)

A.5 High impedance output filter and narrow
band amplifier FSI controller in a VMC buck
converter under a PI compensator

This system consist of an output filter with high impedance at the switching
frequency, formed by a Ln-Cn parallel tank, and a NBA chaos controller in
the feedback loop, both centered at the switching frequency as it is shown in
Fig. 4.22. The state matrices of the system under this controller are:

A1 = A2 =



−1
RC

1
C

0 0
1
RC

0 0
−1
L

0 0 0 0 0 0

0 0 0 ω2
n 0 0 0

1 0 1 −2ξ2ωn 0 0 0
1

RCn
0 0 0

−1
RCn

−1
Cn

0

0 0 0 0
1
Ln

0 0

−kI 0 0 kI(ξ2 − ξ1)2ωn 0 0 0


(A.25)

B1 =



0
Vg
L
0
0
0
0

kIVref


,B2 =



0
0
0
0
0
0
0

kIVref


(A.26)

The feedback gains vector can be expressed as:

K =
[
−kp 0 0 kp(ξ2 − ξ1)2ωn 0 0 1

]
(A.27)
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A.6 LC divider in a VMC buck converter under
a PI compensator

The circuit is based on adding a output LC tuned network, as it is shown in
Fig. 4.25. The state matrices of the system under this controller are:

A1 = A2 =



−1
RC

1
C

0
1
C

0
−1
L

0 0 0 0

0 0 0
1
Cn

0
1
Ln

0
−1
Ln

0 0

0 0 −kI 0 0


(A.28)

B1 =


0
Vg
L
0
0

kIVref

 ,B2 =


0
0
0
0

kIVref

 (A.29)

And the feedback gains vector can be expressed as:

K =
[

0 −ki kp 0 1
]

(A.30)
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Appendix B

Equivalence of dynamics
buck switching converters

This section justifies the equivalence of the dynamic behavior of different buck
converters with the same value of the dimensionless parameters τ and Γ but
with different physical parameters, R, L, C, T , Vg, hence allowing to reduce the
number of parameters in the design-space. The frequency response of the RLC
second order filter can be described as:

Gp(s) =
ω2

0

s2 + ωRCs+ ω2
0

(B-1)

Therefore, the whole dynamics of the power plant can be characterized by the
two parameters ω0 and ωRC . Note that the buck converter, shown in Fig. 3.1,
is equivalent to a second order low pass filter with a square wave signal (the
diode voltage vd) at its input which can be described with a particular switching
frequency ωs = 2πfs. Let us define τ = fs/ωRC = RCfs and Γ = f2

s /ω
2
0 =

LCf2
s .

The definition of these new parameters reduces the dimensions of the design
parameter space from five to three, namely, Γ, τ and D, instead of the physical
parameters L, C, R, fs ando D. Note that Γ relates the switching frequency
and the natural frequency of the system and τ is related with the output load
of the converter. Two converters will be dynamically equivalent, despite they
have different physical parameter values, whenever they have the same values
of parameters Γ, τ and D as it is exemplified in Fig. B.1 which is obtained for
the set of parameter values used in numerical simulations, and those used in the
experimental prototype in this work.
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Figure B.1: Transient simulation of the buck switched model using different
values of physical parameters but the same values of dimensionless parameters.
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Appendix C

Relation Between the time
Derivative and the Ripple
of the Control Signal

Figure C.1: Ideal representation of the inductor current iL (top) and output
capacitor voltage vC (bottom) in a buck converter.

In this appendix it will be demonstrated that the ripple amplitude of the
control signal is an indirect estimate of its derivative at the switching instant.
In a voltage-mode controlled buck converter, the derivative of the feedback state
variable (capacitor voltage), according to Fig. C.1, is

v̇C(DT−) =
iC(DT−)

C
=
IC,max
C

(C-1)

and its ripple can be expressed as

V̂C = VC,max − VC,min =
1
C

∫ t2

t1

iC(t)dt =
(t2 − t1)IC,max

2C
(C-2)

Note that in the previous equation, it is assumed that the waveform of the
capacitor current iC is triangular. The time duration t2 − t1 in Eq. (C-2) can
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(a)

(b)

Figure C.2: Comparison between the ripple amplitude V̂C in a voltage-mode
controlled buck converter by sweeping Γ and τ . (a) From Eq. (D-5) (white)
and normalized derivative at the switching instant of feedback state variable
v̇C(DT−)(4fs)−1 (black), (b) error between both results.

be obtained by analyzing the following equations

Vg − V̄C
L

t1 =
V̄C
L
t2 ⇒ t2 =

1−D
D

t1 (C-3)

Vg − V̄C
2L

DT =
Vg − V̄C

L
t1 ⇒ t1 =

DT

2
(C-4)

t2 − t1 =
T

4
=

1
4fs

(C-5)

where V̄C is the average output voltage. Eq. (C-3) assumes steady-state while
Eq. (C-4) assumes zero average capacitor current. Therefore, taking into ac-
count the expression of the state-variable derivative in Eq. (C-1), Eq. (C-2) and
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Eq. (C-5):
˙vC(DT−) = 4fsV̂C (C-6)

Fig. C.2 validates the approximation by calculating the derivative and the
ripple from the exact waveforms, obtained from an exact Laplace analysis of the
output ripple, developed in Appendix D, and varying the parameters τ and Γ.
Note that the steady state error increases when τ is relatively low, hence losing
the validity of the approach.
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Appendix D

Exact Expression of the
Output Voltage Ripple for
the Buck Converter derived
from Laplace analysis

A closed-form output voltage ripple expression for the buck converter can be
derived using the Laplace transform. The output voltage signal is the result
of applying the periodic square wave diode voltage vd with duty cycle D and
amplitude Vg to the RLC second order filter Gp(s) (B-1). Therefore, the Laplace
transform VC(s) of the output voltage vC(t) is given by the product of the
transfer function Gp(s) and the Laplace transform Vd(s) of the diode voltage
vd(t):

VC(s) = Vd(s)Gp(s) =
(1− e−sDT )Vg
s(1− e−sT )

ω2
0

s2 + 2ξω0s+ ω2
0

(D-1)

where ξ = ωRC

2ω0
. The partial fraction decomposition of VC(s) is:

VC(s) =
k1

s
+

k2

s− a1
+

k3

s− a2
+

P0(s)
1− e−sT (D-2)

where P0(s) corresponds to the steady-state response and therefore includes the
exact output voltage ripple for the buck converter:

P0(s) = (1− e−sT )
(
VC(s)− k1

s
+

k2

s− a1
+

k3

s− a2

)
(D-3)

with a1 = −ωRC/2− jωd, a2 = −ωRC/2 + jωd, k1 = D and k2 and k3 are given
by

k2 =
(1− e−a1DT )ω2

0

2a1(1− e−a1T )jωd
, k3 = k∗2 (D-4)

being ωd = ω0

√
1− ξ2. Finally the exact time-domain expression of the steady-

state output voltage ripple v∗C(t) for the buck converter operating in CCM can
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be written in the following form

v∗C(t) = P0(t) = u(t)Vg

[
1− e−ωRCt/2

(
cos(ωdt) + ξ

1−ξ2 sin(ωdt)
)

−D − 2e−ωRCt/2 (α cos(ωdt)− γ sin(ωdt))
]

−u(t−DT )Vg

[
1−

−e−ωRC(t−DT )/2
(

cos(ωd(t−DT )) + ξ
1−ξ2 sin(ωd(t−DT ))

)]
(D-5)

where u(t) is unit step function, α = <(k2) and γ = =(k2). Alternatively, the
expression can be also developed as:

v∗C(t) = u(t)Vg

[
1− e−ωRCt/2

(
cos(ωdt) + ξ

1−ξ2 sin(ωdt)
)

−D +Ke−ωRCt/2

[(
ωRC

2 sin(ωdt) + ωd cos(ωdt)
)

−eωRCT/2
(
ωRC

2 sin(ωd(t+ T )) + ωd cos(ωd(t+ T ))
)

−eωRC(DT+T )/2
(
ωRC

2 sin(ωd(t+ (1−D)T ) + ωd cos(ωd(t+ (1−D)T )
)]]

−u(t−DT )Vg

[
1−

−e−ωRC(t−DT )/2
(

cos(ωd(t−DT )) + ξ
1−ξ2 sin(ωd(t−DT ))

)]
(D-6)

where K = (ωd − 2ωdeωRCT/2 cos(ωdT ) + eωRCT )−1.

Figure D.1: Theoretical waveforms of the output voltage v∗C(t) of a buck con-
verter obtained from Eq. (D-6) (with an additional DC voltage Vref ) and from
simulating the switched model in open-loop. Vg = 6 V, Vref = 3 V, R = 2.5 Ω,
L = 66 nH, C = 20 nF, fs = 50 MHz.

This closed-form expression has been validated by comparing it with the out-
put voltage waveform obtained from numerical simulation of the switched model
for an ideal buck converter, as shown in Fig. D.1. The waveforms are coincident,
thus validating the expression given in Eq. (D-6) as an exact description of the
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converter output ripple for all conditions. From such exact ripple expression
it is possible to compare the accuracy of the ripple approximation proposed in
Eq. (3.11). The result of this comparison is shown in Fig. D.2, in which it is
possible to observe that the approximation loses validity for low values of τ and
Γ.

(a)

(b)

Figure D.2: (a) Voltage ripple amplitude V̂C from the exact Laplace expression
((D-5), black) and from the approximated expression in Eq. ((3.11), white) and
(b) Error between both results.
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Guinjoan, F. and Poveda, A., ”Ripple Based Index for Predicting Fast-
Scale Instability of DC-DC Converters in CCM and DCM,” Invited paper
in special session (ICIT’06), Dec. 2006.
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