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Abstract

Video editing and object recognition are two significant fields in computer vi-
sion: the first has remarkably assisted digital production and post-production
tasks of a digital video footage; the second is considered fundamental to image
classification or image based search in large databases (e.g. the web). In this
thesis, we address two problems, namely we present a novel formulation that
tackles video editing tasks and we develop a mechanism that allows to generate
more robust descriptors for objects in an image.

Concerning the first problem, this thesis proposes two variational models to
perform temporally coherent video editing. These models are applied to change
an object’s (rigid or non-rigid) texture throughout a given video sequence. One
model is based on propagating color information from a given frame (or be-
tween two given frames) along the motion trajectories of the video; while the
other is based on propagating gradient domain information. The models we
present in this thesis require minimal user intervention and they automatically
accommodate for illumination changes in the scene.

Concerning the second problem, this thesis addresses the problem of affine
invariance in object recognition. We introduce a way to generate geometric
affine invariant quantities that are used in the construction of feature descrip-
tors. We show that when these quantities are used they do indeed achieve a
more robust recognition than the state of the art descriptors.
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Resumen

La edición de vídeo y el reconocimiento de objetos son dos áreas fundamentales
en el campo de la visión por computador: la primera es de gran utilidad en los
procesos de producción y post-producción digital de vídeo; la segunda es esen-
cial para la clasificación o búsqueda de imágenes en grandes bases de datos (por
ejemplo, en la web). En esta tesis se acometen ambos problemas, en concreto, se
presenta una nueva formulación que aborda las tareas de edición de vídeo y se
desarrolla un mecanismo que permite generar descriptores más robustos para
los objetos de la imagen.

Con respecto al primer problema, en esta tesis se proponen dos modelos va-
riacionales para llevar a cabo la edición de vídeo de forma coherente en el tiem-
po. Estos modelos se aplican para cambiar la textura de un objeto (rígido o no)
a lo largo de una secuencia de vídeo dada. Uno de los modelos está basado en
la propagación de la información de color desde un determinado cuadro de la
secuencia de vídeo (o entre dos cuadros dados) a lo largo de las trayectorias de
movimiento del vídeo. El otro modelo está basado en la propagación de la infor-
mación en el dominio del gradiente. Ambos modelos requieren una intervención
mínima por parte del usuario y se ajustan de manera automática a los cambios
de iluminación de la escena.

Con respecto al segundo problema, esta tesis aborda el problema de la in-
variancia afín en el reconocimiento de objetos. Se introduce un nuevo método
para generar cantidades geométricas afines que se utilizan en la generación de
descriptores de características. También se demuestra que el uso de dichas canti-
dades proporciona mayor robustez al reconocimiento que los descriptores exis-
tentes actualmente en el estado del arte.





Preface

Modern digital technology has paved the way to manipulate digital images in
many different ways. Mainly, given a certain digital image as input, the set of
operations on that image can be divided into three different categories: Image
processing which outputs another modified image, image analysis which out-
puts a certain set of measurements, and image understanding which outputs
some high-level descriptions.

A two-dimensional digital image is a color (or gray-level) photograph cap-
tured by a certain sensor (scanner, digital camera, . . . ). The captured digital
image is formed by a set of pixels, where each pixel is a measurement of the
amount of light captured by the sensor. All image manipulations will have to
deal with these pixels and either modify, analyze or understand them. This ma-
nipulation happens either locally (by looking only at the pixel itself or within a
certain small neighborhood around it) or globally (looking at the whole image).

On the other hand, a video sequence is nothing but a sequence of images
(typically called frames) captured within an evenly spaced time interval. These
frames are then shown, or presented, at a certain speed giving the feeling of a
continuous movement. This adds a third dimension to the different manipula-
tion categories. Now, the time factor (or time dimension) needs to be taken into
account for all manipulation tasks. Therefore, the generalization of image pro-
cessing tasks to video is not straight forward and needs to account for this time
dimension. This opens the problem of finding the correspondence between con-
secutive frames. This is an active research area and the problem is typically ad-
dressed by estimating the motion between consecutive frames of a given video
sequence.

This thesis is divided into two main parts: a first part on video editing (or
processing) and a second on object recognition. In the video editing part, we ad-
dress the problem of changing the texture of a given object (rigid or non-rigid)
throughout a video sequence. This needs to be done with minimal effort from
the user and the result obtained needs to account for illumination changes in the
scene. Our approach asks the user to edit a frame in the video with the newly
desired texture placed on the object. In practice, this can be very useful for post-
production tasks. Consider a video of an advertisement of a certain product,
where the products’ packaging has been changed from the time when the adver-
tisement has been shot. Instead of re-shooting the whole video or edit the video
frame-by-frame, we ask the user to provide a couple of edited frames with the
new packaging showing on the product and we automate the rest of the pro-
cess. We do that by propagating, throughout the video, the newly edited infor-
mation along the motion trajectories of the edited object while accommodating
for global illumination changes. First, we generalize the widely used brightness-
constancy assumption (BC) to account for global additive illumination changes.

v
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We call this generalization the global brightness change assumption (GBC) and it
is mainly achieved by working in the gradient domain. Then, based on these
two assumptions, we propose two variational models that allow the propaga-
tion of information throughout a video sequence while accounting for illumina-
tion changes. A major challenge in these approaches is to deal with numerical
problems due to the discretization of the convective derivative (i.e. the deriva-
tive along motion trajectories). These problems mainly manifest in the form
of blurring artefacts. We propose a numerical scheme, the de-blurring scheme
for the convective derivative (DSCD), that alleviates these artefacts and allows for
the propagation of textures for a large number of frames while maintaining the
sharpness of the original texture.

In order to tackle the above video editing problem, we assume the knowl-
edge of the motion field of the video, typically approximated by the optical flow
which computes the apparent motion. Recently, a lot of progress has been made
in optical flow computation allowing for a better and more accurate approxima-
tion of the motion field. We benefit from this progress using and testing in the
context of video editing different optical flows proposed in the literature.

In the second part of the thesis we address the construction of affine invariant
image descriptors for object recognition, a problem that falls into the category
of image understanding. Object recognition is a mature and a well studied topic
to the point that it is being used these days in commercial and security appli-
cations (e.g. face recognition). The problem of identifying a given object in an
image gets complicated when the pose of the object changes from one image to
another. The set of transformations describing this change in pose is typically
reduced to the set of affine transformations. In the second part of this thesis, we
define and develop a set of quantities that are affine-invariant, i.e. their value
do not change under affine transformations. These quantities are then used to
describe objects locally by constructing descriptors following the model of SIFT.
Through an extensive battery of tests on the standard benchmark, we show that
the proposed quantities do exhibit more discriminative power and improve the
performance of the state-of-the-art descriptors.
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Video editing
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CONTENTS 3

This Part of the thesis presents two variational models for performing video
editing tasks. The first model is based on the brightness-constancy assumption,
where it is assumed that a particle does not change color with time. The second
model is based on a generalization of the brightness-constancy assumption to take
into account additive global brightness changes.

Throughout the presentation, we consider the application where a user de-
sires to modify the texture of an object throughout a video, for example a sign
on a wall. The purpose is to achieve the desired editing with minimal user in-
tervention and for the resulting edited video to be both spatially and temporally
consistent.

The first model we present is a 1st-order variational model that balances two
terms: a term guaranteeing temporal consistency while another guaranteeing
spatial consistency. This model requires two runs with different parameters to
achieve the desired result. The second model we present is a 2nd-order varia-
tional model that overcomes some of the shortcomings of the previous model.
It is based on a generalization of the brightness-constancy assumption that takes
into account additive global brightness changes. This model requires a single
run and its result is a video both spatially and temporally consistent. Our pre-
sentation will first discuss both models in the continuous setting. After that, we
focus on the second model and present a detailed discussion in the discrete set-
ting. By presenting the second model with all its details, the first model could
then be directly derived.

Both models make use of the convective derivative, which is the derivative
along the motion trajectories of the video, to propagate information from a given
frame to all others. It has been pointed out in the literature [KCR05, SMTK06]
that usual discretization schemes of the convective derivative operator present a
considerable blur in the results after just a few frames. To alleviate this problem,
we introduce a new and simple numerical scheme for the convective deriva-
tive, the De-blurring Scheme for the Convective Derivative (DSCD), which allows
for propagation along motion trajectories for a large number of frames. We also
introduce a simple occlusion detection algorithm that both models make use of
in order to deal with textures of objects that get occluded/dis-occluded in the
video.





1 Introduction

Digital editing of a captured video footage is becoming more and more common,
mainly due to advances in computer graphics and computer vision techniques.
Video editing tasks vary from basic operations such as trimming, cutting, split-
ting and resizing video segments to more elaborate ones such as editing objects’
textures or, more generally, removing and adding objects in a video segment.

Throughout our coming discussion, we consider the following video editing
problem. We are given one or two reference frames where an object’s surface
has been edited, and a certain editing domain. We also assume the knowledge
of the motion in the editing domain. The objective is then to propagate, along
the motion trajectories, the edited information in the reference frame throughout
the editing domain. The resulting editing needs to be spatially and temporally
consistent. This problem arises in other more complex video editing tasks, such
as video inpainting and object touch-up as in [BZS+07]. In what follows we
discuss the concepts of temporal and spatial consistency.

Temporal consistency refers to a smooth transition between successive
frames, coherent with the motion in the sequence. Due to this constraint the
editing of a video cannot be reduced to a series of independent image editing
problems. The temporal inter-dependence imposed by the motion in the se-
quence has to be taken into account. Since we desire our propagation to be
temporally consistent, we are lead to propagate the given information along the
motion trajectories of the video.

Generally speaking, to model the motion of a given sequence, one can dis-
tinguish between parametric and non-parametric models.

Parametric models work under assumptions made on the geometry of the
scene. For example, the background is usually assumed to be static and piece-
wise planar [ZXS05, JTWT06]. This model permits the computation of a closed
form mapping between any pair of frames which can then be used to propagate
information from one frame to another.

On the other hand, non-parametric models do not make assumptions on
the geometry of the scene. These models usually estimate the motion in the
sequence by the optical flow which is then used for propagation. There has
been in recent years a lot of progress in optical flow computation. For exam-
ple, nowadays, optical flow algorithms are able to deal with large displace-
ments and allow for sharp discontinuities in the movement. This is the case
of [SRB10, CP11, BM11, ARS11] to name a few. These methods still suffer from
the “aperture" problem. In practice they typically incorporate a smoothness term
which causes a filling-in effect leading to dense flow fields, even if the aperture
problem is present. Since we do not wish to restrict the scene geometry, we
are mostly interested in using non-parametric models for the motion in the se-
quence.

5
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The problem of propagating information along the optical flow to ensure
temporal consistency has been addressed in the literature. In video inpainting
for example, some works inpaint first the optical flow and then propagate infor-
mation along the inpainted flow to fill-in the inpainting domain. For an optical
flow with subpixel accuracy, an interpolation scheme is required. As it has been
observed by [KCR05], using the optical flow along with a bi-linear interpola-
tion scheme to propagate the information presents a considerable blur in the
results after just a few frames. In [KCR05], the problem is alleviated by using
a higher order interpolation scheme. However, in [SMTK06], the authors noted
that though higher order interpolation schemes behave better than the bi-linear
one, the blur artefacts still persist. In this work we face the same problem and
we address it by introducing a scheme that allows for propagation of informa-
tion along the optical flow through a large number of frames maintaining the
sharpness of the result.

A different but related approach is followed in [BGD+10]. They integrate the
optical flow, computing a set of motion trajectories that roughly cover the editing
domain. For the computation of these trajectories, the optical flow itself has to
be interpolated at subpixel positions. Since the movement is generally smoother
than the image, the accumulation of interpolation errors in the optical flow is
not so noticeable. These trajectories are then used to propagate the known color
information inside the editing domain.

Finally, let us mention the unwrap mosaics approach [RAKRF08], which is
interesting because it avoids estimating frame-to-frame motion. Instead, the au-
thors propose to compute a static unwrapped texture, a sequence of occlusion
masks, and a sequence of transformations from the unwrapped texture to each
one of the frames of the video. The editing is then performed directly on the
unwrapped texture, and the changes are mapped back into the video sequence
using the estimated transformations. The technique of the unwrap mosaics per-
mits to handle a wide range of situations including zooms, geometric deforma-
tions and occlusions. The method relies however on a substantial algorithmic
machinery including accurate video segmentation, keypoints tracking and non-
linear optimization for computing the texture and mappings. Also, since the mo-
saics are fixed, the illumination changes must be managed in a post-processing
step.

The above mentioned works deal with propagating color information assum-
ing that color remains constant along trajectories. This assumption is often re-
ferred to in the literature as the brightness-constancy assumption. However; due
to shadows, reflections and other illumination changes, the color may change
along trajectories. As a consequence, the propagation of color might cause spa-
tial inconsistencies between the editing domain and its surrounding.

Spatial consistency refers to a seamless integration of the editing with its
spatial surrounding in each frame. In the image editing literature, spatial con-
sistency is usually addressed using gradient-domain methods. These have been
applied extensively for tasks such as seamless cloning and compositing [PGB03,
Geo05], shadow removal [FHLD06], HDR compression [FLW02], image inpaint-
ing [AFCS11, KT07], texture synthesis [KEBK05], and matting [SJTS04] among
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others. Essentially, gradient-domain image editing is based on the manipula-
tion of the image gradients instead of its gray levels. The modified gradients
are then integrated to recover the resulting image. Typically, this is achieved by
solving a Poisson equation with suitable boundary conditions. This procedure
prevents the appearance of seams at the boundaries of the edited region. Pois-
son image editing [PGB03] is one of such techniques; it formulates variationally
the problem as

min
u

∫
O⊂Ω

‖∇u− g‖2dx; with u|∂O = u0,

where Ω ⊂ R2 is the image domain, O ⊂ Ω is the region to be edited,
g : O → R2 is the guidance vector field (e.g. gradient of the image to be com-
posed), u : O → R is the solution image whose gradient best approximates the
field g, and u0 : Ω→ R is the original image which provides the boundary con-
ditions needed for reconstructing the solution u. The solution of this problem
is computed solving the Poisson equation with Dirichlet boundary conditions
u|∂O = u0 where ∂O denotes the boundary of O. For a more detailed intro-
duction to gradient-domain methods, the reader is referred to [AR07]. Since
we want our propagation to be spatially consistent, we are led to work in the
gradient-domain.

Some authors have tackled the problem of extending gradient-domain im-
age editing techniques to video. In [WXRA05], it has been proposed to apply
Poisson editing [PGB03] directly to video by considering a video to be a three-
dimensional volume and using the 3D-gradient to perform editing operations.
Though this eliminates artefacts such as flickering, it does not take motion into
account.

In [BZS+07], it has been noted that using the method in [WXRA05] leads to
severe ghosting artefacts for videos with camera motion. For this reason, they
are lead to use a 3D-gradient where the temporal derivative is in the direction
of the motion. That work deals with several video editing tasks, from which
the most related to our application is the “object touch-up”. They proceed in
two steps. First they propagate the color information using structure from motion
techniques. The result is temporally consistent in the editing domain, but may
have spatial seams. Now, to remedy this, a second step is performed. Using
the spatial gradient of the propagated information, an energy functional is pro-
posed with two terms: a term performing a Poisson image editing in each frame
imposing spatial consistency, and a term filtering along motion trajectories to
further ensure temporal consistency. These two terms are balanced by a posi-
tive parameter. The resulting video is spatially and temporally consistent. This
work has been further elaborated into a full-framework in [BZCC10] for image
and video filtering.

In [BZS+07, BZCC10], the model to impose temporal consistency is based
on the brightness constancy assumption. This makes it hard for the system
to handle fast illumination changes along time. Furthermore, the propagation
in [BZS+07, BZCC10] needs to be divided in two steps. The first step is to obtain



8 CHAPTER 1. INTRODUCTION

a temporally consistent gradient field, which is then integrated in the second
step to achieve spatial consistency.

We will first discuss different mathematical models for temporal consistency,
and propose a generalization of the brightness-constancy assumption, the global
brightness change assumption, to allow for global additive illumination changes.
This is achieved by working in the gradient domain. We then discuss two energy
functionals: a) one based on the brightness constancy assumption, and the other,
b) based on the global brightness change assumption. These energies can be
used to propagate information along motion trajectories.

The minimizers of (a) need to undergo a two step procedure similar
to [BZS+07]. The difference is that the first step consisting of propagating col-
ors is done using the convective derivative (i.e. the derivative along the di-
rection of the motion). This is allowed by using a numerical scheme, the de-
blurring scheme for the convective derivative (DSCD), which makes the propagation
possible through a large number of frames without the blurring effects noted
in [SMTK06, KCR05]. Then, a similar two term energy to the one in [BZCC10] is
used to remove spatial seams in a temporally consistent manner.

The minimizers of (b), however, are temporally and spatially consistent, be-
ing able to handle sudden illumination changes. Although it is based on a model
for temporal consistency that considers only global illumination changes, the
variational formulation (b) allows some spatial variation on the illumination
change.

As a use case, we consider the application where a user edits a frame by
changing the texture of an object’s surface and then we generate the edited in-
formation throughout the rest of a given editing domain. To handle cases where
an occlusion followed by a dis-occlusion occurs, we require a frame to be edited
further in time so that dis-occluded information could be recovered. For the
sake of clarity, Figure 1.1 shows an example of an input and an output of one
of the proposed models, specifically (b). Let us further note that the models we
present do not require a precise tracking of the edited object.

Additionally, in this Part of the thesis, we discuss an interpolation method
in order to produce a sequence of plausible intermediate frames between two
input images. This can be applied to slow camera motion for smooth playback
of lower frame rate video or to smooth view interpolation and animation of still
images. The main feature of the method is the handling of occlusions using a
time coherent video segmentation into spatio-temporal regions.

Let us now present the organization of the “Video Editing” Part of this thesis.
First we present the context of our work in Chapter 2. We start by motivating
the energies we will propose by discussing some mathematical models for tem-
poral consistency in Section 2.1 and then in Section 2.2 we give an overview
of the framework considered throughout this Part. In Chapter 3 we discuss,
in the continuous and discrete settings, two models for spatio-temporal coher-
ent video editing. Then, in Chapter 4 we introduce the de-blurring scheme for
the convective derivative (DSCD) and in Chapter 5 we present a simple occlusion
detection method. We then present some experimental results in Chapter 6. Fi-
nally, Chapter 7, presents an interpolation method that produces a sequence of
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Figure 1.1: An example of an input and output of our model. The sequence has
20 frames in total. In the first row the user edits the first and last frames of the
sequence. These are shown by the left most and right most images of the first
row. In the remaining frames, we would like to propagate the edited information
inside the area marked in red (the editing domain). In the second row, we show
the output obtained using the proposed model.

plausible frames between two input images.





2 Context

In this Chapter we first discuss different models for temporal consistency, and
then we introduce some useful definitions and descriptions of our framework.

2.1 Models for temporal consistency

In this Section we discuss some mathematical models for the temporal consis-
tency of a video. This helps motivating the two energies we propose in Sec-
tions 3.1.1 and 3.1.2.

We consider a spatio-temporal domain ΩT = Ω × [0, T], where Ω ⊂ R2 is
a rectangular domain, and T > 0. Let u : ΩT → R be a given video in the
continuous domain and let v : ΩT → R2 be the motion field. The value of
the motion field v(x, t), where (x, t) is a point in ΩT , represents the velocity
of the projection of a particle in the 3D scene onto the image plane [Hor86].
The trajectory of the particle can be obtained by solving the following ordinary
differential equation (ODE):

dx
dt

(t) = v (x(t), t) , (2.1)

where t ∈ [0, T]. For simplicity we assume in this Section that the functions we
consider can be differentiated as many times as needed.

In what follows, we review the brightness-constancy assumption which is
widely used in the literature to compute the optical flow. Then we discuss a
generalization of this model to account for spatial global illumination changes.
Henceforth we refer to this as the Global Brightness Change assumption (GBC).
Finally we discuss the differences between this generalization and the gradient-
constancy assumption, also used in the context of optical flow computation.

2.1.1 Brightness-constancy assumption

For a Lambertian object under uniform illumination, the brightness of an object’s
particle does not change in time. This implies that u(x, t) is constant along tra-
jectories, leading to the following brightness-constancy equation:

0 =
d
dt

u(x(t), t) = ∇xu(x(t), t) · v(x(t), t) +
∂u
∂t

(x(t), t) , (2.2)

where d
dt u is the total derivative of u (i.e. the derivative along trajectories) and

∇xu refers to the partial derivative of u with respect to x. Let us define the
convective derivative as

∂vu(x, t) := ∇xu(x, t) · v(x, t) +
∂u
∂t

(x, t) . (2.3)

11
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The brightness constancy assumption can now be written as ∂vu(x, t) =
0. This assumption has been used extensively for the computation of optical
flow [WBBP06, BSL+11], and recently for video interpolation given an opti-
cal flow [KCR05, SMTK06, BGD+10]. In Section 3.1.1 we introduce a varia-
tional model for spatio-temporal coherent video editing assuming brightness
constancy.

2.1.2 Global brightness change (GBC) assumption

Under illumination changes, the brightness-constancy assumption does not
hold. In this Section, we generalize this assumption to account for spatially con-
stant, additive illumination changes. In that case, if we follow the trajectories of
two particles, the difference of their colors remains constant. In Section 3.1.2 we
introduce a variational model for spatio-temporal coherent video editing based
on this observation.

Let us consider two particles that at time t are in positions x0 ∈ Ω and y0 ∈
Ω. We denote their trajectories by ϕ(x0, s) and ϕ(y0, s), with s ∈ [0, T]. Then for
k > 0,

u(ϕ(y0, t + k), t + k) − u(ϕ(x0, t + k), t + k) = u(y0, t) − u(x0, t) . (2.4)

This is represented by Figure 2.1(c). After rearranging terms, dividing by k,
and taking k → 0 we obtain ∂vu(y0, t) = ∂vu(x0, t). Since this holds for all
x0, y0 ∈ Ω, we have that

∂vu(x, t) = g(t) . (2.5)

This equation generalizes the brightness-constancy model taking into consider-
ation global changes in illumination expressed by the illumination change rate
g(t).

Taking the spatial gradient on both sides of Eq. (2.5) we get the differential
version

∇x∂vu(x, t) = 0 . (2.6)

A Taylor expansion of (2.6) leads to

u(y0 + kv(y0, t), t + k) − u(x0 + kv(x0, t), t + k) ≈ u(y0, t) − u(x0, t) , (2.7)

which is an infinitesimal version of (2.4).
Note that, although we derived equation (2.6) under the assumption of

global illumination changes, it is also reasonable under local illumination
changes as long as they vary smoothly in the spatial domain.

Remark. The GBC can be regarded as a particular case of the Generalized Dy-
namic Image Model (GDIM) proposed by Negahdaripour [Neg98] in the context
of optical flow computation. GDIM is a more general model for temporal con-
sistency, accounting for additive and multiplicative illumination changes, along
with their spatial variations. There, the assumption is that the convective deriva-
tive fulfills ∂vu(x, t) = m(x, t)u(x, t) + g(x, t), where m and g are referred to as
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the multiplier and offset fields respectively. If we assume a spatially constant off-
set field (i.e. a global additive illumination change), and a zero multiplier field,
the model reduces to the GBC model. In the energy we will propose that is
based on the GBC model, the restriction of a global illumination change will be
somewhat relaxed allowing some spatial variation on the illumination change
rate.

2.1.3 Comparison with the gradient-constancy assumption

It is interesting to compare the GBC assumption with the related assumption
where

u(ϕ(x0, t + k) + h, t + k) − u(ϕ(x0, t + k), t + k) = u(x0 + h, t) − u(x0, t) .

Note that in this model, y0 = x0 + h is mapped to the next frame using the
mapping of x0 and not its own. In this case, the underlying differential equation
is

∂v∇xu(x, t) = 0 , (2.8)

which is referred to in the literature as the gradient-constancy assumption
[UGVT88, WBBP06, PBB+06]. Clearly, the gradient needs not to remain constant
along trajectories, except for the particular case in which the motion field v(·, t)
is constant (corresponding to a translational movement). For the purpose of op-
tical flow computation, as discussed in [UGVT88], even when the movement is
not translational the gradient-constancy assumption is a very good approxima-
tion, since the change in the gradient along trajectories between two consecutive
frames is minor. However, in our application where we propagate information
along a large number of frames, small changes in the gradient accumulate along
a trajectory becoming significant. Figure 2.1 illustrates the three discussed mod-
els and shows their differences.

2.2 Framework

Let us now give a description of our framework. First, we will describe the
video domains we consider which will lead us to derive two application set-
tings. Then, we will give a decomposition of the boundary of the editing domain
which will help in the understanding of the boundary conditions.

2.2.1 Domains and application setting

We consider a continuous scalar video u0 : ΩT → R, and an editing domain O ⊂
ΩT with a Lipschitz boundary [Ada75] (to simplify, we can consider that O has a
smooth boundary). We denote temporal “slices” of O by Ot = {x ∈ Ω : (x, t) ∈
O}. Similarly, temporal slices of ΩT are denoted by Ωt : t ∈ [0, T] representing
the frames of the continuous video. An illustration of these domains can be seen
in Figure 2.2.
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(a) (b) (c)

Figure 2.1: An illustration of the different models for temporal consistency. Ωt
and Ωt+1 refer to temporal “slices" of Ω at time t and t + 1 respectively. (a)
Shows the brightness constancy assumption. A point and its projection by the
optical flow maintain the same color. (b) Illustrates the gradient constancy as-
sumption. Here c1 = u(x0 + h, t)− u(x0, t) and c2 = u(x0 + h + v(x0, t), t + 1)−
u(x0 + v(x0, t), t + 1) and it is assumed that c2 − c1 = 0. (c) Depicts the global
brightness change model. Here c2 = u(x0 + h + v(x0 + h, t), t + 1) − u(x0 +
v(x0, t), t + 1) and it is assumed that c2 − c1 = 0. This model differs from the
gradient-constancy assumption by projecting x0 + h to the next frame using its
own optical flow and not the one of x0.

Figure 2.2: Illustration of an editing domain O inside of the video domain Ω×
[0, T]. Ot and Ωt are temporal slices at time t of O and Ω × [0, T] respectively.
To simplify the figure we do not show all complexities that a general editing
domain may have (see Figure 2.3).

The models presented in Sections 3.1.1 and 3.1.2 of the next Chapter require
the optical flow to be known. Therefore we only work with editing tasks that do
not modify the optical flow of the original video. Such tasks consist typically in
changing the texture or the appearance of an object’s surface (or part of it) vis-
ible in the sequence. The editing domain O should contain the spatio-temporal
volume described by the surface to be edited.

Let us now discuss the types of video editing applications we tackle using
the models we will present. We consider two application settings.

In the first one, the user provides a first frame Ω0, edited with some image
editing tool (automatically or with some user intervention). Minimizing the en-
ergies that will be presented in Sections 3.1.1 and 3.1.2, with the first frame set
as a Dirichlet boundary condition on u, propagates the edited information to the
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rest of the sequence. We call this the one-lid setting where the lid refers to the
first frame Ω0, containing the information to be propagated. The other temporal
end of the video at t = T is left free. Note that one could edit the last frame ΩT
and set it as Dirichlet boundary condition, while leaving the first frame Ω0 free.
Henceforth, when we refer to the one-lid setting we always consider Ω0 to be
the lid.

For the second setting, both the first and last frames are edited and provided
by the user. Both of them are set as Dirichlet boundary conditions. We refer to
this as the two-lid setting. In this case, minimizing the energies that will be pre-
sented in Sections 3.1.1 and 3.1.2 yields an interpolation between both lids. If the
editing on both lids is not consistent with the surface’s motion in the sequence,
the solution will present a temporal blending between the lids. The two-lid set-
ting allows to treat cases in which the modified surface is occluded and then
dis-occluded by another object in the sequence. For both the one-lid and the two-
lid settings, we assume that any point of the spatio-temporal volume described
by the edited surface is reachable by at least one trajectory originating from a lid
(see Figure 2.3).

Let us remark that we do not require a precise tracking of the edited surface,
as long as it is contained in the editing domain O. As a consequence, some parts
of the editing domain may not belong to the edited surface. In these places, the
original video should be restored. This is shown in Figure 2.3. The trajectory of
the edited surface is shown in green. The gray regions of O are not intended to
be modified.

2.2.2 A decomposition of the boundary of O

Let us denote by ∂O the boundary of O. Let ∂Ot denote the boundary of Ot,
t ∈ [0, T]. Let us denote by νO = (νO

x , νO
t ) the outer unit normal to ∂O (a vector

in the unit sphere of R3) and let νOt be the outer unit normal to ∂Ot (a vector
in the unit circle of R2). Notice that the normal νO exists at any point if ∂O
is smooth, and at almost any point with respect to the Hausdorff H2 (surface)
measure on ∂O if we assume ∂O to be Lipschitz [AFP00, Ada75].

Let us introduce the following decomposition of the boundary of O. We
consider the lateral boundary of O as the set

∂Olat := {(x, t) ∈ ∂O : t ∈ (0, T)}.

It corresponds to excluding the temporal ends of O, that is O0 and OT , from ∂O.
The lateral boundary of O can be further classified into three parts. First, the
tangential boundary, given by

∂Otang = {(x, t) ∈ ∂O : νO
t + v · νO

x = 0}.

It corresponds to the segments of ∂O that are tangential to the motion trajecto-
ries. In the example of Figure 2.3(a) the tangential boundary is the dashed part
of ∂O. Second, the vertical boundary ∂Overt consists of the segments of the lateral
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(a) One-lid problem. (b) Two-lid problem.

Figure 2.3: Domains and Dirichlet boundary conditions for a one-lid (a), and
a two-lid problem (b) on a video with one spatial dimension. Trajectories of
the edited object are marked in green (middle area). Note that (b) exhibits an
occlusion and dis-occlusion of the edited object.

boundary parallel to Ω0, i.e.

∂Overt := {(x, t) ∈ ∂Olat : |νO(x, t) · et| = 1},

where et = (0, 0, 1). It is formed by the vertical walls of the boundary except the
initial and final slices O0 and OT , respectively. This is shown by the black vertical
segments in Figure 2.3(a). Third, the oblique boundary, denoted by ∂Oobli, is the
remaining non-tangential and non-vertical boundary (gray segments of ∂O in
Figure 2.3(a)). That is

∂Oobli := ∂Olat \ (∂Otang ∪ ∂Overt).

Let us note that both Overt and Oobli are non-tangential. However, they have
to be distinguished because they admit different boundary conditions as we will
see later.



3 Models for coherent video editing

In this Chapter we introduce two models for spatio-temporal coherent video
editing. We first present the continuous setting and then the discrete setting. Sec-
tions 3.1.1 and 3.1.2 present, in the continuous setting, a 1st-order model based
on the brightness constancy assumption and a 2nd-order model based on the
global brightness change assumption, respectively. Then, Section 3.2 gives all
necessary details for the discrete setting. The discussion in the discrete setting
will mainly focus on the discretization of the 2nd-order model. Having that, the
1st-order model can be directly discretized.

3.1 The continuous setting

3.1.1 A 1st-order model

In this Section we will propose an energy functional to perform video editing
while enforcing the temporal consistency by assuming brightness constancy. Let
us first discuss the case of forward propagation of a certain editing done on
an object’s surface at a given frame. Let Ω ⊂ R2 be a rectangular open set
representing the image domain and [0, T] be the temporal domain.

First, let us recall the brightness constancy assumption presented in Sec-
tion 2.1.1. A point moving in the real world describes a trajectory s : [0, T] → Ω
when seen in a video. The velocity field v(s(t), t) = d

dt s(t) characterizes the mo-
tion of all the particles in the video. Then, given any particle and the associated
trajectory s, the temporal consistency assuming brightness constancy means that
along s the gray-level of u(s(t), t) is constant, which can be stated as

d
dt

u(s(t), t) = 0.

Applying chain’s rule to this equation we obtain

∂vu(x, t) := ∇xu(x, t) · v(x, t) +
∂

∂t
u(x, t) = 0, ∀(x, t) ∈ Ω× [0, T]. (3.1)

The temporal consistency can be stated in terms of the convective derivative:

∂vu(x, t) = 0, ∀(x, t) ∈ Ω× [0, T].

Let O ⊂ ΩT := Ω× [0, T] be the spatio-temporal domain where the editing
is performed and let Ot := {x ∈ Ω : (x, t) ∈ O} be a temporal “slice” of O
(Figure 2.2 illustrates these domains). We denote by ∂O and ∂ΩT the boundaries
of O and ΩT respectively. We also assume that ∂O is a Lipschitz boundary and
we denote by νO(x, t) the outer unit normal to ∂O at the point (x, t).

17
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In order to propagate the information in time we solve

min
u

∫
O
|∂vu(x, t)|p dx dt with p ∈ {1, 2}, (3.2)

where we add Dirichlet boundary conditions

u(x, 0) = u0(x, 0) x ∈ O0 (3.3)

u(x, t) = u0(x, t) (x, t) ∈ ∂Olat \ ∂ΩT , (3.4)

with u0 being the original video sequence.
This energy functional (3.2) propagates information in time taking into con-

sideration the motion in the sequence. The resulting propagation is therefore
temporally consistent. However, Eq. (3.2) does not adapt to changing illumi-
nation conditions and therefore does not integrate the propagated information
with its spatial surrounding. The problem now becomes to correct the illumina-
tion in a video sequence where the information has been already propagated in a
temporally consistent manner. That is, we assume that we already have the hole
O filled-in with an image whose geometry is correct although its illumination
is not consistent with its spatial surrounding. For a single frame, the problem
can be solved by Poisson editing [CPT04a, PGB03, Geo05]. Let Ot be a hole in Ω
at frame t ∈ [0, T] (with a Lipschitz boundary) and let ut be a known image in
Ω \Ot. To copy an image f in Ot while adapting to the illumination of ut, we
describe the geometry of f by its gradient ∇x f , and we solve

min
u

∫
Ot
‖∇xu−∇x f ‖pdx, with u|∂Ot = ut|∂Ot ,

where p ∈ {1, 2} and ut|∂Ot denotes the trace of ut taken from outside Ot. Then
one redefines ut = u in Ot. The boundary condition ensures the good continua-
tion with its surroundings, the geometry being inherited from f . This technique
shows that the gradient performs a good job to define the object’s geometry. The
solution of this problem is computed by solving the Poisson equation ∆u = ∆ f
in Ot (where ∆ is the Laplacian operator) with Dirichlet boundary conditions
u|∂Ot = ut|∂Ot .

Now following the above discussions, we are led to combine the time consis-
tency term with Poisson editing techniques and therefore to minimize the energy

EP(u) =
∫

O
|∂vu(x, t)|p + β|∇xu(x, t)− g(x, t)|p dx dt, (3.5)

where p ∈ {1, 2}, β > 0 and g(x, t) = ∇x f (x, t) for any (x, t) ∈ O. Eq. (3.5) is
solved with the Dirichlet boundary conditions (3.3), (3.4) and

u(x, t) = u0(x, t) x ∈ ∂Ot, t ∈ (0, T), (x, t) 6∈ ∂ΩT . (3.6)

The first term of energy (3.5) represents a regularization along the trajectories
of the motion field in order to enforce the temporal consistency. The second term
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in (3.5) is similar to 2D gradient-domain image editing models [CPT04a, PGB03,
Geo05] and it is responsible for Poisson image editing at each frame.

It is important to discuss the parameter p in energy (3.5). The choice of p ∈
{1, 2} leads to two models with different characteristics of the solution. Let us
discuss these two cases.

Case p = 2: Here, energy (3.5) is quadratic and its solution is computed by
solving the linear system

(∂∗v∂v ·+βdivx∇x·) u = βdivx g in O, (3.7)

with boundary conditions (3.3), (3.4) and (3.6) to which we add the Neumann
boundary conditions

∂vu(x, t) = 0 (x, t) ∈ ∂O ∩ ∂ΩT . (3.8)

Notice that (3.8) holds in O0 ∪OT . We have denoted by divx the spatial diver-
gence and ∂∗v the conjugate operator of ∂v and is given by ∂∗v f = − ∂ f

∂t −divx(v f ).
Equation (3.7) is of Poisson-type, and can be solved using the conjugate gradient
method.

The solution of (3.7) smoothly adapts to the boundary conditions of O. More-
over, any error due to inconsistencies between the boundary conditions and the
potential field g is smoothly spread across the whole domain O.

Case p = 1: Here, energy (3.5) takes the form of a total variation minimization
problem. To solve it, we perform an implicit gradient descent:

uj+1 = arg min
u

E1(u) +
1

2λ
‖u− uj‖2, (3.9)

where λ is a positive number. Each iteration of the gradient descent entails the
resolution of a convex problem similar to the total variation model for denois-
ing [ROF92, Cha04]. The solution of (3.9) is computed by solving its dual prob-
lem [Cha04]. Defining the dual variables ψ : O → R and ξ : O → R2, we
perform the fixed point iteration with time step τ ≤ 1/8:

ψk+1 =
ψk + τ∂v[∂∗vψk + βdivxξk + uj/λ]

1 + τ|∂v[∂∗vψk + βdivxξk + uj/λ]|
,

ξk+1 =
ξk + τ∇x[∂∗vψk + βdivxξk + uj/λ] + g/λ

1 + τ‖∇x[∂∗vψk + βdivxξk + uj/λ] + g/λ‖
,

and at convergence the solution is recovered as u = uj + λ(∂∗vψ + βdivxξ). A
complete derivation of the scheme is given in Appendix A.1.

This model allows discontinuities of u in O and at its boundary. Its solu-
tion attaches to the boundary conditions reducing the effects of the illumination
changes, but, as opposed to the case p = 2, the transitions may not be smooth.
While setting p = 2 favors smooth transitions, the model with p = 1 may pro-
duce sharp transitions which may be desirable in some circumstances. It also
allows a better preservation of textures.
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Discussion: The energy in (3.5) requires some further explanation. Notice that
the model can be used for several tasks:

a) If we take β = 0 then we recover (3.2), the model for propagation. In
practice, it is better to keep β > 0 although small in order to add some
spatial regularization. In this case, we replace (3.8) by

∂vu(x, t) = 0 (x, t) ∈ ∂O ∩ ∂ΩT \O0,

and add Dirichlet boundary conditions in O0. This deals with the one-lid
setting. In the two-lid setting, we also replace Neumann by Dirichlet in OT .

b) If we want to correct the illumination we take β > 0 large enough so that
the second term is dominant. In that case, the first term acts as a time reg-
ularizer. The boundary conditions are those specified above for Eq. (3.5)
with the Neumann boundary condition (3.8).

c) We may use the model advantageously in order to propagate in time and
correct the illumination. For that, we first project in time using β > 0 al-
though small as in a). Then we use that result to compute the guidance
field g(x, t) and solve (3.5) with β > 0 large enough as in b). This algo-
rithm is a little bit cumbersome and better models are required to trans-
port while correcting the illumination. A model for this will be introduced
in Section 3.1.2. The model is based on the Global Brightness Change as-
sumption (see Section 2.1.2) and the minimization of the energy

ẼP(u) =
∫

O
|∇x∂vu(x, t)|2 dx dt

under suitable boundary conditions to ensure propagation and illumina-
tion correction.

The main difficulties derived from these models are related to their numer-
ical implementation, namely to the discretization of the convective derivative
∂vu(x, t). This issue will be addressed in Chapter 4.

3.1.2 A 2nd-order model

In this Section, we present a continuous variational model for video editing im-
posing (2.6). We then derive the natural boundary conditions of the model.

Let us first recall our notation. Throughout this Section, we consider a con-
tinuous scalar video u0 : ΩT → R, and an editing domain O ⊂ ΩT with a
Lipschitz boundary [Ada75] (to simplify, we can consider that O has a smooth
boundary). We denote temporal “slices” of O by Ot = {x ∈ Ω : (x, t) ∈ O}.
Similarly, temporal slices of ΩT are denoted by Ωt : t ∈ [0, T] representing the
frames of the continuous video. An illustration of these domains can be seen in
Figure 2.2.
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The proposed energy imposes the global brightness change model by penal-
izing departures from condition (2.6):

E(u) =
∫ T

0

∫
Ot
‖∇x∂vu(x, t)‖2 dx dt . (3.10)

While Eq. (2.6) implies a spatially constant illumination change, the variational
model allows some spatial variation on ∂vu. This is a useful feature in practical
applications since it accounts for localized light sources, shadows and reflec-
tions, as long as they manifest at the boundary of the editing domain.

As we have mentioned in Section 2.2.1, the models we present require the
optical flow to be known, therefore we only work with editing tasks that do not
modify the optical flow of the original video. Energy (3.10) could also be applied
to other video editing tasks, such as video inpainting. In that case, the optical
flow needs to be inpainted first [KCR05, SMTK06].

Since this is a gradient-based energy, the choice of the boundary conditions
plays an essential role in the application of the model.

3.1.2.1 Boundary conditions

Let us first recall the notation introduced in Section 2.2.2. Let us denote by ∂O
the boundary of O. Let ∂Ot denote the boundary of Ot, t ∈ [0, T]. Let us denote
by νO = (νO

x , νO
t ) the outer unit normal to ∂O (a vector in the unit sphere of R3)

and let νOt be the outer unit normal to ∂Ot (a vector in the unit circle of R2).
Notice that the normal νO exists at any point if ∂O is smooth, and at almost any
point with respect to the Hausdorff H2 (surface) measure on ∂O if we assume
∂O to be Lipschitz [AFP00, Ada75].

When defining the boundary conditions we will use the decomposition of
the boundary of O presented in Section 2.2.2.

Boundary conditions for the one-lid setting. We impose the following bound-
ary conditions for (x, t) ∈ (O0 × {0}) ∪ ∂Olat excluding the points (x, t) of the
lateral boundary with x ∈ ∂Ω (i.e. no Dirichlet boundary conditions are given at
the spatial boundary of the video domain Ω):

u(x, 0) = u0(x, 0), x ∈ O0, (3.11)
u(x, t) = u0(x, t), (x, t) ∈ ∂Overt, (3.12)

∂vu(x, t) = g0(x, t), (x, t) ∈ ∂Otang \ ∂ΩT , (3.13)

u(x, t) = u0(x, t)
∂vu(x, t) = g0(x, t) , (x, t) ∈ ∂Oobli \ ∂ΩT , (3.14)

where the videos u0 and g0 are given.
Eqs. (3.11) and (3.12) correspond to the boundary conditions on vertical seg-

ments of the boundary. Note that they could be merged together into a single
condition as

u(x, t) = u0(x, 0), t ∈ [0, T), |νO(x, t) · et| = 1.



22 CHAPTER 3. MODELS FOR COHERENT VIDEO EDITING

We write them separately to highlight the Dirichlet boundary condition that
fixes the first lid containing the editing provided by the user.

On the lateral boundary, there are boundary conditions on u and on its con-
vective derivative ∂vu. The latter specifies the rate of illumination change at ∂O.
The illumination change rate in the interior of O corresponds to a smooth spa-
tial interpolation of g0 given at the boundary. In a typical editing application
we set g0 = ∂vu0. In this way, we impose in the editing domain the ambient
illumination change of the original sequence.

The lateral boundary conditions on u apply when trajectories cross the lateral
boundary, leaving or entering O. Note that if O corresponds to a precise track-
ing of the to be edited surface (the green domain in Figure 2.3(a)), trajectories
will only cross the boundary at the temporal ends, O0 and OT . Therefore, all the
lateral boundary will be tangential and only Eq. (3.13) will apply, specifying the
illumination change rate. In this case, the only Dirichlet boundary conditions on
u are the ones at the lid. The solution is then obtained by propagating (interpo-
lating) the data at O0 (O0 and OT) along trajectories, while accommodating for
the illumination changes specified at the boundary.

In a more general case, we do not require O to be a precise tracking of the
to be edited surface, as long as O contains the surface. In such cases, other
trajectories, not belonging to the target surface, are included in O and may leave
or enter the domain through non-tangential segments of the boundary (either
at the temporal ends O0, OT or through the lateral boundary). The Dirichlet
boundary conditions of Eqs. (3.12) and (3.14) apply in these cases. In the editing
application we are discussing, the value of u0 at those locations corresponds to
the original video sequence.

Note that in the presented boundary conditions, none was specified on ∂Ω
apart from the lids. These will be specified later when we derive the Euler-
Lagrange equation in Section 3.1.2.2.

Remark. Notice that the vertical and oblique parts of the boundary admit dif-
ferent boundary conditions, although both of them are non-tangential. The rig-
orous derivation of possible boundary conditions in the different parts of the
boundary will be given in Appendix A.2. But some intuition on the reasons can
be gained by looking at the cases in which the minima are attained with zero en-
ergy. This happens only for some choices of the boundary conditions, referred
to as compatible boundary conditions. In such cases, u comes as the solution of the
partial differential equation (PDE)

∇∂vu(x, t) = 0.

To solve this PDE, we proceed in two steps. In the first step we integrate spatially
the equation, to get ∂vu(x, t) = g(t). This integration is independent for each
temporal slice. It requires the value of g(t) to be specified at the spatial boundary
∂Ot of the slice Ot. Note that, modulo sets of zero surface measure,

⋃
t∈[0,T] ∂Ot =

∂Otang ∪ ∂Oobli. This justifies why g has to be specified at ∂Otang ∪ ∂Oobli, but
not on ∂Overt. In the second step, we integrate ∂vu(x, t) = g(t) along optical
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flow trajectories. To perform this integration we need the value of u whenever
a trajectory crosses the editing domain, i.e. on the non-tangential components
of ∂O. As an illustration, in Appendix A.6 we provide two analytical examples
for non-zero energy solutions, showing how the solution can be computed from
these boundary conditions.

Boundary conditions for the two-lid case. Here, in addition to the boundary
conditions of the one-lid case, the frame OT is specified as a Dirichlet boundary
condition:

u(x, T) = u0(x, T), x ∈ OT . (3.15)

This setting is relevant to handle, for example, the case in which part of the
editing domain is occluded and then dis-occluded (see example in Figure 2.3(b)).

Remark. As seen in the Appendix A.2, the boundary conditions (3.11), (3.12),
(3.13) and (3.14) permit to prove that there is a unique minimizer of the energy.
At an intuitive level, one can say that

1. Each trajectory needs to have at least one Dirichlet boundary condition on
u.

2. At each temporal slice we need that a Dirichlet condition on ∂vu is speci-
fied on a set of positive length of the boundary of Ot.

Analogous conditions are needed in the discrete case.
As a consequence, the model cannot handle cases in which a point is dis-

occluded and occluded again, since its corresponding trajectory will not reach
a Dirichlet boundary condition on the boundary of O. To solve this, one could
partition the problem into several smaller ones fulfilling conditions 1 and 2.

3.1.2.2 Euler-Lagrange equation

The Euler-Lagrange equation of energy (3.10) is given by the following fourth
order PDE

∂∗vdivx∇x∂vu(x, t) = 0, (x, t) ∈ O, (3.16)

where divx is the spatial divergence adjoint to −∇x and ∂∗v denotes the adjoint
operator of the convective derivative, given by ∂∗v f = − ∂ f

∂t − divx(v f ).
For the one-lid setting, in addition to the Dirichlet boundary condition dis-

cussed above, the following Neumann type boundary conditions apply on
∂O ∩ ∂ΩT :

divx∇x∂vu(x, t) = 0, t = T, (3.17)

∇x∂vu(x, t) · νOt(x, t) = 0, (x, t) ∈ ∂Otang ∩ ∂ΩT , (3.18)

∇x∂vu(x, t) · νOt(x, t) = 0
divx∇x∂vu(x, t) = 0

, (x, t) ∈ ∂Oobli ∩ ∂ΩT . (3.19)
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In the two-lid setting, condition (3.17) does not apply, since OT has a Dirichlet
boundary condition on u.

We refer the reader to Appendix A.2 for a derivation of the Euler-Lagrange
equation and its boundary conditions.
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3.2 The discrete setting

In this Section we discretize the needed operators and apply them to derive
the discrete energies as a discretization of (3.5) and (3.10). Since the dicretiza-
tion of (3.10) presents a bigger challenge than the discretization of (3.5) and
since the discretization of (3.5) could be directly derived from the discretization
of (3.10), we will base our discussion in this Section with the purpose of dis-
cretizing (3.10). The operators needed to discretize (3.5) will appear naturally in
the process. Therefore, we start by deriving a discrete version of operator∇∂vu.

3.2.1 Discretization of operator ∇∂vu

For simplicity we consider now that Ω ⊂ R (i.e. u is a one dimensional video),
the resulting discretization can be easily extended to higher spatial dimensions
(see Section 3.2.3). We consider a discrete video obtained by regularly sampling
the continuous one with a spatial step h and a temporal step k. Let us approxi-
mate operator ∇∂vu (presented in Eq. (2.6)) at (x0, t0).

Using a forward difference scheme for the spatial derivative, we have

∂

∂x
∂vu(x0, t0) ≈

1
h
[∂vu(x0 + h, t0)− ∂vu(x0, t0)] .

The convective derivatives can be approximated with a forward difference
scheme as well:

∂vu(x0 + h, t0) ≈
1
k
[u(ϕ(x0 + h, t0 + k), t0 + k)− u(x0 + h, t0)],

where in the last term we used that ϕ(x, t0) = x. Similarly we have that

∂vu(x0, t0) ≈
1
k
[u(ϕ(x0, t0 + k), t0 + k)− u(x0, t0)].

The value of ϕ(x, t + k) can be approximated as follows:

ϕ(x, t0 + k) ≈ x + kv(x, t0) .

For subpixel motions, x + kv(x, t0) will fall outside of the sampling grid, and
u(x + kv(x, t0), t0 + k) has to be interpolated from the available samples. We
will denote by û(x + kv(x, t0), t0 + k) the interpolated value. When using bi-
linear interpolation, this results in an upwind scheme with an adaptive stencil for
the convective derivative, as the one in [ZMQ98].

Putting everything together, we have the following operator

∂

∂x
∂vu(x0, t0) ≈

1
kh

[û(x0 + h + kv(x0 + h, t0), t0 + k)− u(x0 + h, t0)]−

1
kh

[û(x0 + kv(x0, t0), t0 + k)− u(x0, t0)] . (3.20)

Figure 3.1 illustrates the discrete operator (3.20).
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Figure 3.1: Illustration of the proposed discrete operator (∇x∂v). The operator
computes the difference between two points on a grid and their projection onto
the next frame by the optical flow. In the figure, the operator computes p1 − d1
, p2 − d2, etc. . . Our energy is based on this operator, imposing the squared L2
norm of these differences to be constant along the video.

3.2.2 The discrete energies

In this Section we consider a video with two spatial dimensions and we propose
our variational models in the discrete setting. Let us first define the following
notation. We now consider u to be a scalar discrete video defined as a function
u : ΩT → R. Here ΩT = Ω × {0, 1, · · · , T} is the discrete spatio-temporal
domain, and Ω ⊂ Z2 is a rectangular discrete domain (the spatial domain of
each frame). Let us also denote by O ⊂ ΩT the editing domain. Notice that we
are using the same notations both for continuous and discrete domains. Each
case will be clear from the context.

For a discrete video we use the optical flow computed on the original video
u0, as a computable approximation of the motion field. The forward optical flow
v f : Ω × {0, 1, · · · , T} → R2 establishes a correspondence between (x, t) and
(x + v f (x, t), t + k). Similarly, we define the backward optical flow as the vector
field vb : Ω × {0, 1, · · · , T} → R2. At frame t, vb(·, t) establishes a correspon-
dence with the frame at time t− k.

The discrete form of energy (3.5) reads

Ep,Occ(u) = ∑
(x,t)∈Ō

‖Occ(x, t)∂vu(x, t)‖p + β‖∇+
x u(x, t)− g(x, t)‖p, (3.21)

where ∂v is the convective derivative, Occ : ΩT → {0, 1} is an occlusion mask,
∇+

x is a forward difference spatial gradient and p ∈ {1, 2}. The domain Ō ⊆ ΩT

is defined as the set of video pixels whose ∇+
x or ∂v stencils intersects O.
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Now the discrete form of energy (3.10) reads

Eκ(u) = ∑
(x,t)∈Õ

‖κ(x, t)∇x∂vu(x, t)‖2, (3.22)

where ∇x is a discrete gradient that is different from ∇+
x since it operates on

convective derivatives and not directly on u. This difference will be clarified
in Section 3.2.3, where we define the ∇x operator along with the ∂v operator.
κ : ΩT → {0, 1}2×2 is an occlusion tensor which will be defined along with Occ in
Section 3.2.3.3. The domain Õ ⊆ ΩT is defined as the set of video pixels whose
∇x∂v stencil intersects O. This domain, together with the operators presented
next, implement the needed boundary conditions specified in Section 3.1.2.1.

Remark. We would like to stress the fact that in this Section we will base all
our discussion with the purpose of providing a discretization for (3.10). The
discretization for (3.5) can be directly derived from the discretization of (3.10).

3.2.3 Definition of the operators

In what follows we define the spatial gradient and the convective derivative
operators as a generalization to two spatial dimensions of the discretizations
presented in Section 3.2.1, considering k = h = 1.

We denote by x = (x1, x2) the spatial components of a point in Ω, and by
v f (x, t) = (v f

1(x, t), v f
2(x, t)) the components of the field v f (x, t). We denote

v f ,I(x, t) ∈ Z2 and v f ,F(x, t) ∈ [0, 1)2 as the integer and fractional parts of
v f (x, t), i.e. v f

i (x, t) = v f ,I
i (x, t) + v f ,F

i (x, t) for i = 1, 2.
Our definition of the operators will integrate the different boundary condi-

tions discussed in Section 3.1.2.1. We will define the operators over ΩT , and
by doing so, the Dirichlet boundary conditions on ∂O are straightforwardly im-
plemented by assuming that u = u0 in Õ \ O. That is, if some of the values
needed by the operators fall in Õ \O, the values of u0 are used. The Neumann
type boundary conditions on ∂Ω will be incorporated in the definitions of the
operators.

Throughout this Section we will use a running example to illustrate the def-
initions of the operators. Figure 3.2 shows a discrete sequence with one spatial
dimension: ΩT = {0, 1, . . . , 5} × {0, 1, . . . , 5}. The circles represent the pixels
in the video. Pixels in the editing domain O are depicted in white, whereas the
black pixels correspond to Õ \O. The rest of the pixels of Ω that are not involved
in the energy are shown as gray circles. There is a forward optical flow v f (x, t)
at each pixel, represented by the vector (v f (x, t), 1) ∈ R2.

3.2.3.1 Convective derivative operator

We discretize the convective derivative using an upwind scheme with an adaptive
stencil [ZMQ98]. Let us introduce some useful notation before presenting the
definition.
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(a) Domains of the operators (b) Stencil of Euler-Lagrange Eq.

Figure 3.2: Graphical representation of the discrete operators for a 1D video
sequence. The circles represent pixels of the video. Each arrow originating
from a circle at (x, t) represents the forward optical flow v f (x, t). The square
attached to the optical flow v f (x, t) represents the forward convective deriva-
tive ∂

f
vu(x, t), computed as the difference between the values at both ends of the

arrow, that is û(x + v f (x, t), t + 1)− u(x, t). The spatial gradient of the convec-
tive derivative at (x, t),∇ f ∂

f
vu(x, t), is represented by the triangle connecting the

squares that represent ∂
f
vu(x + 1, t) and ∂

f
vu(x, t). See text for more details. Note

that the domains of ∂
f
vu and ∇ f ∂

f
vu are the same as the video domain, namely

Ω × {0, 1, . . . , T}. Let us stress that the squares and triangles are just a graph-
ical representation of the operators. The fact that they are drawn at subpixel
positions does not imply that the operators are defined on a subpixel grid.

For each video pixel (x, t) we define its forward interpolation neighborhood
N f (x, t) ⊂ Ωt+1 as

N f (x, t) = {(x1 + v f ,I
1 , x2 + v f ,I

2 ),

(x1 + v f ,I
1 + 1, x2 + v f ,I

2 ),

(x1 + v f ,I
1 , x2 + v f ,I

2 + 1),

(x1 + v f ,I
1 + 1, x2 + v f ,I

2 + 1)}.

N f (x, t) contains the grid positions surrounding (x + v f (x, t), t + 1). Anal-
ogously, Nb(x, t) contains those surrounding (x + vb(x, t), t − 1). The val-
ues at these pixels are used to bi-linearly interpolate the subpixel values at
(x± v f /b(x, t), t± 1).

We will also define the set S f
t = {x ∈ Ωt : N f (x, t) ⊂ Ωt+1}. Pixels x ∈ S f

t
have their interpolation neighborhood inside the video domain.

We define the discrete forward convective derivative using the forward opti-
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cal flow as follows

∂
f
vu(x, t)=

{
û
(

x + v f (x, t), t + 1
)
− u(x, t), x ∈ S f

t ,

0, x 6∈ S f
t ,

(3.23)

where û(x + v f (x, t), t + 1) is the bilinear interpolation of x + v f (x, t) at u( · , t +
1). We will refer to equation (3.23) as the v f -scheme. Let us also define the vb-
scheme using the backward optical flow:

∂b
vu(x, t)=

{
u(x, t)− û

(
x + vb(x, t), t− 1

)
, x ∈ Sb

t ,

0, x 6∈ Sb
t ,

(3.24)

Note that when the interpolation neighborhood is not completely inside Ω,
the convective derivative is set to zero. This amounts to a Neumann boundary
condition on ∂Ω, and as will be discussed in Section 3.2.3.4, it causes a boundary
condition of the type divx∇x∂vu(x, t) = 0 on the Euler-Lagrange equation (at
certain parts of ∂Ω).

In order to compute the bi-linear interpolation û(x + v f (x, t), t + 1), we need
to consider stencil points in N f (x, t) as follows:

û(x+ v f (x, t), t+ 1) = [u11(1− vF
1 )+u12vF

1 ](1− vF
2 )+ [u21(1− vF

1 )+u22vF
1 ]v

F
2 ,

(3.25)

where

u11 = u(x1 + vI
1, x2 + vI

2, t + 1),

u12 = u(x1 + vI
1 + 1, x2 + vI

2, t + 1),

u21 = u(x1 + vI
1, x2 + vI

2 + 1, t + 1),

u22 = u(x1 + vI
1 + 1, x2 + vI

2 + 1, t + 1).

An analogous expression holds for the backward optical flow. This results in
a potentially different stencil for each x. When used for simulating the advec-
tion equation, this adaptive scheme allows to achieve stability with time steps
beyond the one prescribed by the Courant-Friedrichs-Lewy condition [ZMQ98].

In the example of the Figure 3.2, each convective derivative ∂
f
vu(x, t) is repre-

sented by a square node attached to the optical flow vector (v f (x, t), 1). It com-
putes the difference between the values of u at both ends of the arrow, the value
at the tip being given by the bilinear interpolation (linear in this one-dimensional
example). The black squares represent known convective derivatives (their sten-
cil is contained in Õ \O). These act as Dirichlet boundary condition setting the
value of ∂vu. Gray squares represent the convective derivatives of pixels x 6∈ S f

t
which are set to zero in the definition.
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Adjoint of the convective derivative. To define the adjoint of the convective
derivative operator, let us first introduce an equivalent expression for the bilin-
ear interpolation (3.25):

û(x + v f (x, t), t + 1) = ∑
y∈N f (x,t)

w f (x, y)u(y, t + 1),

where w f (x, y) are the bilinear weights for x + v f (x, t).
The adjoint of the forward convective derivative is then given by

∂
f
v
∗
g(x, t) = χ

S f
t
(x)g(x, t) − ∑

y:x∈N f (y,t−1)

χ
S f

t−1
(y)w f (x, y)g(y, t − 1) , (3.26)

where for any set A ⊂ Ω, χA(x) is the indicator function of A, returning the
value 1 if x ∈ A, and 0 otherwise.

Using the graphical representation of the operators in Figure 3.2, the con-
vective derivative operator can be thought of as acting on a video (represented
by the round nodes) and returning a function represented by the square nodes.

Conversely, its adjoint operator ∂
f
v
∗

acts on functions g represented by the square
nodes, and returns a function on the round nodes. Its value at a node (x, t) can
be thought of as the net outgoing flow through the node. The outgoing flow is
given by g(x, t), whereas the incoming flow is given by the summation in (3.26),
computed taking into account the values of g at the previous frame, on the pix-
els whose convective derivative stencil includes (x, t). This is illustrated in Fig-

ure 3.2(a): the blue squares depict the values of g needed to compute ∂
f
v
∗
g(3, 3),

the round node in blue.

3.2.3.2 Spatial gradient operator

Since the gradient operates on convective derivatives, we will define two gra-
dient operators, ∇x

f ,∇x
b : RΩT → R2×ΩT

in correspondence with the v f and
vb-schemes for the convective derivative (recall that ΩT = Ω × {0, 1, . . . , T}).
Both gradients are implemented using a forward difference scheme (spatially).

Let us consider first the gradient for the v f -scheme. Some care must be taken
with its definition. The spatial partial derivative in the direction e1 = (1, 0)
of the convective derivative ∂

f
vu is given at a point (x, t) by [∇x

f ∂
f
vu(x, t)]1 =

∂
f
vu(x + e1, t)− ∂

f
vu(x, t). Thus, two convective derivatives are needed, ∂

f
vu(x, t)

and ∂
f
vu(x + e1, t). Therefore we will require that both x and x + e1 lie in S f

t . This
motivates the definition of the following sets

S̃ f
e1,t = {x ∈ S f

t : x + e1 ∈ S f
t }, (3.27)

S̃ f
e2,t = {x ∈ S f

t : x + e2 ∈ S f
t }, (3.28)

where e2 = (0, 1).
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For an arbitrary video q : Ω × {0, 1, . . . , T} → R, the ith component of its
spatial gradient ∇x

f q is then defined at a point (x, t) ∈ Ω× {0, 1, . . . , T} as

[∇x
f q(x, t)]i =

{
q(x + ei, t)− q(x, t), x ∈ S̃ f

ei ,t,
0, otherwise,

(3.29)

for i = 1, 2. This definition of the gradient implements a boundary condition of
Neumann type at the spatial boundary of S f

t .
The adjoint operator is given by the negative backward spatial divergence.

For a vector-valued video g ∈ R2×ΩT
, we will define the backward spatial di-

vergence by

div f
x g(x, t) = χ

S̃ f
e1,t

(x)g(x, t)1

− χ
S̃ f

e1,t
(x− e1)g(x− e1, t)1

+ χ
S̃ f

e2,t
(x)g(x, t)2

− χ
S̃ f

e2,t
(x− e2)g(x− e2, t)2.

Let us recall that for any set A ⊂ Ω, χA(x) is the indicator function of A, return-
ing the value 1 if x ∈ A, and 0 otherwise.

Analogously, we define a spatial gradient operator for the vb-scheme, ∇b
x,

with its corresponding definition domains S̃b
e1,t and S̃b

e2,t. ∇b
x is implemented

with a forward difference scheme as in Eq. (3.29). The difference between ∇ f
x

and ∇b
x lies only in their definition domains, S̃ f

ei ,t and S̃b
ei ,t .

In the example in Figure 3.2, the spatial gradient reduces to a forward spatial
derivative. It acts on convective derivatives (or functions defined on the square
nodes attached to the optical flow vectors) and returns a function defined on
the triangular nodes on the spatial edges between convective derivatives. Each
triangle in Figure (3.2) represents a value of ∇ f

x∂
f
vu, and therefore a term in the

energy. The gray triangles correspond to the spatial gradients that are set to
zero in the definition of the operator. They cannot be computed since they re-
quire a convective derivative not in S f

t . The white triangles depict the set S̃ f
x,t.

Conversely the spatial divergence acts on the triangular nodes, and returns a
function defined on the squares.

3.2.3.3 Treatment of occluded pixels

Most optical flow algorithms assign for all pixels an optical flow vector, even if
they are occluded in the adjacent frame. These “false correspondences” can be
detrimental to the performance of the method, and have to be removed from the
energy.

Occlusions are intrinsic to the problem of the optical flow computation. In
fact, some optical flow algorithms detect occlusions as part of the estimation of
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the movement [ADPS07, ARS11]. Such algorithms output an occlusion mask
together with the optical flow. Many optical flow algorithms however, do not
provide occlusion masks. To be able to work with such optical flows, we de-
scribe in Section 5 a simple method to detect occlusions. Any other occlusion
detection method could be used instead.

In the following we assume that occluded pixels have been detected, either
as part of the optical flow algorithm or by a post-processing detection step. We
denote by K f

t , Kb
t ⊂ Ωt the sets of forward and backward occluded pixels, where

a forward occluded pixel is a pixel visible in frame t but not visible in frame
t + 1 and a backward occluded pixel is a pixel visible in t and not visible in
frame t− 1.

Let us consider the forward displacement from frame t to frame t + 1. At a
pixel x ∈ K f

t , the forward optical flow establishes a correspondence between x,
visible at t, and x + v f (x, t) which is not visible at t + 1. The terms in the energy
using the convective derivative associated to this correspondence needs to be
removed from our energy.

Case of the 1st-order model In the case of the 1st-order model, removing
these terms amount to setting to zero any convective derivative involving
the occluded pixel (x, t). For that, we introduce the operator Occ f : Ω ×
{0, 1, . . . , T} → {0, 1} as

Occ f (x, t)=

{
0, x ∈ K f

t ,
1 otherwise

An analogous defintion is given to Occb.

Case of the 2nd-order model In the case of the 2nd-order model, the situation is
more delicate. In order to remove the terms from the energy using the convective
derivative associated to a wrong correspondence, we need to set to zero any
spatial partial derivative involving ∂

f
vu(x, t). To that aim, we introduce a forward

occlusion tensor κ f : Ω × {0, 1, . . . , T} → {0, 1}2×2 as the following diagonal
matrix

κ f (x, t) =

[
κ

f
e1(x, t) 0

0 κ
f
e2(x, t)

]
.

When applying κ f (x, t) to ∇ f
x∂

f
vu(x, t), κ

f
e1 : Ω× {0, 1, . . . , T} → {0, 1} acts on

the spatial partial derivatives in the e1 = (1, 0) direction, whereas κ
f
e2 : Ω ×

{0, 1, . . . , T} → {0, 1} applies to the partial derivative in the direction e2 = (0, 1).
Given K f

t we define κ
f
e1 as

κ
f
e1(x, t) =

{
0 if x ∈ K f

t or x + e1 ∈ K f
t ,

1 otherwise.
(3.30)
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Figure 3.3: Effect of the occlusion tensor. The image on the left shows an output
without using the occlusion tensor. On the right, the output at the same frame
with occlusion handling.

A similar definition is given to κ
f
e2 and the same applies for the backward occlusion

tensor κb.
Figure 3.3 gives and example of a result obtained with and without the oc-

clusion tensor.

Remark. The removal of the convective derivatives associated to occluded pix-
els could be equally achieved by modifying the sets S f

t and Sb
t , without intro-

ducing the occlusion tensors κ f /b. Recall that S f
t refers to the domain of the

convective derivative. In Section 3.2.3 a pixel (x, t) is excluded from S f
t when-

ever its forward mapping falls out of the frame domain. This situation can in-
deed be regarded as an occlusion: (x + v f (x, t), t + 1) is not visible. Thus, the
same treatment could be given for the pixels in K f /b

t . In doing so, the treatment
of occluded pixels becomes implicit in the definition of the operators ∂

f /b
v and

∇x
f /b. For the sake of clarity, we use the occlusion tensors making the occlusion

handling explicit.

3.2.3.4 Minimizing energy (3.22)

Energy (3.22) is quadratic, thus the Euler-Lagrange equation is given by the fol-
lowing linear system:

∂∗vdivx(κ(x, t)∇x∂vu(x, t)) = 0, (x, t) ∈ O, (3.31)

with the boundary conditions specified above (and writing u = u0 at Õ \O). We
solve this equation using the conjugate gradient method.

Let us briefly discuss the stencil of the Euler-Lagrange equation and its
boundary conditions. For simplicity, we base this discussion on the one dimen-
sional sequence of Figure 3.2, and we assume that there are no occlusions, that
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is κ(x, t) = 1 for all (x, t) ∈ Ω. Figure 3.2(b) shows the stencil of the Euler-
Lagrange equation at (x = 3, t = 3), the pixel shown in blue. Determining
∂∗vdivx∇x∂vu(x, t), requires the values of divx∇x∂vu at the four blue squares.
For computing these spatial divergences, ∇x∂vu is needed at the triangular
nodes highlighted in blue. Now, these require the convective derivative to be
computed at the red square nodes, resulting the stencil shown by the red circles
(in addition to the original (x, t)).

If at any of these steps, one of the required quantities falls out of Ω, it is
assumed to be zero. Depending on the optical flow, this amounts to setting to
zero either (a) divx∇x∂vu and∇x∂vu, or (b) only∇x∂vu, or (c) only divx∇x∂vu.
This comes as a consequence of the definition of the adjoint operators ∂∗v and
divx.

Remark. Energy (3.22) imposes a spatially smooth brightness change. This is
appropriate for blurry shadows as those cast by a diffuse light, but it is not
suitable for sequences with sharp shadows, such as those cast by a hard light
illumination. In these situations, the following energy can be used instead:

E(u) = ∑
(x,t)∈Õ

‖κ(x, t)∇x∂vu(x, t)‖. (3.32)

Minimizing this energy takes the form of a total variation minimization problem.
It can be solved by an implicit gradient descent given by

uj+1 = arg min
u

E(u) +
1

2τ
‖u− uj‖2, (3.33)

where τ > 0. Each iteration of the gradient descent entails the resolution of
a convex problem similar to the total variation model for denoising [ROF92,
Cha04]. The solution of (3.33) is computed by solving its dual problem using the
algorithm in [Cha04] for instance.



4 A de-blurring scheme for the convective
derivative (DSCD)

In Section 3.2, we presented two different schemes for the discretization of the
convective derivative, namely the v f - and vb-schemes. In the present section
we comment on the behaviour of these schemes. This discussion will lead us to
the derivation of a hybrid scheme that exploits the intrinsic properties of the v f -
and vb-schemes. The resulting hybrid scheme allows to handle a much larger
number of frames.

4.1 A motivating example

For the sake of this discussion, we consider minimizing (3.22) with κ(x, t) = I
for all (x, t) ∈ Õ (i.e. no occlusions):

E(u) = ∑
(x,t)∈Õ

‖∇x∂vu(x, t)‖2.

In a general case, the minimum energy may be non-zero due to incompatible
boundary conditions. Let us assume that the boundary conditions are compati-
ble and let u be a minimizer of E with zero energy, i.e. E(u) = 0. In this case, we
have that

∂vu(x, t) = g(t), ∀(x, t) ∈ Õ , (4.1)

u(x, t) = u0(x, t), ∀(x, t) ∈ Õ \O ,

where g(t) is the constant illumination change rate at frame t obtained from the
boundary conditions. Additionally, we will assume that there is no illumination
change and therefore g(t) = 0 for all t.

Let us now consider a concrete example of a one-lid problem where we fix
the first frame t = 0 and set it as a Dirichlet boundary condition. In this case
Eq. (4.1) can be solved by propagating forward the information at the lid se-
quentially from one frame to the next. In this context the vb-scheme is an explicit
scheme, whereas the v f -scheme is implicit. To see this, let us consider that the
problem is one-dimensional with constant optical flow v f (x, t) = v0 ∈ (0, 1),
and correspondingly vb(x, t) = −v0.

Let us discuss the effect of using the vb-scheme for solving (4.1). In this
case, the following recursive relation between two adjacent frames holds for
0 ≤ t < T, x ∈ O:

u(x, t + 1)− û(x− v0, t) =
u(x, t)− [v0u(x− 1, t) + (1− v0)u(x, t)] = 0. (4.2)

35
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Figure 4.1: Analysis of a zero-energy solution for a one-lid problem, with a
purely translational motion. Frequency responses of the Mb and (M f )−1 filters,
and their composition (M f )−1Mb.

Thus, the values of u(·, t + 1) are explicitly determined by applying the averag-
ing operator with coefficients [1− v0, v0] to frame u(·, t). Denoting this operator
as Mb, we can describe this relation as: u(·, t + 1) = Mbu(·, t). It is interesting to
look at the frequency response of the averaging filter Mb, given by

Mb(ω) = (1− v0) + v0eiω.

This frequency response is shown in Figure 4.1. It has an approximately linear
phase for low frequencies with a slope of v0. Thus, the filter shifts v0 pixels
the low frequency components of the signal. Note also that there is a signifi-
cant attenuation of medium and high frequencies. By recursing equation (4.2)
we can express the solution at frame t in terms of the first frame (the lid) as
u(·, t) = (Mb)tu(·, 0). Therefore, the solution while being shifted according to
the constant optical flow, becomes increasingly blurry with t.

A similar argument for the implicit v f -scheme reveals that for 0 ≤ t < T,
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x ∈ O we have

0 = û(x, t + 1)− u(x, t) = [(1− v0)u(x, t + 1) + v0u(x + 1, t + 1)]− u(x, t)
(4.3)

which can be written as M f u(·, t + 1) = u(·, t), where M f applies the averaging
operator [v0, 1− v0] to u(·, t + 1). u(·, t + 1) is given by the pseudo-inverse of
M f applied to u(·, t). The frequency response of the inverse operator is given by

(M f )−1(w) =
1

(1− v0) + v0eiω =
1

Mb(w)
,

where Mb(w) denotes the convex conjugate of Mb(w). Figure 4.1 shows the
modulus and phase of (M f )−1. The phase is the same as for Mb, corresponding
to a shift of v0 of the low frequency components. However, the modulus is
inverted: high frequencies are amplified. Therefore, the repeated application
of the pseudo-inverse acts as an inverse smoothing, which enhances the high
frequencies in the solution (sharpening) introducing numerical artifacts which
accumulate along time.

It is interesting to note that the effects of the vb and v f -schemes for discretiz-
ing the convective derivative are opposite. The vb-scheme introduces blurring
in the solution, while the v f -scheme sharpens the solution but also introduces
oscillations. This suggests that they can be combined into a hybrid scheme with
the hope that their negative effects cancel out.

4.1.1 The DSCD: a mixed scheme

We propose a mixed scheme which we call the de-blurring scheme for the convective
derivative (DSCD for short). The idea of the DSCD is to attain this objective by
alternating between the vb and the v f -schemes. Shortly, if from t = 0 to t = 1 we
apply the v f -scheme, then from frame t = 1 to t = 2 we apply vb-scheme and so
on.

There are two ways to implement the DSCD, depending on whether it starts
at frame t = 0 with the vb or the v f -scheme. This determines the way in which
the data given at the lid is related to subsequent frames: Either with an explicit
averaging filter in the case of starting with the vb-scheme, or with an implicit
sharpening filter when starting with the v f -scheme. The one that starts with the
v f -scheme does not use the optical flows at odd frames: It will use a v f step at
t = 0 with the forward optical flow from t = 0 to t = 1; then it will use a vb step
at frame t = 2 with the backward optical flow from t = 2 to t = 1, and so on. We
call this scheme the even assignation of the DSCD (or even DSCD). Alternatively,
the odd assignation of the DSCD (or odd DSCD) starts with the vb-scheme and
only uses the forward and backward optical flows at odd frames.

Let us discuss the resulting schemes when applied to the 1D example with
the constant translational optical flow given above. Suppose t is even, and con-
sider the odd DSCD. Then, between frames t and t + 1 we use the vb-scheme,
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and the v f -scheme between t + 1 and t + 2. Following the previous discus-
sion, we have that u(·, t + 2) = (M f )−1Mbu(·, t). The frequency response of
the compound filter (M f )−1Mb has a flat magnitude: the blurring effect of Mb

and sharpening effect of (M f )−1 cancel out. The phase is approximately linear
for low and medium frequencies, but now the slope is 2v0 corresponding to the
shift between two frames. The same holds for the even DSCD, since two lin-
ear filters commute. Thus, if we apply both DSCDs to the one-lid problem at
hand, the result obtained should coincide at even frames, but will differ at odd
frames. For the odd DSCD, odd frames are computed by a blurring Mb filter of
the previous even frame, whereas the even DSCD applies a sharpening (M f )−1

filter.
This behaviour can be appreciated in Figure 4.2. The Figure compares the

results of the vb and v f schemes together with both DSCDs in a one-lid prob-
lem with a purely translational optical flow. The experiment was artificially
generated by translating an image with a constant horizontal displacement of
v0 = [−0.426, 0] px/frame. An editing domain is also generated by translat-
ing a binary mask with the same optical flow. To test the different schemes we
consider a one-lid problem on the given editing domain. In this way we can
qualitatively and quantitatively evaluate the ability of the schemes to propagate
the first frame. A good propagation should recreate the original sequence inside
the editing domain.

As expected, the vb-scheme incrementally blurs the result in the horizontal
direction. The results are not shown for the v f -scheme, since it rapidly amplifies
high horizontal frequencies, destroying the signal within just a couple of frames.
The results for both DSCD schemes perform a better propagation throughout the
whole sequence (41 frames). To better appreciate the differences between the
even and the odd DSCD, we show the result for three pairs of frames formed by
an even frame and the subsequent odd frame. Both DSCDs yield very similar
results at even frames, while they differ at odd frames. In particular the even
DSCD shows high frequency artifacts due to the application of the sharpening
filter (M f )−1.

The plots in Figure 4.3(a) show the root mean square error (RMSE) between
the sequences obtained by each of the four propagation schemes and the origi-
nal sequence. The RMSE rapidly grows with the iterations for both the v f and vb

schemes. The RMSE curves for both DSCD schemes grow considerably slower.
The even DSCD shows a high RMSE at odd frames due to high frequency arti-
facts. Notice that both DSCDs present a very similar RMSE at even frames. The
lowest RMSE is attained by the odd DSCD, in accordance to the results shown
in Figure 4.2.

4.2 Scope and limitations of the previous analysis

The preceding discussion holds only for zero-energy solutions with a purely
translational flow. However, it provides some insights on the behaviour of the
DSCD on more general cases.
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Figure 4.2: Results obtained for a synthetic one-lid problem with a con-
stant translation of v0 = [−0.425, 0] px/frame, shown at frames t =
10, 11, 18, 19, 34, 35 (columns from left to right). First four rows from top to bot-
tom: original sequence (ground truth), vb-scheme, even DSCD, odd DSCD. The
v f -scheme is not shown since it destroys the signal after just a couple of frames.
The last two rows show results obtained with a combination of the even and odd
DSCD explained in Section 4.3.1. Fifth row: β = 0.05 in Eq. (4.6), i.e. a combina-
tion of 95% of even DSCD with 5% of odd DSCD in the energy. Sixth row: same
as fifth row but with β = 0.95. These correspond to the way we propose for the
DSCD to be used in an energy. Note that the high frequency artifacts are greatly
diminished, specially with β = 0.95.

(a) One-lid case. (b) Two-lids case.

Figure 4.3: Evolution of the root mean square error w.r.t. the ground truth corre-
sponding to the synthetic problem with a constant translation of v0 = [−0.425, 0]
px/frame. The sequence has 40 frames. Some frames of the one-lid results are
shown in Figure 4.2. The RMSE curves corresponding to the results shown in the
last two rows of Figure 4.2, have been omitted to avoid cluttering in the graphs.
Let us note that they behave similarly to the odd DSCD.
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One-lid problems. In a real one-lid problem, the boundary conditions may
not be compatible, and the Euler-Lagrange equation cannot be reduced to solv-
ing the PDE ∇x∂vu(x, t) = 0. Furthermore, the cancellation of the blurring and
sharpening is exact only when the flow is translational. Still, a similar behav-
ior of the schemes can be observed for one-lid problems with an approximately
fronto-parallel movement, even if they do not correspond to a zero energy so-
lution with a pure translational flow. Both DSCDs are able to propagate the
information for a much larger number of frames, with much less noticeable ar-
tifacts.

This is illustrated in Figure 4.4, for an example with a real sequence. The
editing surface is mainly translated, but also suffers mild tilts and zooms. The
optical flow was computed using the algorithm of [BM11]. The results shown
were obtained with the energy in Eq. (3.22) for a one-lid problem using the vb

and v f -schemes, as well as for the DSCD. The results of the DSCD were obtained
using an energy which combines the even and odd DSCDs (Eq. (4.6), setting
β = 0.02, which correspond to a 98% of even DSCD and a 2% of odd) and
that will be explained in Section 4.3.1. Let us just say for the moment that the
variational combination of even and odd DSCD schemes greatly attenuates the
formation of high frequency artifacts in the solution. The solution obtained with
the vb-scheme progressively blurs the data on the lid (second row in Figure 4.4).
On the other hand, the v f -scheme gradually amplifies high spatial frequencies
(third row in Figure 4.4). The DSCD allows to propagate the logo throughout
the sequence without appreciable artifacts (fourth row in Figure 4.4). The last
two rows in Figure 4.4 will be explained below.

Two-lid problems. The situation for a two-lid setting is different, specially for
the v f and vb schemes. For these schemes, the boundary conditions at both
lids are not likely to be compatible. Consider for instance the vb-scheme. To
have compatible lids, the second lid should not only be a transformed version
of the first lid according to the motion, but also would have to account for the
blurring caused by the vb-scheme. Of course in a practical editing application,
both lids are non-blurred, thus the minimum is not a zero energy solution and
the analysis of the preceding section does not apply. Intuitively speaking, there
are two opposing effects competing: the first lid should be blurred as time in-
creases, whereas the second lid at t = T should be sharpened backwards in
time (and vice versa for the v f -scheme). We have observed empirically that the
averaging effect dominates, with results presenting considerable blur at inter-
mediate frames away from the lids. This has been observed in the literature as
well [KCR05, SMTK06].

Figure 4.3(b) depicts RMSE curves for a two-lid version of the synthetic trans-
lational example. Note that in this case the v f -scheme and vb-scheme are sym-
metrical, with a high RMSE at intermediate frames. Close to lids, the RMSE is
lower than that of the even DSCD. As in the one-lid case, the odd DSCD shows
the lowest RMSE. This is a consequence of the fact that the sequence has an
odd number of frames. Thus, the even DSCD is connected to both lids through
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Figure 4.4: Results obtained for a real one-lid problem. The lid is placed at the
first frame t = 0. The first row shows the original sequence before the editing.
The following three rows show the results obtained using bi-linear interpolation
to implement the convective derivative schemes. From top to bottom show: Re-
sults obtained with vb-scheme (explicit), v f -scheme (implicit), and DSCD hybrid
scheme. The last two rows were computed using bi-cubic interpolation. From
top to bottom: vb-scheme (explicit) and DSCD hybrid scheme. Both DSCD re-
sults were obtained with the variational combination of the even and odd DSCD
of Eq. (4.6) with β = 0.02 (thus, mainly even DSCD), explained in Section 4.3.1.
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Figure 4.5: Evolution of the root mean square error, in the two lid-setting, w.r.t.
the ground truth corresponding to the smiley synthetic problem with a constant
translation and with an even number of frames (40 frames).

an implicit v f step, whereas the odd DSCD is connected to them with explicit
vb steps. Let us now consider an even number of frames by removing the last
frame in the sequence, i.e. now the first lid is at frame t = 0 and the second lid
is at frame t = 39 instead of t = 40. Figure 4.5 shows the resulting RMSE for the
smiley experiment.

The behaviour of the vb and v f is roughly the same, but there is a change
in the behaviour of the even and odd DSCDs: for the sequence with an odd
number of frames, the even and the odd DSCDs coincide at even frames, and at
odd frames, the even DSCD has a higher RMSE, associated with high frequency
artifacts introduced by the sharpening step. When the total number or frames is
even (Figure 4.5), for the first 10 frames in the sequence, the behaviour of even
and odd DSCDs resembles the one in Figure 4.3(b): Both DSCDs coincide at
even frames, and the even DSCD yields high RMSE at odd frames. However,
the situation is inverted by the end of the sequence towards the second lid: the
DSCDs coincide on odd frames, and now it is the odd DSCD with high RSME at
even frames.

The reason for this become clear when we write the DSCD energies in terms
of the Mb and M f interpolation filters:

Eodd
κ (u) =‖Mbu0( · , 0)− u( · , 1)‖2 + ‖u( · , 1)−M f u( · , 2)‖2 + · · ·+{

‖Mbu( · , T − 1)− u0( · , T)‖2 if T + 1 is odd,
‖u( · , T − 1)−M f u0( · , T)‖2 if T + 1 is even.

Eeven
κ (u) =‖u0( · , 0)−M f u( · , 1)‖2 + ‖Mbu( · , 1)− u( · , 2)‖2 + · · ·+{

‖u( · , T − 1)−M f u0( · , T)‖2 if T + 1 is odd,
‖Mbu( · , T − 1)− u0( · , T)‖2 if T + 1 is even.

The first term determines the nature of the connection with the first lid. As
previously discussed, the odd DSCD enforces an explicit (averaging) link be-
tween the lid and u( · , 1). For the even DSCD, on the other hand, the link is
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implicit, responsible for the high RMSE erros at odd frames when in close to the
first lid.

The nature of the connection to the last lid depends on the parity of the total
number of frames T + 1. For an odd number of frames the connection to the last
lid is of the same type as the connection to the first lid. The odd DSCD is linked
to the second lid via a v f step, which when seen in the backwards direction of
propagation, is an explicit (and thus averaging) step. The even DSCD, is linked
to the last lid through a term enforcing an implicit sharpening relation between
u( · , T− 1) and the lid, when seen in the backwards direction. This is the reason
for the symmetric behaviour of both DSCD curves in Figure 4.3(b).

However, when the T + 1 is even, the situation is reversed: the odd DSCD
establishes an implicit link to the second lid, whereas the even DSCD is linked
explicitly. This explains the exchange in the behaviour of even and odd DSCDs
in Figure 4.5.

Zooms. Let us discuss the case of sequences with significant zooms on the
edited surface. Consider for example a sequence consisting of a close-up on
the edited object: the resolution of the edited surface increases with each frame.
In a one-lid setting, if the lid is placed on the first frame, the scheme will propa-
gate a low resolution version of it. Indeed, in this case the problem becomes one
of super-resolution and the model will do as good as the interpolation scheme
used. One can solve it by performing the editing on the last high resolution
frame and setting it as the lid. In Section 6.4 we discuss further this issue in a
more complex example.

Higher order interpolation. The different schemes for the convective deriva-
tive can be implemented using higher orders of interpolation to estimate u
at subpixel positions in Eqs. (3.23) and (3.24) (and similarly for both DSCD
schemes). As an example, we have computed the outputs for the vb scheme
and the DSCD using bi-cubic interpolation. The results are shown in Figure 4.4
for the one-lid setting. As before, the results of the DSCD correspond to energy
(4.6), which combines the even and odd DSCD (we set β = 0.02, thus a predom-
inantly even DSCD). The higher order interpolation reduces the rate at which
the vb-scheme blurs the frames, but eventually the blurring becomes apparent
(as also noted in [KCR05, SMTK06]). The result obtained is considerably better
than the one for the vb-scheme with bi-linear interpolation, but it is still blurrier
than the results obtained with the bi-linear DSCD schemes. As with the bi-linear
interpolation, the bi-cubic v f -scheme completely destroys the signal and its re-
sult is omitted. The bi-cubic DSCD behaves very similar to the bi-linear one.
The reason for this is that the motion is mostly fronto-parallel. Thus, by alter-
nating between the vb and v f schemes, the DSCD approximately compensates
for the blurring caused by the low-order bi-linear interpolation. For sequences
with significant zooms in which the lid is placed at a low resolution frame (as
discussed previously), a higher order interpolation scheme yields better results.
An example is given in Chapter 12, Figure 6.13. This improvement comes at the
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expense of a greater computation cost (e.g. the bi-cubic interpolation uses a 16
point stencil whereas the bi-linear interpolation uses only four). For most of our
experiments we found good results using the bi-linear DSCD, without the need
to consider higher order interpolators.

4.3 An operator implementing the DSCD

Let us recall that there are two versions of the DSCD schemes. One that starts
at t = 0 with the v f -scheme and another one starting at t = 1 with the vb-
scheme. We refer to them as even-assignation and odd-assignation respectively.
These schemes for the convective derivative can be implemented by defining
corresponding operators.

Let us consider first the odd-assignation and define the following hybrid op-
erator for the convective derivative:

hodd
v u(x, t) =

 ∂
f
vu(x, t), t odd,

∂b
vu(x, t + 1), t even,

=



û(x + v f (x, t), t + 1)− u(x, t), t odd and

x ∈ S f
t ,

u(x, t + 1)− û(x + vb(x, t + 1), t), t even and

x ∈ Sb
t+1,

0, otherwise.

(4.4)

This operator computes the convective derivatives corresponding to the forward
and backward optical flows of the odd frames. Note that the backward deriva-
tives are shifted: ∂b

vu(x, t + 1) is assigned to location (x, t). For this reason we
do not consider hodd

v as a discretization of the convective derivative, and use the
notation hv instead of ∂v. The h here stands for hybrid.

As in Section 3.2.3.2, we define a corresponding spatial gradient∇x
odd which

takes into account the domain where hodd
v can be computed. For the definition

of the gradient, we define the sets S̃odd
ei ,t for each frame t. Recall that these sets

contain the locations x where both convective derivatives needed to compute
the partial derivative in the direction ei are computable. Due to the definition of
hodd

v it can be seen that if t is odd, S̃odd
ei ,t = S̃ f

t , and if t even, S̃odd
ei ,t = S̃b

t+1. The
diagram in Figure 4.6 show how the convective derivatives and their gradients
are taken.

Analogously, we define the corresponding heven
v implementing the even-

assignation DSCD (using the forward and backward optical flows at even
frames), and its associated spatial gradient ∇x

even.
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Figure 4.6: The hybrid scheme hodd
v for the convective derivative using the for-

ward and backward optical flow of odd frames, for the same one dimensional
image sequence shown in Figure 3.2. The same graphical conventions as in Fig-
ure 3.2(a) are used.

4.3.1 Using the DSCD in the 2nd-order model

Based on the operator implementing the odd DSCD we define the following
energy

Eodd
κ (u) = ∑

(x,t)∈Õ

‖κodd(x, t)∇x
oddhodd

v u(x, t)‖2. (4.5)

Note that we consider an occlusion tensor κodd : Ω× {0, 1, . . . , T} → {0, 1}2×2

for the forward and backward optical flows at odd frames, defined in an analo-
gous way to the forward and backward occlusion tensors in Section 3.2.3.3.

Similarly we define an energy Eeven
κ , corresponding to the hybrid operator

heven
v implementing the even-assignation DSCD (using the forward and back-

ward optical flows at even frames).
The proposed energy for using the DSCD considers both the odd and even

assignations, and reads

Eβ(u) = β Eodd
κ (u) + (1− β) Eeven

κ (u), (4.6)

where β ∈ [0, 1] is a weighting coefficient. A value of β = 1 yields the odd-
assignation of the DSCD, whereas β = 0 corresponds to the even-assignation.

Both versions of the DSCD exhibit a comparable behaviour. In general, a
v f step permits to recover the frequencies smoothed by the previous vb step.
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However, as shown in Figure 4.2, it may also introduce other high frequencies,
which on the long term will build up as high frequency artifacts (particularly
for the even DSCD). These can be attenuated by adding to the used version of
the DSCD a small component of the other one, which corresponds to values
of β ∈ (0, 1), either close to 0 or 1. This can be understood in the context of the
previous example: we add a slight amount of averaging to the implicit steps, and
sharpening to the explicit ones. In practice we found that for the odd-assignation
setting a value of β ≈ 0.95 turns out to alleviate the DSCD from high frequency
artifacts and without introducing much blurring (correspondingly, β ≈ 0.05 for
the even-assignation). This can be appreciated in the last two rows of Figure 4.2.

The use of both DSCD schemes has another advantage. Let us consider, for
example, that β = 0 (i.e. only the even-assignation DSCD is used). Let us assume
as well that κeven(x, t) = I for all (x, t) ∈ Õ. Pixels on odd frames are included
in the energy only if they form part of the interpolation stencil of a pixel in an
adjacent even frame. Depending on the optical flow, it may occur that some
pixels in O only appear in the energy with a small or even zero weight. This
may cause the system to be ill-conditioned. On the other hand, with β ∈ (0, 1)
and assuming that κodd(x, t) = I, every pixel in Õ is at least “connected” to the
rest by its own forward and backward optical flows, which suggests a better
conditioned system.

In the case of occlusions, the occlusion tensors remove terms from the energy
by setting them to zero (see Section 3.2.3.3). This might cause the system to
become ill-conditioned, even with β ∈ (0, 1). For this reason we add a spatial
regularization term. The resulting energy reads

Eβ,λ(u) =
1
2

Eβ(u) +
λ

p ∑
(x,t)∈Õ

‖∇+
x u(x, t)‖p, (4.7)

where λ > 0 and p = 1 or 2 (in our experiments we have taken p = 2). If
there are no occlusions, no elements in the energy are removed and λ can be
set to zero. Otherwise, λ is set to a small value so that the smoothing effect
of the spatial regularization is only noticeable on “weakly connected” pixels.
With the addition of this spatial regularization term, if p = 2 then the solution
is unique as long as there exist at least one Dirichlet boundary condition on u
in each frame (assuming that Ot 6= Ω for all t ∈ {0, 1, · · · , T}). The problem
of existence and uniqueness of solutions (both in the continuous and discrete
settings, and also p ∈ {1, 2}) is considered in Appendices A.3, A.4 and A.5 under
some assumptions on the optical flow that amount to say that trajectories of
points are well defined. A more thorough analysis on the conditioning of the
resulting system of equations is an important issue and further study is required.

Other regularization terms could also be used. In particular, in our experi-
ments, we sometimes found better results with the addition of a temporal reg-
ularization term given by γ ∑(x,t)∈Õ ‖∂vu(x, t)‖p, as in [BZCC10, BZS+07] and
also as we have already proposed in Section 3.1.1. This term, together with the
spatial regularizer, forms a weighted 3D gradient (∇+

x ,
( γ

λ

)1/p
∂v) with the tem-

poral component in the direction of the optical flow. Note that this term enforces
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brightness constancy. Therefore, if used in a sequence with significant illumina-
tion changes, it should be given a very small weight.

4.4 Implementation details

The minimization of the energy is given by the solution of a linear system which
we solve using a conjugate gradient solver. In our implementation we used
sparse matrices to store the discrete operators described previously. For exam-
ple, ∂

f
v can be stored as an N×N sparse matrix, where N is the number of pixels

in Õ. For each row in the matrix, five values have to be stored: the four bi-
linear interpolation weights and −1 at the diagonal (see Eq. (3.23)). Storing the
operators as sparse matrices, greatly simplifies the computation of the adjoint
operators, which can be computed by a simple matrix transpose operation (e.g.

the matrix associated to ∂
f
v
∗

is the transpose of ∂
f
v).

Let us now give a pseudo-code that implements the 2nd-order model. We will
explain how to build the sparse linear system for minimizing Eodd

κ (u). First let
us rewrite the energy in an equivalent form which allows a simpler implemen-
tation, and then we present a pseudo-code for building and solving the system.

Simplification of the energy. We start by observing that minimizing

Eodd
κ (u) = ∑

Õ

‖κodd∇oddhodd
v u‖2,

with respect to u is equivalent to solving the constrained problem (defined over
Ω× {0, 1, · · · , T}):

min
u ∑

Ω×{0,1,··· ,T}
‖κodd∇oddhodd

v u‖2 s.t. u|Oc = u0,

where Oc denotes the complement of O. Since hodd
v only keeps the forward and

backward convective derivatives at odd frames, we can split the energy to ex-
pose the forward and backward terms

∑
Ω×{0,1,··· ,T}

‖κodd∇oddhodd
v u‖2 = ∑

Ω×{0,1,··· ,T}
‖κ f∇ f (Oodd ∂

f
vu)‖2+

∑
Ω×{0,1,··· ,T}

‖κb∇b (Oodd ∂b
vu)‖2

where Oodd(x, t) is 1 if t is odd, and 0 otherwise. Let us introduce the finite
difference gradient ∇̄q defined over the whole domain Ω × {0, 1, · · · , T} and
with appropriate Neumann boundary conditions. Recalling the definitions of
∇ f ,b and the sets S f ,b and S̃ f ,b

ei we observe that we can re-write the gradients in
simpler terms

∇ f ,bq :=
[

S̃ f ,b
e1 0

0 S̃ f ,b
e2

]
∇̄q, (4.8)
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where the S-sets are being used as indicator functions (i.e. S(x, t) is 1 if (x, t) ∈ S,
and 0 otherwise ). Incorporating these definitions in the energy we get:

∑
Ω×{0,1,··· ,T}

∥∥∥∥κ f
[

S̃ f
e1 0

0 S̃ f
e2

]
∇̄ (Oodd ∂

f
vu)
∥∥∥∥2

+ ∑
Ω×{0,1,··· ,T}

∥∥∥∥κb
[

S̃b
e1

0

0 S̃b
e2

]
∇̄ (Oodd ∂b

vu)
∥∥∥∥2

.

We further simplify the energy by collapsing the tensors κ̄ f := κ f
[

S̃ f
e1 0

0 S̃ f
e2

]
Eodd

κ (u) = ∑
Ω×{0,1,··· ,T}

‖κ̄ f ∇̄ (Oodd ∂
f
vu)‖2 + ∑

Ω×{0,1,··· ,T}
‖κ̄b ∇̄ (Oodd ∂b

vu)‖2.

(4.9)

Implementation and minimization. The following pseudo-code explains how
the linear system for solving (4.9) is constructed. We will use the following con-
ventions: the monochrome input video u0, the masks and the flow fields v f , vb

treated as lexicographically ordered 1d vectors. However, for simplicity we use
(x, t) as indices of the entries of the 1d vectors, and the notation [A(u)](x, t) to
refer to rows of matrices (index of (x, t)-th row of A in this case).

1. Let m be the number of pixels in Ω× {0, 1, · · · , T}.

2. Generate the masks of the editing domain O, its complement Oc and the
pixels in the even/odd frames Oeven and Oodd respectively. Also compute
the masks S f , S̃ f

ei , Sb, S̃b
ei

and the occlusion tensors κ f , κb. And compute the

collapsed tensors κ̄ f ,b :=
[

S̃ f ,b
e1 κ

f ,b
e1 0

0 S̃ f ,b
e2 κ

f ,b
e2

]
(as justified above).

3. Construct the following sparse matrices (with lexicographically ordered
entries):

• K f ,b : 2m× 2m binary diagonal matrices acting on gradients and im-
plementing κ̄ f ,b.

• S f ,b, O, Oc, Oodd, Oeven: m×m binary diagonal matrices acting on im-
ages and implementing the homogeneous masks.

• I f
v : m×m matrix implementing the forward warping by v f of its in-

put [I f
v (u)](x, t) = û(x + v f (x), t + 1), where û denotes the bi-linear

or bi-cubic interpolation of u. Similarly Ib
v for the backward warping.

• I0: m×m identity matrix.

• J f
v := I f

v − I0. m×m matrix implementing ∂·, the forward convective
derivative. Similarly Jb

v := I0 − Ib
v .

• G: 2m× m matrix implementing ∇̄·, the spatial gradient G := [
Ge1
Ge2

],

with [Gei (u)](x, t) = u(x + ei, t)− u(x, t).
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4. Build the operator. For implementing (4.9) we write a 4m×m matrix

A :=
[

K f G Oodd J f
v

KbG Oodd Jb
v

]
,

the energy will be Eodd
κ (u) = uT AT Au. And for implementing Eβ,λ(u) we

write a 10m×m matrix

A :=


βK f G Oodd J f

v
βKbG Oodd Jb

v

(1−β)K f G Oeven J f
v

(1−β)KbG Oeven Jb
v

λG

 .

5. Resolution of: u∗ = arg minu ‖Au‖2 s.t. u|Oc = u0.

• Since the variables u|Oc are fixed we can split the variable u =
Ou +Ocu0 and rewrite the problem as ‖AOu + AOcu0‖2 with homo-
geneous constraints u|Oc = 0. Its solution is then obtained by solving
the linear system Su = b where E := OAT AO and b = −OAT AOcu0.

• The final video is recovered as u∗ = S−1b + u0.

Note that because of the restriction matrices O and K f ,b the final system to
solve is much smaller than m×m.





5 An occlusion detection method

In this Chapter we discuss a two-step simple method to detect occlusions given
a dense optical flow. In the first step we aim to identify regions which are poten-
tially occluded. In the second step we categorize the previously selected regions
into occluded and still visible. Figure 5.1 shows an example of the two-step
occlusion detection method.

The problem of occlusion detection is intrinsic to the optical flow problem. In
fact, some optical flow algorithms estimate occlusions as part of the estimation
of the movement [ADPS07, ARS11]. Such algorithms output an occlusion mask
together with the optical flow.

Many optical flow algorithms however, do not provide occlusion masks. To
be able to work with such optical flows, we describe a simple method to detect
occlusions. Any other occlusion detection method could be used instead.

5.1 First step, the detection of potentially occluded regions

Let us consider two adjacent frames t − 1 and t. In an ideal case the forward
optical flow from t− 1 to t should map points in t− 1 that exist in t, to their cor-
responding location in t. Occluded points at t− 1, do not have a correspondence
at t, and therefore an ideal optical flow should not be defined at these locations.
The same applies for the backward optical flow.

In practice, most optical flow algorithms compute a dense correspondence
from one frame to another. Thus we have a forward dense mapping from t− 1
to t given by the forward optical flow as ϕ

f
t−1 : Ωt−1 → Ωt, as ϕ

f
t−1(x) = (x +

v f (x, t− 1), t). Similarly, we have a backward dense mapping at t given by the

(a) Ωt−1 (b) Ωt (c) 1st step applied on
Ωt−1

(d) 2nd step applied on
Ωt−1

Figure 5.1: The proposed two-step occlusion handling. For clarity, we show only
the processing related to the forward optical flow from Ωt−1 to Ωt. Figures (a)
and (b) show two consecutive frames. (c) shows the selection result of the first
step described in Section 5.1. (d) shows the selection result after the second step
described in Section 5.2.
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backward optical flow, ϕb
t : Ωt → Ωt−1.

We will focus in the following on the forward mapping. An analogous dis-
cussion holds for the backward mapping.

For a given x ∈ Ωt, we consider a neighborhood Qx ⊂ Ωt given by Qx =

x + (−1, 1)2. We denote by [ϕ
f
t−1]

−1(Qx) = {z ∈ Ωt−1 : ϕ
f
t−1(z) ∈ Qx} the pre-

image of Qx under the forward mapping ϕ
f
t−1. Note that this set is also defined

even when ϕ
f
t−1 is not invertible. We define the forward area as

A f
t−1(Qx) :=

∫
[ϕ

f
t−1]

−1(Qx)
dz.

To compute this integral, we extend the discrete mapping ϕ
f
t−1 to a continuous

spatial domain using a bi-linear interpolation.
If Qx is not being occluded nor dis-occluded from t− 1 to t, then [ϕ

f
t−1]

−1 is
a well defined function on Qx. That is, every point in Qx has a unique pre-image
by the forward mapping ϕ

f
t−1. Furthermore, for a locally translational flow ϕ

f
t−1,

we can expect A f
t−1(Qx) to be close to the area of Qx, given by A(Qx) =

∫
Qx

dz.
In the case of Qx = x + (−1, 1)2 we have A(Qx) = 4.

Based on the comparison between A f
t−1(Qx) and A(Qx) we will define po-

tentially occluded regions to be further examined. We add a small margin of
ε = 0.5 to the comparison, to avoid marking all pixels as potentially occluded.
We consider two cases:

1. A f
t−1(Qx) > A(Qx) + ε: There is an excess of points mapped into Qx by

ϕ
f
t−1. This situation may arise when there is an occlusion from frame t− 1

to t, causing several points in Ωt−1 to be mapped forward into the same lo-
cation at frame t. Some of them are being occluded, whereas others remain
visible. Therefore, we mark all pixels in [ϕ

f
t−1]

−1(Qx) as candidates for oc-
cluded regions, for further examination. Note that there may be other rea-
sons for which A f

t−1(Qx) > A(Qx) + ε, for example in the case of a zoom
out. In this first step, we treat all of these cases equally.

2. A f
t−1(Qx) < A(Qx)− ε: Few points are mapped by ϕ

f
t−1 into Qx. This may

occur if Qx lies in an region that has been dis-occluded from t− 1 to t. If
this is the case, some points in Qx at frame t, do not have a correspondence
in t− 1, and we mark points in Qx as candidates for dis-occluded regions
(or occluded when looking from t to t − 1). Their backward optical flow
will be examined in the second step. Note that the forward flows arriving
at the dis-occluded region might be as well wrong (no point in t− 1 should
have a correspondence in a dis-occluded region at t). Thus we also mark
them as candidates for further examination.

The same process is then applied considering the backward area mapped into
frame t− 1 from t by the backward optical flow.
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Figure 5.1(c) shows an example output of the above discussed first-step oc-
clusion detection.

Remark. A more general method for detecting occlusion candidates can be
derived based on the consistency between the forward and backward optical
flows [ADPS07]. In addition to the forward area A f

t−1(Qx), one could also de-
fine the backward area as

Ab
t (Qx) :=

∫
ϕb

t (Qx)
dz.

For an ideal optical flow, the forward and backward areas should be equal.
In an ideal case, the forward and backward flows are symmetrical (see for in-

stance [ADPS07]). Thus, the area of the pre-image of Qx under the forward flow
(A f

t−1(Qx)) and the area of the image of Qx under the backward flow (Ab
t (Qx))

should be equal. Therefore, differences between these areas could be considered
as evidence of occlusions or dis-occlusions. Cases 1 and 2 in the above discus-
sion apply, using Ab

t (Qx) instead of A(Qx). In practice, for the sequences we
used, both approaches behave similarly.

5.2 Second step, the categorization into occluded and still
visible regions

As a result of the first step, we have for each frame t two sets C f
t , Cb

t ⊂ Ωt of
potentially occluded pixels. If a pixel x belongs to C f

t , then its corresponding
position at Ωt+1, given by the forward optical flow ϕ

f
t (x) = x + v f (x, t), might

be occluded. Similarly, for a pixel x ∈ Cb
t , its corresponding backward position

ϕb
t (x) = x + vb(x, t) in Ωt−1 might be occluded. In the first step, all the analysis

has been done based on the properties of the mapping between two frames,
without considering the visibility of a pixel in the next frame. In this second
step we try to determine which pixels in C f

t and Cb
t are occluded and which are

still visible. In what follows we describe this procedure for C f
t . The same applies

to Cb
t .

We base our occlusion detection on the error between a patch from frame
t centered at x ∈ C f

t and its corresponding patch at frame t + 1, centered at
x + v f (x, t). We will denote by pu(x, t) the patch at (x, t). We define the patch
error as the squared L2 distance between corresponding patches:

e f (x) = ‖pu(x, t)− pu(x + v f (x, t), t + 1)‖2

= ∑
h∈Ωp

(u(x + h, t)− u(x + v f (x, t) + h, t + 1))2,

where Ωp ⊂ Z2 denotes the patch domain (a square neighborhood of 0 ∈ Z2 in
our case).
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To detect occluded regions we threshold e f . However, setting a constant
threshold that is not input sensitive might lead to undesired results. For that,
we set a dynamic threshold adapted to each image pair. Therefore, we pose the
occlusion detection as the following statistical test:

H0: the point at (x, t) is not occluded at t + 1

H1: the point at (x, t) is occluded at t + 1 .

As the statistic for the test we consider the patch error e f , (we assume patch
errors at different pixels to be independent). We estimate a statistical model
for H0 by constructing a histogram of patch errors using the unlabeled points
S f

t \ C f
t .

Based on this histogram, we compute a threshold τ
f

t > 0 by fixing the false
alarm rate α ∈ [0, 1], i.e. τ

f
t such that P(e f > τ

f
t |H0) < α. In this way we com-

pute an adaptive threshold for each frame transition. Patch errors above the
threshold are considered as occluded. Let us mention that this test is designed
not to be tolerant to false negatives (i.e. occluded pixels that have passed the
test and been categorized as not occluded). Because of that, it is bound to al-
low for some false positives (i.e. pixels that are not occluded being categorized
as occluded). In practice this over-estimation does not affect the quality of the
result.

After applying this second step, for each frame in the sequence, the occlu-
sion detection scheme yields two sets K f

t , Kb
t ⊂ Ωt of forward and backward

occluded pixels.
Figure 5.1(d) shows an example output of the above discussed second-step

occlusion detection.



6 Experimental results

In this Chapter we present some experimental results showing the behaviour of
the presented models in practice. Throughout this Chapter, the conversation will
be mainly based on the 2nd-order model presented above. When showing the ex-
periments, some results obtained with both models will be shown and compared
in order to provide a more qualitative assessment on the behaviour of both mod-
els. Many aspects are shared by both models: from assuming the knowledge of
the motion field (approximated by the optical flow), the discretization of the op-
erators and the use of the DSCD to the different application settings presented
in Section 2.2.1. The 2nd-order model have tackled some drawbacks and limita-
tions of the 1st-order one, however; it still retains some of them. For that, in this
Chapter we will also discuss the limitations of the 2nd-order model and propose
ways to address them. As an application, we will consider replacing the texture
of an object’s surface throughout a video sequence. We will distinguish the two
application settings discussed in Section 2.2.1: the one-lid and two-lid settings.
These differ only in the choice of the boundary conditions.

6.1 Experimental setup

Let us first describe some elements of the experimental setup.

Processing color videos. In our experiments, a color video u : Ω ×
{0, 1, . . . , T} → R3 is treated channel by channel, each as an independent scalar
video. For the 2nd-order model, this amounts to the minimization of the follow-
ing energy

Ecolor
β,λ (u) =

3

∑
i=1

Eβ,λ(ui), (6.1)

where Eβ,λ is defined for a scalar video in Eq. (4.7) and ui, i = 1, 2, 3 are the color
channels. Analogously, one can define a color energy for the 1st-order model.
Note that, although the processing of each channel is done independently, the
same optical flow (and thus the same operators) is used for all channels. We use
the RGB color space, but any other color space could be used as well.

Optical flow. In all the sequences used, we impose no restriction on the move-
ment of the camera nor the movement of the objects in the scene. For the compu-
tation of the optical flow, except when otherwise specified, we use the algorithm
described in [SRB10] and we use the code provided by the authors through the
webpage [SRB]. We also use the default parameters provided with the code.

55



56 CHAPTER 6. EXPERIMENTAL RESULTS

Parameters of the model. The results are obtained by minimizing the energy
in Eq. (6.1). Except when otherwise stated, we use β = 0.05, p = 2, λ = 0 when
no occlusions occur and λ = 0.02 otherwise. The minimization is done with the
conjugate gradient algorithm. Let us mention that the combination of odd and
even DSCDs with β = 0.05 removes most high frequency artifacts caused by
the sharpening steps. However, for some frames in certain sequences, we have
noticed that some high frequency artifacts remain mildly apparent. For that, we
apply a linear filter to the output sequence removing very high frequencies.

Editing domain. In a practical editing application, it is important to automate
the computation of the editing domain. In the present context, this amounts
to an approximate tracking of the portion of the surface that the user wants to
edit. In the experiments shown in this section we used different approaches for
computing the editing domain, to highlight the flexibility of the model on this
issue. For the experiments shown in Figures 6.2, 6.10, 6.13 the editing domain
was determined by tracking the edited surface. In Figures 6.1, 6.7 and 6.8, the
edited surface has been tracked as well, then manually distorted to simulate big
tracking errors. Finally, for the rest of the experiments we used a big rectangular
domain.

For tracking the edited surface any tracking algorithm can be used. Since we
are given an optical flow, the problem of tracking a certain object amounts to
propagating a binary mask of the object, specified at a lid (or the lids), along op-
tical flow trajectories. In our experiments we performed this propagation using
the proposed model. The output corresponds to a mask tracking the edited sur-
face along the video, which gives the editing domain. Note that for the particular
case of a one-lid propagation of a binary mask, the minimum of the proposed
energy can be computed efficiently by a frame by frame propagation. The rea-
son is that this problem has compatible boundary conditions, thus the minimum
is attained with zero energy. In a two-lid setting (for instance in the presence of
an occlusion) the solution can be approximated by two frame by frame propa-
gations, the first propagating the first lid forward, and the second, the last lid
backward. These can be combined by a point-wise maximum.

In what follows we first present four experiments for the one-lid setting, then
we present three more experiments for the two-lid setting. We then comment
briefly on the behaviour of different optical flow algorithms in the context of
this work by experimenting with several of them proposed in the literature. Fi-
nally we discuss some practical limitations of the 2nd-order model and we offer
ways to overcome some of them. For every experiment below we show the
original video sequence, the input to our model where the editing domain has
been painted in red indicating the absence of data, and the output video after
minimizing (6.1). Due to the difficulty of actually showing all frames processed,
we only show a few snapshots from the processed sequence. For the full video
sequences used and the results obtained, we refer the reader to the following
webpage [SFAC].
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Figure 6.1: The first row shows the original sequence. A person is moving
casting a shadow on the table while a light reflection is also cast on the table.
The second row shows the input sequence where the editing domain has been
marked in red. The third row shows the output of the 2nd-order model. Rows
four and five show respectively the output of the first and second step of the
1st-order model with p = 2. From left to right, the frames shown correspond to
t = 0, 25, 50, 75 and 100 respectively.

6.2 One-lid setting

In this setting, the editing is performed on the first frame. The edited first frame
is then set as a Dirichlet boundary condition and, by minimizing energy (6.1),
we obtain the output video with the editing propagated along the remaining
frames. We present four experiments.

In the first one, the video contains a newspaper placed on a table. After sev-
eral frames, a moving light starts illuminating the newspaper and a shadow is
cast by a moving person. We replace the newspaper in the first frame of the
sequence by a logo and we minimize (6.1). The result shown in Figure 6.1
demonstrates how our model handles this complex illumination change. The
total length of the sequence is 106 frames with around 5 · 105 variables inside
the editing domain. Figure 6.1 also shows the result obtained with the 1st-order
model for p = 2. The result of the 1st-order model for p = 1 is similar.

The second experiment involves a video of a newspaper placed on a table
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Figure 6.2: The first row shows the original sequence. A newspaper is filmed
while the camera moves and the light in the room is being dimmed. The second
row shows the input sequence after editing the first frame and where the editing
domain has been marked in red. The third row shows the output of our method.
Note how the resulting video accommodates this fast and sudden illumination
change along time. For comparison we show results obtained using the two-step
procedure of the 1st-order model. In the fourth row the output of the first step:
it is temporally consistent, but not spatially consistent. The fifth row shows the
final result after the second step. The spatial discontinuity around the editing
domain has been removed, but note how the new GBC model integrates the
illumination change better. From left to right, the frames shown correspond to
t = 0, 13, 18, 24 and 29 respectively.
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Figure 6.3: Magnitude of the illumination change rate (measured as the norm
of the convective derivative) for the results shown in Figure 6.2. The first row
shows the norm of the convective derivative for the GBC model (third row in
6.2). Last two rows show the norm of the convective derivative for the two-step
procedure of the 1st-order model. The second row corresponds to the output of
the first step (fourth row in 6.2), and the third row to the result after the second
step (fifth row in 6.2). From left to right, the frames shown correspond to t =
1, 11, 17, 18 and 29 respectively (note that the shown frames differ from those
shown in Figure 6.2).

and the light in the room gets dimmed until its off. This causes a considerably
large and fast global illumination change. In particular, notice that due to the
change in the illumination in the room, there is a change in the dominant color:
the colors shift towards blue as the light gets dimmed. We place a poster on top
of the newspaper and minimize energy (6.1). Figure 6.2 shows the result. It can
be seen that this large and sudden illumination change is handled by the GBC
model. The total number of frames of the sequence processed in this experiment
is 30 with approximately 9 · 105 variables inside the editing domain.

For comparison purposes, we show the result obtained with the 1st-order
model which uses a temporal consistency model based on the brightness con-
stancy assumption. As we have already discussed, using that model needs a
two step process (similar to [BZS+07]). The first step propagates the informa-
tion from the lid using the brightness constancy model and the second step
solves a Poisson editing problem for each frame which takes care of the spa-
tial consistency of the editing. For the first step, we show the sequence obtained
in the fourth row of Figure 6.2. The inability of the brightness constancy model
to adapt to the illumination change in the scene causes spatial discontinuities
around the editing domain. To remove them the second step is performed. The
gradient of the first step’s result is used as guiding vector field for the Poisson
problems. This second step is aimed to adapt each edited frame to its spatial
context by means of the boundary conditions of the Poisson equation, integrat-
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ing the gradients of the propagated first lid. Thus, we can interpret this two-step
procedure as an implementation of the gradient-constancy assumption. Solving
a Poisson problem for each frame independently generates a flickering artifact
in the resulting sequence. To avoid it, the brightness constancy model is used as
a temporal regularizer with a low weight. The resulting sequence of the second
step is shown in the fifth row of Figure 6.2.

This two-step procedure achieves a spatially and temporally consistent edit-
ing. However, notice that the result of the GBC model integrates much better
the illumination change into the editing (in particular notice that the colors in
the editing domain shift gradually towards blue, in accordance with the change
in the dominant color of the scene). The main reason for this, is the brightness-
constancy-based temporal regularization term added to the second step. Even
if it has a low weight, this regularizer causes a slow reaction to fast illumination
changes. This can be better appreciated in Figure 6.3, where we show the norm
of the convective derivative for the results of both the 1st- and 2nd-order models.
The norm of the convective derivative measures the illumination change rate.
High values (shown in white in Figure 6.3) denote that an illumination change
is happening. The result of the GBC model smoothly interpolates the illumi-
nation change rate at the boundary of the editing domain, resulting in a better
integration of the editing with the surrounding. The result after the first step
of the 1st-order model has an almost zero illumination change rate, as expected
from the brightness constancy model. This is corrected to some extent after the
second step, but still the result has a limited capability to adapt for high illumi-
nation change rates.

In the third experiment we show a piece of cloth which exhibits a “wave" like
movement. We edit the first frame and we minimize (6.1). Figure 6.4 shows the
result. The total number of frames processed in this sequence is 20 with approx-
imately 10 · 105 variables inside the editing domain. Note how the deformation
of the inserted image follows the deformation of the cloth. For this sequence
the optical flow was computed using a multi-scale Horn-Schunck optical flow
algorithm [MLS12].

In the last experiment we show for the one-lid setting, we consider a se-
quence taken from [LFAW08] which is available through the webpage [LFAW].
A video of a box and of a cylindrical can is shot. Throughout the sequence, the
box and the can are occluding the background before finally interacting when
the can occludes the box. We edit the first frame by modifying the textures on
both objects and minimize (6.1). Figure 6.5 shows the result. Note that the edit-
ing domain includes large portions that do not belong to the edited surfaces.
These places should keep the texture they had in the original video. The result
shows that the model has been able to reconstruct the original textures seam-
lessly. This demonstrates that a precise tracking of the edited surfaces is not
required. The total number of frames in the sequence is 13 with 9 · 105 variables
inside the editing domain. The results shown are snapshots taken every two or
three frames.
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Figure 6.4: The first row shows the original sequence of a cloth exhibiting a
“wave" like motion. The second row shows the input sequence after editing the
first frame and where the editing domain has been marked in red. The third row
shows the output after minimizing (6.1). Note how the editing done accommo-
dates to the movement of the cloth in the resulting video. From left to right, the
frames shown correspond to t = 0, 7, 8, 9, 10 and 20 respectively.

Figure 6.5: The first row shows the original sequence. A box and a cylindrical
can are being filmed while the camera moves. The second row shows the input
sequence after editing the first frame and where the editing domain has been
marked in red. The third row shows the output after minimizing (6.1). From left
to right, the frames shown correspond to t = 0, 2, 5, 9 and 12 respectively.
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6.3 Two-lid setting

In this setting, the editing is performed on the first and last frames. These are set
as Dirichlet boundary conditions and, by minimizing energy (6.1), we obtain the
output video with the editing propagated into the remaining frames. Basically,
the result is a smooth interpolation between the two edited frames along the
trajectories of the optical flow.

The first experiment is shown in Figure 6.6, and uses the same sequence of
Figure 6.5. We edit the first frame as in Figure 6.5, by introducing the yellow text
on the blue box, and the formula on the can. For the last frame, we only change
the color of the formula on the can, from yellow to red. No text is added on the
box. In the resulting sequence, the formula and the text move coherently with
the can and the box respectively. While moving, the formula changes its color
smoothly from yellow to red, and the text in the box gradually vanishes. This
demonstrates the interpolation between both lids along the optical flow trajecto-
ries. Note that the second “i" in the text “rishi" does not vanish as expected. The
reason is that this part of the box is occluded in the last frame. In that specific lo-
cation, the solution behaves as in a one-lid setting, propagating the information
from the first frame only.

The inconsistent editing of the lids in this experiment gives a good insight on
the working of the model. It puts in evidence the differences in the behaviour of
trajectories reaching both lids and those reaching only one lid. For trajectories
that reach both lids, the result is a smooth interpolation between the information
present at those lids. This can be seen clearly from the smooth transition of the
formula’s color from yellow to red and the smooth vanishing of the “rish” text.
On the other hand, for trajectories that only reach a single lid (for instance due to
an occlusion) the problem becomes a one-lid problem and the information will
be transported from that lid only. This is what actually happens with the second
“i" in the text “rishi": these trajectories do not reach the second lid, and therefore
the “i" is being transported from the first lid. As a consequence, if the purpose of
the editing is to perform a blending between two lids edited in a non-consistent
manner, it is imperative that every trajectory in the editing domain reaches both
lids.

When the application is to edit an object’s surface with a non-changing tex-
ture, the editing in both lids has to be consistent. This way, there will be no
appreciable differences between one-lid trajectories propagating data from one
of the lids, and two-lid trajectories blending data from both lids. In this context,
consistent editing means consistency with the motion in the scene, and consis-
tency with the overall change in illumination from the first lid to the last. The
motion consistency implies that the editing in the second lid corresponds to the
warping of the editing in the first lid according to its motion. The consistency
with the illumination change implies that the editing in the second lid suffers
approximately the same (additive) illumination change as its surrounding with
respect to the first lid. In practice, inconsistencies in the editing of both lids are
tolerable.

The second experiment, shown in Figure 6.7 depicts a computer screen which
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Figure 6.6: The first row shows the editing done in the first and last frames and
the domain has been marked in red. The second row shows the output after
minimizing (6.1). Note how the result is a smooth interpolation between the
two lids. Let us mention that the original sequence of the experiment is the first
row of Figure 6.5. From left to right, the frames shown correspond to t = 0, 2, 5, 9
and 12 respectively.

Figure 6.7: The first row shows the original sequence. A screen is filmed when
a person sitting on a chair moves in front of it. The second row shows the input
sequence after editing the first and last frames and where the editing domain
has been marked in red. The third row shows the output. From left to right, the
frames shown correspond to t = 0, 4, 12, 16 and 19 respectively.
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Figure 6.8: The first row shows the original sequence. A pen-holder is filmed
while it gets occluded by black bag. The second row shows the input sequence
after editing the first and last frames and where the editing domain has been
marked in red. The third row shows the output after minimizing (6.1). From left
to right, the frames shown coorespond to t = 0, 16, 26, 36 and 42 respectively.

gets almost completely occluded, and then dis-occluded, by a person moving in
front of it. We replace the image on the screen by an image of corals, both in
the first and the last frames. The sequence consists of 20 frames with more than
4 · 105 variables in the editing domain.

Finally, in the third experiment, we edit a pen-holder lying on a table. The
pen-holder gets partially occluded then dis-occluded by a black bag. We edit
the curved surface of the pen-holder in both the first and last frames and place
the image of the corals on it. The total number of frames of this sequence is 43
with around 106 variables in the editing domain. Figure 6.8 shows the result
obtained after minimizing (6.1). For this experiment we found better results
with the addition of a temporal regularization term as mentioned at the end of
Section 4.3 with a weight γ = 0.02.

6.4 Discussion on the limitations of the proposed method

In this Section we would like to discuss, with some practical details, the limita-
tions of the proposed method and propose ways to overcome some of them.
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Figure 6.9: Experiment showing the behaviour of the model using four different
optical flow algorithms. We show only one frame for each result. The com-
plete result sequences can be found in [SFAC]. From left to right, the images
correspond to using the optical flow algorithm presented in [SRB10], [CP11],
[ARS11] and [BM11] respectively.

Optical flow related. It is well known that optical flow algorithms compute
apparent motion, not the true motion of the scene. This implies that in some cir-
cumstances, as in the presence of moving shadows, the optical flow may not
give a correct estimation of the true motion. If the apparent motion and the true
motion coincide then using the optical flow gives very good results. If not, rely-
ing on apparent motion will likely give rise to visual artifacts. Confronting these
situations is a current trend of research in the optical flow community, for exam-
ple by incorporating gradient-based terms for handling illumination changes, or
segmenting the scene to improve the occlusion handling. These improvements
will in turn expand the applicability and performance of the presented models.
To highlight the dependence on the optical flow, we show two experiments.

In the first one we test four optical flow algorithms from the literature, ap-
plying them on the two-lid editing problem shown in Figure 6.7. We used the
following optical flow algorithms: the large displacement optical flow algorithm
of Brox and Malik [BM11], the TV-L1 optical flow of Chambolle and Pock [CP11],
the optical flow with sparse occlusion detection of Ayvaci et al. [ARS11] and fi-
nally the layer-based algorithm of Sun et al. [SRB10]. For all optical flows, we
use the code provided by the authors with the default parameters. For the opti-
cal flow algorithms presented in [BM11], [CP11] and [SRB10], since no occlusion
masks are given by the algorithms, we use the occlusion detection method de-
scribed in Appendix 5. The optical flow of [ARS11] provides occlusion masks
and we use them (after a dilation of two pixels) to handle occlusions. Figure 6.9
shows one frame from the result of the 2nd-order model using the above dis-
cussed optical flow algorithms. We have chosen a frame where the differences
between the different algorithms is apparent. Let us recall that the complete set
of results can be found in [SFAC]. For all tested optical flow algorithms, the
model behaves similarly and is able to handle the occlusion. The differences
in the results are due to the differences in the motion perceived by each optical
flow method. For example some optical flows show a “dragging” effect: parts of
the screen that are about to be occluded by the head seem to be dragged by the
head instead of being occluded. The reason is that the optical flow algorithm
has assigned the movement of the head to these parts of the screen. It might
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Figure 6.10: The first row shows the original sequence. A person wearing a shirt
moves by bending down and straightening back up. The second row shows the
input sequence after editing the first frame and where the editing domain has
been marked in red. The third row shows the output after minimizing (6.1).
From left to right, the frames shown correspond to t = 0, 9, 19, 26, 33, 38, 41 and
44 respectively.

also be interesting to test the proposed model with other optical flow methods
which incorporate the temporal consistency in the computation of the optical
flow [SS07, SSB12, VBVZ11]. It has been reported that considering a larger num-
ber of frames improves on the accuracy of the optical flow.

In the second experiment, in Figure 6.10 we show a different kind of arti-
facts. In this experiment, we edit a part of a shirt being worn by a person by
adding to it the “UPF" logo. The person bends over and then straightens back
up. While straightening up, the shirt suffers severe deformations. At that point,
inaccuracies in the optical flow result in unnatural distortions of the transported
texture (second half of the sequence). However, let us note that the model cor-
rectly handles the local illumination change caused by the shadow cast by the
shirt on itself while bending. The result was obtained by minimizing (6.1). The
total number of frames of this sequence is 35 with around 5 · 105 variables in the
editing domain.

Multiple occlusions. So far we have covered the following basic situations:

a) A single occlusion or dis-occlusion occurs. This can be treated as a one-lid
setting, for an occlusion the lid is placed at t = 0, and for a dis-occlusion
the lid is at t = T.

b) An occlusion followed by a dis-occlusion occurs. This can be handled by
a two-lid setting, where the lids are at t = 0 and t = T.
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Cases with multiple occlusions and dis-occlusions of the edited surface can be
handled by temporally splitting the editing domain into temporal segments that
fall into the above a) and b) basic cases. The splitting of the editing domain
amounts to adding lids at the splitting frames. To illustrate this we consider a
sequence taken from [LFAW08], available online through the webpage [LFAW].
Figure 6.11 shows an experiment with multiple occlusions of the edited surface.

A hand is moving back and forth, repeatedly dis-occluding and occluding
a disk-shaped object in the background. The Figure shows first the result ob-
tained by setting a lid at frame t = 8, after the first dis-occlusion. This splits the
sequence into two one-lid problems: one from t = 0 to t = 8, and another from
t = 8 to t = 44 (the last frame). In the second segment there is still one occlu-
sion followed by a dis-occlusion and yet another occlusion towards the end. No
trajectories from the lid reach the region that gets dis-occluded, and we can see
what sort of artifacts one expects to see in regions where no information from the
lid is arriving. As shown in the Figure, this can be corrected by further splitting
the sequence and adding an intermediate lid before the last occlusion starts. Let
us also mention that the occlusions in this experiment have been detected using
the procedure described in Appendix 5.

In summary, the rule is to ensure that all trajectories inside the editing do-
main reach at least one Dirichlet boundary condition.

Big zooms and tilts. Consider the case of a one-lid setting where the editing
has been performed on the first frame and a camera is doing a big zoom-in on
the edited object. The resolution of the object increases considerably with time.
The method will propagate the low resolution information given at the lid and
will not recover a higher resolution version of the propagated information. The
resulting propagation will be blurred. However, this could be solved by editing
the last high resolution frame and propagate that editing backwards. Figure 6.12
shows an example.

Consider now the case where a big zoom-out is followed by a big zoom-in.
This problem can be solved in a two-lid setting where both lids are at high reso-
lution. Figure 6.13 shows an example where a cloth is being laid down on a table
and then taken back to its original position. This simulates the just discussed
example with an added tilt transformation as well. We show two results in a
one-lid setting with different interpolation schemes (bi-linear and bi-cubic) and
one result in a two-lid setting. Notice how in the second half of the sequence,
when zooming-in, the one-lid result presents considerable blur with the bi-linear
interpolation, particularly at the last frames where the resolution increases sig-
nificantly. Using the bi-cubic interpolation, the result is much sharper but it still
suffers from blur artifacts. Adding a second lid at the last frame solves this is-
sue. Let us also note that a considerable illumination change also occurs in the
sequence and the method deals with it seamlessly. The result was obtained by
minimizing (6.1). The total number of frames of this sequence is 53 with around
5 · 105 variables in the editing domain.

Let us note that this limitation comes as a consequence of propagating a tex-
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Figure 6.11: The first row shows the original sequence. A hand is mov-
ing back and forth, dis-occluding and occluding a disk-shaped object repeat-
edly in the background. From left to right, the frames shown correspond to
t = 0, 8, 20, 26, 30, 33, 37 and 44 respectively. The second row shows the input
sequence after editing frame 8 by removing the disk-shaped object and setting
it as a lid. It also shows the remaining frames and the editing domain marked
in red. The third row shows the output after removing the object in frame 8 and
propagating the modification back to frame 0, and forward until frame 44 by
minimizing (6.1) in a one-lid setting. Note that the first dis-occlusion (from 0 to
8) is correctly handled as well as the first occlusion (from 8 to 20). But, as a new
dis-occlusion starts around frame 26, no information is reaching this area from
the lid (frame 8) and it appears as if the hand spills its color into this area. This
double occlusion could be handled by editing the frame 33 and setting it as a
second lid, as shown in fourth row. In this experiment, the occlusions have been
detected using the procedure described in Section 5.

Figure 6.12: An experiment simulating the case of a zoom in. The first row shows
the original sequence. The second row shows the input sequence after editing
the last frame and where the editing domain has been marked in red. The third
row shows the output after minimizing Eq. (6.1) in a one-lid setting. Notice that
we have edited the lid high-resolution to obtain a non-blurry result. From left to
right, the frames shown correspond to t = 1, 13, 23, 33, 40 and 46 respectively.
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ture using correspondences between adjacent frames. Other methods such as
[BGD+10, ST08, RAKRF08] establish a transform between an input texture and
all other frames in the sequence. The computation of these transforms is not triv-
ial. In the case of [RAKRF08], the method relies on an accurate video segmen-
tation, keypoint tracking and non-convex optimization in order to compute the
mappings. On the other hand, and more related to this work, [BGD+10, ST08]
integrate the optical flow to compute a set of trajectories covering the editing
domain. This requires dealing with complexities inherent to the explicit man-
agement and computation of trajectories. In any case, these methods need post-
processing steps in order to deal with illumination changes and filling-in holes
that are not covered by the mapping (for instance due to occlusions). In our
approach trajectories are dealt with implicitly, illumination correction is intrin-
sic to the model, and the filling-in of small holes caused by occlusions is taken
care by the regularization term in the energy. This is attained by a single convex
minimization process.
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Figure 6.13: An experiment simulating the case of a zoom out with tilt followed
by a zoom in and tilting back to the original position. The first row shows the
original sequence. The second row shows the input sequence after editing the
first frame and where the editing domain has been marked in red. The third row
shows the output after minimizing Eq. (6.1) in a one-lid setting. The artifacts
are clear when coming back from low-resolution to high resolution. The fourth
row shows the output when using the bi-cubic interpolation scheme in a one-lid
setting as well. It can be noticed that the artifacts diminished but they are still
visible. The last row shows the output in a two-lid setting where the artifacts
have been dealt with. From left to right, the frames shown correspond to t =
0, 16, 19, 26, 32, 39, 44 and 53 respectively.
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Figure 6.14: Magnitude of the illumination change rate (measured as the norm
of the convective derivative) for the results shown in Figure 6.13. The first
row shows the norm of the convective derivative for the GBC model (third row
in 6.13). The second and third rows show the norm of the convective derivative
for the two-step procedure of the 1st-order model. The second row corresponds
to the output of the first step (sixth row in 6.13), and the third row to the result
after the second step (seventh row in 6.13). From left to right, the frames shown
correspond to t = 22, 23 and 24 respectively (note that the shown frames differ
from those shown in Figure 6.13). We would like to note that the intensities of
the images have been saturated (in the same manner) in order to show better the
contrasts.





7 A note on frame interpolation

In this Chapter we propose an interpolation method that produces a sequence of
plausible intermediate frames between two input images. The main feature of
the proposed method is the handling of occlusions using a time coherent video
segmentation into spatio-temporal regions. Occlusions and dis-occlusions are
defined as points in a frame where a region ends or starts, respectively. Out of
these points, forward and backward motion fields are used to interpolate the
intermediate frames. After motion-based interpolation, there may still be some
holes which are filled using a hole filling algorithm.

7.1 Overview

Our purpose in this Chapter is to propose an interpolation method to produce
a sequence of plausible intermediate images between two input images. We
consider the applications to slow camera motion for smooth playback of lower
frame rate video, smooth view interpolation and animation of still images.

Given two frames extracted from a certain video sequence, the problem is
to generate as many intermediate frames as needed so that a slow motion effect
occurs when played back at a normal frame rate.

Recent progress in optical flow estimation [BBPW04, BM11, SRB10] provides
optical flows of sufficient quality for intermediate frame interpolation One of
the main difficulties that has to be tackled in frame interpolation is the occlusion
effects. Points visible at time t that get occluded at time t + 1 should not have
a corresponding point at frame t + 1. Similarly, points that appear at time t + 1
should have no correspondent at time t. Frame interpolation algorithms have to
detect such occlusions in order to correctly decide how to interpolate.

Most current optical flow estimation methods do not directly compute oc-
clusions and assign an optical flow to each pixel of each frame. If we blindly
use the optical flow, artifacts are generated. They are specially visible at mov-
ing occlusion boundaries. This difficulty is usually handled by analyzing the
forward and backward motion fields in order to decide from which image we
interpolate. In this chapter we propose to address the occlusion effects by us-
ing a spatio-temporal segmentation of the video sequence. This segmentation
allows us to interpret the sequence as a set of spatio-temporal regions whose
temporal boundaries give us information about their “birth" and “death". As
a result, we are able to extract a set of candidate occluding and dis-occluding
points. Forward and backward motion fields are then used to interpolate the
intermediate frame taking into account the latter points. After motion-based in-
terpolation, there may still be some holes which are filled using a suitable hole
filling algorithm [CPT04b, AFCS11].

73
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7.1.1 Previous work

There are many works in the literature devoted to intermediate frame interpola-
tion. Many of them are based on establishing correspondences between consecu-
tive pairs of images. They are usually computed by means of block based motion
estimation or dense optical flow. The former has been applied to frame-rate con-
version for digital television. The image is divided into a set of non-overlapping
blocks and forward and/or backward motion compensation is performed to cre-
ate the interpolated frame [CRT90]. Occlusion effects are handled by analyzing
the forward and backward motion fields in order to decide from which frame
to interpolate. In [DN04] the authors conclude that the averaging technique is
appropriate if forward and backward prediction errors are equal. In other cases,
they conclude with theoretical results that the filter taps associated to the motion
compensation have to be adapted to the reliability of the motion vectors.

Frame interpolation also has been tackled by means of dense optical flow.
Most of current optical flow approaches compute the forward motion field based
on the work of Horn and Schunk (see [BSL+11]). Other authors compute a sym-
metric optical flow by means of a penalty term in their model [ADPS07, IK08]
which permits to define occlusion regions.

In the context of frame interpolation, [BSL+11] propose a simple method for
frame interpolation and occlusion handling based on forward splatting which
only uses the forward flow. In [HSB09] the authors enhance the latter approach
by means of forward and backward splatting. Occlusion is detected by assess-
ing the flow consistency of the forward and backward flows at the intermediate
frame. Holes are treated by extending, at the intermediate frame, the motion
vectors of neighboring pixels using a Markov Random Field (MRF). [LLM10]
presents a long-range correspondence estimation technique that includes SIFT,
edge and symmetry data terms. Occlusion also is detected by assessing the co-
herence between the two flows. The interpolated image is created by using a
graph-cut based approach that decides at each pixel from which image the color
information is taken.

In [MHM+09] the authors present a method based on graph cuts which is
based on the idea that a given pixel traces out a path in the source images. Their
method can be viewed as an inverse optical flow algorithm: they compute the
location of a given intermediate pixel in the input images. Occlusion effects are
again tackled by assessing the consistency between the forward and backward
flows. The advantage of their method is that no holes are created and thus they
need no treatment for them.

7.1.2 Summary of the proposed method

We briefly summarize the main Steps of our algorithm. Let I(x, y, t) be a video
sequence. For simplicity we consider that the video is sampled at times t =
0, 1, 2, . . .. The image domain Ω is a rectangular grid in Z2.

Step 1 : We compute the forward (u, v) and backward (ub, vb) optical flows. For
that we use the algorithm [BM11] (see Section 7.2.1). As an alternative, we
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can also use [SRB10]. Both estimate a forward flow between images t and
t + 1 and have no occlusion treatment. The binary executables for both
algorithms are publicly available.

Step 2 : Using the forward flow we compute a time consistent segmentation of
the video sequence (see Section 7.2.2).

Step 3 : Potential occlusions are then derived from Step 2. We then interpolate
the intermediate frames using the idea of forward and backward splat-
ting described in [HSB09] (see Section 7.2.3). The result may contain holes
made of points which could not be interpolated.

Step 4 : The holes are filled-in using an inpainting strategy (see Section 7.2.4).

7.2 Algorithm Description

7.2.1 Optical Flow Computation

For the computation of the optical flow we can use any optical flow producing
good results. Our experiments have been done with the optical flow algorithm
proposed in [BM11] which uses HOG (Histogram of Oriented Gradients) de-
scriptors in order to be able to follow fast motions. Estimated motion vectors
are required to follow descriptor matchings. As an alternative, we can also use
[SRB10].

7.2.2 Time Coherent Video Segmentation

As stated previously, the objective is to create a time consistent segmentation of
the video sequence. We consider the video sequence as a volume of 3D data.
Our segmentation is based on the simplified Mumford-Shah model. Given the
video sequence I(x, y, t), the simplified Mumford-Shah model approximates I
by a piecewise constant function Ĩ(x, y, t) = ∑O∈P mOχO(x, y, t) that minimizes
the energy

N

∑
t=0

∑
x∈Ω

(I(x, y, t)− Ĩ(x, y, t))2 + λ ∑
O

Area(∂O), (7.1)

where λ > 0, P is a partition of Ω× {0, . . . , N} into connected regions O, and
Area corresponds to the area of the interface that separates two spatio-temporal
regions. Note that the area for each interface is counted twice in Eq. (7.1), but
this amounts only to a replacement of the value of the parameter λ by λ/2.
As explained in [KLM94], the parameter λ controls the number of regions of the
segmentation. For a given partition P , the constant mO is the average of I(x, y, t)
in the region O.

We replace the classical notion of connectivity by a time compensated one.
For that we construct a graph whose nodes are the pixels of the video, i.e.
{(x, y, t) : (x, y) ∈ Ω, t ∈ {0, . . . , N}}. There are two types of edges in
the graph: spatial and temporal ones. Spatial edges connect a pixel (x, y, t)
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to its 8-neighborhood in frame t. Temporal edges are defined using the pre-
computed forward optical flow. If the flow vector for pixel (x, y, t) is (u, v),
then we add to the graph an edge joining pixel (x, y, t) to pixel (x′, y′, t′) =
(x + [u], y + [v], t + 1), where the square brackets denote the nearest integer.
This graph gives us the 3D neighborhood of each point (x, y, t). This permits
an easy adaptation of the algorithm in [KLM94]

For a given λ and following [KLM94], the energy is optimized with a region
merging strategy that computes a 2-normal segmentation. A 2-normal segmen-
tation is defined by the property that merging any pair of its regions increases
the energy of the segmentation. Notice that 2-normal segmentations are typ-
ically not local minima of the functional; however, they are fast to compute
and useful enough for our purposes. The region merging strategy consists in
iteratively coarsening a given pre-segmentation, which is stored as a region-
adjacency graph. Each edge of this graph is marked by the energy gain that
would be obtained by merging the corresponding pair of regions into one. Then,
at each step of the algorithm the optimal merge – the one that leads to the best
improvement of the energy – is performed, thus reducing the region adjacency
graph by one region and one or more edges. The energy gain is recomputed
for the neighbouring regions and the algorithm continues to merge as long as
they produce some improvement of the energy functional. Note that the param-
eter λ of the energy functional controls the number of regions of the resulting
segmentation. When finding 2-normal segmentations by region merging, this
parameter can be automatically set by specifying directly the desired number of
regions.

In practice, we do not know which value of λ will produce a good segmenta-
tion. For that reason we proceed as follows: we create a set of partitions that are
obtained by successively increasing λ (e.g. dyadically). Each partition is com-
puted by taking as input the previously obtained partition and merging regions
as described in the previous paragraph. The algorithm starts with a low value
of λ using the time-connected graph described above, and stops when the triv-
ial partition is obtained. The history of all the mergings is stored in a (binary)
tree, whose nodes represent each region of the segmentation at some iteration.
The leafs of this tree are the pixels of the input video. The internal nodes of this
tree are regions appearing at some iteration, and the root of the tree is the whole
video. While the tree is being built, each node is marked with the value of λ at
which the corresponding region has been created.

Once this tree is built, it can be cut at any desired value of λ in real-time,
to produce segmentations at different scales. We call tubes the spatio-temporal
regions of the resulting partition (see Figure 7.1). The tubes encode a temporally
coherent segmentation of the objects in the video, which can be used for several
purposes (e.g. tracking). We use them here in order to determine potential oc-
clusions by analyzing their temporal boundaries. Any connected tube O has a
starting and an ending time, denoted by Ts

O and Te
O, respectively. The section of

O at time t is denoted by O(t) = {(x, y) ∈ Ω : (x, y, t) ∈ O}. Thus O starts (resp.
ends) with the spatial region O(Ts

O) (resp. O(Te
O)).
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1
3

Figure 7.1: This figure illustrates the concept of tubes as we describe it here. We
see a tube that ends at t, a tube that starts at t + 1 and a tube that continues
through frame t.

7.2.3 Intermediate Frame Interpolation

Given two video frames I0 and I1 at times t = 0 and t = 1 respectively, our pur-
pose is to interpolate an intermediate frame at time t = δ ∈ (0, 1). For that issue
the forward and backward motion fields are first estimated. In order to deal
with the occlusion effects, we use the information of the temporal boundaries
obtained with our time coherent segmentation algorithm. Intuitively, a given
pixel (x, y, t) at t = 0 is forward projected if it is not in a dying spatio-temporal
region. Similarly, a given pixel (x, y, t) at t = 1 is backward projected if it is
not in a spatio-temporal region that has been born there. Let us now go into the
details of the algorithm.

The frame interpolation algorithm starts by marking all pixels to be interpo-
lated as holes. Then two stages are performed: in the first stage a forward pro-
jection is done; in the second a backward projection is performed to (partially)
fill in the holes that the first stage may have left.

For the first stage we use the forward optical flow (u, v) from t = 0 to t = 1.
Let F (t = 0) be the set of pixels of frame t = 0 which do not belong to tubes
that end at time t = 0. This information is contained in the data structure that
we developed for the spatio-temporal segmentation.

Let us describe the forward projection step. It is based on the idea of splatting
described in [HSB09].

For a given pixel (x, y, t = 0), let pδ = (x, y) + δ(u, v) be the forward
projected point of the pixel. Note that pδ may be a non-integer point. Let
p00

δ = bpδc be the pixel whose coordinates are given by the integer parts of
the coordinates of pδ, and let pab

δ = p00
δ + (a, b) for (a, b) = (0, 1), (1, 0), (1, 1),

the four points bounding the square containing pδ. We assign the flow (u, v) to
each pixel pab

δ and compute its forward and backward projections: let them be
pab

0 = pab
δ − δ(u, v) and pab

1 = pab
δ + (1− δ)(u, v). The values I0(pab

0 ) and I1(pab
1 )

are computed using bilinear interpolation.
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The pixel (x, y, t = 0) is forward interpolated if pixel (x, y, t) belongs to
F (t = 0) or if

|I0(pab
0 )− I1(pab

1 )| ≤ τ, (7.2)

where τ > 0 is a pre-specified tolerance value (in our experiments, we take the
value τ = 10). If the previous conditions do not hold, then we do not forward
interpolate.

Figure 7.2: A case of inconsistent interpolation as explained in the text.

Equation (7.2) allows to deal with pixels which are part of objects that are vis-
ible in both frames I0, I1 (and thus belong to a continuing tube) but are occluded
in frame I1, inheriting the optical flow of the visible object as an effect of the
regularization terms (see the pixel p in Figure 7.2). In that case, the correspon-
dents of both points (p, t) and (q, t) in Figure 7.2 go through (p, t + δ) and we
expect that the candidate interpolation from I(p, t) and I(p′, t + 1) is discarded
because of inconsistent gray level values, while the interpolation between I(q, t)
and I(q′, t + 1) is retained because it satisfies (7.2).

In case the pixel (x, y, t = 0) can be forward interpolated, the pixels at pab
δ are

computed as
Ĩδ(pab

δ ) = (1− δ)I0(pab
0 ) + δI1(Pab

1 ) (7.3)

and marked as interpolated.
The previous process is repeated for all pixels. We scan all pixels at t = 0

from left to right and top to bottom. For each pixel we proceed as described
above. In case multiple interpolated values are assigned to a intermediate pixel,
we assign to it the average of all values Ĩδ(pab

δ ) for pab
δ = (x̄, ȳ).

Once the first stage has been performed, the algorithm now uses the back-
ward flow to deal with the holes the first step may have left. Note that all pixels
labeled as interpolated (in the first stage) are not altered. The algorithm is basi-
cally the same as the one described before but in this case a backward projection
is done, replacing F (t = 0) by F (t = 1). Here F (t = 1) is defined as the set of
tubes that do not begin at time t = 1. This can be easily checked on the graph
(which has been constructed using the forward flow).
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7.2.4 Filling the Holes

Holes appear inevitably due to occlusions, dis-occlusions, or during the inter-
polation process due to the expansive or contractive character of the flow. Some
occlusions may generate ending tubes at time t (which should not be images of
the backward flow). Thus, we do not project those pixels forward for interpola-
tion. Dis-occlusions are not images (and some of them may be starting tubes) of
the forward flow and may also generate holes. To fill-in the remaining holes we
use an inpainting strategy. Each pixel in a hole of Iδ is filled in by an exemplar
based interpolation as in [AFCS11] (see also [CPT04b]). To fill a pixel in frame t
we search for patches in the previous and next frames. To reduce the searching
area we search in regions of frame t (resp. t + 1) determined by the optical flows
of pixels bounding the hole. The search of best patches can be accelerated using
the Patch-Match algorithm [BSFG09].

7.3 Experimental results

Let us display some experiments. Figure 7.3 shows the interpolation
between two different frames of the sequence MiniCooper, available at
http://vision.middlebury.edu/flow/data/. The person is closing the door at
the back of the car. The maximum displacement is 17.28. From left to right and
top to bottom, the first and last images belong to the original sequence. The four
intermediate frames have been interpolated. In Figure 7.4 we show the holes
generated by the interpolation process. The left image shows the holes after for-
ward interpolation, the right image shows the remaining ones after backward
interpolation. Those are the ones that are filled-in by inpainting. In Middlebury
an intermediate frame is given for comparison. It corresponds to the fourth im-
age in Figure 7.3. The RMSE is in this case 4.2440.

Figure 7.5 shows the interpolation between two different frames of the se-
quence Foreman. The person is opening the mouth and some regions are dis-
occluded. The maximum displacement is 9.8331. From left to right and top
to bottom, the first and last images belong to the original sequence. The four
intermediate frames have been interpolated. In Figure 7.6 we show the holes
generated by the interpolation process. The left image shows the holes after for-
ward interpolation, the right image shows the remaining ones after backward
interpolation which we filled-in by inpainting.

Figure 7.7 shows the interpolation of four frames from a sequence where a
placard is being disoccluded. Figure 7.8 shows the interpolation of an interme-
diate frame in the sequence Urban taken from Middlebury. The camera moves
right and there are occlusions between buildings. The experiments displayed
here can be found in http://www.dtic.upf.edu/∼cballester/demos/scm .

In our experiments the computation time per frame is around: 5 sec for op-
tical flow computation, 0.55 sec for the intermediate frame interpolation and 1
min for the inpainting algorithm.
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Figure 7.3: Intermediate frame interpolation. The first and last frames are origi-
nal images. The intermediate ones are interpolated.
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Figure 7.4: Left: The holes appearing in the first interpolated frame of Figure 7.3
after forward interpolation. Right: The remaining holes after backward interpo-
lation.
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Figure 7.5: Intermediate frame interpolation. The first and last frames are origi-
nal images. The intermediate ones are interpolated.
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Figure 7.6: Left: The holes appearing in the last interpolated frame of Figure 7.3
after forward interpolation. Right: The remaining holes after backward interpo-
lation.

Figure 7.7: Intermediate frame interpolation. The first and last frames are origi-
nal images. The intermediate ones are interpolated.
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Figure 7.8: Intermediate frame interpolation. The first and third frames are orig-
inal images. The middle one is interpolated.



Part II

Object recognition
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Object recognition in computer vision can be briefly defined as the task of find-
ing a given object in an image or in a video sequence. Usually, the object itself is
defined by an image and may vary in scale and pose with respect to the image
where the object is searched for. In recent years, there has been a huge litera-
ture on object recognition motivated by its numerous applications, in particular,
the applications to object or image recognition in large databases like the web
itself [TVG99, GTT01, BL02, Low04, SZ03, PCI+07], or to image classification
[BZM07, BZM08].

To fix some naming conventions, let us call a “query" image, the image of the
object we are given to search for and let us call a “database" image, an image
where the object is searched for in order to determine whether an object in the
query image is present or not. The state-of-the-art algorithms usually proceed in
two main steps applied to all images (query and database): a detection step where
a set of characteristic image locations, usually called keypoints or features, is
detected; and a description step where a region around each detected feature is
selected and a feature descriptor is computed on that region. Two features are
then said to correspond if their descriptors are similar to each other. In this way,
we can establish a set of correspondences between an object in one image and
the same object in another image. If there are “enough" correspondences we
report the presence of the object in both images.

The main difficulty resides in the fact that the database images, while they
might contain the searched for object, are taken from an arbitrary distance and
view point. Therefore, an algorithm that achieves the recognition process suc-
cessfully needs to be invariant to these changes. In this chapter we first introduce
the set of image distortions where invariances are needed and mention several
ways of dealing with them. Most approaches tend to normalize these distor-
tions; however, due to the image formation process and the non-commutation
of the optical blur with a subset of image distortions, normalization techniques
are not able to achieve invariance. We will discuss this issue thoroughly in Sec-
tion 9. We then review some of the main state-of-the-art algorithms in the lit-
erature that address this problem. In Section 11 we present an algorithm that
generates some basic geometric affine invariant quantities using a classical re-
sult on algebraic invariants. These quantities can then be used to construct some
distinctive feature descriptors. In Section 12.2 we select a few of the generated
quantities and test them in the context of object recognition. The evaluation is
done by comparing the performance of descriptors using these quantities with
the SIFT descriptor [Low04], considered to be one of the most efficient [MS05].
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8 Introduction

The starting point of most approaches tackling the object recognition problem is
the computation of features (or keypoints) and their feature descriptors. In order
to deal with real applications, computed feature descriptors have to be invariant
with respect to a set of image distortions. Let us briefly comment on the main
ones.

First, let us mention the invariance with respect to blur. Image blur is the
result of many factors: out of focus camera, aperture diffraction, motion blur,
pixel sampling, interpolation, etc. Inverting the blur is an ill-posed problem. A
typical way to obtain features invariant to blur is to use a multi-scale representa-
tion of the images. When the blur kernel has a small support, then at some scale
the blur effect will disappear.

Second, ignoring the optical blur of the camera and assuming that the two
images to be compared are taken from different positions and/or orientations,
we need feature descriptors that are invariant with respect to projective trans-
formations. Since this is a too general class, if the objects we are searching for
can be locally approximated by a plane, then we can restrict the required invari-
ance to the set of affine transformations. This approach is commonly used in
practice and is the object of interest in this chapter. There are many approaches
that satisfy affine invariance with different degrees of approximation: from Eu-
clidean invariance to approximately affine invariance. If we introduce the cam-
era blur into the picture, then we need descriptors that are invariant with re-
spect to affine transforms determined by the change of position of the camera.
The trouble comes from the fact that affine transforms do not commute, in gen-
eral, with the blur kernel [MY11]. Assuming, as we will do in this chapter, that
the blur kernel is radial, only rotations and translations commute with it. These
parameters can be normalized by geometric affine invariant descriptors com-
puted on the image. The remaining ones cannot. They are the scale parameter
corresponding to the camera zoom, and the camera axis longitude and latitude.
Thus, following [MY09, MY11], one is lead to distinguish between “geometric"
affine invariance (corresponding to an ideal pinhole camera, with no blur) and
“camera" affine invariance that models the camera blur as well. We will discuss
this issue more thoroughly in Section 9. In order to get camera affine invari-
ance, some authors have proposed to simulate the remaining set of parame-
ters by suitably sampling the affine orbits of both images. This is the case of
Ferns [LF06, OCLF09] or the variant of SIFT called ASIFT [MY09]. This may be
very important in practice since in many cases there may be big scale and/or tilt
changes between the two images that are compared.

Now, there is the invariance with respect to contrast changes which may
be due to illumination variations or to different gamma corrections, etc. Ig-
noring camera blur, exact invariance to contrast changes is assured by using
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morphological operations to construct the features and their descriptors, e.g.
the level lines of the image [LMMM03, CLM+08] or the gradient directions
which describe the directions of the normals to the level lines [BL02, Low04].
Another possibility, also used in the literature, is the binarization of the gray
level comparison between couples of pixels in a neighborhood of a key-
point [LF06, OCLF09]. In practice, morphological operations are often weighted
with a local contrast measure, such as the norm of the gradient. When camera
blur comes into play, it mixes level lines and changes their geometry. Since the
two images may be taken from different viewpoints, this cannot be addressed
by only simulating the blur with the scale space, and one needs to simulate also
the camera axis longitude and latitude, as proposed in [MY11].

Noise, yet another distortion, is an inevitable artifact of image acquisition.
It is due mainly to physical effects which are not taken into account, and to the
sampling and quantization of pixels. Noise invariance is probably impossible to
achieve. The best we can aim for is noise robustness. This could be achieved by
defining suitable descriptors and a suitable metric for comparing these descrip-
tors instead of comparing them by equality. This requires a threshold on the
distance of two descriptors, or some other criterion to accept or reject matched
features.

Finally, let us mention occlusions. They correspond to a basic operation in
image formation, and they are maybe the most important distortion. However,
it is very difficult to model occlusions directly, so they are generally ignored as
a source of invariants in the context of detection or recognition. The possibil-
ity to detect partially occluded objects is based on the use of local features that
describe small parts of objects. Thus, we can say that occlusion invariance is
achieved by using only local features (points, curves, patches, ...).

Henceforth, we will use the term descriptor as a set of N numerical measures
from a local feature (or keypoint). Thus, a descriptor is a vector in RN . Using
this language, we can summarize a general scheme for many methods of object
recognition. The input of these methods is often a pair of images u and v, and
the output is a correspondence (or list of correspondences) between parts of each
image. The generic method consists of the following steps:

Keypoint or feature extraction: extract the features on both images. Thus,
we form two sets of features Fu and Fv associated to each one of the input
images.

Computation of descriptors: compute the descriptors of each feature. A
descriptor is computed on an image patch centered at an extracted feature.

Matching: for each feature pi ∈ Fu find a feature qj ∈ Fv, such that their
descriptors are as close as possible in the descriptor metric. Thus, we form
a set M of pairs of matched features (pi, qj).

By analyzing this set of correspondences we may extract a geometric transfor-
mation between the two images. This transformation helps to group several
correspondences in a geometrically consistent way. This is usually done by a
step of
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Clustering: search in M for clusters of pairs of features that can be
matched by the same affinity (or some pre-defined kind of geometric trans-
formation).

Finally, the last step is

Verification: verify that each cluster actually corresponds to an instance
of u that appears in v under the previously found geometric transform.

Clearly, this scheme is a simplification but it gives a summarized description
of the structure of many methods. In this chapter, we are mostly interested in the
generation of geometric affine invariant quantities, and their use in building-up
descriptors that behave more robustly than SIFT to affine transformations.

There are many descriptors that have been proposed to address the above set
of invariances. Let us briefly mention here two of them: SIFT and Ferns. They
will be reviewed in more detail in Section 10. Other variants will be also briefly
commented. The Scale Invariant Feature Transform (SIFT) [Low99, Low04] is
a descriptor defined in terms of weighted histograms of gradient directions
around a given keypoint. The use of gradient directions provides robustness
with respect to illumination changes. Usually keypoints are maxima of some
measure (e.g. corners, edge points, blobs, ...) often computed at different scales.
The histograms of orientations (in the neighborhood of a keypoint) used in the
SIFT descriptor are computed on the Gaussian scale space of the image. This
normalizes the scale parameter and addresses the invariance with respect to
blur. The use of keypoints achieves invariance to translations. SIFT, also reori-
ents its histogram of weighted gradient orientations to the dominant orientation
of the patch where the descriptor is being computed. This makes SIFT invariant
to rotations of the image plane around the camera axis. Therefore, four out of
the six parameters of an affine transform are normalized (see Section 9.2.1). The
other two, the longitude and latitude of the camera axis, cannot be normalized
since their associated transformation does not commute with the Gaussian ker-
nel (assuming that the camera blur can be well approximated by a Gaussian).
The computation of orientation histograms provides partial invariance with re-
spect to the angle between the object’s plane and the optical axis (the latitude).
In his work [Low04], D. Lowe studied the robustness of SIFT with respect to lati-
tude changes and provided some practical bounds on their maximum variation,
around 50 degrees, for SIFT to work.

It is important to note that the (geometric or camera) affine invariance is re-
lated not only with the descriptor but also to the domain where it is computed.
We will call this the domain problem. Notice that, due to the camera blur, the
generation of domains that are related by an affine transformation when the
two images are taken by a camera from two different viewpoints is not an ob-
vious question. Thus, we can also distinguish between geometric and camera
domain problems. Mikolajczyk and Schmidt [MS04a] addressed the computa-
tion of an affine covariant domain and, by that, enforced the camera affine in-
variance of SIFT. They proposed an affine normalization of the keypoint neigh-
borhood based on an iterative computation and normalization of the second
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moment matrix [GL96, LG97, Lin98]. In this process, the selection of the affine
domain alternates with a simulation of the corresponding blur. Thus, they at-
tempt to compute a camera affine invariant domain; however no proof of this is
provided. After this normalization, SIFT is computed, although other descrip-
tors could be used. Let us refer to this version of SIFT as SIFT+NN (where NN
refers to normalized neighborhood).

Using a different approach to impose the camera affine invariance and solve
the domain problem, Yu and Morel [MY09] proposed to generate an orbit of
affine deformations of one (or both) images and apply SIFT to the simulated im-
ages, obtaining results that outperform SIFT. Because of the invariance proper-
ties of SIFT, the orbit was reduced to a simulation of the longitude and latitude
(tilt) parameters. Indeed, in [MY09] the authors propose a precise and careful
sampling of the orbit that takes into account the SIFT performance in scale and
angular (latitude) changes. In this way, they guarantee that the query image
will have a positive matching with one of the orbit images, precisely the nearest
one. Moreover, they proved mathematically that the resulting method is camera
affine invariant, up to an arbitrary precision. On the other hand, by providing
the image orbits, a set of domains is generated and one of them will be sim-
ilar to the domain in the query image. The feature descriptors computed on
these domains are relieved from the responsibility of being highly robust to big
affine transformations; and, indeed become camera affine invariant in this set-
ting (modulo the sampling of the orbit). This method is known as ASIFT [MY09].

Ferns [LLF05, OCLF09, LF06] also addresses the problem of illumination and
camera affine invariant recognition. Although we leave the detailed description
of it for Section 10.2, let us point out that, as in ASIFT, the camera affine invari-
ance of the Ferns descriptor is obtained by the construction of an orbit of affine
deformations of the model image [LLF05, OCLF09, LF06].

Finally, a different special affine invariant region detector based on the com-
putation of sufficiently contrasted level lines, the Maximally Stable Extremal Re-
gions (MSER), was introduced in [MCUP04]. Although the domain is normal-
ized with respect to all six parameters of the affine transform, this normalization
is not perfect, since level lines change when the amount of blur changes. Thus,
MSER are geometric affine invariant but not camera affine invariant. In practice
they are camera affine robust for moderate affine camera motions, but only if
the scale change is not big. The MSER method provides a complementary point
of view since it directly addresses the domain problem and computes geometric
affine invariant domains that are based on contrasted level sets (on which arbi-
trary affine invariant descriptors can be later computed). We retain from it the
observation that, discarding boundary effects, the level sets of the image are the
natural geometric affine invariant domains on which descriptors can be com-
puted. As pointed out above, MSER select the most contrasted ones in a precise
sense that will be reviewed in Section 10.3.

In the previous paragraphs we have discussed one of the key elements for the
construction of camera affine invariant descriptors around keypoints: the need
to have a camera affine covariant domain, that is, the computed neighborhoods
around corresponding keypoints of two images related by an affinity should
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match under the affine map. The domain problem is perhaps the most difficult
one and we have reviewed several proposals to solve it. Both the computation
of an intrinsic affine normalized neighborhood [MS04a] and the generation of
an orbit [MY09] aim to solve the domain problem, and the compensation of
the partially missing invariance of SIFT to out of plane rotations. Our work in
this chapter does not address this problem, but the computation of geometric
affine invariant quantities assuming that the domain problem has been solved.
When combined with an orbit, these quantities give also camera affine invariant
descriptors. Then the following question arises:

Q. Do we need geometric affine invariant quantities if we have normalized
the domain or simulated its affine distortions ?

From the above discussion, due to camera blur, we need camera affine invari-
ant quantities. The descriptors we propose in this Chapter are only geometric
affine invariant, although they can be converted to camera affine invariant if
we use an image orbit, as in ASIFT, or approximately camera affine invariant
if we use an intrinsic affine normalized neighborhood as in [MS04a]. In rela-
tion to ASIFT [MY09], there is still room for improvement because the images
generated constitute a sampling of the affine orbit of the given images and the
performance of ASIFT depends on the number of simulated images. In relation
to SIFT+NN [MS04a], there is no theoretical guarantee that SIFT+NN provides a
normalized camera affine invariant neighborhood, but it seems to work in prac-
tice, at least as a good approximation. In any case, the comparison of the descrip-
tors we propose here with SIFT in both contexts SIFT+NN and ASIFT shows
that the proposed quantities permit to improve the results. Let us also mention
that the performance of any quantity depends on its discriminative power. The
proposed quantities are different from SIFT (although they use the same organi-
zation) and exhibit more discriminative power, improving over its performance.

8.1 Contribution

We propose a set of geometric affine invariant quantities to be used in the con-
struction of feature descriptors. They will effectively improve upon the robust-
ness of SIFT to affine transformations. The basic quantities were introduced in
[Bal95, BCG96] in the context of affine invariant image segmentation. In the con-
text of the present Section we will omit sometimes the word “geometric” when
talking about affine invariants. In [Bal95, BCG96] the authors proposed an affine
covariant quantity associated to a given finite length curve Γ, namely the quan-
tity ∫ 1

0

∫ 1

0
|c′(s) ∧ c′(t)| ds dt,

where c : [0, 1] → R2 is a parameterization of Γ and c′(s) ∧ c′(t) :=
det(c′(s), c′(t)). By integrating on the level lines of the image, this quantity can
be translated to images u defined on the plane as∫

R2

∫
R2
|∇u(x) ∧∇u(y)| dxdy, (8.1)
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where ∇u(x) ∧∇u(y) := det(∇u(x),∇u(y)) is just the area determined by the
two vectors∇u(x) and∇u(y). Note that, if T x = Ax+ x0 where A is a 2× 2 ma-
trix, x0 is a given point in R2, and uT (x) = u(T x), we have∇uT (x)∧∇uT (y) =
det (A)∇u(T x) ∧∇u(T y) and, as it can be easily checked, the quantity (8.1) is
affine covariant (that is affine invariant modulo a scale factor which is a power
of the determinant of the affinity). This quantity can be used as a basis for con-
structing geometric affine invariant descriptors on keypoints.

If we had at our disposal an affine covariant neighborhood Vx(u) of a key-
point x (that is such that T Vx(uT ) = VT x(u)) we could define the affine invari-
ant quantity associated to x∫

Vx(u)
|∇u(x) ∧∇u(y)| dy.

The quantity ∇u(x) ∧ ∇u(y) is one of the basic covariant quantities that we
will introduce in Section 11. This and other examples are based on a classical
result on algebraic invariants of the unimodular group [Wey97]. Thus, we dis-
cuss in Section 11 a generic method to construct other geometric affine covariant
quantities and obtain affine invariants using combinations of them. Using these
geometric affine invariant quantities, we implement in Section 12.1 a set of de-
scriptors with an algorithmic structure similar to SIFT (see Section 12.1.2). Since
we will be referring to them later on, let us call them AD descriptors. At this
point, note that we can compute them in any given neighborhood.

Although we use geometric affine invariant quantities, even if there is no
camera blur, the geometric affine invariance is only guaranteed if we have an
affine covariant domain. As we said above, we do not address the domain prob-
lem in our work and we assume it is solved. We can either use the affine normal-
ized neighborhood of Mikolajczyk and Schmidt [MS04a], or we may use an orbit
of affine deformations as in [LLF05, OCLF09, MY09], or simply take advantage
of the level sets of the image as it is proposed by MSER [MCUP04], although
MSER do not guarantee camera affine invariance. Thus, we compared the pro-
posed AD descriptors both to SIFT+NN and to ASIFT. When comparing to
SIFT+NN we used the same normalized neighborhood. Our experiments show
that the results obtained using AD improve the results obtained by SIFT+NN.
When comparing to ASIFT we used the same orbit and the same square neigh-
borhood. We did experiments with three orbit sizes and in all three cases we are
able to obtain results that improve those obtained by ASIFT (specially when we
use a reduced orbit). In both experiments, we see that the camera affine invari-
ance is reinforced. Indeed, notice that, by the arguments in [MY09], geometric
affine invariants computed using the Gaussian scale space become camera affine
invariant in the sense of [MY09] after simulating an orbit as in ASIFT.

Inspired by MSER (see Section 10.3), we also explored a further variant
based on the observation that level sets are geometric affine covariant domains.
Let us first describe it in the context of SIFT. Assume that x is a keypoint of
an image u and Nx is a given neighborhood of x (as in common SIFT). As
a first step we quantize the image u in Nx. To avoid the effect of illumina-
tion changes we equalize the image u in Nx (that is we compute Hx(u), where
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Hx(·) is the distribution function of u in Nx), and then define the (bi)level sets
N u,j

x := {y ∈ Nx : j∆ ≤ Hx(u)(y) < (j + 1)∆} where ∆ is a quantization step
and j = 0, 1, ..., 256

∆ − 1. In the case of SIFT, the new descriptor can be described

as a modification of the SIFT descriptor that takes into account the level setsN u,j
x

(in practice we use ∆ = 64 and j = 0, 1, 2, 3). It is formed by the concatenation
of vectors vj, j = 0, 1, ..., 256

∆ − 1. While in the case of common SIFT each pixel

y ∈ Nx contributes to a coordinate of a vector v ∈ R128, now each pixel y ∈ N u,j
x

contributes to the corresponding coordinate of vj ∈ R128. When ∆ = 256 and
j = 0, we recover the standard SIFT. By weighting the histogram of orientations
in SIFT with the geometric affine invariant quantities generated by the method
described in Section 11, we have a set of descriptors that reinforce affine invari-
ance.

Thus, for each quantity we can use the similar algorithmic structure of SIFT
inNx getting the descriptors that we calledAD, or we may organize them as we
described in the previous paragraph, taking into account the the level sets N u,j

x ,
j = 0, 1, ..., 256

∆ − 1. Let us refer to them as the quantized level set version of AD,
or simply as AD+QLS.

Although we use geometric affine invariant quantities, if we use a square
neighborhood Nx to compute the sets N u,j

x we break the geometric affine co-
variance of the domain. But we have experimentally observed that we gain dis-
tinctness with this proposal when compared to common SIFT. We have also con-
sidered the descriptors in AD+QLS computed on the normalized affine invari-
ant neighborhood of [MS04a] and we obtain better results than with SIFT+NN
and also better results than usingAD. The comparison ofAD+QLS with ASIFT
(using a square neighborhood and the same orbit for both) does not show an
improvement over using AD. The reason for this may be that the information
brought by the orbit is sufficient to cancel the benefits gained by the QLS strat-
egy. Indeed, the results obtained withAD andAD+QLS are similar except in the
case of a reduced orbit where the QLS version improves over AD. The experi-
ments will be shown in Section 12. Summarizing our comparisons, we observed
that the proposed descriptors are more robust to affine deformations than SIFT.





9 Image formation and camera models

Since we are dealing with digital images, it is imperative to understand the im-
age formation process. In this Chapter we discuss the image formation process
and introduce different camera models. This discussion will serve to show the
need to distinguish between geometric and camera affine invariance due to the
non-commutation of the camera blur with the affine map.

9.1 Projective camera model

The oldest camera, “camera obscura", is based on what is called the pinhole
camera model. This camera model is easily implemented by taking a box and
making a very small hole (the pinhole) on one side of it. Now placing the pinhole
in front of a light source, an inverted image of the scene (whatever is in front of
the pinhole) appears at the side of the box opposite the pinhole. The image is
formed by light rays emerging from the scene and entering the box through the
pinhole. If the pinhole is reduced to a single point, exactly one light ray would
pass by a point in the scene, the pinhole and the image plane (the projection
inside the box). Of course it is impossible to reduce the size of the hole to a
single point. In reality, the hole (though very small) has a finite size and each
point in the image plane will be formed by the projection of a cone of light rays
gathering at this point. Thus, each point in the image plane is illuminated by a
cone of light rays with a finite solid angle. The larger the hole is, the wider the
cone will be and in consequence the brighter the image. However, enlarging the
hole will result in blurry images and shrinking the hole results in sharper but
less bright images. Still very small holes might result in a diffraction effect. This
model, is usually called the pinhole perspective projection model and it often
provides an acceptable approximation of the imaging process [FP02].

In current days, digital cameras are equipped with lenses. The main reasons
behind using a lens are:

a) To gather light since otherwise a single ray of light through the pinhole
will reach exactly one point in the image under the theoretical assumption
of a pinhole with the size of a single point

b) To keep the image sharp while gathering light from a large area.

These operations of light gathering is what is called the “optical blur" of the
camera. Figure 9.1 shows an illustration of a projective camera model where an
image of a plane is being captured by a digital camera.

As seen in Figure 9.1, the acquired image u can be written as

u = S1GαPu0, (9.1)
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Figure 9.1: The projective camera model.

where u0 is an infinite resolution image of a surface,P is a planar projective map,
Gα is a Gaussian convolution kernel modeling the optical blur; and is assumed
to be broad enough ensuring that no aliasing in introduced by 1-sampling of
the sampling operator S1. In general, image distortions arising from viewpoint
changes can be locally approximated by affine planar transforms, assuming that
objects can be locally approximated by planes. A perspective effect can be mod-
eled by a combination of several different affine transforms applied to different
image regions. Thus a reasonable and simpler model can be obtained by intro-
ducing T (x) = A(x) + x0 with A being a linear map with positive determinant
and x0 ∈ R2 and writing Eq. 9.1 as

u = S1GαT u0.

9.2 The affine simplification

Let us first recall the decomposition of an affine matrix in terms of geometric
parameters related to the observation of a plane in the scene by an affine camera
[HZ03].

9.2.1 Geometric description of an affine map

Image distortions arising from viewpoint changes can be locally approximated
by affine planar transforms, assuming that the objects we are searching for can
be locally approximated by planes. Thus we restrict ourselves to study the in-
variance of descriptors with respect to planar affine transformations.
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Let us describe an affine transformation in terms of intrinsic parameters that
have a geometric significance. Assume that images u and v are defined in R2

and are related by an affine map, so that

v(x) = u(T x),

where x =

 x

y

, and

T x := Ax + x0 :=

 a b

c d

 x

y

+

 e

f

 .

Since we will compare two keypoints, we may assume that we have already
corrected the relative translation and we may assume that x0 = 0. We also
assume that the affine map is orientation preserving, so that A has a positive
determinant. Then A has a unique decomposition

A = HλR1(ψ)TtR2(φ) = λ

 cos ψ − sin ψ

sin ψ cos ψ

 t 0

0 1

 cos φ − sin φ

sin φ cos φ


(9.2)

where λ > 0, R1(ψ), R2(φ) are rotations of angles ψ, φ ∈ [0, π], respectively,
and Tt is a tilt, namely a diagonal matrix whose eigenvalues are t and 1 with
t ≥ 1. Figure 9.2 shows the interpretation of this affine decomposition in terms
of the relative position of the (affine) camera and the object’s plane where: φ and
θ = arccos 1/t are the viewpoint angles, θ represents the angle between the op-
tical axis and the normal to the object’s plane, φ represents the relative rotation
between the optical axis and a fixed axis on the plane, and ψ parameterizes a
rotation of the camera plane. The angles θ and φ are called latitude and longi-
tude, respectively. Finally, we can change the focal length or the distance of the
camera to the scene and this is reflected in the zoom parameter λ.

9.2.2 Affine camera model

Let u0 be an infinite resolution frontal view image of a flat object. Following
[MY09], we model digital images acquired by a camera by the relation

u = S1GαT u0, (9.3)

where T (x) = Ax+ x0, A is a linear map with positive determinant, x0 ∈ R2, Gα

is a Gaussian convolution with standard deviation α > 0 modeling the optical
blur and ensuring that there is no aliasing by 1-sampling, and finally S1 is the
sampling operator on a regular grid with 1-spacing. Notice that, following the
usual simplifying assumption, the camera blur is modeled by a Gaussian kernel.
From now on we do not consider the sampling operation S1 and we assume that
images are well sampled..
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φ

θ

ψ

λ

u

Figure 9.2: Geometric interpretation of the decomposition formula (9.2). This
figure illustrates the four main parameters in the affine image deformation. The
angle θ, the latitude, is the angle between the optical axis and the normal to the
image plane. The plane containing the normal and the optical axis makes an
angle φ with a fixed axis in the object’s plane. This angle is called longitude. The
camera can also rotate around its optical axis (rotation parameter ψ). Finally, the
camera can move forward or backward, or change its focal length. This is the
zoom parameter λ.

For later use, we say that the image u is a frontal snapshot if we can write it
as (9.3) where T is a similarity, i.e. the tilt parameter t is equal to 1.

The presence of the camera blur obliges to distinguish between geometric
affine invariant descriptors and camera affine invariant ones. Let us assume
that the images are captured using an ideal camera, i.e. where the optical blur
Gα is non existent and therefore α = 0. In that case, a camera change of position
leads to the images u0(x) and T u0(x) = u0(Ax + x0) and we define a descriptor
D to be a “geometric" affine invariant descriptor if

D(u0,Ax + x0) = D(T u0, x) ∀ T , x (9.4)

But when taking α > 0, a change of viewpoints leads to two images being
Gαu0(x) and GβT u0(x) with α, β > 0. Then ifD is a “geometric" affine invariant
descriptor, the quantitiesD(Gαu0,Ax+ x0) andD(GβT u0, x) are not necessarily
equal, depending on the affine maps T .

Let us illustrate this by looking at an example where the affine map is a pure
rotation and another where it is a pure zoom. We will also make a simplifying
assumption that the camera blur is a Gaussian with a radial kernel. Let T x = Rx
where R is a rotation. Using the same notion we can write Ru0(x) = u0(Rx).
In this case, R commutes with Gα and we have that GαRu0(x) = RGαu0(x).
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Then if D is a geometric affine invariant descriptor we have

D(GαRu0, x) = D(RGαu0, x) = D(Gαu0,Rx).

On the other hand, let Hλ be an operation such that Hλu0(x) = u0(λx). If λ > 1,
this represents a contraction of the object. That is, the effect produced when the
camera moves away from the object. It can be shown that

Gα ∗ (Hλu0) = HλGλ2α ∗ u0.

Meaning that an image taken by a camera with optical blur Gα after a zoom
out by a factor λ, is equivalent to take the image by a camera with optical blur
Gλ2α and then scale the object by a factor λ. We can see here that the zoom has
changed the blur factor. That is if we take T x = Hλx , λ > 0, then if D is a
geometric affine invariant descriptor we have

D(GαHλu0, x) = D(HλGλ2αu0, x) = D(Gλ2αu0, Hλx) 6= D(Gαu0, Hλx),

With a similar reasoning, one can get to the conclusion that Euclidean in-
variant descriptors permit to normalize the rotation and translation parame-
ters. Scale, longitude and latitude cannot be normalized and have to be sim-
ulated [MY09]. In the literature, SIFT, in addition to normalizing rotations and
translations, simulates the scale and, thus, is a similarity invariant descriptor.
The proposal of ASIFT, for example, is to normalize the remaining two parame-
ters by simulating an orbit of transformations proving that in this way one gets a
camera affine invariant descriptor. In the next Chapter we review these methods
along with others.





10 Literature review

The purpose of this Section is to review SIFT and some other relevant descrip-
tors which have been introduced in the literature and are connected with our
discussion here.

10.1 Review of SIFT and some relatives

10.1.1 Common SIFT and its invariance properties

Let us briefly summarize SIFT descriptors [Low04] using the generic scheme for
object recognition mentioned in Chapter 8. Its input is a pair of images. To fix
ideas, let us say that the first image u is a query image, while the second im-
age v is a target image. If the query image contains a certain object, the output
of the method gives the corresponding object in image v, in case it is present,
and the corresponding affine map between the parts of the images u and v con-
taining the object. The limitations of SIFT concerning its affine invariance are
described in [Low04] and further analyzed in [MY09]. Since it is based on the
comparison of descriptors computed on keypoints, the translation invariance is
guaranteed. The invariance with respect to scale changes is obtained by simu-
lating them. Since GδHλu0 = HλGλδu0 for any δ, λ > 0, this can be achieved
using the Gaussian scale space. Indeed, to compute the “SIFT keypoints” of an
image u, first one computes a Gaussian scale space pyramid of u (with scales
sampled exponentially), and then tries to capture the intrinsic scale of the key-
point by finding the scale space local maxima of the Laplacian of the Gaussian.
Selecting keypoints as local maxima in the scale space makes that a point x may
appear several times, at several different scales. Thus, the method is (modulo
discretizations) invariant with respect to scale. Finally, for each keypoint found,
a more stable positioning with sub-pixel accuracy is computed by fitting a 3D
quadratic function to the keypoint. This determines the interpolated location of
the maximum.

Now, given a keypoint x, its SIFT descriptor is based on the computation
of histograms of gradient orientations in a neighborhood of x. To compute the
gradient directions, one computes first the dominant orientation of the gradient
in x (estimated from the gradients around this point) and takes it as the new
x-axis. The gradient orientations are then referred to this axis. In this way, the
method is invariant to rotations in the image plane. Then, the SIFT descriptor
is computed in a neighborhood of x, typically of size 16 × 16 in the standard
SIFT implementation. This neighborhood is divided in 4× 4 blocks of size 4× 4.
On each of them, a weighted histogram of directions quantized in 8 angular
bins is computed. The weights of this histogram depend both on the modulus
of the gradient at the pixel and on the distance to the central keypoint. At the
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end we have a descriptor which is a vector v with 128 coordinates. Each coor-
dinate of v contains the weight contribution of all pixels of a given block with
a given angular orientation. Finally, in practice, to avoid quantization effects,
each orientation occurrence is distributed in several neighboring bins. We note
that the use of scale space provides some invariance to camera blur; and, since
SIFT uses gradient directions, it is robust to illumination changes. Furthermore,
the descriptor is first normalized, then large values are thresholded and finally
normalized again which makes SIFT robust to saturation effects.

As it is proved in [MY11] (Theorem 1), for two frontal snapshots of the same
full resolution flat image u0, SIFT descriptors are identical if both camera blurs
coincide and, otherwise, they become similar as soon as the scale of the sim-
ulated Gaussian grows. In conclusion, as we have mentioned, the translation,
rotation and scale parameters can be fixed, although one has to pay attention to
the sampling issues [MY09]. Now, taking (9.2) into account, there are still two
parameters to be fixed in order to get camera affine invariance; namely, the angle
between the normal to the object’s plane and the optical axis of the camera (the
latitude), and the relative rotation between the optical axis and a fixed axis on
the object’s plane (the longitude), see Figure 9.2. Let us mention the two main
methods that have been proposed to address this problem: either by computing
an intrinsic neighborhood of the keypoint which aims to achieve camera affine
invariance [MS04a], or by simulating the remaining affine deformations of the
query image, related to the longitude and latitude angles, as proposed in ASIFT
[MY09] (see also [PH03] for a first step towards this method). A full discus-
sion of this problem and the relevance of respecting Shannon sampling theorem
when simulating the affine deformations can be found in [MY09].

A related variation of SIFT proposed in [LSP04], which improves somewhat
its rotation invariance but does not tackle invariance under arbitrary affinities,
consists in using circular neighborhoods instead of square ones. Anyhow, this
is a minor modification, since the square neighborhoods of common SIFT are
rotated towards a principal direction, and the points inside the neighborhood
are weighted using a circular distribution around the center of the square.

10.1.2 ASIFT: simulating the tilt and longitude parameters

Although the method in [MS04a] produces good results, better results are ob-
tained by simulating all possible affine distortions of the image and applying
SIFT to each of them [MY09]. By our previous discussion (see [MY09]) it suffices
to simulate the affine deformations determined by the two parameters φ and
t = | 1

cos θ |. Given an image u, one first simulates the rotations with respect to
the longitude parameter. An important point for digital images, as discussed in
[MY09], is that the tilt involves a subsampling of factor t in the x-direction (after
a rotation by φ), and therefore its simulation requires the previous application
of an anti-aliasing filter, namely the convolution by a gaussian with standard
deviation c

√
t2 − 1 (for good anti-aliasing, c ∼ 0.6) [MY09]. Thus, a digital tilt in

the direction x (resp. y), is simulated by the map Tx
t Gc

√
t2−1 (resp. Ty

t Gc
√

t2−1).
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Since Tx
t Gc

√
t2−1Gc = GcTx

t ([MY09], Theorem 1), by simulating digital tilts we
are able to commute tilts with Gaussian blur, and this is the main ingredient to
prove that ASIFT is camera affine invariant ([MY09], Theorem 2). On the other
hand, it is not geometric affine invariant. The conclusion from [MY09] is that,
by simulating tilts, longitudes and scales, one can convert a descriptor that is
invariant to similarity transforms into a camera affine invariant one.

SIFT on affine neighborhoods We have mentioned the invariance of SIFT with
respect to the parameters λ and ψ in (9.2). The lack of invariance with respect to
the image deformations induced by the angles θ and φ has to be compensated.
In [MS04a], the authors proposed to compute an affine invariant interest point
detector, called Harris affine, which detects a keypoint and provides it with an
affine region given by a 2 × 2 matrix M representing this region. The Harris
interest point detector is first applied at several scales [HS88], followed by an
iterative selection of the scale and the location (as an extremum over scale of the
Laplacian of the Gaussian) [MS04a]. This provides a set of points that are robust
to scale changes. Then, an affine normalization of the point neighborhood is
computed as a fixed point by alternating the selection of the affine domain with
a simulation of the corresponding blur. One can interpret that as an approximate
way to obtain a camera affine invariant domain. The method and the algorithm
for finding such keypoints and their associated normalized neighborhoods is
discussed in depth in [MS04a]. The output is a set of keypoints where for each
of them we have its position, an affine covariant neighborhood, and its dominant
orientation which is obtained as in SIFT but using the normalized neighborhood.
The neighborhood is expressed by the so called shape adaptation matrix which
is a symmetric positive-definite 2× 2 matrix M whose eigenvectors express the
axis directions of the corresponding elliptical shape {x ∈ R2 : 〈Mx, x〉 ≤ 1}.
Having M, one can normalize the image restricted to the affine neighborhood
of the keypoint by mapping it to an image restricted to the unit circle. With
this, one compensates the affine transform caused by the camera change of po-
sition. Applying SIFT to the normalized image on the unit circle, one obtains
in principle a camera affine invariant descriptor. Although the authors do not
demonstrate rigorously this camera affine invariance, it seems to work in prac-
tice.

Other descriptors related to SIFT Inspired by SIFT, many other related de-
scriptors have been proposed with the purpose of improving or speeding up
SIFT. In particular, let us mention SURF detector and descriptor (Speeded-Up
Robust Features) [BTVG06], PCA SIFT [KS04], and FAST [RD06]. Also, other de-
scriptors specially tailored for operating on a dense set of keypoints have been
proposed like HOG (Histograms of Oriented Gradients) [DT05], GLOH (Gradi-
ent Location and Orientation Histograms) [MS05], LESH (Local Energy Based
Shape Histograms) [SH08]and, in some sense, spin images [JH99]. Let us note
that it is also possible, and useful, to compute SIFT descriptors on dense key-
points [LYT+].
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10.2 Review of Ferns method

A different method which also addresses the problems of illumination and affine
invariant recognition was proposed in [LLF05, LF06, OCLF09]. Given a query
and a target image, the camera affine invariance of the method is given, as in
ASIFT, by the construction of an orbit of affine and blur deformations of the tar-
get image. Then a set of keypoints (using a cornerness measure) are computed
on this orbit. Only those keypoints that are stable under the deformations are
used as effective keypoints. Each of them determines a class which is charac-
terized by the comparisons (encoded in a binary vector) of the gray levels of a
selected random set of pairs of points in its neighborhood. These comparisons
determine the posterior probability that a given point belongs to a class and may
be used for classification using a naive Bayes approach. Thus, assuming that the
priors of each class are uniform we are lead to the computation of the likelihood
of each class for each set of answers to the questions. Let us mention the Ferns
method in [OCLF09] (note that the randomized tree method [LLF05] is a variant
of the Ferns method with a different organization). Since one cannot assume
that each question is independent of the others, the proposal in [OCLF09] is to
assume that the set of questions is organized in subsets, called Ferns, which are
independent. Thus, a Fern is determined by a random selection of a subset of
pairs of pixels where the values of the gray levels are compared. Several Ferns
are used to characterize a keypoint. Each comparison produces a binary answer.
This guarantees the morphological invariance of the method which amounts to
its invariance with respect to illumination changes [Ser82]. The probability of
each Fern, given the class, is learned offline from the keypoints computed in the
orbit. In order to compute it, a tree structure is used. The product of the likeli-
hoods of Ferns gives the likelihood of the set of answers that characterizes each
class. This method does not require the storage of the orbit of affine deforma-
tions since, for each Fern, the probability computations can be organized as a
tree that can be learned offline.

10.3 Review of MSER method

A completely different approach to affine invariance is that of MSER [MCUP04].
The main idea behind MSER, as opposed to SIFT, is to build-up affine covari-
ant domains on which arbitrary affine invariant descriptors (or arbitrary de-
scriptors, if one performs first an affine normalization [MCUP04]) will be com-
puted, giving thus a solution to the domain problem. Two key observations
in [MCUP04] lead to the choice of Maximally Stable Extremal Regions (MSER)
as robust elements to establish image correspondences under severe viewpoint
changes for automatic reconstruction of 3D scenes. In the wide-baseline stereo
problem, local image deformations cannot be realistically approximated by Eu-
clidean motions and a full affine model is required (as an approximation to the
projective transformation between the images). On the other hand, the elements
should be robust against illumination changes modeled here as monotonic trans-
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formation of image intensities. Thus, MSER are defined as most contrasted con-
nected components of upper and lower level sets of the image [MCUP04]. Let us
point out that MSER are only geometric, and not camera, affine invariant. If we
take the camera blur into account, MSER only achieves invariance with respect
to translation and rotation. The other three parameters (zoom, camera axis lon-
gitude and latitude) cannot be perfectly normalized since they do not commute
with the image blur and have to be simulated [MY09].

Let us review the definition of MSER. We recall it here using the lan-
guage of the trees of connected components of upper and lower level sets
[Ser82, SS95, CM02, CM10] (an analogous notion for the tree of shapes [MG00]
can also be defined, see [MG00, CM10]). Let Ω be the image domain, usu-
ally a closed rectangle in R2. Let u : Ω → R be a given image (modeled
as an upper semicontinuous function). Let us first introduce some basic no-
tation that will be also of later use in Chapter 11. Given λ ∈ R, we denote
{u ≥ λ} := {x ∈ Ω : u(x) ≥ λ} which is the upper level set of u determined by
the height λ. We denote by CC({u ≥ λ}) the family of connected components
of {u ≥ λ}. In order to define the Maximally Stable Extremal Regions we fix
a threshold value δ > 0. If u takes values in a discrete set of integers we may
take δ = 1. This is the more relevant case in applications since we deal with
digital (sampled and quantized) images. For each connected component of an
upper level set of u Xλ ∈ CC({u ≥ λ}) we consider Xλ−δ ∈ CC({u ≥ λ− δ}),
Xλ+δ ∈ CC({u ≥ λ + δ}) such that Xλ+δ ⊆ Xλ ⊆ Xλ−δ. We define the function

Fu
δ (λ) :=

Area(Xλ−δ)−Area(Xλ+δ)

Area(Xλ)
. (10.1)

We say that Xλ is a Maximally Stable Extremal (upper) Region if Xλ achieves
a local minimum of Fδ(λ). The function Fδ is well defined on the maximal
branches of the tree of connected components of upper level sets of u, where
no bifurcation takes place [CM10]. When Xλ contains a bifurcation, the con-
nected component Xλ+δ ∈ CC({u ≥ λ + δ}) is not uniquely defined. We have
dismissed those elements.

In a similar way we can define a Maximally Stable Extremal (lower) Region
using this time the connected components of the lower level sets of u. We shall
refer to both of them as MSER.

As in Section 10.1, we dismiss the problems caused by boundary effects and
we assume that the image u is defined in R2. If T is an affine transformation and
we define uT (x) = u(T x), then the trees of shapes of u and uT have the same
structure. Since the function Fu

δ (λ) = FuT
δ (λ), we have that the MSER of u and

uT are related by T in a covariant way. Thus, they are invariant under affine
transformations. Its invariance under contrast changes comes from the fact that
we are using connected components of level sets.

As we mentioned previously, the affine invariance of MSER is only geomet-
ric, and camera invariance does not hold. This makes that MSER may fail under
large scale changes, large tilts, or when well contrasted shapes are not present
[MY09]. In these cases, the image shape boundaries tend to mix. Following
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[MY09], camera affine invariance can be obtained after simulating the scale, lon-
gitude and latitude parameters.

Finally, let us say that a related descriptor based on level lines was proposed
in [LMMM03, CLM+08]. As MSER, it is geometric affine invariant and photo-
metric invariant.

Descriptors for MSER Following the general scheme mentioned in Section 8
MSER are geometric affine covariant domains. On them, many different descrip-
tors can be computed, for example SIFT. The descriptors originally proposed in
[MCUP04] are based on constructing one or several distinguished regions (DR)
around each MSER (e.g., an ellipse, the MSER itself, or several enlarged/reduced
copies of the MSER or its convex hull). Then, rotationally invariant complex mo-
ments of the image inside the DR are computed after applying an affine trans-
formation that normalizes the DR (e.g. so that the covariance matrix of the trans-
formed DR becomes diagonal) [MCUP04]. Alternatively, one can build the de-
scriptor using standard geometric affine invariant moments of the color values
inside the DR [MMVG99, MCUP04]. An analogous approach using the shapes
of the image [MG00, CM10] can be found in [Mon99].



11 Affine-invariant descriptor generator

Our purpose in this section is the generation of geometric affine invariant quan-
tities. The quantities we propose here will be used in Section 12.1 to generate
new descriptors which are geometric affine invariant. When used with an affine
normalized neighborhood as in [MS04a] the descriptors become approximately
camera affine invariant, although no formal proof of this exists. Camera affine
invariance, up to an arbitrary level of precision, can be obtained by simulat-
ing scales, longitude and latitude parameters (which are the three parameters
that do not commute with radial camera blurs) as in ASIFT [MY09]. This cam-
era affine invariance can be obtained if we start from any Euclidean invariant
descriptor, like SIFT for example. However, the experiments displayed in Sec-
tion 12.2 comparing our descriptors and SIFT, both in the context of SIFT-NN
and ASIFT using their normalization strategies, show that the proposed ones
are more robust to affine perturbations.

We have distinguished above between geometric and camera affine invari-
ance. Henceforth, to simplify our expressions, when we say affine invariant or
covariant we mean geometric affine invariant or covariant, respectively. When
we refer to camera affine invariance (resp. covariance) we will say it explicitly.

Let us denote by GL(2, R)+ the set of all 2× 2 matrices with positive deter-
minant. To avoid boundary effects we assume in this Section that images are
defined on R2. If A ∈ GL(2, R)+ and u : R2 → R is a given image, we denote
uA(x) = u(Ax), x ∈ R2.

Let L be a class of images (e.g. continuous, of bounded variation,. . . ). We say
that L is GL(2, R)+ invariant if uA ∈ L for any u ∈ L and any A ∈ GL(2, R)+.
Notice that we are identifying the word image with function from R2, or a do-
main of R2, to R (gray level image) ignoring for the moment the presence of the
blur kernel.

Definition 1 (Affine invariant and covariant descriptors). Let L be a GL(2, R)+

invariant class of images and F be a class of allowed subsets of R2. Let H(u, R) be
a quantity which can be computed for any image u ∈ L and any subset R ∈ F .
Let k ∈ R. We say that the quantity H is affine k-covariant if H(uA, A−1(R)) =
(det(A))k H(u, R) for any image u, any subset R ∈ F and any A ∈ GL(2, R)+.
When k = 0 we say that H is affine invariant.

In other words, affine k-covariant quantities are quantities that are invariant
to affine transformations of the image, up to a scale factor that is a power of the
affine matrix determinant.

There are many ways to build new covariant quantities from old ones. Func-
tions of covariants (of possibly different degree) can be made covariant, pro-
vided the functions have a suitable degree of homogeneity. Arbitrary homo-
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geneous functions of covariants are very general. They include, for instance,
taking limits, integrals, maxima and minima of sets of covariants.

All of these constructions produce new invariant quantities defined over the
same classF . A more interesting way to produce new invariants is by extending
the class F on which an invariant is defined. The following lemma extends any
invariant defined on upper level sets to an invariant defined on level curves.

Let Fu denote the family of connected components of all upper level sets of
the image u.

Lemma 1. Let L be a GL(2, R)+ invariant class of continuous images. Let k ∈ R and
H be an affine k-covariant quantity defined on pairs (u, X) where u ∈ L and X ∈ Fu.
For each λ ∈ R we define F(u, ∂Xλ) := limδ→0+

H(u,Xλ−δ)−H(u,Xλ)
δ , assuming that

the limit exists, where Xλ ∈ CC({u ≥ λ}), Xλ−δ ∈ CC({u ≥ λ − δ}) and Xλ ⊆
Xλ−δ. Then F(u, ∂Xλ) is an affine k-covariant quantity defined on the boundaries of
upper level sets.

We have written the previous lemma in an informal way. We observe that
if Xλ ∈ CC({u ≥ λ}) and δ is small enough, then there is only one connected
component Xλ−δ ∈ CC({u ≥ λ− δ}) containing Xλ. Then the Lemma follows
essentially by observing that Fδ(u, ∂Xλ) := H(u,Xλ−δ)−H(u,Xλ)

δ , δ > 0, is affine
k-covariant and passing to the limit as δ→ 0+.

The introduction of this Lemma was motivated by the next example.

Example 1. Let us compute the affine invariant quantity on level lines associated
to the area function defined on the upper level sets of an image u. Assume
first that u is smooth and the integrals converge. As usual ∇u(x) denotes the
gradient of u at the point x and |∇u(x)| its modulus. Then for each µ ∈ R, if Xµ

is a connected component of {u ≥ µ} and we denote by u|Xµ the restriction of u
to Xµ, by the coarea formula (see [AFP00]), we have

H(Xµ) := Area(Xµ) =
∫ ∞

µ

∫
∂{u|Xµ≥η}

1
|∇u(x)| dH1(x) dη,

where dH1 denotes the one-dimensional Hausdorff measure, i.e., the arc length
on ∂{u|Xµ ≥ η} in the above integral. Hence

F(u, λ, δ) :=
1
δ

∫ λ+δ

λ−δ

∫
∂{u|Xµ≥η}

1
|∇u(x)| dH1(x) dη ≈ 2

∫
∂Xλ

1
|∇u(x)| dH1(x).

If gu(x) = 1
|∇u(x)| and, for any set of finite perimeter E we define the weighted

perimeter Pgu(E) :=
∫

∂∗E gu(x)dH1(x), where ∂∗E denotes the essential bound-
ary of E [AFP00], then we have

F(u, λ, δ)→ 2Pgu(Xλ) as δ→ 0+.

This is the affine invariant quantity on level lines associated to the area of the
level sets of u.
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Remark 1. Using the previous example, we may redefine Maximally Stable upper
regions of the image u as the local minimizers in the tree of upper connected
components of

G(λ) :=
Pgu(Xλ)

|Xλ|
= lim

δ→0+
Fu

δ (λ),

where Fu
δ (λ) is defined in (10.1), λ ∈ R. Notice that the above quotient is a

perimeter/area ratio, hence we may interpret MSER as local Cheeger sets (with
respect to the weighted perimeter Pgu ) of the image domain, when we restrict the
family of sets to the connected components of upper (or lower) level sets of the
image. Similarly we may redefine Maximally Stable lower regions of the image
u (or the Maximally Stable Shapes, see [Mei11, CM10]). The same analysis has
been given in [KZBB10] where other interesting affine invariant measures for
shape selection are also derived.

Our purpose in this section is to describe some other basic rules to generate
affine invariants and covariants. In the language of definition 1, these new in-
variants are defined over the same class of subsets, by combining vector-valued
invariants using simple algebraic rules.

Our discussion will be restricted to R2. Vectors of R2 will be designed by
italic letters x, y, sometimes with sub-indices. Covectors of R2, that is, elements
of the dual space, will be denoted by greek letters ξ, ξ̂, etc. By 〈ξ, x〉 we denote
the standard dual pairing between the vector x and the covector ξ. In what
follows, we fix the standard canonical basis e1 = (1, 0), e2 = (0, 1) of R2 and its
dual basis ξ1, ξ2 (so that ξi(ej) = δij, i, j = 1, 2, where δij = 1 if i = j, and 0 if i 6=
j), and the action of a covector ξ of coordinates (ξx, ξy) on a vector x = (x, y) will
be denoted by 〈ξ, x〉 = ξxx + ξyy, which is the standard scalar product. Clearly,
given two vectors x, y ∈ R2 the determinant of the matrix whose columns are x
and y is affine 1-covariant. This is the basic covariant made of vectors and the
others can be deduced from it. Let us denote by x ∧ y this determinant. Notice
that vectors transform cogradiently, i.e., as x → Ax while covectors transform
contragradiently, ie., as ξ → A−tξ by the group GL(2, R)+ [Wey97]. Notice that
when using coordinates, we can identify covectors as elements of R2, although
we have to keep in mind their transformation rules.

Let SL(2, R) be the unimodular group in R2, that is, the set of 2× 2 matrices
of determinant 1. Then we specify to the case N = 2 the following result proved
in [Wey97], Theorem 2.6.A.

Theorem 1. ([Wey97], Theorem 2.6.A) Let x, y ∈ R2 be vectors and ξ, ξ̂ be two cov-
ectors. Then x ∧ y, 〈ξ, x〉, and ξ ∧ ξ̂ are the basic invariants for the unimodular group.
Thus any other algebraic invariant is a polynomial in those basic elements.

Observe that x ∧ y generates an affine 1-covariant for the group GL(2, R+),
〈ξ, x〉 is an affine invariant and ξ ∧ ξ̂ generates an affine −1-covariant.

Definition 2. Let L be a GL(2, R)+ invariant class of images. Let k ∈ R. Let
H(u, x1, . . . , xp) be a quantity which can be computed for any image u ∈ L and any
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points x1, . . . , xp ∈ R2. We say that the quantity H is affine k-covariant density if
H(uA, x1, . . . , xp) = (det(A))k H(u, Ax1, . . . , Axp) for any image u ∈ L, any points
x1, . . . , xp and any A ∈ GL(2, R)+. If k = 0 we say that H is an affine invariant
density.

Inspired by Theorem 1 we give some examples of affine k-covariant densities.
We always assume that the image u : R2 → R is smooth enough so that we can
compute its gradient. This is so for instance if u = Gt ∗ u0 where u0 : R2 → R
is a given image in L∞(R2) (the space of measurable and essentially bounded
functions) and Gt is the Gaussian of variance t > 0.

Examples.

1. The most basic invariant density is H00(u, x) = u(x), x ∈ R2.

2. Since ∇uA(x) = At∇u(Ax), we have

〈y,∇uA(x)〉 = 〈ỹ,∇u(x̃)〉,

where x̃ = Ax and ỹ = Ay, and 〈·, ·〉 denotes the standard scalar product. Thus
H01(u, x, y) = 〈y,∇u(x)〉, x, y ∈ R2 is an affine invariant density.

3. Observe that

∇uA(x) ∧∇uA(y) = det A∇u(Ax) ∧∇u(Ay).

Thus, we see that H10(u, x, y) = ∇u(x) ∧∇u(y) is an affine 1-covariant density.

4. Let

J :=

 0 −1

1 0

 .

The matrix J corresponds to a rotation by an angle of π
2 . Observe that J2 = −I,

J Jt = I, and

JAt J−1 = Cof At = det A · A−1 and AJAt = det A J. (11.1)

Notice that we have
D2uA(x) = AtD2u(Ax)A.

Then the quantity H20(u, x, y, z) := 〈D2u(x)(J∇u(y)), J∇u(z)〉 is an affine 2-
covariant density, x, y, z ∈ R2. Indeed

〈D2uA(x)(J∇uA(y)), J∇uA(z)〉 = 〈AtD2u(Ax)A(JAt∇u(Ay)), J∇u(Az)〉
= 〈D2u(Ax)(AJAt∇u(Ay)), AJAt∇u(Az)〉
= (detA)2〈D2u(Ax)(J∇u(Ay)), J∇u(Az)〉.

Notice that 〈D2u(x)(J∇u(x)), J∇u(x)〉 = |∇u(x)|3curv(u)(x) where
curv(u)(x) denotes the curvature of the level line of u passing by the point x.
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5. Combining the above quantities one can get other affine invariant quantities.
For instance, the quantity

Q(u)(x, y) :=
∇u(x) ∧∇u(y)

|〈D2u(x)(J∇u(x)), J∇u(x)〉|1/2

is affine invariant.

Lemma 2. Let k ∈ R. Assume that H(u, x1, . . . , xp) is an affine k-covariant density
defined for u in a GL(2, R)+ invariant class of images L. If we integrate H with respect
to j of its coordinates, we obtain an affine k− j-covariant density.

Proof. (i) Suppose that we integrate its first j coordinates. Then∫
R2

. . .
∫

R2
H(uA, x1, . . . , xp) dx1 . . . xj = (det A)k

∫
R2

. . .
∫

R2
H(u, Ax1, . . . , Axp) dx1 . . . xj

= (det A)k−j
∫

R2
. . .
∫

R2
H(u, y1, . . . , yp) dy1 . . . yj

Using the examples above combined with Lemmas 1 and 2 we get examples
of affine covariant and invariant quantities.

Proposition 1. Let u : R2 → R be an image which we assume smooth enough and
let n(x) denote the unit normal to the level line of u passing by the point x. Let Xλ ∈
CC({u ≥ λ}), λ ∈ R. Assume, if necessary, that λ is not a critical value, that is
∇u(y) 6= 0 for any y ∈ ∂Xλ. Let k ∈ R.

(i) For any x ∈ R2, the integrals
∫

Xλ
|∇u(x) ∧∇u(y)|k dy and

∫
∂Xλ

|∇u(x) ∧∇u(y)|k/|∇u(y)| dH1(y)

are affine (k− 1)-covariant quantities.

(ii) The integrals
∫

Xλ
|〈y,∇u(y)〉|k dy and

∫
∂Xλ
|〈y,∇u(y)〉|k/|∇u(y)| dH1(y)

are affine −1-covariant.

(iii) The quantities ∫
Xλ

|〈D2u(y)(J∇u(y)), J∇u(y)〉|k dy,

∫
∂Xλ

|〈D2u(y)(J∇u(y)), J∇u(y)〉|k/|∇u(y)| dH1(y)

are affine (2k− 1)-covariant quantities.
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Remark 2. Many other covariant quantities can be defined. For instance, for any
x, e ∈ R2, the integral

H(u, x, e) :=
∫ ∞

0
|∇u(x) ∧∇u(x + se)|k ds

is an affine k-covariant quantity. For any x, y ∈ R2, the integral∫ ∞

0
|∇u(x) ∧∇u(y + sJ∇u(y))|k ds

is an affine (k− 1)-covariant quantity. Also the quantities∫
Xλ

|detD2u(y)|k dy and
∫

∂Xλ

|detD2u(y)|k/|∇u(y)| dH1(y)

are affine (2k− 1)-covariant quantities.

The covariant quantities defined in (i) are related to the affine covariant
quantities defined in [Bal95, BCG96]. The covariant (ii) coincides with the in-
variant for curved edges defined in [TVG99], [GTT01] (see also [MTS+05]). The
covariant quantities defined in (iii) on the level lines of u contain the partic-
ular case

∫
∂Xλ
|κ(x)|1/3 dH1(x) which is the affine arclength parameter which

played a fundamental role in the development of affine invariant scale space
[AGLM93, ST93, ST94, OST+94]. This quantity has also been used in [BHNR92].

By combining the quantities given above we can get other ones. For instance
the quantities

|∇u(x) ∧∇u(y)|m∫
Xλ
|〈D2u(y)(J∇u(y)), J∇u(y)〉|k dy

and
|∇u(x) ∧∇u(y)|m∫

∂Xλ
|〈D2u(y)(J∇u(y)), J∇u(y)〉|k/|∇u(y)| dH1(y)

are m− 2k + 1 affine covariant, m, k ∈ R. Other examples could be generated.

We describe the behavior of a function H(u) with respect to affine illumina-
tion changes. We say that H(u) scales as sα if H(su + a) = sα H(u) for any s > 0,
a ∈ R. We say that H(u) is illumination invariant with respect to affine changes
if H(u) scales as s0.

The quantity Q(u) is affine invariant and scales as s1/2. We may combine
the quantities described in the examples above and in Proposition 1 in order
to get affine invariant quantities which scale as s0. For that, let us consider an
expression of the form

|∇u(x) ∧∇u(y)|m(∫
∂Xλ
|〈D2u(y)(J∇u(y)), J∇u(y)〉|k/|∇u(y)| dH1(y)

)q

(∫
∂Xλ

|〈y,∇u(y)〉|γ
|∇u(y)| dH1(y)

)p
,

(11.2)
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where m, k, γ, p, q ∈ R. If

m− (2k− 1)q− p = 0,

then the above quantity is affine invariant. If

2m− (3k− 1)q + (γ− 1)p = 0,

then the quantity scales as s0. There are infinitely many solutions of these equa-
tions. As examples we can take m = 1

2 , k = 1
3 , q = 5

2 , γ = 1
4 , p = 4

3 . Another
example is given by m = 1

2 , k = 1
2 , q = 2, γ = 1, p = 1

2 . We notice that there are
no non null solutions with p = 0.





12 Experimental results

12.1 Selection of descriptors and their implementation

Using the principles described in Section 11, we select in this Section a set of
affine invariant quantities, we use them to construct descriptors, and we de-
scribe the main details of their implementation. We also describe its correspond-
ing quantized level set (QLS) version. Let us first recall the keypoints for which
we will compute our descriptors.

12.1.1 Keypoints detection

Since our purpose is to compare our descriptors with SIFT on normalized neigh-
borhoods [MS04a] and with ASIFT that uses an orbit of images [MY09], we have
to work with two types of keypoints. In the first case we use the Harris-Affine
keypoints [MS04a] as used in [MS05, MTS+05]. In the second, we use SIFT key-
points [Low04] as in ASIFT. For a short review on these keypoints we refer to
Section 10.1.

In order to compute the Harris-Affine keypoints and their SIFT descriptor,
we use the online binary software provided by Mikolajczyk (available at the
website in [Mika]). We used the updated version of the code on 12-6-2007, under
the name Detectors & Descriptors.

In order to compute ASIFT’s orbit of images and their SIFT descriptor we use
the published ASIFT C++ code [YM11] (available at the website in [YM]).

12.1.2 Descriptors

Let u be an image defined in the domain Ω, a closed rectangle in R2. Let x ∈ Ω
and N0 be a neighborhood of zero. Assume that Nx = x +N0 ⊂ Ω. As above,
Xλ denotes a connected component of {u ≥ λ}. In what follows x represents
a keypoint and y represents a point in Nx ∩ ∂Xλ, i.e. it lies on the level lines
intersecting the neighborhood of x. As usual H1, denotes the one-dimensional
Hausdorff measure. We assume that ∂Xλ is rectifiable [AFP00].

Using the results of Section 11, we consider the following four quantities in
our experiments:

117
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r1 =
|∇u(x) ∧∇u(y)|

| < D2u(x)(J∇u(x)), J∇u(x) > | 12
,

r2 =
|∇u(x) ∧∇u(y)|

| < D2u(y)(J∇u(y)), J∇u(y) > | 12
,

r3 =
|∇u(x) ∧∇u(y)| 12

(
∫

∂Xλ
| < D2u(ȳ)(J∇u(ȳ)), J∇u(ȳ) > | 12 /|∇u(ȳ)| dH1(ȳ))2

(
∫

∂Xλ

|ȳ · ∇u(ȳ)
|∇u(ȳ)| | dH

1(ȳ))
1
2 ,

r4 =
|∇u(x) ∧∇u(y)| 12

(
∫

∂Xλ
| < D2u(ȳ)(J∇u(ȳ)), J∇u(ȳ) > | 13 /|∇u(ȳ)| dH1(ȳ))

5
2
(
∫

∂Xλ

|ȳ · ∇u(ȳ)
|∇u(ȳ)| |

1
4 dH1(ȳ))

4
3 .

Let us mention that in all the above quantities, the numerator contains the
expression H10(u, x, y) = ∇u(x) ∧ ∇u(y). Thus, the sinus of the angle formed
by the two vectors∇u(x) and∇u(y) appears in all of them. Since this angle is an
essential ingredient of SIFT, in some sense we are adding a further justification
to it.

The first and second derivatives used by these quantities are computed using
centered differences. The level-lines of the image are computed using the tree
of shapes [MG00, CM10]. In all the quantities we compute, we set a minimum
value ρ = 10−3 for any denominator quantity q. That is, if q < ρ then we set the
quantity ri = 0.

Now, to build up a descriptor with the above quantities we use the same
structure as SIFT. Given a keypoint x, we consider a neighborhood Nx of x (of
size 16× 16 in common SIFT and of size 41× 41 in SIFT+NN) and we divide
it into 4× 4 blocks. For each block we compute a weighted histogram of direc-
tions quantized in 8 angular bins (and referred to the dominant orientation at x).
In SIFT, the weights are given by the magnitude of the gradient. This time the
weights are given by the descriptors ri, i = 1, 2, 3, 4. Each coordinate of v ∈ R128

contains the weight contributions of all pixels of a given block with a given an-
gular orientation. Finally, in practice, to avoid quantization effects, each orien-
tation occurrence is distributed in several neighboring bins. As we shall verify,
using the same arrangement of the descriptor as in SIFT, these quantities permit
to improve the results obtained with it.

As in the Introduction, we refer to these descriptors as AD.
Let us mention that the computation times for our descriptors are essentially

the same as for SIFT. Indeed, the only difference is that now for each keypoint x
we need to compute quantities like∇u(x)∧∇u(y) where y ∈ Nx. This amounts
to a constant additional number of operations per keypoint, which does not in-
crease the complexity with respect to SIFT. To give an example, let us mention
the running times corresponding to the computation of our descriptors on the
Harris-Affine keypoints of image 12.2(e). All experiments have been run on a
computer with a CPU speed of 2.66 GHz. In our implementation, which is not
optimized, SIFT takes 49 seconds, r1 and r2 take 50 seconds, and r3 and r4 take
83 seconds. Please note that the time difference between r1, r2, and SIFT is neg-
ligible. The extra time consumed by r3 and r4 is due to the computation of the
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level lines of the image (this could be optimized by pre-computing and storing
them).

12.1.3 The QLS version of the descriptors

Let us introduce a further variant based on the observation that level sets are
affine covariant domains in the sense that, if u is a given image and A ∈
GL(2, R)+, then {uA ≥ λ} = A−1{u ≥ λ}. Assume that x is a keypoint of
an image u and Nx is a given neighborhood (be it square or the affine normal-
ized one). We want to organize the descriptor taking into account the level set
structure of u in Nx. For that we quantize the image u in Nx. To avoid the ef-
fect of illumination changes we first equalize the image u in Nx, call it Hx(u),
and then define the (bi)level sets N u,j

x := {y ∈ Nx : j∆ ≤ Hx(u)(y) < (j + 1)∆}
where ∆ is a quantization step and j = 0, 1, ..., 256

∆ − 1. In practice we take ∆ = 64
and we have 4 level sets corresponding to j = 0, 1, 2, 3. The descriptor associated
to each ri (i = 1, 2, 3, 4) is formed by the concatenation of four vectors vj ∈ R128.

Each coordinate of vj receives the weights of the pixels y ∈ N u,j
x . If ∆ = 256,

then we have only a vector v ∈ R128 with the standard organization of SIFT.
As in the Introduction, we refer to these descriptors as AD+QLS.

12.2 Experiments

Our purpose in this Section is to compare our descriptors ri with SIFT on affine
normalized neighborhoods [MS04a] and with ASIFT [MY09]. This is the object
of Sections 12.2.5 and 12.2.6, respectively. We also include in Section 12.2.4 an
example of comparison with SIFT on standard neighborhoods. The comparisons
will be done using the standard and the QLS versions both for SIFT and for ri.

Let us consider two images Il and Ir defined in the domain Ω. Assume that
both contain the image of a planar scene so that there is an homographyH such
that Ir(x) = Il(Hx) for x ∈ Ω̂ ⊆ Ω. Since H can be locally approximated by
an affine map, we may assume thatH is an affine transformation. Let us denote
by Pl and Pr the set of keypoints (see Section 12.1.1) of Il and Ir, respectively.
Notice that Pl and Pr may have different numbers of keypoints, so that there
will be keypoints in Il without a corresponding one in Ir and conversely.

Finally, to each keypoint we associate a descriptor which is a vector of 128 co-
ordinates, or of 512 in the case of the QLS versions. The descriptors we consider
are SIFT and the descriptors ri, i = 1, 2, 3, 4, in their AD or AD+QLS versions
as defined above. Then for each keypoint pl ∈ Pl we look for a matching point
pr ∈ Pr using a certain matching strategy. Several of them have been used for
performance evaluation [MS05, MTS+05].

To compare our descriptors with SIFT+NN we follow the experimental pro-
tocol proposed in [MS05, MTS+05]. For that, we first describe the matching
strategies (Section 12.2.1), the notion of corresponding regions (Section 12.2.2),
and the precision/recall curves (Section 12.2.3). The comparison with ASIFT will
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be done in terms of the significance measure proposed in [MY09] (see Section
12.2.6).

12.2.1 Matching strategies

The definition of a match depends on the matching strategy. Assume that to any
region A of any of the images Il and Ir we may associate a descriptor DA, that
is, a vector in RN for some fixed N ∈ N. We look into three different matching
strategies as proposed in [MS05]:

1. Threshold based matching (TH): Two regions A of Il and B of Ir are
matched if the distance between their descriptors is below a certain thresh-
old. In this strategy, a descriptor can have several matches and several of
them can be considered as correct (in the sense that the descriptors are
really similar).

2. Nearest neighbor based matching (NN): Two regions A of Il and B of Ir
are matched if the descriptor DB is the nearest neighbor to the descriptor
DA and if the distance d(DA, DB) < threshold. Please note here that a
descriptor can have only one match.

3. Nearest neighbor distance ratio matching (RNN): This strategy, introduced
in [Low04], is similar to NN except that the thresholding is applied to the
distance ratio between the first and the second nearest neighbor. With
the same example and notation used in NN, let DC be the second near-
est neighbor to DA, then region A is matched to B if ||DA−DB ||

||DA−DC ||
< threshold

where || · || is the Euclidean norm. Note that in this case a descriptor can
have only one match.

Note that the NN and RNN matchings are not symmetric concepts with re-
spect to Il and Ir. They are computed taking Il as a reference image.

12.2.2 Definition of corresponding regions

In this subsection and the next one we are in the context of the comparison of our
descriptors with SIFT+NN. Thus we work with Harris-Affine keypoints with
their associated elliptic neighborhood [MS04a]. We also use the terms elliptical
region or, simply, region. Assume that we have two keypoints pl ∈ Pl and
pr ∈ Pr whose elliptical neighborhoods Sµl and Sµr are defined by the shape
adaptation matrices µl and µr, respectively. Let SHTµlH be the image by H of
the elliptical region Sµl . The two regions Sµl and Sµr are said to correspond
[MS05, MTS+05] if the overlap error is sufficiently small, that is, if

1−
|Sµr ∩ SHTµlH|
|Sµr ∪ SHTµlH|

< ε. (12.1)

Given the homography and the matrices defining the regions, the error is com-
puted numerically by counting the number of pixels in the union and in the
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intersection of the regions (see [MS05, MTS+05] for details). In our experiment
we choose ε = 0.5 as suggested in [MS05, MTS+05].

12.2.3 Definition of precision and recall

Assume that we take Il as reference image and the matches are computed ac-
cordingly. The evaluation criterion used is based on the number of correct
matches (true positives TP) and the number of false matches (false positives
FP) obtained for an image pair. Given a matching strategy, we have a correct
match of two keypoints when their descriptors satisfy the matching criterion
and their elliptical regions correspond according to the overlap criterion (12.1).
The other matchings are the false matchings. Both correct and false matchings
can be computed since we know the ground truth given by the matrix H. Fol-
lowing [MS05, MTS+05] we take the overlap error threshold ε = 0.5. As argued
in that references, there are very few regions that should be matched, have an
overlap error greater than 0.5 and pass the matching criterion.

The number of correspondences is counted as the number of possible correct
matchings and depends on the matching strategy. Let us explain this. For any
region A of Il, let N(A) be the number of regions of Ir that correspond to A ac-
cording to the overlap criterion (12.1). Then, if we use the TH matching strategy,
we compute the number of correspondences as ∑A N(A), while if we use the
NN or the RNN matching strategies, we compute it as ∑A min(N(A), 1). In all
cases the sum is extended to all regions of Il.

According to the three matching strategies discussed in Section 12.2.1, to
match a region A of Il to a region B of Ir a certain distance relation between
their descriptors DA and DB has to be below a given threshold t. So, given the
two images Il and Ir and the threshold t, we compare every descriptor Dl of
keypoints in Il to every descriptor Dr of keypoints in Ir and we count the num-
ber of TP as well as the number of FP. We repeat this process for different values
of t and, in this way, we can study the behavior of the descriptor for different
thresholds. Performance of different descriptors is measured using recall versus
1-precision graphs where recall and 1-precision are defined as follows:

• recall = #correct−matches
#correspondences , where # is read as “the number of".

• 1 − precision = # f alse−matches
#correct−matches+# f alse−matches = FP

TP+FP . Note that the de-
nominator does not take into consideration the overlap error. In other
words, if the matching algorithm returned k matchings, then TP + FP = k
(i.e. TP + FP is independent of the number of correspondences).

Both values depend on t. Please note that recall and 1− precision are independent
terms: recall is computed with respect to the number of correspondences and
1-precision is computed with respect to the total number of matches returned by
the matching algorithm. Now, given recall and 1-precision measures along with
the number of correspondences, we have:

TP = #correspondences× recall,
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FP =
#correspondences× recall × (1− precision)

precision
.

Remark 3. Note that the recall is increasing with t, as is the number of matchings.
But this is not the case for 1-precision. Thus the 1-precision/recall curve is not
necessarily increasing, although it is often so.

A perfect descriptor would give a recall equal to 1 for any precision. A hor-
izontal curve in the graph indicates that the recall value is attained with high
precision. It also indicates that the detected structures are very similar to each
other and the descriptor cannot distinguish them even when decreasing the pre-
cision.

12.2.4 An example of comparison with SIFT on standard
neighborhoods

Although our main comparisons will be done with SIFT+NN [MS04a, MTS+05]
and with ASIFT [MY09], which are SIFTs most performant versions, for the sake
of illustration let us show an image to compare SIFT with the descriptors in AD
and AD+QLS. In both cases, we use a square neighborhood. We have chosen
the descriptor based on r1, although we could have chosen any of the ri. In Fig-
ure 12.1 we show the result of a matching between images 12.2(d) and 12.2(e)
(taken from [MS05], see Section 12.2.5). It can be seen that although the quantity
r1 already contributes to improve the matching result, when combined with the
quantization on the level sets we even get a more robust descriptor (having less
false matchings). In this specific example the number of correct matchings in-
creased from 45 for SIFT to 68AD+QLS, whereas the number of false matchings
dropped from 33 (SIFT) to 9 (AD+QLS). This behavior is common to all images
of the dataset below. Quantitative comparisons will be done in subsequent Sec-
tions.

12.2.5 Comparing to SIFT with normalized neighborhoods

In this Section we compare our descriptors with SIFT on affine normalized
neighborhoods around the Harris affine keypoints [MS04a, MTS+05].

Image dataset The images we use are taken from [MS05]. They can be down-
loaded from [Mikb]. Without loss of generality, and in order to reduce the run-
ning time of the experiments (mostly due to the generation of Figures 12.3 to
12.7 using the MATLAB code provided in the above website, whose execution
time depends on the number of keypoints), we downscale the images by a factor
of 2.

We chose four sets of images, three of them containing a reference image
and two simulated affine distortions. The fourth set contains the reference im-
age and two simulated illumination changes. The first set contains different
views of a textured scene, again we compare the frontal view 12.2(a) with a
50◦ and a 70◦ tilt viewpoint changes, shown in 12.2(b) and 12.2(c). The sec-
ond set contains different views of a structured scene, we compare the frontal
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(a) (b) (c)

Figure 12.1: The result of a matching between images 12.2(d) and 12.2(e) using
SIFT keypoints. The descriptors are therefore computed on a square neighbor-
hood. The matching has been done using the RNN matching strategy with a
threshold equal to 0.8. 12.1(a) shows the result of the SIFT descriptor with 45
correct matchings and 33 false ones. 12.1(b) shows the result of the r1 quantity
used in a descriptor structure analogous to SIFT with 56 correct matchings and
22 false ones. 12.1(c) shows the results of the r1 quantity used in the descriptor
structure based on the level sets as described in Section 12.1.3, with 68 correct
matchings and 9 false ones.

view 12.2(d) with a 50◦ and 70◦ tilt viewpoint changes, shown in 12.2(e) and
12.2(f), respectively. The third set contains simulations of rotations and zooms,
we compare 12.2(g) with 12.2(h) and then with 12.2(i). Finally, the fourth set con-
tains a reference image and two simulations of illumination changes, we com-
pare 12.2(j) with 12.2(k) and then with 12.2(l). More information about the set of
images and their acquisition can be found in [MTS+05].

The number of Harris affine (HA) keypoints of each image is shown in Ta-
ble 12.1. The number of correspondences between each image pair compared is
shown in Table 12.2. We have used an overlap error parameter ε = 0.5 and the
three matching strategies {RNN, NN, TH}. Note that, according to its definition
in Section 12.2.3, the number of correspondences is the same for the matching
strategies NN and RNN, and is much higher for TH.

Experiments First we compare our descriptors AD with SIFT+NN using
in both cases the affine normalized neighborhood. We display the 1 −
precision/recall curves for the four images in Figure 12.2 for all matching strate-
gies.
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Image Nb of HA Keypoints

12.2(a) 5027

12.2(b) 4120

12.2(c) 3930

12.2(d) 2325

12.2(e) 2675

12.2(f) 2504

12.2(g) 2822

12.2(h) 1748

12.2(i) 1481

12.2(j) 1730

12.2(k) 1334

12.2(l) 1039

Table 12.1: Table showing the number of Harris-Affine keypoints found for ev-
ery image used in the experiments.

Image pair #correspondences

TH NN RNN

12.2(a)→12.2(b) 46414 2821 2821

12.2(a)→12.2(c) 23631 1633 1633

12.2(d)→12.2(e) 13016 990 990

12.2(d)→12.2(f) 5520 493 493

12.2(g)→12.2(h) 10189 739 739

12.2(g)→12.2(i) 3840 288 288

12.2(j)→12.2(k) 12012 1161 1161

12.2(j)→12.2(l) 9686 929 929

Table 12.2: Table showing the #correspondences between every image pair used
in the experiments and for all matching strategies. Note that, according to its
definition in Section 12.2.3, the #correspondences is the same for the matching
strategies NN and RNN, and is much higher for TH.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 12.2: The images used to compare AD and AD+QLS to SIFT+NN. A
textured scene where 12.2(a) front view, 12.2(b) an approximately 50◦ change in
viewpoint, and 12.2(c) an approximately 70◦ change in viewpoint. A structured
scene where 12.2(d) front view, 12.2(e) an approximately 50◦ change in view-
point, and 12.2(f) an approximately 70◦ change in viewpoint. 12.2(g), 12.2(h)
and 12.2(i) increasing rotation and zoom factors. 12.2(j), 12.2(k) and 12.2(l) in-
creasing illumination change.

In a second experiment we compare AD, AD+QLS and SIFT+NN (using
again the normalized neighborhood). The purpose of it is to compare the per-
formance added by the QLS strategy. Since all quantities ri behave similarly
under the different matching strategies, we just show the results obtained with
r1 and RNN.

In any case, for each pair of images and for each matching strategy we com-
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Sample Experiment

Input: Figures 12.2(d) and 12.2(e)

Chosen matching strategy: Nearest Neighbor distance ratio matching (RNN)

Other chosen values: overlap error = 0.5 (yielding. #correspondences = 990)

Threshold t = 0.3704 0.4167 0.4762 0.5556 0.6667 0.8333 0.8696 0.9091 0.9524 1.0000

SIFT TP 0 0 0 1 6 67 87 118 163 249

TP + FP 0 0 1 3 10 119 194 332 655 2325

r1 TP 1 2 2 5 15 102 140 189 271 460

TP + FP 1 2 2 5 15 109 162 248 474 2325

r2 TP 1 2 2 3 12 93 130 180 274 464

TP + FP 1 2 2 3 12 106 152 237 461 2325

r3 TP 0 2 2 5 19 98 134 183 276 464

TP + FP 0 2 2 5 19 109 155 236 480 2325

r4 TP 0 2 2 5 20 96 129 183 270 465

TP + FP 0 2 2 5 20 108 152 243 465 2325

Table 12.3: Results of an experiment where the input images are Figure 12.2(d)
and Figure 12.2(e), comparing our 4 AD descriptors to SIFT, using in both cases
an affine normalized neighborhood.

pute the number of correspondences, the number of true positives (TP) and the
total number of returned matches (TP+FP) varying the threshold t. We used the
same code used in [MS05] which can be found at [Mikc]

Let us show the Figures corresponding to the the comparison of AD with
SIFT+NN. Figure 12.3 shows the 1 − precision/recall curves corresponding to
the matching of images 12.2(a) with 12.2(b) (left column) and of 12.2(a) with
12.2(c) (right column). In each column we show the results corresponding to
the three different matching strategies {TH, NN, RNN}. Figure 12.4 shows the
results corresponding to the matching of images 12.2(d) with 12.2(e) and of
12.2(d) with 12.2(f). Figure 12.5 shows the results corresponding to the matching
of images 12.2(g) and 12.2(h), and images 12.2(g) and 12.2(i). Figure 12.6 shows
the result of matching images 12.2(j) and 12.2(k), and images 12.2(j) and 12.2(l).

In general, our descriptors perform better than SIFT, in particular in Fig-
ure 12.4(c) there is an improvement by a factor of 2. Notice that Figure 12.4(d)
(which corresponds to a large change of viewpoint) shows that when SIFT could
retrieve only 5% of TP at a low precision, we retrieve up to 15% of TP. Let us note
that, in most cases, the ranking of the descriptors does not change between one
matching strategy and another.

In order to illustrate how the curves displayed in the above figures are gen-
erated, we show Table 12.3. To generate these curves, we need the number of
TP and TP+FP for each experiment. Table 12.3 contains these numbers for one
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of the experiments of Figure 12.4, namely the matching of Figure 12.2(d) to Fig-
ure 12.2(e) using the RNN matching strategy.

In order to show the relative performance of AD and AD+QLS, we show in
Figure 12.7 the 1-precision/recall curves corresponding to all images in Figure
12.2 for AD, AD+QLS, and SIFT+NN. Again, our descriptors are based on r1
and the RNN matching strategy. As it can be seen, in some cases, specially when
there are big affine changes, the AD+QLS version provides improvements over
AD.

12.2.6 Comparing to ASIFT

In this experiment we compare our descriptors AD with SIFT in the context of
ASIFT [MY09] (available at [YM]). Thus we match Il with Ir using the orbit
of images generated by ASIFT for both of them. To test the robustness of SIFT
and our descriptors we compare them on different orbit sizes. We first start
with the suggested orbit size (ASIFT default) made out of 7 tilts and generating
61 images. Then we reduce the orbit to 5 tilts (27 simulations) and 3 tilts (10
simulations) Throughout these experiments we use the r1 quantity. The other
quantities behave similarly. Both SIFT and our descriptors are computed on the
same set of SIFT keypoints (see Section 10.1). For both we use the RNN matching
strategy. Thus, for both of them the conditions are equal, except that SIFT is used
for ASIFT and we use AD based on r1.

The tests are performed on five image pairs, shown in Figure 12.8. We com-
pare the number of matches obtained with each method and also the significance
of those matches. The significance measure is computed as the logarithm of the
NFA (number of false alarms), a quantity obtained during the computation of
the affine map relating both images. The affine map is computed using an a
contrario optimized version of RANSAC, as in [MS04b]. We use the same imple-
mentation as in ASIFT.

In Table 12.4 we show the results of the comparison between ASIFT and the
descriptor AD based on r1 computed on a square neighborhood. We show the
results corresponding to three orbit sizes. We can see the improvement due
to the use of the new descriptor both in the number of matchings and in their
significance measure. This improvement is clearly visible for a reduced orbit,
when using r1 we get a matching in four of five images, but only in two of them
when using SIFT.

The performance ofAD+QLS versus ASIFT is similar to the the performance
of AD versus ASIFT, and therefore we omitted the Table. Let us only mention
that when usingAD+QLS we get a matching for the five image pairs in the case
of a reduced orbit with 10 simulated images. On the other hand, the reason for
the similar behavior of AD versus AD+QLS in the context of this comparison
may be that the information brought by the orbit is sufficient to cancel the ben-
efits gained by the QLS strategy. This is in contrast with the behavior of QLS in
the context of SIFT+NN.
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Figure 12.3: Comparison between SIFT+NN and our descriptors AD computed
on an affine normalized neighborhood. ‘1-precision vs, recall’ graphs showing the
results of matching 12.2(a) with 12.2(b) and 12.2(a) with 12.2(c), in the first and
second columns, respectively. The left column shows the matching 12.2(a) with
12.2(b): 12.3(a) using the TH matching strategy, 12.3(c) using the NN matching
strategy, and 12.3(e) using the RNN matching strategy. The right column shows
the matching 12.2(a) with 12.2(c): 12.3(b) using the TH matching strategy, 12.3(d)
using the NN matching strategy, and 12.3(f) using the RNN matching strategy
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Figure 12.4: Comparison between SIFT+NN and our descriptors AD computed
on an affine normalized neighborhood. ‘1-precision vs, recall’ graphs showing the
results of matching 12.2(d) with 12.2(e) and 12.2(d) with 12.2(f), in the first and
second columns, respectively. The left column shows the matching 12.2(d) with
12.2(e): 12.4(a) using the TH matching strategy, 12.4(c) using the NN matching
strategy, and 12.4(e) using the RNN matching strategy. The right column shows
the matching 12.2(d) with 12.2(f): 12.4(b) using the TH matching strategy, 12.4(d)
using the NN matching strategy, and 12.4(f) using the RNN matching strategy
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Figure 12.5: Comparison between SIFT+NN and our descriptors AD computed
on an affine normalized neighborhood. ‘1-precision vs, recall’ graphs showing the
results of matching 12.2(g) with 12.2(h) and 12.2(g) with 12.2(i), in the first and
second columns, respectively. The left column shows the matching 12.2(g) with
12.2(h): 12.5(a) using the TH matching strategy, 12.5(c) using the NN matching
strategy, and 12.5(e) using the RNN matching strategy. The right column shows
the matching 12.2(g) with 12.2(i): 12.5(b) using the TH matching strategy, 12.5(d)
using the NN matching strategy, and 12.5(f) using the RNN matching strategy
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Figure 12.6: Comparison between SIFT+NN and our descriptors AD computed
on an affine normalized neighborhood. ‘1-precision vs, recall’ graphs showing
the results of matching 12.2(j) with 12.2(k) and 12.2(j) with 12.2(l), in the first and
second columns, respectively. The left column shows the matching 12.2(j) with
12.2(k): 12.6(a) using the TH matching strategy, 12.6(c) using the NN matching
strategy, and 12.6(e) using the RNN matching strategy. The right column shows
the matching 12.2(j) with 12.2(l): 12.6(b) using the TH matching strategy, 12.6(d)
using the NN matching strategy, and 12.6(f) using the RNN matching strategy
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Figure 12.7: Comparison between SIFT+NN, and the descriptors AD and
AD+QLS based on r1. ‘1-precision vs, recall’ graphs showing the results of match-
ing using the RNN matching strategy. 12.7(a) and 12.7(b) show the result of
matching 12.2(a) with 12.2(b) and 12.2(c) respectively. 12.7(c) and 12.7(d) show
the result of matching 12.2(d) with 12.2(e) and 12.2(f) respectively. 12.7(e) and
12.7(f) show the result of matching 12.2(g) with 12.2(h) and 12.2(i) respectively.
12.7(g) and 12.7(h) show the result of matching 12.2(j) with 12.2(k) and 12.2(l)
respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 12.8: Image pairs used as an input in the experiments comparing our
descriptors to SIFT in the context of ASIFT. 12.8(a) frontal view of a magazine;
12.8(b) a transition tilt of 4 with a 90 degree rotation applied to the magazine;
12.8(c) a transition tilt of 4 with a 50 degree rotation applied to the magazine;
12.8(d) an image of a painting with no optical zoom; 12.8(e) image of the same
painting with 10x optical zoom; 12.8(f) an 80◦ viewpoint change to the painting
image with 10x optical zoom; finally, 12.8(g) and 12.8(h) illustrate a case of two
images taken from different viewpoints of a real big 3D object.
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Image Pair Descriptor

Number Of Tilts

7 (61 simulations) 5 (27 simulations) 3 (10 simulations)

Matches log(nfa) Matches log(nfa) Matches log(nfa)

12.8(a)→ 12.8(b) SIFT 234 -322.685 140 -181.15 14 -4.33

r1 309 -418.38 182 -247.03 24 -16.7

12.8(a)→ 12.8(c) SIFT 98 -125.84 68 -87.72 No match 0

r1 145 -192.489 101 -129.25 12 -2.45

12.8(g)→ 12.8(h) SIFT 173 -185.27 113 -120.57 65 -79.05

r1 318 -373.025 349 -417.36 181 -226.47

12.8(d)→ 12.8(f) SIFT 53 -54.14 29 -26.2 No match 0

r1 67 -71.95 63 -57.1 No match 0

12.8(e)→ 12.8(f) SIFT 62 -65.23 42 -48.08 No match 0

r1 97 -96.31 76 -69.49 14 -3.34

Table 12.4: Table comparing the result of matching an image pair using SIFT
computed on an orbit of images and the AD based on r1 descriptor on the same
orbit. The results obtained using AD + QLS are similar to the ones obtained
using AD, except that now we obtain a matching for the 5 image pairs in the
case of a reduced orbit with 10 simulated images.
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We now summarize the contributions of this thesis, and briefly discuss some
extensions to the work presented here.

Contributions Let us summarize the main contributions of the thesis:

1. Introducing the Global Brightness Change (GBC) assumption for video
editing as a generalization of the brightness constancy assumption. The
main advantage of the GBC assumption is that it models temporal consis-
tency while allowing for global additive illumination changes.

2. Presenting an energy functional based on the GBC assumption to propa-
gate gradient domain information. Unlike models based on the brightness
constancy assumption which, on one hand, propagate color information
and, on the other, require two minimization processes, the proposed en-
ergy propagates gradient domain information and its minimizers are both
spatially and temporally consistent

3. As it has been noted in the literature [KCR05, SMTK06], propagating in-
formation along motion trajectories results in a blurring artefact after just a
few frames. In this thesis, we have introduced a novel numerical scheme,
the de-blurring scheme for the convective derivative (DSCD), that allows
to propagate information along motion trajectories for a large number of
frames while maintaining the sharpness of the result.

4. We have introduced a way to generate affine invariant quantities that can
be used in the construction of “geometric” affine invariant feature descrip-
tors for object recognition. We have experimentally observed that descrip-
tors using the proposed quantities have more discriminative power and
improve the performance of state of the art ones such as SIFT.

Future work We believe that the work presented in this thesis opens the door
for several interesting issues to be further investigated, among which are:

1. The detailed study of the DSCD to provide a better understanding of its
behavior and limitations. This study might also lead to an improved ver-
sion of the DSCD.

2. Investigating the use of operator∇x∂v as a regularizer in the computation
of optical flow.

3. Investigating the use of the proposed 1st and 2nd order video editing mod-
els for frame interpolation between two input images with different light-
ing conditions.

4. Studying the practical details of the angular quantization argument pre-
sented in Appendix B.2, in particular its relevance regarding the reduction
of the number of simulations in the orbit of affine transformations in algo-
rithms like ASIFT.
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5. Applying the argument presented in Appendix B.3 in applications where
high accuracy in the keypoint detection is needed, for example the 3D re-
construction of a scene using satellite images.
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A On video editing

A.1 Derivation of the discrete energy minimization of the
1st-order model with p = 1

The discrete formulation of (3.9) is written as follows:

E(u) = min
u ∑

(i,j)∈Ω
|(∂vu)i,j|+ β‖(∇xu)i,j − gi,j‖+

1
2λ
‖u− f ‖2. (A.1)

To minimize this energy we use the algorithm described in [Cha04]. In order
to do that we introduce two vector fields ξ and ψ where ξ is defined as a map
ξ : {1, ..., N} × {1, ..., N} → R2 and ψ is defined as a map ψ : {1, ..., N} → R.

Introducing the dual variables ξ and ψ we have

E(u) = max
‖ξ‖≤1,|ψ|≤1

min
u
〈ψ, ∂vu〉+ β〈ξ,∇xu− g〉+ 1

2λ
‖u− f ‖2, (A.2)

and minimizing with respect to u we get:

u = f + λ(∂∗vψ + βdivxξ). (A.3)

After replacing (A.3) in (A.2) we obtain the dual formulation:

min
‖ξ‖≤1,|ψ|≤1

‖∂∗vψ + βdivxξ +
f
λ
‖2 +

2
λ

β〈ξ, g〉 (A.4)

Adding the Lagrange multipliers corresponding to the restrictions |ψ| ≤ 1
and ‖ξ‖ ≤ 1: ∑Ω α1(‖ψ‖2 − 1) and ∑Ω α2(‖ξ‖2 − 1), and differentiating with
respect to ψ, and ξ we get the Euler-Lagrange equations

∂v[∂
∗

vψ + βdivxξ + f /λ] + α1ψ = 0,
∇x[∂

∗
vψ + βdivxξ + f /λ] + g/λ + α2ξ = 0.

The Karush-Kuhn-Tucker theorem yields the existence of the Lagrange mul-
tipliers α1 and α2 with values α1 = |∂v[∂∗vψ + βdivxξ + f /λ]| and α2 =
‖∇x[∂∗vψ + βdivxξ + f /λ] + g/λ‖. Then the solution of (A.4) is computed with
the semi-implicit scheme

ψk+1 =
ψk + τ∂v[∂∗vψ + βdivxξ + f /λ]

1 + τ|∂v[∂∗vψ + βdivxξ + f /λ]| ,

ξk+1 =
ξk + τ∇x[∂∗vψ + βdivxξ + f /λ] + g/λ

1 + τ‖∇x[∂∗vψ + βdivxξ + f /λ] + g/λ‖ ,

where τ is a time step small enough for assuring the convergence of the
fixed point iteration. Finally the solution of the primal problem is recovered
with (A.3).
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A.2 The Euler-Lagrange equation

Throughout the rest of the paper, we assume that O is a subset of ΩT = Ω× [0, T]
with Lipschitz boundary. Then the unit normal is defined almost everywhere on
∂O with respect to the Hausdorff measure H2 (surface measure) on ∂O. Let us
denote by νO = (νO

x , νO
t ) the outer unit normal to ∂O (a vector in the unit sphere

of R3) and νOt the outer unit normal to ∂Ot (a vector in the unit circle of R2).
Let us compute the Euler-Lagrange equations associated to the energy

Eκ,λ(u) =
∫

O

(
1
2
‖κ(x, t)∇∂vu(x, t)‖2 +

λ

p
‖∇u(x, t)‖p

)
dx dt, (A.5)

where λ ≥ 0 and p = 1, 2. For that, assume that u : O → R is a minimum of
Eκ,λ. To compute the Euler-Lagrange equations, we consider a perturbation ū
such that Eκ,λ(ū) < ∞. Since u is a minimum of Eκ,λ we have

lim
ε→0+

Eκ,λ(u + εū)− Eκ,λ(u)
ε

=
∫

O
κ∇∂vu · κ∇∂vū dxdt

+ λ
∫

O
ξ ·∇ūdx dt = 0,

where, when λ > 0 and p = 1, ξ : O→ R2 is a measurable vector field such that
‖ξ‖∞ ≤ 1, ξ ·∇u = |∇u|, and the arguments (x, t) of the functions are omitted
for simplicity. If λ > 0 and p = 2, then ξ = ∇u. Integrating by parts we have

0 =
∫

O
κ∇∂vu · κ∇∂vū dxdt + λ

∫
O

ξ ·∇ūdx dt

=
∫

O
∂∗v∇∗(κ2∇∂vu)ū dxdt + λ

∫
O
∇∗ξ ūdx dt

+
∫

∂O
∇∗(κ2∇∂vu)(νO

t + v · νO
x )ū dH2 + λ

∫ T

0

∫
∂Ot

ξ · νOt ūdH1dt

+
∫ T

0

∫
∂Ot

κ2∇∂vu · νOt ∂vū dH1dt,

where dH2, resp. dH1, denotes the surface measure in ∂O, resp. the length
measure in ∂Ot. We have denoted by ∇∗ (resp. ∂∗v) the adjoint operator, that is
∇∗b = −div b for any vector field b : O→ R2 (resp. ∂∗vψ = − ∂ψ

∂t − div (vψ), for
any function ψ : O→ R). By taking test functions that vanish in a neighborhood
of the boundary we have ū = 0, ∂vū = 0 on ∂O and we deduce that

∂∗v∇∗(κ2∇∂vu) + λ∇∗ξ = 0 in O.

Introducing this in the above expressions we get∫
∂O

∇∗(κ2∇∂vu)(νO
t + v · νO

x )ū dH2

+λ
∫ T

0

∫
∂Ot

ξ · νOt ūdH1dt

+
∫ T

0

∫
∂Ot

κ2∇∂vu · νOt ∂vū dH1dt = 0

(A.6)
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and this holds for any admissible perturbation ū that will be clarified below.
Let us discuss the boundary conditions that can be specified for the problem.

We use the definition and notations given in Section 3.1.2.1. A set of natural
boundary conditions are those for which the identity (A.6) holds. Let us discuss
the possible choices.

Dirichlet boundary conditions. Dirichlet boundary conditions for u can be speci-
fied on a given set A ⊂ ∂O if λ > 0 or on a subset A ⊂ ∂O \ ∂Otang if λ = 0.
Namely we can specify

u(x, t) = u0(x, t) (x, t) ∈ A. (A.7)

If u satisfies (A.7) and we take test functions ū such that ū = 0 on A, then u + εū
satisfies (A.7) and the first and second integrals in (A.6) vanishes on A.

Observe that, since ∂O is Lipschitz,

{(x, t) : x ∈ ∂Ot, t ∈ (0, T)} = ∂Otang ∪ ∂Oobli,

where strictly speaking this equality holds modulo null sets with respect to the
surface measure.

Specifying ∂vu on the boundary. We can specify ∂vu on a given subset of {(x, t) :
x ∈ ∂Ot, t ∈ (0, T)}. Namely we can specify

∂vu(x, t) = g0(x, t) (x, t) ∈ B ⊂ ∂Otang ∪ ∂Oobli. (A.8)

If u satisfies (A.8) and we take test functions ū such that ∂vū = 0 on B ⊂ ∂Otang ∪
∂Oobli, then u + εū satisfies (A.8) and the third integral in (A.6) vanishes on B.

Specifying other boundary conditions. We can specify the boundary condition at
(x, t) ∈ A′ ⊂ ∂O

∇∗(κ2∇∂vu)νO · (v, 1) + λξ · νOt = 0 (A.9)

with the convention that ξ · νOt = 0 if (x, t) ∈ ∂Overt ∪O0 ∪OT . Then the sum
of the first and second integrals in (A.6) vanishes on A′.

Notice that if λ = 0, (A.9) reduces to

∇∗(κ2∇∂vu)νO · (v, 1) = 0 (A.10)

and is trivially satisfied if (x, t) ∈ ∂Otang since in that case νO · (v, 1) = 0. That
is, this gives no boundary condition at points (x, t) ∈ ∂Otang. Thus, when λ = 0
we can only impose (A.10) on subsets A′ ⊂ ∂O \ ∂Otang.

If λ > 0, we can impose (A.9) on any subset A′ ⊂ ∂O, understanding that it
reduces to

ξ · νOt = 0. (A.11)

Specifying κ2∇∂vu · νOt = 0 on the boundary. We can specify the boundary con-
dition at (x, t) ∈ B′ ⊂ ∂Otang ∪ ∂Oobli

κ2∇∂vu · νOt = 0.
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Then the second integral in (A.6) vanishes on B′.

Depending on the problem we choose a set of boundary conditions. The only
requirements are that

A ∪ A′ = ∂O if λ > 0, or A ∪ A′ = ∂O \ ∂Otang if λ = 0,

and
B ∪ B′ = ∂Otang ∪ ∂Oobli.

This implies that the identity (A.6) holds.

Boundary conditions for the one-lid setting. In the context of the one-lid problem,
we choose the set of boundary conditions

u(x, 0) = u0(x, 0), x ∈ O0, (A.12)
u(x, t) = u0(x, t), (x, t) ∈ ∂Overt, (A.13)

∂vu(x, t) = g0(x, t) , (x, t) ∈ ∂Otang \ ∂ΩT , (A.14)

u(x, t) = u0(x, t)

∂vu(x, t) = g0(x, t)
, (x, t) ∈ ∂Oobli \ ∂ΩT , (A.15)

to which, when λ > 0, we add

u(x, t) = u0(x, t) (x, t) ∈ ∂Otang \ ∂ΩT , (A.16)

where the videos u0 and g0 are given. Notice that the boundary condition (A.16)
is interpreted classically if p = 2 and it has to be interpreted in a relaxed sense if
p = 1.

The boundary conditions on the rest of ∂O are

∇∗(κ2∇∂vu)(x, t) = 0, x ∈ OT , (A.17)

λξ · νOt(x, t) = 0

κ2∇∂vu(x, t) · νOt(x, t) = 0
, (x, t) ∈ ∂Otang ∩ ∂ΩT , (A.18)

∇∗(κ2∇∂vu)(x, t) + λξ · νOt(x, t) = 0

κ2∇∂vu(x, t) · νOt(x, t) = 0
, (x, t) ∈ ∂Oobli ∩ ∂ΩT . (A.19)

Boundary conditions for the two-lid setting. They are given by
(A.12),(A.13),(A.14),(A.15),(A.18),(A.19), and (A.17) is replaced by

u(x, T) = u0(x, T) in OT . (A.20)

Let us observe that the boundary conditions (A.12),(A.13),(A.14), (A.15), and
(A.20) in the two lid-case, are specified in the set of admissible functions in which
Eκ,λ will be minimized.
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Remark. Under some assumptions on the vector field v, we can prove existence
and uniqueness of minima of Eκ,λ in a suitable class of functions (the functional
space where the energy is finite and permits to incorporate boundary condi-
tions). In particular, this shows that the boundary conditions are sufficient to
determine the solution.

A.3 The functional analytic framework and existence of
minima of Eκ,λ

The study of minima of Eκ,λ requires to define suitable functional spaces. For
that we assume that v ∈ L∞(Ω× (0, T); R2) with divx v ∈ L2(Ω× (0, T)). We
also assume that κ is a diagonal matrix with entries in L∞(O) and κ ≥ αI, where
I is the identity matrix and α > 0. To fix ideas, we will consider the case p = 1.
The case p = 2 is similar and more simple.

If Q is an open subset of RN with Lipschitz boundary, we denote by W1,2(Q)
the set of functions w ∈ L2(Q) such that ∇w ∈ L2(Q). We denote by BV(Q)
the space of functions of bounded variation in Q. We refer to [AFP00] for the
definition and properties of BV functions.

Recall that if w ∈ BV(Q) ∩ L2(Q) and z ∈ L∞(Q; R2) is such that div z ∈
L2(Q), then the distribution defined by∫

Q
z · Dwφ := −

∫
Q

wdiv z φ dx−
∫

Q
wz · ∇φ dx,

where φ is a smooth test function with compact support in Q, is a Radon measure
in Q such that ∫

Q
|z · Dw| ≤ ‖z‖∞

∫
Q
|Dw|. (A.21)

The normal trace z · νQ of z in ∂Q is well defined and the integration by parts
formula holds ∫

Q
z · Dw +

∫
Q

wdiv z =
∫

∂Q
z · νQw dHN−1, (A.22)

where w ∈ BV(Q)∩ L2(Q), νQ(x) denotes the outer unit formal to ∂Q at x ∈ ∂Q
andHN−1 is the N− 1-dimensional Hausdorff measure. We refer to [Anz83] for
details.

We assume that u ∈ L1
w(0, T; BV(Ot)), that is u : (0, T) ∈ BV(Ot) is weakly

measurable, i.e. t ∈ (0, T) → u(t) ∈ BV(Ot) such that u ∈ L1(O) and
u ∈ (0, T) →

∫
Ot

ϕ · Du is a measurable map for any ϕ ∈ C1(O) with compact
support in O. Then ∂vu = (∂t + v · ∂x)u is a distribution in O.

Notice that the energy Eκ,λ is defined for all u ∈ L1
w(0, T; BV(Ot)) such that

∂vu ∈ L2(O) and ∇x∂vu ∈ L2(O). We also assume that these functions satisfy
the boundary conditions (A.12),(A.13),(A.14),(A.15), and (A.20) in the two-lid
case. Let us denote this set of functions by A.
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The boundary conditions in ∂Otang have to be considered in a relaxed form.
For that, we consider the energy

Eb
κ,λ(u) = Eκ,λ(u) + λ

∫
∂O\∂ΩT

|u(x, t)− u0(x, t)| dH2

defined on the class of admissible functions A. With this the boundary integral
is defined only in ∂Otang \ ∂ΩT . Then the boundary condition (A.16) is written
as

ξ · νOt ∈ sign(u0(x, t)− u(x, t)) (x, t) ∈ ∂Otang \ ∂ΩT . (A.23)

Assume that for almost any t ∈ (0, T) ∂Ot \ ∂Ω is not anH1 null set. We need
this to use Poincaré’s inequality (see [Zie89]) in the proof of next Proposition.

Proposition 2. Let λ > 0. There exits a minimum of Eb
κ,λ in A.

Proof. Let un be a minimizing sequence. For almost any t ∈ (0, T), ∂vun(t) ∈
W1,2(Ot) for every n. By Poincaré’s inequality [Zie89] we have∫

Ot
|∂vun(t)|2dx ≤ C1

∫
Ot
|∇x∂vun(t)|2dx

+ C2

∫
∂Ot\∂Ω

|g0(x, t)|2 dH1.

Integrating it in (0, T) and using that Eκ,λ(un) is bounded we deduce that ∂vun
is bounded in L2(O).

Now,
∂tun = ∂vun − v∇xun.

Using our assumptions on v, the fact that un(t) ∈ BV(Ot) for all n, and (A.21)
we have that v∇xun is a Radon measure in O and∫ T

0

∫
Ot
|v∇xun| ≤ ‖v‖∞

∫ T

0

∫
Ot
|∇xun| ≤

‖v‖∞

λ
Eκ,λ(un).

Then ∂tun are Radon measures and their total mass is uniformly bounded in n.
Since also ∇xun are Radon measures and their total mass is uniformly bounded
in n, then un is uniformly bounded in BV(O). We may extract a subsequence
converging in L1(O) to a function u ∈ L1(O). Then ∂vu ∈ L2(O) and

Eb
κ,λ(u) ≤ lim inf

n
Eb

κ,λ(un).

To prove that u is a minimum of Eκ,λ we need to prove that u satisfies the bound-
ary conditions (A.12), (A.13), (A.14), (A.15). Since {∇x∂vun(t)}n is bounded in
L2(Ot) for almost any t ∈ (0, T), the boundary ∂vu(x, t) = g0(x, t) are satisfied
on (∂Otang ∪ ∂Oobli) \ ∂ΩT .

Let us prove that u satisfies the Dirichlet boundary conditions given in
(A.12), (A.13), (A.15). Let ψ ∈ C1(O). Since un ∈ BV(O), using Green’s for-
mula (A.22) we have∫

O
∂vunψ dxdt =

∫
O

un∂∗vψ dxdt +
∫

∂O
(νO

t + v · νO
x )u0ψ dH2.
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Since ∂vun → ∂vu weakly in L2(O) and un → u in L1(O), letting n → ∞ we
obtain ∫

O
∂vuψ dxdt =

∫
O

u∂∗vψ dxdt +
∫

∂O
(νO

t + v · νO
x )u0ψ dH2. (A.24)

This implies that u(x, t) = u0(x, t) in (A.12), (A.13), (A.15).

Remark. Let us give a more classical point of view on the Dirichlet bound-
ary conditions for u out of the tangential boundary. In that context, to prove
that u satisfies the Dirichlet boundary conditions requires some additional as-
sumptions on the vector field v. Let us define the incoming (resp. outgoing)
boundary, that we denote by ∂inO (resp. ∂outO), as the set of points (x, t) ∈ ∂O
such that νO

t + v · νO
x < 0 (resp > 0). Notice that O0 is part of the incoming

boundary. Assume that Z ⊂ ∂inO is such that for any (x̄, t̄) ∈ Z we have that
v ∈ L1([t̄, t̄ + δ], W1,∞(Vx̄)) for some δ > 0 and a neighborhood of x̄. Then we
have a unique solution of the equation Xt(t, x̄) = v(X(t, x̄), t), t ∈ [t̄, t̄ + δ], such
that X(t̄, x̄) = x̄. Since cn = ∂vun ∈ L2(O), then we may write

un(X(t, x̄), t) = u0(x̄, t̄) +
∫ t

t̄
cn(X(s, x̄), s)ds. (A.25)

By passing to the limit we have that

u(X(t, x̄), t) = u0(x̄, t̄) +
∫ t

t̄
c(X(s, x̄), s)ds. (A.26)

holds a.e. (x̄, t̄) ∈ Z where c ∈ L2(O). Thus u(x̄, t̄) = u0(x̄, t̄) on Z.
The same argument can be repeated for the outgoing boundary. This time

we assume that Z ⊂ ∂outO is such that for any (x̄, t̄) ∈ Z we have that v ∈
L1([t̄− δ, t̄], W1,∞(Vx̄)) for some δ > 0 and a neighborhood of x̄. We deduce that
u(x̄, t̄) = u0(x̄, t̄) on Z.

In particular u satisfies the Dirichlet boundary conditions in ∂Overt ∪
(∂Oobliq \ ∂ΩT) if v ∈ L1(0, T; W1,∞(Ω)).

In case that v does not satisfy the local Lipschitz condition on incoming and
outgoing boundary points, we cannot guarantee that the Dirichlet boundary
conditions for u are satisfied in the classical sense and we consider them in the
relaxed form. We can impose them on the admissible class of functions out of the
tangential boundary ∂Otang \ ∂ΩT , penalizing their deviation on ∂Otang \ ∂ΩT in
the energy. We could also impose all of them by penalization in the energy. In
that case, we require that admissible functions satisfy only the boundary condi-
tions for ∂vu.
The case λ = 0. Let us assume that the vector field v satisfies

v ∈ L1(0, T; W1,1(Ω; R2)) ∩ L1(0, T; L∞(Ω; R2)), (A.27)

div v ∈ L1(0, T; L∞(Ω)). (A.28)
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Those assumptions replace the assumptions on v that we did at the beginning
of this Section. By extending v(·, t) by parity and then by periodicity to R2, we
may assume that v is the restriction to Ω× (0, T) of a vector field

v ∈ L1(0, T; W1,1
loc (R

2; R2)) ∩ L1(0, T; L∞(R2; R2)), (A.29)

div v ∈ L1(0, T; L∞(R2)). (A.30)

Those are the assumptions under which the generalized DiPerna-Lions theory
of transport equations holds [DL89]. These results have been extended to vector
fields

v ∈ L1
w(0, T; SBDloc(R

2; R2)) ∩ L1(0, T; L∞(R2; R2))

satisfying (A.30) by Ambrosio-Crippa-Maniglia [ACM05]. We have denoted by
SBDloc(R

2, R2) the space of vector fields b = (b1, b2) in L1
loc(R

2, R2) such that
∂b1
∂x2

+ ∂b2
∂x1

is a Radon measure in R2 with no Cantor part. The case where

v ∈ L1
w(0, T; BVloc(R

2; R2)) ∩ L1(0, T; L∞(R2; R2))

and satisfies (A.30) has been considered in [Amb04] (see also [AC08]). To fix
ideas, assume that DiPerna-Lions assumptions hold.

Proposition 3. Assume that (A.29) and (A.30) hold. Let M > 0. There exits a mini-
mum of Eκ,0 in A∩ {u ∈ L∞(O) : |u| ≤ M}.

Imposing that |u| ≤ M for some M > 0 is not a restrictive assumption for
images, since they are bounded by the maximum intensity (usually 255).

Proof. Let us give a sketch of the proof. Let un be a minimizing sequence of Eκ,0.
As in the proof of Proposition 3, ∂vun is bounded in L2(O). Since |un| ≤ M, by
extracting a subsequence we may assume that un → u weakly∗ in L∞(O) and
∂vun → ∂vu weakly in L2(O). Then ∂vu ∈ L2(O) and by the lower semicontinu-
ity of the energy we have

Eκ,0(u) ≤ lim inf
n

Eκ,0(un).

To prove that u is a minimum of Eκ,0 we need to prove that u satisfies the bound-
ary conditions (A.12), (A.13), (A.14), (A.15). Since {∇x∂vun(t)}n is bounded in
L2(Ot) for almost any t ∈ (0, T), the boundary condition ∂vu(x, t) = g0(x, t) is
satisfied on (∂Otang ∪ ∂Oobli) \ ∂ΩT .

Let us prove that u satisfies the Dirichlet boundary conditions given in
(A.12), (A.13), (A.15). By our assumptions on v and the results in [Anz83,
ACM05], (1, v)u has a trace on ∂O and the integration by parts formula (A.24)
holds for un and any ψ ∈ C1(O). Letting n → ∞, (A.24) holds for u and any
ψ ∈ C1(O). The boundary conditions for u are satisfied in this weak sense.
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Remark 4. Although the assumptions for v above are quite general, they may not
be sufficient to cover real video cases, since optical flow may have discontinu-
ities along curves and its divergence may be a Radon measure. In the contin-
uous framework, one could compute the optical flow by imposing constraints
that guarantee at least that div v has some integrability properties, e.g. being in
L2.

Remark 5. Let us comment again on the classical point of view to prove exis-
tence when λ = 0. In this case we do not assume that admissible functions
are bounded by M. Assume that O ⊂ ΩT , v satisfies (A.29) and (A.30), and
∂vertO ∪ ∂obliO = ∅. Under that conditions, for almost any x ∈ Ω we have a
unique solution of the equation Xt(t, x) = v(X(t, x), t) such that X(0, x) = x.
Assume for simplicity that all trajectories in O start at O0 and end on OT . In that
case, we can get a bound on un in L2(O). Indeed, if cn = ∂vun ∈ L2(O), then we
may write

un(X(t, x), t) = u0(x, 0) +
∫ t

0
cn(X(s, x), s)ds. (A.31)

Since v satisfies (A.29) and (A.30), the Jacobian of the map y = X(t, x) is
bounded and bounded away from zero [DL89] and from the above identity we
deduce that un is bounded in L2(O).

As in the case λ > 0, the boundary conditions that specify ∂vu are satisfied.
Also the Dirichlet boundary conditions on O0 and OT are satisfied.

The consideration of existence and uniqueness results of solutions of
transport equations and the corresponding ordinary differential equations in
bounded domains under very mild conditions leads to more deep mathemat-
ical analysis and is not the object of the present paper. We refer to [CL05] for a
uniqueness result when the boundary of the domain is transversal to the flow.
General existence results in RN or in bounded domains where the flow is tan-
gential can be found in [DL89, Amb04, ACM05, Amb08, AC08].

Remark 6. Notice that we had to assume that κ ≥ αI, where I is the identity
matrix and α > 0, for any (x, t) ∈ O. The above techniques can also be adapted
to consider the case where κ(x, t) = 0 for (x, t) ∈ Γ ⊂ O where Γ is a closed set
of zero measure.

We will discuss below the discrete approach to these problems.

A.4 On uniqueness of minima of Eκ,λ

Let us assume that the vector field satisfies assumptions (A.29) and (A.30). The
proof holds both for p = 1, 2.

Let u1, u2 be two minima of Eb
κ,λ in A (or of Eκ,0 in A ∩ {u ∈ L∞(O) : |u| ≤

M}). If ∇x∂vu1 6= ∇x∂vu2, since the quadratic term of the energy is strictly
convex, then

Eκ,λ

(
u1 + u2

2

)
<

1
2

Eκ,λ(u1) +
1
2

Eκ,λ(u2).

Since u1+u2
2 ∈ A, this contradicts the fact that u1, u2 are minima of Eκ,λ.
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Let u = u1 − u2. Then ∇x∂vu = 0 in O and all boundary conditions
(A.12),(A.13),(A.14),(A.15) (plus (A.20) in the two-lid case) hold with homoge-
neous right hand side. This implies that ∂vu = 0 in O. By (A.24) we have that∫

O
u∂∗vψ dxdt = 0 ∀ψ ∈ C1(O). (A.32)

Now, for any test function φ ∈ D(R2 × (0, T)) (that is, infinitely differentiable
with compact support in R2 × (0, T) )we consider the solution of

∂Ψ
∂t

+ div(vΨ) = φ in R2 × (0, T),

with initial condition Ψ(0) = 0 in R2 [DL89]. Let ρε(x) = 1
ε2 ρ( x

ε ) where ρ ∈
D(R2), ρ ≥ 0, and

∫
R2 ρ(x) dx = 1. By the regularization result in [DL89], we

have that Ψε = ρε ∗Ψ satisfies

∂Ψε

∂t
+ div(vΨε) = φ + rε in R2 × (0, T),

where rε → 0 in L1(0, T; L1
loc(R

2)). By replacing ψ by Ψε in (A.32) we have∫
O

u(φ + rε) dxdt = 0 ∀φ ∈ D(R2 × (0, T)). (A.33)

Letting ε→ 0+ we obtain∫
O

uφ dxdt = 0 ∀φ ∈ D(R2 × (0, T)). (A.34)

This implies that u = 0. That is, u1 = u2.

A.5 Remarks on existence and uniqueness in the discrete case

For the discrete discussion, we will use the same notation as in the continuous
domain as we did in the paper.

Let us consider the energy (A.5) in the discrete case which amounts to replace
the integrals in O by sums, that is

Ed
κ,λ(u) = ∑

(x,t)∈Õ

‖κ(x, t)∇x∂vu(x, t)‖2 + λ ∑
(x,t)∈Õ

‖∇xu(x, t)‖p,

where λ ≥ 0 and p = 1, 2. The energy is defined in vectors u ∈ X := R|Õ|. The
boundary conditions have been described in the Section entitled “Definition of
the Operators" in the paper.

Assume first that λ > 0. If un is a minimizing sequence for Ed
κ,λ, then we have

that ∇xun is bounded. From the Dirichlet boundary conditions, we deduce that
un is bounded in X . Then we may extract subsequence converging to u ∈ X
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satisfying the boundary conditions. Then u is a minimum of Ed
κ,λ. This result

has been obtained for any κ ≥ 0.
When λ = 0, we assume that κ ≥ αI, α > 0. In that case, we first observe

that ∇x∂vun is bounded. From the specification of ∂vun on the boundary of
each Ot (out of ∂ΩT), we deduce that ∂vun is bounded. Getting from this the
boundedness of un requires specifying the discretization of ∂v. To illustrate this
(our treatment will be sketchy), assume that ∂v is discretized as the backward
derivative ∂b

vu. Assume that un(x, t) is bounded in Ot uniformly in n. Then
ûn(x + vb(x, t + 1), t) is also bounded, being based on bilinear interpolation of
the values of un(x.t). Since un(x, t + 1) = ∂b

vun(x, t + 1) + ûn(x + vb(x, t + 1), t)
we deduce that {un(x, t + 1) : x ∈ Ot+1} is bounded uniformly in n. Assume
now that ∂v is discretized as the forward derivative ∂

f
vu and un(x, t) is bounded

in Ot uniformly in n. Then ûn(x + v f (x, t), t + 1) = ∂
f
vun(x, t) + un(x, t) and we

get that {ûn(x + v f (x, t), t + 1) : x ∈ Ot} is bounded uniformly in n. The flow
has to be dense enough so that, from this and bi-linear interpolation equations ,
we can get that {un(x, t + 1) : x ∈ Ot+1} is bounded uniformly in n. Clearly, this
depends on the optical flow and for that reason it is convenient to use λ > 0.
The same conclusions apply to the DSCD scheme.

When λ > 0 and p = 2, the energy is strictly convex and uniqueness follows.
When λ > 0 and p = 1, or λ = 0, uniqueness is a more delicate issue. As
in Section A.4, uniqueness is reduced to prove that if ∇x∂vu = 0 in Õ and all
boundary conditions (A.12),(A.13),(A.14),(A.15) (plus (A.20) in the two-lid case)
hold with homogeneous right hand side, then u = 0. In a first step, from the
specification of ∂vu on each ∂Ot we get that ∂vu = 0. Getting from this that
u = 0, we need to be able to connect by the flow v each pixel (x, t) in the interior
of Õ to a boundary pixel where u is specified. To fix ideas, let us consider the
case of the DSCD based on the odd-assignation. Assume that

hodd
v u(x, t) = 0. (A.35)

Since u(x, 0) = 0, the interpolation of intermediate values gives û(x +
vb(x, 1), 0) = 0. Hence

u(x, 1) = û(x + vb(x, 1), 0) = 0 ∀x ∈ O1.

Now,

û(x + v f (x, 1), 2) = u(x, 1) = 0 ∀x ∈ O1.

We know that u(x, 2) = 0 ∀x ∈ ∂O2. The important point here is that, given
our interpolation model, the density of points x + v f (x, 1) has to be sufficient to
guarantee that û(x + v f (x, 1), 2) = 0 ∀x ∈ O1 implies that u(x, 2) = 0 ∀x ∈ O2.
By iterating this argument, we obtain that u = 0. This requires an information
on the optical flow v that cannot be guaranteed before hand. Here, the use of
conjugate gradient method can help to stabilize the numerical solution.
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A.6 Some examples of analytic solutions of the Euler-Lagrange
equation

To illustrate how the prescribed boundary conditions determine the solution, we
compute in this section the analytic solution of the Euler-Lagrange equation of
the continuous energy Eκ,λ with λ = 0. We consider two simple examples, one
for the one-lid setting and one for the two-lid setting.

Figure A.1: Domain and boundary conditions for a one-lid problem. The optical
flow in this example is zero.

We will consider a simple case, in which v(x, t) = 0 everywhere in Ω. In this
case the convective derivative coincides with the partial derivative with respect
to time: ∂vu = ut. The energy is therefore

E(u) =
∫

O
(uxt(x, t))2dxdt. (A.36)

We consider an editing domain O = {(x, t) : t ∈ [0, T], x ∈ [a(t), b(t)]}, such
as the one depicted in Figure A.1. We consider a : [0, T] → R and b : [0, T] → R

to be functions with a continuous bounded derivative, and such that a(t) <
b(t) for t ∈ [0, T]. We also suppose for simplicity that a is a strictly decreasing
function, whereas b is strictly increasing.

A.6.1 One-lid problem

For the one-lid problem, the boundary conditions are as follows:

u(x, 0) = u0(x), x ∈ [a(0), b(0)], (A.37)
u(a(t), t) = ua(t), t ∈ [0, T], (A.38)
u(b(t), t) = ub(t), t ∈ [0, T], (A.39)
ut(a(t), t) = ga(t), t ∈ [0, T], (A.40)
ut(b(t), t) = gb(t), t ∈ [0, T]. (A.41)
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The minimum of the energy can be computed by solving the Euler-Lagrange
equation:

utxxt(x, t) = 0, ∀(x, t) ∈ O (A.42)

with the following additional boundary condition, stemming from the compu-
tation of the first variation:

uxxt(x, T) = 0, x ∈ [a(T), b(T)]. (A.43)

Let us compute the solution of the PDE (A.42). Integrating it with respect to
t, between t and T yields,

uxxt(x, t) = uxxt(x, T) = 0, ∀(x, t) ∈ O,

the last equality is due to the Neumann boundary condition at t = T. If we now
integrate w.r.t. x, between a(t) and x we obtain

uxt(x, t) = uxt(a(t), t), ∀(x, t) ∈ O.

We integrate again on variable x:

ut(x, t)− ut(a(t), t) =
∫ x

a(t)
uxt(a(t), t)ds = uxt(a(t), t)(x− a(t)).

If we evaluate this expression on x = b(t), we can express uxt(a(t), t) in terms
of ga and gb:

uxt(a(t), t) =
ut(b(t), t)− ut(a(t), t)

b(t)− a(t)
=

gb(t)− ga(t)
b(t)− a(t)

.

Therefore we have that

ut(x, t) = ga(t) +
gb(t)− ga(t)
b(t)− a(t)

(x− a(t)). (A.44)

As a function of x, ut(x, t) is a linear function passing through (a(t), ga(t)) and
(b(t), gb(t)), i.e. the rate of illumination change is a smooth interpolation of the
values specified at the boundary.

To obtain the solution of the PDE we now integrate with respect to t. Let us
define the function ` : [a(T), b(T)]→ R as

`(x) =


a−1(x) if a(T) 6 x 6 a(0),

0 if a(0) < x < b(0),

b−1(x) if b(0) 6 x 6 b(T).

Note that (x, `(x)) with x ∈ [a(T), b(T)], corresponds to the “left” boundary of
O, where the value of u is specified by ua, u0 and ub. We now integrate (A.44) on
t between `(x) and t, yielding

u(x, t)− u0(x, `(x)) =
∫ t

`(x)
ga(s)ds +

∫ t

`(x)

gb(s)− ga(s)
b(s)− a(s)

(x− a(s))ds.
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This example demonstrates that the given boundary conditions are sufficient
to compute a minimizer of the energy. It also shows how each boundary condi-
tion is used.

In this example, for fixed t, the illumination change rate ∂vu(x, t) = ut(x, t)
is the result of a linear interpolation between the illumination change rate given
at the boundary, ga(t) and gb(t). Once the illumination change rate is known in
the whole editing domain, the solution is computed by integrating it along the
trajectories. The temporal integration starts at `(x), the time instant where the
trajectory through (x, t) reaches a point of the boundary where u0 is specified
(including the first lid where `(x) = 0). This integration starts with u0(x, `(x))
and propagates it along the trajectory, while accommodating for the illumination
changes previously computed in ut.

A.6.2 Two-lid problem

For the two-lid problem, in addition to the boundary conditions of the one-lid
problem, we add the second lid:

u(x, T) = uT(x), x ∈ [a(T), b(T)] (A.45)

in substitution of (A.43). We use the notation of Section A.6.1.
Let us compute the solution of

utxxt(x, t) = 0, (x, t) ∈ O. (A.46)

Observe that

O = {(x, t) ∈ Ω× [0, T] : t ≥ `(x) x ∈ [a(t), b(t)]}.

Integrating with respect to t, we have

uxxt(x, t) = uxxt(x, `(x)) (x, t) ∈ O. (A.47)

Let us denote G(x) = uxxt(x, `(x)). Integrating again with respect to t, we get

uxx(x, t) = uxx(x, `(x)) + G(x)(t− `(x)), (x, t) ∈ O. (A.48)

For t = T and x ∈ [a(T), b(T)] we have

uxx(x, T) = uxx(x, `(x)) + G(x)(T − `(x)). (A.49)

Evaluating the above expression for x ∈ [a(0), b(0)], we obtain

G(x) =
1
T
(uxx(x, T)− uxx(x, 0)) x ∈ [a(0), b(0)]. (A.50)

Integrating (A.48) with respect to x, we obtain

ux(x, t) = ux(a(t), t) +
∫ x

a(t)
uxx(s, `(s)) ds

+
∫ x

a(t)
G(s)(t− `(s)) ds.

(A.51)
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Integrating (A.51) with respect to x from a(t) to x, we obtain

u(x, t) = u(a(t), t) + ux(a(t), t)(x− a(t))

+
∫ x

a(t)

∫ y

a(t)
uxx(s, `(s)) ds dy +

∫ x

a(t)

∫ y

a(t)
G(s)(t− `(s)) ds dy

(A.52)

and integrating (A.51) from x to b(t), we obtain

u(x, t) = u(b(t), t) + ux(a(t), t)(x− b(t))

−
∫ b(t)

x

∫ y

a(t)
uxx(s, `(s)) ds dy−

∫ b(t)

x

∫ y

a(t)
G(s)(t− `(s)) ds dy.

(A.53)

Evaluating (A.52) for x = b(t) we obtain

ub(t) = ua(t) + ux(a(t), t)(b(t)− a(t))

+
∫ b(t)

a(t)

∫ y

a(t)
uxx(s, `(s)) ds dy +

∫ b(t)

a(t)

∫ y

a(t)
G(s)(t− `(s)) ds dy.

(A.54)

Using (A.49) we obtain

(t− T)
∫ b(t)

a(t)

∫ y

a(t)
G(s) ds dy = A(t), (A.55)

where
A(t) := ub(t)− ua(t)− ux(a(t), t)(b(t)− a(t))

−
∫ b(t)

a(t)

∫ y

a(t)
uxx(s, T) ds dy.

(A.56)

Notice that by differentiating (A.38) with respect to t and using (A.40) we obtain

ux(a(t), t) =
1

a′(t)
(u′a(t)− ga(t)). (A.57)

Similarly, we obtain

ux(b(t), t) =
1

b′(t)
(u′b(t)− gb(t)). (A.58)

Now, taking derivatives with respect to t in (A.53) and evaluation the expression
for x = b(t) we obtain

(ux(a(t), t)− ux(b(t), t)− ux(a(t), T) + ux(b(t), T))b′(t)

= −
∫ b(t)

a(t)
G(s)(T − `(s)) ds−

∫ b(t)

a(t)
G(s)(t− `(s)) ds.

(A.59)
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Let B(t) be the left hand side of (A.59). By differentiating twice (A.55) with
respect to t, we get

G(b(t))b′(t)− G(a(t))a′(t) = Q′(t), (A.60)

where

Q(t) =
1

(t− T)b′(t)

(
A′(t)− A(t)

(t− T)

)
.

By differentiating (A.59) with respect to t, we get

G(b(t))b′(t)− G(a(t))a′(t) =
B′(t) + Q(t)

t− T
. (A.61)

From (A.60), (A.61) we get G(a(t)) and G(b(t)). Together with G(x), x ∈
[a(0), b(0)] we have G(x) for all x ∈ [a(T), b(T)].

From (A.49) we obtain uxx(x, `(x)). Then we have all ingredient to evaluate
u(x, t) using (A.52).

This example illustrates in a simple case how the boundary conditions are
used to determine the solution in the two-lid setting.



B On object recognition

B.1 Two more affine invariant quantities

In this Appendix, we would like to present two more affine invariant quantities.
Let us denote by GL(2, R)+ the set of all 2× 2 matrices with positive determi-
nant. If A ∈ GL(2, R)+, we denote uA(x) = u(Ax), x ∈ R2.

As we have already discussed in the Object recognition Part of this thesis, if
A ∈ GL(2, R)+, then ∇uA(x) = AT∇u(Ax), where AT denotes the transposed
matrix of A. Then

∇uA(x) ∧∇uA(y) = det(A)∇u(Ax) ∧∇u(Ay).

Let us consider that x is the center of a circle and y ∈ B(x, R), R > 0 being the
radius of the circle. The point symmetric of y with respect to x is Sx(y) = 2x− y.
Since collinearity is affine invariant, SAx(Ay) = ASx(y) and we have

∇uA(x) ∧∇uA(y)
∇uA(x) ∧∇uA(Sx(y))

=
det(A)∇u(Ax) ∧∇u(Ay)

det(A)∇u(Ax) ∧∇u(ASx(y))

=
∇u(Ax) ∧∇u(Ay)

∇u(Ax) ∧∇u(SAx(Ay))
.

Thus, the quantity

Qx(y) =
∇u(x) ∧∇u(y)
∇u(x) ∧∇u(Sx(y))

is affine invariant. Similarly, the quantity

Q̄x(y) =
∇u(x) ∧∇u(y)

∇u(x) ∧∇u((x + y)/2)

is affine invariant. Note that the modulus of this quantity is also affine invariant
and this form is more adapted to our algorithmic structure. Notice that

Qx(Sx(y)) =
1

Qx(y)
(B.1)

since Sx(Sx(y)) = y. Hence it suffices to compute Qx(y) in half of the neighbor-
hood of x, since the other half is determined by the first by (B.1). For Q̄x(y) we
have to compute the descriptor in the whole neighborhood.

157
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B.2 Trying to incorporate invariances by adapting the angular
quantization of the histogram of orientations

In this Appendix, we discuss how to improve invariance with respect to some
classes of affine transformations by adapting the angular quantization of the
histogram of orientations. Assume that we have a descriptor that is rotation and
scale invariant. For instance, in SIFT the scale invariance is obtained by using the
scale space in the detection of keypoints and the rotation invariance is achieved
by normalizing the direction of the gradient at x with respect to the dominant
orientation (aligning the dominant orientation with the first coordinate axis).

There are still two missing affine invariances to be dealt with: the tilt param-
eter and the relative scale of the two coordinate axis. They can be represented
by the matrices

At =

1 t

0 1

 (B.2)

Da :=

a 0

0 1

 (B.3)

Let e1 = (1, 0)T , e2 = (0, 1)T . Notice that Ate1 = e1, Ate2 = te1 + e2, and
At As = At+s. Note that At represents a horizontal shear.

Notice that Dae1 = ae1, Dae2 = e2, and DaDb = Dab. The deformation
induced by Da on a circle amounts to change the relative size of the axis (change
the scale of the first coordinate axis).

Two possibilities present themselves:

1. Construct an orbit including distortions of type Da and use a descriptor
invariant with respect to At.

2. Construct an orbit including distortions of type At and use a descriptor
invariant with respect to Da.

B.2.1 Angular quantization when the missing distortions are At

Let us discuss possibility 1. In the orbit, the missing distortions are those of At.
Let us describe the distortion induced on gradient directions by the action of
At on images. Let u be a given image and let uAt(x) = u(Atx), x ∈ R2. The
direction of the gradient of uAt at x is

e(uAt , x) =
∇uAt(x)
|∇uAt(x)| =

AT
t ∇u(Atx)

|AT
t ∇u(Atx)|

=
AT

t e(u, Atx)
|AT

t e(u, Atx)|

where

e(u, Atx) =
∇u(Atx)
|∇u(Atx)|

= (cos θ, sin θ),
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for some θ ∈ [0, 2π). Thus,

e(uAt , x) =
1
λ
(cos θ, t cos θ + sin θ).

where λ = |AT
t e(u, Atx)|.

If for any unit vector eθ = (cos θ, sin θ), θ ∈ [0, 2π), we define

m(eθ) =
sin θ

cos θ
= tan θ,

then
m(e(uAt , x)) =

t cos θ + sin θ

cos θ
= t + tan θ

As one can see, if we quantize the angular bins uniformly in tan θ, the di-
rection of the transformed gradient will fall in a bin shifted by the quantity t.
One could then use a metric such as the Earth Movers Distance to match the
descriptors.

Remark. An analogous argument can be done for the case where the missing
distortions are Da.

B.3 A note concerning keypoint detection

The keypoint detection used in SIFT defines an interest point or a keypoint to
be a point that achieves an extremum in the scale space of the Laplacian of the
Gaussian. In [Low04], that scale space is approximated by the differences-of-
Gaussians (DoG), within a difference-of-Gaussians pyramid, as originally pro-
posed by Burt and Adelson [BEA83] and by Crowley and Stern [CS84]. A Gaus-
sian pyramid is constructed from the input image by repeated smoothing and
subsampling, and a difference-of-Gaussians pyramid is computed from the dif-
ferences between the adjacent levels in the Gaussian pyramid. Then, interest
points are obtained from the points at which the difference-of-Gaussians val-
ues assume an extrema with respect to both the spatial coordinates in the im-
age domain and the scale level in the pyramid. This method for detecting in-
terest points in SIFT can be seen as a variation of a scale-adaptive blob detec-
tion method proposed by Lindeberg [Lin94, Lin98], where blobs with associated
scale levels are detected from scale-space extrema of the scale-normalized Lapla-
cian.

Notice that we have just mentioned three definitions of keypoints. Before
analyzing them, let us recall that the main role of keypoints is to establish cor-
respondences between any two given images u(x) and v(x) of the same object
or scene. Thus, our main purpose here is to relate keypoints of an image u and
keypoints of another image v. In other words, given a keypoint of u, are we able
to find a corresponding keypoint of v, and conversely?

To fix ideas, let u(x) = GβHλu0(x) and v(x) = GδHµu0(x) be two ac-
quired images of the same ideal image u0 where Hλ, Hµ are homothecies with
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scale factor λ and µ respectively. Gβ and Gδ are Gaussian kernels with standard
deviations β and δ respectively modeling the camera blur. For any other nota-
tion issues, we will use the same notation used in the Object recognition Part of
this thesis.

Let u0(s, y) := Gs ∗ u0(y) denote the scale space of u0. Then the scale space
of u can be written as

Gσ ∗ u(x) = GσGβHλu0(x)

= G√
σ2+β2 Hλu0(x)

= HλG
λ
√

σ2+β2 u0(x)

= u0(λ
√

σ2 + β2, λx).

Similarly, the scale space of v can be written as

Gσ ∗ v(x) = HµG
µ
√

σ2+δ2 u0(x) = u0(µ
√

σ2 + δ2, µx).

From now on, we will use the bold face letters u(σ, x) := Gσ ∗ u(x) and
v(σ, x) := Gσ ∗ v(x) to denote the scale spaces of u(x) and v(x) respectively.
Notice that we distinguished the notation for the variables in both cases. We
will also denote by ∆ the Laplacian operator and we will use the symbol ≈ to
read “in the neighborhood of" or “close to". Let us distinguish between three
definitions of a keypoint:

Definition B.3.1. The Laplacian of the Gaussian keypoint (L-kpt).
We say (s0, y0) is a L-kpt of u0 if and only if

∆u0(s, y) ≤ ∆u0(s0, y0) ∀(s, y) ≈ (s0, y0). (B.4)

Definition B.3.2. The DoG keypoint (D-kpt), which is used by SIFT.
We say (s0, y0) is a D-kpt of u0 if and only if

u0(ks, y)− u0(s, y) ≤ u0(ks0, y0)− u0(s0, y0) ∀(s, y) ≈ (s0, y0), (B.5)

where k is a constant factor (k = 21/a where a is the number of scales per octave)
separating the Gaussian images of the scale space.

Definition B.3.3. The scale-normalized Laplacian of the Gaussian keypoint (NL-kpt),
which is defined by Lindeberg [Lin94, Lin98].

We say (s0, y0) is a NL-kpt of u0 if and only if

s2∆u0(s, y) ≤ s2
0∆u0(s0, y0) ∀(s, y) ≈ (s0, y0). (B.6)



B.3. A NOTE CONCERNING KEYPOINT DETECTION 161

Recall that our basic question was: given a keypoint of u, are we able to find
a corresponding keypoint of v, and conversely ? Clearly the answer depends
on the definition of a keypoint and is different for each of the three Definitions
above. In [MY11] the answer was proved to be affirmative if we use keypoints
in the sense of Definition B.3.1. Their result is stated in [MY11] under the name
“Lemma 3” and reads:

Let u and v be two digital images that are frontal snapshots of the
same continuous flat image u0, u = S1Gβ Hλu0 and v = S1Gδ Hµu0,
taken from different distances , with different Gaussian blurs and
possible different sampling rates. Let w(σ, x) := (Gσu0)(x) denote
the scale space of u0. Then the scale spaces of u and v are

u(σ, x) = w(λ
√

σ2 + β2, λx) and v(σ, x) = w(µ
√

σ2 + δ2, µx).

If (s0, x0) is a keypoint of w satisfying s0 ≥ max(λβ, µδ), then it cor-

responds to a keypoint of u at the scale σ1 such that λ
√

σ2
1 + β2 = s0,

whose SIFT descriptor is sampled with mesh
√

σ2
1 + c2, where c

is the tentative standard deviation of the initial image blur as de-
scribed in Section 2.3 (Section reference is relative to [MY11]). In
the same way (s0, x0) corresponds to a keypoint of v at scale σ2 such

that s0 = µ
√

σ2
2 + δ2, whose SIFT descriptor is sampled with mesh√

σ2
2 + c2.

Our purpose here is to analyze the case of Definitions B.3.2 and B.3.3. It turns
out that we cannot give a positive answer unless we add to the initial image a set
of blurred images. In other words, given an input image u, we do not consider
only the scale space of u, but we consider a set of initial images uσi (x) = u(σi, x),
where σi ∈ [0, Σ] for a given range Σ. Then we compute their corresponding

scale spaces, denoted by uσi (σ, x). Note that uσi (σ, x) = u(
√

σ2 + σ2
i , x). We

compute the keypoints of uσi (x) using either Definition B.3.2 or B.3.3.

Using Definition B.3.2 We state the following: Let (σ0, x0) be a D-kpt of vσi (x).
Then there is a corresponding D-kpt (σ0, x0) of uσi (x) for a suitable choice of
σi, σ0, and x0.

Let us now prove it. According to (B.5), we have

vσi (kσ, x)− vσi (σ, x) ≤ vσi (kσ0, x0)− vσi (σ0, x0) ∀(σ, x) ≈ (σ0, x0).

In terms of v, this translates to the following

v(
√

k2σ2 + σ2
i , x)− v(

√
σ2 + σ2

i , x) ≤ v(
√

k2σ2
0 + σ2

i , x0)− v(
√

σ2
0 + σ2

i , x0)

∀(σ, x) ≈ (σ0, x0).
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Finally, in terms of u0 we have

u0(µ
√

k2σ2 + σ2
i + δ2, µx)− u0(µ

√
σ2 + σ2

i + δ2, µx) ≤

u0(µ
√

k2σ2
0 + σ2

i + δ2, µx0)− u0(µ
√

σ2
0 + σ2

i + δ2, µx0) ∀(σ, x) ≈ (σ0, x0).
(B.7)

Now, let (σ0, x0) be a D-kpt of uσi . An analogous derivation can be done and
we get in terms of u0 the following expression

u0(λ
√

k2σ2 + σ2
i + β2, λx)− u0(λ

√
σ2 + σ2

i + β2, λx) ≤

u0(λ
√

k2σ2
0 + σ2

i + β2, λx0)− u0(λ
√

σ2
0 + σ2

i + β2, λx0) ∀(σ, x) ≈ (σ0, x0).
(B.8)

Given the keypoint (σ0, x0) for v, to find the corresponding keypoint of u we
should have the following equations:

λ
√

k2σ2
0 + σ2

i + β2 = µ
√

k2σ2
0 + σ2

i + δ2 (B.9)

λ
√

σ2
0 + σ2

i + β2 = µ
√

σ2
0 + σ2

i + δ2 (B.10)

λx0 = µx0 (B.11)

By appropriately choosing σi, equations (B.9), (B.10) and (B.11) permit to com-
pute a D-kpt (σ0, x0) of uσi . Indeed, from (B.11), we can directly compute
x0 = µ

λ x0. We are left with two equations and two unknowns, specifically σ0
and σi. Solving this system of equations we get the following solutions for the
remaining variables

σ2
0 =

(µ

λ

)2
σ2

0, (B.12)

σ2
i =

(µ

λ

)2
δ

2 − β2. (B.13)

Clearly, to solve the above equations, since the value of σi ≥ 0 we need that(
λ
µ

)2
(σ2

i + δ2)− β2 ≥ 0.
λ and µ correspond to the camera distance to the object being observed in

u0 and therefore their values are unknown (and arbitrary). β and δ correspond
to the optical blur of the camera which varies from one camera to another, and
therefore cannot be set. However, from the previous argument, and given iden-
tities (B.12) and (B.13) we know that, given a D-kpt in v, there exist a corre-
sponding keypoint in u for some σi that depends on λ, µ, β and δ which are
either unknowns or arbitrary. From that, it is clear that there is a need to build
a kind of orbit of scale spaces with different σi. The range Σ should enable us to
achieve sufficient correspondences.
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Using Definition B.3.3 Let (σ1, x1) be a NL-kpt of vσi (x). Then there is a cor-
responding NL-kpt (σ1, x1) of uσi (x) for a suitable choice of σi, σ1, and x1.

According to (B.6), we have

σ2∆vσi (σ, x) ≤ σ2
1∆vσi (σ1, x1) ∀(σ, x) ≈ (σ1, x1).

In terms of v, this translates to the following

σ2∆v(
√

σ2 + σ2
i , x) ≤ σ2

1∆v(
√

σ2
1 + σ2

i , x1) ∀(σ, x) ≈ (σ1, x1).

And, in terms of u0 we have

σ2∆u0(µ
√

σ2 + σ2
i + δ2, µx) ≤ σ2

1∆u0(µ
√

σ2
1 + σ2

i + δ2, µx1) ∀(σ, x) ≈ (σ1, x1).
(B.14)

Now, let (σ1, x1) be a NL-kpt of uσi . An analogous derivation can be done
and we get in terms of u0 the following expression

σ2∆u0(λ
√

σ2 + σ2
i + β2, λx) ≤ σ2

1 ∆u0(λ
√

σ2
1 + σ2

i + β2, λx1) ∀(σ, x) ≈ (σ1, x1).
(B.15)

Given the keypoint (σ1, x1) for v, to find the corresponding keypoint of u we
should have the following equations:

λ
√

σ2
1 + σ2

i + β2 = µ
√

σ2
1 + σ2

i + δ2 (B.16)

λ
√

σ2 + σ2
i + β2 = µ

√
σ2 + σ2

i + δ2 (B.17)

λx1 = µx1 (B.18)

By appropriately choosing σi, equations (B.16), (B.17) and (B.18) permit to
compute a NL-kpt (σ1, x1) of uσi . Indeed, from (B.18) we can directly compute

x1 = µ
λ x1. From (B.16), we are able to compute σ2

1 =
( µ

λ

)2
(

σ2
1 + σ2

i + δ2
)
− σ2

i −

β2. Similarly, from (B.17), we are able to compute σ2 =
( µ

λ

)2
(

σ2 + σ2
i + δ2

)
−

σ2
i − β2. Substituting σ2

1 and σ2 by these expressions in equation (B.15) we can
extract the following equation(

λ

µ

)2
(σ2

i + β2)− σ2
i + δ2 = 0,

in order to satisfy the keypoint definition. This permits us to compute σ2
i =( µ

λ

)2
σ2

i + δ2− β2. Clearly, to solve the above equations, since the value of σi ≥ 0

we need that
( µ

λ

)2
σ2

i + δ2 − β2 ≥ 0.
We can add the same comments as in the end of the last paragraph on D-kpt.
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(a) (b) (c)

(d) (e) (f)

Figure B.1: Image dataset with increasing camera blur from left to right and top
to bottom.

B.3.1 Preliminary result

Let us now test experimentally our proposal of building an orbit of scale spaces
simulating different σi’s. In our experiment, we use both Definitions B.3.2
and B.3.3 for a keypoint. Notice that simulating different σis can be done in
an equal manner by simulating different initial guesses of the camera blur (In
SIFT, the camera blur guess is 0.5). We make this remark only to fit in a better
way the implementation of SIFT described in [Low04] and we use this remark
to implement our experiment. We also propose to take the union of the detected
keypoints for each σi to be the final set of keypoints. The SIFT descriptor is then
computed and matching is performed. We run an experiment on a set of six im-
ages where the camera blur is being increased from one image to another. The
dataset can be seen in Figure B.1.

Let the first image (Figure B.1(a)) be the query image where we assume that
the camera blur is known and set to 0.5 as proposed by SIFT. For the other im-
ages, call them the database images, we simulate different camera blurs which
amounts to simulating as well different σis. The camera blurs we simulate are
αn ∈ {2−1, 2−0.75, 2−0.5, 2−0.25, 20, 20.25, 20.5, 20.75, 21} with n = 0, · · · , 8. Let καn

denote the set of keypoints obtained by the SIFT keypoint detection (for any
given definition of a keypoint) assuming a camera blur of αn. For any αn, we
define the union of the keypoints Kαn = καn ∪ καn−1 ∪ καn−2 ∪ · · · ∪ κα0 . This will
be the set of keypoints that we use for the matching. Let us also mention that
repeated elements of the set Kαn are removed. Figure B.2 shows the result. In
each graph, the x-axis shows the chosen value of αn. For a fixed αn, we com-
pute the number of correct correspondences (shown in the y-axis) using the set
of keypoints K_αn made of the union of all found keypoints for αj ≤ αn. Let
us mention that the matching strategy used is the nearest neighbor strategy (see
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Section 12.2.1).
Notice how the number of correctly matched keypoints increases when sim-

ulating different camera blurs. Also, notice that depending on the initial camera
blur of the database image, the nb of correct correspondences saturates at a dif-
ferent αn.
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Figure B.2: Graphs showing the number of correct correspondences (y-axis)
found for different values of αn (x-axis). As a matching strategy we use the
nearest neighbor (NN) matching strategy. Note that the bottom left node, when
αn = 0.5 correspond to running the standard SIFT keypoint detection without
adding the proposed simulation of different camera blurs. (a), (b), (c), (d) and
(e) show the result of matching image B.1(a) with B.1(b), B.1(c), B.1(d), B.1(e)
and B.1(f) respectively.
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