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Abstract

Investigation of protein–ligand interactions has been a long-standing applica-
tion for molecular dynamics (MD) simulations given its importance to drug de-
sign. However, relevant timescales for biomolecular motions are orders of mag-
nitude longer than the commonly accessed simulation times. Adequate sampling
of biomolecular phase-space has therefore been a major challenge in compu-
tational modeling that has limited its applicability. The primary objective for
this thesis has been the brute-force simulation of costly protein–ligand bind-
ing modeling experiments on a large computing infrastructure. We have built
and developed GPUGRID: a peta-scale distributed computing infrastructure for
high-throughput MD simulations. We have used GPUGRID for the calculation
of protein–ligand binding free energies as well as for the reconstruction of bind-
ing processes through unguided ligand binding simulations. The promising re-
sults presented herein, may have set the grounds for future applications of high-
throughput MD simulations to drug discovery programs.

Resum

La investigació d’interaccions proteı̈na–lligand és una important aplicació de
les simulacions de dinàmica molecular (MD) donada la seva importància en el
disseny de fàrmacs. Tanmateix, l’escala de temps rellevant per als moviments
de biomolècules és molt superior als temps simulats habitualment. La simula-
ció adequada de l’espai de fase és doncs una de les principals limitacions de
l’MD. L’objectiu principal d’aquesta tesi ha estat la simulació per força bruta de
costosos experiments de modelatge proteı̈na–lligand en una gran infraestructura
computacional. Hem construı̈t i desenvolupat GPUGRID: una infraestructura de
computació distribuı̈da per a simulacions d’MD d’alt rendiment. Hem utilitzat
GPUGRID pel càlcul d’energies lliures d’unió entre proteı̈na–lligand aixı́ com
per a la reconstrucció de processos d’unió a partir de simulacions sense guiatge
de lligand. Els prometedors resultats que es presenten, poden haver establert les
bases de futures aplicacions de les simulacions d’MD d’alt rendiment en progra-
mes de descoberta de fàrmacs.
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Preface

Thirty-five years ago McCammon, Gelin and Karplus presented the ground-
breaking 9 ps molecular dynamics (MD) simulation in vacuo of bovine pancre-
atic trypsin inhibitor [1]. Since then, computer power has dramatically increased
following the famous ‘’Moore’s Law” bringing us today personal desktop com-
puters that are millions of times faster that the devices used for MD in the 70s
and 80s.

MD simulations are now used to study nearly every type of macromolecule—
proteins, nucleic acids, lipids—of biological or medicinal interest. Simulations
span wide spatial and temporal ranges and resolutions. In all-atom MD, thou-
sands of individual atoms representing, for instance, all the atoms of a protein
and surrounding water molecules, move in a series of femtosecond-long time
steps. These movements repeated billions of times provide continuous atomic
trajectories lasting as long as microseconds and, in very specific cases, millisec-
onds. Relevant biological motions such as protein folding, large conformational
changes and protein–ligand interactions have timescales that are, at the very
least, of hundreds of microseconds. Hence, to properly study these processes
in atomic detail with MD simulations, tremendous amounts of computations will
be required.

This thesis is focused on the particular problem of simulating protein–ligand
binding processes with an eye for applications to drug discovery. Protein–ligand
binding has been tackled since the near inception of MD always suffering from
insufficient computational power and hence, sampling. This thesis has been de-
veloped around these particular issues. Our approach has been taking a big leap
in accessible computer power and using it to address two of the most expensive
modeling experiments in the field of protein–ligand interactions: binding affinity
calculations and unbiased equilibrium-based ligand binding.

Specifically, we have built the GPUGRID project, a high-throughput com-
puting platform for performing MD simulations on voluntarily-shared GPU-
equipped desktop computers by thousands of people from around the world. We
have been able to attract the attention of thousands of contributors who have al-
lowed us to use their computers to perform some of the largest simulations ever
reported. We have used GPUGRID to tackle the two aforementioned problems in
protein–ligand modeling: the precise calculations of binding affinities for large
and flexible ligands and quantitative reconstruction of ligand binding from unbi-
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ased simulations. Both applications have been published in high impact journals,
in particular, the quantitative reconstruction of binding for an enzyme–inhibitor
system that became a hallmark study in the field. We are confident that the meth-
ods and applications developed have the potential to becoming useful tools in
drug discovery in the near future.

Finally, the apparently spontaneous nature of the works presented in this the-
sis is, in fact, the reflection of a constant boundary-pushing exploration beyond
state-of-the-art. We strongly believe that the thesis itself is a valuable outlook to
what brute-force sampling approaches for protein–ligand binding can be capable
of.
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Chapter 1

INTRODUCTION

1.1 Protein–ligand interactions

1.1.1 Relevance and application

The formidable advances in protein sciences in recent years have highlighted
the importance of protein–ligand and protein–protein interactions in biology.
The majority of proteins in an eukaryotic cell are involved in complex forma-
tion at some point in the life of the cell and each protein has on average six to
eight interacting partners [2]. Interactions can be classified on the basis of part-
ner composition (homo/hetero-oligomers), independent occurrence of partners
(obligate/non-obligate) and on stability of the complex [3, 4, 5], the latter defin-
ing interactions by their binding affinity on a continuum between transient and
permanent.

At the structural level, protein interactions have been studied through crys-
tallization of the complexes formed. The pioneering work on antigen–antibody
and protease–inhibitor complexes provided insight into interacting interfaces and
their properties [6, 7]. More recently, the structure of larger complexes that
function as molecular machines has also been determined, shedding light into
important cellular functions such as transcription [8], translation [9, 10], replica-
tion [11] or the cytoskeleton [12], to cite a few.

Understanding protein–ligand interactions is central to the design and dis-
covery of new medicines too. Traditionally, drugs were discovered by trial and
error. Drug discovery evolved to be increasingly deliberate and, with the advent
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of structural biology, the rational design of inhibitors was made possible. Given
the three-dimensional structure of a target enzyme for example, ‘structure-based
design’ can be carried out, whereby an inhibitor is constructed to be comple-
mentary to the enzyme’s active site [13, 14]. The minimum requirements are
the target’s structure and tools to build and examine how molecules fit into the
active site. Additional insight provided by evaluating the molecular energetics
of the binding process is, however, crucial to most current activities in structure-
based design [15, 16]. This thesis deals with this particular requirement in the
study of protein–ligand interaction through the development of methods to study
and predict the energetic and kinetic binding features of inhibitors and naturally
occurring ligands.

Molecular recognition models

From a mechanistic point of view, protein–ligand interactions can occur through
three accepted models of molecular recognition, the ‘lock-and-key’ model [17],
the ‘induced fit’ hypothesis [18] and ‘conformational selection’ [19]. In the
‘lock-and-key’ model, the conformations of the free and ligand-bound protein
are similar, whereas ‘induced fit’ states that conformational differences between
these two states are the result of the binding interaction driving the protein to-
ward a new conformation that is more complementary to its binding partner and
thus energetically more favorable. The ‘conformational selection’ model pro-
poses that, given a conformational heterogeneity, weakly populated (higher en-
ergy conformations) are responsible for recognizing and binding to partners with
subsequent population shift toward these conformers [20, 19]. Heated discus-
sions have been going on for years now [21] on which flexibility acknowledging
model, induced fit or conformational selection, described more accurately molec-
ular recognition. The conclusion is that both models do in fact coexist. In this
direction, the most accepted molecular recognition pathway model seems to be
that where kinetic rate constants would dictate which pathway is followed by the
system [19, 22].

In a recent study on a large scale analysis of 2090 unique unbound to bound
transitions from over 12,000 solved structures, Orozco and co-workers [23]
showed that two-thirds of the analyzed complexes did not suffer significant struc-
tural changes and could thus fit the lock-and-key model. Among the remaining
ones, they reported one-third of the proteins exploring the bound conformation in
the unbound state, which would fit into the conformational selection model, and
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Figure 1.1: After analyzing 2090 unbound to bound structural transitions out of 12,000
protein structures, Stein et al. [23] found that 65% of the proteins did not undergo major
conformational changes upon binding, a 13% explored their bound conformations in
their unbound state and only 2% required a external energy push to reach their bound
conformation. Figure adapted from Stein et al. [23].

only a very few transitions required breakage of thermodynamic barriers to bind,
a definition of the induced-fit model (Figure 1.1). Altogether, this flexibility in
protein–ligand interactions imposes a major challenge for drug discovery prac-
titioners since the comforting idea that there is one ligand perfectly adapted for
one static protein structure is outdated. Although some efforts have already been
using searches through ensembles of conformations to find one matching and
accommodating the ligand of interest with fair amounts of success [24, 25, 26],
it is still an inexact approximation of biological reality. Part of the work pre-
sented in this thesis is in fact around the role of conformational flexibility for
specific protein–ligand interactions [27]. The future of drug design will thus re-
quire tools to deal with flexible biological molecules, with the great potential of
opening up the possibility to explore broader chemical spaces than the currently
available [28, 29, 30].
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1.1.2 Biophysical aspects of interactions

Thermodynamics and kinetics of binding

The reversible binding of a ligand (L) to a protein (P) can be written as:

P+L
kon−−⇀↽−−
koff

PL (1.1)

where, assuming a first-order kinetic model, kon (M−1s−1) and koff (s−1) are the
association and dissociation rate constants respectively. The equilibrium con-
stant can be derived as

Keq =
[PL]
[P][L]

=
kon

koff
, (1.2)

where [P] and [L] are the protein and ligand concentrations. Binding affinities
are expressed in terms of the equilibrium dissociation constant (KD) which is

KD =
1

Keq
. (1.3)

A more general and comparable measure for binding affinity is the concentration-
independent standard Gibbs binding free energy (∆G◦bind) obtained form the equi-
librium constant Keq through the well-known formula [31, 32]

∆G◦bind =−kBT lnC◦Keq, (1.4)

where kB is the Boltzmann constant, T the temperature and C◦ the standard state
concentration (1 M). The more negative the value of ∆G◦bind , the more favorable
binding is. The change in free energy itself is composed of enthalpic (∆H) and
entropic (∆S) changes. ∆H is, effectively, the heat given out or taken up upon
making and breaking interactions, and ∆S represents the energetic consequences
of changes to the degrees of freedom within the system, where

∆Gbind = ∆H−T ∆S. (1.5)

A variety of physical phenomena are thought to contribute to the binding free
energy of an interaction, including those that are considered to make a largely
enthalpic contribution, for example, van der Waals interactions, hydrogen bond-
ing and electrostatic complementarity, and those considered to be dominated by
entropy, for example, changes in configurational disorder and in the solvation of
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hydrophobic/lipophilic groups upon formation of the complex [33, 34]. All these
structural determinants of protein–ligand interactions have been studied for many
years with the purpose of inferring energetic structure–activity relationships that
can be applied to the design and discovery of strong inhibitors [35, 36, 37].

Binding kinetics is increasingly receiving a lot of attention too in the charac-
terization of protein–ligand binding in the context of drug design. Some reviews
for instance, have highlighted the fact that there exist stronger correlations be-
tween in vivo activities of some drugs with their residence times that with their
binding affinities to their targets [38, 39]. An analysis from Swinney [40, 41]
revealed that for drugs approved by the FDA between 2001 and 2004, 34%
had non-equilibrium kinetics and 31% were known to induce conformational
changes in proteins. Conversely, a study of cyclooxygenase inhibitors suggested
that rapid dissociation rates are a means of minimizing mechanism-based side
effects [42]. Hence it is reasonable to conclude that greater consideration of
optimal kinetics at the time of clinical candidate selection will lead to reduced
attrition during development and that it will be possible to differentiate future
drugs on the basis of their kinetics. Slow off-rates are desirable in the absence of
mechanism based toxicity to ensure maximum target engagement and enhanced
specificity resulting in greater safety margins and reduced adverse events. Rapid
off-rates are desirable where there is mechanism-based toxicity as a means of
minimizing these effects. In summary, identification of kinetic mechanisms in
biomolecular recognition and their optimal combinations [43], opens up a new
era for medicinal chemistry by incorporating kinetic structure–activity relation-
ships to drug discovery processes.

Experimental methods for binding affinity, kinetics and structure determi-
nation

Accurate measurement of binding affinities and kinetics as well as produc-
tion of high-resolution structures is of paramount importance to the study of
protein–ligand interactions. For binding affinity measurements, isothermal titra-
tion calorimetry [37] is often the method of choice due to its high precision
and ability to specifically determine enthalpic/entropic contributions. Surface
plasmon resonance is also used in binding affinity measurements but through de-
termination of association and dissociation rates, the binding kinetics [44]. On
structure (and dynamics) determination there are X-ray crystallography and Nu-
clear magnetic resonance (NMR) [45, 46]. Although NMR is widely used to
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study the dynamics of proteins, they are most widely known for their ability to
solve the protein structure at an atomic level. As opposed to being a substitu-
tive, computer-based molecular simulation techniques like the ones presented in
this thesis, have its best use in the interpretation of the results of experimental
techniques by providing atomic-scale views of the phenomena under study [47].

Isothermal titration calorimetry (ITC) is a physical technique used to de-
termine the thermodynamic parameters of interactions in solution. It is most
often used to study the binding of small molecules to larger macromolecules
since ∆G◦, ∆H◦ and T ∆S◦ can be accurately determined from a single experi-
ment [48]. In an ITC experiment, the incremental heats of reaction are measured
as one component is titrated into the other and ∆H◦ and ∆G are determined by
nonlinear fitting of the resulting titration curve [49]. The entropy change asso-
ciated with interaction can then be determined from equation (1.5). Although a
variety of other techniques can be used to accurately determine the affinities (KD

or ∆G◦) of protein–ligand interactions, ITC experiments produce much more
accurate sets of thermodynamic parameters for protein–ligand interactions than
have previously been available, providing greater reliability of the data used to
assess the relationship between structure and thermodynamics [37].

Surface plasmon resonance (SPR) spectroscopy is an electromagnetic wave
resonance-based technique widely used to monitor a broad range of analyte-
surface binding interactions including the adsorption of small molecules [44],
ligand-receptor binding [50], protein adsorption on self-assembled monolay-
ers [51], antibody-antigen binding [52], DNA and RNA hybridization [53] and
protein-DNA interactions [54]. The sensing mechanism of SPR spectroscopy is
based on the measurement of small changes in refractive index that occur in re-
sponse to analyte binding at or near the surface of a noble metal (Au, Ag, Cu)
thin film [55]. SPR has the advantage of being label-free [56]; capable of prob-
ing complex mixtures, such as clinical material, without prior purification [55];
and benefits from the availability of commercial instrumentation with advanced
microfluidic sample handling [57, 58]. As a biosensor technology it can be used
both qualitatively and quantitatively to monitor protein–ligand interactions. In a
qualitative screening mode, receptor binders and non-binders can be identified.
In a quantitative high-resolution mode, precise kinetic and affinity parameters
can be obtained across a wide dynamic range. [50, 59, 60, 61]

X-ray crystallography allows the determination of the arrangement of
atoms within a crystal, by striking a crystal with a beam of X-rays that spreads
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into many specific directions. From the angles and intensities of the diffracted
beam, a crystallographer can produce a three-dimensional picture of the density
of electrons within the crystal. From this electron density, the mean positions
of the atoms in the crystal can be determined, as well as their chemical bonds,
their disorder and various other information [45]. X-ray crystallography can also
be used to study dynamics, especially of slow timescales. Given that for high-
resolution X-ray crystallography, homogeneous crystals are needed, in order to
observe protein substates one has to trap them through biochemical ‘tricks’, or
synchronize a reaction across an entire crystal [62, 63, 64].

Nuclear magnetic resonance spectroscopy is based on the property of many
elements to have a nuclear magnetic moment—of particular importance in bio-
logical macromolecules are the stable isotopes H1, C13 or N15. When placed
into a static magnetic field B, the different nuclear spin states of these nuclei
become quantized with energies proportional to their projection onto B (the so-
called Zeeman Splitting). The energy difference depends on the type of nucleus,
is proportional to field strength of the static magnet, and is dependent on the
chemical environment of the nucleus. This energy difference corresponds to
electromagnetic radiation. The transition between these states can be induced by
irradiation with a radio-frequency field with characteristic frequencies for each
type of nucleus and its chemical environment. The frequency of the NMR signal
is extremely sensitive towards changes in covalent bonds such as neighboring
groups and also to noncovalent bonding as found in biomolecular interaction.
Furthermore, transfer of magnetization through bonds or through space results
in a characteristic change of the shape and size of the NMR signal and reflects,
for example, the bond angle in the case of scalar coupling or spatial distance
in the case of dipolar coupling. All these phenomena are exploited in several
applications aimed at resolving the three dimensional structure of proteins or
characterizing protein–ligand interactions among others [64, 46].

1.2 Molecular dynamics modeling

Molecular dynamics (MD) is a computational technique to simulate the motions
of a system of particles. The essential elements for an MD simulation are a
knowledge of the interaction potential of the particles, from which the forces
can be calculated, and of the equations of motion governing the dynamics of
the particles [65]. MD simulations model biomolecular systems as point-like
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masses moving with the action of classical forces. A simulation begins with an
initial set of atomic coordinates and velocities. Coordinates can be obtained from
X-ray crystallographic or NMR structure data, or alternatively, by homology
model building (based on the structure of a homologous protein) [66]. Velocities,
obtained by solving the classical Newtonian equations of motion derived from
Newton’s law ~Fi = mi~ai, are updated at each time step (∆t) millions of times so
that biologically relevant events can be observed [67]. The sum of forces (~Fi) are
derived from a set of interaction potentials between atoms defined in the ‘force
field’ parameters file (see Figure 1.2).

MD currently faces several important challenges in modeling biomolecular
function related to the computational cost associated with the sampling of biolog-
ically relevant timescales, the accuracy of the simulations and the prediction of
statistical quantities comparable to experiments. The following sections briefly
cover these issues as well as introduce the main sampling and analysis methods
used throughout the development of this thesis.

1.2.1 The sampling and force field issues

For MD simulations to reliably reproduce, guide and help explain experiments,
three things are required: adequate sampling of the relevant biomolecular mo-
tions, force fields of sufficient accuracy and correct representation of the ex-
perimental conditions. Although force fields are the most commonly blamed
issue when performing MD simulations, in a way, adequate sampling may be
the weakest point. Until sampling is adequate, equilibrium properties computed
from a simulation remain biased by the system’s starting state and no meaning-
ful comparison with experiment is possible. On the other hand, robust although
disagreeing results are still possible with inadequate force fields or poor repre-
sentation of experimental conditions [68, 69]. Issues of adequate sampling and
force field accuracy are briefly covered in the following paragraphs.

Addressing the sampling problem is in fact the primary focus of this thesis.
One limitation of current MD simulations of biomolecules is that many important
biomolecular motions take place with characteristic timescales much longer than
typical simulation timescales [64]. As a consequence, experiments are reported
with clearly insufficient simulation times and often not enough attention is put
into testing the adequacy of sampling. For example, ligand binding modes are
slow change, presenting problems for binding mode prediction [68, 70]; protein
conformational changes even at the single sidechain level can be slow, affect-
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ing the quality of the computed binding free energies [71, 72]; slow motion of
waters into and out of binding sites can hurt convergence and thus apparent ac-
curacy [73], and unsampled protein conformational changes can also introduce
errors [71]. Still, despite efforts to make it a standard practice for reproducibil-
ity [74], reliable indication of convergence is hard to be found [75, 76, 77]. In
a recent perspective review, Mobley [69] suggests that the vast majority of the
“accuracy” problems in the literature about protein–ligand binding modeling can
be traced back to specific sampling problems. This suggests that sampling may
be a leading cause of error and that these are real problems of precision stem-
ming from the mismatch between available simulation and biomolecular-motion
timescales. Even more, if and only if adequate sampling is achieved, we can
quantitatively assess the accuracy of a particular force field, identify deficien-
cies, and improve it [78]. Fortunately, recent improvements available compu-
tational powers are pushing forward simulation timescales. These include the
building of specialized supercomputing architectures [79], porting MD software
to consumer-market multiprocessor devices like GPUs [80] and exploiting volun-
teered distributed domestic desktop computer networks as exposed in following
sections [81, 82].

Figure 1.2: An example of a potential used to approximate the inter-atomic forces that
govern molecular movement. The equation is divided into terms treating interactions
between atoms that are chemically bonded and into those treating interactions between
atoms that are at long distances. Figure adapted from Durrant and McCammon [83]

The accuracy of MD computations is also a concern, and is ultimately de-
termined by the underlying molecular mechanics force field. Figure 1.2 shows
an example of an equation used to approximate the atomic forces that govern
molecular movement. While the mathematical functional forms of many of the
available force fields are quite similar, they differ in the parameters that describe
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the various energetic components and in the methods employed to obtain these
parameters. These parameters and hence the force fields that stem from them,
are in constant refinement. As an example, in the last few years a sequence
of studies have revised and modified torsion potentials associated with a few im-
portant dihedral angles. Simmerling and co-workers [84] modified the backbone
potential in the original Amber ff99 force field by fitting to additional quantum-
level data deriving the improved Amber ff99SB force field. Best and co-workers
followed up on this work by modifying the backbone potential in ff99SB and
ff03 to obtain a better energetic balance between helix and coil conformations,
thus producing the ff99SB* and ff03* force fields [85]. Lindorff-Larssen and
co-workers modified the side-chain torsion potential for four amino acid types
in ff99SB to produce the ff99SB-ILDN force field [86] and more recently, they
combined it with ff99SB* to produce ff99SB*-ILDN and also changed param-
eters associated with both the backbone and certain side chains in a CHARMM
force field to produce CHARMM22* [87].

In a hallmark force field validation study, scientists at D.E. Shaw Re-
search recently presented a systematic comparison of a number of force
fields for all-atom simulations in explicit solvent that combined several com-
mon tests for force field evaluation performed over unprecedented simula-
tion lengths [88]. They evaluated the recently developed force fields men-
tioned above as well as their original versions. They tested a total of nine
different force field versions including OPLS-AA [89, 90], Amber ff99SB-
ILDN [84, 86], Amber ff99SB*-ILDN [84, 86], Amber ff03 [91], Amber
ff03* [91, 85], CHARMM22 [92], CHARMM27 (CHARMM22 with CMAP
correction) [92, 93] and CHARMM22* [87]. Their final conclusion based on
reviewing force field performance on matching experimental NMR results of
folded proteins, temperature-dependent structural propensities in short peptides
and folding of α-helical and β-sheet proteins, determined that newer versions
CHARMM22* and Amber ff99SB*-ILDN are the top performing force fields
for these type of tests [88]. Although the study has not been evaluated the im-
pact of force field on more complex molecular systems i.e. membrane-embedded
proteins, it is certainly a relevant and necessary contribution to the field.

All of the aforementioned force fields however, suffer from transferability
issues. They are designed to model proteins, nucleotides and some lipids, but are
not readily transferable to any chemical compound, a serious problem for model-
ing protein–ligand interactions. To overcome this limitation, ‘generalized’ force
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fields such as GAFF [94] with AM1-BCC [95] fixed partial charge model, have
been developed and are widely used to parametrize, for instance, drug molecules.

Nonetheless, neither the specific nor the generalized force fields take into ac-
count yet several important determinants in protein–ligand interactions which
limits the accuracy of the representations. Some examples are the effect of
induced electronic polarizability, that when incorporated has been shown to
achieve high accuracy results in binding free energy calculations [96], changes in
protonation states upon binding [33] and the existence of tautomers [97]. For ac-
curacy, these shall be incorporated into routine parametrization of protein–ligand
complexes in the near future.

1.2.2 Binding free energy calculations

In previous sections we have introduced the importance of binding free energy
(∆G) as measure of the strength of an interaction. In the context of structure-
based drug design, a great focus is put on the accurate computations of binding
free energies to evaluate potential drug candidates in early-stage drug discov-
ery [15]. Several computer methods have been developed to approach the cal-
culation of affinities in a trade off between speed versus physical accuracy. The
fastest and less physically accurate methods are grouped around the concepts of
molecular docking [98, 99, 100, 101, 102] and approximate free energy methods
such as the linear interaction energy (LIE) methods [103, 104] or the molecu-
lar mechanics Poisson-Boltzmann/Generalized-Born solvent accessible surface
area (MM-PBSA/GBSA) methods [105, 106, 107, 108, 109], in which solvent
and protein motions are taken into account with fewer approximations.

On the other hand we have the slow but accurate, true free energy meth-
ods that use conformational sampling to generate thermodynamic averages, to
compute either the free energy difference between the bound and unbound state
through decoupling the interactions between the ligand and its receptor (alchem-
ical double decoupling schemes) giving a non-physical pathway, or to compute
differences as well, but most importantly, absolute binding free energies by dis-
placing the ligand along a physical pathway of binding (pathway-based meth-
ods). Free energy perturbation (FEP) [110, 111, 112] and thermodynamic in-
tegration (TI) [113, 114, 115] are alchemical double decoupling methods for
binding free energy calculations traditionally employed for—but not limited to—
calculating relative binding free energies between related protein–ligand combi-
nations, being able to calculate absolute binding free energies [116]. The lat-
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ter however, incurring in a much larger computational cost. Methods involv-
ing the biased sampling along a set of pre-selected reaction coordinates that
follow physically meaningful binding pathways include, among others, meta-
dynamics [117, 118, 119], steered MD [120, 121, 122] and umbrella sam-
pling [123, 124, 71] which is later described in more detail.

The result of a computational free energy calculation can be only as ac-
curate as the force field used to generate the ensemble. In general, the best
performing protocols show a mean error of around 1kcal/mol, but there are
much larger deviations expected depending on the nature and size of the com-
pound [125, 126, 127]. However, as discussed earlier in the text it is well appre-
ciated that the main problem with free energy simulations is their difficulty to
converge. Mobley et al. [128] reviewed the contribution to binding affinities of
the motions, ensembles, alternative conformers, entropies and forces ‘unseen’ in
single molecular structure studies. Also, in methods requiring in principle less
conformational sampling there seems to be a large dependence of the binding
free energies computed to the ligand poses used [129, 130, 72].

To estimate the uncertainty on a computed free energy change, block aver-
aging techniques are commonly used. To do so, an entire trajectory is divided
into blocks and free energy changes are computed with the data available in each
block and the standard deviation and mean of the free energy changes provides
an estimate of the stability of the computed free energy changes [81]. However,
a more expensive but arguably better way to obtain good estimates of the sta-
tistical error is to repeat each free energy simulation independently [121]. The
free energy change and associated error can then be estimated from the mean and
standard deviation of the independent realizations [71, 121].

Comparison with experimental data

A word of caution is necessary when attempting to compare predicted binding
free energies to measured binding affinities. Simulations usually imply ideal-
ized conditions such as pure water, which rarely reflect the conditions in which
binding affinities are measured, or because the protein used in the assay differs
somewhat from the protein structure used for the predictions [131]. A binding
assay is often setup to measure binding affinities within a limited range, ITC for
example, works at the sub-millimolar to nanomolar range for direct measure-
ment of binding constants and between nanomolar to picomolar for competitive
assays; binders out of these ranges, may be under or overestimated [37]. Also,
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often binding free energies come from titration experiments which may suffer
from poor parameter fitting of the kinetic curves [132].

A key issue in the comparison of binding free energy results is the compara-
bility of this via the definition of a standard state [32, 133]. Binding constants are
defined in terms of ratios between reactants and products (see Eq.(1.2)) which
presents a problem when their numbers are not the same and the binding con-
stant is not dimensionless in equation (1.4). In other words, in order to calculate
a free energy from an equilibrium constant whether it is via theory, simulation
or experiment, we must define a standard state so that we can make meaningful
comparisons between them. In a recent work, General [32] presented a detailed
and unified explanation to convert a binding free energy from an arbitrary state
to some given standard state. In this regard, this thesis has adopted the standard
binding free energy expressions derived by Doudou et al. [134] for the computa-
tion of pathway-based free energies over one-dimensional or three-dimensional
coordinates of reaction [81, 71, 135].

Potential of mean force

The potential of mean force (PMF) W (z) along some generalized coordinate
z(~x) (Figure 1.3a), is a key concept in statistical mechanics. It is the product
of physical pathway-based free energy sampling methods and it is defined as
the negative logarithm of the probability of being at a given value (state) of a
specified reaction coordinate

W (z) =−kbT ln p(z), (1.6)

where kb is the Boltzmann constant and T the temperature and p(z) the proba-
bility of being at a specific value in z. This reaction coordinate may be an angle,
a distance or a more complicated function of the Cartesian coordinates of the
system. Generally, any conformational equilibrium properties can be expressed
in terms of the function W (z). For these reasons the PMF is a central quantity
in computational studies of macromolecular systems [123]. However, it is of-
ten impractical to compute W (z) directly from MD simulations. The presence
of large barriers in z may not allow accurate sampling of the configurational
space within a finite computational time. An example is the case for binding-
pathway free energy calculations. Binding of macromolecules often occurs at the
microsecond-millisecond scale [64] which is highly costly and therefore hardly
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achievable even in high-performance/high-throughput sampling scenarios [27].
This is why, to avoid such difficulties, special sampling techniques have been
developed over the years to calculate the PMF from MD trajectories efficiently.
An example of enhanced sampling method or technique is the aforementioned
umbrella sampling [136], which has been implemented in this thesis for compu-
tation of binding free energy calculations of protein–ligand systems [81, 71].

1.2.3 Umbrella sampling

Umbrella sampling is a physical pathway-based (PMF-based) sampling tech-
nique [136]. In umbrella sampling, the system of interest is simulated in the
presence of an artificial biasing window potential, v(z), introduced to enhance
the sampling in the neighborhood of the chosen value z. The biased simulations
will be generated using the potential energy U + v(z), where U represents the
total energy of the unbiased system. The biasing potential will typically confine
the variations of z within a small interval around some prescribed value (the win-
dow center), helping to achieve a more efficient configurational space sampling
in this region. An often used choice of biasing potential is an harmonic func-
tion of the form vi(z) = 0.5k(z− zi)2, centered on successive values of zi. To
obtain the PMF over the whole range of interest of z one will need to perform a
number of biased window simulations, each biasing the configurational sampling
around a different region of z (Figure 1.3b). Ultimately, the results of the various
windows are unbiased and then recombined together to obtain the final estimate
W (z) [136, 123].

The weighted histogram analysis method (WHAM) reconstructs the PMF
from biased umbrella sampling data [137, 138]. The basic idea of the method
consists in constructing an optimal estimate of the unbiased distribution function
as a weighted sum over the data extracted from all the simulations and deter-
mining the functional form of the weight factors that minimizes the statistical
error.

The precise estimation of free energies using umbrella sampling depends
first and foremost, on the choice of reaction coordinate; a badly chosen coor-
dinate of reaction will result in poor free energy estimations [139], a general
problem for physical pathway-based free energy methods [117, 134]. An other
factor affecting the precision of umbrella sampling is for example, the degree
of overlap between the windows which is a result of the compromise between
number of windows along a reaction coordinate and the width of the umbrella
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Figure 1.3: Representation of a schematic pathway-based protein–ligand interaction. (a)
Barrier-less one-dimensional potential of mean force (PMF) of the distance z between
two interacting partners. (b) Simplification of an umbrella sampling biasing scheme with
three windows to reconstruct the PMF.

potentials controlled via the force constant k of the harmonic function [123]. Ul-
timately though, the convergence will be dominated by the choice of reaction
coordinate and the relaxation times of the internal degrees of freedom of the sys-
tem. In publication 3.2 of this thesis, we present a study on the convergence and
accuracy successes of an umbrella sampling-based protocol where we explore
several combinations of parameters and starting configuration sets to enhance
binding free energy estimations [71].

Notable work in the application of umbrella sampling and WHAM to com-
pute binding free energies on one-dimensional PMFs has been performed by
Roux and co-workers [124, 140, 141]. They have developed and applied exten-
sively an approach based on applying multiple restraints to the ligand, determin-
ing the radial one-dimensional PMF, and then removing the restraints. The stan-
dard free energy of binding was then obtained using a system-specific derivation
which made it impractical for a general case [124]. On the other hand, Hench-
mann and co-workers [134], using a similar methodology than Roux’s, presented
a much simplified application of the umbrella sampling for the computation of
the standard free energy of binding using a one-dimensional PMF. Works on
which publications 3.1 and 3.2 of this thesis are based.
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1.2.4 Markov State Modeling

A radically different view in the sampling and analysis of biomolecular dynamics
is brought by Markov State Models (MSMs), a tool based on finite-state transi-
tion networks [142, 143, 144, 145, 146]. MSMs are probabilistic models that
can be built from molecular dynamics data to approximate long-time statistical
dynamics of molecules. Figure 1.4 shows a sample representation of a two-state
Markov model.

Figure 1.4: Schematic representation of a two-state Markov model. According to the
markovian property, the probabilities of transition between states (indicated with num-
bers), only depend on the current state of the process. For example, at each discrete time
interval, if the system is in state A, it has 30% probability of transiting to B and 70%
probability of staying in state A.

To date, MSMs have been used to computationally model the kinetics and
thermodynamics of complex molecular conformational transitions such as pro-
tein folding [142, 147, 148, 149, 150] or protein–ligand binding [151, 152, 135].
They have also been applied to the modeling of experimental outcomes; an ex-
ample is the work by Kusch et al. [153] where they kinetically quantified all
ligand binding steps and closed-open isomerizations of the intermediate states
of the activation mechanism of homotetrameric HCN2 channels from confocal
patch-clamp fluorometry data.

MSMs have represented a paradigm shift in how one uses simulations [144,
145, 146]. Traditionally, MD studies have relied on straightforward simulations
and analysis of a few rare events based on a ‘look and see’ strategy. Although
visually appealing, these analyzes do not provide sufficient statistical relevance
of the observations and therefore may be highly misleading in reporting on im-
portant events altogether. MSMs on the contrary, abandon this single view of
trajectories to substitute them by an ensemble view of the dynamics and hence
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can be used to resolve measurable statistical properties of the ensemble: time-
dependent averages of spectroscopically observable quantities, statistical proba-
bilities quantifying which conformational substates are populated at certain times
and probabilities of how many trajectories follow similar pathways [146].

remainder of this communication, we report progress toward the
first goal, by constructing an MSM from the entire set of 370 K
trajectory data,26,27 which we will use to seed future rounds of
transition sampling. While additional rounds of adaptive sampling
could likely aid in increasing the quantitative power of this model,
there are several notable observations which can be made with the
current data set.

Key to accurately identifying metastable states is the clustering
of trajectory conformations into microstates fine-grained enough
to be used for lumping into groups of maximally metastable
macrostates.26 100 000 microstate clusters were calculated using
an approximate k-centers algorithm,28 each with an average radius
of 4.5 Å rmsd-backbone. Lag times ranging from 1 to 32 ns were
used to build a series of MSMs. The implied time scales predicted
by these models (obtained by diagonalizing the rate matrix) show
a clear spectral gap separating the slowest relaxation time scale
from the rest, indicative of single-exponential kinetics (see Figure
S1). The implied time scale of the model levels off beyond a lag
time of ∼10 ns to an implied time scale of ∼1 ms, close to the
experimental folding time.

An important strength of MSMs is their ability to gain insight
at coarser scales by “lumping” the kinetic transitions into a simpler
model with fewer states. To gain a mesoscopic view of the folding
free energy landscape, we lumped our 100 000- microstate MSM
into a 2000-macrostate model. From this view, we find that the
metastable states are diffuse collections of conformations over which
multiple possible folding pathways can occur, indicating a vast
heterogeneity of folding substates that need to be understood in
greater detail. At the same time, we can identify highly populated
“native” (state n) and “unfolded” (state a) macrostates that dominate
the observed relaxation rates (Figures 3 and S2).

The 10 pathways with the highest folding flux from macrostate
a to n were calculated by a greedy backtracking algorithm (see
Supporting Information (SI)) from the macrostate transition matrix
using transition path theory29,30 (TPT). The diversity of pathways
demonstrates the power of the MSM approach: although we observe
only a few folding trajectories directly, a network of many possible
pathways can be inferred from the overlapping sampling of local
transitions.

While NTL9(1-39) folds quickly for a two-state folder, it is
similar in size to many ultrafast (submillisecond) folders that appear
to exhibit so-called “downhill” folding. Hence, we would like to
understand the structural features that limit the overall folding rate.
As in a macroscopic two-state model, the highest-flux pathways in
our mesoscopic model are afmfn and aflfn direct routes from
disordered to structured macrostates, reminiscent of nucleation-
condensation. These pathways by themselves, however, account
for only ∼10% of the total flux, and the structural diversity seen
in all pathways is reminiscent of more hierarchical folding models

such as diffusion-collision. Thus, we sought to more fully study
the 14 macrostates transited by the top 10 folding pathways.

To examine structural changes along the folding reaction, we
considered three main native structural elements: the central helix
(R), the pairing of strands 1 and 2 (!12), and the pairing of strands
1 and 3 (!13). To quantify the extent of native-like structuring for
each of these elements we calculated QR, Q!12, and Q!13, respectively
(see SI for details). The Q-value is a number between 0 and 1 that
quantifies the extent of native-like contacts. We then examined,
for each macrostate, the Q-values in relation to the pfold value
(committor), a kinetic reaction coordinate. The pfold value is
computed from the macrostate transition matrix.24,29,30

This analysis yields several key insights into the folding
mechanism of NTL9(1-39) on the mesoscale. We find the
“unfolded” state a is compact and contains a baseline level of
residual native-like structure, with QR near 0.5, and Q!12 and Q!13

near 0.2. In general, across the 14 macrostates studied, Q-values
increase as pfold values increase, although the relative balance of
QR, Q!12, and Q!13 varies, indicating pathway heterogeneity: i.e.,
native-like structures can form in different orders (Figures 4, S4,
and S5). An exception to this, however, is observed for !12 strand

Figure 2. (a) A snapshot from a folding trajectory (dark blue) achieves an
rmsd-CR of 3.1 Å compared to the native state (cyan). (b) Non-native (top)
and native-like (bottom) hydrophobic core arrangements observed in low-
rmsd conformations of folding trajectories. Highlighted are side chains of
residues F5 (magenta), V3,V9,V21 (tan), and L30,L35 (pink).

Figure 3. A 2000-state Markov State Model (MSM) was built using a lag
time of 12 ns. Shown is the superposition of the top 10 folding fluxes,
calculated by a greedy backtracking algorithm (see Supporting Information).
These pathways account for only ∼25% of the total flux and transit only
14 of the 2000 macrostates (shown labeled a-n, for convenient discussion).
The visual size of each state is proportional to its free energy, and arrow
size is proportional to the interstate flux.

Figure 4. The 14 macrostates involved in the top 10 folding pathways,
plotted along structural and kinetic reaction coordinates. The balance
between native-like helix and sheet structure is quantified by QR - (Q!12

+ Q!13)/2 (vertical axis), and progress along the folding reaction is quantified
by the pfold (committor) value (horizontal axis). It can be seen that the
“unfolded” state (a) contains residual native-like helical propensity, and
that pathways involving various ordering of native-like helix and sheet
formation are possible.
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Figure 1.5: Transition network for the folding of NTL9(1-39), adapted from Voelz et
al. [148]. The underlying Markov State Model contained 2000 states and was built
from 10000 individual implicit solvent MD simulations. The visual size of each state is
proportional to its free energy, and arrow size is proportional to the interstate flux.

MSMs also does away with the frequent approach of projecting the dynamics
onto one or two user-defined coordinates of reaction by means of enhancing
sampling of a priori important reaction coordinates (i.e. umbrella sampling),
or by means of analyzing bias-free trajectories. When projecting trajectory data
on few coordinates of reaction, one hopes that such projection will capture the
slow kinetics of the process under study. However, these projection techniques
often disguise the true and complex nature of kinetics by artificially aggregating
kinetically distinct structures and hiding barriers, with the potential danger of
creating distorted and overly simplistic pictures of the kinetics [154, 144, 146].

An interesting feature of MSMs is the possibility of reconstructing long time-
scale dynamics from from many short MD trajectories. A feature that makes
MSMs a very suitable modeling tool for highly parallel infrastructures as it has
been done for this thesis. Since MSMs are constructed only from the conditional
transition probabilities, short trajectories need only to be long enough as the local
equilibration time within the states and occasionally undergo transition between
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states. Pioneering works in protein folding by Noé and Pande have demonstrated
this feature of MSMs. Noé and co-workers [147] presented the reconstruction
of the full equilibrium ensemble of folding pathways of a PinWW domain from
MD simulations in explicit solvent. From a total of 180 individual trajectories of
115 ns each they recovered the ensemble of pathways, the slowest timescale of
which was two orders of magnitude larger than the simulated trajectories. In a
similar fashion, Pande and co-workers [148] in a highly parallel effort employ-
ing the Folding@Home distributed computing platform [155], reconstructed the
folding of 39-residue protein NTL9(1-39) via MSM (shown in Figure 1.5), with
an experimental folding time of 1.5 ms. Using up to 10,000 parallel implicit sol-
vent MD simulations of around 10 to 15 ns each, they predicted the millisecond
timescale of the folding of the protein under study. For protein–ligand binding,
Silva et al. [152] and us in Publication 3.4 showed how from short MD trajecto-
ries too, binding events could be recovered with decent accuracies for unguided
binding simulations.

Given the relative novelty of the application of MSMs to MD, the following
paragraphs are provided as a brief reference for model building, validation and
interpretation:

Discretization of the state space

The state space of the system has to be discretized into a set of S = {1, ...,m} con-
formational states. Each data point (or microstate) is assigned into a macrostate
for example by geometrical proximity. The number of macrostates of our
model will greatly vary between studies and may depend on the specific sys-
tem/mechanism under study, the microstate clustering method used—if any—
and of course on the level of detail desired. The discretization step is a funda-
mental part of MSM building. Prinz et al. [146] showed how the quality of the
Markov model strongly depends on how well the discretization approximates the
slow processes of the system.

Construction of the transition probability matrix

An m×m transition probability matrix T (τ) is then constructed, where each
element Ti j measures the probability of going from state i to state j within time τ,
by Ti j = ci j/∑k cik. Here, cik counts the number of times the trajectory was in i at
time t and in j at time τ later. Although this expression provides the most likely
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transition matrix, the full probability distribution of T (τ), given ci j, must be
considered when statistical uncertainties of T (τ) and properties computed from it
are desired [147, 146]. Additionally, T (τ) is required to be ergodic, i.e., any state
can be reached from any other state within a finite time. Then, T (τ) has a single
eigenvector with eigenvalue 1 that, when normalized, the stationary probability
π is obtained. For equilibrium MD, π is be the equilibrium distribution and
altogether should hold the detailed balance condition: πiTi j = π jTji [147, 146].

Assessment of markovianity

A markovian system is a memoryless system, the state transition probabilities
must only depend on the current state and not on the past. The most frequent
cause for non-markovianity is the presence of state-internal barriers [144]. All
models will be Markovian for long enough lag times, τ, but to maximize the
time resolution of a model, shorter lag times are always desired. A straightfor-
ward test for markovianity is the convergence study of implied timescales for
the main transition modes with increasing lag times. This will determine too
the minimal lag time needed for the model to remain Markovian. Other meth-
ods include Chapman-Kolmogorov tests for example, which check markovianity
on a particular state decomposition by assessing if conformations within a state
do kinetically interconvert on timescales faster than the lag time and only make
transitions to other states on slower timescales [145, 147, 146].

Interpretation of the model

In principle, any property that can be calculated from simulation data can also be
obtained from the MSM. The first property that we will be interested in analyzing
is the equilibrium distribution of our system. The equilibrium distribution can
be directly obtained from the elements in the first left eigenvector of T (τ) as
mentioned above.

Another property of interest of special relevance in the modeling of protein–
ligand binding is the mean first passage time (MFPT), defined as the mean time
fi it takes to reach a given metastable state m for the first time when starting from
another state i [144]. In binding, with a binary view of the states and assuming
first-order kinetics, one can compute the MFPTs for the on and off reactions from
which derive kon and koff respectively from the expressions kon = C−1MFPT−1

on
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and koff = MFPT−1
off [142, 156, 135]. Where C is the ligand concentration and kon

is measured in M−1s−1 and koff measured in s−1.
Finally, one can also compute the net fluxes through the reaction pathways.

This features allows the classification of reaction pathways in terms of best, next
best, etc and although it has not been used for this thesis, one can already find ap-
plications in protein–ligand binding of multistep complex systems [151], protein
folding [147, 148] or protein conformational changes (S.K. Sadiq unpublished
data on HIV-1 protease).

1.3 High-throughput MD simulations

Computing power has traditionally been and still is a limiting factor when per-
forming molecular simulations. There is a constant need for faster computing re-
sources to reduce time-to-answer and increase sampling times in computational
experiments. Computational speed of processors is, on average, doubled every
18-24 months, a trend known as the Moore’s Law [157]. Traditional approaches
aim at using faster processors or parallelization of computer programs to run on
many processors that are available either on commodity clusters or large super-
computing facilities [158]. An outstanding contribution to this matter in the last
10 years has been that of DE Shaw Research, a private research laboratory who
has built a specialized ultra-high-performance computer for molecular simula-
tions, Anton [79]. Scientists at DE Shaw Research have performed all-atom MD
simulations in explicit solvent models of up to the millisecond time scale for sin-
gle trajectories [67]. Unfortunately, a single Anton computer has a production
cost of the scale of several million dollars, certainly prohibitive to large-scale
production.

1.3.1 Accelerated processors for molecular dynamics simulations

Fortunately, high-performance cost-effective solutions are possible. Recent hard-
ware development led by the gaming industry needs, has led to a breakthrough in
accelerated processors: general-purpose computing architectures, the graphical
processing units (GPUs). GPU boards are hardware accessories targeted to the
market of personal desktop computers to off-load the display of graphics from
the computer’s central processing unit (CPU). They are equipped with hundreds
(i.e 512 in an NVIDIA GeForce 580) of small processors that are able to perform
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independent computations on independent data. Together with the architecture
itself, GPU manufacturers they also offered accessible programming interfaces
that allow for a wider spread adaptation and creation of new computer codes to
exploit the hardware’s processing capabilities.

Benefiting from the momentum that GPUs have created, MD has made
it into the accelerated processors realm [158]. Pioneered by ACEMD soft-
ware [80, 159], today the majority of codes in the field (i.e. NAMD [160], AM-
BER [161], GROMACS [162]) do offer the ability to run on GPUs with varying
degrees of performance as represented in Figure 1.6. As of the time of writ-
ing of this thesis, current state of ACEMD software running on high-end GPUs
on a single workstation it is possible to break the symbolic barrier of 100 ns a
day for a 23,000 atoms system with an explicit solvent model (timestep of 4 fs,
PME for long-range electrostatic interactions and a cutoff of 9 Å for non-bonded
interactions).

Figure 1.6: Comparative performance of ACEMD versus other common MD codes.
Fermi is a GTX580 GPU. Tesla is a C2050 with ECC off. CUDA3.1 and ACEMD ver
2011. DHFR, dihydrofolate reductase solvated in water, 23558 atoms, periodic boundary
conditions, 9 Å cutoff, PME long range electrostatic 64×64×64, hydrogen mass repar-
titioning, rigid bonds, Langevin thermostat, time step 4 fs. Time step 2 fs NAMD [160],
2.5 fs DESMOND [163] and 4 fs GROMACS [162].

1.3.2 Volunteer distributed computing: the GPUGRID project

Another form of computing infrastructure are computing grids, distributed com-
puters loosely connected often through the Internet or local networks. In fact,
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the majority of today’s computing power is distributed among a billion domes-
tic computers in the world most of which have access to the Internet. They are
an under-exploited computational asset. The possibility of using domestic dis-
tributed computing power was embraced by scientists more than a decade ago.
But it is not until 2002 that the Berkeley Open Infrastructure for Network Com-
puting (BOINC) [164] middleware software is born to serve the needs of pioneer-
ing project SETI@home [165]. Volunteer distributed computing became then ac-
cessible to the scientific community who started exploiting domestic computers
from volunteers for all kinds of projects. From radio-telescope signal processing
to climate change prediction modeling, projects started to incorporate to exploit
the world’s largest computing facility. On aggregate, and as of March 2012,
BOINC has 300,000 active participants who contribute 470,000 hosts in total,
an average computing capacity of 6 PetaFLOPS. Currently, the largest conven-
tional supercomputer on the planet is the ‘K computer’ in Japan, which provides
a theoretical peak performance of 11 PetaFLOPS [166].

From a technical point of view, to be amenable to public computing, com-
putational scientific tasks must be divisible into independent pieces whose ratio
of computation to data transfer is high. While this consideration is maintained,
distributed computing is a real alternative to classical dedicated supercomputing
facilities. A key factor of such computing system is engagement of public in-
dividuals, the volunteers. Also referred to as participants or users, volunteers
donate time from their personal computing resources to scientific computing
driven by two main motivations: their interest in the underlying science and
public acknowledgment. Unlike in other forms of social scientific computing
like Foldit [167] were users are actively solving specific scientific puzzles, in the
distributed computing community, the volunteers select the scientific projects in
which they want to contribute based on their personal interests, and these could
be several simultaneously. In exchange, the project acknowledges the volun-
teers’ contribution via a credit or points system. After a piece of work is finished
by the volunteer and returned to the project servers, the project gives a certain
amount of credits to the volunteer. On top of this, volunteers self-organize them-
selves in virtual communities, exchanging information through message boards
and sharing their gained credits in rankings of various natures. At this point, their
altruistic contribution to science is transformed into a game, the goal of which is
to accumulate as many credits as possible.

22



The GPUGRID project

GPUGRID [168] is a BOINC-based volunteer distributed computing project that
exploits the power of consumer-level GPUs to perform high-throughput and
high-performance molecular dynamics simulations by running the ACEMD soft-
ware since 2008 (Figure1.7). Formerly known as PS3GRID and exploiting the
power of volunteered PlayStation 3, GPUGRID has, as of March 2012, an active
volunteer base of 2600 users and 2800 host computers (see Figure1.8 for growth
pattern) each one having one or more GPU cards attached to the project that
make up a total of 3500 GPUs which represents a theoretical peak performance
of 1.6 PetaFLOPS. Figure 1.9 shows the distribution of GPU peak performance
in active hosts and the distribution of GPUs installed per host. With regards to
MD data production, GPUGRID outputs a daily average of 22 µs approximately
of an equivalent system of 50,000 atoms.

With such throughput it becomes crucial to automate as much as possible the
procedures of interaction with the server. From the scientist point of view, the
main handicap in using a BOINC-based distributed computing environment is
the actual submission of the computations to the grid. This operation was tradi-
tionally done manually and explicitly by logging into the web server and execut-
ing the task-submission applications. Giorgino et al. [169] developed RBoinc, an
interface with mechanisms to submit and manage large-scale distributed compu-
tations from individual workstations turning distributed grids into cost-effective
virtual resources.

As mentioned earlier, the main motivations for the public to participate as
volunteers in distributed computing projects are the interest in the underlying
science and the acknowledgment or public recognition. In GPUGRID we have
understood these motivations and have actively worked towards providing better
participation experiences. For that, we have taken several actions to address these
issues. We have created and maintained project-specific web pages, audiovisual
resources and forum discussions to promote their research to the contributors,
fundamentally a lay audience. Such efforts have been widely appreciated and
have often generated fruitful discussions with the volunteers about the nature
and impact of the projects in which they participated. Regarding the public ac-
knowledgment aspect of volunteers motivations, BOINC is already designed to
assign volunteers a number of points or credits per completed task. Such credits
are used to rank the users by their contribution to the project within a number
of communities. Nevertheless, a number of BOINC-related projects had cre-
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Figure 1.7: GPUGRID website as of January 2012. The website is the main vehicle
of communication between the scientists and the volunteers. It features information on
the scientific projects being executed on the grid, the message boards or forums for dis-
cussions on technical and scientific aspects of the project and leader boards or rankings
displaying per-user contribution on the project.
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Figure 1.8: Evolution of GPUGRID user base since 2007, when the project was born as
PS3GRID. Total number of users is, at the time of writing of this thesis, is over 15000 of
which only 17% are active. The effective number of contributing users is around 2600.
Plot and data obtained from AllProjectStats [170]
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Figure 1.9: Distribution of GPU peak performance installed in active hosts of GPUGRID
(main plot) and GPUs installed per host (inset). During the period considered, 2800
active hosts (3500 GPUs) provided a theoretical processing power (to be adjusted by the
fraction of resource shared) of 1.6 PetaFLOPS.
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Figure 1.10: Badges given to users to acknowledge their contribution to the project. (a)
Badges representing the twenty encoded amino acids by the universal genetic code are
used to visually indicate the accumulated number of credits of a volunteer. A table of
equivalences is used between the number of credits and amino acid badge ordered by
molar mass, being glycine to easiest to achieve (500,000 credits) and tryptophan the
hardest (10 billion credits). (b) Water molecule badges are used to indicate the user
relative contribution to individual scientific publications. Seven levels were named after
precious metals and stones ordered by value: paper, bronze, silver, gold, ruby, emerald
and sapphire. (c) Badges are displayed together with the volunteer’s information on their
user profiles.
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ated in the past visual badges or prizes, a form of recognition that related to
the amount of credits obtained by displaying a small graphical icon. Examples
are found in projects such as World Community Grid [171], Primegrid [172]
or Yoyo@home [173]. GPUGRID has not been an exception to this trend. With
the help of a representative of the volunteer community, we have designed one of
the most innovative badge systems. GPUGRID now grants its participants for the
absolute contribution measured by the total number of credits obtained and for
the contribution to the actual publications stemming from GPUGRID data. This
last form of acknowledgment has been widely appreciated by the community as
it condenses and makes evident the user contribution to the scientific knowledge
produced and presented with publications. Not surprisingly, careful attention and
acknowledgment of the volunteers resulted in spectacular increases of participa-
tion specially since the implementation of the badge system. Examples of the
badges can be seen in Figure 1.10. The amino acids, ordered by molar mass, are
used to represent total contributed computations in GPUGRID. With a fixed ta-
ble of equivalences, whenever a user reaches certain threshold, a heavier amino
acid badge is assigned to her profile. The second system, that acknowledges
the user for their contribution in scientific publications, assigns cumulative water
molecules colored after precious metals and stones. Each water molecule links to
the corresponding publication and scientific explanation page. Such engagement
of participants via game-like frameworks through token-per-task assignments is
known as ‘gamification’ [174] and is an emerging trend in Social Marketing for
mass-consumer industries [175].

1.4 Macromolecular systems studied

In the course of this thesis we have focused our efforts on three molecular sys-
tems; two well-studied systems for method development and one as an applica-
tion of the methods. The systems for method development have been an Src-
homolgy 2 domain with a phosphorylated ligand and trypsin with an inhibitor.
We have applied some of the methodology to a more complex protein–protein
interaction system, the Epidermal growth factor receptor with an antibody and
with a ligand. The following sections briefly describe the systems and some of
their most important features.
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1.4.1 Src-homology 2 domain

We have used a SH2 domain-phosphopeptide complex as a test case to develop
binding affinity calculation protocols [81, 71] as well as to experiment with
highly flexible unguided binding simulations of peptides for the computation
of binding kinetics and binding pathway reconstruction [27].

Src-homology 2 domain (SH2) domains were first identified as non-catalytic
modules conserved among members of the src family of cytoplasmic protein-
tyrosine kinases [176]. They have since been found in many other proteins
that are involved in intracellular signal transduction [177]. SH2 domains can
be found in proteins that possess enzymatic activity (for example, kinases or
phosphatases). Alternatively, they can be present in adaptor proteins that lack
any catalytic activity (for example, Grb2, which contains one SH2 and two SH3
domains [178]). SH2 domains bind phosphotyrosine-containing peptides of se-
lected sequences with high affinity [179] as represented in Figure 1.11. The
recognition of phosphotyrosine-containing motifs in activated cell surface re-
ceptors by the appropriate SH2 domains is an important step in the intracellular
signal transduction process. Due to their essential role in the signal transduction
process and their selectivity towards phosphotyrosyl peptide sequences, SH2 do-
mains are potential targets for therapeutic intervention. Specially in cancer treat-
ments where many signal transduction routes appear altered [180, 181]. For a
review see Pawson and Gish [177].

1.4.2 Trypsin

We have performed binding simulations of bovine beta-trypsin and benzamidine
to reconstruct complete binding processes, recovering affinity, kinetics and bind-
ing pathway [135].

Trypsin is serine protease enzyme that hydrolyzes other proteins and
polypeptides. Serine proteases, among which we find chemotrypsin and elas-
tase, receive the name from a very well conserved serine residue that performs
a crucial role in the catalytic mechanism of action. Serine proteases are found
in the digestive system of many vertebrates, where they perform their protein
hydrolysis function to permit the absorption of amino acids through the lining
of the small intestine. Serine proteases are produced in the pancreas in the form
of zymogen proenzymes, inactive forms of the enzyme, that are initially acti-
vated by enteropeptidases and later activated through autocatalysis. All serine
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Figure 1.11: 1LKK PDB crystal structure of the SH2 domain of human p56lck in com-
plex with the short phosphotyrosyl peptide Ac-pTyr-Glu-Glu-Ile (pYEEI peptide) [180].
The protein’s secondary structure (transparent) and relevant loops are highlighted (blue).
The pYEEI peptide (sticks) plugs into two pockets: a hydrophobic one shown on the left,
“proximal”, which buries phosphotyrosine pY(+0), and a hydrophobic one shown on
the right, “distal”, accommodating I(+3). Significant residues forming native contacts
between the protein and the peptide are labeled in black and red, respectively. Sec-
ondary structure elements are named according to Eck et al. [182]. Figure adapted from
Giorgino et al. [27].
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Figure 1.12: Crystal structure of bovine β-Trypsin with calcium ion bound in a regula-
tory site [188]. The protein’s solvent accessible surface area is shown in white except
for the catalytic residues His57, Asp102 and Ser195, rendered in licorice representation.

proteases have a preferential point of cut at the carboxylic side of amino acids.
Trypsin, for example, cuts the carboxylic side of basic residues such as lysine
or arginine while chemotrypsin preferentially cuts after an hydrophobic residue,
i.e. phenylananine [45]. This catalytic mechanism is performed by the residue
triad formed between His57, Asp102 and Ser195 as shown in Figure 1.12. The
mechanism of action has been known for many years now [183] although new
families of enzymes utilizing the mechanism are being discovered, in which the
nucleophile-base-acid pattern is generally conserved, but the individual com-
ponents can vary [184]. Trypsin was one of the first protein whose structures
were solved by x-ray crystallography [185, 186]. Trypsin has often been crystal-
lized with small inhibitors such as benzamidine [187, 188], which later also re-
sulted in numerous methodological works on benzamidine derivatives that have
aimed at understanding the thermodynamic contributions of substituents to bind-
ing [36] as well as being a test-bed of computational methods for binding free
energy [117, 134].

1.4.3 Epidermal growth factor receptor

We have applied our previously developed binding affinity calculations proto-
col [71] to predict the binding affinities for drug cetuximab and ligand EGF for
the wild-type and the mutant receptor to determine the impact of a mutation on
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complex formation.
Ligand-induced signaling from receptor tyrosine kinases (RTKs) of the epi-

dermal growth factor receptor (EGFR) family (also known as ErbB or HER)
regulates many cellular processes, including proliferation, cell motility, and dif-
ferentiation [189] (see Figure 1.13). Perturbations in these cellular signals can
lead to malignant transformation, and the correlation between EGFR and can-
cer has been firmly established [190]. Deregulation of EGFR can arise from
its over-expression [191], mutation/truncation of the receptor [192], or activa-
tion by aberrant autocrine growth factor loops [193]. EGFR has been impli-
cated in the development of a wide range of epithelial cancers, including those
of the breast, colon, head and neck, kidney, lung, pancreas, and prostate. In
these settings, deregulation of EGFR correlates with decreased disease-free and
overall survival [194, 195, 196, 197]. EGFR is currently being targeted in an-
ticancer treatment via monoclonal Antibodies such as cetuximab [52] and pan-
itumumab [198]. Recently however, a missense S468R mutation on the ligand
and drug binding EGFR domain III has been described to differentially affect the
treatment of colorectal cancers with cetuximab and panitumumab [199]. Upon
emergence of this mutation, malignant cells develop resistance to cetuximab but
not to panitumumab despite sharing binding site.
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Figure 1.13: Crystal structure of the single chain EGFR extracellular domain in (a) the
untethered conformation [52] and (b) the tethered ligand-bound dimerized conformation
[61]. The extracellular single chain domain is composed by four different sub-domains
namely I (shown in red), II (shown in green), III (shown in grey) and IV (shown in
cyan). Upon ligand binding, EGFR adopts the tethered conformation that allows it to
dimerize with another receptor single chain. With dimerization, the intracellular do-
mains of EGFR cross-phosphorylate each other which recruits further signaling proteins
that propagate the signal transduction inside the cell.
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Chapter 2

OBJECTIVES

The main objective for this PhD project has been the development and applica-
tion of a powerful computing infrastructure to studying protein–ligand binding,
typically limited by sampling capacities. From this, we derived several sub-
objectives that were gradually established and addressed throughout the thesis
and can be stated as follows:

2.1 Setup and development GPUGRID for high-
throughput molecular dynamics simulations

Relevant biomolecular motions like binding or conformational changes, have
characteristic timescales beyond the microsecond. Simulating and, more im-
portantly, calculating thermodynamic and kinetic properties for these motions
requires large amounts of computation. The applicability of MD is therefore
limited by computing capacity.

We have specifically addressed this limitation by setting up GPUGRID, a
volunteer distributed computing infrastructure made of GPU-equipped personal
computers. On top of GPUGRID we have implemented protocols to routinely
perform high-throughput MD simulations of binding free energy calculations
as well as discovery and quantification of rare molecular events. Publication 3.1
addresses the implementation of MD protocols on distributed computing network
GPUGRID.
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2.2 Implementation and application a one-dimensional
potential of mean force-based method for binding
free energy calculations

Calculating protein–ligand absolute binding free energies is a long-standing goal
for molecular modeling. Its main application is the discovery of ligands that
bind targeted proteins with high affinities. Among the numerous methods avail-
able at various physical accuracies, computing binding affinities using explicit
solvent physical pathway-based interaction representations is the most accurate
strategy but it is often computationally prohibitive and requires of expert human
intervention.

We have addressed these limitations through the implementation and opti-
mization of a one-dimensional potential of mean force protocol for the precise
and accurate calculations of absolute binding free energies on GPUGRID. Pub-
lication 3.1 presents the first implementation of the protocol for the SH2–pYEEI
system, further optimized for performance and precision in publication 3.2 on the
same system. Finally, in publication 3.3 we present the application to EGFR–
cetuximab and EGFR–EGF systems to evaluate comparatively the impact of a
mutation on drug and ligand binding in the context of cancer treatment.

2.3 Implementation and application of unbiased sam-
pling methods for complete binding process recon-
struction

The grand challenge in the study of protein–ligand interactions is the direct
observation and quantification of unbiased equilibrium-based ligand binding at
atomic resolution, something which has remained at a prohibitive computational
cost until now.

We have employed GPUGRID to perform unbiased protein–ligand binding
simulations. These unbiased simulations have unveiled complex processes for
the interactions such as the existence of non-native metastable states or the re-
lationship between ligand binding and receptor flexibility. We have also applied
MSMs for the analysis of the unbiased data to calculate binding affinities, ki-
netics and pathways for the interactions. Publication 3.4 shows a complete ap-
plication of unbiased binding of trypsin–benzamidine for full quantitative recon-
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struction using MSMs. Publication 3.5 shows unbiased binding of SH2–pYEEI
discussing the roles of conformational flexibility.
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Chapter 3

PUBLICATIONS

3.1 High-throughput all-atom molecular dynamics sim-
ulations using distributed computing

Buch I., Harvey M.J., Giorgino T., Anderson D.P. and De Fabritiis G., Journal
of Chemical Information and Modeling 50, 397 (2010)

Summary

In this work we reviewed the innovations in accelerating molecular dynamics
on graphics processing units (GPUs), and we described GPUGRID, a volun-
teer computing project that uses the GPU resources of non-dedicated desktop
and workstation computers. We also demonstrated the capability of simulating
thousands of all-atom molecular trajectories generated at an average of 20 ns
per day each (for systems of 30,000-80,000 atoms) at the time. We then ap-
plied the resources of GPUGRID for binding free energy calculations of the Src
SH2 domain–pYEEI ligand system, a rather complex system due to its size and
flexibility. We applied a non-optimized version of an umbrella sampling-based
potential of mean force (PMF) protocol and obtained a standard free energy of
binding of −8.7± 0.4kcal/mol within 0.7 kcal/mol from experimental results.
The work proved that GPUGRID was a robust system for high-throughput bind-
ing affinity calculations.
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3.2 Optimized potential of mean force calculations of
standard binding free energy

Buch I., Sadiq S.K. and De Fabritiis G., Journal of Chemical Theory and Com-
putation 7, 1765–1772 (2011)

Summary

Following from our previous work on implementing binding free energy cal-
culations on GPUGRID, here we presented an optimized version of the one-
dimensional potential of mean force method based on ensemble umbrella sam-
pling simulations. The tests on the SH2 domain–pYEEI ligand resulted in an
accurate and converged binding free energy of−9.0±0.5kcal/mol (compared to
an experimental value of−8.0±0.1kcal/mol). We found that a minimum of 300
ns of sampling was required for every prediction. We described how convergence
was obtained by using an ensemble of simulations per window, each starting
from different initial conformations, and by optimizing window-width, orthogo-
nal restraints, reaction coordinate harmonic potentials, and window-sample time.
We also found that the use of uncorrelated initial conformations in neighboring
windows was important for correctly sampling conformational transitions from
the unbound to bound states that affected significantly the precision of the cal-
culations. This methodology thus provides a general recipe for reproducible and
practical computations of binding free energies for a class of semi-rigid protein–
ligand systems, within the limit of the accuracy of the force field used.
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3.3 Computational modeling of cetuximab resistance to
EGFR S468R mutant in colorectal cancer treatment

Buch I. and De Fabritiis G., Unpublished manuscript (2012)

Summary

Here we applied the optimized protocol for binding affinity calculations to pro-
vide a molecular structure-based explanation of the recently described acquired
mutation in EGFR that causes resistance to treatment with cetuximab of colorec-
tal cancer. By inspecting the bound structures of cetuximab, alternative antibody
necitumumab and three EGFR ligands, we determine the putative impact of the
mutation in their bindings. To confirm the structural analysis, we performed
binding free energy calculations using the previously employed protocols based
on one-dimensional potential of mean forces sampled by umbrella sampling, of
cetuximab and EGF to both wild type and S468R mutant variants of EGFR. We
predict a loss of affinity for cetuximab of at least 1kcal/mol and an increase in
affinity for EGF of about 1.1kcal/mol. Although in need of experimental vali-
dation, we can propose a model in which cetuximab would be outcompeted by
endogenous ligand EGF that would make treatment against this mutant variant
ineffective. All in all, this work serves both as an application for our previously
implemented protocol for binding free energy calculations as well as an exam-
ple of the applicability of molecular modeling to rationalize drug usage in the
context of personalized medicine.
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Computational modeling of cetuximab resistance to EGFR S468R mutant in
colorectal cancer treatment

The recently described S468R mutation in the extracellular domain III of the Epidermal Growth
Factor Receptor (EGFR) causes resistance to cetuximab in colorectal cancer treatment. We per-
formed a molecular structure-based assessment study to discuss the putative impact of the mutation
on the binding of cetuximab, necitumumab and EGFR ligands EGF, TGFα and HRGa. We also
apply molecular modeling techniques to calculate binding free energies for cetuximab and EGF to
wild type and S468R mutant EGFR to specifically quantify the impact of the mutation to drug and
ligand binding. Our results suggest that the S468R mutation may have a particularly deleterious
effect on the efficacy of cetuximab in blocking receptor activation, due to a loss in cetuximab affinity
and a gain in EGF affinity for EGFR. According to our predictions, mild alterations in opposite
directions of binding affinities may be the reason to the resistance to cetuximab by S468R EGFR.
This work provides an interesting example of application of high-throughput all-atom molecular dy-
namics simulations for an accurate prediction of resistance to monoclonal antibody-based therapy
in the context of personalized medicine.

I. INTRODUCTION

Colorectal cancer is the third-leading cause of cancer-
related deaths worldwide, with over 600,000 deaths oc-
curring worldwide each year1. Recently, a role has
been established for the epidermal growth factor recep-
tor (EGFR) signal transduction pathway in the devel-
opment of a subset of epithelial tumors2. EGFR is
involved in multiple cellular proliferation processes, in-
cluding growth, differentiation, migration, and apoptosis.
EGFR over-expression has been shown to predict tumor
progression3 in colorectal cancer and is over-expressed in
25-77% of these tumors. EGFR is often associated with
a worse prognosis4.

In recent years, many EGFR-targeted agents have been
developed. The two agents that have demonstrated the
best responses are two monoclonal antibodies directed
against EGFR: cetuximab and panitumumab5 (known
as anti-EGFR therapy or EGFR inhibitors) and compete
against endogenous EGFR ligands like EGF for binding
site as well as blocking receptor dimerization6 (see Fig-
ure 1). These antibodies have presented high response
rates when administered with chemotherapy. Cetuximab
is a chimeric IgG1 anti-EGFR monoclonal antibody that
has demonstrated anti-tumor activity in patients with
colorectal cancer7. Cetuximab has a murine structural
component which is a potential source of toxicity and
immunogenicity8. Due to this, there has been a con-
siderable amount of research aimed at eliminating this
toxicity. As a result, a new agent was developed: panitu-
mumab, a fully human IgG2 monoclonal antibody that is
highly selective for EGFR5. Both cetuximab and panitu-
mumab are considered fully equivalent in the treatment
of colorectal cancer and therefore it is assumed that both
share the same epitope9,10. However, a new missense mu-
tation has been identified in the extracellular domain III
of EGFR, S492R (S468R according to residue numbering
in FabC225/EGFR crystal structure by Li et al.6 and
used herein). The mutation has been identified as the
cause for acquired resistance to clinical treatment of col-
orectal cancer with cetuximab but, surprisingly, not with

panitumumab; which has led to the conclusion that the
two must recognize different epitopes of EGFR10. Un-
like for cetuximab6 though, there is no publicly avail-
able crystal structure for panitumumab that can aid to
a proper structure-based analysis of the phenomenon.

Several mutations in domain III in EGFR have been
previously reported in the literature to help understand
the role of epitopic residues to the binding of cetuximab.
Specially deleterious have been mutations Q408M in
combination to H409E which caused a 150-fold decrease
in FabC225 binding6 as well as Q384A that in combina-
tion with the previous two caused a 380-fold decrease in
binding6. Same sites but other mutations Q408A/H409A
also produce a 10-fold decrease in FabC225 binding
to sEGFR or 50-fold decrease again if combined with
Q384A11. Milder decreases of 1.5-fold have been seen
for K443A and S468I/N473A11. The study by Montagut
et al.10 is the first example of a missense mutation of
the target of an antibody being the direct cause of resis-
tance to that therapeutic antibody. Understanding the
mechanisms of drug resistance can clearly lead to the de-
velopment of more effective targeted therapies, new ther-
apeutic combinations or both9.

In this work, we perform a molecular structure-based
assessment study to discuss the putative impact of the
S468R EGFR mutation on binding of cetuximab, necitu-
mumab and EGFR ligands EGF, TGFα and HRGa. We
also apply molecular modeling techniques to calculate
binding free energies for cetuximab and EGF to wild
type and S468R mutant EGFR to specifically quantify
the impact of the mutation to drug and ligand binding.
Calculating binding free energies using molecular dynam-
ics simulations (MD) is a widely explored topic in the
field of computational biophysics and several methodolo-
gies have been successfully developed in recent years12–15.
Here, we apply previously described protocols for high-
throughput binding free energy calculations16 of rather
large and semi-rigid protein-protein complexes to com-
pute the binding free energies of cetuximab and EGF to
EGFR.
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FIG. 1: (a) Sketch model of EGFR receptor dimerization in-
duced by EGF binding to domains III and I. Dimerization is
required for intracellular signal transduction. (b) Cetuximab
(FabC225) as well as panitumumab, binds to domain III of
EGFR blocking ligand binding and preventing the receptor
from adopting an extended conformation that would permit
dimerization.

II. METHODS

System preparation Structures of the bound
FabC225 (cetuximab) to wild type sEGFR
(PDB:1YY9)6, bound Fab11F8 (necitumumab) to
wild type sEGFR (PDB:3B2V)11, bound EGF to wild
type sEGFR (PDB:1IVO)17, bound TGFa to wild
type EGFR (PDB:1MOX)18 and Neuregulin-1/HRGa
(PDB:1HAF)19 were obtained from the Protein Data
Bank20. Cetuximab–EGFR, EGF–EGFR were used for
MD simulations. From here on we will refer to these
systems as ‘cetuximab system’ and ‘EGF system’ . Only
interacting domains of the complexes were included in
the simulations. Given the large size of cetuximab’s Fab
fragment, only the Fv domains of the antibody (residues
1-120 for the heavy chain and 1-108 for the light chain)
and domain III of EGFR (residues 310-501) were used.
In the case of EGF, the entire ligand and domain III of
EGFR (residues 310-501) were used. All systems were
parametrized using the CHARMM27 force field and
solvated in a TIP3P water21 boxes with ionic strengths
of 0.15 M. The cetuximab system was solvated in a
80.0× 75.3× 137.0 Å3 box and containing 78260 atoms,
23885 water molecules, 67 Na+ and 75 Cl− ions. The
EGF system was solvated in a 67.0 × 70.8 × 117.0 Å3

box and containing 52417 atoms, 16208 water molecules,
47 Na+ and 46 Cl− ions. System relaxation was carried
out using the protocol described in ref.16. Energy
minimization and thermalization were conducted under
NPT conditions at 1 atm and 298 K using a time step
of 2 fs for energy minimization and a time step of 4
fs for thermalization, a cutoff of 9 Å, with rigid bonds
and PME for long-range electrostatics with grids of
80×76×138 for the cetuximab system and 68×72×118

TABLE I: Binding free energies (∆G◦) from experimental
measurements (exp) and computational calculations (comp)
for the EGF and FabC225 systems to the wt and S468R struc-
tures of EGFR domain III. All units are in kcal/mol.

wt (exp) wt (comp) S468R (comp)
EGF −7.7± 0.1 −6.8± 0.5 −7.9± 0.6

FabC225 −11.9± 0.1 −9.8± 0.3 −8.8± 0.4

for the EGF system. Potential energy minimization was
run for 2 ps to and thermalization for volume relaxation
was run for 1 ns. During minimization the heavy protein
atoms were restrained by a 1kcal mol−1Å

−2
spring

constant and during thermalization only Cα atoms were
restrained. Preparation simulations were run using
ACEMD22 on local GPU-equipped workstations.

S468R mutants of EGFR were generated on the basis
of the wt EGFR crystallographic model. Although origi-
nal mutation is reported as S492R, we have kept residue
numbering as in the crystal structure solved by Li et al.6.
Mutant system for FabC225 was simulated for 1 µs each
at a temperature of 310 K in NVT conditions. The an-
tibody conformations closest (lowest rms deviation) to
the average sampled conformations were taken as start-
ing structures for binding affinity calculations.

Binding affinity calculations Production simula-
tions were run using ACEMD on GPUGRID.net23 with
the same parameters used for the thermalization but a
time step of 4 fs using the hydrogen mass repartition
scheme22,24. This scheme allows for longer time steps
mathematically preserving all the equilibrium properties
of the system, while providing only minor changes in the
transport properties. Binding affinity calculations were
performed using a previously reported protocol based on
a one-dimensional potential of mean force reconstructed
from umbrella sampling simulations15,16. Each umbrella
sampling calculation was composed by 25 windows that
ran for 50 ns for both systems. A total of four different
systems were simulated: FabC225–wtEGFR, FabC225–
S468R EGFR, EGF–wtEGFR and EGF–S468R EGFR.
Five different replicates were run per each window and
system which made up for aggregates of about 6.25µs of
MD data for each system. Final absolute binding free en-
ergy values do not incorporate the first 30 ns of data for
each window, considered equilibration time (see Figure
4).

III. RESULTS AND DISCUSSION

The reported loss of treatment efficacy by cetuximab
against S468R EGFR is likely to be caused by a direct
disruption of the binding affinity of the drug for the re-
ceptor. On the other hand human monoclonal antibody
panitumumab does not suffer the same consequences10.
Unfortunately however, since no crystallographic struc-
ture is available for panitumumab we are unable to pro-
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FIG. 2: Complex structure for the bound FabC225 (cetux-
imab) and single chain EGFR as crystallized by Li et al.6.
Computational modeling was performed on the binding do-
mains of both partners, VL and VH for FabC225 and domain
III for EGFR since it is the only domain affected by the de-
scribed mutation.

TABLE II: Estimated (est) changes in binding affinities (KD)
for EGF and FabC225 to the full S468R EGFR receptor based
on the calculated binding free energies of Table I. Fold-
changes are computed from reference experimental affinities6

for EGF and FabC225 to full wt EGFR, which are 130 nM
and 1.7 nM, respectively. All units are in nM.

fold-change S468R (est)
EGF ×2.7 increase 48.1

FabC225 ×5.0 decrease 11.5

vide a structural explanation of the differentiated re-
sponse between the two antibodies. Nevertheless, we
have performed a structural study of the site of the mu-
tation for the endogenous EGF-like ligands of EGFR, as
well as for cetuximab and an alternative anti-EGFR hu-
man monoclonal antibody named necitumumab. More-
over, we computed binding free energies of cetuximab
and EGF for the wild type and mutant EGFR structures
to quantify the effect of the S468R mutation.

The crystallographic structure of FabC225 (cetux-
imab) in complex with the soluble extracellular sEGFR
shown in Figure 2 reveals a single interaction interface
between the drug and the target. The interface is vastly
that of the endogenous EGFR ligands which makes ce-
tuximab a competitive inhibitor to receptor-activating
ligands6. Modification of these interfaces has the po-
tential to affect complex formation and, as a matter of
fact, as shown in Figure 3, the new S468R mutation may
have a different impact for the binding of the drugs or the
ligands. The site of the S468R mutation lies right in the

middle of the surface recognized by cetuximab as shown
in Figure 3a and very close to the C-terminal of EGF
and TGFa and, presumably, right underneath of a puta-
tively bound HRGa (Figure 3b-d). In the case of EGF,
an additional salt bridge may become possible between
E51 and S468R. In HRGa the number of additional pos-
sible interactions doubles, between E57, E61 and S468R.
For TGFa as well as other EGF-like ligands like Epireg-
ulin, not shown, the mutation is not expected to have
any effect on the binding affinity of the ligand.

Since no crystal structure is currently available for pan-
itumumab, we visually compared the cetuximab inter-
face with EGFR with necitumumab, an alternative anti-
EGFR antibody that has a very similar epitope to cetux-
imab11. Figure 5 shows the structures of FabC225 (cetux-
imab) and Fab11F8 (necitumumab) with respect to the
mutation site S468. We have visually assessed the impact
of the S468R mutation on both structures. The complex-
ity of the interaction interfaces is such that mutations
might have very different consequences on the affinity
of the complexes, as indirectly seen for panitumumab10.
The missense S468R mutation is an amino acid substitu-
tion, Serine to Arginine. Such mutation involves a change
from a rather small, polar and uncharged side chain in
Serine to a large and electrically charged side chain in
Arginine. Two drastic changes that combined, may have
deleterious effects in maintaining tight hydrophobic in-
teractions and shape-complementary in protein-protein
interfaces. Electrostatic potential calculations on the sur-
face of EGFR domain III showed a dominating presence
of positive charge11. The substitution of a Serine by an
Arginine should favor the positively charged environment
by establishing salt bridges or hydrogen bonds with the
antibody although it doesn’t seem to be the case. More-
over, the two antibodies, cetuximab and necitumumab
might be differently affected by the mutation. As shown
in Figure 5b the principal differences between FabC225
and Fab11F8 are the presence of residues Y104, W52
and W94 in FabC225 bound near the S468 in EGFR.
Residue Y104 in particular, appears to be obstructing
an otherwise accessible cavity for Arginine. Overall, the
addition of a large and charged amino acid may cause
a costly side chain rearrangement of cetuximab residues
near S468 together with increased solvation that would
would impede tight complex formation characteristic of
antigen-antibody interfaces.

In order to determine a putative decrease of binding
affinity for the FabC225–EGFR complex and a puta-
tive increase for the EGF–EGFR complex, we performed
computational binding free energy calculations15,16 of the
two complexes using high-throughput all-atom molecular
dynamics simulations23. Table I shows a summary of the
calculated binding affinities for FabC225/EGFR domain
III and EGF/EGFR domain III both for their wild type
and mutant forms. EGF was found to bind to EGFR
domain III with a free energy of −6.8 ± 0.5 kcal/mol
(compared to an experimental of −7.7 kcal/mol11) and
FabC225 with −9.8±0.3 kcal/mol (compared to an exper-
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FIG. 3: Spatial relationship between the mutation site S468 in EGFR and the bound structures of FabC225 and several
receptor-activating ligands. (a) S468R mutation may have a clear impact of the binding of FabC225. A complex number of
surrounding interactions may be affected with the inclusion of a large and charged amino acid as it is shown in Figure 5. (b) In
the case of EGF, the mutation may on the other hand, increase the affinity of the ligand. A new salt bridge interaction may exist
upon mutation of Serine to Arginine with E51 in EGF. (c) TGFa has A50 in close proximity to mutant site. Binding affinity
might be slightly increased after mutation S468R by interaction between the C-terminal of TGFa and Arginines side chain.
(d) HRGa is also displayed for reference. A non crystallographic binding mode has been modeled to asses an hypothetical
interaction between S468R and E57/E61 in the ligand. Although truncated in this figure, non-native ligand EGFR ligand
HRGa may gain in binding affinity for S468R EGFR being an additional competitor to a weaker binder cetuximab.

imental of −11.9 kcal/mol6). Considering the size of the
system, the accuracy of these calculations for the wt com-
plexes is remarkably high, specially for EGF which is less
than 1 kcal/mol off from the experimental value, being
this difference perfectly equivalent to the ones reported in
previous work for a tetrapeptide ligand on the same pro-
tocol16. As expected for the S468R mutant complexes,
calculations predict a binding free energy 1.1 kcal/mol
more favorable for EGF and 1 kcal/mol less favorable for
FabC225, although the latter is a less reliable result given
the oversimplification of the simulated model that used
only the Fv part of the antibody. Binding free energies re-
ported in Table I for FabC225 are the mean and standard
deviation of the 5 replicas per system where each replica
value is obtained from the latest quarter of sampled time
and from the last 10-20 ns sampled in EGF (see Figure 4
for convergence studies). The calculated free energy val-
ues however, only considered interactions with domain
III of EGFR but EGF, for instance, is known to bind
with greater affinity to full EGFR since it also interacts
with domain I17. Assuming that domain I contributes
equally to the total measured binding affinity, in Table
II we show the final estimated binding affinities for the
full mutant S468R EGFR taking into account the free

energy calculations. Cetuximab is predicted to display
at least a 5-fold decrease in binding affinity for S468R
EGFR and EGF is estimated to display a binding affin-
ity increase of 2.7-fold.

IV. CONCLUSION

None of the reported mutations in vitro6,11 can indi-
vidually match the deleterious effect that acquired mu-
tation S468R displays in FabC225 binding. Although
highly significant for a single residue mutation, a 5-fold
decrease in binding affinity may not be enough to cause
the described resistance seen in the treatment10. It may
be the combination with the 2.7-fold increase in EGF
binding affinity and increased putative competition by
other EGF-like ligands like HRGa that impedes receptor
inhibition in vivo. Most of the mutations that have been
explored in EGF binding to EGFR domain III actually
caused a decrease in affinity11. Only the combined muta-
tion Q408A/H409A has a significant increase of 2.7-fold
in EGF binding affinity11. In this work, we show how
a single missense mutation can cause both a decrease in
drug binding and an increase in endogenous ligand bind-
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FIG. 4: Binding free energy (∆G◦) convergence studies for the (a) cetuximab system and (b) EGF system versus single umbrella
sampling window simulated time. Free energy values are computed as the mean and standard deviation of the 5 different replicas
across block-averaged time ranges to assess convergence. In subplot (a) although free energy values seem to reach a plateau
phase at 50 ns, we cannot confidently discuss their convergence. Differences between the wt and mutant systems are of about
1 kcal/mol only. Nevertheless, it is very likely that the modeled system is an inaccurate oversimplification due to an excessive
reduction of the antibody domains simulated since only the Fv part was modeled. In subplot (b) free energy values for EGF
against wt and mutant EGFR are clearly differentiated specially after 30 ns of sampling time per window. In the computation
of the absolute binding free energies reported, the first 30 ns of each window were discarded for the computation.

ing. Both changes are predicted to render binding affini-
ties of the same order of magnitude for the two complexes
(48.1 nM for EGF and 11.5 nM for cetuximab) which may
be the reason of the failure of the therapeutic strategy
versus S468R mutant EGFR.

Although the accuracy of the FabC225 model is cer-
tainly problematic due to the simplified modeling strat-
egy, the differential binding free energy values obtained
for the wild type and the mutant receptors may still be
a fair approximation to the actual affinities of the full
antibody chains. On the other hand, we are very confi-

dent on the the results for the EGF system which showed
a remarkable precision and accuracy given the size and
complexity of the system. Ultimately, these results need
to be validated with experimental measurements of bind-
ing affinities and kinetics for the mutant EGFR

Finally, this work is an example of how in the near
future and in the context of personalized medicine, bind-
ing free energy calculations could be successfully used to
predict the efficacy of existing drugs to unknown target
variants.
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3.4 Complete reconstruction of an enzyme-inhibitor
binding process by molecular dynamics simulations

Buch I., Giorgino T. and De Fabritiis G., Proceedings of the National Academy
of Sciences of the USA 108, 10184–10189 (2011)

Summary

In this work we exploited the power of GPUGRID to quantitatively recon-
struct the complete unbiased binding process of the enzyme-inhibitor complex
trypsin-benzamidine. Through the simulation of 495 molecular dynamics tra-
jectories of free ligand binding of 100 ns each, we obtained 187 binding events
with an RMSD less than 2 Å compared to the crystal structure that allowed us
to reconstruct the binding pathway and estimate the binding free energy and
rates. We have identified previously unknown metastable intermediate states for
the binding of benzamidine to trypsin that highlight potential key residues in
the kinetics of benzamidine binding. The estimation of the standard free en-
ergy of binding gives ∆G◦ = −5.2± 0.4kcal/mol (cf. the experimental value
−6.2kcal/mol), and the binding kinetic rates kon = (1.5± 0.2)× 108 M−1s−1

and koff = (9.5± 3.3)× 104s−1 for unbound to bound transitions. With this
hallmark piece of work we demonstrate the predictive power of unconventional
high-throughput molecular simulations, as well as introduce a methodology that
is directly applicable to other molecular systems and thus of general interest in
biomedical and pharmaceutical research.
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3.5 Visualizing the induced binding of SH2-
phosphopeptide

Giorgino T., Buch I. and De Fabritiis G., Journal of Chemical Theory and Com-
putation, 8, 1171–1175 (2012)

Summary

Following on with the unbiased ligand binding simulations approach, here we re-
port in atomistic detail the way a phosphorylated peptide binds to the ubiquitous
SH2 domain and the conformational changes that take place upon binding. To
do so, we obtained several spontaneous binding events between the p56 lck SH2
domain and the pYEEI peptide within 2 Å RMSD from the crystal structure and
with kinetic rates compatible with experiments using high-throughput molecu-
lar dynamics simulations. We describe how binding is achieved in two phases
through first, fast contacts of the charged phosphotyrosine and second, then re-
arrangement of the ligand involving the stabilization of two important loops in
the SH2 domain. These observations provide insights into the binding pathways
and induced conformations of the SH2–phosphopeptide complex which, due to
the characteristics of SH2 domains, should be relevant for other SH2 recogni-
tion peptides. On a broader perspective and provided that sufficient sampling
was provided, this work is ultimately relevant as an aid to the reconstruction of
complex recognition models via Markov state models.
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Chapter 4

DISCUSSION

The following discussion deals with the overall impact of the results obtained
and their contextualization within the current state of the art.

Setup and development of GPUGRID for high-throughput molecular dy-
namics simulations

GPUGRID started in 2007 as a volunteer distributed computing grid of PlaySta-
tion3 named PS3GRID thanks to the then-innovative “Cell” multiproces-
sor [200]. Transition to GPUs in 2008–09 made the project become GPUGRID,
receiving the total contribution of more than 15000 users that volunteered to-
gether more than 28000 computers. The active percentage of these users as of
March 2012 is around 17%. This makes for an active number of contributed
GPUs of about 3000. The mixture of a high-performance architecture like the
GPUs and the high number of contributing users, made GPUGRID one of the
top players in the distributed computing community for biomedicine, sharing the
ranking with projects from renowned institutions and research programs such as
Stanford University’s Folding@Home [82] (400,000 volunteers) or Washington
State University’s Rosetta@Home [201] (36,000 active volunteers) too.

We can identify two main elements in the development of GPUGRID that
have been key in making it both a successful tool for researchers and an attrac-
tive distributed computing project for volunteers. For GPUGRID to be a prac-
tical tool for the every day usage by the scientist, it needed to fix interfacing
issues with the rather complex BOINC server software with regard to simulation
submission and data retrieval. To solve this, Giorgino et al [169] developed the
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RBoinc interface that has represented a critical advancement for the seamless uti-
lization of GPUGRID as a supercomputing platform and in particular, the daily
submission and retrieval of computing tasks, named work units.

The other aspect that has made of GPUGRID an attractive volunteer comput-
ing project has been the high standards achieved in managing the community of
volunteers. In particular, the efforts put in the daily follow-up of the volunteer’s
concerns on the project forums, the constant development of a usable and attrac-
tive project website (currently in its third version) as a source for scientific infor-
mation on the goals of the project and, finally, the implementation of a unique
and distinctive visual contribution recognition system, a ‘badge system’. The
objective of the latter is granting visible recognition to users according to their
proportional contribution. This is of great importance since improvements in the
website layout and in public visibility typically have an immediate and tangible
impact on the number and contribution of volunteers in distributed computing
projects (Figure 1.8) [170, 202].

An important aspect of volunteer distributed computing is the democratiza-
tion of science. As the father and current coordinator of BOINC put it, when
computer owners can contribute to whatever project they choose, control over
resource allocation for science may be shifted away from government funding
agencies and towards the public. Such shift in control comes with the risk of
volatility of public interest but in turn it offers a very direct and democratic mech-
anism for deciding research policies [203]. A different question is then whether
the scientific community is ready yet to embrace such levels of democratization.
Nevertheless and as far as we are concerned, no distributed computing project
has been yet forced by its volunteer-base to a shift in their research focus. From
the scientists point of view, maintaining a fluent and open attitude towards the
communication of the scientific projects’ nature is usually sufficient to content
the interested nature of the majority of the volunteers.

As a scientific computing infrastructure, GPUGRID enabled us to routinely
sample microseconds of data, while multi-µs experiments were previously a rar-
ity. This is specially relevant considering that biological phenomena, such as lig-
and binding or large conformational motions, start to occur at the microsecond
timescale [64]. Costly but highly parallel simulation protocols like free energy
calculations from one-dimensional potential of mean force [81, 121, 71], have
been successfully implemented during this time. Although its initial applica-
tion was intended for the computation of binding free energies by surmounting
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the ‘sampling problem’, GPUGRID is now also being employed to capture and
quantify rare dynamic molecular events. Events that happen at characteristic
rates and therefore, by increasing the number of parallel runs and thus of to-
tal simulated time, we can increase our chances to capture them. These two
methodologies were partially motivated and developed as a refinement of the
work of this thesis. Thus, GPUGRID has so far allowed simulations of binding of
protein–ligand systems [135, 27], ion-induced effects in GPCR molecules [119]
and rare conformational state characterization in HIV-1 protease [204].

Considering the state-of-the-art of MD computing, GPUGRID is, together
with Folding@Home for protein folding [148], a leading infrastructure in the
world in the application of high-throughput MD simulations. The amount of
sampling that is daily produced is in close competition with DE Shaw Research,
home of several Anton, the multimillion-dollar special-purpose machines [79].
Their approach however, differs from our high-throughput and is focused on
extreme high-performance aimed at simulating single very long MD trajectories
mainly of protein folding [67, 205] and ligand binding [206, 207].

Implementation and application of a one-dimensional potential of mean
force-based method for binding free energy calculations

Attempts to compute binding affinities have been made since near the incep-
tion of computational biomolecular modeling [208]. In the Introduction sec-
tion of this thesis, we have already reviewed how several methods involving
MD simulations are being used to quantitatively determine binding free ener-
gies [106, 117, 124] as well as their approximations to physical representation of
binding [209, 128]. The underpinning limitations of these methods are still es-
sentially related to the computational cost of the estimations and the requirement
of expert human intervention. These are precisely the two main limitations that
we wanted to tackle in computing binding free energies with GPUGRID.

Focusing on all-atom physical pathway-based MD simulations, Roux and
co-workers [124, 210] introduced PMF-based one-dimensional absolute bind-
ing affinity calculations. Their approach was motivated by the need to tackle
more complex situations in biological systems dealing with, for example, flexi-
ble and charged ligands [124, 209]. The method, based on umbrella sampling,
solved the large computational cost associated by the application of a set of con-
formational and oriental restraining potentials to the ligand. The study claims
that a few nanoseconds of sampling are sufficient to obtain converged results
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for the free energy. This approach however, although apparently solving the
sampling problem, is hard to generalize to regularly compute binding free ener-
gies for other systems, because it requires a deep knowledge on the degrees of
freedom of the system that play a role in the recognition. This is a general prob-
lem of biased PMF-sampling methods, where their efficacy and efficiency are
determined by the choice and number of coordinates of reaction [211]. Meta-
dynamics, for example, despite being one of the most popular pathway-based
sampling methods [117, 118, 212] has traditionally suffered from the very same
problem of having to decide beforehand the relevant degrees of freedom for the
system, namely the collective variables. This decision, in turn, also affected
the choice of simulation parameters and the convergence of the free energy es-
timates [213, 214] which are also common problems in other pathway-based
methods [211, 121, 134].

An important step forward with respect to the methodology proposed by
Roux and co-workers, was the work by Henchman and co-workers [134] that pre-
sented an updated version of the one-dimensional PMF protocol. They removed
conformational and rotational restraints on the ligand and left only generic re-
straints, orthogonal to and in the direction of binding. Moreover, they provided
the framework for the calculation of standard free energy of binding, something
often overlooked in comparing calculations to experiment [117, 32]. This ver-
sion of the methodology had a major improvement in the ease of implementation
leaving only the question of the sufficient sampling to be resolved. Regarding
the definition of the single coordinate of reaction, an obvious choice for protein–
ligand binding is the distance between the two. The coordinate is often chosen
to be either the radial distance or a projection to a cartesian axis orthogonal to
the binding interface of the complex [124, 134].

In our implementations, there were two main differences from the original
protocol that addressed the setup and convergence issues. First, the utilization
of steered MD simulations to slowly displace the ligand away from the protein
along the chosen reaction path orthogonal to the interface [81]. The snapshots
of this ‘pulling’ run served as initial configurations for the umbrella sampling.
In this way, only a single thermalization run for the system had to be performed
and whole composition of the simulation box was maintained. Also, to some ex-
tent, we were generating trajectories across unbinding pathways that could have
been relevant for binding as well. The second difference in the implementation
of the protocol consisted in using uncorrelated starting configurations for neigh-
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boring umbrella sampling windows and it was incorporated in the optimization
presented in publication 3.2.

In the first application of the protocol we calculated a converged standard
free energy of binding for the SH2–pYEEI [215] system of −8.7±0.4kcal/mol
within 0.7kcal/mol from experimental results, however at the cost of 20.5µs of
data [81] which made the protocol unfeasible to regular and generalized appli-
cation. To solve this, we optimized the protocol cutting down the computational
cost to only 300ns for the same protein–ligand system to achieve an even more
precise value of −9.0±0.5kcal/mol, despite its larger error (1 kcal/mol). In this
optimization study, presented in publication 3.2, we were able to propose an opti-
mized version of the one-dimensional PMF protocol based on umbrella sampling
that consisted in using an ensemble of simulations, initiated from uncorrelated
initial conformations across neighboring windows and an optimal parameter set
(OPS) describing orthogonal restraints, a force constant for the sampling poten-
tial, window width, and sampling time per window.

In publication 3.2 we additionally provided an example case of insuffi-
cient sampling that related overestimated and underestimated binding free en-
ergies with metastable structural correlates at the transition region of the bind-
ing/unbinding pathways. This observation was in agreement with previous work
by Mobley et al. [216] where they stated that conformational changes can make
a difference of several kcal/mol in computed binding free energies, and that free
energy estimations of systems kinetically trapped in particular metastable states
can incur in large estimation errors. Others have also arrived to similar conclu-
sions in the computation of absolute binding free energies on various systems
with significant degrees of flexibility [217, 218, 219]. Far from being universally
optimal, our protocol is certainly best performing when feeding the umbrella
sampling simulations with numerous and uncorrelated variety of starting config-
urations. Ultimately, the work on SH2 has been an important test case given the
degree of flexibility of both the ligand and the protein as we also saw in posterior
work on unbiased binding simulations for the same system [27].

In a more ambitious study and along these lines, we have lately applied the
protocol to a protein–ligand system of much larger size albeit similar flexibil-
ity, the EGFR–cetuximab and EGFR–EGF systems. In publication 3.3 we try
to provide a binding affinity-based explanation for the resistance to the mono-
clonal antibody drug cetuximab, to the recently described mutant variant S468R
of EGFR [199]. In addition to making a structure-based assessment of the pu-
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tative impact of the mutation to the stability of target–drug and target–ligand
complexes, we performed extensive binding free energy calculations to specifi-
cally determine the impact of the mutation in the binding of cetuximab and EGF.
Our calculations suggest that, unlike for other previously described mutations for
the system [52, 220], there would be a strong deleterious effect of the treatment
efficacy from a simultaneous 5-fold decrease of binding affinity for cetuximab
and a 2.7-fold increase in EGF binding affinity which may finally be impairing
competitive binding from the drug. Similar effects, upon mutation of a single
residue, have also been described for single residue mutations in the intracellular
kinase domain of EGFR [221]. Although our predictions still need to be experi-
mentally validated, as well as to determine the specific effects on the kinetic rates
for the drug and other EGFR ligands, the overall conclusion is in line with the
phenomena reported from the clinical and in vitro studies [199].

Given the computational cost associated, the one-dimensional PMF-based
protocol would still not be practical in screening stages of drug discovery. In-
stead, it may have a role to play in later-stages at lead optimization or for screen-
ings of emerged resistances to approved drugs in the direction of personalized
therapies [222, 223]. Moreover, it might be best suited to the study of biologicals
like peptides or antibodies where conformational flexibility is more problematic.

Implementation and application of unbiased sampling methods for complete
binding process reconstruction

Without doubt, the grand challenge in the study of protein–ligand interactions
is the direct observation and quantification of unbiased equilibrium-based lig-
and binding at atomic resolution, something which has remained at a prohibitive
computational cost until now. Although some spontaneous binding events had
already been reported [224, 225, 75], the first statistically meaningful binding ex-
periments appeared concomitantly with our work on trypsin-benzamidine bind-
ing of publication 3.4. Shaw and co-workers presented the longest-ever sim-
ulated binding trajectories using all-atom MD simulations of kinase inhibitors
dasatinib and PP1 binding to Src kinase [207] and several other inhibitors bind-
ing to β1- and β2-adrenergic GPCR receptors [206]; in both works they provide
estimations for the association rates and some binding free energy but, unlike
us, they were unable to report estimates for ligand dissociation rates. On the
other hand, Silva et al. [152] providing full description of the binding process
with kinetics, affinity and pathway in LAO protein binding and amply discussed
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the roles for conformational selection and induced-fit. More recently, in pub-
lication 3.5, we presented an extensive unbiased phosphopeptide binding study
to SH2 that produced 5 binding events out of 772 trajectories due to a slow and
complex kinetic mechanism. Without being able to discuss the roles for con-
formational selection or induced fit due to insufficient sampling, we were able
to provide a dynamic view of the conformational flexibility of SH2 and its re-
lationship to phosphopeptide binding. In summary, all these ground-breaking
works are mainly a consequence of maturity of high-performing codes and ar-
chitectures [79, 162, 80] and, in some cases, advances in the development of
ensemble-based transition network analysis methods like Markov state model-
ing (MSM) [144, 146].

Unbiased binding simulations have the advantage of not having to assume
the coordinate of reaction in advance which otherwise may provide a biased
or oversimplified view on the kinetics [154], instead, study of the relevant de-
grees of freedom is performed afterward [145]. This fact added to the ability
to reconstruct the equilibrium ensemble of binding pathways with MSM from
simulations that are much shorter than the binding time [147], makes of high-
throughput unbiased binding MD simulations an ideal next-generation approach
to investigate protein–ligand binding. Indeed, MSM is a suitable mathemati-
cal framework to analyze GPUGRID-produced unbiased sampling data. Before
MSMS we had been studying biological systems with an approach based on the
simple premise of ‘simulate (unbiasedly) and see what happened’. Whether it has
been ligand binding [71, 27] or protein conformational changes [204, 119] we
have been using human intuition and manual projections to capture and hopefully
quantify conformational dynamics of rare events. Where others might use PCA
analysis [226] or complex algorithms like sketch-map [227] to extract the collec-
tive degrees of freedom for dimension-reduced descriptions of macromolecular
dynamics, we are now directly using MSM in an iterative manner to find those
dimensionality reductions that better describe the dynamics of our system.

The theory of MSM is sound and well developed [228, 144, 145, 146]. In par-
ticular, the formalisms that allow the computations of the the statistical quantities
of the ensemble which have a direct meaning in MD: the equilibrium distribution
of the system, kinetically meaningful metastable states and transition rates be-
tween these states [146]. For binding affinity calculations, for example, we can
alternatively compute standard free energy of bindings through integration of the
PMF [134] as we had been doing from umbrella sampling simulations or through
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the association and dissociation rates of the system from which the equilibrium
constant can be calculated, as expressed in equation (1.2). Also, in a more com-
plex implementation of the MSM analysis one could build complex kinetic net-
work and represent the transitions between the different metastable states from
the calculation of their relative populations in equilibrium, the free energies,
to their rates and weights of interconversion, the fluxes [148, 229, 147, 150].
Such a deep analysis, although unnecessary in the simple quasi-binary process
of trypsin-benzamidine [135], should certainly be undertaken in further devel-
opments of the more complex binding mechanisms that we described for the
SH2–pYEEI binding [27] in a similar way to work by Silva et al [152].

More specifically, in our first application of MSMs presented in publication
3.4, we obtained 187 full binding events out of 495 analyzed trajectories. Such
a large number of sampled transitions permitted rather precise estimations for
binding affinity and association rate, but not so much for dissociation rates. Al-
though we did not obtain a single full unbinding event, the MSM was able to pre-
dict the unbinding rate but overestimated by two orders of magnitude. Addition-
ally, we provided information of the binding pathway highlighting metastable
binding sites as well as transitory interactions on the surface of trypsin, that
participated in process of benzamidine binding to the canonical pocket. Re-
cently, some of these findings have been reproduced using alternative biased
sampling methodologies like reconnaissance metadynamics for binding pose
discovery [230]. Parrinello and co-workers identified some of the metastable
states and transient interactions we had described for benzamidine on the sur-
face of trypsin, named S2, S3 and TS1-TS3. We are also currently extending the
methodology to the discovery of alternative binding sites in collaboration with
researchers at the European Synchrotron Radiation Facility in Grenoble who are
able to obtain crystallographic structures of short-lived protein-ligand complexes
using cryoprotectant-free high-pressure freezing [231]. Indeed, being able to find
ligand binding poses, either canonical or alternative, has the promising potential
of aiding the design of allosteric modulators targeting these sites; already a de-
clared driving motivation for some of the recently published studies [207, 206].
Moreover, these alternative of metastable states also have the potential to provide
information on the kinetic properties of target–drug interactions [43].

As already mentioned in the Introduction section, kinetics of binding is gain-
ing attention in drug discovery as it has been described to generally provide
better correlations with in vivo drug activities than binding affinities [38, 232].
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The analysis from Swinney [40, 41] revealed that an increasing amount of drugs
approved by the FDA had non-equilibrium kinetics and induced conformational
changes in proteins. Moreover he suggested that rapid dissociation rates are a
means of minimizing mechanism-based side effects [42]. In general, consider-
ation of association (kon) and dissociation (koff ) rates of binding on the design
of drugs may thus have important contributions to the efficacy, safety, duration
of action and differentiation of these drugs [40]. In recent work, Barril and co-
workers [43] have recently demonstrated that formation of water-shielded hydro-
gen bonds between a ligand and its receptor protein increases the kinetic stability
of complexes. Control over kinetic structure activity relationships is set to be one
of the next major goals in drug discovery.

If the promising role of kinetics in drug activity is confirmed, the combined
approach of high-throughput MD simulations with MSM analysis could soon
become a revolutionary tool in the context of structure-based drug discovery. Al-
though the capabilities are still very much limited to fast associating ligands, it
could soon be made more generally applicable with the development of adaptive
MSM strategies; an improvement over the standard MSM that allows for adap-
tively enhancing sampling in insufficiently-resolved transitions [146, 233, 148].
Moreover, there is still ample space for learning and controlling the effects that
several parameters in the building of MSM have on the convergence and the error
on statistical quantities that the method is able to provide [146].

Finally, high-throughput MD simulations with MSM analysis may have a
future application in structure-based drug discovery on the specific sub-discipline
of fragment-based design and discovery. The principal idea behind fragment-
based drug discovery is to increase the probability of finding hits in libraries
of small-sized ligands or even molecular features [234]. In a sort of Lego-like
approach, through the covalent combination of neighboring fragment hits on a
target, commonly known as ‘growing fragments’, highly potent and selective
drugs can be designed. Drugs that would have otherwise not been present in
common libraries [235, 236]. In this context, high-throughput MD fragment
binding simulations may be the means by which hits or leads could be screened
and ranked in silico for affinity and kinetics becoming an all-in-one solution for
fragment-based drug discovery.
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Chapter 5

CONCLUSIONS

1. Volunteer distributed computing is a cost-effective alternative for high-
throughput scientific computing as long as community management stays
at a comparable cost to applying for access to supercomputing facilities.
Moreover, involving the society in the daily process of scientific research is
an act of responsibility and may be able to democratize scientific practices
and goals.

2. High-performance computing architectures like GPUs and codes like
ACEMD, allow for a shorter time-to-answer and, its combination with
high-throughput approaches on embarrassingly parallel infrastructures has
proved capable of overcoming the sampling issue in absolute binding free
energy calculations and unguided ligand binding simulations, problems
long regarded prohibitive.

3. A one-dimensional potential of mean force-based binding free energy pro-
tocol to compute protein–ligand binding free energies, although still re-
quiring extensive amounts of sampling, largely solves the need of expert
human knowledge to set up calculations. Too costly for calculations of
many ligands, it has been successfully applied to studies of semi-flexible
protein–ligand and protein–protein complexes.

4. Molecular structure-based analysis coupled to binding free energy calcu-
lations in the determination of the impact of S468R mutation in EGFR in
colorectal cancer therapy predicts that, resistance to cetuximab can be due
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to both a loss in cetuximab binding affinity and a gain in EGF affinity for
the receptor. Structural analysis also suggests that alternative monoclonal
antibody necitumumab might be less affected by the mutation.

5. Free ligand binding allows for an unguided exploration of the conforma-
tional phase-space of protein–ligand interactions and has the potential of
finding metastable binding poses that that are indicatives of putative al-
losteric target sites. Trypsin–benzamidine binding experiments have re-
vealed non-obvious roles for metastable states involved in the binding
pathway, away from the known native pocket.

6. Markov state modeling is able to reconstruct kinetic networks from many
short unbiased simulation trajectories and quantify events with timescales
several order of magnitude longer than the individual trajectories simu-
lated. Applied to free ligand binding, MSM can readily provide a complete
quantitative picture of a binding process giving binding affinity, binding ki-
netics and binding pathway as shown for the trypsin–benzamidine study.

7. Provided that optimal adaptive unguided sampling strategies can be suc-
cessfully implemented, high-throughput free ligand binding molecular dy-
namics simulations analyzed with Markov state modeling may be able to
play a role in future in silico fragment-based drug discovery enterprises.
The methods and protocols implemented in GPUGRID for this purpose,
can be easily ported to dedicated in-house GPU computing facilities.
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