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Abstract

The learning process consists of different steps: building a Training Set (TS), training
the system, testing its behaviour and finally classifying unknown objects. When
using a distance based rule as a classifier, i.e. 1-Nearest Neighbour (1-NN), the
first step (building a training set) includes editing and condensing data. The main
reason for that is that the rules based on distance need many time to classify each
unlabelled sample, x, as each distance from x to each point in the training set should
be calculated. So, the more reduced the training set, the shorter the time needed for
each new classification process. This thesis is mainly focused on building a training
set from some already given data, and specially on condensing it; however different
classification techniques are also compared.

The aim of any condensing technique is to obtain a reduced training set in order
to spend as few time as possible in classification. All that without a significant loss
in classification accuracy. Some new approaches to training set size reduction based
on prototypes are presented. These schemes basically consist of defining a small
number of prototypes that represent all the original instances. That includes those
approaches that select among the already existing examples (selective condensing
algorithms), and those which generate new representatives (adaptive condensing
algorithms).

Those new reduction techniques are experimentally compared to some traditional
ones, for data represented in feature spaces. In order to test them, the classical
1-NN rule is here applied. However, other classifiers (fast classifiers) have been
considered here, as linear and quadratic ones constructed in dissimilarity spaces
based on prototypes, in order to realize how editing and condensing concepts work
for this different family of classifiers.

Although the goal of the algorithms proposed in this thesis is to obtain a strongly
reduced set of representatives, the performance is empirically evaluated over eleven
real data sets by comparing not only the reduction rate but also the classification
accuracy with those of other condensing techniques. Therefore, the ultimate aim is
not only to find a strongly reduced set, but also a balanced one.
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Several ways to solve the same problem could be found. So, in the case of using a
rule based on distance as a classifier, not only the option of reducing the training set
can be afford. A different family of approaches consists of applying several searching
methods. Therefore, results obtained by the use of the algorithms here presented
are compared in terms of classification accuracy and time, to several efficient search
techniques.

Finally, the main contributions of this PhD report could be briefly summarised in
four principal points. Firstly, two selective algorithms based on the idea of surround-
ing neighbourhood. They obtain better results than other algorithms presented here,
as well as better than other traditional schemes. Secondly, a generative approach
based on mixtures of Gaussians. It presents better results in classification accuracy
and size reduction than traditional adaptive algorithms, and similar to those of the
LVQ. Thirdly, it is shown that classification rules other than the 1-NN can be used,
even leading to better results. And finally, it is deduced from the experiments carried
on, that with some databases (as the ones used here) the approaches here presented
execute the classification processes in less time that the efficient search techniques.



Resumen

El proceso de aprendizaje consta de diversos pasos: construcción de un conjunto de
entrenamiento, entrenamiento del sistema, evaluación de su comportamiento y, fi-
nalmente, clasificación de objetos desconocidos. Cuando se utiliza como clasificador
una regla basada en la distancia, por ejemplo la del vecino más cercano (1-NN;
Nearest Neighbour), el primer paso (construcción de un conjunto de entrenamiento)
incluye, entre otras, dos nuevas etapas: editado y condensado de los datos. La razón
principal para la utilización de estas etapas es que las reglas basadas en la distancia
requieren mucho tiempo para clasificar cada muestra x a etiquetar, dado que se debe
calcular la distancia de x a cada ejemplo del conjunto de entrenamiento. Aśı, cuanto
más se reduzca el conjunto de entrenamiento, menor será el tiempo necesario para
cada nuevo proceso de clasificación. Esta tesis está enfocada principalmente a la
construcción del conjunto de entrenamiento a partir de unos datos dados y, espe-
cialmente, en el condensado de dicho conjunto; sin embargo, también se comparan
diferentes técnicas de clasificación.

El objetivo final de cualquier técnica de condensado es obtener un conjunto de
entrenamiento que requiera el mı́nimo tiempo posible para llevar a cabo la etapa
de clasificación. Todo ello, sin una pérdida significativa sobre la efectividad del
clasificador. Dentro de este contexto, la presente tesis presenta diversos algoritmos
nuevos para la reducción del conjunto de entrenamiento basados en prototipos. Estos
esquemas básicamente consisten en definir un pequeño número de prototipos que
representen a todas las instancias originales. Esto incluye tanto a los algoritmos que
seleccionan entre los ejemplos ya existentes (condensado selectivo), como a aquellos
que generan nuevas representaciones (condensado adaptativo).

Esas nuevas técnicas de reducción se comparan experimentalmente con algunas
de las tradicionales, para datos representados en espacios de caracteŕısticas. Para
evaluarlos, se aplica la clásica regla de clasificación 1-NN. Sin embargo, también
se han considerado otros clasificadores (clasificadores rápidos), como el lineal y el
cuadrático, construidos en espacios de disimilaridad basados en prototipos, para
observar como funcionan los conceptos de editado y condensado para esta familia
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de clasificadores.
A pesar de que el objetivo de los algoritmos propuestos en esta tesis es con-

seguir una gran reducción del conjunto de entrenamiento, su comportamiento es
emṕıricamente evaluado sobre once bases de datos reales mediante la comparación
no sólo del porcentaje de reducción sino también de la precisión de clasificación con
los obtenidos por otras técnicas. Por tanto, el objetivo no es sólo encontrar un con-
junto fuertemente reducido, sino también un equilibrio entre reducción y precisión.

Se pueden encontrar distintos modos de resolver un mismo problema. Por ejem-
plo, en el caso de utilizar una regla basada en la distancia, no únicamente existe la
opción de reducir el conjunto de entrenamiento. Otra posibilidad consiste en aplicar
diferentes métodos de búsqueda del vecino más próximo. Por ello, los resultados
obtenidos por el uso de los algoritmos aqúı presentados se comparan en términos de
precisión de clasificación y tiempo con varias técnicas de búsqueda eficiente.

Finalmente, la mayor contribución de esta tesis puede ser brevemente resumida
en cuatro puntos principales. En primer lugar, dos algoritmos selectivos basados
en el concepto de vecindad envolvente, los cuales obtienen mejores resultados que
otros algoritmos aqúı presentados, y mejores también que otros esquemas tradi-
cionales. En segundo lugar, una técnica adaptativa basada en mezclas (mixtures)
de Gaussianas, la cual presenta mejores resultados en precisión de clasificación y re-
ducción de tamaño que otros algoritmos adaptativos tradicionales, y similares a los
del método LVQ. En tercer lugar se muestra como se pueden utilizar otras reglas de
clasificación, diferentes al clasificador 1-NN, arrojando incluso mejores resultados.
Y, finalmente, tal y como se deduce de los experimentos llevados a cabo, en el caso
de algunas bases de datos (como las utilizadas aqúı) los algoritmos aqúı presentados
consiguen una ejecución de los procesos de clasificación en un tiempo menor que las
técnicas de búsqueda eficiente.
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Introduction
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Data Reduction Techniques in Classification Processes is the title of this PhD
report. Therefore, it is the main goal we have been looking to achieve. Data Reduc-
tion Techniques are approaches in charge of diminish the quantity of information in
order to reduce both memory and execution time. Traditionally, the concept of Data
Reduction have received several names, e.g. editing, condensing, filtering, thinning,
etc, depending on the objective of the data reduction task. There are two different
possibilities depending on the object of the reduction. The first one is to reduce
the quantity of instances, while the second one is to select a subset of features from
the available ones. The later, feature selection, is not considered here, but just the
former: prototype selection. Therefore, our main objective in this thesis is to intro-
duce, analyse and test several techniques devoted to the reduction of the number of
instances.

Classification Processes are referred to processes which classify/label a new sam-
ple using a discrimination function learned from a set of instances in a training set.
And that is what we reduce: the training set. Therefore, we try to represent the
complete training set by some representatives as much effectively as possible, in
the sense of maintaining the same classification accuracy. So, we look for results in
which, memory and time needs are reduced, while the original classification accuracy
is preserved.

3
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1.1 Motivation and General Objectives

Currently, in many domains (e.g. in multispectral images, text categorisation, bio-
metrics or retrieval of multimedia databases) the size of the data sets is so extremely
large that real-time systems cannot afford the time and storage requirements to
process them. Under these conditions, classifying, understanding or compressing
the available information can become a very problematic task. This problem is spe-
cially dramatic in the case of using some learning algorithms based on distances, such
as the Nearest Neighbour (NN) rule [Dasarathy(1991)]. The basic NN scheme must
search through all the available training instances (large memory requirements) to
classify a new input sample (which is slow during classification). In addition, since
the NN rule stores every instance in the Training Set (TS), noisy instances are stored
as well, which can considerably degrade the classification accuracy.

Among the many proposals to tackle this problem, traditional methods rely on
removing some of the training instances (i.e. they comply with data reduction).
In the Pattern Recognition literature, the methods leading to a reduction of the
training set size are generally referred to as prototype selection [Devijver(1982)].
Two different families of prototype selection approaches can be defined. Firstly, the
editing approaches eliminate erroneously labelled instances from the original training
set and avoid possible overlapping among regions from different classes. Secondly,
the condensing algorithms aim at selecting (or modifying) a small subset of instances
without a significant degradation of the resultant classification accuracy.

The many existing proposals in relation to condensing can be categorised into two
main groups. First, the schemes that merely select a subset of the original instances
[Dasarathy(1994), Aha et al.(1991), Hart(1968), Toussaint et al.(1985), Tomek(1976)]
(selective schemes) and secondly, the ones that modify them [Chen & Jozwik(1996),
Sánchez(2004), Kohonen(1995), Chang(1974)] (adaptive schemes). Here we will in-
troduce several algorithms focusing on the problem of appropriately reducing the
training set size by both, selecting some of the already existing instances, and gen-
erating a subset of new representatives. The primary aim is to obtain a considerable
reduction rate in size, but without a significant decrease in classification accuracy.
In brief we want to find a balance or a trade-off between these two objectives.

In this study, we will compare various selection and generation methods of a
Condensed Set (CS), in combination with three classification strategies based on the
Euclidean distance representation derived in the initial feature spaces. In addition,
the behaviour of algorithms presented here will be compared to some effective search
techniques.

The condensing methods used in our study are the traditional/classic ones,
including the Chen’s, Hart’s, LVQ and RSP3 techniques [Chen & Jozwik(1996),
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Hart(1968), Kohonen(1996), Sánchez(2004)], as well as new techniques implemented
during the development of this thesis. They include MaxNCN, Iterative MaxNCN,
Iterative kNeighbours, Consistent, Reconsistent, Centroide, WeightedCentroide and
MixtGauss, discussed in Chapters 3 and 4. We focuss on a few classification meth-
ods. The first one is the 1-NN rule, which assigns a new object to the class
of the nearest neighbour in the resulting condensed set. The second and third
methods are the Fisher Linear Discriminant (FLD) and the Quadratic Normal
Density Based Classifier (NQC) trained in dissimilarity spaces. These are vec-
tor spaces in which every dimension encodes a dissimilarity to a given prototype
as explained in Chapter 2. The effective search techniques used in our exper-
iments are: k-dimensional tree, the proposal by Fukunaga and Narendra, van-
tage point-tree, GNAT, and LAESA and KAESA [Bendtley(1975), Friedman(1977),
Fukunaga & Narendra(1975), Yianilos(1993), Brin(1995), Vidal(1986), Vidal(1994),
Micó et al.(1994), Micó et al.(1996)]

1.2 Description of the Databases

The UCI machine learning database repository [Merz & Murphy(1998)] have been
widely used in classification studies, e.g. in the works of [Wilson & Martinez(2000)].
That is the reason why eleven real data sets (see Table 1.1) have been taken from
there to assess the behaviour of the algorithms introduced in this thesis.The se-
lection of these databases is done to represent several training set sizes, different
dimensionality of the databases and several number of classes.

In this section we describe the data used in the experiments presented later on.
For each database a plot representing the three first features is shown. We know
that only three features are not representative for the data set, but it still gives some
insight.

Cancer

Cancer is a database offering 683 instances with information about 9 features.
The number of classes in which these examples are classified is two. The first class
is represented by 445 instances, and the second class is represented by 238 of them.
See Figure 1.1 (a).

Diabetes

Pima Indians Diabetes database present 768 instances with information about 8
numeric-valued attributes divided in two classes (tested either positive or negative
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Figure 1.1: Representation of the Cancer (a) and Diabetes (b) databases.
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Figure 1.2: Representation of the Glass (a) and Heart (b) databases.
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Table 1.1: Data sets used in our experiments.
Data set No. classes No. features TS size Test set size

Cancer 2 9 546 137
Diabetes 2 8 614 154
Glass 6 9 171 43
Heart 2 13 216 54
Liver 2 6 276 69
Vehicle 4 18 677 169
Vowel 11 10 422 106
Wine 3 13 142 36
Phoneme 2 5 4 323 1 080
Satimage 6 36 5 148 1 287
Texture 11 40 4 400 1 100

for diabetes). 500 of the examples belong to one class and 268 examples represent
the other class. See Figure 1.1 (b).

Glass

In the Glass Identification database there are 214 instances that represent 6
different types of glass (defined in terms of their oxide content: Na, Fe, K, etc).
Each class is represented by 70, 76, 17, 13, 9 and 29 examples respectively. It has 9
numeric-valued features, and it comes from the USA Forensic Science Service. Three
of them are shown in Figure 1.2 (a).

Heart

Heart Disease databases are a set of 4 databases (Cleveland, Hungary, Switzer-
land, and the VA Long Beach), which consist of 270 examples divided in two classes
(the first one with 150 instances, and the second one with 120 of them) and 13
attributes. See Figure 1.2 (b).

Liver

Liver-Disorders database represent 2 classes with 345 instances (male patients:
145 in one class, and 200 in the other one) and 6 numeric-valued features. Its
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Figure 1.3: Representation of the Liver (a) and Vehicle (b) databases.

representation is shown in Figure 1.3 (a).

Vehicle

This database has a size of 846 examples with information about 18 features.
The total number of instances is divided in 4 classes: 218 instances represent the
first class, 212 the second one, 217 the third one, and 199 the fourth one. See a
graphical representation in Figure 1.3 (b).

Vowel

528 instances divided in 11 equal-sized classes (48 examples per class) conform
the Vowel database. The 3 first of its 10 features are shown in Figure 1.4 (a).

Wine

Wine Recognition database uses chemical analysis to determine the origin of
wines. For that, 13 continuous attributes are reported for 178 instances representing
3 classes (59 examples for the first one, 71 for the second one, and 48 for the last
class). See Figure 1.4 (b).

Phoneme

Phoneme data set was first used to develop a real time system for the automatic
speech recognition in French and Spanish. The 5404 instances (23 were discarded)
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Figure 1.4: Representation of the Vowel (a) and Wine (b) databases.
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Figure 1.5: Representation of the Phoneme (a) and Satimage (b) databases.
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Figure 1.6: Representation of the Texture database.

were obtained by three different time observations in the pronunciation of 1809
separated syllables. The 5 features give some information about the 5 first harmonic,
and the goal is to distinguish nasal and oral vowels (3818 and 1586, respectively).
Phoneme database is represented in Figure 1.5 (a).

Satimage

Features in Satimage data base are derived from an image. Each one of the 6435
instances in this database is composed by four spectral bands of the same scene. The
feature vector corresponds to a squared region of 3x3 pixels. Therefore, 36 features
represent each one of the nine pixels in each of the four spectral images. 6 different
classes compose this database, 1533 examples representing the first class, 703 the
second class, 1358 the third one, 626 the forth one, 707 the fifth one, and 1508 the
last one. See Figure 1.5 (b).

Texture

Texture database consist of 5500 instances that belong to 11 different classes
or textures, with 500 examples each one. The feature vector associated to each
instance consists of 40 different features, representing ten moments, each one for
four different orientations (0o, 45o, 90o and 135o). See the representation in three
dimensions in Figure 1.6.
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1.2.1 Database Normalisation Process

If the databases were not normalised, the weight given to each feature would be
different, depending on the range of each one of them, and the distances among the
different vectors. So, the first step in order to prepare the data for our experiments
has consisted of normalising the databases. Therefore, the data sets are first edited
in order to avoid erroneous instances that could develop in a wrong normalisation.
After the editing, all databases have been normalised by a unit variance (and then
the Euclidean distances are computed).

Finally, for each database, the 5-fold cross-validation method is employed to
obtain a division: each database is divided into five blocks, using four folds as the
training set and the remaining block as the test set. So, 80% of the available patterns
are used for training purposes and 20% for the test set in each fold.

1.3 Organization of the PhD report

Taking into account the objectives established in Section 1.1, this thesis report has
been structured into several parts, each one consisting of a few chapters. The first
part describes the motivation and objectives of the study, characterises the databases
used and introduces the state of the art. The second part is the effective contribu-
tion of this thesis, according to the previously described objectives. It presents the
algorithms proposed for data reduction. The third part presents results and conclu-
sions. It summarises the findings, discusses the results and also presents the general
concluding remarks. A forth part is added, as it is required in the PhD regulations,
with all the important points of this thesis reported now in Spanish. Finally, the
bibliography used along the preparation of this thesis is shown.

• Part I consists of Chapters 1 and 2.

– Chapter 2 describes the state of the art. First, some guidelines about
the learning process are presented in order to introduce the reader to
the topic of the thesis. Secondly, the NN rule is described. Thirdly,
prototype selection is introduced, and the state of the art in condensing
techniques is specifically developed. Next, classical and recent nearest
neighbour efficient search techniques are explained. Finally, classification
techniques based on dissimilarities are developed.
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• Part II, which presents the contribution of our work, consists of Chapters 3
and 4.

– In Chapter 3, the Nearest Centroid Neighbour (NCN) rule is first clari-
fied. Later, some non-adaptive condensing schemes based on this rule are
introduced.

– Chapter 4, introduces a number of adaptive condensing algorithms. Some
of these schemes are based on the NCN rule. Nevertheless, the most im-
portant contribution shown in this chapter is a scheme based on mixtures
of Gaussian probability distributions. Therefore, some ideas about mix-
tures of Gaussians in multi-modal class distributions are also presented.

• Part III is devoted to a comparative analysis of the methods introduced earlier,
finalised by conclusions. It consists of Chapters 5, 6, 7 and 8.

– Chapter 5 presents a quantitative comparison between some classical and
new selective and adaptive algorithms based on the NCN rule introduced
in Chapters 3 and 4. For that, a classification technique based on dis-
tances (1-NN) have been used. Finally, some conclusions are presented.

– Chapter 6 focusses on a quantitative comparison using classification tech-
niques based on dissimilarities (Fisher Linear Discriminant: FLD; and
Normal density based Quadratic Bayes Classifier: NQC). The compari-
son includes some classical algorithms, the best ones based on the NCN
rule and the adaptive approach based on mixtures of Gaussians (pre-
sented in Chapter 4). Chapter 6 finishes with some conclusions related
to the commented results.

– Chapter 7 presents a quantitative comparison of the results obtained
by exhaustive search over reduced sets with those attained by nearest
neighbour efficient search techniques over original sets. These results are
analysed based on classification accuracy and time requirements.

– Chapter 8 presents general conclusions referring to the complete thesis,
and points out to its main contributions to Pattern Recognition. Then,
possible extensions, and new lines of research are discussed. The thesis
is finalised with a list of the already published articles from the research
presented here.
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• Part IV consists of Chapter 9.

– Chapter 9 presents some requirements from the PhD regulations for this
thesis reported in a different language than the official ones, to be in
Spanish or Valencià. Mainly, motivation and general objectives, approach
and methodology used, contributions, conclusions, and future work.
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Chapter 2

State of the Art

Contents

2.1 Classification Techniques based on Neighbourhood . . . 17

2.2 Prototype Selection . . . . . . . . . . . . . . . . . . . . . . 19
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2.5 Dissimilarity-based Classification Techniques . . . . . . . 37

In Pattern Recognition two different branches can be differentiated depending
on the space of representation used; see Figure 2.1. On the one hand, there is
the Syntactic Pattern Recognition [Pavlidis(1977), Fu(1982)], which is based on the
Theory of Formal Languages. According to this theory, a grammar rules the relations
among models, like the natural language relates sentences. Therefore, classification
in Syntactic Pattern Recognition consists of testing whether a chain can be generated
from a determined grammar.

On the other hand, there is the Statistical Pattern recognition [Devijver(1982),
Fukunaga(1990), Devroye(1996)], which is based on the Decision Theory. Accord-
ing to it, the representation space is a vector space, and it does not assume any
structural relation among the different features. A model references a point in the
representation space, whose coordinates form a vector of features.

The goal of any statistical classifier in the design step is to establish a set of
frontiers in the representation space in order to separate models belonging to differ-
ent classes (frontiers of decision). Therefore, in the classification step, the class of a
sample is determined depending on the class of the region where it is located.

Within the Statistical Pattern recognition vision, two different branches are recog-
nised (see Figure 2.1): parametric and non-parametric approaches. The parametric

15



16 CHAPTER 2. STATE OF THE ART

Figure 2.1: Pattern recognition division.

approximation uses an a priori knowledge about the probability distribution of each
class in the representation space (determined by a series of parameters). Therefore,
these distributions define the frontiers of decision.

On the contrary, the non-parametric approaches do not have any a priori knowl-
edge about the probability distribution in the representation space. The only infor-
mation they have is a set of examples, called the Training Set (TS), whose labels
should be known. Among the non-parametric statistical classifiers, the techniques
based on neighbouring criteria should be highlighted, as they present several advan-
tages over other non-parametric methods like, for example, their conceptual sim-
plicity.

A neighbourhood-based decision function traditionally considered as a good clas-
sification rule is the k-NN. It has a number of advantages that favour its use. Firstly,
it can easily be implemented, and it is conceptually simple. Secondly, its behaviour
is asymptotically optimal [Cover & Hart(1967)], and thirdly, its expected error is
bounded [Duda et al.(2001)]. In spite of these positive properties, there is a neg-
ative one to report: its high computational cost. This weakness of the k-NN rule
is one of the points that we address in this thesis. Two alternative approaches to
this problem can be used to diminish the corresponding computational cost asso-
ciated to the k-NN rule. The first one is based on the selection or generation of a
set of representatives from the training set. This reduction of the training set size
basically accelerates the application of the k-NN rule, possibly without a loss of the
effectiveness of a classifier.

The second alternative of reducing the computational cost of the k-NN rule is
the use of the so-called nearest neighbour efficient search techniques [Moreno(2004)].
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These algorithms make use of metric properties and look for the k nearest neighbours
in a faster way than by computing distances to all of the training examples. Their
behaviour is compared to the use of the condensing algorithms presented in this
thesis.

Finally, other classifiers can be used that may lead to a better classification accu-
racy than the k-NN rule. As we focus on the condensing techniques, these classifiers
are also defined on the distances to the representatives from the optimised condensed
sets. Linear and quadratic classifiers are the simplest examples [P ↪ekalska(2005)].

Taking into account this objective, this chapter presents the state of the art of
editing and condensing approaches, search techniques and classifiers. It is organised
as follows. Section 2.1 presents an introduction to proximity-based classification
techniques, especially focusing on prototype selection: editing and condensing. Sec-
tion 2.3 refers to some traditional condensing techniques, such as Learning Vector
Quantisation (LVQ), and the Hart’s and Chen’s approaches. Section 2.4 presents
the state of the art in relation to the Nearest Neighbour Efficient Search Techniques.
Finally Section 2.5 takes the reader to the classification techniques based on dissim-
ilarities.

2.1 Classification Techniques based on Neighbourhood

As stated above, the k-NN rule is generally considered as a good classifier. It has a
number of advantages, namely:

1. It can easily be implemented and it is conceptually simple.

2. Its behaviour is asymptotically optimal [Cover & Hart(1967)].

3. Its expected error is bounded [Duda et al.(2001)].

Here, we will briefly explain some features of these three advantages. Firstly, we
highlight its easiness of implementation and its conceptual simplicity. Imagine that
two new fruits are first shown to someone. Then, when another unknown piece of
fruit is presented, the individual will try to classify the new one by comparing it to
the firstly shown pieces. So, the idea behind algorithms based on proximity is as
follows. The classification of a new item x could be estimated based on the already
known classifications of the elements sufficiently near to x, because observations that
are close to each other will belong to the same class (or at least will have almost the
same posterior probability distributions on their respective classifications).

Let {X, Θ} = {(x1, θ1), (x2, θ2}, . . . , (xn, θn)} be a training set with n instances
{xi}n

i=1 and their labels {θi}n
i=1. Let x be a new sample with an unknown class
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Figure 2.2: Classification incomes and outcomes.

label. Assume (x′, θ′) ∈ {X,Θ} is the nearest instance to the sample x. Then, the
NN rule would be:

δNN (x) = θ′ ⇔ d(x, x′) = min
i=1..n

d(x, xi) (2.1)

Figure 2.2 represents the outcomes and incomes in a classification process. An
implementation of a classifier based on the NN rule is shown in Algorithm 2.1. In
case more details are needed, the reader is referred to [Chang(1974)].

Algorithm 2.1: Pseudo-code for a classifier using the NN rule.
S=TS
for new objecti = eachobject(S) do

xNN = NearestNeighbour(new objecti, X)
new objecti.class = xNN .class

end for

Considering the asymptotic optimal behaviour of the NN rule, we must say that,
in addition to its conceptual simplicity, the NN rule has a good behaviour when
applied to non-trivial problems. In fact, the k-NN rule is asymptotically optimal in
the Bayes sense [Dasarathy(1991)]. In other words, the k-NN rule performs as well
as any other possible classifier, provided that there is an arbitrarily large number of
representative prototypes available and the volume of the k-neighbourhood of x is
arbitrarily close to zero for all x.

Given that the above conditions are fulfilled, the NN rule expected error P is
bounded according to:

P ∗ ≤ P ≤ P ∗(2− J

J − 1
P ∗), (2.2)
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where J is the number of classes and P ∗ is the Bayes error. We shall see that
while the NN rule is a sub-optimal procedure (the NN rule usually leads to an error
rate higher than the minimum possible), with an unlimited number of instances,
the error rate is never worse than twice the Bayes error rate. In this sense, at least
half of the classification information in an infinite data set resides in the nearest
neighbourhoods. More details can be found in [Duda et al.(2001)].

In spite of a number of advantages, the k-NN rule has a serious drawback, namely
a high computational cost.

This drawback is the consequence of the need of storing a high number of in-
stances in order to obtain an effective application of the NN rule. One of the two
alternatives that can be used to reduce the computational cost associated to the
k-NN rule is based on the selection or generation of a set of representatives from
the training set. This reduction of the training set size is done to speed up the
execution/application of the k-NN rule, ideally without a loss of the effectiveness of
the classifier.

2.2 Prototype Selection

A small set of prototypes has the advantage of a low computational cost and small
storage requirements for a similar or sometimes even an improved classification per-
formance. Various ways of designing a proper set of representatives have been stud-
ied so far. Two families of such optimisation procedures are editing and condensing.
As these methods lead to the reduction of the training set size, they are generally
referred to as prototype selection methods [Devijver(1982)].

In the introduction to Chapter 2, we described the different steps of the learning
process. When the NN rule is used as a classifier, the learning process could con-
sist of two more steps to be accomplished: editing and condensing. Briefly, editing
focuses on removing noisy instances, as well as close-border examples, while con-
densing takes care of maintaining only the representative instances (or generating
new representative prototypes). The general idea is presented in Figure 2.3. It is
shown there that the training set is the input to editing, whose output is the Edited
Set (ES). This edited set is the input to condensing, whose output is the Condensed
Set (CS). And finally, the resulting condensed set and the unknown sample to clas-
sify, x, are the classification inputs needed to obtain the final result: the class θ to
which x belongs.
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Figure 2.3: Classification steps using the NN rule as a classifier.

Algorithm 2.2: Pseudo-code of the Wilson’s editing algorithm.
X = TS
S = X (* initialisation *)
for xi = eachinstance(X) do

kNearestNeighbours(xi, X − {xi})
if δkNN (xi)! = θi then

S = S − {xi}
end if

end for

2.2.1 Wilson´s Editing

In the learning process, editing is the step in charge of increasing the accuracy of
predictions, when there is a great amount of noise in the training data. A basic
editing algorithm removes noisy instances, as well as close border cases, eliminating
a possible overlap between the regions from different classes and leaving smoother
decision boundaries. Wilson introduced the first editing method [Wilson(1972)].
Briefly, the k-NN rule is used to estimate the class of each example in the training
set followed by removing those examples whose true class labels do not agree with
the ones judged by the k-NN rule.

Every instance from the training set (except for the x considered at each step)
is used to determine the k nearest neighbours. That is, the estimation method is
based on a leave-one-out procedure.

Let {X,Θ} = {(x1, θ1), (x2, θ2), . . . , (xn, θn)} be a training set with n instances
and J possible classes, and let k be the number of nearest neighbours to determine
for each instance x. Algorithm 2.2 shows that the Wilson’s editing scheme is easily
implementable and understandable.

The Wilson’s algorithm tries to eliminate mislabelled instances from the training
set as well as those close to the decision boundaries. In general, it performs very
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well. In addition, it offers a good trade-off between classification accuracy and size
reduction.

2.2.2 Other Editing Techniques

Many researchers have addressed the problem of editing by proposing alternative
schemes. Some of their works are introduced here. [Tomek(1976)] proposed to
apply the idea of the Wilson’s algorithm repeatedly until no more instances can be
removed. Tomek also proposed the (All − k)-NN editing scheme [Tomek(1976)]. It
uses a set of the l-NN rules, with l ranging from 1 to k. In general, both algorithms
achieve a higher storage reduction than the Wilson’s editing, but similar in the
classification accuracy. They are however higher at the computational efforts.

The generalised editing [Koplowitz & Brown(1981)] consists of removing some
“suspicious” instances from the training set and also changing the class labels of
some of them. Its purpose is to cope with all types of imperfections of the train-
ing instances (mislabelled, noisy and atypical cases). Recently, the generalised
editing and Wilson’s algorithm have been jointly used for the depuration method
[Barandela & Gasca(2000)].

In the case of editing algorithms based on the leaving-one-out error estimate
(the Wilson’s scheme and its relatives), the statistical independence between test
and training instances cannot be assumed because their functions are interchanged.
In order to achieve this statistical independence, classification of instances can be
performed in a hold-out manner. Thus, the Holdout editing [Devijver(1982)] consists
of randomly partitioning the initial training set into b > 2 blocks of instances,
B1, ..., Bb, and then eliminating cases from each block using only two independent
blocks at the same time. [Devijver(1982)] also introduced the Multiedit algorithm,
which basically corresponds to an iterative version of the Holdout scheme using the
1-NN rule.

A genetic algorithm [Kuncheva(1995)] was also applied to define an edited set
for the NN rule. Two different criteria were employed as the fitness function: the
apparent error rate and a criterion based on the certainty of the classification. The
empirical results show that the latter criterion led to a subset of the initial training
set that provides higher classification accuracy in comparison to the whole original
set, with random selection and with the Wilson’s technique.

[Sánchez et al.(1997)A] presented an editing algorithm based on proximity graphs,
such as the Gabriel graph and the relative neighbourhood graph. The first one com-
putes the corresponding graph structure and then eliminates instances incorrectly
classified by its graph neighbours. On the other hand, a combined editing-condensing
scheme was also introduced to remove internal instances as well as border cases by



22 CHAPTER 2. STATE OF THE ART

using the concept of graph neighbours.

The rationale of the k-NN editing rule proposed by [Hattori & Takahashi(2000)]
is very similar to that of the Wilson’s scheme. In this method, the condition for
an instance x to be included in the edited set is that all the k nearest neighbours
must be from the class to which x belongs. Accordingly, this condition is much
more severe than that in Wilson’s algorithm and, as a consequence, the number of
instances in the resulting edited set is equal to or less than in the Wilson’s edited
set.

The ACC filtering technique introduced by [Keung & Lam(2000)] tries to find
centre instances of compact regions by considering the classification performance of
each example in the training set. Each training instance is classified by its nearest
neighbour. If it is correctly classified, then classification accuracy of its nearest
neighbourhood will be increased. After processing all the training instances, the
algorithm discards examples with the accuracy lower than a certain threshold. As
centre instances are usually neighbours of other instances from the same class, they
generally gain a high accuracy, thus are being retained by ACC.

2.3 Condensing Techniques

The condensing step aims at selecting a small subset of instances without a signif-
icant degradation in classification accuracy, in order to reduce both, storage and
time required to process the selected data set. Within the condensing perspective,
the many existing proposals can be categorised into two main groups. First, the
selective schemes merely select a subset of the original instances [Aha et al.(1991),
Dasarathy(1994), Tomek(1976), Toussaint et al.(1985), Hart(1968)] (selective fam-
ily), while the adaptive schemes modify or generate them [Sánchez(2004), Chang(1974),
Chen & Jozwik(1996), Kohonen(1995)] (adaptive or generative family). Apart from
this, principal differences between condensing schemes are caused by the method
used to correctly estimate which instances or prototypes are needed.

This section presents some traditional condensing techniques, such as the Hart’s
algorithm, which belongs to the family of selective schemes and the Chen’s and
LVQ approaches, which belong to the generative family (those algorithms applying
prototype selection by generating new/non-existing prototypes). It is to note that
the Chen’s and LVQ techniques allow one to choose the condensed set size, while in
the Hart’s approach, this size is determined automatically.
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Algorithm 2.3: Pseudo-code of the Hart’s condensing algorithm.
X = TS
S = ∅ (* initialisation *)
repeat

for xi = eachinstance(X) do
NearestNeighbour(xi, S)
if δNN (Xi)! = θi then

X = X − xi

S = S + xi

end if
end for

until (EliminatedInstances(X) == 0) OR (X == ∅)

2.3.1 Hart’s Condensing

The Hart’s algorithm [Hart(1968)] represents the first condensing proposal for the
1-NN rule. In this initial approximation, the idea of consistency with respect to the
training set is used.

Definition A set of instances X is said to be consistent with respect to another set
S, if X correctly classifies every instance in S, by using the 1-NN rule.

Using this definition of consistency, a condensed set should be a reduced and con-
sistent set of instances.

As it can be seen in Algorithm 2.3, the Hart’s condensing approach eliminates
from the training set these examples which are not needed for the correct classifica-
tion of the remaining instances by means of the 1-NN rule. This method is justified
by the following observation. If an instance is incorrectly classified, this may hap-
pen because it is near the decision boundary and, consequently, it should not be
eliminated from the training set.

The algorithm is simple and fast, as a consistent set is found in a very few
iterations. The cost is linear: O(|X| ∗ no of iterations). In addition, in most of
the cases, the condensed set size is considerably small in comparison to the original
training set size, provided that the training set has been previously edited in order
to avoid overlaps between different class regions.

The weakness of the Hart’s method lies in the impossibility of judging whether
the resulting condensed set is the smallest consistent set. In fact, depending on the
order in which the instances from the original training set are processed, different
condensed sets can be obtained. All of them are consistent, but will likely have dif-
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ferent sizes. This means that many of the instances selected by the Hart’s procedure
are not needed to keep the consistency property in the condensed set.

2.3.2 Chen’s Algorithm

The Hart’s condensing scheme cannot establish the desired condensed set size.
In other words, it is not possible to control the size of the resulting subset. It
could be interesting to solve some problems where the goal is not only the reduc-
tion of the computational effort, but also the effectiveness of a classifier. Chen
[Chen & Jozwik(1996)] proposed a simple condensing scheme which allows one to
control the resulting condensed set size.

In this algorithm, Chen introduces the idea of a diameter of a training set.

Definition The diameter of a training set is the distance between its two most
distant instances.

Basically, the strategy relies on dividing the initial training set into successive subsets
which are defined based on the notion of diameter. This process is repeated until
the number of subsets reaches the number previously established as the condensed
set size. After that, each resulting subset is replaced by a new prototype. The new
representative is located at the subset gravity centre and obtains the label of the
class more represented in this subset.

The Chen’s scheme is illustrated in an intuitive way in Figure 2.4. The example
is based on a training set with nine instances distributed into two classes, in a
unidimensional space of representation. Let us choose a condensed set size of 6.
The first step involves the search of the two farthest instances —in this case the
ones marked with letters a and i. They define the diameter for the initial set. The
middle position between a and i divides the original set into two subsets: {a, b, c, d, e}
and {f, g, h, i}. This middle position is represented in this figure by the dashed line
marked by 1. The next division should be done in a subset containing instances
belonging to both classes. As both subsets fulfil this condition, the one with the
greatest diameter, {a, b, c, d, e}, will be divided. So, the line 2 divides it into two
new subsets. Now, there are three subsets in total: {a, b, c}, {d, e} and {f, g, h, i}.
As the latter is a mixed subset with the greatest diameter, this is the one to be
divided now (line 3). In the same way, divisions 4 and 5 are carried out. The
process is stopped here, as the desired condensed set size of 6 is reached. Finally,
the condensed set prototypes are obtained as the gravity centres of all the subsets
in an area. The labels assigned to the generated representatives correspond to the
classes more represented in the final subset.

Let nd ≤ n be the condensed set size we would like to obtain from the initial
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Figure 2.4: Illustration of the performance of the Chen’s condensing algorithm.
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training set, of the size n. Taking into account this notation, Algorithm 2.4 shows
the Chen’s condensing scheme.

The main interesting point about the Chen’s algorithm in comparison to other
condensing algorithms is quite clear. As it is possible to establish the condensed set
size, the effectiveness of a classifier can be controlled. As a consequence, by means
of the Chen’s scheme, it is intended to obtain an adequate balance between compu-
tational needs and the required accuracy of the classifier in the given classification
problem.

2.3.3 RSP Family

Sánchez introduced the family of RSP (Reduction by Space Partition) algorithms
[Sánchez(2004)], which are based on the idea of the Chen’s algorithm. The main
difference between the Chen’s and one of the RSP approaches, RSP3, is that in the
former, any subset containing a mixture of instances belonging to different classes
can be chosen to be divided. On the contrary, in RSP3, the subset with the highest
overlapping degree (defined as a ratio of the average inter-class distance and the
average intra-class distance) is the one picked to be split. Furthermore, for RSP3,
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Algorithm 2.4: Pseudo-code of the Chen’s condensing algorithm.
(* initialisation *)
nc = 1; i = 1;C(i) = X; D = X
(* division *)
(p1, p2) = FarthestInstances(D)
while nc < nd do

(D1, D2) = Divide(D)
nc = nc + 1; C(i) = D1; C(nc) = D2

I1 = SubsetsWithDifferentClassInstances(C)
I2 = C − I1

if I1! = ∅ then
I = I1

else
I = I2

end if
(qj1, qj2, j) = MaximumDiameterEnds(I)
D = C(j); p1 = qj1; p2 = qj2; i = j

end while
(* representation *)
for C(i) = C(1)..C(nd) do

C(i).centre = CalculateGravityCentre(C(i))
C(i).class = MaximumClass(C(i))

end for

the splitting process continues until every subset is homogeneous (i.e., all instances
in a given subset are from the same class) and finally, each subset is represented by
its gravity centre. This procedure can be summarised as in Algorithm 2.5.

2.3.4 Learning Vector Quantisation Family

LVQ is an adaptive condensing technique in statistical pattern recognition, which
allows one to choose the number of prototypes. It is used in many applications
such as speech recognition, even when the prior probabilities for the classes are very
different. In general, the classes can be described by a relatively small number of
prototypes pi placed within each class region of the decision boundary by means of
neighbourhood measures.

In the initialisation step, the prototypes are placed within the training set, by
maintaining the same number of representatives in each class. Since the class borders
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Algorithm 2.5: Pseudo-code of the RSP3 algorithm.
(* initialisation *)
nc = 1;D = X
(* division *)
I1 = SubsetsWithDifferentClassInstances(D)
while I1! = ∅ do

(p1(j), p2(j)) = MaximumDiameterEnds(I1)
D = C(j); p1 = q1(j); p2 = q2(j)
(D1, D2) = Divide(D)
nc = nc + 1; C(j) = D1;C(nc) = D2

I1 = SubsetsWithDifferentClassInstances(C)
I2 = C − I1

end while
(* representation *)
for C(i) = C(1)..C(nc) do

C(i).centre = CalculateGravityCentre(C(i))
end for

Algorithm 2.6: Pseudo-code of the LVQ approach.
(* initialisation *)
t = 0
D(t) = ExtractNInstances(nm, X)
(* learning stage *)
repeat

x = ExtractOneInstance(X)
D(t + 1) = D(t) + x
t = t + 1

until (t = total learning steps)

are represented by segments of midplanes between examples of neighbouring classes
(borders of the so-called Voronoi tessellations), it may also seem to be a good strategy
to approximate the class borders, using the fact that the average distances between
the adjacent prototypes should be the same on both sides of the borders. A general
LVQ procedure can be written as follows:

Let x ∈ X be an input sample, let pc be the nearest codebook vector pi to x,
and let pc(t) represent the codebook vector pc at the step t. The learning process
in the basic version of the LVQ, i.e. the LVQ1 algorithm, consists of updating the
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position of pc. If the class label of the codebook vector pc matches the class label of
the training instance x, then the codebook vector is moved towards x. Otherwise,
it is moved away from the given input sample. The modifications to the codebook
vector pc are performed according to the following general rule:

pc(t + 1) = pc(t) + α(t)[x(t)− pc(t)] if class(x) = class(pc),
pc(t + 1) = pc(t)− α(t)[x(t)− pc(t)] if class(x) 6= class(pc),
pi(t + 1) = pi(t) for i 6= c

(2.3)

where 0 < α(t) < 1 denotes the corresponding learning rate, which may be either
constant or decrease monotonically with time.

In the case of LVQ2, two codebook vectors, pi and pj , the nearest neighbours to
an input sample x, are updated simultaneously. While pi must belong to the correct
class, pj must belong to a wrong class. Moreover, x must fall into a ”window”
defined around the midplane of pi and pj . x is said to fall in a ”window” of relative
width w if

min(
di

dj
,
dj

di
) >

1− w

1 + w
(2.4)

where di is the Euclidean distance from x to pi, and dj is the Euclidean distance
from x to pj . A relative width w from 0.2 to 0.3 is recommended. The adjustments
in the LVQ2 algorithm can be expressed as follows:

pi(t + 1) = pi(t) + α(t)[x(t)− pi(t)],
pj(t + 1) = pj(t)− α(t)[x(t)− pj(t)]

(2.5)

The LVQ2 algorithm can be improved in order to include corrections which
ensure that pi continues to approximate the class distributions, leading, however to
a longer learning process. Thus, the general modifications in the LVQ3 scheme are
performed according to the LVQ2 conditions. Moreover, if x, pi and pj belong to
the same class, then the learning rule is defined as:

pk(t + 1) = pk(t) + εα(t)[x(t)− pk(t)] (2.6)

for k ∈ {i, j}. In [Kohonen(1996)], the authors recommend the applicable values of
ε between 0.1 and 0.5, and stated that the optimal value of ε depended on the size
of the ”window”.

In the experiments, a variant of the original LVQ algorithms family, different
from the ones explained so far is used, namely the OLVQ1, Optimised-Learning-
Rate LVQ. The basis of this method is the LVQ1 in such a way that an individual
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learning rate αi(t) is assigned to each prototype pi. Several prototypes are assigned
to each class such that they approximately minimise the misclassification error in
the 1-NN classification. The following equations define the process:

pc(t + 1) = pc(t) + αc(t)[x(t)− pc(t)] if class(x) = class(pc),
pc(t + 1) = pc(t)− αc(t)[x(t)− pc(t)] if class(x) 6= class(pc),
pi(t + 1) = pi(t) for i 6= c

(2.7)

where x(t) is an input sample.
In [Kohonen(1996)], the ”optimal” values of αi(t) are determined by the following

recursion:

αi(t) =
αi(t− 1)

1 + s(t)αi(t− 1)
, (2.8)

where s(t) = +1 if x and pc belong to the same class (the classification of the
prototype pc is correct) and s(t) = −1 if x and pc belong to different classes (the
classification is wrong). Therefore, it is necessary to stop the learning process after
some “optimal” number of steps. The Optimised-Learning-Rate LVQ may be stopped
after, typically, 200 iterations.

2.3.5 Other Condensing Techniques

Many researchers addressed the idea of condensing by proposing several approaches.
Some of their algorithms are recalled in this subsection. A family of learning algo-
rithms based on instances were presented by [Aha et al.(1991), Aha(1992)]. Instance
Based learning algorithm 1 (IB1) was simply the 1-NN technique, and was used as
a baseline.

On the contrary, the IB2 approach is incremental, starting with a condensed
set initially empty, and adding to it each instance in the training set that is not
correctly classified by the examples already in the condensed set. This technique
keeps border points. In fact, it is very similar to Hart’s condensing. The main
difference is that in the Hart’s approach, the initial condensed set is started with an
example of each class and the process is repeated until no more instance is added
to the condensed set. So, the Hart’s condensing necessarily classifies every instance
in the training set correctly, meanwhile the IB2 algorithm does not accomplish it.
More than that, as erroneous examples are usually misclassified and consequently
saved in the condensed set, the IB2 technique is extremely sensitive to noise.

In order to avoid so extreme sensitivity, the IB3 version was introduced. The
point of this approach is to keep only acceptable misclassified examples. In order to
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know which misclassified instance is acceptable, its bounds on accuracy and frequency
are statistically compared. If the corresponding difference is bigger than a range, it
is saved in the condensed set. If it is lower than that range, it is dropped. Other
examples are retained in the condensed set during the process, and if they do not
prove to be acceptable, then they are dropped at the end. Due to this acceptability
clause, the IB3 achieves greater reduction in the condensed set size, and higher
accuracy than IB2.

In relation to ordered removal, a family of algorithms was introduced under the
names DROP1-DROP5 in [Wilson & Martinez(1997), Wilson & Martinez(2000)].
The DROP family is formed by a set of condensing algorithms which are independent
on the order in which instances are presented. In general, what these algorithms
do, is initialise a set R with the instances from the training set, and use a basic rule
to decide whether it is safe to remove an instance from the progressively reduced
set, R. An example is removed when R results in the same level of generalisation,
but with lower storage requirements. The basic idea is, not to see if an instance x,
is correctly classified to eliminate itself, but to see if its associates (the examples
who have x as one of their k neighbours) are correctly classified without x. With
such a general behaviour, noisy instances are removed. A noisy instance usually has
associates that come from a different class, and such associates will be at least as
likely correctly classified as without this noisy example.

Among all the algorithms in the DROP family, the DROP3 is the version selected
by the authors [Wilson & Martinez(2000)] as the one with the best trade-off between
size reduction and classification accuracy. Firstly, the DROP3 version removes noisy
instances, as well as close border points (smoothing the decision boundary slightly):
any instance misclassified by its k nearest neighbours is removed. Secondly, the
examples are sorted by the distance to their nearest enemy remaining in R. And,
finally, the basic rule is applied: remove an instance x, if at least as many of its
associates in the training set would be correctly classified without x. As a result,
instances far from the decision boundaries are removed first. So, examples internal
in the clusters are removed early in the process, even if there were noisy instances
nearby.

The Decremental Encoding Length (DEL) algorithm, which was introduced by
[Wilson & Martinez(2000)], is the same as DROP3, except that it uses a heuristic
encoding length to decide in each case whether an example can be removed. First,
noisy instances from R are removed, i.e. an example is removed if it is misclassified
by its k nearest neighbours and by its removing the encoding length cost does not
increase. Secondly, the remaining instances are sorted by the distance to their near-
est enemy (farthest, first). Finally, the remaining instances are removed provided



2.4. NEAREST NEIGHBOUR EFFICIENT SEARCH TECHNIQUES 31

that the cost function is decreased. Such a cost function is defined as

COST (r, n, m) = F (r, n) + rlog2(J) + F (m,n− r) + mlog2(J − 1) (2.9)

where n is the number of instances in the training set, r is the number of examples
in R, m is the number of examples misclassified by the ones in R, J is the number
of classes, and F (r, n) is the cost of encoding to be presented next.

F (r, n) = log∗(
r∑

j=0

Jn
j ) = log∗(

r∑

j=0

n!
j!(n− j)!

) (2.10)

where log∗ is the sum of the positive terms of log2(m), log2(log2(m)), etc.
In case more information about algorithms recalled in this subsection is needed,

the reader is referred to the articles of the corresponding algorithms, as well as to
the paper by [Wilson & Martinez(2000)], which presents a summary on the state of
the art of reduction techniques.

2.4 Nearest Neighbour Efficient Search Techniques

The NN rule is used in many tasks thanks to its simplicity and efficiency. The
simplest algorithm for implementing this rule is the one known by exhaustive search.
It calculates each distance from the item to classify, x, to the examples in the training
set. Afterwards, the class of the instance with the minimum distance is assigned
to x. This algorithm is however not very advisable in some situations, i.e. when the
training set is large, when the distance calculations require a considerable amount
of time, or simply in those cases where the data dimensionality is so high that even
the Euclidean distance calculation results in a very demanding task. In such cases,
the exhaustive search does not seem a good option.

Various efficient algorithms to find the nearest neighbour have been developed in
order to avoid the exhaustive search. [Dasarathy(1991)] did the first compendium of
nearest neighbour search algorithms. Recently [Chavez et al.(2001)] has published
a complete classification involving the more important nearest neighbour search
algorithms in general metric spaces.

Many of these algorithms fit in the concept of approximation and elimination
[Ramasubramanian & Paliwal(2000)]. The objective of an algorithm based on this
scheme is that the savings in distance calculations, due to the elimination of in-
stances, balance the computational cost of the approximation and the elimina-
tion processes. Among the algorithms taking profit of the above technique, a
number of well-known algorithms can be listed: the k-dimensional tree (k-d tree)
[Bendtley(1975), Friedman(1977)], the proposal by [Fukunaga & Narendra(1975)],
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the vantage point-tree (vp-tree) [Yianilos(1993)] and the Geometric Near-neighbour
Access Tree (GNAT) [Brin(1995)]. Other approaches that fit in this scheme are the
family of Approximation and Elimination Search Algorithm (AESA) [Vidal(1986),
Vidal(1994), Micó et al.(1994), Micó et al.(1996)], which are very efficient when the
distance calculations are hard to obtain.

2.4.1 An Example of Approximation and Elimination Algorithm:
the k-Dimensional Tree

The great part of the efficient search techniques is based on a data structure,
which is used to store the training set. This structure is usually a tree, as it
is the case of one of the well-known algorithms: K-dimensional tree (k-d tree)
[Bendtley(1975), Friedman(1977)]. In spite of the fact that many improvements
have been implemented, the k-d tree is the reference algorithm when using Euclid-
ean distances.

k is the dimensionality of the representation space. The k-d tree is a binary
structure whose nodes (different from leaves) contain the information about a coor-
dinate. This information divides each subtree into two new ones until the leaves are
reached, There buckets of instances are stored. The main idea in the construction
of the k-d tree is to find a hyperplane which divides the set of instances, X, into
two subsets, and recursively, searches for a new hyperplane in each subset. In order
to obtain a tree as balanced as possible, the usual way to proceed is to choose a
hyperplane in the median of the values of the discriminant coordinate (the one with
the largest width).

The construction of the tree is as follows. The root represents the complete
training set. A discriminant coordinate is chosen, and two new nodes appear in the
tree, each one representing a subset. For each node, a new discriminant coordinate
is calculated, and it is again divided into two new nodes. This continues until the
number of instances in a subset is less than (or equal to) the maximum bucket size
admitted. Finally the process stops, and there is the last node of a branch: a leave.

During the classification step, the tree is traversed according to the branch and
bound scheme, searching for the nearest neighbour of the sample to classify x. At
each node, a comparison takes place: the value of x in the discriminant coordinate
(dc) for this node is compared to the split point v (median of dc). Then the branch in
the nearest direction, according to dc, is chosen. On the one hand, if x[dc]+dnn ≤ v
(where dnn is the distance to the nearest neighbour obtained until now), the right
branch of this node cannot contain the nearest neighbour. So, searching for the
nearest neighbour in the right branch is not necessary (this fact is called to prune a
branch). On the other hand, if x[dc]− dnn ≥ v, the search for the nearest neighbour
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in the left branch is not necessary. When the current node is a leave, the sample is
compared to each instance in the bucket.

2.4.2 Other Efficient Search Techniques

Apart from the k-d tree, several efficient search techniques have been introduced by
different authors. Some of them are briefly presented here.

Vantage Point Tree

The vantage point tree (vp-tree) was introduced by [Yianilos(1993)] for searching
the nearest neighbour in general metric spaces. It consist of constructing a binary
tree, in which each node represents a subset of the training set instances. A vantage
point is used in order to divide the subset of each node in two different ones (one per
branch). So, each node, but the leaves, contains a vantage point and two branches.
The left branch contains the subset within the instances which are nearer to the
vantage point than a distance mu (and its corresponding subsets at each new level).
The tree is constructed recursively, choosing a new vantage point (and a mu) for each
node, except for the leaves. Leaves store subsets with only an instance. In order to
search in the vp-tree, the classical branch and bound scheme is used. The kvp-tree
is an extension for the vp-tree, consisting of calculating the k nearest neighbours
instead of just the first nearest neighbour.

Fukunaga and Narendra Algorithm

The algorithm by [Fukunaga & Narendra(1975)] was one of the first applicable in
general metric spaces. It is based in the construction of a tree representing the
training set, as the k-d tree and others do. For each new level, the subset is divided
in l new subsets. So, each node (except the leaves) is divided in l branches, and
contains the information for a representative Mp and a radius Rp (maximum distance
from Mp to each example in the subset). Each leave contains a subset of instances.

The different steps conforming the recursive search used in this data structure
are presented next.

1. Let us have a sample x and a node p (which is not a leave) where x is contained.
Calculate the distance from x to each representative in the children nodes of
p, and update the nearest neighbour.

2. Among all the children nodes of p that have not been pruned nor visited, take
the one whose distance to x will be the smallest. Prune it, if it satisfies the
first rule of pruning (see Figure 2.5): d(x,Mp) > d(x, n) + Rp
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Figure 2.5: The first rule of pruning in the algorithm of Fukunaga and Narendra.

3. If p is a leave, eliminate those instances x from p, if it satisfies the second rule of
pruning (see Figure 2.6): d(e,Mp)+d(x, n) < d(x, Mp). Calculate the distance
to x, for those examples not eliminated from the subset of p, and update the
nearest neighbour. If p is not a leave, search recursively in p descendants.

4. Repeat steps 2 and 3 until all nodes of the tree have been either pruned or
visited.

Geometric Near-neighbour Access Tree

[Brin(1995)] introduced a balanced tree that tries to represent the geometric struc-
ture of the training set. On the one hand, his data structure works well in high
dimensionality spaces as well as in spaces where the distance calculation time in the
search process is important. On the other hand, the tree construction is specially
heavy in time. This is, as the author recognises in the article, the principal GNAT
drawback. The main difference among this data structure, and others used for ef-
ficient search is that the number of children nodes of this tree is different for each
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Figure 2.6: The second rule of pruning in the algorithm of Fukunaga and Narendra.

node (having a maximum and a minimum), and it is proportional to the number
of instances that represent. Its construction is quite simple, and consists of several
steps:

1. Let us choose k split points from the training set, v1, v2, . . . , vk. The value of
k could change for each node. It is preferable to have the split points as much
separated as possible.

2. Divide the training set into subsets, each one related to a split point pi. Each
instance, x, belongs to the subset determined by the closer split point.

3. For each pair of split points, (vi, vj), calculate the minimum and maximum
of the distances among vi and each x in the subset related to vj , and the
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minimum and maximum of the distances among vj and each x in the subset
related to vi.

4. Repeat steps 2 and 3 recursively for each node, until all leaves have single
instances.

Approximation and Elimination Search Algorithm

The family of AESA (Approximation and Elimination Search Algorithm) [Vidal(1986),
Vidal(1994), Micó et al.(1994), Micó et al.(1996)] calculates a very reduced number
of distances that does not depend on the training set size. So, on the one hand,
their results are very time-efficient, when the distances are hard to calculate. On
the other hand, when the distance calculations are light, the additional processing
is responsible for slowing this technique. The algorithms, used in general metric
spaces are based on a method of approximation and elimination. The construction
of a tree is divided into the following steps:

1. At the beginning of the AESA algorithm, there is a preprocessing step con-
sisting of the distance calculation among each instance in the training set,
followed by the matrix storage.

2. In the classification step, any instance is chosen such as a candidate to the
nearest neighbour, and its distance to the sample is computed (approxima-
tion). It is also eliminated from the training set, and the nearest neighbour is
updated.

3. This distance is used in order to calculate an inferior level from the distance of
each instance in the training set to the sample, using the triangular inequal-
ity. If the inferior level is superior to the distance to the temporary nearest
neighbour, the instance is eliminated (elimination).

4. The process is repeated until there is no instance in the training set.

On the one hand, this algorithm is probably the one which calculates less dis-
tances in order to obtain the nearest neighbour. So, when the distance calculations
are heavy (and the training set size is not quite big), AESA is the technique to be
used. On the other hand, the matrix of distances calculated in the preprocessing
step could have an excessive size when the training set is quite big, as the spatial
complexity is quadratic in the training set size because of the matrix.



2.5. DISSIMILARITY-BASED CLASSIFICATION TECHNIQUES 37

Linear Approximation and Elimination Search Algorithm

The difference between LAESA (Linear Approximation and Elimination Search Al-
gorithm) [Micó et al.(1994), Micó et al.(1996)] and AESA is that the former reduces
the spatial complexity from quadratic to linear. In order to obtain this complexity
reduction, in the preprocessing step of LAESA, the pairwise distances between ex-
amples in the training set are not calculated, but the distances between examples
from a small subset of the training set (basic instances) and each training example.
These distances are stored in a rectangular matrix. So, the LAESA’s complexity
is linear, and the number of distances to be calculated depend on the size of this
subset. The basic instances to be chosen should be positioned far away from each
other.

During the classification step, the basic instances are the ones to be chosen, and
their distances to the sample are calculated. Using these distances, and the ones
calculated during the preprocessing step, an inferior level for each basic instance is
obtained. When every basic instance has been eliminated, the levels are not updated
any more, and the search uses a procedure similar to that of the AESA algorithm.

In case more information about these or other effective search algorithms is
needed, the reader is referred to the articles cited for each approach, or to the PhD
report by [Moreno(2004)].

2.5 Classification Techniques based on Dissimilarity

An intuitive way of determining the class of an unknown object is by analysing its
similarity to a set of representatives either selected or generated from a given training
set of instances with known class labels. Similarities or dissimilarities can be either
directly computed from the raw object observations or based on an intermediate
feature representation.

2.5.1 Dissimilarity Spaces

Definition Similarity is a quantitative measure which describes how similar two
patterns are, based on their representations (e.g. features).

As a consequence, similarity takes a larger value for objects that are similar than
for the ones that are dissimilar. Dissimilarity is, therefore, a measure describing
the difference between patterns. In general, a nonnegative dissimilarity measure
should express a degree of commonality between pairs of objects. It should be zero
for two identical objects, take small values for similar objects and take large values
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for objects that mutually differ. It does not need to be a metric provided that it is
meaningful for the problem.

Assume a training set X of n instances represented in a feature space. Let
R = {p1, p2, . . . , pr} be a condensed set, called also representation set, of r optimised
representatives from X. Assume a dissimilarity measure d, computed directly from
the instances represented in a feature space. A dissimilarity representation of an
example x ∈ X is defined as a vector of dissimilarities computed between x and the
representatives from R, i.e. D(x,R) = [d(x, p1), d(x, p2), . . . , d(x, pr)]. Hence, for the
set X, it extends to an n×r dissimilarity matrix D(X,R). In general, a dissimilarity
representation can be derived between strings, graphs, text documents, vectors or
any other initial representation. Here, we focus on feature vector spaces, as some of
our condensing methods work there, by selecting some instances or generating new
prototypes.

The dissimilarity matrix D(X, R) is interpreted as a data-dependent mapping
D(·, R) : X → Rr from some representation X to a dissimilarity space, defined by
the set R. This is treated as a vector space, in which each dimension corresponds
to a dissimilarity to a representative from R, i.e. D(·, pi). The advantage of such
a representation is that any traditional classifier operating in vector spaces can be
used [P ↪ekalska & Duin(2002), P ↪ekalska(2005), P ↪ekalska et al.(2006)].

A vector D(·, pi) defined by the dissimilarities to the representative pi can be
interpreted as an attribute. This follows since the dissimilarities to pi will differ
depending on the class membership. If the measure is metric and the dissimilarity
d(pi, pj) is small, then d(x, pi) ≈ d(x, pj) for other instances x. This is guaranteed
by the backward triangle inequality [P ↪ekalska(2005)]. As a result, only one of them,
either pi or pj can be chosen as a representative. However, a small number of
representatives might be insufficient to represent the data variability if the classes
have different spreads. This occurs, when in a feature space one class is represented
by a compact cloud of points, while the other class is elongated. It can be, therefore,
more beneficial to inspect the vectors of dissimilarities to the entire set R, instead
of looking at the nearest neighbourhood only. If the instances x and y are similar,
then their dissimilarity vectors D(x,R) and D(y, R) should be correlated, hence
lying close in a dissimilarity space.

2.5.2 Classification in Dissimilarity Spaces

In the case of small condensed sets or non-representative training sets, instead of
using the 1-NN rule, a better generalisation can be achieved by a classifier built in a
dissimilarity space. D(T, R) is a representation of a vector space, called dissimilarity
space, where each dimension corresponds to the dissimilarity to a representative



2.5. DISSIMILARITY-BASED CLASSIFICATION TECHNIQUES 39

from the set R [P ↪ekalska(2005)]. The advantage of such a representation is that any
traditional classifier operating in vector spaces can be used.

Justification for the Construction of Classifiers in Dissimilarity Spaces

A justification for the construction of classifiers in dissimilarity spaces is as follows.
The property that dissimilarities should be small for examples resembling each other
in practice, i.e. belonging to the same class, and large for distinct examples, gives a
possibility for a discrimination. Thereby, the vector of dissimilarities D(·, pi) can be
seen, as explained in Section 2.5.1, as an attribute or a feature, as the construction
of a dissimilarity space for a metric distance is justified [P ↪ekalska(2005)]. One may
wonder what the added value of such a representation over feature-based represen-
tation is, if the traditional classifiers designed for vector spaces may be applied in
the end. Firstly, the strength of a dissimilarity representation relies on its flexibility
to encode different characteristics of the data, so it is a representation where object
properties can be captured more adequately. The dimensions of a dissimilarity space
are defined by the dissimilarities to some instances, derived according to a specified
measure. Hence, they convey homogeneous type of information. In that sense, the
dimensions are equally important. This is not valid for a general feature-based rep-
resentation, where features may have different characters and ranges (e.g. weight
and length). Secondly, a dissimilarity measure already possibly encodes the object
structure and other characteristics, the designed classifiers might be chosen as to be
simple, e.g. linear models.

Defining a well-discriminating dissimilarity measure for a non-trivial learning
problem is difficult. Designing such a measure is equivalent to defining good features
in a traditional classification problem based on features. If a good measure can be
found and a training set is representative, then the k-NN rule is expected to perform
well. The decision of the k-nearest neighbour is based on local neighbourhoods
and it is, in general, sensitive to noise. It means that k nearest neighbours found
might not be the best representatives for making a decision to which class an object
should be assigned. In cases of a small or non-representative training set, a better
generalisation can be achieved by a more global classifier built in a dissimilarity
space.

For instance, a linear classifier in a dissimilarity space is a weighted linear
combination of dissimilarities between an object and the representation examples.
The weights are optimised on the training set, and large weights emphasise in-
stances which play an essential role during discrimination. By doing this, a more
global classifier can be built, by which its sensitivity to noise representative ex-
amples is reduced. Bibliography [Paclik & Duin(2003)A, P ↪ekalska & Duin(2002),
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P ↪ekalska et al.(2002)] confirms that a linear or quadratic classifier can often gener-
alise better than the k-NN rule, especially for a small representation set R.

Bayesian Decision Theory

Bayes formula (2.11) is often used for calculating the posterior probability.

P (θj |x) =
P (x|θj)P (θj)

p(x)
(2.11)

If we assume that θj is a class label and that x is a vector representation of an
object, the above Bayes rule is used in pattern recognition. In such a way, observing
the value of x we can convert the prior probability P (θj) to the posterior probability
P (θj |x). If the likelihood of θj with respect to x, P (x|θj), is large, it is more likely
that x belongs to the class θj (although the prior P (θj) plays the role here as well).
Given J classes, and deriving all class posterior probabilities, P (θj |x), j = 1, 2, . . . , J ,
the maximum posterior probability indicates the most probable class.

Given J = 2 classes, θ1 and θ2, the error probability is shown in (2.12). It is
assumed that x is given, so the probability error is:

P (e|x) =

{
P (θ1|x) if x ∈ θ2

P (θ2|x) if x ∈ θ1

(2.12)

The average error probability is given by equation (2.13).

P (e) =
∫ +∞

−∞
P (e|x)p(x) dx =

∫

x∈θ1

P (θ2|x)p(x) dx +
∫

x∈θ2

P (θ1|x)p(x) dx (2.13)

If for every x it is ensured that P (e|x) << 1, then the integral (2.13) must be as
small as possible. From this reasoning, the Bayes decision rule says:

{
Decide θ1, ifP (θ1|x) > P (θ2|x)
Decide θ2, otherwise

(2.14)

Linear and Quadratic Bayes Normal Classifiers

In the case of small condensed sets or non-representative training set, instead of using
the 1-NN rule, a better generalisation can be achieved by a classifier built in a dissim-
ilarity space. Many traditional decision rules can be applied there, however, linear
and quadratic classifiers perform well [Paclik & Duin(2003)A, P ↪ekalska & Duin(2002),
P ↪ekalska et al.(2002), P ↪ekalska(2005)]. Such classifiers are weighted linear (quadratic)
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combinations of the dissimilarities d(x, pi) between a given object x and the repre-
sentatives pi. Although the classifiers are trained on D(X, R), the weights are still
optimised on the complete training set.

It has been found out that Bayesian classifiers, i.e. the linear and quadratic nor-
mal density based classifiers, perform well in dissimilarity spaces, as seen in the bib-
liography [Paclik & Duin(2003)A, Paclik & Duin(2003)B, P ↪ekalska & Duin(2002),
P ↪ekalska et al.(2002), P ↪ekalska & Duin(2004)]. In general, these classifiers assume
that each class can be described by a normal distribution. This means that the
likelihood P (D(x,R)|θj) (corresponding to the likelihood P (x|θj) in (2.11)) is esti-
mated by a normal distribution. Prior probabilities are usually estimated based on
the class frequencies. Each object is assigned to the class which yields the highest
posterior probability P (θj |D(x,R)). If we assume that all classes are generated from
the same normal distribution (with the covariance matrix determined by the average
of the class covariance matrices), this leads to a linear classifier. If we assume that
each class may come from a different normal distribution, as a result, a quadratic
classifier is obtained.

Based on (2.14), for a two-class problem, a linear normal density based decision
function (NLC), defined on the representation set R, is given by:

f (D(x,R)) = [D(x,R)− 1
2
(m(1) + m(2))]

T S−1 (m(1) −m(2)) + log
p(1)

p(2)
(2.15)

and the quadratic function (NQC) becomes:

f(D(x,R)) =
2∑

i=1

(−1)i

2
(D(x,R)−m(i))

T S−1
(i) (D(x,R)−m(i))

+ log
p(1)

p(2)
+

1
2

log
|S(1)|
|S(2)|

,

(2.16)

where m(1) and m(2) are the mean vectors, S is the sample covariance matrix (average
of the class covariance matrices) and S(1) and S(2) are the estimated class covariance
matrices, all computed in the dissimilarity space D(X, R). p(1) and p(2) are the
class prior probabilities. When the covariance matrices become singular, they can
be regularised. In the implementation of these classifiers for multi-class problems
[Duin et al.(2004)], the normal-density functions are estimated per each class and
the final decision is based on the maximum a posteriori probability. Note that this
is equivalent to (2.14) if two classes are present.

For equal class priors, the Linear Normal density based Classifier (NLC) is equiv-
alent to the Fisher Linear Discriminant (FLD) obtained by maximising the Fisher
criterion, i.e. maxw

wT SBw
wT SW w

, where SB is the between-class scatter and SW =J is the
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within-class scatter [Duda et al.(2001)]. For a dissimilarity representation D(T, R),
the Fisher linear discriminant is found as

f(D(x,R))=(m1 −m2)T S−1
W D(x,R)− 1

2
(m1 + m2)T S−1

W (m1 −m2) (2.17)

A multi-class Fisher linear discriminant is derived in the one-against-all strategy
[Duin et al.(2004)].

Other Dissimilarity Classifiers

Although we prefer linear and quadratic Bayes normal classifiers due to the rea-
sons explained before, several kinds of classifiers have been defined to be used in
dissimilarity representations. Some of them are also presented next.

The Strongly Regularised Quadratic Classifier (SRQC) is similar to the Quadratic
Normal density based Classifier (NQC) defined in the subsection above, but with
a difference in the regularisation used, which is expressed by diminishing the influ-
ence of covariances with respect to variances. This means that each class covariance
matrix is estimated as Sk

i = (1 − k)Si + kp(θi) diag (Si), where k ∈ [0, 1]. If
k = 0, then the classifier reduces to the quadratic normal density based classifier,
while if k = 1, then the classifier becomes the scaled nearest mean linear classifier
[Fukunaga(1990), Skurichina(2001)]. So, the variation of k corresponds to a change
between these two extremes.

The Support Vector Machine (SVM) is the hyperplane f(x) = wT x + w0 min-
imising the norm ‖w‖2. The linear support vector machine classifier is expressed as
follows:

f(x) =
n∑

i=1

αiyi(x, xi) + α0 (2.18)

where (x, xi) = xT xi is the dot product operation and αi are nonnegative values
determined by maximising the margin 1

2‖w‖2 . Note also that w =
∑n

i=1 αiyixi.
Since in the solution by a quadratic programming many αi appear to be zero, only
the instances corresponding to non-zero weights, the support vectors, contribute
to the classifier. To introduce a support vector machine in a dissimilarity space,
one needs to build it on D(T, R). It is then a straight-forward implementation. In
the most simple, linear case, it leads to the kernel K consisting of the elements
Kij = 〈D(xi, R), D(xj , R)〉. Therefore, in the formulation of a linear support vector
machine, in the training step, K becomes K = DDT . Other positive definite kernels
can be used as well. In such a case, however, a sparse solution, provided by the
method, is obtained in the complete dissimilarity space D(·, R). It means that for
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the evaluation of new objects, still the dissimilarities to all representatives from R
should be computed.

Linear Programming (LP) machines solution is similar to an adaptation of the
support vector machine for feature representations defined with the linear program-
ming machines [Schölkopf et al.(2000), Smola et al.(1999)]. From the computational
point of view, such a linear programming classifier is advantageous for two-class prob-
lems, since for new objects, only the dissimilarities to the objects from the condensed
set have to be determined. Since multi-class problems are tackled by a number of
two-class problems, in such cases, the reduction of the training set to a condensed
set might be insignificant for the combined results.

The k-NN method constructed in a dissimilarity space relies on computing new
dissimilarities (e.g. Minkowski distances) between object representation D(x,R) in
such a space. This means that indirectly another dissimilarity representation is built
over the given one.

The Parzen classifier models the class conditional probabilities P (D(·, R)|θi) by
density kernel estimation, here, the normal density function. Let σi be the smooth-
ing parameter in the i-th dimension. The posterior probability of the class θj is
estimated as:

P (D(x, R|θj) =
1
nj

nj∑

i=1

1√
2π

∏
k σk

e
− 1

2σi
(D(x,R)−D(xi,R))(D(x,R)−D(xi,R))T

(2.19)
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Chapter 3

Non-Adaptive Condensing
Algorithms
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As explained in Chapter 2, the weakness of the traditionally used k-NN classi-
fication rule is its high computational cost. To solve this problem, some schemes
are used in order to reduce the data in the Training Set (TS). The main goal of
this thesis is to define an approach which finds a well-balanced Condensed Set (CS),
that is, of an appropriate size. We would like to accelerate the application of the
k-NN rule without a degradation of the classification accuracy, or at least without
a considerable decrease.

A small set of representatives has the advantage of a low computational cost and
small storage requirements for a similar or sometimes even an improved classifica-
tion performance. Various ways of designing a proper set of examples have been
studied. Two families of such optimisation procedures are editing and condensing.
As these methods lead to reduce the training set size, they are generally referred to
as prototype selection methods [Devijver(1982)].

Editing is the step in the learning process in charge of increasing the accuracy
of predictions, when there is noise in the training data. A basic editing algorithm
removes noisy instances, as well as close border instances, eliminating a possible over-
lap between regions from different classes and leaving smoother decision boundaries.
Wilson introduced the first editing method [Wilson(1972)] (see Subsection 2.2.1).

47
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The condensing step aims at selecting or generating a small subset of instances
or prototypes without a significant degradation of classification accuracy, in order
to reduce both storage and time required to process the selected data set. Within
the condensing perspective, the many existing proposals can be categorised into two
main groups: firstly, the selective schemes merely select a subset of the original
instances [Aha et al.(1991), Dasarathy(1994), Tomek(1976), Toussaint et al.(1985),
Hart(1968)] and secondly, the adaptive schemes modify them [Chen & Jozwik(1996),
Sánchez(2004), Kohonen(1995), Chang(1974)]. The components of the first group
are known as non-adaptive, or selective, condensing algorithms and their common
feature is that they never modify an instance. On the contrary, they just choose
those that would better represent the examples in the original training set. The
components of the second group are known as adaptive condensing algorithms, and
they are introduced in Chapter 4.

In this thesis, some new approaches to training set size reduction are presented.
These schemes, in general, basically consist of defining a small number of prototypes
that represent all the original instances. Although the goal of the algorithms pro-
posed here is to obtain a strongly reduced training set, the performance is always
taken into account. This chapter focuses on the problem of appropriately reducing
the training set size by selecting a subset of already existing instances. Like the
Hart’s scheme (see Subsection 2.3.1), the new approaches presented in this chapter
belong to the family of selective methods. The control over the condensed set final
size depends on the process itself.

The primary aim of the proposal presented in this chapter is to obtain a con-
siderable size reduction rate, but without an important decrease in classification
accuracy. Therefore, the idea behind is to cover the whole class with the areas of
influence of some instances or prototypes chosen for this purpose. This heuristic is
based on the next intuitive idea: in data reduction, the selection of some represen-
tatives covering the complete area of each class favours the classification accuracy
in results for samples of these classes. In addition, once the area of a class is cov-
ered by the areas of the most effective representatives, the smaller number of them
is selected, the better the final result, in order to reduce the data. Therefore, in
order to choose the best representatives, and small in number, some algorithms are
introduced and empirically evaluated.

For that purpose, the Nearest Centroid Neighbour (NCN) rule [Chaudhuri(1996),
Sánchez et al.(1997)B] is used. By means of this rule a geometrical distribution
of instances in the neighbourhoods is chosen to surround the considered sample.
This geometrical distribution of instances in the training set can become even more
important than just the distances between them, in contrast to the idea represented
e.g. in the Hart’s algorithm. Until now, the NCN rule has been used for classification
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[Sánchez et al.(1997)B], obtaining better results than other traditional classification
rules, i.e. the k-NN. The new point of view is that it is here used for condensing
purposes.

Next sections explain the contribution of this thesis with respect to the family of
selective condensing algorithms. Section 3.1 describes the NCN classification rule,
which is used in the condensing algorithms introduced in the following sections. The
algorithms MaxNCN and Reconsistent proposed by us, are respectively presented in
sections 3.2 and 3.3. In both sections, some other new algorithms with a strong rela-
tion to MaxNCN and Reconsistent, respectively, are presented and their convenience
is discussed.

3.1 Nearest Centroid Neighbour Rule

The main idea we try to develop in the algorithms introduced in this thesis is to cover
the complete area of a class with the areas of influence of some instances or proto-
types chosen for this purpose. Therefore, in order to choose effective representatives
and in small quantity, for the several areas of a class, their geometrical distribution
is considered. Such a geometrical distribution among examples in a training set can
become even more important than just the distances between them. In this sense,
the so-called surrounding neighbourhood-based rules [Sánchez et al.(1997)B] try to
obtain more suitable information about instances in the training set and specially,
for those being close to the decision boundaries. This can be achieved by taking into
account not only the proximity of examples to a given input sample but also their
symmetrical distribution around it.

Therefore, the surrounding neighbours of a sample should satisfy the two com-
plementary conditions:

1. Distance criterion: the neighbours should be as close as possible to the object.

2. Symmetry criterion: the neighbours should be distributed as homogeneously
as possible around the sample.

Chaudhuri [Chaudhuri(1996)] proposed a neighbourhood definition, the Near-
est Centroid Neighbourhood (NCN) concept, that can be viewed as a particular
realization of the surrounding neighbourhood. It is found as follows. Let x be a
given sample whose k nearest centroid neighbours should be found in a training set
X = {x1, . . . , xn}. These k neighbours can be searched for through an iterative
procedure in the following way:

1. Choose the first nearest neighbour of x, q1, as its first nearest centroid neigh-
bour.
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Figure 3.1: Illustration of the NCN concept.

2. Define the i-th nearest centroid neighbour, qi, i ≥ 2 such that the centroid of
this and the previously selected neighbours, q1, . . . , qi are the closest to x.

The neighbourhood obtained by this algorithm satisfies some interesting prop-
erties that can be further used to reduce the training set size by selecting examples.
In particular, it is worth mentioning that the NCN search method is incremental
and that the instances around the given sample x have a geometrical distribution
that tends to surround x, thus compensating the distribution of instances around x.
It is also important to note that in general, the region of influence of the NCN rule
is bigger than that of the NN rule. This can be observed in Figure 3.1, where the
regions defined by the 4-nearest centroid neighbours and the 4-nearest neighbours
are shown for the given object x.

3.2 MaxNCN

The MaxNCN technique is based on the concept of nearest centroid neighbourhood
and relies on the NCN search algorithm, as presented above. A subset of instances
is selected from the training set to guarantee their optimal geometrical distribution
with respect to their nearest centroid neighbours. The use of the nearest centroid
neighbourhood of a given sample can provide local information about the shape
of the probability class distribution, which depends on the nature and class of its
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Algorithm 3.1: Pseudo-code of the MaxNCN algorithm.
for i = each instance(TS) do

neighbours number[i] = 0
neighbour = next NCN(i)
while neighbour.class == i.class do

neighbours vector[i] = Id(neighbour)
neighbours number[i] + +
neighbour = next NCN(i)

end while
end for
while Max neighbours() > 0 do

EliminateNeighbours(id Max neighbours)
end while

nearest centroid neighbours, that is, on the instances in its surrounding area.
The rationale behind this approach is that the instances belonging to the same

class are located in a neighbouring area and can be replaced by a single representative
without significantly affecting the original boundaries. The main reason to employ
the NCN rule instead of the NN is to benefit from its properties:

1. the NCN rule covers a bigger region than the NN rule,

2. the nearest centroid neighbours are located in the area of influence around a
given sample, which is compensated in terms of their geometrical distribution.

MaxNCN

Initially, all training instances are considered as representatives. The algorithm
attempts to replace a group of neighbouring examples of the same class by a rep-
resentative. In order to decide which group of instances should be replaced, the
concept of nearest centroid neighbourhood here used is introduced.

Definition The nearest centroid neighbourhood of an instance x is considered to be
the set of neighbours of x, calculated by means of the NCN rule until reaching
a neighbour with a class label different from that of x.

Definition The instances belonging to the nearest centroid neighbourhood of x are
their nearest centroid neighbours.

Therefore, for each example x in the training set its nearest centroid neighbourhood
is computed. The instance with the largest number of nearest centroid neighbours
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Algorithm 3.2: Pseudo-code of the Iterative MaxNCN algorithm.
while eliminated instances > 0 do

for i = eachinstance do
neighbours number[i] = 0
neighbour = next NCN(i)
while neighbour.class == i.class do

neighbours vector[i] = Id(neighbour)
neighbours number[i] + +
neighbour = next NCN(i)

end while
end for
while Max neighbours() > 0 do

EliminateNeighbours(id Max neighbours)
end while

end while

is defined as a representative of its corresponding group. Since this group lies in the
area of influence defined by the nearest centroid neighbourhood distribution, all its
members can now be removed from the training set.

Next, given the remaining examples, the algorithm updates the number of their
nearest centroid neighbours (if some were previously eliminated as belonging to the
group of an already existing representative). This is repeated until there is no group
of instances to be replaced by a representative. This basic scheme is called MaxNCN,
and it is presented in Algorithm 3.1.

Iterative MaxNCN

A straightforward extension of the MaxNCN algorithm consists of iterating the
general process until no more elements were removed from the training set. So,
when no more instances have a neighbourhood to represent, new neighbourhoods
are calculated among the non-eliminated examples. Algorithmically, the iterative
MaxNCN version can be presented as Algorithm 3.2 shows.

Iterative kNeighbours

Iterative kNeighbours is a similar approach to the Iterative MaxNCN version.
The main difference refers to the number of neighbours allowed to be represented
by a prototype, k. One of its main properties is that the limit of neighbours can be
selected. We specifically chose the value for k depending on the training set size: a
percentage. Algorithmically, it can be represented as in Algorithm 3.3.
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Algorithm 3.3: Pseudo-code of the Iterative kNeighbours algorithm.
while eliminated instances > 0 do

for i = eachinstance do
neighbours number[i] = 0
neighbour = next NCN(i)
while neighbour.class == i.class and neighbours number[i] < k do

neighbours vector[i] = Id(neighbour)
neighbours number[i] + +
neighbour = next NCN(i)

end while
end for
while Max neighbours() > 0 do

EliminateNeighbours(id Max neighbours)
end while

end while

3.3 Reconsistent

The main goal of the algorithms presented in this section is the fact that they are
consistent (see Definition 2.3.1), or almost consistent in the case of Reconsistent.
That is, if the classification error estimated by assigning all instances from the
training set to the class of its nearest neighbour in the condensed set, is 0; see
[Dasarathy(1991), Hart(1968)]. Therefore, given a set of instances representing the
class distribution, the classification rate of the training set can be used to measure
the consistency of this set. As the consistent condition is maintained, the smaller
the number of representatives in the condensed set, the better the final result. Note,
however that algorithms presented in this section do not iterate until a maximum
reduction is obtained as it is not the main objective in this section.

The approaches presented in these section are important modifications of the
MaxNCN algorithm towards obtaining a consistent condensed set [Lozano(2004)A].
The primary idea is that the consistency of a subset with respect to the training
set should lead to a better classification. By using the MaxNCN algorithm some
instances close to the decision boundaries are possibly removed because of the order
in which instances are taken during the condensing process. Different approaches
implemented by us try to address this issue. Two of them are presented in this
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Algorithm 3.4: Pseudo-code of the Consistent algorithm.
for i = each instance(TS) do

neighbours number[i] = 0
neighbour = next NCN(i)
while neighbour.class == i.class do

neighbours vector[i] = Id(neighbour)
neighbours number[i] + +
neighbour = next NCN(i)

end while
end for
while Max neighbours() > 0 do

EliminateNeighbours(id Max neighbours)
end while
count = 0
for i = each instance(TS) do

if Classify(i)! = i.class then
incorrect class[count + +] = i

end if
end for
AddToCondensedTS(incorrect class[])

section.

Consistent

The simplest method applies first MaxNCN and, after that, estimates the class
of each instance in the training set by the use of the NN rule as a classifier, using
the reduced set. Every instance misclassified is added to the reduced set in order to
create the resulting condensed set. This algorithm has been named Consistent. It
can be represented as shown in Algorithm 3.4.

Reconsistent

The Reconsistent algorithm [Lozano(2004)A] is a modification of the Consistent
version. The aim now is to reduce the condensed set size obtained by using the
Consistent algorithm.

The procedure starts by applying the MaxNCN technique to a training set, yield-
ing a reduced set, R. Then, each example in the training set is tested by the 1-NN
rule with respect to the set R, as we do with the Consistent approach. The main dif-
ference is that all these misclassified instances form a new group, which is condensed
using the set R as a reference set. In the end, this new condensed misclassified set is
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Algorithm 3.5: Pseudo-code of the Reconsistent algorithm.
for i = each instance(TS) do

neighbours number[i] = 0
neighbour = next NCN(i)
while neighbour.class == i.class do

neighbours vector[i] = Id(neighbour)
neighbours number[i] + +
neighbour = next NCN(i)

end while
end for
while Max neighbours() > 0 do

EliminateNeighbours(id Max neighbours)
end while
count = 0
for i = each instance(TS) do

if Classify(i)! = i.class then
incorrect class[count + +] = i

end if
end for
for i = each instance(incorrect class[]) do

neighbours number inc[i] = 0
neighbour inc = next NCN inc(i)
while neighbour inc.class == i.class do

neighbours vector inc[i] = Id(neighbour inc)
neighbours number inc[i] + +
neighbour inc = next NCN inc(i)

end while
end for
while Max neighbours inc() > 0 do

EliminateNeighbours inc(id Max neighbours inc)
end while
AddCondensedIncToCondensedTS()

added to R, resulting in the final condensed set. This set is said to be almost con-
sistent, as its consistency is not tested a second time. The Reconsistent procedure
is presented in Algorithm 3.5.



56 CHAPTER 3. NON-ADAPTIVE CONDENSING ALGORITHMS



Chapter 4

Adaptive Condensing
Algorithms
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In Chapter 3 some non-adaptive condensing schemes have been introduced. A
different family of techniques within the condensing perspective is the one composed
of those algorithms that generate new prototypes [Sánchez(2004), Kohonen(1995),
Chen & Jozwik(1996), Chang(1974)]. These techniques are known as adaptive or
generative condensing algorithms and they are in charge of creating new prototypes
that represent or replace the original examples.

One problem related with the use of original instances from the training set is
that there may not be any vector located at the precise point that would make the
most accurate learning algorithm. Correspondingly, prototypes can be artificially
generated to be placed exactly where they are needed, by means of an adaptive
condensing algorithm.

Two generative algorithms have already been described in Chapter 2. They
are the Chen’s algorithm, and the LVQ approach. Briefly, the Chen’s scheme split
progressively the Training Set (TS), getting some clusters that finally will be replaced
by new generated prototypes. LVQ, on the contrary, modifies the already existing
instances favouring the ones that belong to the same class to be nearer than they
originally were.

This chapter focuses on the problem of appropriately reducing the training set
size by artificially generating a subset of prototypes. In order to reduce the training
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set size while maintaining a similar behaviour of the classifier (i.e. classification
accuracy), we accurately select the position of each new prototype depending on its
area of influence. So, we try to completely cover a possible area, or areas, where a
class is located. That is to say, the area, or areas, in which a sample of a class can
be situated, should be perfectly defined by the addition of the area of influence of
each representative belonging to that class.

The main achievement presented in this chapter is the introduction of the so-
called MixtGauss algorithm, which generates new prototypes to represent the origi-
nal instances. In order to achieve this, it uses the class-conditional probability density
function (pdf ) of the spatial class distribution, and mixtures of Gaussians. The idea
behind the algorithm is to replace a cluster that could be modelled by a Gaussian
distribution, just by the centre of this Gaussian.

From now on, this chapter presents the contribution of this thesis to the family of
adaptive condensing algorithms. Section 4.1 presents two new generative condens-
ing algorithms based on the Nearest Centroid Neighbour (NCN) rule, Centroide
and WeightedCentroide, along with a discussion of their convenience. Section 4.2
takes care of introducing a new adaptive approach based on mixtures of Gaussians,
MixtGauss, and also a number of extensions. Therefore, firstly, Subsection 4.2.1
introduces the reader into the topic of mixtures of Gaussians in multi-modal class
distributions. Secondly, in Subsection 4.2.2 the stages of the scheme (and of its
different versions) are specifically described, and the MixtGauss algorithm is finally
presented.

4.1 Adaptive Condensing Algorithms Based on the NCN
rule

An adaptive condensing algorithm is based upon the abstraction of new prototypes
in order to represent the classes which the original instances belong to. After imple-
menting and testing several selecting algorithms, the idea about using a representa-
tion of the real instances was becoming a fact. The point was to apply the same idea
used before, the nearest centroid neighbourhood concept, except that in this case
new prototype locations should be calculated. So, new algorithms for generating
prototypes have been implemented. Centroide and WeightedCentroide are among
the more interesting schemes.

4.1.1 Centroide

The main difference between the Centroide algorithm (Algorithm 4.1) and the Itera-
tive MaxNCN approach (Algorithm 3.2) is that, instead of using an original example
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Algorithm 4.1: Pseudo-code of the Centroide algorithm.
while eliminated instances > 0 do

for i = eachinstance do
neighbours number[i] = 0
neighbour = next NCN(i)
while neighbour.class == i.class do

neighbours vector[i] = Id(neighbour)
neighbours number[i] + +
neighbour = next NCN(i)

end while
end for
while Max neighbours() > 0 do

AddCentroid(id Max neighbours)
EliminateNeighbours(id Max neighbours)

end while
end while

as a representative of a neighbouring group, the Centroide algorithm attempts to
replace a number of neighbouring instances by a new prototype, located in their
centroid. The rationale behind this is that a new artificial prototype could bet-
ter represent a neighbourhood because it can be allocated at the best estimated
location.

So, the algorithm firstly computes the nearest centroid neighbours of each in-
stance x in the training set until reaching a neighbour from a different class than
that of x. In order to decide which group of instances are to be replaced, the one
with the largest number of neighbours is chosen. The centroid of this group is cal-
culated and defined as a representative of the neighbourhood. Consequently, all its
members can now be removed from the training set. For each instance remaining in
the set, the number of its neighbours is updated if some were previously eliminated
as belonging to a previously chosen group. This is repeated until there is no group
of instances to be replaced by a representative. So, the reduction of the data set is
done by introducing new prototypes that replace existing groups.

In order to obtain a significant size reduction, this general process is iterated
until no more representatives are removed from the training set. The whole scheme
is given in Algorithm 4.1.



60 CHAPTER 4. ADAPTIVE CONDENSING ALGORITHMS

Algorithm 4.2: Pseudo-code of the WeightedCentroide algorithm.
while eliminated instances > 0 do

for i = eachinstace do
neighbours number[i] = 0
neighbour = next NCN(i)
while neighbour.class == i.class do

neighbours vector[i] = Id(neighbour)
neighbours number[i] + +
neighbour = next NCN(i)

end while
end for
while Max neighbours() > 0 do

AddCentroid(id Max neighbours, neighbours number[id Max neighbours] + 1)
EliminateNeighbours(id Max neighbours)

end while
end while

4.1.2 WeightedCentroide

The WeightedCentroide algorithm was developed based on the idea of the Centroide
algorithm. The only difference between them is that in WeightedCentroide, each
centroid replacing a group of instances has a weight. The weight of each new proto-
type is computed in relation to the number of instances that the centroid represents.
So, e.g. if in the first iteration a centroid represents a group of six neighbours, this
centroid will have a weight of 6 units. In a subsequent iteration, if a new centroid
represents three centroids from the previous iteration, the weight of the new one will
be the sum of the weight values of the three previous representatives. Consequently,
at the end of the process, each representative in the Condensed Set (CS) will have a
weight value equivalent to the quantity of these instances from the training set that
it really represents. The weight is used in order to place the calculated centroid near
those prototypes with a higher weight, that is to say, representing more prototypes.
Consequently, the centroids are forced to be nearer the areas which consist of many
original instances of the class that they are representing. Algorithm 4.2 provides
this scheme.
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4.2 An Adaptive Condensing Algorithm Based on Mix-
tures of Gaussians

Until now, we have used techniques based on geometric information in order to
obtain the desired computational complexity reduction. From now on, we base our
research in probability density estimators. In order to do this, we use the training
set to calculate the probability density of the examples we find there, as they are
the ones we know, and we suppose that they represent the complete classes. The
probability density estimator we use is a model of mixtures of Gaussians.

The basic algorithm we present in this section is called MixtGauss. It is con-
sidered in the framework of mixture modelling by Gaussian distributions, while
assuming a statistical independence of features. The mean vectors of the optimised
Gaussians, whose mixtures are fit to model each of the class distributions, are cho-
sen to be their representatives. In order to obtain the optimised Gaussians from the
initial mixtures, the Expectation Maximisation (EM) algorithm is used. The details
are given in next sections.

4.2.1 Mixtures of Gaussians in Multi-Modal Class Distributions

In general, we have a training set with n instances, where each instance x is a point,
in a d-dimensional feature space, x = [x1, . . . , xd] ∈ <d. Then, for a given sample,
the aim is to assign it to the correct class where Θ = {c1, . . . , cJ} is a finite set of
the J classes in the training set. The different points of the training set follow a
spatial class distribution according to their true class-conditional pdfs P (x|cj) and
the respective a priori probability P (cj), cj ∈ Θ. So, we can say that a vector
x can be then optimally classified using the Bayes rule or maximum a posteriori
probability decision rule based on the knowledge of the components P (cj)P (x|cj)
for each class cj .

In practice, these class-conditional pdf do not have any underlying structure
assumed and no prior knowledge about the shapes of these pdfs is required to solve
the problem. So, one way to approach this is by estimating a density function of
the distribution.

A natural way to deal with a density estimator is to consider a mixture density
of components. One approach to retain the capacity of P (x|cj) is by reflecting
the local structure of the distribution by means of mixture components Pm(x|cj).
This density estimator is used in the literature [Novovicova et al.(1996)]. We use
it, while assuming the statistical independence of features. In fact, we calculate the
estimators in a parametric way. Consequently, the Bayes rule can be used, and each
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component is estimated by the product of the probabilities in each feature:

P (x|cj) =
M∑

m=1

αm|jPm(x|cj) =
M∑

m=1

αm|j
d∏

k=1

N(xk; µm|kj , σm|kj) (4.1)

where M is the number of components and αm|j is an a priori probability of the
mth component in the class cj . Therefore, the Bayes classifier is:

CBayes = max
j=1..J

P (cj)P (x|cj) (4.2)

where P (cj) is the a priori class probability.
Then, we can consider the characterisation of the distribution like a parametric

unsupervised learning problem [Duda & Hart(1973)] using a mixture of components
of a multivariate normal distribution. We represent the multidimensional Gaussians
as a product of univariate normal distributions, with µm|kj and σm|kj as the means
and standard deviations, respectively. The EM algorithm [Dempster(1977)] will be
here used to estimate these unknown components.

4.2.2 MixtGauss

The final aim of the condensing process proposed here is to obtain a probability
distribution representing a class, for every class present in the training set. General
shapes of classes as well as the decision boundaries are kept, when each class is
described by a mixture of multivariate Gaussian distributions. By the additional
assumption of the statistical independence of features, the mth component in a
mixture modelling of the class cj is a multivariate Gaussian distribution expressed
by a product of univariate normal distributions, N(µm|kj , σm|kj). Note that this
is equivalent to a multivariate elliptic Gaussian distribution N(µm|j , diag(σm|j)),
parallel to the axes of <d.

The multidimensional Gaussian density is a typical model used to describe a
probability density. The only parameters to estimate are the means and the covari-
ance matrices. Quadratic bounds (see Figure 4.1 (a)) related to the Mahalanobis
distance to each class are obtained by introducing the estimated models in the Bayes
test. In addition, if the covariance matrices of the classes are equal, the quadratic
terms cancel each other, and the bounds become linear (hyperplanes; see Figure 4.1
(b)).

If the clusters have spherical shapes of the same size, and the classes are equiprob-
able, the optimal classifier is the nearest neighbour to the mean of each class (see
Figure 4.1 (c)); the so-called nearest mean classifier. Therefore, if the algorithm here
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(a) (b) (c)

Figure 4.1: Elliptic Gaussians determining quadratic bounds (a) and linear bounds
(b), and spheric Gaussians determining linear bounds.

presented was in charge of covering the area of each equiprobable class with spheric-
shaped Gaussians having the same size, the centres of influence would exactly be
the Gaussian means.

Nevertheless, as the supposed simplifications will never take place in practical
cases, we try to learn our classifier for real data by using Gaussians of different sizes
and shapes.

In addition, a consistency criterion will be applied to the points representing a
class. The more Gaussians are included in the point distribution, the more accurate
the representation of the decision boundaries, and consequently, the more accurate
the classification. For instance, in the Hart’s algorithm, the consistency criterion
relies on the correct 1-NN classification of all instances in the training set by using
the condensed set.

However, in the method presented here a different criterion, close to the consis-
tency definition given in Hart’s algorithm (see Definition 2.3.1), will be employed.

Definition A condensed set R, is said to be quasi-consistent with respect to a
training set X, if the estimated classification error is (sufficiently) small, when
the class for each pattern in X is estimated by the NN rule for R.

Given a set of prototypes representing the class distribution, we can use the classifi-
cation rate of the training set in order to measure how consistent (according to the
definition given above) it is.

As the quasi-consistent condition is maintained, the smaller the number of proto-
types needed for representing a class in the condensed set, the better the result. On
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Figure 4.2: Edges of the areas of influence of the equal circle-shaped Gaussians that
coincide with Voronoi boundaries.

the other hand, for some applications it is useful to be able to define the condensed
set size beforehand.

To look for a condensed point distribution, imagine a problem of two Gaussian
distribution classes in a Euclidean space. The best condensed set would be the
mean of the Gaussian pdf function in each class. Therefore, let us suppose a class
distribution that could be modelled by a mixture of Gaussians. The centres of these
Gaussians could become the set of prototypes representing the class distribution,
that is, the condensed set. Thus, if each class is covered by a mixture of Gaussians,
the union of the areas of influence of all Gaussians would cover the complete area
where each class is defined.

In addition, assuming equal prior probabilities for all Gaussians, if they are forced
to be hyperspherical (same diagonal covariance matrix for all Gaussians with equal
variance in every feature), the use of these Gaussians would be equivalent to the min-
imum distance classifier, 1-NN [Duda et al.(2001)], when associating each Gaussian
to a given class. Therefore, the edges between the areas of influence of neighbouring
Gaussians would correspond to the Voronoi boundaries (see Figure 4.2).
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MixtGauss Initialisation

Note that although the EM algorithm is widely used, one needs to be aware of
its drawbacks [Figueiredo & Jain(2002)]. As a method working in local neighbour-
hoods, it is sensitive to initialisation because the likelihood function of a mixture
model is not unimodal. Another important issue in mixture modelling is the se-
lection of the number of components. With too many components, the mixture
may over-fit the data, while a mixture with too few components may not be flexible
enough to approximate the true underlying model.

We use mixture of Gaussians in order to obtain an estimation of the probability
density function. We assume that all the components have the same functional
form. For example, they are all d-variate Gaussians, each one being thus fully
characterised by the parameter vector. And the more Gaussian components are
included in a mixture, the more accurate the representation of the classes and the
decision boundaries.

Taking into account these facts, we have to provide a number of Gaussians M
to represent each class distribution. This number corresponds to the number of
prototypes generated in each class for the final condensed set. At the initial stage,
each class is represented by M Gaussians. We present three different initialisations.

1. In the first one, each parameter range is divided by (M − 1) (in this way
we obtain as many interval bounds as Gaussians we need). At each step,
a Gaussian is represented, with all the parameter values for this step. So,
a d-dimensional diagonal, represented by Gaussian centres is obtained. For
each Gaussian, the initial variance is set up to a tenth of the range in each
dimension.

2. In the second initialisation, each class is represented by M Gaussians located
on the mean of the instances from that class. By adding random disturbances
(Range

500 ∗ random(0, 1), for each dimension/feature), different mean vectors are
created, and the Gaussians are shifted away. So, a mixture of Gaussians for
representing each class distribution can be obtained.

3. In the third case, the M initial modes are randomly chosen from the training
examples. This idea is based on the random distribution of the representations.

Among these three initialisations, the second one was chosen as the best, in order
to compare the results to other algorithms. So, in the final MixtGauss algorithm
the initial components are the M Gaussians located at the class means, randomly
perturbed.
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MixtGauss Optimisation

In the MixtGauss optimisation one estimates the probability density independently
for each class, and represents this probability density by the chosen components.
The standard method used to fit finite mixture models to the observed data, hence
to estimate the parameters of the class distributions, is the well-known EM algo-
rithm [McLachlan & Basford(1988), McLachlan & Krishnan(1997)]. This is a gen-
eral Maximum Likelihood (ML) optimisation procedure for problems with hidden
variables or missing data [Dempster(1977)]. So, after the initialisation stage, an
iterative optimisation process based on the EM algorithm, is carried out in order
to determine an optimal location of the mixtures of Gaussians for each class inde-
pendently. This iterative optimisation procedure converges to a maximum likelihood
estimate of the mixture parameters. Accordingly, to fit a mixture of Gaussians to
each class distribution, we iterate between the following two steps:

E-step Compute the contributions of the instances xt (where t is the number of
the iteration) to the class cj , belonging to the set {x1, . . . , xNj}, where Nj is
the cardinality of the class cj . The conditional pdf for the mth component is:

Pm(xt|cj) =
αm|j

∏d
k=1 N(xt

k; µm|kj , σm|kj)∑M
l=1 αl|j

∏d
k=1 N(xt

k;µl|kj , σl|kj)
(4.3)

This function is normalised such that
∑M

m=1 αm|j = 1. The multivariate Gaus-
sians are represented as a product of univariate normal distributions, with the
means µm|kj and the standard deviations σm|kj .

M-step Compute the parameters of the mth component for each value xt that exists
in the class cj :

αm|j =
1

Nj

Nj∑

t=1

Pm(xt|cj) µm|kj =
∑Nj

t=1 Pm(xt|cj)xt
k∑Nj

t=1 Pm(xt|cj)
(4.4)

σm|kj =

∑Nj

t=1 Pm(xt|cj)(xt
k − µm|kj)2∑Nj

t=1 Pm(xt|cj)
(4.5)

Both steps are iteratively repeated for each class. The final prototypes of the
sought condensed set are the mean vectors of the Gaussian distributions determined
by the EM algorithm at the end of the loop in which the process is stopped.
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MixtGauss Optimisation Speed Control

Two different implementations in relation to speed control have been tested.

1. The first one does not take into account the differences in the optimisation
speed of each class. So, the EM optimisation loop is repeated until the stopping
criterion is achieved.

2. In the second approach, as we have realised that several speeds are used by
the class optimisation, we have tried to control them in order to force the ones
with more velocity to wait for the others.

The second version is the one which obtains better results, and it is explained below.
After each iteration of the optimisation process described in the previous subsub-

section (Subsubsection MixtGauss Optimisation), the components of each class have
been modified. At this point their consistency improvements are tested in order to
know whether any of the classes adapt their components in a higher speed than oth-
ers. The main idea is that if the components of a class converge more quickly than
the components of a neighbouring class, the former ones could catch the samples in
the borders, some of them belonging to the later class, which is still approaching to
its local optimum.

Therefore, this unbalanced speed is detected by testing the classification accuracy
for each class at this point of the optimisation process. In order to measure the
accuracy, some steps are followed:

1. Firstly, each current mode is taken as being a representative in the new reduced
set.

2. Secondly, the labels of the instances in the original training set estimated, and
compared to their actual labels.

3. Finally, the classification accuracy is calculated, by using the ratio of the
number of correct classifications in that class, to the total number of examples
in the same class. If this percentage is deteriorated for a class in comparison
to the previous iteration, this class is forced to wait for the next repetition of
the loop to move/re-adapt its components.

The EM loop is repeated for each class, and the classification accuracy is tested
until the stopping criterion is reached.
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MixtGauss Stopping Criterion

The iterative optimisation process described in the previous subsubsections could
cause an inadequate overlap between the Gaussian components from different classes,
thus deteriorating the final classification accuracy. Therefore, this process should
stop at a certain point. Three alternatives are here presented.

1. In the first version, we limit the iterations just by the quantity of repetitions
that one wants to run, as it is done in the LVQ algorithm [Kohonen(1996)].

2. In the second version, by applying the quasi-consistency criterion presented at
the beginning of this Subsection (Subsection 4.2.2), the loop in the MixtGauss
Optimisation is repeated while classification accuracy increases for any class.
When no class improves its results, the process is stopped. The stopping
criterion is as follows. After the modification of components of all clases, their
quasi-consistency is tested. In order to do that, we take the accuracy rates
calculated in the way explained in the Subsubsection MixtGauss Optimisation
Speed control, by using the 1-NN rule. These calculations are compared to
the previous iteration ones. The process is stopped when no class yields an
increase in performance, trying to obtain the minimum classification error.
Meanwhile, the movement of the Gaussians is carried out until a balanced
position is found.

3. A new version, the third one, is also proposed by using the Bayes classifier as
the estimator for the stopping criterion instead of the 1-NN rule. We name it
MGBayes.

Finally, the second version of the stopping criterion, using the quasi-consistency
criterion based on the 1-NN rule, is adopted for the final MixtGauss algorithm, as the
results were better in general (anyway quite similar to the Bayes-based consistency
criterion version). The complete technique is summarised in Algorithm 4.3 presented
below.

MixtGauss Algorithm

Here we present the MixtGauss algorithm (Algorithm 4.3), which is based on the
process described in the previous section. The option chosen for each step is recalled
here in order to clarify the steps that this algorithm consists of.

1. Firstly, in the initialisation step M components are located on the class means,
and shifted away by the addition of some random disturbances.
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Algorithm 4.3: Pseudo-code of the MixtGauss algorithm.
(* initialisation *)
for c = 1..number of classes do

mean[c] = CalculateMean(c, TS)
for g = 1..number of Gaussians per class do

Gaussians[c, g] = mean[c] + RandomDisturbance()
end for

end for
current accuracy = CalculateAccuracy()
(* optimisation *)
repeat

previous Gaussians[c, g] = Gaussians[c, g]
Gaussians[c, g] = EMstep()
previous accuracy = current accuracy
current accuracy = CalculateAccuracy()
classes improve = 0
for c = 1..number of classes do

if current accuracy[c] > previous accuracy[c] then
classes improve = classes improve + 1

else
if current accuracy[c] < previous accuracy[c] then

for g = 1..number of Gaussians per class do
Gaussians[c, g] = previous Gaussians[c, g]

end for
end if

end if
end for

until classes improve == 0

2. Secondly, the EM optimisation is applied to each class independently; see
Formula 4.3 and Formula 4.4.

3. When an iteration of the EM loop is finished for every class, the error is
compared to the error from the previous repetition of the loop in order to
recognise if a class is moving its nodes faster than others. If accuracy have
been decreased for any of the classes, it is forced to wait until the rest of the
classes iterates on the EM loop once more.

4. If no class improves its classification accuracy ratio, the balance position have
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already been reached and the stopping criterion forces the process to stop.

The process introduced can be viewed as an adaptive condensing scheme, in
which the prototypes of the resulting set will correspond to the centres of the final
Gaussians. Algorithmically, it can be summarised as it is shown in Algorithm 4.3.

MixtGauss Convergence Issues

It is known that the application of the EM algorithm over a mixture of Gaussians
representing a single class has a convergent behaviour. Based on this fact, we are
going to show that the MixtGauss algorithm is convergent too.

Let us have J different classes in a database. Thus, one independent EM process
is run for each class, in which the components of each class are independently
adapted, as the EM iterations are completely separated in time and have differ-
ent information for each class. At the end of each iteration of the EM for every
class, an external test in charge of calculating the improvement of the classification
accuracy for each class is run. Depending on the results of this external test, the
state of the EM process for a class could be set to stand by or carry on. The state
stand by forces the EM process for a class to maintain its position and variables,
while EM processes for other classes continue iterating.

Therefore, as the list of states for a class, as well as the EM algorithm process for
each class, is not changed at all and act independently of each other classes, then,
the convergence of the EM process of every class is warranty by the convergence
of the EM algorithm itself. Thus, the MixtGauss algorithm presents a convergent
behaviour.

When none of the classes improves its classification accuracy, it is because a
balance situation is achieved. This can happen by two reasons: one of them is
that the EM process for each class finally converges; the other one is that a quasi-
consistency equilibrium point between classes is attained. Independently of which
reason has been fulfilled to find the balanced position, the process is stopped, as
every mode is situated in a location that optimises the class representation.
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Comparative Analysis among
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5.1 Introduction

The usefulness of condensed sets, optimised by various approaches discussed in the
previous chapters will now be evaluated in a classification task. Traditionally, the
1-NN rule, assigning an unknown object to the class of its nearest neighbour among
the Condensed Set (CS), is used for this purpose. In contrast to its conceptual
simplicity, this rule has a good behaviour when applied to non-trivial problems. In
fact, the k-NN rule performs as well as any other possible classifier, provided there is
an arbitrarily large number of representative prototypes available and the volume of
the neighbourhood of each object is arbitrarily close to zero (asymptotically optimal
[Dasarathy(1991)]).

From now on, this chapter describes the experimental setup (Section 5.2), presents
the quantitative results for the condensing techniques based on the Nearest Centroid
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Neighbour (NCN) rule and others (Section 5.3), and draws some conclusions (Sec-
tion 5.4).

5.2 Experimental Setup

Some new and classical selective and generative algorithms have been presented
in the previous chapters. Now they are run, on the eleven databases described in
Chapter 1. In order to do that, each database was normalised by a unit variance, and
after that, divided in 5 different sets in order to be able to repeat the experiments
5 times for each database, and to obtain the average. It is done in a five-fold cross-
validation scheme. See Chapter 1 for details.

As in the case of the Chen’s and RSP3 approaches, the new algorithms tested
in this chapter (MaxNCN, Iterative MaxNCN, Iterative kNeighbours, Consistent,
Reconsistent, Centroide and WeightedCentroide) need to be applied in practice to
overlap-free (no overlapping between different class regions) data sets. Thus, as
a general rule and according to the previously published results [Sánchez(2004),
Wilson & Martinez(2000)], the Wilson’s editing has been considered to properly re-
move possible overlapping between the classes. The parameter involved, k, has been
obtained in our experiments by performing a five-fold cross-validation experiment
using only the Training Set (TS) and computing the average classification accuracies
for different values of k and comparing them to the “no editing” option. The best
edited set (including the non-edited training set) is thus selected as an input for the
different condensing schemes.

The experiments are conducted to compare the condensed sets obtained from
the execution of the algorithms MaxNCN, Iterative MaxNCN, Iterative kNeighbours,
Consistent, Reconsistent, Centroide and WeightedCentroide, among other new ap-
proaches, to the Chen’s scheme, the RSP3 approach and the Hart’s condensing, in
terms of both training set size reduction and classification accuracy. The 1-NN rule
is used in order to calculate the classification accuracy. All resulting condensed sets
are also compared to the original training set.

Each of these algorithms, except for the case of the Chen’s condensing, chooses
automatically the size of the resulting condensed set. So, it is asked for the same
condensed set size as the MaxNCN algorithm obtains, as the results show that it
reaches a good balance between classification accuracy and size reduction.
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5.3 Quantitative Results

This section presents the experimental results. As it is not possible to present
all the results in a unique table, a number of them are shown. They report the
1-NN classification accuracy results for the sets in comparison. They represent
the original training set and different condensed sets obtained with the classical
algorithms explained in Chapter 2, and with the new techniques based on the NCN
rule, presented in Chapters 3 and 4.

Table 5.1 reports the 1-NN classification accuracy rate and, in square brackets,
the reduction size rate and the equivalent number of instances or representatives,
for the original training set and the condensed sets obtained by already existing
algorithms: the classical Chen’s and Hart’s approximations, and the RSP3 version.
The average values for each method on the eleven data sets are also included. The
highest classification accuracy and the highest size reduction rates for each database
and for the average are highlighted in bold. So, among the average classification
accuracy rate obtained with the Original training set, and with the Chen, Hart and
RSP3 condensed sets, the highest one is reached by the RSP3 condensed set. It
is to note that the average accuracy rate reached by RSP3 is even slightly higher
than the Original training set accuracy, while obtaining a reduction of 52.83% of
the Original training set size. In spite of the fact that for four of the databases
(Vehicle, Vowel, Satimage and Texture), the highest accuracy rate is reached by the
Original training set, even in those cases where the accuracy rates obtained by the
RSP3 condensed sets are very near to the Original accuracy. The highest average
reduction rate in Table 5.1 is obtained by the Chen’s algorithm.

Table 5.2 reports the 1-NN classification accuracy rate and, in square brackets,
the size reduction rate and the equivalent number of representatives, for the con-
densed sets obtained by some of the selective algorithms developed in this thesis:
the MaxNCN, the Iterative MaxNCN, the Iterative kNeighbours, the Consistent and
the Reconsistent. The average values for each method on the eleven data sets are
also included. The highest classification accuracy and the highest size reduction
rates for each database and for the average, are highlighted in bold. The highest
classification accuracy rate belongs to the Consistent condensed set. The highest
average reduction rate is reached by the Iterative MaxNCN condensed set.

Looking carefully at Table 5.2, it can be observed that although Iterative MaxNCN
and Iterative kNeighbours obtain the best results in reduction, they obtain the worst
results in accuracy. On the contrary, Consistent and Reconsistent reach the best
results in accuracy, but they reach the worst results in reduction, in comparison to
other algorithms in the table. It is not strange, as it was already to be expected in
general: when the higher reduction is achieved, the lower accuracy is reached. Mean-
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Table 5.1: Classification accuracy of the 1-NN rule applied to the original training
set and the condensed sets obtained with the already existing algorithms: Chen’s,
Hart’s and RSP3 (in %). The corresponding training set size reduction (in %) and
the equivalent number of instances or representatives are given in square brackets.

Original Chen Hart RSP3

Cancer 95.17 95.75 94.44 94.44
[546] [95.24≡26] [92.12≡43] [91.03≡49]

Diabetes 70.06 73.44 71.62 72.53
[614] [86.97≡80] [79.15≡128] [67.10≡202]

Glass 69.66 62.55 66.37 70.16
[171] [59.06≡70] [51.46≡83] [33.33≡114]

Heart 76.26 78.88 78.49 78.16
[216] [83.80≡35] [76.39≡51] [68.98≡67]

Liver 62.59 58.86 60.05 62.65
[276] [76.81≡64] [67.03≡91] [51.45≡134]

Vehicle 69.40 63.94 66.92 68.56
[677] [60.27≡269] [50.96≡332] [23.93≡515]

Vowel 98.12 53.53 94.59 97.53
[422] [74.41≡108] [74.88≡106] [22.75≡326]

Wine 94.41 79.10 92.73 95.49
[142] [92.96≡10] [92.25≡11] [70.42≡42]

Phoneme 71.00 71.28 70.81 71.98
[4323] [91.56≡365] [88.60≡493] [61.21≡1677]

Satimage 82.96 76.09 80.77 82.42
[5148] [86.54≡693] [84.83≡781] [54.74≡2330]

Texture 98.89 70.87 96.93 98.78
[4400] [89.32≡470] [91.52≡373] [36.23≡2806]

Average 80.78 71.30 79.43 81.15
[81.54] [77.20] [52.83]

while, MaxNCN does not get the highest nor the lowest result for any database in
neither accuracy nor reduction. In fact, it is one of the best balanced results:

only a negative percent difference of 3 in comparison to the best result in average
accuracy (and a positive percent difference of 9 in average reduction), and a negative
percent difference of 12 in comparison to the best result in average reduction (and
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Table 5.2: Classification accuracy of the 1-NN rule applied to the condensed sets
obtained with the selective algorithms based on the NCN rule: MaxNCN, Iterative
MaxNCN, Iterative kNeighbours, Consistent and Reconsistent (in %). The corre-
sponding training set size reduction (in %) and the equivalent number of represen-
tatives are given in square brackets.

MaxNCN It.MaxNCN It.kNeighbours Consistent Reconsistent

Canc. 92.0 76.0 78.6 94.0 93.4
[95.2≡26] [99.3≡4] [98.7≡7] [90.8≡50] [93.8≡34]

Diab. 67.7 56.8 57.2 71.5 71.8
[87.0≡80] [98.1≡12] [96.1≡24] [75.4≡151] [81.8≡112]

Glass 64.1 53.3 46.6 69.4 69.4
[59.1≡70] [73.1≡46] [72.0≡48] [44.4≡95] [46.8≡91]

Heart 69.3 65.2 62.8 75.6 74.8
[83.8≡35] [96.8≡7] [98.2≡4] [72.2≡60] [77.8≡48]

Liver 58.9 51.0 47.5 61.5 61.0
[76.8≡64] [96.1≡11] [96.4≡10] [64.1≡99] [68.5≡87]

Vehi. 64.4 51.1 55.1 66.9 66.0
[60.3≡269] [84.8≡103] [81.1≡128] [46.5≡362] [49.2≡344]

Vowel 90.8 78.2 72.7 95.3 95.5
[74.4≡108] [84.9≡64] [85.1≡63] [69.4≡129] [71.8≡119]

Wine 91.6 86.7 84.3 91.5 92.1
[93.0≡10] [97.9≡3] [97.9≡3] [88.0≡17] [90.9≡13]

Phon. 69.1 59.2 58.4 71.4 70.2
[91.6≡365] [98.5≡64] [98.5≡67] [84.3≡679] [88.9≡480]

Sati. 79.2 57.9 56.5 80.7 80.3
[86.5≡693] [98.2≡94] [98.1≡97] [79.8≡1042] [82.7≡890]

Text. 95.3 74.0 74.8 97.5 97.3
[89.3≡470] [98.8≡53] [98.8≡52] [86.0≡617] [87.8≡535]

Avr. 76.58 64.47 63.14 79.57 79.23
[81.54] [93.29] [92.79] [72.82] [76.35]

+12 in average accuracy).

Comparing Table 5.2 to Table 5.1, in general, the results in accuracy are higher
for the already existing algorithms and the Original training sets. On the other hand,
the results in size reduction are, in general, higher for the algorithms presented in



78 CHAPTER 5. NCN-BASED CONDENSING COMPARISON

Table 5.3: Classification accuracy of the 1-NN rule applied to the condensed sets
obtained with the generative algorithms based on the NCN rule: Centroide and
WeightedCentroide (in %). The corresponding training set size reduction (in %)
and the equivalent number of prototypes are given in square brackets.

Centroide WeightedCentroide

Cancer 69.61 69.61
[98.90≡6] [98.90≡6]

Diabetes 45.44 49.88
[97.88≡13] [97.56≡15]

Glass 44.40 44.40
[74.27≡44] [74.27≡44]

Heart 62.17 62.17
[97.69≡5] [97.69≡5]

Liver 53.14 52.61
[96.01≡11] [95.65≡12]

Vehicle 48.11 48.95
[84.19≡107] [83.31≡113]

Vowel 80.85 80.91
[82.46≡74] [82.46≡74]

Wine 85.56 85.56
[97.89≡3] [97.89≡3]

Phoneme 58.19 58.01
[98.03≡85] [97.99≡87]

Satimage 58.23 59.59
[98.08≡99] [98.10≡98]

Texture 72.45 72.65
[98.80≡53] [98.80≡53]

Average 61.65 62.21
[93.11] [92.96]

this thesis, aiming at the higher efficiency in reduction than in accuracy.

Table 5.3 reports the 1-NN classification accuracy rate and, in square brackets,
the size reduction rate and the equivalent number of prototypes, for the condensed
sets obtained by the generative algorithms based on the NCN rule, developed in this
thesis (Centroide and WeightedCentroide). The last line shows the average values for
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Figure 5.1: Representation of areas, depending on their proximity to the ideal point
(and their balance) in comparison to a given point.

each method on the eleven data sets. The results obtained with these two algorithms
are quite similar. So, only the size reduction rates higher than the ones from the
other algorithm have been highlighted in bold. In the average results we highlighted
both results in order to make the reader note that both results are very good ones.
In relation to accuracy, no-result is highlighted as none of them is good enough in
comparison to those from other tables.

Several comments can be made from the results in these three tables. It is im-
portant to note that, in terms of reduction rate, the Iterative MaxNCN, Centroide,
WeightedCentroide and Iterative kNeighbours eliminate much more instances than
any other scheme. As expected, classification accuracy strongly depends on the
number of representatives in the condensed set. Correspondingly, the RSP3, Con-
sistent, Hart’s, and Reconsistent algorithms (in this order), as well as the original
training set, obtain the highest classification accuracy almost without exception for
all the data sets. However, they also retain more representatives than the rest of
the algorithms.

Finally, we would like to emphasise that while it is true that three databases get
the highest accuracy and highest reduction with the same algorithm, in Table 5.1,
whether reduction is compared to the results in any of the other tables, it is lower
than the reduction rate for almost every algorithm. It is not by chance that the
highest accuracy and reduction rates are not reached at the same time in any data-
base. It is one more proof about the fact that in order to get a higher reduction
rate, a classification accuracy rate will be sacrificed. Maybe it is better not to re-
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Figure 5.2: Representation of areas depending on their improvements/deteriorations
in comparison to a given point.

duce so strongly/dramatically the training set size, however just to reduce until an
acceptable cardinality, as judged for each problem.

In order to assess the performance of these two competing goals simultane-
ously, classification accuracy and size reduction, Figure 5.1 represents the normalised
Euclidean distance between a reference pair (accuracy, reduction) and the ideal case
(100, 100), which represents 100% accuracy and 100% reduction, in such a way that
the “best” approach can be deemed as the one that is nearer (100, 100). So, points
in region A correspond to those procedures that have achieved better results (in
the sense that they are nearer the ideal point) than the reference algorithm used
to draw the arch. Points in region B represent those methods that have obtained
worse results. This technique is usually referred to as Data Envelopment Analysis
[Charnes(1978)]. In figures from 5.3 to 6.1 the nearest algorithm to the ideal point
(100, 100), have been chosen as a reference. The approaches closest to the diagonal
in these plots are the ones that get the best balance between accuracy and reduction
rates.

In addition, Figure 5.2 should be interpreted as follows. Points in region B
represent the methods that have obtained a higher reduction rate and also achieved
a higher accuracy than a certain reference algorithm. Points in region C correspond
to those procedures that have achieved worse results in both accuracy and reduction
rates. Finally, points in regions A and D indicate intermediate situations, that is,
methods that have improved only one value (either accuracy percentage or reduction
rate, respectively). In the plots shown next, the algorithm chosen as a reference is
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Figure 5.3: Average of accuracy and reduction rates over the eleven databases ex-
perimented.

the one obtaining the best results among Chen’s, Hart’s and RSP3 algorithms.
Thus, in Figure 5.3, which shows the average accuracy and reduction rates, it

is possible to see that the MaxNCN, Hart’s, Reconsistent, Consistent and Chen’s
algorithms represent a good trade-off between classification accuracy and size re-
duction rates. Concerning the remaining algorithms we can comment that Iterative
MaxNCN, as well as IterativekNeighbours, WeightedCentroide and Centroide obtain
similar results: a good reduction rate but not the best accuracy rate. Anyway,
comparing the Iterative version of MaxNCN to the Hart’s condensing, the positive
percent difference in reduction (21) is bigger than the negative percent difference
in accuracy (15). The difference is even more positive to our algorithms if we com-
pare the Iterative MaxNCN algorithm to the Chen’s approach (a positive percent
difference of 12 in reduction, and a negative percent difference of 6 in accuracy).

The RSP3 version, on the contrary, does not obtain such an important reduction,
but it gets an improvement in classification accuracy. Anyway, just taking a look at
Figure 5.3 one can realise that the improvement in accuracy is not so important as
the loss in reduction (a percent difference of 1.6 in accuracy and 20 in reduction) in
comparison to the Consistent approach.
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Finally, it is to be noted that several alternatives to the algorithms introduced
here have also been analysed, although some of them had a behaviour similar to
that of MaxNCN. Other alternatives, as for example MaxNN, relying on the NN
rule instead of the NCN technique, had a performance systematically worst than
MaxNCN. In general, algorithms implemented by using the NN as a condensing rule
obtained, as expected, very poor results in comparation to the approaches that use
the NCN rule. Also, by limiting the neighbourhood size of each representative, we
tried to improve the results of MaxNCN. In fact, as a result some increase in both
accuracy and reduction rates was achieved although differences were not significant.

The nearest representation to the ideal point (100, 100) is the one of the algo-
rithm MaxNCN. The next closest one is that of the Hart’s approach, and the next
one is that of the Reconsistent condensing. In addition, the reader can note that
these three representations are the nearest to the diagonal, hence they obtain a good
balance between classification accuracy and size reduction.

Taking into account each graphical method shown in Figure 5.3, we can sum-
marise that the algorithms reaching the best results are MaxNCN, Hart and Re-
consistent. Among them, MaxNCN is proclaimed as the best one, as its average
representation is the nearest to the ideal point (100, 100); it is quite near to the
diagonal too. In addition while comparing it to the Hart’s condensing, the percent
difference is more positive in reduction (4.34) than negative in accuracy (2.85).

These are the comments in relation to the average results. For each database,
the results for the different algorithms are presented in several figures. The first one
(Figure 5.4) shows the classification accuracy and the size reduction for the Cancer
database. The results here represented correspond to the average of a five-fold cross-
validation estimate of accuracy and percentage of size reduction. This has been done
in the same way for every database used in the experiments included in this thesis.

Looking at the Cancer plot (Figure 5.4), the reader can observe a good behav-
iour, in general, of the condensing algorithms. It is to note that Centroide and
WeightedCentroide lead to identical results. Consequently WeightedCentroide and
Centroide are plotted at the same position in the accuracy-reduction space. So, as
such, an open triangle mark for WeightedCentroide is covered by the filled triangle
mark for Centroide. All of the representations are near to the coordinate axes, and
relatively near to the ideal point (100, 100). For this database, the best result be-
longs to the Chen’s condensing. Very near to the Chen’s result are the Reconsistent,
MaxNCN, Hart, Consistent and RSP3 representations. All of them are relatively
near to the ideal point, and to the diagonal representing the balance between both
accuracy and size reduction.

About Diabetes (Figure 5.5), the first thing one can observe is that in general the
results are not as good as for Cancer. In fact, almost no database in the experiments
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Figure 5.4: Accuracy and reduction rates for the Cancer database.

 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

R
ed

uc
tio

n 
pe

rc
en

ta
ge

Accuracy percentage

MaxNCN
Iterative MaxNCN

Iterative kNeighbours
Consistent

Reconsistent
Centroide

WeightedCentroide
Chen
Hart

RSP3

Figure 5.5: Accuracy and reduction rates for the Diabetes database.
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Figure 5.6: Accuracy and reduction rates for the Glass database.

obtains such good results (only Wine and Texture seem to show a similar behav-
iour). The nearest result to the ideal point (100, 100) is for the Chen’s algorithm.
In spite of the fact that the algorithms Iterative kNeighbours, Iterative MaxNCN,
WeightedCentroide and Centroide obtain a very good reduction rate, the rest of the
algorithms obtain better balanced results.

Figure 5.6 shows the results for the Glass database.
The algorithm which obtains the nearest result to the ideal (100, 100) is Iter-

ative MaxNCN. Very near to its distance to the ideal point is MaxNCN, which is
much more balanced. So, the best result in the Glass database is obtained by the
MaxNCN algorithm, being very near to it, the Chen’s approximation. The results
for Centroide and WeightedCentroide are equal, so, their representations appear in
the same position, as well as in Figure 5.7. It shows results for the Heart database.
There, the nearest representation to the point (100, 100) is the Chen’s condensing
one, which is at the same time, quite well balanced.

The results for the Liver data are presented in Figure 5.8. The nearest result to
the ideal point is the Centroide representation. Very near to its distance to (100,
100) are the Iterative MaxNCN, MaxNCN and Chen’s representations. MaxNCN
and Chen’s are much more balanced than the other two. It is the reason why,
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Figure 5.7: Accuracy and reduction rates for the Heart database.
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Figure 5.8: Accuracy and reduction rates for the Liver database.
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Figure 5.9: Accuracy and reduction rates for the Vehicle database.

they could be determined as the best condensing algorithms for the Liver database.
Near to this results are Reconsistent, Hart and Consistent representations. For
the Vehicle database (Figure 5.9) the nearest result to the ideal point is obtained
by the Iterative kNeighbours algorithm. The most balanced results are reached
by the Chen’s and MaxNCN approaches. So, MaxNCN can be concluded as the
best condensing algorithm for the Vehicle database (as, coinciding with the Chen’s
method in reduction, its accuracy is higher). Very good are results for the Chen’s
and Iterative kNeighbours approximations.

The results for the Vowel database are presented in Figure 5.10. There, the
Centroide and WeightedCentroide approximations obtain very similar results thus,
they occupy almost the same position in the plot. We can say that the nearest
representation to the ideal point belongs to the Hart’s algorithm. Very near to
this distance are WeightedCentroide, Centroide, Iterative MaxNCN, MaxNCN and
Reconsistent results. Because of their balanced results, the WeightedCentroide and
Centroide approaches can be reported as the best results for the Vowel database.
From Figure 5.11, we can say that the Wine database has a good behaviour in
relation to training set size reduction. The Hart’s approach reaches the best result,
being very near the MaxNCN and the Reconsistent representations. The Centroide
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Figure 5.10: Accuracy and reduction rates for the Vowel database.
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Figure 5.11: Accuracy and reduction rates for the Wine database.
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Figure 5.12: Accuracy and reduction rates for the Phoneme database.

and WeightedCentroide algorithms obtain very similar results hence, they occupy
almost the same position.

Figure 5.12 presents the results for the Phoneme database. Results for the al-
gorithms Iterative kNeighbours, Centroide and WeightedCentroide are very similar
thus, they occupy almost the same position in the representation space. The nearest
result to the ideal point is reached by the Chen’s algorithm. MaxNCN, Reconsistent
and Hart are specially near to Chen’s representation. About Satimage (Figure 5.13),
the best result is reached by the Hart’s algorithm. Specially near to this result is
the MaxNCN algorithm.

Figure 5.14 presents the results for the Texture database. First of all, it is to note
that just at a first sight the Texture database seems to have a good behaviour with
almost every condensing algorithm shown in the plot. Secondly, the results for the
Centroide and WeightedCentroide algorithms are very similar, so they occupy almost
the same position in the plot. Finally, we conclude that the best algorithm for this
database is the Hart’s. The MaxNCN, Reconsistent and Consistent approaches are
near the best result.
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Figure 5.13: Accuracy and reduction rates for the Satimage database.
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Figure 5.14: Accuracy and reduction rates for the Texture database.
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5.4 Conclusions

In this chapter, new approaches to training set size reduction have been compared to
some of the already existing ones, including the classical Chen’s and Hart’s approxi-
mations. The new algorithms primarily consist of replacing a group of neighbouring
instances that belong to the same class by a single representative. In some cases,
this representative is one of the already existing neighbours, and in other cases, it
is a new prototype that occupies the best position. This group of representatives is
built by the use of the nearest centroid neighbourhood of a given sample. In general,
those cover a bigger region than the one defined by the NN.

From the experiments carried out, we can conclude that firstly, the algorithms
that obtain a higher set size reduction rate are Iterative MaxNCN, Iterative kNeigh-
bours, WeightedCentroide and Centroide. Secondly, the classical Hart’s and Chen’s
approaches obtain good results in general. And at last but not least, the best results
obtained for the experiments carried out in this thesis belong to MaxNCN, Hart and
Reconsistent, (in this order) having in mind that they achieve a good balance be-
tween set size reduction and classification accuracy, in addition to being the nearest
ones to the ideal point (100, 100) in an accuracy=reduction size plot.
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6.1 Introduction

The usefulness of condensed sets, optimised by various approaches discussed in the
previous chapters, will now be evaluated in a classification task. Traditionally, the 1-
NN rule, assigning an unknown object to the class of its nearest neighbour among the
Condensed Set (CS) is used for this purpose. This rule is applied as the NN approach
is often used for the design of the condensed set. If the classes are represented
as compact Gaussian-like clouds of similar spreads, then the 1-NN is expected to
generalise well for a small condensed set. Otherwise, a large condensed set might
be needed to represent the variability in the data. Alternatively, classifiers in the
so-called dissimilarity spaces can be constructed.

91
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6.2 Experimental Setup

We will compare some methods of determining a condensed set R, in combination
with three feature-based classification strategies. This is done on the Euclidean
distance representations D(X, R) derived in feature spaces. The experiments have
been conducted to compare the MaxNCN and Reconsistent approaches (the best
condensing algorithms based on the Nearest Centroid Neighbour (NCN) rule here
introduced), to the classical LVQ scheme (the OLVQ1 version), and the new ap-
proach based on mixtures of Gaussians, MixtGauss. This is done in terms of both
set size reduction and classification accuracy for the condensed set. In order to cal-
culate the classification accuracy, the first classification method used is the 1-NN
rule based on the set R. The other two methods are the Fisher Linear Discrimi-
nant (FLD) and the Quadratic Normal Density Based Classifier (NQC), trained in
dissimilarity spaces D(X, R), as explained in Section 2.5.2.

Similarly as MaxNCN and Reconsistent, the MixtGauss algorithm needs to be
applied to non overlapping data sets. Therefore, as a general rule, and according
to the previously published results [Wilson & Martinez(2000), Sánchez(2004)], the
Wilson’s editing is considered to properly remove a possible overlap between the
classes (see Chapter 5, Section 5.2).

In relation to the LVQ scheme, we should note that at the end of the learning
process, the final placement of the prototypes, as well as their distances, are not
known. Thus, their optimal cardinality cannot be determined beforehand. To fix the
value of k we have to choose first a number of representatives. In order to fix the size
of the resulting set, we have used a combination of editing and condensing techniques.
Therefore, we use the Wilson’s editing (the k parameter here is obtained as explained
in Section 5.2), followed by the Hart’s condensing algorithm. The resulting set size
is near to the ideal. Using this number of representatives (a different number for
each database), different values of k were tested and the one leading to the highest
accuracy was finally chosen. For each database, different initial set sizes were used
in order to compare the results for different cases. For these initial values one can
use the first samples of the training set picked up from the respective classes.

6.3 Quantitative Results

Tables 6.1, 6.2 and 6.3 report the classification accuracy of the 1-NN, the FLD and
the NQC, respectively, obtained by using different condensed sets and the Original
set. The latter set is the original TS without any editing or condensing after nor-
malisation. For each condensing method, the average performance values, computed
over the eleven data sets are also included. There are no results of the FLD and
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Table 6.1: Classification accuracy of the 1-NN (in %). The corresponding reduction
rates of the training set size (in %) and the equivalent number of representatives are
given in brackets.

Ori. MaxNCN Reconsistent LVQ MixtGauss

Canc. 95.2 92.0 93.4 96.9 96.5
[95.2≡26] [93.8≡34] [99.3≡4] [99.3≡4]

Diab. 70.1 67.7 71.8 76.6 75.0
[87.0≡80] [81.8≡112] [98.1≡12] [91.9≡50]

Glass 69.7 64.1 69.4 72.6 64.5
[59.1≡70] [46.8≡91] [71.9≡48] [75.4≡42]

Heart 76.3 69.3 74.8 84.1 81.9
[83.8≡35] [77.8≡48] [89.8≡22] [93.5≡14]

Liver 62.6 58.9 61.0 65.6 63.7
[76.8≡64] [68.5≡87] [93.5≡18] [97.1≡8]

Vehi. 69.4 64.4 66.0 72.2 69.6
[60.3≡269] [49.2≡344] [61.6≡260] [70.5≡200]

Vowel 98.1 90.8 95.5 80.8 90.7
[74.4≡108] [71.8≡119] [76.5≡99] [76.5≡99]

Wine 94.4 91.6 92.1 95.5 96.0
[93.0≡10] [90.9≡13] [95.8≡6] [97.9≡3]

Phon. 71.0 69.1 70.2 77.3 73.3
[91.6≡365] [88.9≡480] [93.1≡300] [93.1≡300]

Sati. 83.0 79.2 80.3 82.2 81.3
[86.5≡693] [82.7≡890] [88.3≡600] [94.8≡270]

Text. 98.9 95.3 97.3 85.9 97.2
[89.3≡470] [87.8≡535] [99.5≡22] [90.0≡440]

Avr. 80.8 76.6 79.2 80.9 80.9
[81.5] [76.4] [87.9] [89.1]

the NQC for the Satimage and Texture sets (for the original training set), because
of their high memory requirements during training [Duin et al.(2004)]. The aver-
age performances excluding these data sets are also presented. Since the adaptive
techniques (the MixtGauss and the LVQ) allow one to determine a condensed set of
any size, only a few results are shown in the tables. These correspond to the best
accuracy values, found in the sets between one representative per class and the size
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Table 6.2: Classification accuracy of the FLD in dissimilarity spaces and the cor-
responding reduction rates of the training set size in brackets. Both values are
expressed in %. Averages over all data sets (1-11) and all data sets but Satimage
and Texture (1-9), are also given.

Original MaxNCN Reconsistent LVQ MixtGauss

1 Cancer 85.50 96.48 96.48 97.22 96.92
[95.2] [93.8] [98.2] [96.3]

2 Diabetes 74.23 76.05 77.09 77.08 76.70
[87.0] [81.8] [98.7] [87.0]

3 Glass 53.88 66.53 67.49 77.17 69.77
[59.1] [46.8] [61.4] [93.0]

4 Heart 60.75 80.72 78.49 84.79 82.60
[83.8] [77.8] [98.1] [98.2]

5 Liver 68.35 68.96 67.83 70.70 68.67
[76.8] [68.5] [92.8] [93.5]

6 Vehicle 77.19 79.31 79.79 80.96 80.02
[60.3] [49.2] [67.5] [76.4]

7 Vowel 41.03 95.76 96.67 91.42 94.28
[74.4] [71.8] [76.5] [76.5]

8 Wine 33.15 98.28 98.30 98.87 98.90
[93.0] [90.9] [95.8] [95.8]

9 Phoneme 70.62 69.75 70.52 77.11 73.94
[91.6] [88.9] [98.2] [99.8]

10 Satimage **** 24.49 23.90 82.11 82.20
[86.5] [82.7] [95.3] [95.9]

11 Texture **** 37.33 27.56 99.00 99.13
[89.3] [87.8] [92.5] [93.8]

Avr. (1-11) **** 72.2 71.3 85.1 83.9
[81.5] [76.4] [88.6] [91.5]

Avr. (1-9) 62.7 81.3 81.4 83.9 82.4

determined by the MaxNCN algorithm (as the MaxNCN condensed set is always
smaller than the Reconsistent condensed set). The best rates for each database and
for the average of each table are highlighted in bold.

The first observation is that, in general, the LVQ and MixtGauss condensing
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Table 6.3: Classification accuracy of the NQC in dissimilarity spaces and the cor-
responding reduction rates of the training set size in brackets. Both values are
expressed in %. Averages over all data sets (1-11) and all data sets but Satimage
and Texture (1-9) are also given.

Original MaxNCN Reconsistent LVQ MixtGauss

1 Cancer 80.23 96.19 96.48 97.22 96.34
[95.2] [93.8] [96.3] [96.3]

2 Diabetes 65.62 75.39 74.74 77.09 76.70
[87.0] [81.8] [97.1] [98.7]

3 Glass 40.15 53.81 54.40 65.10 64.11
[59.1] [46.8] [89.5] [82.5]

4 Heart 55.56 82.97 80.00 82.95 82.21
[83.8] [77.8] [97.2] [88.9]

5 Liver 46.67 62.63 60.00 67.79 65.20
[76.8] [68.5] [85.5] [89.1]

6 Vehicle 27.78 60.27 54.37 74.81 74.58
[60.3] [49.2] [76.4] [91.1]

7 Vowel 10.20 31.96 29.41 94.59 94.10
[74.4] [71.8] [92.2] [92.2]

8 Wine 33.15 97.73 96.05 97.76 99.43
[93.0] [90.9] [97.9] [95.8]

9 Phoneme 73.26 73.08 73.22 76.11 73.33
[91.6] [88.9] [95.4] [95.4]

10 Satimage **** 79.40 79.17 81.93 81.62
[86.5] [82.7] [98.3] [97.1]

11 Texture **** 96.31 96.51 97.58 97.53
[89.3] [87.8] [95.0] [96.3]

Avr. (1-11) **** 73.6 72.2 83.0 82.3
[81.5] [76.4] [92.8] [93.0]

Avr. (1-9) 48.1 70.5 68.7 81.5 80.7

approaches increase the average accuracy in comparison to the original training set
accuracy. The increase is larger by using the FLD and the NQC than by using the
1-NN rule (where the increase is quite small). Anyway, it is significant that in all
these cases, the performance is increased despite the high reduction of the training
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set (see Tables 6.1–6.3). Remember that although the FLD and the NQC are based
on the distances to the representatives, they still make use of the entire training set
during the training step. This is the reason why the classification accuracy increases
so much when using any condensed set, in comparison to the results obtained by
the use the original training set.

By using the FLD, the classification accuracy obtained for the MaxNCN and
Reconsistent procedures is very similar. The MixtGauss approach leads to a higher
accuracy than both of them. The best classification performance of the FLD relies
on the LVQ. A similar pattern can be observed for the NQC. This differs, however,
for the 1-NN rule, especially in the case of the Reconsistent algorithm. The smallest
classification accuracy is reached for the MaxNCN. The Reconsistent approach gives
better results, and the best values are obtained for the LVQ and the MixtGauss.

The training reduction rates, being the percentage by which the original training
size is reduced, are provided in square brackets in Tables 6.1–6.3. Since the MaxNCN
and Reconsistent techniques determine the number of representatives directly, their
reduction rates are identical for the three classification methods used. Additionally,
for each condensing method, the average reduction values computed over the eleven
data sets are also included.

In relation to the training reduction rates, the average is higher for the MaxNCN
than for the Reconsistent method. This is to be expected as in the second algorithm,
some instances are added to the MaxNCN condensed set to improve the classification
accuracy. It can also be observed that the average training set reduction rates
are higher for the adaptive LVQ and MixtGauss techniques than for the selective
MaxNCN and Reconsistent procedures. The highest reduction rate is the one of
MixtGauss. This holds for the three prototype-based classification strategies used
here.

It is to note that in Table 6.1 the MixtGauss algorithm reaches the highest
classification accuracy and the highest size reduction at the same time. In relation
to the classification methods considered, in general, we can observe that the FLD
and the NQC perform better than the 1-NN rule, when they rely on the condensed
sets determined by the adaptive schemes. Comparing both algorithms, the one with
the best performance corresponds to the FLD. On the other hand, the MaxNCN
and the Reconsistent procedures have their best classification accuracy with the 1-
NN rule. As designed, Reconsistent leads to a higher NN performance than the
MaxNCN.

These results are graphically shown in Figure 6.1. There we represent the aver-
age classification accuracy rate and the average size reduction percentage for each
algorithm to compare.

The four algorithms to compare have been represented by four different type
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Figure 6.1: Average of accuracy and reduction rates over the eleven databases ex-
perimented.

of markers, meanwhile the three classifiers have been represented by three different
colours. The NN rule is represented in black. The FLD is represented in red. And
finally, the NQC is represented in blue. In these three colours, three semi-circles have
also been drawn. They indicate the distance from the ideal point (100, 100), to the
nearest average representation using the different classifiers. The nearest one among
all of them is the MixtGauss algorithm, using the FLD as a classifier. Among the
NQC representations, the nearest to the ideal point (100, 100) is the LVQ, being very
near the MixtGauss approach. Finally, among the NN representations the nearest
one to (100, 100) is the MixtGauss approach, being the LVQ technique very near,
with identical accuracy (and slightly lower size reduction rate). In relation to the
MaxNCN and the Reconsistent algorithms, it is clearly shown in Figure 6.1, that
they always get the same reduction, as only the classification method is changed.

The representation for the LVQ technique with the classical NN classifier have
been chosen as a reference. So, it can be seen how the rest of combinations affecting
the adaptive algorithms, will improve these reference.

These results can also be analysed by studying the plots in Figures 6.2-6.12.
There, the behaviour of the algorithms investigated here is shown for the eleven
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(a)

(b)

Figure 6.2: Trade-off between the resulting condensed set sizes and classification
accuracy of the first NN rule for the Cancer database, starting from one instance
per class until half the training size (a), and a zoom at the first cases (b).
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data sets used in the experiments, respectively. Each figure is composed of two
plots. Both of them represent (in the axes) the size of the condensed set, and the
classification accuracy obtained. The MaxNCN and the Reconsistent algorithms only
have one representative per database, as they automatically choose the condensed
set size. For the case of the LVQ and the MixtGauss algorithms, a line is drawn
as several cases are represented: from one prototype per class, until reaching half
the size of the original training set, in general (Figures 6.2-6.12 (a)). In the second
plot of each figure (Figures 6.2-6.12 (b)), only the results for the smallest condensed
sets for each database are plotted, in order to distinguish the plots and to recognise
which algorithms have a better behaviour at these first steps.

At first stages of the Cancer data set (Figure 6.2) the best results are obtained by
the LVQ condensing, using the linear classifier. This combination gets good results
in general for this data set, as well as MixtGauss do using the linear classifier, when
a reduction higher than 75 per cent is achieved. A minor reduction drastically
decreases the results for the last combination.

Figure 6.3 refers to the Diabetes data set. It looks as the combination MixtGauss-
NQC has the best behaviour at first steps. Anyway, as the condensed set size in-
creases, the classification accuracy decreases, specially for the combinations MixtGauss-
FLD, MixtGauss-NQC and LVQ-NQC.

Figure 6.4 do not have a legend, as it is equal to these from other scatter dia-
grams, and it will disrupt the analysis of the Glass plots. Until reaching the size
of 24 items in the condensed set, the best results are obtained by the combination
MixtGauss-FLD. Quite close to it are the results for the combination LVQ-FLD.

Figure 6.5 represents the behaviour of the studied algorithms with the Heart
database. The most important points to note here are, firstly, that the combination
MaxNCN-NQC obtains better accuracy for the size that it automatically gets. And
secondly, that LVQ-NQC decreases drastically from the condensed set size of 40
representatives and on.

In Figure 6.6 results for the Liver data set is represented. The MaxNCN algo-
rithm continue having a good behaviour, anyway it could be said that in general
better results are obtained by LVQ-FLD and MixtGauss-FLD.

Figure 6.7, refers to the Vehicle data set. It can be observed there that the best
classification accuracy is reached by the MixtGauss-NQC for the smallest condensed
sets. For sets with more than three representatives per class, the best accuracy is
reached by the LVQ-FLD. It is to note that the performance of the MixtGauss-FLD
is always close to the best case.

In Figure 6.8 the results for the Vowel data set are shown. The three smallest
condensed sets represented (1, 2 and 3 representatives per class) lead to the best
performance for the combination of the LVQ-NQC and the MixtGauss-NQC algo-
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(a)

(b)

Figure 6.3: Trade-off between the resulting condensed set sizes and classification
accuracy of the first NN rule for the Diabetes database, starting from one instance
per class until half the training size (a), and a zoom at the first cases (b).
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(a)

(b)

Figure 6.4: Trade-off between the resulting condensed set sizes and classification
accuracy of the first NN rule for the Glass database, starting from one instance per
class until half the training size (a), and a zoom at the first cases (b).
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(a)

(b)

Figure 6.5: Trade-off between the resulting condensed set sizes and classification
accuracy of the first NN rule for the Heart database, starting from one instance per
class until half the training size (a), and a zoom at the first cases (b).
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(a)

(b)

Figure 6.6: Trade-off between the resulting condensed set sizes and classification
accuracy of the first NN rule for the Liver database, starting from one instance per
class until half the training size (a), and a zoom at the first cases (b).
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Figure 6.7: Trade-off between the resulting condensed set sizes and classification
accuracy of the first NN rule for the Vehicle database, starting from one instance
per class until half the training size (a), and a zoom at the first cases (b).
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Figure 6.8: Trade-off between the resulting condensed set sizes and classification
accuracy of the first NN rule for the Vowel database, starting from one instance per
class until half the training size (a), and a zoom at the first cases (b).
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rithms. However, for larger sizes, the classification accuracy suddenly decreases.
It is due to a large number of classes in relation to the number of representatives,
which effectively translates into the dimension of the dissimilarity space. As a result,
the number of instances per class is too small, and as the size of the condensed set
increases, class covariance matrices are badly estimated. Hence, the classification
accuracy is diminished. The next best results belong to the MixtGauss-FLD, the
LVQ-FLD and the MixtGauss-NN, in that order.

In general, a good behaviour is observed in the Wine database (Figure 6.9) with
almost every algorithm. Only LVQ-NQC reports a decrease from 12 representa-
tives on. The MaxNCN-FLD and the Reconsistent-FLD combinations obtain better
results than others for their automatic calculated condensed set size. LVQ-FLD,
MixtGauss-FLD and MixtGauss-NQC, as well as MaxNCN-FLD and Reconsistent-
FLD, can be reported as obtaining the best results for the Wine database.

Figure 6.10, represents the results for the Phoneme database. It shows as the
best results, in general, those for the combinations of LVQ. In Figure 6.11, the
results for the Satimage data set are shown. The most reduced sets lead to a better
performance by using the MixtGauss-NQC, the LVQ-NQC, the MixtGauss-FLD and
the LVQ-FLD methods.

The results for the data set Texture are shown in Figure 6.12. The best ones are
obtained by the following combinations: the LVQ-NQC, the MixtGauss-NQC, the
LVQ-FLD and the MixtGauss-FLD. Meanwhile the later shows the best behaviour
between the sizes of 44 and 300. The larger plots for the Satimage (Figure 6.11 (a)),
as well as for the Texture (Figure 6.12(a)) data sets show that the classification
accuracy also decreases around the size of 300 representatives for the MixtGauss-
FLD and the LVQ-FLD. It is due to similar reasons to those mentioned for the Vowel
data set (Figure 6.8).

In general, the best trade-off results (between the accuracy and the condensed
set size) are the ones for the FLD. The results for the NQC are similar, and the
ones for the 1-NN rule are significantly worse, in the most of the databases. In
relation to the condensing algorithms, the LVQ and the MixtGauss lead to very
similar results. In general, the points corresponding to the MaxNCN-FLD and the
Reconsistent-FLD results are near the functions representing the MixtGauss-FLD
and the LVQ-FLD results, similarly as the points representing the MaxNCN-NQC
and the Reconsistent-NQC results are close to the points describing the MixtGauss-
NQC and the LVQ-NQC obtained data. This observation does not hold for the
MaxNCN-NN and the Reconsistent-NN, neither the MixtGauss-NN and the LVQ-
NN, as there exists a big difference in favour of the MixtGauss and the LVQ for some
of the data sets in the experiments.
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(a)

(b)

Figure 6.9: Trade-off between the resulting condensed set sizes and classification
accuracy of the first NN rule for the Wine database, starting from one instance per
class until half the training size (a), and a zoom at the first cases (b).
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(a)

(b)

Figure 6.10: Trade-off between the resulting condensed set sizes and classification
accuracy of the first NN rule for the Phoneme database, starting from one instance
per class until half the training size (a), and a zoom at the first cases (b).
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(a)

(b)

Figure 6.11: Trade-off between the resulting condensed set sizes and classification
accuracy of the first NN rule for the Satimage database, starting from one instance
per class until half the training size (a), and a zoom at the first cases (b).



110 CHAPTER 6. MIXTGAUSS COMPARISON

(a)

(b)

Figure 6.12: Trade-off between the resulting condensed set sizes and classification
accuracy of the first NN rule for the Texture database, starting from one instance
per class until half the training size (a), and a zoom at the first cases (b).
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6.4 Conclusions

In this chapter we compare several prototype reduction techniques, including both
selecting and generating schemes, in connection with performance of classifiers de-
fined on the corresponding sets of representatives. We use the following classi-
fiers: the 1-NN rule, and linear and quadratic prototype-based classifiers defined in
Euclidean-distance dissimilarity spaces. The purpose of this experimental study is
to discuss a number of prototype optimisation methods with respect to their ability
of maintaining small representative sets and high classification performance.

From our investigations it can be concluded that there is no significant difference
between the LVQ and the MixtGauss prototype generation techniques in general.
However, when comparing them to the MaxNCN and Reconsistent methods, the first
two algorithms tend to give both larger reduction of the training set (i.e. smaller
condensed sets) and lead to higher classification accuracy. This means that LVQ and
MixtGauss are good as condensing algorithms since they yield a good performance
and allow one to control the number of prototypes. Additionally, they represent a
good trade-off between the classification accuracy and the reduction rates.

In addition, we have observed a general tendency in relation to which data sets
obtain better results with one or other approach. Firstly, while LVQ seems to be
the best option for data sets of two classes, MixtGauss tends to get better results for
data sets with more than two classes. Secondly, while LVQ in general for most cases
give a better solution for the data sets with a smaller dimensionality, MixtGauss
offers a better possibility for those with a bigger dimensionality. In fact, the rate
between dimensionality and number of classes results in a separation of data sets
obtaining better results by the use of LVQ (around four and smaller) or MixtGauss
(bigger than four); although there are exceptions in all the cases here commented.

In relation to the prototype-based decision rules, in general, the classification
accuracy obtained by the FLD tends to be higher than that of the NQC, and both
higher than the accuracy of the 1-NN rule, independently of the considered con-
densing algorithms. This is striking as the condensed sets are often optimised to
guarantee that the 1-NN rule performs well. Our explanation is that the FLD and
the NQC, although based on the condensed sets, still make use of the entire training
set for determining the decision boundary. The 1-NN rule, when applied as a nearest
representative rule, discards other training instances.

What is important, is the fact that for the evaluation of new objects the com-
putational complexity of the FLD is O(Jr). This is similar to the computational
complexity of the 1-NN rule, O(r), provided that J , the number of classes, is small.
For a large number of classes, the computational cost of the FLD increases. The FLD
may, therefore, be an alternative to the 1-NN rule for the prototype-based classifica-
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tion in normalised feature vector spaces. The NQC is much more computationally
heavy, so it can only be advantageous for small condensed sets and a small number
of classes. In fact, the NQC was used here, to show that a more complex classifier
than a linear one is not necessarily yielding a better performance in dissimilarity
spaces resulting from normalised vectorial data. The effect of feature normalisation
plays a role as otherwise the NQC might have been preferred to the FLD. In general,
the good performance of the FLD in dissimilarity spaces can be explained by the use
of Euclidean distance relying on standardised features (hence approximate normal
distributions for the resulting distances) and non-complicated class structures for
which this distance measure is discriminative. The later means that the classes do
not differ much in the range of their average within-class distances.

Our final conclusion is that the adaptive techniques, the LVQ and the MixtGauss,
combined with the FLD, offer the best trade-off between the reduction rate, compu-
tational cost and the classification performance in normalised vector spaces for the
considered problems.

In perspective, our study opens a new possibility for using linear (or more com-
plex) classifiers in dissimilarity spaces derived from normalised feature vector spaces
instead of the 1-NN rule, both defined by the same optimised condensed sets. Since
a linear function in such a dissimilarity space is a non-linear function in the original
vector space, the distance measure or its nonlinear (sigmoidal, logarithmic) trans-
formation can be a way to incorporate the nonlinearity aspects of the data. To our
knowledge, these aspects have not been considered among the researchers studying
the condensing techniques, yet. Although the FLD was chosen here, other linear
functions can be studied, such as a logistic classifier or a hyperplane defined by
a linear, sparse or non-sparse, programming procedure. Additionally, a linear (or
polynomial) support vector machine (SVM) [Cristianini & Shawe-Taylor(2000)] can
be trained in dissimilarity spaces. Note, however, that in such a case the SVM will
rely on support vectors which are objects found in a complete dissimilarity space,
hence they rely on the distances to all original instances. So, the SVM will not
work as a prototype selection. If however good representatives are found by other
techniques, the linear SVM will determine the optimal large-margin hyperplane in
the corresponding dissimilarity space. Future research may focus on comparing a
(non-)linear SVM built in the original feature vector space and the SVM in a dis-
similarity space defined by a small set of optimised representatives.
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7.1 Introduction

The NN rule is used in many tasks due to its simplicity and efficiency. The most
simple algorithm for implementing this rule is the exhaustive search: it calculates
each distance from the sample to classify, to the instances in the training set (TS).
In order to reduce the time needed by this process, several algorithms use proto-
type selection techniques in order to reduce the quantity of instances of each class
in the training set. Nevertheless, it exists the possibility that those methods pro-
voke important classification errors, due to overlapping among classes, or incorrectly
eliminated instances. That is the reason why the efficient algorithms are used: they

113
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Table 7.1: Classification accuracy rate of nearest neighbour efficient search tech-
niques. Averages over all data sets are also given.

k-d tree kvp-tree kFukNar LAESA KAESA k-GNAT

Cancer 95.17 95.32 95.17 95.17 95.17 95.17
Diabetes 70.06 69.93 70.06 70.06 70.06 70.06
Glass 69.66 70.16 69.66 69.66 69.66 69.66
Heart 76.28 76.28 76.28 76.28 76.28 76.28
Liver 62.59 62.30 62.59 62.59 62.59 62.59
Vehicle 69.40 69.63 69.40 69.40 69.40 69.40
Vowel 98.12 98.12 98.12 98.12 98.12 98.12
Wine 94.41 94.41 94.41 94.41 94.41 94.41
Phoneme 71.00 70.87 71.00 71.00 71.00 71.00
Satimage 82.96 82.90 82.96 82.96 82.96 82.96
Texture 98.89 98.86 98.89 98.89 98.89 98.89
Average 80.78 80.80 80.78 80.78 80.78 80.78

reduce the computing time, in comparison to the exhaustive search, over the original
data sets.

The point in this chapter is to compare both kind of techniques used to reduce
the time to apply the NN rule (prototype selection and efficient search), not only
on accuracy terms, but also in computing time terms.

7.2 Experimental Setup

During many years different efficient algorithms to find the nearest neighbour have
been developed in order to avoid the exhaustive search. Here we compare the use of
the reduction techniques in conjunction to the application of the traditional search,
versus the use of several nearest neighbour efficient search techniques over original
training sets. So, this chapter presents a comparative analysis of those two ways of
application of the traditional 1-NN rule to sample classification.

The focus of these experiments is on comparing the efficient search algorithms in-
troduced in Chapter 2 (that is, k-dimensional tree, vantage point-tree, the approach
of Fukunaga and Narendra, LAESA, KAESA and GNAT) to the employment of
traditional search techniques after applying some data reduction scheme. Thus, the
efficient algorithms have been used over the original training sets (without any pre-
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processing), while the traditional search has been applied to the previously edited
and/or condensed training set.

7.3 Quantitative Results

Table 7.1 presents the classification accuracy results for the nearest neighbour effi-
cient search techniques tested in this chapter. Only accuracy rate is presented as the
showing of size reduction rate makes no-sense as it is always 0 (as explained, the goal
of these techniques is not to reduce the training set, but to process it efficiently).
There, the average result for kvp-tree is highlighted in bold, as it is the highest, and
the only one different, among all the nearest neighbour efficient search techniques
tested. Although it is the highest result, it is very similar to the accuracy of the
other efficient algorithms. Maybe due to the relatively small size of the databases
in which this thesis is based on.

Figures 7.1-7.6 present the average computing times (that is, the time required
to classify the whole test set) against the classification accuracy for the different
algorithms over each database. Size reduction is not represented as other algorithms
have already been compared, and nearest neighbour efficient search techniques do
not apply any kind of reduction. However, it is to keep in mind that the ”best”
results for reduction techniques are not those which achieve the highest accuracy,
but those that reach a good balance between accuracy and reduction. So, the highest
results in accuracy are not directly representatives of the best reduction algorithms.

Figure 7.1 represents time and accuracy for the Cancer and Diabetes databases.
In both we can observe that the time needed to process the test sets is not important,
as it is very small in all the cases, specially with the LVQ, Hart, MixtGauss, Chen and
Reconsistent algorithms. Having in mind that the scale in the classification accuracy
axis is very small (from 91.5 to 96.5 for Cancer, and from 67 to 76 for Diabetes),
we can say that among all the algorithms represented, the higher accuracy belongs
to the LVQ algorithm, in the case of Cancer and to the MGBayes version, in the
case of Diabetes. Time scale is even smaller using the Glass and Heart databases
(Figure 7.2), where the best accuracy, and also the minor time, is obtained by the
LVQ approach for both data sets.

Figure 7.3 represents results for the Liver and Vehicle databases. The higher
accuracy is for the Wilson’s editing using Liver and for the LVQ technique using
Vehicle. In Figure 7.3 (b) we can observe that for the Vehicle database the time of
the Fukunaga and Narendra’s approach and the k-d tree and k-GNAT algorithms, is
quite similar to the time needed using the reduced sets. Specially, it is to note that
the minor time is needed for the use of kvp-tree, which obtains the highest accuracy
in comparison to other effective search algorithms.



116 CHAPTER 7. NN EFFICIENT SEARCH COMPARISON

(a)

(b)

Figure 7.1: Classification accuracy (in %) and computing time (in secs.) for the
Cancer (a), and Diabetes (b) databases.
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(a)

(b)

Figure 7.2: Classification accuracy (in %) and computing time (in secs.) for the
Glass (a), and Heart (b) databases.
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(a)

(b)

Figure 7.3: Classification accuracy (in %) and computing time (in secs.) for the
Liver (a), and Vehicle (b) databases.
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(a)

(b)

Figure 7.4: Classification accuracy (in %) and computing time (in secs.) for the
Vowel (a), and Wine (b) databases.
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Figure 7.5: Classification accuracy (in %) and computing time (in secs.) for the
Phoneme database.

In Figure 7.4 (a), where results obtained using the Vowel database are shown,
the highest accuracy is reached by efficient algorithms. In Figure 7.4 (b), where
results for the Wine database are represented, the highest accuracy is obtained by
the LVQ and MGBayes algorithms.

In Figure 7.5, the highest accuracy rate is reached by the MGBayes algorithm,
while the point to highlight here is that, as the Phoneme database is higher in size
than other databases shown before, the time needs have already changed. LAESA is
the technique which needs more time. The next are KAESA andIn t Wilson’s editing,
as only the editing process has been applied to this reduced set, and the exhaustive
search is used on it. Using Satimage and Texture (Figure 7.6), the time range
increases, as those (including Phoneme) are the ones with the highest size among
all the databases used for the experiments. KAESA, LAESA and Wilson’s are the
algorithms which need more time, in this order, using Satimage (Figure 7.6 (a)),
meanwhile using Texture (Figure 7.6 (b)), the order changes to LAESA, Wilson’s
and KAESA.

In our opinion, the differences in relation to the classification time are not quite
important, as the represented time is the total time (in secs.), and the maximum
difference reached (Satimage) is less than a minute. It is to note that testing these
algorithms with bigger test sets will produce a difference in the resulting time ob-
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(a)

(b)

Figure 7.6: Classification accuracy (in %) and computing time (in secs.) for the
Satimage (a), and Texture (b) databases.
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tained by the use of each approach. Anyway, it is also to note that in general, less
process time is needed when the MaxNCN, Reconsistent and MixtGauss algorithms
are used. So, at least with a limited size database, algorithms introduced in this
thesis perform better than the nearest neighbour efficient search techniques here
tested.

In relation to accuracy, better results than expected are obtained for algorithms
presented in this thesis. It is enough to compare figures in Table 7.1 to accuracy
results in Table 6.1 to realise that the MixtGauss algorithm reaches a higher accuracy
than any nearest neighbour efficient search Technique. Reconsistent and MaxNCN
accuracy results in comparison to the best efficient result show a negative percent
difference of only 1.6, and 4, respectively. And this accuracy results are obtained by
using three different condensed sets, with a reduction rate of 89.1 for MixtGauss, 76.4
for Reconsistent and 81.5 for MaxNCN. This reduction percentages are important,
as they mean a notable reduction in memory needs.

In relation to nearest neighbour efficient search techniques, the procedures that,
in general, take more time are LAESA and KAESA. Results for the k-d tree, Fuku-
naga and Narendra’s, k-gnat and kvp-tree approaches are, in general, quite similar
in time. So, as the accuracy in average is slightly higher for kvp-tree, it can be
named the best among the efficient searches, and for the databases, here tested.

7.4 Conclusions

This chapter presented a comparative analysis of two ways of application of the
traditional 1-NN rule to object classification. On the one hand, exhaustive search
over reduced sets. On the other hand, nearest neighbour effective search over original
training sets.

Both of them present a good behaviour: low classification time, and high accu-
racy. However, in addition, the use of the reduction algorithms presented in this
thesis implies less memory needs. Specially the MixtGauss algorithm, which obtains
a slightly higher classification accuracy than the higher result for efficient searches,
with an important size reduction. So, we conclude that the use of size reduction
algorithms, versus efficient techniques over original sets, are preferable in data sets
of these (small) sizes. The main reasons are that efficient algorithms do not add an
important improvement in classification time nor accuracy (because of the use of
these small databases) and, in addition, the memory needs are reduced when using
prototype selection techniques, without an important lose in classification accuracy
(even improving it sometimes).

We think a good idea would be to mix the use of reduction approaches and
nearest neighbour efficient search techniques, as both of them perform well. This



7.4. CONCLUSIONS 123

idea has not been applied to databases here used as it is to be applied for really bigger
databases. There, we think the use of efficient search over reduced sets would offer
lower memory and time needs, without a big reduction in classification accuracy.
This is the reason why we will take this idea for future research.
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8.1 Contributions

The main goal of this thesis has been, on the one hand, the analysis of a set of
techniques used in pattern recognition: classification and nearest neighbour search,
editing and, especially, condensing techniques. This study has been reported in
Part I. On the other hand, some alternative methods for condensing have been
proposed in Part II, using the ideas of surrounding neighbourhood and Gaussian
clustering. Besides, some classification and search techniques have been compared,
and some discussion has been done about them in Part III.

At last but not least, it is important to say that every algorithm proposed in this
thesis has been empirically evaluated by the use of some real problems represented
in feature spaces (see Section 1.2), comparing their results with those obtained
for the algorithms reported in Part I. This analysis permits us to realise the good
performance of the algorithms presented in this thesis, and that they represent a
good trade-off between the classification accuracy and reduction rates.

Main chapters reporting contributions are Chapter 3, devoted to new non-adaptive
algorithms, and Chapter 4, that introduce new adaptive schemes. Particular contri-
butions on these chapters are better explained in next subsections.
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8.1.1 Non-Adaptive Contributions

In Chapter 3 some non-adaptive condensing algorithms have been presented. The
main idea introduced is the use of surrounding neighbourhoods to cover the different
areas and reduce the training set size as much as possible without an important
decrease in classification accuracy. The Nearest Centroid Neighbour (NCN) rule
had been used in the past in order to classify unlabelled objects. On the contrary,
in the algorithms presented in Chapter 3 (and Chapter 4) it has been used to select
(and replace), some representative instances from the training set, covering the new
prototypes a bigger region than using the NN rule.

Later, in Chapter 5, results for non-adaptive algorithms have been compared in
reduction rates and classification accuracy with those introduced in Part I. Taking
into account these results, we can emphasise two of the algorithms introduced here,
as having better results than others: MaxNCN (the best one) and Reconsistent (the
third one, being Hart the second one). They are the bests as they obtain a good
balance between set size reduction and classification accuracy, in addition to being
the nearest ones to the ideal point (100, 100).

8.1.2 Adaptive Contributions

In Chapter 4, some different new adaptive condensing algorithms have been pre-
sented. The goal is to improve our results by locating prototypes in the exact point
that makes the most accurate learning algorithm. On the one hand, some of the
algorithms are based on the idea of surrounding neighbourhood. However, results
for these adaptive schemes do not offer a strong improvement (in comparison to
those from algorithms in Chapter 3), as it has been shown in Chapter 5, in spite of
increasing the computational effort.

On the other hand, the main contribution in Chapter 4 is a generative approach
which mainly uses mixtures of Gaussians. Some different initialisations and stop-
ping criterions have been tested. Among all of them, MixtGauss can be highlighted
as the best combination, in relation to the results obtained, and the computational
effort needed. In Chapter 6, the results for this principal adaptive algorithm have
been evaluated by classifiers such as the NN rule, constructed in a feature space, and
linear (FLD) and quadratic (NQC) classifiers constructed in a dissimilarity space.
These results were compared to those of other algorithms studied in Part I (Chap-
ter 2: LVQ and Chen) and others presented in Part II (Chapter 3: MaxNCN and
Reconsistent). On the one hand, from the experiments carried out, it seems that
MixtGauss provides good results, i.e. higher accuracy rate than those obtained by
other adaptive algorithms such as Chen’s, while keeping the same size reduction.
Moreover, it is to highlight that the differences between MixtGauss and Chen are



8.1. CONTRIBUTIONS 127

more significant when a higher reduction in size is applied. On the other hand, these
results show that MixtGauss and LVQ have a similar behaviour, even better than
MaxNCN and Reconsistent. In addition, they allow the user to control the number
of prototypes, and they represent a good trade-off between classification accuracy
and size reduction rates. A general tendency in relation to which approach, LVQ
or MixtGauss, obtain better results with a specific database, have been observed.
Firstly, while LVQ seems to be the best option for data sets of two classes, MixtGauss
tends to get better results for data sets with more than two classes. Secondly, while
LVQ in general provides a better solution for the data sets with a smaller dimension-
ality, MixtGauss offers better results for those with a higher dimensionality, although
there are exceptions in all the cases here commented.

8.1.3 Classification Rules Comparison

Additionally, the experiments in Chapter 6 compare classifiers such as the NN rule,
constructed in a feature space, and FLD and NQC classifiers constructed in a dissim-
ilarity space. In general, the best trade-off results (between accuracy and condensed
set size) are the ones for the FLD. The results for the NQC are similar. That shows
that a more complex classifier than a linear one is not necessarily yielding a better
performance in dissimilarity spaces resulting from normalised vectorial data.

And finally, the results for the 1-NN rule are significantly worse, in the most of
the databases. So, these results show that classification rules other from the 1-NN
can be used, that lead to better results, independently of the considered condensing
algorithms. Especially, the linear and quadratic normal density based classifiers built
in dissimilarity spaces, are advised for problems with a small number of classes.

8.1.4 Nearest Neighbour Efficient Search Techniques Comparison

In Chapter 2, the bases of the nearest neighbour efficient search techniques have
been reported. In Chapter 7 their computing time and classification accuracy have
been presented in a comparative analysis. On it, two ways of applying the classical
1-NN rule to object classification are studied: exhaustive search over reduced sets,
versus nearest neighbour effective search over original training sets.

Differences in time among the effective and the condensed techniques tested are
not really important, as the highest difference observed is lower than a minute.
Having this in mind, we can conclude that less computing time is needed when
the MaxNCN, Reconsistent and MixtGauss algorithms are used. So, at least with
a limited size database, algorithms introduced in this thesis perform more rapidly
than the nearest neighbour efficient search techniques here tested.
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In relation to accuracy, the MixtGauss algorithm reaches a higher accuracy than
any nearest neighbour efficient search technique (being at the same time, more
rapid). Reconsistent and MaxNCN obtain a slightly lower accuracy. So, MixtGauss
is the algorithm which, with lower needs in time and memory, reaches the best
accuracy.

In relation to nearest neighbour efficient search techniques, kvp-tree shows the
best behaviour among the efficient searches here tested, as it obtains higher accuracy
than the rest, and a quite similar computing time.

To conclude, we can affirm that both methodologies, set size reduction and
efficient search obtain good results in a good time.

8.2 Conclusions

The main goal of this section is to enumerate the principal conclusions of the research
here reported. In brief, they are listed below.

1. Surrounding Neighbourhood. Some (selective and generative) algorithms
based on the use of the NCN rule have been presented. Among all of them,
we can emphasise two, as having better results than others: MaxNCN and
Reconsistent. See Chapters 3, 4 and 5.

2. Mixtures of Gaussians. A generative algorithm based on the use of mix-
tures of Gaussians has been presented too: MixtGauss. From the experiments
carried out, it seems that MixtGauss provides good results (a good trade-off
between classification accuracy and size reduction rates), even better than
MaxNCN and Reconsistent. In addition, it allow the user to control the num-
ber of prototypes. See Chapters 4 and 6.

3. Classifiers. The results for LVQ, Chen, MaxNCN, Reconsistent and MixtGauss
(Chapters 2, 3 and 4) have been evaluated by classifiers such as the NN rule,
in the feature space, and FLD and NQC, in the dissimilarity space. From this
study, in Chapter 6 we report that classification rules other from the 1-NN
can be used, that lead to better results. Especially, the linear and quadratic
normal density based classifiers built in dissimilarity spaces, are advised for
problems with a small number of classes.

4. Nearest Neighbour Efficient Search. The use of exhaustive search over re-
duced sets, versus nearest neighbour efficient search over original training sets
have been compared. The MaxNCN, Reconsistent and MixtGauss algorithms
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are processed in the minor time, as well as MixtGauss reaches the highest ac-
curacy. So, we highlight the latter algorithm as the best. It is to note that
kvp-tree shows the best behaviour among the efficient searches here tested, as
both methodologies obtain good results in a good time.

8.3 Future Work

The first idea about possible improvements is related to adaptive reduction, con-
cretely to Mixtures of Gaussians. In the work presented here, the Gaussians are
orthogonal (i.e. their principal and secondary diagonals are parallel to the X and Y
axes). As any database is forced to have a determined distribution around parallels
to axes X or Y, we think that the MixtGauss algorithm would improve its results by
permitting the Gaussians in charge of representing every original instance by their
means to have any orientation. These would mean a bigger matrix calculation effort
that we think could be bearable.

In addition, it would be very convenient to study the relation between the number
of classes and the dimensionality of a database, and the best algorithm to use, LVQ
or MixtGauss. This study could be done over several synthetic databases, as they
allow one to control the number of classes and the quantity of dimensions.

In relation to the dissimilarity field, it seems very interesting the application of
utilities from the representation space, as well as the application of utilities from the
dissimilarity field on the representation space. It seems a very interesting world for
study, still new for us in different aspects.

In Chapter 4 we use the local covariance matrix in the MixtGauss procedure
to find prototypes. After that the NN rule was used based on Euclidean distances,
neglecting the local correlation in the data. A more consistent approach would
be to replace the Euclidean distance by the Mahalanobis distance based on the
covariance matrix used for finding the prototype under consideration. This will
increase, however, the computational complexity.

Another point for future research may focus on comparing a (non-)linear SVM
built in the original feature vector space and the SVM in a dissimilarity space defined
by a small set of optimised prototypes, as in such a case the SVM will rely on support
vectors which are objects found in a complete dissimilarity space, hence they rely
on the distances to all these optimised representatives.

In relation to efficient search, we think a good idea would be to mix the use of
reduction approaches and nearest neighbour efficient search techniques, as both of
them perform well. This idea has not been applied to databases here used as it is
to be applied for heavy databases. There, we think the use of efficient search over
reduced sets would offer lower memory and time needs, without a big reduction in



130 CHAPTER 8. FINAL CONCLUSIONS

classification accuracy.
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Chapter 9 presents some requirements from the PhD regulation for those PhD
reported in a different language than the official ones, to be in Spanish or Valencià.
Mainly, motivation and general objectives, approach and methodology used, contri-
butions, conclusions, and future work. All of them have already been reported in
English, in previous chapters.

Este caṕıtulo aparece para dar respuesta a la propuesta de molificación de la
normativa de doctorado, aprobada por el Consejo de Gobierno No 16 de 14/07/2005,
en referencia a las tesis escritas en una lengua diferente a las oficiales (valenciano
y castellano). Por tanto, a continuación se desarrollan los puntos solicitados en
el Punto 5 del Apartado XIII de la misma. Estos son: objeto y objetivos de la
investigación, planteamiento y metodoloǵıa utilizados, aportaciones, conclusiones, y
futuras ĺıneas de investigación. Todos ellos ya han sido desarrollados en ingles, en
caṕıtulos anteriores.

133



134 CHAPTER 9. OBJETIVOS, PLANTEAMIENTO Y CONCLUSIONES

9.1 Motivación y Objetivos Generales

El t́ıtulo de esta tesis es Técnicas de Reducción de Datos en Procesos de Clasificación.
Por tanto, ésta es la temática en la que se encuadra nuestro objetivo principal. Por
Técnicas de Reducción de Datos entendemos aquellas que se encargan de hacer dis-
minuir la cantidad de información para reducir las necesidades tanto de memoria
como de tiempo de ejecución. Tradicionalmente, el concepto de Reducción de Datos
ha recibido diferentes nombres (editado, condensado, filtrado...) dependiendo del
objetivo perseguido. Dependiendo del objeto de la reducción, se observan dos posi-
bles acepciones: selección de caracteŕısticas y selección de prototipos. La primera se
refiere a la reducción en la cantidad de caracteŕısticas, y la segunda se basa en la
selección de algunas instancias, entre todas las disponibles. No se hace referencia en
esta tesis a la selección de caracteŕısticas, sino a la selección de prototipos. Por tanto,
el objetivo principal que se persigue es la introducción, el análisis y la evaluación de
diferentes técnicas dedicadas a reducir el número de instancias.

Para continuar con el t́ıtulo, Procesos de Clasificación se refiere a aquellas técnicas
que se encargan de clasificar o etiquetar una nueva muestra por medio de las instan-
cias o ejemplos presentes en el conjunto de entrenamiento. Y esto es lo que tratamos
de reducir: el conjunto de entrenamiento. Por tanto, la idea es representar todas las
instancias incluidas en dicho conjunto mediante unos pocos representantes, elegidos
de modo que sean lo más efectivos posible. Es decir, que conserven la misma pre-
cisión de clasificación, o muy parecida. Por tanto, lo que se pretende principalmente
en esta tesis es el diseño de unos algoritmos que permitan reducir los requisitos de
tiempo y memoria, a la vez que mantengan la precisión en la clasificación.

Estos objetivos están motivados por el problema que se desarrolla a continuación.
Hoy en d́ıa, en muchos campos (como por ejemplo en imágenes multiespectrales,
clasificación de textos, biométricas y recuperación de bases de datos multimedia,
entre otros) el tamaño de los datos es tan extremadamente grande que los sistemas
de tiempo real no pueden abordar su procesamiento, debido al tiempo y a la memo-
ria necesarios para ello. Bajo estas condiciones, clasificar, entender o comprimir la
información puede convertirse en una tarea verdaderamente problemática. Esto se
hace especialmente grave en los casos en los que se utilizan algoritmos de aprendizaje
basados en la distancia, como por ejemplo la regla del vecino más cercano (Near-
est Neighbour; NN). Brevemente, el algoritmo se encarga de buscar entre todos los
ejemplos del conjunto de entrenamiento (grandes requisitos de memoria) para clasi-
ficar un nuevo caso (proceso lento de clasificación). Por otra parte, como la regla del
vecino más cercano almacena todos los ejemplos en el conjunto de entrenamiento, los
ejemplos erróneos también son incluidos. Como consecuencia, estos últimos pueden
hacer disminuir la precisión de clasificación.
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Entre las muchas propuestas para solucionar este problema, existe un método
tradicionalmente utilizado que consiste en eliminar algunos ejemplos del conjunto de
entrenamiento (reducción de datos). En la bibliograf́ıa de Reconocimiento de For-
mas estos métodos encargados de reducir el tamaño del conjunto de entrenamiento
se conocen como selección de prototipos [Devijver(1982)]. Entre los métodos de se-
lección de prototipos se pueden diferenciar dos familias. En primer lugar, aquellos
algoritmos que se encargan de eliminar instancias mal etiquetadas del conjunto de
entrenamiento, evitando al mismo tiempo posibles superposiciones entre áreas de
clases diferentes. Esto se conoce como editado. En segundo lugar se encuentran las
técnicas de condensado. Estas se encargan de seleccionar (o modificar) un pequeño
subconjunto de instancias para que representen el conjunto de entrenamiento, sin
perder por ello su precisión de clasificación.

Las muchas propuestas existentes en relación con métodos de condensado se
pueden dividir en dos grupos o familias principales. Por una parte, aquellos algorit-
mos que seleccionan un subconjunto entre los ejemplos originales del conjunto de en-
trenamiento [Dasarathy(1994), Aha et al.(1991), Toussaint et al.(1985), Hart(1968),
Tomek(1976)] (algoritmos selectivos). Por otra parte, aquellas técnicas que los mod-
ifican [Sánchez(2004), Kohonen(1995), Chen & Jozwik(1996), Chang(1974)] (algo-
ritmos adaptativos). En esta tesis se introducen varios algoritmos encargados de
solucionar el problema de la reducción del tamaño del conjunto de entrenamiento
en la medida apropiada, tanto mediante métodos selectivos como adaptativos. El
objetivo principal en ambos casos es obtener una reducción considerable de tamaño,
sin disminuir por ello la precisión de clasificación. Es decir, lo que se busca es un
equilibrio entre ambas, reducción y precisión.

En este estudio se comparan varios métodos tanto de selección como de gen-
eración de instancias del conjunto condensado, en combinación con tres clasificadores
basados en la distancia Eucĺıdea. Además, el comportamiento de los algoritmos que
aqúı se presentan es comparado también con algunas técnicas de búsqueda efectiva.

Los métodos de condensado que se comparan en esta tesis son algunos de los
clásicos: Chen, Hart y LVQ, además de la versión RSP3; y algunos de los im-
plementados durante el desarrollo de esta tesis, como son: MaxNCN, Iterative
MaxNCN, Iterative kNeighbours, Consistent, Reconsistent, Centroide, WeightedCen-
troide y MixtGauss. En cuanto a los métodos de clasificación que se comparan, el
primero es la regla del vecino más cercano. Ésta se encarga de asignar a una nueva
muestra la etiqueta o clase del ejemplo más cercano del conjunto de entrenamiento
(o del representante más cercano, en el caso del conjunto condensado). El resto
de métodos a comparar son el Fisher Linear Discriminant (FLD), y el Quadratic
Normal density based Classifier (NQC), ambos entrenados en espacios de disimilari-
dad. Las técnicas de búsqueda efectiva que se comparan en los experimentos son las
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siguientes: k-d tree, la propuesta de Fukunaga y Narendra, vp-tree, GNAT, LAESA
y KAESA.

9.2 Planteamiento y Metodoloǵıa Utilizados

Tal y como se ha expresado anteriormente, el objetivo de esta tesis es principalmente
la reducción del conjunto de entrenamiento, sin que esto implique una reducción im-
portante en la precisión de clasificación. Se trata de cubrir completamente el área
de cada clase con la unión de las regiones de influencia de algunos ejemplos del con-
junto de entrenamiento seleccionados con este fin. Esto se basa en la siguiente idea
intuitiva: en reducción de datos, la selección de algunos representantes que cubran
la zona de influencia de cada clase, favorece la precisión de clasificación para mues-
tras de esas clases. Además, una vez que el área de una clase está completamente
cubierta por las regiones de los representantes más efectivos, cuanto menos repre-
sentantes se conserven en el conjunto condensado, mejor se considera el resultado
final, debido a la reducción de datos. Por tanto, en esta tesis se presentan diferentes
algoritmos encargados de buscar los representantes más eficientes, y en la menor
cantidad posible para las diferentes áreas de cada clase.

Para aplicar las ideas especificadas anteriormente nos basamos en diferentes mé-
todos. Por una parte, en la regla Nearest Centroide Neighbour (NCN), y por otra
parte en Gaussianas.

9.2.1 Sobre la regla NCN

La distribución geométrica de las instancias de un conjunto de entrenamiento puede
resultar más importante que simplemente la distancia entre ellas. En este sentido,
las reglas basadas en el concepto de vecindad envolvente [Sánchez et al.(1997)B]
tratan de obtener información más útil sobre las instancias en el conjunto de entre-
namiento, y especialmente información relacionada con aquellos ejemplos cercanos
a las fronteras de decisión. Esto se puede conseguir teniendo en cuenta no sólo la
proximidad de una muestra dada a las instancias, sino también la distribución de
dichas instancias alrededor del objeto. Hasta el momento, la regla NCN ha sido
utilizada como clasificador [Sánchez et al.(1997)B], obteniendo mejores resultados
que otras reglas utilizadas tradicionalmente, como por ejemplo la regla del vecino
más cercano. La novedad en cuanto a la aplicación de la regla NCN reside en que
aqúı se utiliza como método de condensado.

Chaudhuri [Chaudhuri(1996)] fue quien propuso este nuevo concepto de vecin-
dad, el cual es una realización particular del concepto de vecindad envolvente. Para
calcular el vecindario NCN se procede de la siguiente manera. Sea p un punto dado,
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Figure 9.1: Representación del concepto de vecindario NCN.

cuyos k vecinos de tipo NCN se deben encontrar en un conjunto de entrenamiento
como el siguiente X = {x1, . . . , xn}. Esos k vecinos se buscan mediante un proced-
imiento iterativo que sigue los pasos que se indican a continuación:

1. Seleccionar el primer vecino NN de p, q1, que será a su vez su primer vecino
NCN.

2. Definir el i-ésimo vecino NCN, qi, i ≥ 2 como aquel que haga que el centroide
de los vecinos NCN seleccionados, incluyéndose a él mismo, q1, . . . , qi sea el
más cercano a p.

El vecindario que se obtine mediante este algoritmo satisface algunas propiedades
interesantes que serán utilizadas para reducir el tamaño de conjuntos de entre-
namiento, tanto mediante la selección de ejemplos como mediante la generación
de nuevos prototipos. En particular, merece la pena destacar que la regla NCN es
incremental y que las instancias alrededor de una muestra dada, p, representan una
distribución que tiende a envolver a p, compensando la distribución de instancias a
su alrededor. También es importante resaltar que en general, el área de influencia
de la regla NCN es mayor que la región determinada por la regla NN. Lo cual puede
verse en la Figura 9.1, donde se representan las regiones definidas por 4 vecinos
NCN, y por 4 vecinos NN.
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Algorithm 9.1: Pseudocódigo del algoritmo MaxNCN.
for i = each instance(TS) do

neighbours number[i] = 0
neighbour = next NCN(i)
while neighbour.class == i.class do

neighbours vector[i] = Id(neighbour)
neighbours number[i] + +
neighbour = next NCN(i)

end while
end for
while Max neighbours() > 0 do

EliminateNeighbours(id Max neighbours)
end while

A continuación se presentan los algoritmos más representativos de entre todos
los introducidos que utilizan esta metodoloǵıa: MaxNCN y Reconsistent.

9.2.2 MaxNCN

El algoritmo MaxNCN está basado en la regla NCN, y utiliza la técnica de búsqueda
presentada anteriormente. Un subconjunto de instancias es seleccionado de entre to-
das las que forman el conjunto de entrenamiento, garantizando la óptima distribución
de las mismas con respecto a sus vecinos NCN. El uso del vecindario NCN de una
muestra dada puede facilitar información local sobre la forma de la distribución de
probabilidad de la clase, la cual depende de la naturaleza y de la clase de sus vecinos
NCN, es decir, de las instancias en su área envolvente.

La idea en la que se basa este algoritmo es que las instancias que pertenecen
a la misma clase están localizadas en un área cercana, y que por tanto pueden ser
sustituidas por un único representante, sin afectar significativamente a las fronteras
de decisión originales.

En una primera inicialización, todas las instancias del conjunto de entrenamiento
son consideradas como representantes. El algoritmo trata de reemplazar un grupo de
ejemplos vecinos de la misma clase, por uno de ellos. Para decidir que subconjunto
de instancias va a ser sustituido, la idea de vecindario NCN que aqúı se utiliza, es
introducida ahora.

Definición El vecindario NCN de una instancia p es el conjunto de vecinos de p,
calculados mediante la regla NCN hasta que se alcanza un vecino que pertenece
a una clase diferente a la de p.

Las instancias que pertenecen al vecindario NCN de p son consideradas sus vecinos
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(vecinos NCN).
Por tanto, para cada ejemplo p del conjunto de entrenamiento, se calcula su

vecindario NCN. La instancia con mayor número de vecinos NCN es declarada rep-
resentante de su grupo. Dada el área de influencia definida por la distribución del
vecindario NCN, todos los miembros del subconjunto, a excepción del representante,
pueden ser eliminados del conjunto de entrenamiento.

Después, y teniendo en cuenta las instancias remanentes, el algoritmo se encarga
de actualizar el número de vecinos NCN que conserva cada uno, dado que algunos
han podido ser eliminados como vecinos de un representante ya seleccionado. Esto
se repite hasta que no queda ningún vecindario que pueda ser reemplazado. Este
esquema básico recibe el nombre de MaxNCN, y se presenta en el Algoritmo 9.1.

9.2.3 Reconsistent

El objetivo tenido en cuenta al introducir la familia de algoritmos consistentes es
precisamente su consistencia, o casi consistencia en el caso del algoritmo que se
presenta en esta subsección.

Definición Se dice que un conjunto condensado, R, es consistente con respecto a un
conjunto de entrenamiento X, si R clasifica correctamente todas las instancias
de X, mediante la regla 1-NN.

Es decir, si el error de clasificación estimado mediante la asignación de todas las
instancias del conjunto de entrenamiento a la clase de su vecino más cercano en el
conjunto condensado es 0; véase [Dasarathy(1991), Hart(1968)]. Por tanto, dado
un conjunto de instancias encargadas de representar la distribución de la clase, el
porcentaje de clasificación del conjunto de entrenamiento puede ser utilizado para
medir la consistencia de dicho conjunto. Mientras la condición de consistencia se
mantiene, el conjunto condensado obtenido es considerado mejor cuanto menor sea
el número de representantes.

Los algoritmos presentados bajo esta idea son importantes modificaciones so-
bre el algoritmo básico, MaxNCN, en aras de conseguir una mayor consistencia del
conjunto condensado [Lozano(2004)A]. La idea principal aqúı desarrollada es que
la consistencia de un conjunto condensado respecto al conjunto de entrenamiento
debe incidir en una mayor precisión en la clasificación. Mediante la aplicación del
algoritmo MaxNCN, algunas instancias cercanas a las fronteras de decisión pueden
ser eliminadas debido al orden en el que las instancias son tomadas durante el pro-
ceso de condensado. Varios algoritmos han sido implementados con el objetivo de
solucionar este problema, entre ellos el que en esta subsección se presenta.
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Algorithm 9.2: Pseudocódigo del algoritmo Reconsistent.
for i = each instance(TS) do

neighbours number[i] = 0
neighbour = next NCN(i)
while neighbour.class == i.class do

neighbours vector[i] = Id(neighbour)
neighbours number[i] + +
neighbour = next NCN(i)

end while
end for
while Max neighbours() > 0 do

EliminateNeighbours(id Max neighbours)
end while
count = 0
for i = each instance(TS) do

if Classify(i)! = i.class then
incorrect class[count + +] = i

end if
end for
for i = each instance(incorrect class[]) do

neighbours number inc[i] = 0
neighbour inc = next NCN inc(i)
while neighbour inc.class == i.class do

neighbours vector inc[i] = Id(neighbour inc)
neighbours number inc[i] + +
neighbour inc = next NCN inc(i)

end while
end for
while Max neighbours inc() > 0 do

EliminateNeighbours inc(id Max neighbours inc)
end while
AddCondensedIncToCondensedTS()

Reconsistent

El procedimiento comienza con la aplicación de los pasos del algoritmo MaxNCN
sobre un conjunto de entrenamiento, para obtener un conjunto reducido, R. En-
tonces, cada instancia del conjunto de entrenamiento es testeado mediante la regla
1-NN, con respecto al conjunto R. Todas las instancias mal clasificadas en este test
forman un nuevo grupo, el cual es condensado utilizando R como conjunto de ref-
erencia. Finalmente, este nuevo conjunto condensado de instancias mal clasificadas
es añadido a R, con lo que se obtiene el conjunto condensado final. Éste, se dice
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que casi es consistente dado que su consistencia no vuelve a ser comprobada una
segunda vez. El procedimiento Reconsistent se presenta en el Algoritmo 9.2.

9.2.4 Sobre Gaussianas

En general en un problema de reconocimiento de formas, tenemos un conjunto de
entrenamiento con n instancias, donde cada instancia x es un punto, en un espacio de
caracteŕısticas d-dimensional, x = [x1, . . . , xd] ∈ <d. Entonces, para una muestra
dada, el objetivo consiste en asignarle la clase correcta donde Θ = {c1, . . . , cJ} es el
conjunto finito de las J clases del conjunto de entrenamiento. Los diferentes puntos
del conjunto de entrenamiento respetan una distribución de clase espacial, según
su verdadera función de densidad de probabilidad condicional de clase P (x|cj) y
la respectiva probabilidad a priori P (cj), cj ∈ Θ. De este modo, podemos decir
que un vector x puede ser óptimamente clasificado utilizando la regla de Bayes o
de máxima probabilidad a posteriori basada en el conocimiento de las componentes
P (cj)P (x|cj) para cada clase cj .

En la práctica, esta función de densidad de probabilidad condicional de clase no
tiene asumida ninguna estructura subyacente ni se necesita un conocimiento a priori
sobre las formas de esos pdfs para resolver el problema. Aśı, un modo de aproximarlo
es mediante la estimación de una función de densidad de la distribución.

Una forma natural de lidiar con un estimador de densidad es considerando una
mezcla (mixtura) de densidades de modos. Una aproximación para mantener la ca-
pacidad de P (x|cj) es mediante la reflexión de la estructura local de la distribución
por medio de mezclas de modos Pm(x|cj). Este estimador de densidad es utilizado
en la literatura [Novovicova et al.(1996)]. Nosotros lo utilizamos asumiendo la inde-
pendencia estad́ıstica de las caracteŕısticas. De hecho, calculamos los estimadores de
un modo paramétrico. Consecuentemente, se puede utilizar la regla de Bayes, y cada
modo es estimado mediante el producto de probabilidades en cada caracteŕıstica:

P (x|cj) =
M∑

m=1

αm|jPm(x|cj) =
M∑

m=1

αm|j
d∏

k=1

N(xk; µm|kj , σm|kj) (9.1)

donde M es el número de modos y αm|j es una probabilidad a priori del modo
m-ésimo en la clase cj . Por tanto, el clasificador de Bayes es:

CBayes = max
j=1..J

P (cj)P (x|cj) (9.2)

donde P (cj) es la probabilidad de clase a priori.
Por tanto, la caracterización de la distribución la podemos considerar como

un problema de aprendizaje paramétrico no supervisado [Duda & Hart(1973)] uti-
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(a) (b) (c)

Figure 9.2: Gaussianas eĺıpticas determinando ĺımites cuadráticos (a) y ĺımites lin-
eales (b), y Gaussianas esféricas determinando ĺımites lineales.

lizando una mezcla de modos de una distribución normal multivariante. Representa-
mos las Gaussianas multidimensionales como un producto de distribuciones normales
univariantes, con µm|kj y σm|kj como media y desviación t́ıpica, respectivamente. El
algoritmo EM [Dempster(1977)] se utilizará para estimar estos modos desconocidos.

9.2.5 MixtGauss

El objetivo último del procedimiento de condensado propuesto consiste en obtener
una distribución de probabilidad que represente una clase, para cada clase del con-
junto de entrenamiento. Cuando cada clase se describe mediante una mezcla de
distribuciones Gaussianas multivariante, se mantienen tanto las formas generales de
las clases, como las fronteras de decisión. Si además asumimos la independencia
estad́ıstica de las caracteŕısticas, la componente m-ésima en un modelado de mezcla
de la clase cj es una distribución Gaussiana multivariante expresada mediante un
producto de distribuciones normales univariantes, N(µm|kj , σm|kj). Es conveniente
destacar que esto es equivalente a una distribución Gaussiana multivariante de forma
eĺıptica N(µm|j , diag(σm|j)), paralela a los ejes de <d.

La densidad Gaussiana multidimensional es un modelo t́ıpico utilizado para de-
scribir una densidad de probabilidad. Los únicos parámetros a estimar son las medias
y las matrices de covarianza. Mediante la introducción de modelos estimados en el
test de Bayes, se obtienen ĺımites cuadráticos (véase la Figura 9.2 (a)) relacionada
con la distancia de Mahalanobis a cada clase. Además, si las matrices de covari-
anza de las clases son iguales, los términos cuadráticos se anulan, y los ĺımites se
convierten en lineales (hiperplanos; véase la Figura 9.2 (b)).
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Si los agrupamientos (clusters) tuviesen formas esféricas del mismo tamaño, y las
clases fuesen equiprobables, el clasificador óptimo seŕıa el vecino más cercano a la
media de cada clase (véase la Figura 9.2 (c)); el llamado clasificador de la media más
próxima. Por tanto, si el algoritmo que aqúı se presenta fuese el encargado de cubrir
el área de cada clase equiprobable con Gaussianas esféricas del mismo tamaño, los
centros de influencia seŕıan exactamente las medias de las Gaussianas.

De todos modos, dado que las simplificaciones supuestas nunca tendrán lugar en
la práctica, intentamos entrenar a nuestro clasificador para datos reales utilizando
Gaussianas de diferentes tamaños y formas.

Además, se aplicará un criterio de consistencia sobre los prototipos que represen-
ten a cada clase. Cuanto más Gaussianas se incluyan en la distribución, más exacta
será la representación de las fronteras de decisión, y consecuentemente, más precisa
será la clasificación. Por ejemplo, en el algoritmo de Hart, el criterio de consistencia
se basa en la correcta clasificación 1-NN de todas las instancias en el conjunto de
entrenamiento utilizando el conjunto de condensado.

Sin embargo, en el método aqúı presentado se utiliza un criterio de consistencia
diferente, parecido al de la Definición 9.2.3.

Definición Un conjunto condensado R, se dice que es quasi-consistente con respecto
a un conjunto de entrenamiento X, si el error de clasificación es (suficiente-
mente) pequeño, cuando la clase para cada elemento en X es estimada por la
regla NN con respecto a R.

Dado un conjunto de prototipos que representan la distribución de una clase, podemos
utilizar el porcentaje de clasificación del conjunto de entrenamiento para valorar cuan
consistente (según la definición anterior) es.

Mientras que la condición de quasi-consistencia se mantenga, cuanto menor sea
el número de prototipos utilizados para representar una clase en el conjunto con-
densado, mejor se considera el resultado. Por otra parte, para algunas aplicaciones
es útil determinar anticipadamente el tamaño del conjunto condensado.

Para buscar una distribución condensada de elementos, imaginemos un problema
con dos clases de distribución Gaussiana en un espacio Eucĺıdeo. El mejor conjunto
condensado será la media de la función de densidad de probabilidad Gaussiana en
cada clase. Por tanto, supongamos una distribución de clase que pueda modelarse
mediante una mezcla de Gaussianas. Los centros de esas Gaussianas pueden conver-
tirse en el conjunto de prototipos que representen la distribución de clase, es decir,
el conjunto condensado. Entonces, si cada clase se cubre mediante una mezcla de
Gaussianas, la unión de las áreas de influencia de todas las Gaussianas cubriŕıa
completamente el área donde cada clase está definida.

Además, suponiendo prioridades a priori iguales para todas las Gaussianas, si
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Figure 9.3: Equivalencia entre las fronteras de Voronoi y los ĺımites de las diferentes
áreas de influencia de Gaussianas circulares iguales.

fuesen forzadas a tomar la forma hiperesférica (misma matriz diagonal de covarianza
con la misma varianza en cada caracteŕıstica), el uso de Gaussianas seŕıa equivalente
al clasificador de distancia mı́nima, 1-NN [Duda et al.(2001)], cuando se asocia cada
Gaussiana a una clase. Por tanto, los ĺımites entre áreas de influencia de Gaussianas
vecinas se corresponderán con las fronteras de Voronoi (véase la Figura 9.3).

Inicialización de MixtGauss

Obsérvese que a pesar de que el uso del algoritmo EM está muy extendido, hay que
ser consciente de sus inconvenientes [Figueiredo & Jain(2002)]. Como método que
trabaja en vecindarios locales, es sensible a la inicialización porque la función de
probabilidad de un modelo de mezclas no es unimodal. Otro punto a destacar en
modelado de mezclas es la selección del número de componentes. Si son demasi-
adas, la mezcla puede sobreajustar (over-fit) los datos, mientras que una mezcla con
componentes insuficientes puede no ser suficientemente flexible para aproximar el
verdadero modelo subyacente.

Utilizamos mezclas de Gaussianas para obtener una estimación de la función de
densidad de probabilidad. Asumimos que todas las componentes tienen la misma
forma funcional. Por ejemplo, que todas son Gaussianas d-variantes, estando cada
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una completamente caracterizada por el vector paramétrico Θm. Y cuanto más
componentes Gaussianas se incluyan en la mezcla, más precisa será la representación
de las clases y las fronteras de decisión.

Teniendo en cuenta este hecho, debemos facilitar un número de Gaussianas M
que representen cada distribución de clase. Este número corresponde a la cantidad
de prototipos que se generarán para cada clase en el conjunto condensado final. En
el primer paso, cada clase se representa por M Gaussianas. Aqúı se presentan tres
inicializaciones diferentes.

1. En la primera, el rango de cada parámetro se divide entre (M − 1) (de este
modo obtenemos tantos ĺımites de intervalos como Gaussianas necesitamos). A
cada paso se representa una Gaussiana con todos los valores de los parámetros
para ese paso. Aśı se obtiene una diagonal d-dimensional, representada por
centros de Gaussianas. Para cada Gaussiana, la varianza inicial toma el valor
de un décimo del rango de cada dimensión.

2. En la segunda inicialización, cada clase se representa mediante M Gaussianas
situadas en la media de las instancias de esa clase. Añadiendo variaciones
aleatorias ( Rg

500 ∗ aleatorio(0, 1), para cada dimensión/caracteŕıstica), se crean
diferentes medias, y las Gaussianas se desplazan. Aśı se obtiene una mezcla
de Gaussianas para representar cada distribución de clase.

3. En el tercer caso, los M modos iniciales son elegidos aleatoriamente de en-
tre los ejemplos del conjunto de entrenamiento. Esta idea está basada en la
distribución aleatoria de las representaciones.

Entre estas tres inicializaciones, la segunda es la que se ha elegido como la mejor,
para comparar los resultados con otros algoritmos. Aśı, en el algoritmo MixtGauss
final, los modos iniciales son las M Gaussianas situadas en las medias de las clases,
aleatoriamente dispersadas.

Optimización de MixtGauss

En la optimización de MixtGauss se estima la densidad de probabilidad independi-
entemente para cada clase, y se representa esta densidad de probabilidad mediante
los modos seleccionados. Por lo tanto, el método estándar utilizado para ajustar
modelos de mezclas finitos a los datos observados es el conocido algoritmo EM
[McLachlan & Basford(1988), McLachlan & Krishnan(1997)], y consiste en estimar
los parámetros de las distribuciones de clase. Básicamente es un procedimiento de
optimización del tipo máxima probabilidad (Maximum Likelihood; ML), para prob-
lemas con variables desconocidas o falta de datos [Dempster(1977)]. Aśı, después
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de la inicialización tiene lugar un proceso de optimización iterativa basado en el
algoritmo EM, para poder determinar la posición óptima de las mezclas de Gaus-
sianas independientemente para cada clase. Este proceso de optimización iterativa
converge a una probabilidad máxima (maximum likelihood) de los parámetros de la
mezcla. Aśı, para ajustar una mezcla de Gaussianas a cada distribución de clase,
iteramos sobre los dos siguiente pasos:

Paso E Calcula las contribuciones de las instancias xt (donde t es el número de
iteración) a las clases cj , que pertenecen al conjunto {x1, . . . , xNj}, donde Nj

es la cardinalidad de la clase cj . La función de densidad de probabilidad
condicional para el modo m-ésima es:

Pm(xt|cj) =
αm|j

∏d
k=1 N(xt

k; µm|kj , σm|kj)∑M
l=1 αl|j

∏d
k=1 N(xt

k;µl|kj , σl|kj)
(9.3)

Esta función está normalizada de modo que
∑M

m=1 αm|j = 1. Las Gaussianas
multivariantes son representadas como un producto de distribuciones normales
multivariantes, con las medias µm|kj y las desviaciones t́ıpicas σm|kj .

Paso M Calcula los parámetros del modo m-ésima para cada valor xt que existe
en la clase cj :

αm|j =
1

Nj

Nj∑

t=1

Pm(xt|cj) µm|kj =
∑Nj

t=1 Pm(xt|cj)xt
k∑Nj

t=1 Pm(xt|cj)
(9.4)

σm|kj =

∑Nj

t=1 Pm(xt|cj)(xt
k − µm|kj)2∑Nj

t=1 Pm(xt|cj)
(9.5)

Ambos pasos son iterativamente repetidos para cada clase. Los prototipos finales
del conjunto condensado buscado son las medias de las distribuciones Gaussianas
determinadas por el algoritmo EM al final del bucle en el que el proceso se detiene.

Control de Velocidad de la Optimización de MixtGauss

En relación con el control de velocidad, se han probado dos implementaciones difer-
entes.

1. La primera de ellas no tiene en cuenta las diferencias en la velocidad de op-
timización de cada clase. Aśı el bucle de optimización se repite hasta que se
satisface el criterio de parada.
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2. En el segundo caso, como nos hemos dado cuenta de que la optimización de
cada clase alcanza una velocidad diferente, hemos intentado controlarla, de
modo que obligamos a las que alcanzan una velocidad mayor a esperar al
resto.

La segunda versión es la que obtiene mejores resultados, y se explica con más detalle
a continuación.

Después de cada iteración del proceso de optimización descrito anteriormente,
los modos de cada clase son modificados. Alcanzado este punto, sus mejoras en
cuanto a la consistencia son comprobadas para saber si alguna de las clases aproxima
sus modos con una velocidad mayor al resto. La idea principal consiste en que si
los modos de una clase convergen más rápidamente que los modos de una clase
vecina, los primeros pueden acaparar las muestras de los bordes. Mientras que dichas
muestras pueden pertenecer a las otras clases que todav́ıa se están modificando para
acercarse a su mı́nimo local.

Por tanto, esta descompensación en la velocidad se detecta comprobando la
precisión de clasificación de cada clase en este momento del proceso de optimización.
Para medir dicha exactitud, se siguen los siguientes pasos:

1. En primer lugar, cada modo del estado actual se toma como un representante
del nuevo conjunto reducido.

2. En segundo lugar, se estiman las etiquetas de las instancias del conjunto de
entrenamiento original, y se comparan con sus etiquetas verdaderas.

3. Finalmente, se calcula la precisión de clasificación, mediante el uso del ratio
entre el número de clasificaciones correctas en cada clase, y el número total
de ejemplos en la misma clase. Si este porcentaje empeora para una clase en
comparación con la iteración anterior, dicha clase es obligada a esperar a la
próxima repetición del bucle para modificar sus modos.

El bucle EM se repite para cada clase, y se comprueba la precisión de clasificación
hasta que se alcanza el criterio de parada.

Criterio de Parada de MixtGauss

La optimización iterativa del proceso descrito anteriormente puede provocar una
superposición (overlap) inadecuada entre las componentes de clases diferentes, dete-
riorando por tanto, la precisión de la clasificación final. Aśı, este proceso debe parar
en un momento determinado. Se presentan a continuación tres alternativas.
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1. En la primera versión, limitamos las iteraciones después de una cantidad dada
de repeticiones, tal y como se hace en el algoritmo LVQ [Kohonen(1996)].

2. En la segunda versión, mediante la aplicación del criterio de quasi-consistencia
presentado con anterioridad, el bucle de optimización de MixtGauss se repite
mientras la precisión de clasificación aumenta para alguna clase. Cuando
ninguna clase mejora sus resultados, el proceso se detiene. El criterio de parada
funciona como se indica a continuación. Después de modificar los modos de to-
das las clases, se comprueba su quasi-consistencia. Para hacer esto, se toma el
ratio de precisión calculado del modo que se explica en el apartado Control de
Velocidad de Optimización de MixtGauss, mediante el uso de la regla 1-NN.
Los resultados de estos cálculos se comparan con los de la iteración previa.
El proceso se detiene cuando ninguna clase alcanza una mejora en su com-
portamiento, tratando de obtener el mı́nimo error de clasificación. Mientras
tanto, el movimiento de las Gaussianas continúa hasta que se encuentra una
posición de equilibrio.

3. Se propone una tercera versión, en la que se utiliza el clasificador de Bayes
como estimador para el criterio de parada, en lugar de la regla 1-NN. Este
caso recibe el nombre de MGBayes.

Finalmente, la segunda versión del criterio de parada, utilizando el criterio de
quasi-consistencia basado en la regla 1-NN, es adoptado por el algoritmo MixtGauss
final, dado que los resultados son mejores en general (aunque bastante similares a
los de la versión del criterio de consistencia basado en el clasificador de Bayes). La
técnica completa se resume en el Algoritmo 9.3 que se presenta más adelante.

Algoritmo MixtGauss

Aqúı se presenta el algoritmo MixtGauss (Algorithm 9.3), basado en el proceso
descrito en secciones anteriores. Aqúı recordamos no obstante, la opción elegida
para cada paso, de modo que el algoritmo quede suficientemente claro.

1. En primer lugar, en la inicialización se colocan M modos en la posición me-
dia de cada clase, y se separan entre ellos mediante la suma de cantidades
aleatoriamente obtenidas.

2. En segundo lugar, se aplica la optimización EM a cada clase independiente-
mente; véanse la Fórmula 9.3 y la Fórmula 9.4.

3. Cuando una iteración del bucle EM finaliza para todas las clases, se compara
el error con el calculado en la iteración anterior para averiguar si unas clases



9.2. PLANTEAMIENTO Y METODOLOGÍA UTILIZADOS 149

Algorithm 9.3: Pseudocódigo del algoritmo MixtGauss.
(* inicialización *)
for c = 1..number of classes do

mean[c] = CalculateMean(c, TS)
for g = 1..number of Gaussians per class do

Gaussians[c, g] = mean[c] + RandomDisturbance()
end for

end for
current accuracy = CalculateAccuracy()
(* optimización *)
repeat

previous Gaussians[c, g] = Gaussians[c, g]
Gaussians[c, g] = EMstep()
previous accuracy = current accuracy
current accuracy = CalculateAccuracy()
classes improve = 0
for c = 1..number of classes do

if current accuracy[c] > previous accuracy[c] then
classes improve = classes improve + 1

else
if current accuracy[c] < previous accuracy[c] then

for g = 1..number of Gaussians per class do
Gaussians[c, g] = previous Gaussians[c, g]

end for
end if

end if
end for

until classes improve == 0

se mueven más rápidamente que otras. Si la precisión ha disminuido para
alguna de las clases, ésta o éstas son forzadas a esperar hasta que el resto haya
realizado una iteración más del bucle EM.

4. Si el ratio de la bonanza de la clasificación no mejora para ninguna clase, es
porque se ha alcanzado la posición de equilibrio y el criterio de parada hace
que el proceso se detenga.

El proceso introducido puede ser observado como un esquema de condensado
adaptativo, en el cual los prototipos del conjunto resultante se corresponden con los
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centros de las Gaussianas finales. Algoŕıtmicamente, puede ser representado como
se muestra en el Algoritmo 9.3.

Sobre la Convergencia de MixtGauss

Es un hecho reconocido que la aplicación del algoritmo EM sobre una mezcla de
Gaussianas que representa una única clase tiene un comportamiento convergente.
Basándonos en este hecho, vamos a mostrar que el algoritmo MixtGauss también es
convergente.

Sea una base de datos con J clases diferentes. Entonces, un proceso EM inde-
pendiente es ejecutado para cada una de ellas, en el cual los modos de cada clase
se mueven independientemente, dado que las iteraciones EM tienen lugar de un
modo completamente separado en el tiempo y utilizan información diferente para
cada clase. Al final de cada iteración del algoritmo EM para cada una de las clases,
una comprobación externa se encarga de calcular las mejoras de la precisión de
clasificación para cada clase. Dependiendo de los resultados de dicha comprobación
externa, el estado del proceso EM para una clase puede ser detenido (stand by) o
no. La detención consiste en forzar la espera de una clase, manteniendo su posición
y variables, mientras el resto de procesos EM de otras clases continúa iterando.

Por tanto, como la lista de estados de una clase, al igual que el procedimiento
EM de cada clase, no cambia en ningún aspecto y actúa independientemente de su
comportamiento para el resto de las clases, entonces la convergencia de la técnica
EM sobre todas las clases está garantizada por la convergencia del algoritmo EM
mismo. Por tanto, MixtGauss presenta un comportamiento convergente.

Cuando ninguna de las clases mejora su precisión de clasificación, eso significa
que se ha alcanzado la situación de equilibrio. Esto puede suceder por dos razones:
una de ellas es que el proceso EM para cada clase finalmente haya convergido; la
otra es que se alcance un punto de equilibrio consistente entre las clases. Indepen-
dientemente de cual de los dos casos se ha satisfecho para encontrar la posición de
equilibrio, el proceso se detiene, dado que cada modo está situado en una posición
que optimiza la representación de las clases.

9.3 Aportaciones

El objetivo principal de esta tesis es, por un lado, el análisis de un conjunto de
técnicas utilizadas en reconocimiento de formas: clasificación y búsqueda del vecino
más cercano, edición y, especialmente, condensado. Este estudio ha sido detallado
en la Parte I. Por otro lado, algunos métodos alternativos para condensado se han
propuesto en la Parte II, utilizando los conceptos de vencindad envolvente y agru-
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pamientos de tipo Gaussiano. Además se comparan algunas técnicas de clasificación
y búsqueda, y se comentan en la Parte III.

Finalmente, es importante destacar que cada uno de los algoritmos propuestos en
esta tesis ha sido evaluado emṕıricamente mediante el uso de problemas reales, repre-
sentados en espacios de caracteŕısticas, comparando sus resultados con los obtenidos
para los algoritmos estudiados en la Parte I. Este análisis permite darse cuenta del
buen comportamiento de los algoritmos presentados en esta tesis, y de que los mis-
mos representan un buen equilibrio entre los ratios de precisión de clasificación y
reducción de tamaño.

Los principales apartados dedicados a contribuciones son dos. El primero de ellos
se refiere a aquellos algoritmos no adaptativos. El segundo en cambio está dedicado
a la introducción de nuevos esquemas adaptativos. Las contribuciones particulares
de estos apartados se detallan en las siguientes secciones.

9.3.1 Contribuciones No Adaptativas

En primer lugar se han presentado una serie de algoritmos de condensado no adap-
tativos. La idea principal que se introduce es la del uso del concepto de vecindad
envolvente para cubrir las diferente áreas y reducir el tamaño del conjunto de en-
trenamiento lo máximo posible, sin una disminución importante en cuanto a lo que
a precisión de clasificación se refiere. La regla NCN hab́ıa sido utilizada hasta el
momento para clasificar objetos sin etiquetar. En los algoritmos que aqúı se presen-
tan, por el contrario, la regla NCN ha sido utilizada para seleccionar (y reemplazar)
algunas instancias representativas del conjunto de entrenamiento, de modo que los
nuevos prototipos cubran una mayor superficie, que si se hubiese utilizado la regla
NN.

También se presentan los resultados obtenidos con estos algoritmos no adapta-
tivos, comparándolos en términos de porcentaje de reducción y precisión de clasifi-
cación, con los ya existentes. Teniendo en cuenta estos resultados, podemos destacar
dos de los algoritmos introducidos en esta tesis, como los que obtienen mejores resul-
tados: MaxNCN (el mejor) y Reconsistent (el tercero, siendo segundo el condensado
de Hart). Estos son los algoritmos que obtienen los mejores resultados dado el equi-
librio que representan entre reducción de tamaño y precisión de clasificación, además
de ocupar la posición más cercana al punto ideal (100,100).

9.3.2 Contribuciones Adaptativas

En cuanto a las contribuciones adaptativas, el objetivo es el de mejorar nuestros
propios resultados mediante el posicionamiento de prototipos en el punto exacto
que haga el algoritmo de aprendizaje lo más preciso posible. Por una parte, algunos
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de estos algoritmos se basan en la idea de vecindario envolvente. Sin embargo,
los resultados para estos esquemas adaptativos no ofrecen importantes mejoras (en
comparación con los algoritmos no adaptativos basados en vecindarios envolventes),
además de aumentar el esfuerzo computacional.

Por otro lado, la mayor contribución adaptativa es un algoritmo que utiliza prin-
cipalmente mezclas de Gaussianas. Se han comparado diferentes inicializaciones y
criterios de parada. Entre todos ellos, la mejor combinación, según los resultados
obtenidos, y el esfuerzo computacional necesario es la del esquema MixtGauss. Los
resultados obtenidos con el uso de este algoritmo han sido evaluados mediante clasifi-
cadores como la regla NN, construida en un espacio de caracteŕısticas, y clasificadores
lineales (FLD; Fisher Linear Discriminant) y cuadráticos (NQC; Quadratic Normal
density based Classifier) construidos en espacios de disimilaridad. Estos resultados
son comparados con los de los algoritmos LVQ, Chen, MaxNCN y Reconsistent. Por
una parte, de los experimentos llevados a cabo parece que MixtGauss obtiene buenos
resultados, por ejemplo mayor porcentaje de precisión que los obtenidos por otros
algoritmos adaptativos como el de Chen, manteniendo el mismo ratio de reducción
de tamaño. Además, es destacable que las diferencias entre MixtGauss y Chen son
más significativas a medida que se aplica una reducción mayor. Por otro lado, es-
tos resultados muestran que MixtGauss y LVQ tienen un comportamiento similar,
y mejor que MaxNCN y Reconsistent. Además, ambos esquemas adaptativos per-
miten que sea el usuario quien controle el número de prototipos, y representan un
buen equilibrio entre precisión de clasificación y reducción de tamaño. Se ha obser-
vado una tendencia general con relación a que algoritmo, MixtGauss o LVQ obtiene
mejores resultados con una base de datos concreta. En primer lugar, mientras que
LVQ parece ser la mejor opción para bases de datos con dos clases, MixtGauss tiende
a obtener mejores resultados con bases de datos con más de dos clases. En segundo
lugar, mientras LVQ en general obtiene mejores resultados para bases de datos con
una dimensionalidad menor, MixtGauss representa mejores resultados para esos con
una dimensionalidad mayor, a pesar de que hay excepciones en ambos casos.

9.3.3 Comparación de Reglas de Clasificación

Adicionalmente, se comparan los clasificadores como la regla NN, construida en un
espacio de caracteŕısticas, y los clasificadores FLD y NQC, construidos en espacios
de disimilaridad. En general, los resultados más equilibrados son los obtenidos por
FLD. Los resultados obtenidos por NQC son similares. Esto muestra que un clasi-
ficador con mayor complejidad que la lineal no tiene, necesariamente, que mostrar
un comportamiento mejor en espacios de disimilaridad obtenidos mediante datos
vectoriales normalizados.
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Finalmente, los resultados obtenidos con el uso de la regla 1-NN son significati-
vamente peores en la mayor parte de las bases de datos. Por tanto, estos resultados
muestran que se pueden utilizar otras reglas de clasificación, diferentes a 1-NN, que
además arrojan mejores resultados, independientemente de los algoritmos de con-
densado utilizados. Especialmente, los clasificadores FLD y NQC construidos en
espacios de disimilaridad, son aconsejables para problemas con un número pequeño
de clases.

9.3.4 Comparación con Técnicas Eficientes de Búsqueda del Vecino
Más Cercano

Las bases de algunos algoritmos eficientes de búsqueda del vecino más cercano han
sido introducidas, y sus tiempos y precisiones han sido analizadas. La comparación
ha consistido básicamente en aplicar de dos modos diferentes la regla 1-NN para
la clasificación de objetos: búsqueda exhaustiva sobre conjuntos reducidos, versus
búsqueda efectiva sobre conjuntos de entrenamiento originales.

Las diferencias en cuanto a tiempo entre la búsqueda efectiva y las técnicas de
condensado no son de importancia, dado que la mayor diferencia observada es infe-
rior a un minuto. Teniendo esto en cuenta, podemos concluir que la menor cantidad
de tiempo es requerida cuando se utiliza MaxNCN, Reconsistent o MixtGauss. Por
tanto, al menos con una base de datos pequeña como las utilizadas en los experi-
mentos, los algoritmos introducidos en esta tesis procuran un funcionamiento más
rápido que las búsquedas efectivas aqúı comparadas.

En relación con la precisión, el algoritmo MixtGauss obtiene una precisión mayor
que cualquiera de las técnicas de búsqueda eficiente que aqúı se comparan (siendo
al mismo tiempo, más rápido). Reconsistent y MaxNCN obtienen una precisión
ligeramente inferior. En consecuencia, MixtGauss es el algoritmo que, con menores
requerimientos de memoria y tiempo, alcanza la mayor precisión.

En relación con los algoritmos eficientes, kvp-tree muestra el mejor compor-
tamiento entre los que aqúı se han comparado, dado que obtiene una precisión más
alta que el resto, y requiere para su ejecución de una cantidad de tiempo similar.

Para concluir, podemos afirmar que ambas metodoloǵıas, reducción de tamaño
del conjunto de entrenamiento, y búsqueda eficiente, obtienen buenos resultados en
un buen tiempo.

9.4 Conclusiones

El objetivo de este apartado es el de enumerar las principales conclusiones de la
investigación aqúı referida. Brevemente se indican a continuación.
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1. Vecindario Envolvente. Se presentan algunos algoritmos, (selectivos y gen-
erativos) basados en el uso de la regla NCN. Entre todos ellos, podemos
destacar dos, por sus buenos resultados en comparación con otros: MaxNCN
y Reconsistent. Véanse los Caṕıtulos 3, 4 y 5.

2. Mezclas de Gaussianas. Se ha presentado un algoritmo generativo basado
en el uso de mezclas de Gaussianas: MixtGauss. De los experimentos lleva-
dos a cabo se extrae que MixtGauss obtiene buenos resultados (un equilibrio
adecuado entre los porcentajes de precisión de clasificación y reducción de
tamaño), mejorando incluso los resultados obtenidos por MaxNCN y Recon-
sistent. Adicionalmente, permite al usuario controlar el número de prototipos.
Véanse los Caṕıtulos 4 y 6.

3. Clasificadores. Los resultados para LVQ, Chen, MaxNCN, Reconsistent y
MixtGauss (Caṕıtulos 2, 3 y 4) han sido evaluados por clasificadores como
la regla NN, en un espacio de caracteŕısticas, y FLD y NQC, en espacios de
disimilaridades. De este estudio, (véase el Caṕıtulo 6) podemos extraer que se
pueden utilizar otras reglas de clasificación, y que de hecho obtienen mejores
resultados que la regla 1-NN. Especialmente los clasificadores FLD y NQC
construidos en espacios de disimilaridad, son aconsejables para problemas con
un número de clases pequeño.

4. Búsqueda Eficiente del Vecino Más Cercano. Se compara el uso de
la búsqueda exhaustiva sobre conjuntos reducidos, con la búsqueda eficiente
del vecino más cercano sobre conjuntos de entrenamiento originales. Los al-
goritmos MaxNCN, Reconsistent y MixtGauss son los que se ejecutan en el
menor tiempo, del mismo modo que MixtGauss alcanza la mayor precisión.
Aśı, destacamos este algoritmo como el mejor. Merece la pena resaltar que
kvp-tree muestra el mejor comportamiento de entre todas las búsquedas efi-
cientes aqúı contrastadas. En realidad, ambas metodoloǵıas obtienen buenos
resultados en un buen tiempo.

9.5 Futuras Ĺıneas de Investigación

La primera idea sobre posibles mejoras está relacionada con la reducción adaptativa,
concretamente con mezclas de Gaussianas. En el trabajo que aqúı se presenta,
las Gaussianas son ortogonales (es decir, sus diagonales principal y secundaria son
paralelas a los ejes X e Y . Dado que en este caso las bases de datos están obligadas a
definir su distribución alrededor de ĺıneas paralelas a los ejes X o Y , pensamos que el
algoritmo MixtGauss mejoraŕıa sus resultados si se permitiese cualquier orientación
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a las Gaussianas encargadas de representar las instancias originales mediante sus
medias. Esto representaŕıa un mayor esfuerzo en cuanto a cálculos matriciales, que
creemos seŕıa abordable.

Además, será muy conveniente estudiar la relación entre el número de clases y
la dimensionalidad de una base de datos, y el mejor algoritmo a utilizar, LVQ o
MixtGauss. Este estudio podŕıa realizarse sobre diferentes bases de datos sintéticas,
dado que con ellas se permite controlar el número de clases y la cantidad de dimen-
siones.

Con relación al campo de la disimilaridad, parece muy interesante la aplicación
de utilidades del espacio de representación, igualmente que la aplicación de utilidades
del campo de la disimilaridad en el espacio de representación. Parece un mundo a
estudiar muy interesante todav́ıa nuevo para nosotros en diferentes aspectos.

En el Caṕıtulo 4 utilizamos una matriz de covarianza local en el algoritmo
MixtGauss para encontrar prototipos. Después de eso, la regla NN se ha utilizado
en distancias Eucĺıdeas, dejando de lado la correlación local entre los datos. Una
aproximación más consistente se basaŕıa en reemplazar la distancia Eucĺıdea por la
distancia de Mahalanobis, basada en la propia matriz de covarianza que se utiliza
para encontrar los prototipos a considerar. Sin embargo, somos conscientes de que
esto aumentará la complejidad computacional.

Otro punto para la investigación futura puede basarse en comparar una SVM
(no) lineal construida en el espacio vectorial de las caracteŕısticas originales y la
SVM en un espacio de disimilaridad definido por un pequeño conjunto de prototipos
optimizados, dado que en ese caso la SVM se basaŕıa en vectores de soporte que son
objetos encontrados en un espacio de disimilaridad completo, y por tanto se basan
en las distancias a todos esos representantes optimizados.

En cuanto a la búsqueda eficiente, creemos que una buena idea podŕıa ser unir el
uso de algoritmos de reducción junto con técnicas eficientes de búsqueda, dado que
ambos enfoques funcionan bien. Esta idea no ha sido utilizada en las bases de datos
que aqúı se usan, porque debeŕıa probarse sobre bases de datos mayores. Pensamos
que el uso de técnicas de búsqueda eficiente sobre conjuntos reducidos tendrá como
consecuencia una disminución de los requisitos tanto de memoria como de tiempo,
sin implicar una gran reducción de precisión de clasificación.
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